WorldWideScience

Sample records for breast cancer cells

  1. What Is Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  2. Breast Cancer Overview

    Science.gov (United States)

    ... Cancer > Breast Cancer > Breast Cancer: Overview Request Permissions Breast Cancer: Overview Approved by the Cancer.Net Editorial Board , ... bean-shaped organs that help fight infection. About breast cancer Cancer begins when healthy cells in the breast ...

  3. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  4. Cell Polarity Proteins in Breast Cancer Progression.

    Science.gov (United States)

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  5. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  6. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  7. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  8. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Halbach, Sebastian; Erbes, Thalia; Stickeler, Elmar; Kammerer, Bernd

    2015-09-01

    Although the concept of aerobic glycolysis in cancer was already reported in the 1930s by Otto Warburg, the understanding of metabolic pathways remains challenging especially due to the heterogeneity of cancer. In consideration of four different time points (1, 2, 4, and 7 days of incubation), GC-MS profiling of metabolites was performed on cell extracts and supernatants of breast cancer cell lines (MDA-MB-231, -453, BT-474) with different sub classification and the breast epithelial cell line MCF-10A. To the exclusion of trypsinization, direct methanolic extraction, cell scraping and cell disruption was executed to obtain central metabolites. Major differences in biochemical pathways have been observed in the breast cancer cell lines compared to the breast epithelial cell line, as well as between the breast cancer cell lines themselves. Characteristics of breast cancer subtypes could be correlated to their individual metabolic profiles. PLS-DA revealed the discrimination of breast cancer cell lines from MCF-10A based on elevated amino acid levels. The observed metabolic signatures have great potential as biomarker for breast cancer as well as an improved understanding of subtype specific phenomenons of breast cancer.

  9. Breast Cancer Cells May Change When They Spread to Brain

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162415.html Breast Cancer Cells May Change When They Spread to Brain: ... 2016 WEDNESDAY, Dec. 7, 2016 (HealthDay News) -- When breast cancer spreads to the brain, important molecular changes may ...

  10. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  11. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad . Breast cancer originates from subversions of...luminal epithelial cells embedded in a complex stromal matrix (‘mammary fat pad ’) comprised predominantly of fibroblasts, adipocytes and macrophages (Fig. 1...report, we showed that limited exposure (i.e., in utero and lactational only) of female rat offspring to a maternal diet containing soy protein isolate

  12. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  13. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  14. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  15. Exometabolom analysis of breast cancer cell lines: Metabolic signature.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-08-21

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.

  16. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  17. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  18. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  19. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow cytome

  20. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  1. Breast cancer stem cells: current advances and clinical implications.

    Science.gov (United States)

    Luo, Ming; Clouthier, Shawn G; Deol, Yadwinder; Liu, Suling; Nagrath, Sunitha; Azizi, Ebrahim; Wicha, Max S

    2015-01-01

    There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.

  2. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  3. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  4. Apoptotic effect of noscapine in breast cancer cell lines.

    Science.gov (United States)

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  5. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  6. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    Science.gov (United States)

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  7. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  8. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  9. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  10. Mammary development and breast cancer: the role of stem cells.

    Science.gov (United States)

    Ercan, C; van Diest, P J; Vooijs, M

    2011-06-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.

  11. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  12. File list: DNS.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cancer_cells.bed ...

  13. File list: Oth.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155767,SRX155769,SRX155766,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cancer_cells.bed ...

  14. File list: Oth.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155769,SRX155770,SRX155767 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cancer_cells.bed ...

  15. File list: His.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.Breast_cancer_cells.bed ...

  16. File list: His.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.AllAg.Breast_cancer_cells.bed ...

  17. File list: Unc.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.Breast_cancer_cells.bed ...

  18. File list: ALL.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...71,SRX155768,ERX210206,ERX210207,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.Breast_cancer_cells.bed ...

  19. File list: Oth.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155769,SRX155766,SRX155767,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cancer_cells.bed ...

  20. File list: Oth.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155767,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.Breast_cancer_cells.bed ...

  1. File list: Unc.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.Breast_cancer_cells.bed ...

  2. File list: DNS.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cancer_cells.bed ...

  3. File list: ALL.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...68,SRX155769,SRX155766,SRX155770,ERX210212,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.Breast_cancer_cells.bed ...

  4. File list: His.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.Breast_cancer_cells.bed ...

  5. File list: Pol.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.50.AllAg.Breast_cancer_cells.bed ...

  6. File list: Unc.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.Breast_cancer_cells.bed ...

  7. File list: His.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.Breast_cancer_cells.bed ...

  8. File list: ALL.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...69,SRX155770,SRX155767,ERX210207,SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.Breast_cancer_cells.bed ...

  9. File list: Pol.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.05.AllAg.Breast_cancer_cells.bed ...

  10. File list: DNS.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cancer_cells.bed ...

  11. File list: Pol.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.20.AllAg.Breast_cancer_cells.bed ...

  12. File list: Pol.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.10.AllAg.Breast_cancer_cells.bed ...

  13. File list: ALL.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...66,SRX155767,SRX155770,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.Breast_cancer_cells.bed ...

  14. IL-33 facilitates endocrine resistance of breast cancer by inducing cancer stem cell properties.

    Science.gov (United States)

    Hu, Haiyan; Sun, Jiaxing; Wang, Chunhong; Bu, Xiangmao; Liu, Xiangping; Mao, Yan; Wang, Haibo

    2017-02-16

    Breast cancers with estrogen receptor (ER) expressions account for the majority of all clinical cases. Due to hormone therapy with tamoxifen, prognoses of patients with ER-positive breast cancer are significantly improved. However, endocrine resistance to tamoxifen is common and inevitable, leading to compromised efficacy of hormone therapy. Herein, we identify a crucial role of IL-33 in inducing endocrine resistance of breast cancer. IL-33 overexpression in breast cancer cells results in resistance to tamoxifen-induced tumor growth inhibition, while IL-33 knockdown corrects this problem. Mechanistically, IL-33 induces breast cancer stem cell properties evidenced by mammosphere formation and xenograft tumorigenesis, as well as expression of cancer stem cell genes including ALDH1A3, OCT4, NANOG and SOX2. In breast cancer patients, higher serum IL-33 levels portend advanced clinical stages, poorly differentiated cancer cells and tumor recurrence. IL-33 expression levels in patients' freshly isolated breast cancer cells predicts tamoxifen resistance and cancer stem cell features in individual patient. Collectively, IL-33 induces endocrine resistance of breast cancer by promoting cancer stem cell properties. These findings provide novel mechanisms connecting IL-33 with cancer pathogenesis and pinpoint IL-33 as a promising target for optimizing hormone therapy in clinical practice.

  15. Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Lydia Usha

    Full Text Available The role of mesenchymal stem cells (MSCs on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.

  16. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  17. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  18. Multi-Walled Carbon Nanotubes Inhibit Breast Cancer Cell Migration.

    Science.gov (United States)

    Graham, Elizabeth G; Wailes, Elizabeth M; Levi-Polyachenko, Nicole H

    2016-02-01

    According to the American Cancer Society, breast cancer is the second leading cause of cancer death in the US. Cancerous cells may have inadequate adhesions to the extracellular matrix and adjacent cells. Previous work has suggested that restoring these contacts may negate the cancer phenotype. This work aims to restore those contacts using multi-walled carbon nanotubes (MWNTs). Varying concentrations of carboxylated MWNTs in water, with or without type I collagen, were dried to create a thin film upon which one of three breast cell lines were seeded: cancerous and metastatic MDA- MB-231 cells, cancerous but non-metastatic MCF7 cells, or non-cancerous MCF10A cells. Proliferation, adhesion, scratch and autophagy assays, western blots, and immunochemical staining were used to assess adhesion and E-cadherin expression. Breast cancer cells grown on a MWNT-collagen coated surface displayed increased adhesion and decreased migration which correlated with an increase in E-cadherin. This work suggests an alternative approach to cancer treatment by physically mediating the cells' microenvironment.

  19. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  20. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?

    Science.gov (United States)

    Shima, Hidetaka; Ishikawa, Takashi; Endo, Itaru

    2017-01-01

    Despite the dramatic advances in breast cancer treatment over the past two decades, it is still the most common malignancies in women. One of the reasons patients succumb to breast cancer is treatment resistance leading to metastasis and recurrence. Recently, cancer stem cells (CSCs) have been suggested as a cause of metastasis and recurrence in several cancers because of their unique characteristics, including self-renewal, pluripotency, and high proliferative ability. Increasing evidence has implicated breast cancer stem cells (BCSCs) as essential for tumor development, progression, recurrence, and treatment resistance. BCSCs exhibit resistance to treatment owing to several inter-related factors, including overexpression of ATP-binding cassette (ABC) transporters and increased aldehyde dehydrogenase (ALDH) activity, DNA repair, and reactive oxygen species (ROS) scavenging. In addition, the Notch, Hedgehog, and Wnt signaling pathways have been suggested as the major pathways involved in the self-renewal and differentiation of BCSCs. Despite growing evidence suggesting the importance of BCSCs in progression and metastasis, clear criteria for the identification of BCSCs in clinical practice have yet to be established. Several potential markers have been suggested, including CD44+/CD24−/low, ALDH1, EpCAM/ESA, and nestin; however, there is no standard method to detect BCSCs. Triple-negative breast cancer, which shows initial chemosensitivity, demonstrates worsened prognosis due to therapy resistance, which might be related to the presence of BCSCs. Several clinical trials aimed at the identification of BCSCs or the development of BCSC-targeted therapy are in progress. Determining the clinical relevance of BCSCs may provide clues for overcoming therapy resistance in breast cancer. PMID:28210556

  1. Targeting Breast Cancer Stem Cells In Triple Negative Breast Cancer

    Science.gov (United States)

    2014-10-01

    tumorigenesis (tumorsphere formation) and BCSC, which are linked to increase development of chemotherapeutic resistance and relapse. Effective inhibition of...and& mouse&BC&cells&[5,&29]& Lep7n&&induces&protein&expression&and&ac7va7on&of& Notch1 ,&G3&and&4&in&human&BC&& ER+&and&ERG&&and&mouse&E0771&ER+&cells&[29...mouse&BC&cells&[5,&29]& Lep7n&&induces&protein&expression&and&ac7va7on&of& Notch1 ,&G3&and&4&in&human&BC&& ER+&and&ERG&&and&mouse&E0771&ER+&cells&[29

  2. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  3. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Science.gov (United States)

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  4. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Mian Wang

    Full Text Available Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa cells and bone marrow derived human mesenchymal stem cells (MSCs were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  5. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor

    OpenAIRE

    Harrison, Hannah; Farnie, Gillian; Howell, Sacha J.; Rock, Rebecca E; Stylianou, Spyros; Brennan, Keith R.; Bundred, Nigel J; Clarke, Robert B.

    2010-01-01

    Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA+/CD44+/CD24low. Using these breast cancer stem cell populations, we compared the activation status of Notch...

  6. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    Science.gov (United States)

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-03-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.

  7. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.

    Directory of Open Access Journals (Sweden)

    Guillaume Vares

    Full Text Available Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs. In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression, which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.

  8. Breast Cancer

    Science.gov (United States)

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  9. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  10. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  11. MicroRNA Regulation of Human Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Shimono

    2015-12-01

    Full Text Available MicroRNAs (miRNAs are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.

  12. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  13. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  14. Surgery for Breast Cancer

    Science.gov (United States)

    ... Cancer During Pregnancy Breast Cancer Breast Cancer Treatment Surgery for Breast Cancer Surgery is a common treatment ... removed (breast reconstruction) Relieve symptoms of advanced cancer Surgery to remove breast cancer There are two main ...

  15. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  16. An update on the biology of cancer stem cells in breast cancer.

    Science.gov (United States)

    García Bueno, José María; Ocaña, Alberto; Castro-García, Paola; Gil Gas, Carmen; Sánchez-Sánchez, Francisco; Poblet, Enrique; Serrano, Rosario; Calero, Raúl; Ramírez-Castillejo, Carmen

    2008-12-01

    Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24- select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.

  17. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  18. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  19. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    Gilman Drive, La Jolla, California 92093-0819, USA. 7Present address: Department of Immunology , The University of Texas MD Anderson Cancer Center, 7455...AD_________________ Award Number: W81XWH-13-1-0132 TITLE: Regulation of Breast Cancer Stem Cell by Tissue Rigidity PRINCIPAL INVESTIGATOR: Jing...for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

  20. Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

    OpenAIRE

    Lambert, Arthur W.; Sait Ozturk; Sam Thiagalingam

    2012-01-01

    Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mam...

  1. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  2. HIPK2 downregulates vimentin and inhibits breast cancer cell invasion.

    Science.gov (United States)

    Nodale, Cristina; Sheffer, Michal; Jacob-Hirsch, Jasmine; Folgiero, Valentina; Falcioni, Rita; Aiello, Aurora; Garufi, Alessia; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2012-02-15

    Vimentin, a mesenchymal marker, is frequently overexpressed in epithelial carcinomas undergoing epithelial to mesenchymal transition (EMT), a condition correlated with invasiveness and poor prognosis. Therefore, vimentin is a potential molecular target for anticancer therapy. Emerging studies in experimental models underscore the functions of homeodomain-interacting protein kinase 2 (HIPK2) as potential oncosuppressor by acting as transcriptional corepressor or catalytic activator of molecules involved in apoptosis and response to antitumor drugs. However, an involvement of HIPK2 in limiting tumor invasion remains to be elucidated. This study, by starting with a microarray analysis, demonstrates that HIPK2 downregulates vimentin expression in invasive, vimentin-positive, MDA-MB-231 breast cancer cells and in the non-invasive MCF7 breast cancer cells subjected to chemical hypoxia, a drive for mesenchymal shift and tumor invasion. At functional level, vimentin downregulation by HIPK2 correlates with inhibition of breast tumor cell invasion. Together, these data show that vimentin is a novel target for HIPK2 repressor function and that HIPK2-mediated vimentin downregulation can contribute to inhibition of breast cancer cells invasion that might be applied in clinical therapy.

  3. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  4. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  5. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts.

    Science.gov (United States)

    Feng, Ming-Xuan; Hong, Jian-Xin; Wang, Qiang; Fan, Yong-Yong; Yuan, Chi-Ting; Lei, Xin-Huan; Zhu, Min; Qin, An; Chen, Hai-Xiao; Hong, Dun

    2016-01-08

    Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.

  6. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  7. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Science.gov (United States)

    Harris, Dinari A; Patel, Sajni H; Gucek, Marjan; Hendrix, An; Westbroek, Wendy; Taraska, Justin W

    2015-01-01

    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  8. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy.

  9. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min‑1). Further, in response to a fast flow (5 µl min‑1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  10. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  11. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  12. Increased Levels of Erythropoietin in Nipple Aspirate Fluid and in Ductal Cells from Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ferdinando Mannello

    2008-01-01

    Full Text Available Background: Erythropoietin (Epo is an important regulator of erythropoiesis, and controls proliferation and differentiation of both erythroid and non-erythroid tissues. Epo is actively synthesized by breast cells during lactation, and also plays a role in breast tissues promoting hypoxia-induced cancer initiation. Our aims are to perform an exploratory investigation on the Epo accumulation in breast secretions from healthy and cancer patients and its localization in breast cancer cells.

  13. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  14. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Tiffany M. Phillips

    2007-12-01

    Full Text Available BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs. In breast cancer, CICs can be identified by phenotypic markers and their fate is controlled by the Notch pathway. METHODS: In this study, we investigated the effect of erythropoietin on CICs in breast cancer cell lines. Levels of erythropoietin receptor (EpoR, CD24, CD44, Jagged-1 expression, activation of Notch-1 were assessed by flow cytometry. Self-renewing capacity of CICs was investigated in sphere formation assays. RESULTS: EpoR expression was found on the surface of CICs. Recombinant human Epo (rhEpo increased the numbers of CICs and self-renewing capacity in a Notch-dependent fashion by induction of Jagged-1. Inhibitors of the Notch pathway and P13-kinase blocked both effects. CONCLUSIONS: Erythropoietin functionally affects CICs directly. Our observation may explain the negative impact of recombinant Epo on local control and survival of cancer patients with EpoR-positive tumors.

  15. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    Science.gov (United States)

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  16. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  17. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Maria Grazia Daidone

    2011-03-01

    Full Text Available There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC. BCIC identified in clinical specimens based on membrane phenotype (CD44+/CD24−/low and/or CD133+ expression or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1+, have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways.

  18. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Guido; Binda, Mara; Zaffaroni, Nadia; Daidone, Maria Grazia, E-mail: mariagrazia.daidone@istitutotumori.mi.it [Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS-Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133 (Italy)

    2011-03-16

    There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC). BCIC identified in clinical specimens based on membrane phenotype (CD44{sup +}/CD24{sup −/low} and/or CD133{sup +} expression) or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1{sup +}), have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways.

  19. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2007-05-01

    Moreover, Pece et al, showed that inhibition of the Notch pathway in breast tumors with increased Notch activity can reduce the tumor growth (152... Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, et al. Loss of negative regulation by Numb over Notch is relevant to human breast

  20. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  1. Acetylation Enhances the Promoting Role of AIB1 in Breast Cancer Cell Proliferation

    Science.gov (United States)

    You, Dingyun; Zhao, Hongbo; Wang, Yan; Jiao, Yang; Lu, Minnan; Yan, Shan

    2016-01-01

    The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator, which is overexpressed in various types of human cancers, including breast cancer. However, the molecular mechanisms regulating AIB1 function remain largely unknown. In this study, we present evidence demonstrating that AIB1 is acetylated by MOF in human breast cancer cells. Moreover, we also found that the acetylation of AIB1 enhances its function in promoting breast cancer cell proliferation. We further showed that the acetylation of AIB1 is required for its recruitment to E2F1 target genes by E2F1. More importantly, we found that the acetylation levels of AIB1 are greatly elevated in human breast cancer cells compared with that in non-cancerous cells. Collectively, our results shed light on the molecular mechanisms that regulate AIB1 function in breast cancer. PMID:27665502

  2. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  3. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    Science.gov (United States)

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  4. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells.

    Science.gov (United States)

    Li, Ruo-Jing; Ying, Xue; Zhang, Yan; Ju, Rui-Jun; Wang, Xiao-Xing; Yao, Hong-Juan; Men, Ying; Tian, Wei; Yu, Yang; Zhang, Liang; Huang, Ren-Jie; Lu, Wan-Liang

    2011-02-10

    The relapse of cancer is mostly due to the proliferation of cancer stem cells which could not be eliminated by a standard chemotherapy. A new kind of all-trans retinoic acid stealth liposomes was developed for preventing the relapse of breast cancer and for treating the cancer in combination with a cytotoxic agent, vinorelbine stealth liposomes. In vitro studies were performed on the human breast cancer MCF-7 and MDA-MB-231 cells. In vivo evaluations were performed on the newly established relapse model with breast cancer stem cells. Results showed that the particle size of all-trans retinoic acid stealth liposomes was approximately 80nm, and the encapsulation efficiency was >90%. Breast cancer stem cells were identified with the CD44(+)/CD24(-) phenotype and characterized with properties: resistant to cytotoxic agent, stronger capability of proliferation, and stronger capability of differentiation. Inhibitory effect of all-trans retinoic acid stealth liposomes was more potent in cancer stem cells than in cancer cells. The mechanisms were defined to be two aspects: arresting breast cancer stem cells at the G(0)/G(1) phase in mitosis, and inducing the differentiation of breast cancer stem cells. The cancer relapse model was successfully established by xenografting breast cancer stem cells into NOD/SCID mice, and the formation and growth of the xenografted tumors were significantly inhibited by all-trans retinoic acid stealth liposomes. The combination therapy of all-trans retinoic acid stealth liposomes with vinorelbine stealth liposomes produced the strongest inhibitory effect to the relapse tumor model. It could be concluded that all-trans retinoic acid stealth liposomes could be used for preventing the relapse of breast cancer by differentiating cancer stem cells and arresting the cell-cycle, and for treating breast cancer as a co-therapy, thus providing a novel strategy for treating breast cancer and preventing relapse derived from breast cancer stem cells.

  5. File list: InP.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.50.AllAg.Breast_cancer_cells.bed ...

  6. File list: InP.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.20.AllAg.Breast_cancer_cells.bed ...

  7. File list: NoD.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.20.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210209,ERX210205,ERX210213,ERX210215,ERX210206,ERX210208,ERX210207,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.20.AllAg.Breast_cancer_cells.bed ...

  8. File list: NoD.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.05.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210208,ERX210209,ERX210215,ERX210213,ERX210206,ERX210212,ERX210205,ERX210207 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.05.AllAg.Breast_cancer_cells.bed ...

  9. File list: InP.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.05.AllAg.Breast_cancer_cells.bed ...

  10. File list: InP.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.10.AllAg.Breast_cancer_cells.bed ...

  11. File list: NoD.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.10.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210209,ERX210215,ERX210208,ERX210213,ERX210212,ERX210205,ERX210206,ERX210207 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.10.AllAg.Breast_cancer_cells.bed ...

  12. File list: NoD.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210215,ERX210213,ERX210206,ERX210205,ERX210207,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.50.AllAg.Breast_cancer_cells.bed ...

  13. Siah1 proteins enhance radiosensitivity of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Engenhart-Cabillic Rita

    2010-08-01

    Full Text Available Abstract Background Siah proteins play an important role in cancer progression. We evaluated the effect of Siah1, its splice variants Siah1L and the Siah1 mutant with the RING finger deleted (Siah1ΔR on radiosensitization of human breast cancer cells. Methods The status of Siah1 and Siah1L was analysed in five breast cancer cell lines. To establish stable cells, SKBR3 cells were transfected with Siah1, Siah-1L and Siah1ΔR. Siah1 function was suppressed by siRNA in MCF-7 cells. The impact of Siah1 overexpression and silencing on apoptosis, proliferation, survival, invasion ability and DNA repair was assessed in SKBR3 and MCF-7 cells, also in regards to radiation. Results Siah1 and Siah1L mRNA expression was absent in four of five breast cancer cells lines analysed. Overexpression of Siah1 and Siah1L enhanced radiation-induced apoptosis in stable transfected SKBR3 cells, while Siah1ΔR failed to show this effect. In addition, Siah1 and Siah1L significantly reduced cell clonogenic survival and proliferation. Siah1L sensitization enhancement ratio values were over 1.5 and 4.0 for clonogenic survival and proliferation, respectively, pointing to a highly cooperative and potentially synergistic fashion with radiation. Siah1 or Siah1L significantly reduced invasion ability of SKBR3 and suppressed Tcf/Lef factor activity. Importantly, Siah1 siRNA demonstrated opposite effects in MCF-7 cells. Siah1 and Siah1L overexpression resulted in inhibition of DNA repair as inferred by increased levels of DNA double-strand breaks in irradiated SKBR3 cells. Conclusion Our results reveal for the first time how overexpression of Siah1L and Siah1 can determine radiosensitivity of breast cancer cells. These findings suggest that development of drugs augmenting Siah1 and Siah1L activity could be a novel approach in improving tumor cell kill.

  14. Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells.

    Science.gov (United States)

    Cardiff, Robert D; Couto, Suzana; Bolon, Brad

    2011-10-25

    Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease and malignant progression over time. These themes cooperate in breast cancer, as induction of epithelial-to-mesenchymal transition enhances self-renewal and expression of cancer stem cells, which are believed to facilitate tumor resistance.

  15. Expression of Uncoupling Protein 2 in Breast Cancer Tissue and Drug-resistant Cells

    Institute of Scientific and Technical Information of China (English)

    Sun Yan; Yuan Yuan; Zhang Lili; Zhu Hong; Hu Sainan

    2013-01-01

    Objective:To explore the expression of uncoupling protein-2 (UCP2) in clinical breast cancer tissue and drug-resistant cells. Methods:The expression of UCP2 in breast cancer tissue and normal tissue adjacent to carcinoma as well as breast cancer cell MCF-7 and paclitaxel-resistant cell MX-1/T were respectively detected by immunohistochemistry and Western blot. Results:The expression of UCP2 in breast cancer tissue was signiifcantly higher than in normal tissue adjacent to carcinoma, and that in paclitaxel-resistant cell MX-1/T obviously higher than in breast cancer cell MCF-7. Conclusion:UCP2 is highly expressed in breast cancer tissue and drug-resistant cells.

  16. Breast Cancer Research Update

    Science.gov (United States)

    ... JavaScript on. Feature: Breast Cancer Breast Cancer Research Update Winter 2017 Table of Contents National Cancer Institute ... Addressing Breast Cancer's Unequal Burden / Breast Cancer Research Update Winter 2017 Issue: Volume 11 Number 4 Page ...

  17. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  18. Hypoxic enhancement of exosome release by breast cancer cells

    Directory of Open Access Journals (Sweden)

    King Hamish W

    2012-09-01

    Full Text Available Abstract Background Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2 or severe (0.1% O2 hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of  Results Exposure of three different breast cancer cell lines to moderate (1% O2 and severe (0.1% O2 hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic

  19. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  20. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wangstella5@163.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Yang, Qifeng, E-mail: qifengy@gmail.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson School of Medicine, Cancer Institute of New Jersey, NB (United States); Li, Xiaoyan, E-mail: xiaoyanli1219@gmail.com [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Moran, Meena S., E-mail: meena.moran@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  1. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling.

    Science.gov (United States)

    Masuda, Tetsuro; Endo, Motoyoshi; Yamamoto, Yutaka; Odagiri, Haruki; Kadomatsu, Tsuyoshi; Nakamura, Takayuki; Tanoue, Hironori; Ito, Hitoshi; Yugami, Masaki; Miyata, Keishi; Morinaga, Jun; Horiguchi, Haruki; Motokawa, Ikuyo; Terada, Kazutoyo; Morioka, Masaki Suimye; Manabe, Ichiro; Iwase, Hirotaka; Mizuta, Hiroshi; Oike, Yuichi

    2015-03-16

    Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.

  2. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  3. Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells.

    Science.gov (United States)

    Zhou, Weiqiang; Wang, Guangdi; Guo, Shanchun

    2013-12-01

    Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.

  4. Toward a stem cell gene therapy for breast cancer.

    Science.gov (United States)

    Li, ZongYi; Liu, Ying; Tuve, Sebastian; Xun, Ye; Fan, Xiaolong; Min, Liang; Feng, Qinghua; Kiviat, Nancy; Kiem, Hans-Peter; Disis, Mary Leonora; Lieber, André

    2009-05-28

    Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.

  5. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells......% of the samples. When the GRP(14-27) peptide was added exogenously to breast cancer and SCLC cell lines under serum-free culture conditions, (3H)-thymidine incorporation was stimulated by GRP(14-27) in the SCLC cell lines. Of the breast cancer cell lines only the T47D cell line responded with an increase in (3H......)-thymidine incorporation comparable to the increase observed with SCLC cells. Recently, it has been reported that GRP-like receptors are present in some human breast cancer cell lines, including the T47D cell line studied here. The breast cancer cell line T47D therefore expresses the GRP peptide and the receptor for GRP...

  6. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  7. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  8. Clear Cell Carcinoma of the Breast: A Rare Breast Cancer Subtype - Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Vilma Ratti

    2015-11-01

    Full Text Available Background: Glycogen-rich clear cell breast carcinoma is a rare histological breast cancer subtype. Its prognosis may vary depending on specific clinical and pathological characteristics such as low grade, strong positivity of estrogen receptor (ER expression and early diagnosis. Case Presentation: We present the case of a 53-year-old woman with a bleeding 10-cm-diameter mass in the left breast. The histological examination showed a poorly differentiated tumor with malignant cells characterized by abundant clear cytoplasm. The diagnosis of clear cell carcinoma was based on the histological characteristics of the tumor, and a nonmammary origin was initially ruled out. The tumor was triple negative [i.e. ER, progesterone receptor (PR and HER2 negative]. Four months after the initial locoregional treatment, the patient developed lung and distant lymph node metastases. Conclusions: Glycogen-rich clear cell carcinoma of the breast is a rare tumor. Early diagnosis, absence of lymph node metastases and ER/PR positivity are associated with a better prognosis, as in other common breast cancer subtypes.

  9. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  10. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Ling

    2011-09-01

    Full Text Available Abstract Background Tumor-associated macrophages (TAMs are alternatively activated cells induced by interleukin-4 (IL-4-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. Results We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. Conclusions We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.

  11. Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell

    Science.gov (United States)

    Wang, Lianlian; Luo, Xiaofang; Li, Cong; Huang, Yubing; Xu, Ping; Lloyd-Davies, Laetitia H.; Delplancke, Thibaut; Peng, Chuan; Qi, Hongbo; Baker, Philip

    2017-01-01

    Breast cancer is characterized by overexpression of superoxide dismutase (SOD) and downregulation of catalase and more resistance to hydrogen peroxide (H2O2) than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc) is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA) enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.

  12. Breast cancer

    CERN Multimedia

    2002-01-01

    "Cancer specialists will soon be able to compare mammograms with computerized images of breast cancer from across Europe, in a bid to improve diagnosis and treatment....The new project, known as MammoGrid, brings together computer and medical imaging experts, cancer specialists, radiologists and epidemiologists from Bristol, Oxford, Cambridge, France and Italy" (1 page).

  13. Norgestrel and gestodene stimulate breast cancer cell growth through an oestrogen receptor mediated mechanism.

    OpenAIRE

    Catherino, W. H.; Jeng, M. H.; Jordan, V.C.

    1993-01-01

    There is great concern over the long-term influence of oral contraceptives on the development of breast cancer in women. Oestrogens are known to stimulate the growth of human breast cancer cells, and this laboratory has previously reported (Jeng & Jordan, 1991) that the 19-norprogestin norethindrone could stimulate the proliferation of MCF-7 human breast cancer cells. We studied the influence of the 19-norprogestins norgestrel and gestodene compared to a 'non' 19-norprogestin medroxyprogester...

  14. Loss of cadherin-based cell adhesion and the progression of Invasive Lobular Breast Cancer

    NARCIS (Netherlands)

    Vlug, E.J.

    2015-01-01

    Lobular breast cancer is a type of breast cancer that is histologically characterized by a noncohesive growth pattern of small regular cells, where single cells infiltrate as one-layered strands of cells. This noncohesive growth pattern is due to inactivation of the E-cadherin complex and a subseque

  15. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    M. Ignatiadis (Michael); S. Riethdorf (Sabine); F.-C. Bidard (François-Clement); I. Vaucher (Isabelle); M. Khazour (Mustapha); F. Rothé (Françoise); J. Metallo (Jessica); G. Rouas (Ghizlane); R.E. Payne (Rachel); R.C. Coombes (Raoul); I. Teufel (Ingrid); U. Andergassen (Ulrich); M. Apostolaki (Maria); E. Politaki (Eleni); D. Mavroudis (Dimitris); E. Bessi (Elena); M. Pestrin (Marta); A. Di Leo (Angelo); D. Campion (Dominique); M. Reinholz (Monica); E. Perez (Edith); M.J. Piccart (Martine); E. Borgen (Elin); B. Naume (Bjorn); J. Jimenez (Jose); C.M. Aura (Claudia); L. Zorzino (Laura); M.C. Cassatella (Maria); M.T. Sandri (Maria); B. Mostert (Bianca); S. Sleijfer (Stefan); J. Kraan (Jaco); W. Janni (Wolfgang); T. Fehm (Tanja); B. Rack (Brigitte); L.W.M.M. Terstappen (Leon); M. Repollet (Madeline); J.Y. Pierga (Jean Yves); C. Miller (Craig); C. Sotiriou (Christos); S. Michiels (Stefan); K. Pantel (Klaus)

    2014-01-01

    textabstractIntroduction: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.Methods: CellSearch® images (N = 272) of either CTCs or white bloo

  16. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse

    /CD24-/low compartment of human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. From a triple-negative breast cancer cell line we isolated and cloned CD44hi single-cells that exhibited functional heterogeneity...

  17. Learning about Breast Cancer

    Science.gov (United States)

    ... genetic terms used on this page Learning About Breast Cancer What do we know about heredity and breast ... Cancer What do we know about heredity and breast cancer? Breast cancer is a common disease. Each year, ...

  18. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  19. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes.

    Science.gov (United States)

    Tabariès, Sébastien; Dupuy, Fanny; Dong, Zhifeng; Monast, Anie; Annis, Matthew G; Spicer, Jonathan; Ferri, Lorenzo E; Omeroglu, Atilla; Basik, Mark; Amir, Eitan; Clemons, Mark; Siegel, Peter M

    2012-08-01

    We previously identified claudin-2 as a functional mediator of breast cancer liver metastasis. We now confirm that claudin-2 levels are elevated in liver metastases, but not in skin metastases, compared to levels in their matched primary tumors in patients with breast cancer. Moreover, claudin-2 is specifically expressed in liver-metastatic breast cancer cells compared to populations derived from bone or lung metastases. The increased liver tropism exhibited by claudin-2-expressing breast cancer cells requires claudin-2-mediated interactions between breast cancer cells and primary hepatocytes. Furthermore, the reduction of the claudin-2 expression level, either in cancer cells or in primary hepatocytes, diminishes these heterotypic cell-cell interactions. Finally, we demonstrate that the first claudin-2 extracellular loop is essential for mediating tumor cell-hepatocyte interactions and the ability of breast cancer cells to form liver metastases in vivo. Thus, during breast cancer liver metastasis, claudin-2 shifts from acting within tight-junctional complexes to functioning as an adhesion molecule between breast cancer cells and hepatocytes.

  20. Wls promotes the proliferation of breast cancer cells via Wnt signaling.

    Science.gov (United States)

    Lu, Dong; Li, Ying; Liu, Qing-Ru; Wu, Qi; Zhang, Hao; Xie, Peng; Wang, Qingling

    2015-05-01

    The Wnt secretion protein Wntless (Wls)/GPR177 has been reported to be involved in the development of several human cancers. However, the biological significance of Wls in breast cancer progression has not been clarified. In this study, we show for the first time that Wls is an important molecule related to breast cancer. We find that Wls expression is markedly increased in clinical breast tumors compared with adjacent noncancerous tissues. Downregulation of Wls by short-hairpin RNA severely suppressed the proliferation of breast cancer cells. Wls is a core Wnt signaling component, and we show that knockdown of Wls is sufficient to inhibit Wnt secretion and its downstream signaling. Taken together, these results indicate that Wls contributes to the proliferation of breast cancer cells by regulating Wnt signaling. Therefore, Wls could be a novel therapeutic target for inhibiting cell growth in breast cancer.

  1. Fusion of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    Science.gov (United States)

    2011-08-01

    patients. This brief report details the characterization of tumor cells and dendritic cells generated from patient BV01 with metastatic breast cancer following isolation from pleural effusions and leukapheresis, respectively.

  2. Ultrasonic Detection of Microscopic Breast Cancer in Cell Cultures

    Science.gov (United States)

    Goodrich, Jeffrey B.; Patel, Hemang; Doyle, Timothy E.; Kwon, Soonjo

    2010-10-01

    A current problem in breast cancer treatment is the detection of microscopic cancer in surgical margins to ensure all of the cancer has been removed. Current methods rely on extensive pathology work that may take several days to complete. Positive findings for cancer in margins require follow-up surgery for up to 50% of lumpectomy patients to remove more tissue. A microscopic detection method for use during surgery would be preferable to reduce the risks, costs, and patient suffering of follow-up operations. Ultrasound is a promising in vivo detection method due to its low cost, portability, and ability to detect malignant tissue changes. Recent experiments have demonstrated the ultrasonic detection of microscopic cancer in cell cultures. Ultrasonic waveforms from pulse echo measurements showed significant differences between normal and malignant cell monolayers. The ultrasound also detected normal and malignant monolayer growth that displayed good correlations with cell counts. These results support the use of ultrasound as a viable method for in vivo detection. Testing of surgical samples at the Huntsman Cancer Institute is now in progress.

  3. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells.

    Science.gov (United States)

    Mills, Shirley C; Goh, Poh Hui; Kudatsih, Jossie; Ncube, Sithembile; Gurung, Renu; Maxwell, Will; Mueller, Anja

    2016-04-01

    Chemotaxis or directed cell migration is mediated by signalling events initiated by binding of chemokines to their cognate receptors and the activation of a complex signalling cascade. The molecular signalling pathways involved in cell migration are important to understand cancer cell metastasis. Therefore, we investigated the molecular mechanisms of CXCL12 induced cell migration and the importance of different signalling cascades that become activated by CXCR4 in leukemic cells versus breast cancer cells. We identified Src kinase as being essential for cell migration in both cancer types, with strong involvement of the Raf/MEK/ERK1/2 pathway. We did not detect any involvement of Ras or JAK2/STAT3 in CXCL12 induced migration in Jurkat cells. Preventing PKC activation with inhibitors does not affect migration in Jurkat cells at all, unlike in the adherent breast cancer cell line MCF-7 cells. However, in both cell lines, knock down of PKCα prevents migration towards CXCL12, whereas the expression of PKCζ is less crucial for migration. PI3K activation is essential in both cell types, however LY294002 usage in MCF-7 cells does not block migration significantly. These results highlight the importance of verifying specific signalling pathways in different cell settings and with different approaches.

  4. YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation.

    Directory of Open Access Journals (Sweden)

    Qinghe Song

    Full Text Available The Yes-associated protein (YAP, a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND. Here, we show that YAP knockdown sensitized MCF7 breast cancer cells to nutrient deprivation-induced apoptosis. Furthermore, in response to ND, YAP increased the autolysosome degradation, thereby enhancing the cellular autophagic flux in breast cancer cells. Of note, autophagy is crucial for YAP to protect MCF7 cells from apoptosis under ND conditions. In addition, the TEA domain (TEAD family of growth-promoting transcription factors was indispensable for YAP-mediated regulation of autophagy. Collectively, our data reveal a role for YAP in promoting breast cancer cell survival upon ND stress and uncover an unappreciated function of YAP/TEAD in the regulation of autophagy.

  5. Concomitant Small Cell Neuroendocrine Carcinoma of Gallbladder and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paolo Aiello

    2014-01-01

    Full Text Available The neuroendocrine carcinoma is defined as a high-grade malignant neuroendocrine neoplasm arising from enterochromaffin cells, usually disposed in the mucosa of gastric and respiratory tracts. The localization in the gallbladder is rare. Knowledge of these gallbladder tumors is limited and based on isolated case reports. We describe a case of an incidental finding of small cell neuroendocrine carcinoma of the gallbladder, observed after cholecystectomy for cholelithiasis, in a 55-year-old female, who already underwent quadrantectomy and sentinel lymph-node biopsy for breast cancer. The patient underwent radiotherapy for breast cancer and six cycles of chemotherapy with cisplatin and etoposide. Eighteen months after surgery, the patient was free from disease. Small cell neuroendocrine carcinoma of the gallbladder has poor prognosis. Because of the rarity of the reported cases, specific prognostic factors have not been identified. The coexistence of small cell neuroendocrine carcinoma of the gallbladder with another malignancy has been reported only once. The contemporary presence of the two neoplasms could reflect that bioactive agents secreted by carcinoid can promote phenotypic changes in susceptible cells and induce neoplastic transformation.

  6. Epithelial cell identity in hyperplastic precursors of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2015-01-01

    Introduction:In the adult human breast, hyperplastic enlarged lobular unit (HELU) and atypical ductal hyperplasia (ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ (DCIS). For this reason, they have been proposed as the early steps in a biological continuum toward breast cancer. Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling, in HELUs or ADHs with respect to the corresponding patient-matched normal tissue. Results:Despite the common luminal origin, HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only. While HELUs were associated with the overexpression of progesterone receptor (PGR), ADHs were characterized by the overexpression of estrogen receptor 1 (ESR1) coupled with the overexpression of some proliferation-associated genes. Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor (ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation. Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer, present findings warn that exposure to synthetic progestins, frequently administered as hormone-replacement therapy, and estrogens, when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland, may cause these hyperplastic lesions.

  7. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    Science.gov (United States)

    2009-07-01

    Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer PRINCIPAL INVESTIGATOR: Donald W. Kufe, M.D...COVERED 1 Jul 2008 – 30 Jun 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the...David Avigan, MD, Beth Israel Deaconess Medical Center, Boston, MA, in Support of Proposal, "Fusions of Breast Carcinoma and Dendritic Cells as a

  8. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  9. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Science.gov (United States)

    Pulito, Claudio; Terrenato, Irene; Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  10. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  11. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  12. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  13. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    OpenAIRE

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2012-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of ...

  14. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Science.gov (United States)

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  15. Sox2 expression in breast tumours and activation in breast cancer stem cells.

    Science.gov (United States)

    Leis, O; Eguiara, A; Lopez-Arribillaga, E; Alberdi, M J; Hernandez-Garcia, S; Elorriaga, K; Pandiella, A; Rezola, R; Martin, A G

    2012-03-15

    The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

  16. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-05-01

    cell self-renewal pathways generates tumors driven by cells that maintain stem cell character- istics. Materials and Methods Dissociation of mammary...of America Q12) was placed s.c. on the back of the neck of the mouse by using a trocar , and 400 mammospheres were mixed with 2.5 105 normal human

  17. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    Science.gov (United States)

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  18. Myrtus comunis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hrubik Jelena D.

    2012-01-01

    Full Text Available In vitro cytotoxicity of methanol, ethyl acetate, n-buthanol, and water extracts of Myrtus communis L. and Eucalyptus camaldulensis Dehnh. was examined against two human breast cancer cell lines (MCF 7 and MDA-MB-231 using MTT and SRB assays. The results showed significant cytotoxic potential of examined extracts, with IC50 values ranging from 7 to 138 μg/ml for M. communis and 3-250 μg/ml for E. camaldulensis. The two plants generally expressed similar activity, and no significant difference in cell line’s sensitivity towards extracts was observed. The results indicate to M. communis and E. camaldulensis as candidates for thorough chemical analyses for identification of active compounds, and eventually for attention in the process of discovery of new natural products in the control of cancer. [Projekat Ministarstva nauke Republike Srbije, br. 173037 i br. 172058

  19. Mechanisms of Chemoresistance in Breast Cancer Cells

    Science.gov (United States)

    2005-05-01

    effect on ji-acn f. ........ :.. expression levels of P3-actin. Whether chemical lowering of MDRI expression affects cellular RT-PCR Wester blot ...AdrR/asGCS cells compared with MCF-7-AdrR cells. We confirmed this by Western blot . Whereas, MCF-7-AdrR cells contained characteristically elevated...Research P-glycoprotein expression can be down-regulated by GCS antisense nitrocellulose blot was blocked with 5% fat-free milk powder in PBS

  20. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    Science.gov (United States)

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  1. Combined effects of lapatinib and bortezomib in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and activity of bortezomib against lapatinib-resistant breast cancer cells.

    Science.gov (United States)

    Ma, Chuandong; Niu, Xiuqing; Luo, Jianmin; Shao, Zhimin; Shen, Kunwei

    2010-10-01

    Lapatinib and bortezomib are highly active against breast cancer cells. Breast cancer patients who initially respond to lapatinib may eventually manifest acquired resistance to this treatment. Thus, the identification of novel agents that may prevent or delay the development of acquired resistance to lapatinib is critical. In the current study, we show that the combination of lapatinib and bortezomib results in a synergistic growth inhibition in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and that the combination enhances apoptosis of SK-BR-3 cells. Importantly, we found that the combination of lapatinib plus bortezomib more effectively blocked activation of the HER2 pathway in SK-BR-3 cells, compared with monotherapy. In addition, we established a model of acquired resistance to lapatinib by chronically challenging SK-BR-3 breast cancer cells with increasing concentrations of lapatinib. Here, we showed that bortezomib notably induced apoptosis of lapatinib-resistant SK-BR-3 pools and further inhibited HER2 signaling in the resistant cells. Taken together, the current data indicate a synergistic interaction between lapatinib and bortezomib in HER2-overexpressing breast cancer cells and provide the rationale for the clinical evaluation of these two noncross-resistant targeted therapies. The combination of lapatinib and bortezomib may be a potentially novel approach to prevent or delay the onset of acquired resistance to lapatinib in HER2-overxpressing/estrogen receptor (ER)-negative breast cancers.

  2. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Ochnik

    2016-02-01

    Conclusion: The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation.

  3. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  4. Segmentation of breast cancer cells positive 1+ and 3+ immunohistochemistry

    Science.gov (United States)

    Labellapansa, Ause; Muhimmah, Izzati; Indrayanti

    2016-03-01

    Breast cancer is a disease occurs as a result of uncontrolled cells growth. One examination method of breast cancer cells is using Immunohistochemistry (IHC) to determine status of Human Epidermal Growth Factor Receptor2 (HER2) protein. This study helps anatomic pathologist to determine HER2 scores using image processing techniques to obtain HER2 overexpression positive area percentages of 1+ and 3+ scores. This is done because the score of 0 is HER2 negative cells and 2+ scores have equivocal results, which means it could not be determined whether it is necessary to give targeted therapy or not. HER2 overexpression positive area percentage is done by dividing the area with a HER2 positive tumor area. To obtain better tumor area, repair is done by eliminating lymphocytes area which is not tumor area using morphological opening. Results of 10 images IHC scores of 1+ and 3+ and 10 IHC images testing without losing lymphocytes area in tumor area, has proven that the system has been able to provide an overall correct classification in accordance with the experts analysis. However by doing operation to remove non-tumor areas, classification can be done correctly 100% for scores of 3+ and 65% for scores of 1+.

  5. Top Notch cancer stem cells by paracrine NF-κB signaling in breast cancer.

    Science.gov (United States)

    Zhang, Weizhou; Grivennikov, Sergei I

    2013-01-01

    Cancer stem cells are likely to play critical roles in metastasis, therapy resistance, and recurrence of hematological and solid malignancies. It is well known that the stem cell niche plays a key role for asymmetric division and homeostasis of normal stem cells, whereas cancer stem cells seem to use these niches. Among many pathways involved in self-renewal of cancer stem cells, nuclear factor-kappa B (NF-κB) signaling has been documented to promote their expansion in a cell-autonomous fashion. A recent study, however, suggests that paracrine NF-κB activation promotes the expansion of cancer stem cells through the activation of Notch in basal-type breast cancer cells.

  6. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-11-01

    Full Text Available C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.

  7. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    Directory of Open Access Journals (Sweden)

    Özel Cem

    2012-04-01

    Full Text Available Abstract Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a

  8. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    DEFF Research Database (Denmark)

    Corrêa, Natássia C R; Kuasne, Hellen; Faria, Jerusa A Q A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1...... and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted....... This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines...

  9. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  10. Mammary stem cells and breast cancer--role of Notch signalling.

    Science.gov (United States)

    Farnie, Gillian; Clarke, Robert B

    2007-06-01

    Adult stem cells are found in numerous tissues of the body and play a role in tissue development, replacement and repair. Evidence shows that breast stem cells are multipotent and can self renew, which are key characteristics of stem cells, and a single cell enriched with cell surface markers has the ability to grow a fully functional mammary gland in vivo. Many groups have extrapolated the cancer stem cell hypothesis from the haematopoietic system to solid cancers, where using in vitro culture techniques and in vivo transplant models have established evidence of cancer stem cells in colon, pancreas, prostate, brain and breast cancers. In the report we describe the evidence for breast cancer stem cells; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24- and have upregulated genes which include Notch. Notch signalling has been highlighted as a pathway involved in the development of the breast and is frequently dysregulated in invasive breast cancer. We have investigated the role of Notch in a pre-invasive breast lesion, ductal carcinoma in situ (DCIS), and have found that aberrant activation of Notch signalling is an early event in breast cancer. High expression of Notch 1 intracellular domain (NICD) in DCIS also predicted a reduced time to recurrence 5 years after surgery. Using a non-adherent sphere culture technique we have grown DCIS mammospheres from primary DCIS tissue, where self-renewal capacity, measured by the number of mammosphere initiating cells, were increased from normal breast tissue. A gamma-secretase inhibitor, DAPT, which inhibits all four Notch receptors and a Notch 4 neutralising antibody were shown to reduce DCIS mammosphere formation, indicating that Notch signalling and other stem cell self-renewal pathways may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.

  11. Understanding a Breast Cancer Diagnosis

    Science.gov (United States)

    ... Cancer A-Z Breast Cancer Understanding a Breast Cancer Diagnosis If you’ve been diagnosed with breast cancer, ... Prevention Early Detection and Diagnosis Understanding a Breast Cancer Diagnosis Treatment Breast Reconstruction Surgery Living as a Breast ...

  12. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  13. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  14. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    OpenAIRE

    D’Angelo, Rosemarie C.; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J; Shawn G Clouthier; Hassan, Khaled A.; Wicha, Max S; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch ...

  15. Diversity of cell-mediated adhesions in breast cancer spheroids.

    Science.gov (United States)

    Ivascu, Andrea; Kubbies, Manfred

    2007-12-01

    Due to their three dimensional (3D) architecture, multicellular tumor spheroids mimic avascular tumor areas comprising the establishment of diffusion gradients, reduced proliferation rates and increased drug resistance. We have shown recently that the spontaneous formation of spheroids is restricted to a limited number of cell lines whereas the majority grow only as aggregates of cells with loose cell-cell contacts when cultured in 3D. However, by the addition of reconstituted basement membrane (rBM, Matrigel), aggregates can be transformed into spheroids with diffusion barriers and development of quiescent therapy-resistant cells. In this report, we investigated adhesion molecules responsible for rBM-driven versus spontaneous spheroid formation in a diverse population of eight breast tumor cell lines relevant for in vitro and in vivo antitumor drug testing. Inhibition of spheroid formation was monitored in the presence of adhesion molecule functional blocking antibodies and after siRNA-mediated down-regulation of E- and N-cadherin and integrin beta1 adhesion receptors. We identified that E-cadherin mediates the spontaneous formation of spheroids in MCF7, BT-474, T-47D and MDA-MB-361 cells, whereas N-cadherin is responsible for tight packing of MDA-MB-435S cells. In contrast, the matrix protein-induced transformation of 3D aggregates into spheroids in MDA-MB-231 and SK-BR-3 cells is mediated primarily by the collagen I/integrin beta1 interaction with no cadherin involvement. A combination of both, homophilic E-cadherin and integrin beta1/collagen I interaction establishes spheroids in MDA-MB-468 cells. These findings indicate that an evolutionary diverse and complex pattern of interacting cell surface proteins exists in breast cancer cells that determines the 3D growth characteristic in vitro, thereby influencing small molecule or antibody permeation in preclinical in vitro and in vivo tumor models.

  16. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  17. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  18. Targeting Breast Cancer Cells for Destruction

    Science.gov (United States)

    2006-07-01

    specificity for some homeodomains in correlation with base pair 4 of the binding site, especially when the residue is phenylalanine or arginine (13, 14...Lysyl Hydroxylase (PLOD) Gene Expres- sion: Implications for the Pathology of Rieger Syndrome, J. Cell Biol. 152, 545-552. 29. Espinoza, H. M., Cox, C...requirement for phenylalanine in position 20 is well demonstrated by its conservation across the homeodomain family and its presence in the conserved

  19. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  20. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Gilcrease, Michael Z.; Krishnamurthy, Savitri; Lee, Ju-Seog; Fridlyand, Jane; Sahin, Aysegul; Agarwal, Roshan; Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith; Carey, Mark; Lluch, Ana; Monteagudo, Carlos; He, Xiaping; Weigman, Victor; Fan, Cheng; Palazzo, Juan; Hortobagyi, Gabriel N.; Nolden, Laura K.; Wang, Nicholas J.; Valero, Vicente; Gray, Joe W.; Perou, Charles M.; Mills, Gordon B.

    2009-05-19

    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a 'tumorigenic' signature defined using CD44{sup +}/CD24{sup -} breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

  1. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche

    Directory of Open Access Journals (Sweden)

    Zach S. Templeton

    2015-12-01

    Full Text Available BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014 and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006 and IL-1β (P = .001 in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.

  2. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Smita Nair

    Full Text Available The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC cells, SUM149 (triple negative, ErbB1-activated and SUM190 (ErbB2-overexpressing. Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149 derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion.

  3. The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer.

    Science.gov (United States)

    Cotter, Kristina; Liberman, Rachel; Sun-Wada, GeHong; Wada, Yoh; Sgroi, Dennis; Naber, Stephen; Brown, Dennis; Breton, Sylvie; Forgac, Michael

    2016-07-19

    The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer.

  4. The role of miR-100 in regulating apoptosis of breast cancer cells.

    Science.gov (United States)

    Gong, Yi; He, Tianliang; Yang, Lu; Yang, Geng; Chen, Yulei; Zhang, Xiaobo

    2015-07-01

    Breast cancer is a serious health problem worldwide. Inhibition of apoptosis plays a major role in breast cancer tumorigenesis. MicroRNAs (miRNAs) play crucial roles in the regulation of apoptosis. However, the regulation of breast cancer apoptosis by miRNAs has not been intensively investigated. To address this issue, the effect of miR-100 on the cell proliferation of different breast cancer cells was characterized in the present study. The results showed that miR-100 was significantly upregulated in SK-BR-3 cells compared with other human breast cancer cells (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149). Silencing miR-100 expression with anti-miRNA-100 oligonucleotide (AMO-miR-100) initiated apoptosis of SK-BR-3 cells in vitro and in vivo. However, the overexpression of miR-100 led to the proliferation inhibition of the miR-100-downregulated breast cancer cells. Antagonism of miR-100 in SK-BR-3 cells increased the expression of MTMR3, a target gene of miR-100, which resulted in the activation of p27 and eventually led to G2/M cell-cycle arrest and apoptosis. The downregulation of miR-100 sensitized SK-BR-3 cells to chemotherapy. Therefore, our finding highlights a novel aspect of the miR-100-MTMR3-p27 pathway in the molecular etiology of breast cancer.

  5. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  6. Breast Cancer Treatment

    Science.gov (United States)

    ... Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  7. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells.

    Science.gov (United States)

    Li, Ying; Shi, Li; Han, Chun; Wang, Yishang; Yang, Junlan; Cao, Cheng; Jiao, Shunchang

    2012-10-01

    The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.

  8. Circulating Tumor Cells in Breast Cancer Patients: An Evolving Role in Patient Prognosis and Disease Progression

    Directory of Open Access Journals (Sweden)

    Holly Graves

    2011-01-01

    Full Text Available In this paper, we examine the role of circulating tumor cells (CTCs in breast cancer. CTCs are tumor cells present in the peripheral blood. They are found in many different carcinomas but are not present in patients with benign disease. Recent advances in theories regarding metastasis support the role of early release of tumor cells in the neoplastic process. Furthermore, it has been found that phenotypic variation exists between the primary tumor and CTCs. Of particular interest is the incongruency found between primary tumor and CTC HER2 status in both metastatic and early breast cancer. Overall, CTCs have been shown to be a poor prognostic marker in metastatic breast cancer. CTCs in early breast cancer are not as well studied, however, several studies suggest that the presence of CTCs in early breast cancer may also suggest a poorer prognosis. Studies are currently underway looking at the use of CTC level monitoring in order to guide changes in therapy.

  9. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Lendorf, Maria E; Couchman, John R;

    2012-01-01

    of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups...

  10. Targeting IL-8 signalling to inhibit breast cancer stem cell activity.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Clarke, Robert B; Bundred, Nigel J

    2013-11-01

    Although survival from breast cancer has improved significantly over the past 20 years, disease recurrence remains a significant clinical problem. The concept of stem-like cells in cancer has been gaining currency over the last decade or so, since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. Evidence indicates that this sub-population of cells, known as cancer stem-like cells (CSCs), is responsible for driving tumour formation and disease progression. In breast cancer, there is good evidence that CSCs are intrinsically resistant to conventional chemo-, radio- and endocrine therapies. By evading the effects of these treatments, CSCs are held culpable for disease recurrence. Hence, in order to improve treatment there is a need to develop CSC-targeted therapies. Interleukin-8 (IL-8), an inflammatory cytokine, is upregulated in breast cancer and associated with poor prognostic factors. Accumulating evidence demonstrates that IL-8, through its receptors CXCR1/2, is an important regulator of breast CSC activity. Inhibiting CXCR1/2 signalling has proved efficacious in pre-clinical models of breast cancer providing a good rationale for targeting CXCR1/2 clinically. Here, we discuss the role of IL-8 in breast CSC regulation and development of novel therapies to target CXCR1/2 signalling in breast cancer.

  11. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  12. Inflammatory Breast Cancer

    Science.gov (United States)

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... means they developed from cells that line the milk ducts of the breast and then spread beyond ...

  13. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    OpenAIRE

    2012-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical ...

  14. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer

    Science.gov (United States)

    2012-07-01

    Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer PRINCIPAL INVESTIGATOR: Donald Kufe, M.D...COVERED 1 July 2011 – 30 June 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for...have been enrolled thus far. We reported in detail the characterization of the tumor cells, the generated dendritic cells and the DC/tumor fusions

  15. Docosahexaenoic acid suppresses breast cancer cell metastasis by targeting matrix-metalloproteinases

    Science.gov (United States)

    Shin, Soyeon; Kim, Soyeon; Heo, Jun-Young; Kweon, Gi-Ryang; Wu, Tong; Park, Jong-Il; Lim, Kyu

    2016-01-01

    Breast cancer is one of the most prevalent cancers in women, and nearly half of breast cancer patients develop distant metastatic disease after therapy. Despite the significant advances that have been achieved in understanding breast cancer metastasis in the past decades, metastatic cancer is still hard to cure. Here, we demonstrated an anti-cancer mechanism of docosahexaenoic acid (DHA) that suppressed lung metastasis in breast cancer. DHA could inhibit proliferation and invasion of breast cancer cells in vitro, and this was mainly through blocking Cox-2-PGE2-NF-κB-MMPs cascades. DHA treatment significantly decreased Cox-2 and NF-κB expression as well as nuclear translocation of NF-κB in MDA-MB-231 cells. In addition, DHA also reduced NF-κB binding to DNA which may lead to inactivation of MMPs. Moreover, in vivo studies using Fat-1 transgenic mice showed remarkable decrease of tumor growth and metastasis to EO771 cells to lung in DHA-rich environment. In conclusion, DHA attenuated breast cancer progression and lung metastasis in part through suppressing MMPs, and these findings suggest chemoprevention and potential therapeutic strategy to overcome malignant breast cancer. PMID:27363023

  16. Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells

    OpenAIRE

    2011-01-01

    Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease an...

  17. Breast Cancer -- Male

    Science.gov (United States)

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Introduction Statistics Risk Factors and Prevention ...

  18. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

    OpenAIRE

    Lee, Hye Min; Moon, Aree

    2016-01-01

    Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen ...

  19. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection

    OpenAIRE

    Patel, Shyam A.; Helmy, Karim Y; Dave, Meneka A.; Murthy, Raghav G.; Pranela Rameshwar

    2011-01-01

    Among all cancers, malignancies of the breast are the second leading cause of cancer death in the United States after carcinoma of the lung. One of the major factors considered when assessing the prognosis of breast cancer patients is whether the tumor has metastasized to distant organs. Although the exact phenotype of the malignant cells responsible for metastasis and dormancy is still unknown, growing evidence has revealed that they may have stem cell-like properties that may account for re...

  20. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    Science.gov (United States)

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.

  1. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  2. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.

    Science.gov (United States)

    D'Angelo, Rosemarie C; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A; Senbabaoglu, Yasin; Conley, Sarah J; Clouthier, Shawn G; Hassan, Khaled A; Wicha, Max S; Korkaya, Hasan

    2015-03-01

    Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

  3. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  4. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    Science.gov (United States)

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  5. Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro.

    Science.gov (United States)

    Zhong, Zhang-Feng; Qiang, Wen-An; Wang, Chun-Ming; Tan, Wen; Wang, Yi-Tao

    2016-03-05

    Furanodiene is a natural product isolated from Rhizoma curcumae, and exhibits broad-spectrum anti-cancer activities in vitro and in vivo. Our previous study proved that furanodiene could increase growth inhibition of steroidal agent in ERα-positive breast cancer cells, but whether furanodiene can influence ER status is not clear. In this study, we confirmed that furanodiene down-regulated the ERα protein expression level and inhibited E2-induced estrogen response element (ERE)-driven reporter plasmid activity in ERα-positive MCF-7 cells. Actually, ERα-knockdown cells were more sensitive than ERα positive cells to furanodiene on the cytotoxicity effect. So the anti-cancer effects of furanodiene and non-steroidal agent in breast cancer cells still requires further investigation. Our results showed that furanodiene exposure could enhance growth inhibitory effects of doxorubicin in ERα-negative MDA-MB-231 cells and ERα-low expression 4T1 cells. However, furanodiene did not increase the cytotoxicity of doxorubicin in ERα-positive breast cancer cells, non-tumorigenic breast epithelial cells, macrophage cells, hepatocytes cells, pheochromocytoma cells and cardiac myoblasts cells. Furanodiene enhances the anti-cancer effects of doxorubicin in ERα-negative breast cancer cells through suppressing cell viability via inducing apoptosis in mitochondria-caspases-dependent and reactive oxygen species-independent manners. These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future.

  6. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  7. NOTCH1 is a poor prognostic factor for breast cancer and is associated with breast cancer stem cells

    OpenAIRE

    Zhong Y; Shen S; Zhou Y.; Mao F; Lin Y; Guan J; Xu Y.; Zhang S.; Liu X; Sun Q.

    2016-01-01

    Ying Zhong,1 Songjie Shen,1 Yidong Zhou,1 Feng Mao,1 Yan Lin,1 Jinghong Guan,1 Yali Xu,1 Shu Zhang,2 Xu Liu,3 Qiang Sun1 1Department of Breast Disease, 2Department of Dermatology, Peking Union Medical College Hospital, 3Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Recently, the human gene NOTCH1 has been found to be implicated in cancer cell metastasis and the maintenance of cancer stem cells. How...

  8. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells

    Science.gov (United States)

    Robles-Escajeda, Elisa; Das, Umashankar; Ortega, Nora M.; Parra, Karla; Francia, Giulio; Dimmock, Jonathan R.; Varela-Ramirez, Armando; Aguilera, Renato J.

    2016-01-01

    Purpose According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance. Methods The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their antineoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported. Results We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells. Conclusion Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug. PMID:26920032

  9. Breast Cancer In Women

    Science.gov (United States)

    This infographic shows the Breast Cancer Subtypes in Women. It’s important for guiding treatment and predicting survival. Know the Science: HR = Hormone receptor. HR+ means tumor cells have receptors for the hormones estrogen or progesterone, which can promote the growth of HR+ tumors. Hormone therapies like tamoxifen can be used to treat HR+ tumors. HER2 = Human epidermal growth Factor receptor, HER2+ means tumor cells overexpress (make high levels of) a protein, called HE2/neu, which has been shown to be associated with certain aggressive types of breast cancer. Trastuzumab and some other therapies can target cells that overexpress HER2. HR+/HER2, aka “LuminalA”. 73% of all breast cancer cases: best prognosis, most common subtype for every race, age, and poverty level. HR-/HER2, aka “Triple Negative”: 13% of all breast cancer cases, Worst prognosis, Non-Hispanic blacks have the highest rate of this subtype at every age and poverty level. HR+/HER2+, aka “Luminal B”, 10% of all breast cancer cases, little geographic variation by state. HR-/HER2+, aka”HER2-enriched”, 5% of all breast cancer cases, lowest rates for all races and ethnicities. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  10. Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy.

    Directory of Open Access Journals (Sweden)

    Kentaro Nobutani

    Full Text Available Our understanding of the mechanism of cancer dormancy is emerging, but the underlying mechanisms are not fully understood. Here we analyzed mouse xenograft tumors derived from human breast cancer tissue and the human breast cancer cell line MDA-MB-231 to identify the molecules associated with cancer dormancy. In immunohistological examination using the proliferation marker Ki-67, the tumors included both proliferating and dormant cancer cells, but the number of dormant cells was remarkably increased when they metastasized to the lung. In the gene expression analysis of the orthotopic cancer cells by a single-cell multiplex real-time quantitative reverse transcription PCR followed by flow cytometric analysis, restrained cellular proliferation was associated with downregulation of the chemokine receptor CXCR4. In the immunohistological and flow cytometric analyses, the expression level of CXCR4 in the metastasized cancer cells was decreased compared with that in the cancer cells in orthotopic tumors, although the expression level of the CXCR4 ligand CXCL12 was not reduced in the lung. In addition, the proliferation of the metastasized cancer cells was further decreased by the CXCR4 antagonist administration. In the ex vivo culture of the metastasized cancer cells, the expression level of CXCR4 was increased, and in the xenotransplantation of ex vivo cultured cancer cells, the expression level of CXCR4 was again decreased in the metastasized cancer cells in the lung. These findings indicate that CXCR4 is downregulated in metastasized breast cancer cells and implicated in their dormancy.

  11. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available Emerging evidence suggests that tumor cells metastasize by co-opting stem cell transcriptional networks, although the molecular underpinnings of this process are poorly understood. Here, we show for the first time that the high mobility group A1 (HMGA1 gene drives metastatic progression in triple negative breast cancer cells (MDA-MB-231, Hs578T by reprogramming cancer cells to a stem-like state. Silencing HMGA1 expression in invasive, aggressive breast cancer cells dramatically halts cell growth and results in striking morphologic changes from mesenchymal-like, spindle-shaped cells to cuboidal, epithelial-like cells. Mesenchymal genes (Vimentin, Snail are repressed, while E-cadherin is induced in the knock-down cells. Silencing HMGA1 also blocks oncogenic properties, including proliferation, migration, invasion, and orthotopic tumorigenesis. Metastatic progression following mammary implantation is almost completely abrogated in the HMGA1 knock-down cells. Moreover, silencing HMGA1 inhibits the stem cell property of three-dimensional mammosphere formation, including primary, secondary, and tertiary spheres. In addition, knock-down of HMGA1 depletes cancer initiator/cancer stem cells and prevents tumorigenesis at limiting dilutions. We also discovered an HMGA1 signature in triple negative breast cancer cells that is highly enriched in embryonic stem cells. Together, these findings indicate that HMGA1 is a master regulator of tumor progression in breast cancer by reprogramming cancer cells through stem cell transcriptional networks. Future studies are needed to determine how to target HMGA1 in therapy.

  12. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired...

  13. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion.

    Science.gov (United States)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-06-13

    The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  14. Defining Tumor Cell and Immune Cell Behavior in Vivo during Pulmonary Metastasis of Breast Cancer

    Science.gov (United States)

    2015-09-01

    Congress in the Educational Session on Cancer Immunology . I gave a talk entitled “ Harnessing Intravital Microscopy To Understand The Real-Time...AWARD NUMBER: W81XWH-13-1-0009 TITLE: Defining Tumor Cell and Immune Cell Behavior in Vivo during Pulmonary Metastasis of Breast Cancer ...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  15. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer

    Science.gov (United States)

    Li, Yang; Francia, Giulio; Zhang, Jian-Ying

    2015-01-01

    p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression. PMID:26416451

  16. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Keya De Mukhopadhyay

    Full Text Available In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  17. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells.

    Science.gov (United States)

    Zeighamian, Vahideh; Darabi, Masoud; Akbarzadeh, Abolfazl; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Badrzadeh, Fariba; Salehi, Roya; Mirakabad, Fatemeh Sadat Tabatabaei; Taheri-Anganeh, Mortaza

    2016-01-01

    Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm-MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

  18. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells

    DEFF Research Database (Denmark)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B;

    2013-01-01

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles...... of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced...... significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest...

  19. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  20. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer

    DEFF Research Database (Denmark)

    Tvedskov, Tove F; Jensen, Maj-Britt; Kroman, Niels;

    2012-01-01

    Isolated tumor cells (ITC) are more common in the sentinel node (SN) after needle biopsy of a breast cancer, indicating iatrogenic displacement of tumor cells. We here investigate whether similar iatrogenic displacement occurs after surgical excision of a breast tumor. We compared the incidence...

  1. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: hiswork@hanmail.net [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: sj0420@hanyang.ac.kr [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  2. Male Breast Cancer

    Science.gov (United States)

    ... breast cancer include exposure to radiation, a family history of breast cancer, and having high estrogen levels, which can happen with diseases like cirrhosis or Klinefelter's syndrome. Treatment for male breast cancer is usually ...

  3. Effects of Herceptin on circulating tumor cells in HER2 positive early breast cancer.

    Science.gov (United States)

    Zhang, J-L; Yao, Q; Chen Y Wang, J-H; Wang, H; Fan, Q; Ling, R; Yi, J; Wang, L

    2015-03-20

    The objective of this study was to determine the changes in peripheral blood circulating tumor cells in HER2-positive early breast cancer before and after Herceptin therapy, and to explore the effects of the HER2 gene and Herceptin on circulating tumor cells. CK19 mRNA expression in peripheral blood was evaluated by qRT-PCR as an index of circulating tumor cells in 15 cases of HER-2-positive breast cancer and 18 cases of HER2-negative breast cancer before, and after chemotherapy as well. Ten cases of HER2-positive breast cancer continued on Herceptin therapy for 3 months after chemotherapy, and their peripheral blood was again drawn and assayed for CK-19 mRNA expression. Preoperatively, all cases of HER2-positive cancer were positive for CK19 mRNA in peripheral blood, but 6 cases of HER2-negative breast cancer were positive (33.3%), where there was a substantial difference between the two groups. After 6 cycles of adjuvant chemotherapy, CK19 positive rates in cases of HER2-positive and -negative breast cancer reduced by 93.3 and 11.1%, respectively, with a significant difference still existing. After 3 months of Herceptin therapy, expression of CK19 mRNA declined considerably in 10 cases of HER2 positive breast cancer (113.66 ± 88.65 vs 63.35 ± 49.27, P = 0.025). HER-2 gene expression closely correlated with circulating tumor cells in peripheral blood of early breast cancer patients. Moreover, Herceptin, a monoclonal antibody for HER2, can reduce the number of circulating tumor cells, which can be an early predictive factor for Herceptin therapy effectiveness against breast cancer.

  4. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nguyen Johnny

    2010-07-01

    Full Text Available Abstract Background Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ. However, its effect on telomerase regulation in breast cancer has not been investigated. Methods In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. Results We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. Conclusions To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined.

  5. Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment.

    Science.gov (United States)

    Liu, Mei; Li, Zhiyang; Yang, Jingjing; Jiang, Yanyun; Chen, Zhongsi; Ali, Zeeshan; He, Nongyue; Wang, Zhifei

    2016-08-01

    Breast cancer is the second leading cause of cancer death among women, and its related treatment has been attracting significant attention over the past decades. Among the various treatments, targeted therapy has shown great promise as a precision treatment, by binding to cancer cell-specific biomarkers. So far, great achievements have been made in targeted therapy of breast cancer. In this review, we first discuss cell-specific biomarkers, which are not only useful for classification of breast cancer subtyping but also can be utilized as goals for targeted therapy. Then, the innovative and generic-targeted biopharmaceuticals for breast cancer, including monoclonal antibodies, non-antibody proteins and small molecule drugs, are reviewed. Finally, we provide our outlook on future developments of biopharmaceuticals, and provide solutions to problems in this field.

  6. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  7. Breast cancer in pregnancy.

    Science.gov (United States)

    Krishna, Iris; Lindsay, Michael

    2013-09-01

    Pregnancy-associated breast cancer is defined as breast cancer diagnosed during pregnancy or in the first postpartum year. Breast cancer is one of the more common malignancies to occur during pregnancy and, as more women delay childbearing, the incidence of breast cancer in pregnancy is expected to increase. This article provides an overview of diagnosis, staging, and treatment of pregnancy-associated breast cancer. Recommendations for management of breast cancer in pregnancy are discussed.

  8. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer

    Directory of Open Access Journals (Sweden)

    Richardson Andrea L

    2011-10-01

    Full Text Available Abstract Background Na+/I- symporter (NIS-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Methods Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. Results and Discussion NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Conclusions Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  9. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  10. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    Science.gov (United States)

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

  11. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs

    OpenAIRE

    HERTZ, EVERALDO; CADONÁ, FRANCINE CARLA; Machado, Alencar Kolinski; Azzolin, Verônica; HOLMRICH, SABRINA; ASSMANN, CHARLES; LEDUR, PAULINE; RIBEIRO, EULER ESTEVES; DE SOUZA FILHO, OLMIRO CEZIMBRA; MÂNICA-CATTANI, MARIA FERNANDA; DA CRUZ, IVANA BEATRICE MÂNICA

    2014-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the trea...

  12. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  13. Prediction of epigenetically regulated genes in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lu Yontao

    2010-06-01

    Full Text Available Abstract Background Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP. The pipeline (i reduces the dimensionality of the methylation data, (ii associates the reduced methylation data with gene expression data, and (iii ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i methylation sites are grouped across the genome to identify regions of interest, and (ii methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Results Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between

  14. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential.

    Directory of Open Access Journals (Sweden)

    Goar Mosoyan

    Full Text Available BACKGROUND: Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient's breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT treatment. METHODS: Five breast cancer cell lines were derived from a single patient's primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER, CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC. In addition, a Fluorescent In Situ Hybridization (FISH assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. RESULTS: We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. CONCLUSIONS: All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to

  15. SNCG shRNA suppressed breast cancer cell xenograft formation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    SHEN Pei-hong; FAN Qing-xia; LI Yan-wei; ZHANG Wei; HE Xiao-kai; WANG Zhen; ZHANG Yun-han

    2011-01-01

    Background Overexpression of breast cancer-specific gene 1 (SNCG) is associated with poor prognosis in advanced breast cancer patients. This study aimed to determine the effects of SNCG knockdown in breast cancer cells by using small hairpin RNA (shRNA).Methods Four different SNCG shRNA oligonucleotides were designed and chemically synthesized to construct mammalian expression vectors. These vectors were then stably transfected into a breast cancer MCF-7 cell line to knockdown SNCG expression. After SNCG knockdown was confirmed, the stable cell lines were inoculated into nude mice. SNCG mRNA and protein expressions were analyzed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively in both the stable cell lines and xenografts.Results All four SNCG shRNA constructs significantly reduced SNCG mRNA and protein levels in MCF-7 cells, as compared to the unrelated sequence control shRNA and the liposome control mice (P<0.05). SNCG-knockdown MCF-7cells formed significantly smaller tumor masses than cells expressing the unrelated sequence control or the liposome control mice (P<0.05).Conclusion SNCG shRNA effectively suppressed breast cancer cell formation in vivo and may be a useful clinical strategy to control breast cancer.

  16. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells.

    Science.gov (United States)

    Goswami, Ishan; Coutermarsh-Ott, Sheryl; Morrison, Ryan G; Allen, Irving C; Davalos, Rafael V; Verbridge, Scott S; Bickford, Lissett R

    2017-02-01

    Low-level electric fields have been demonstrated to induce spatial re-distribution of cell membrane receptors when applied for minutes or hours. However, there is limited literature on the influence on cell signaling with short transient high-amplitude pulses typically used in irreversible electroporation (IRE) for cancer treatment. Moreover, literature on signaling pertaining to immune cell trafficking after IRE is conflicting. We hypothesized that pulse parameters (field strength and exposure time) influence cell signaling and subsequently impact immune-cell trafficking. This hypothesis was tested in-vitro on triple negative breast cancer cells treated with IRE, where the effects of pulse parameters on key cell signaling factors were investigated. Importantly, real time PCR mRNA measurements and ELISA protein analyses revealed that thymic stromal lymphopoietin (TSLP) signaling was down regulated by electric field strengths above a critical threshold, irrespective of exposure times spanning those typically used clinically. Comparison with other treatments (thermal shock, chemical poration, kinase inhibitors) revealed that IRE has a unique effect on TSLP. Because TSLP signaling has been demonstrated to drive pro-cancerous immune cell phenotypes in breast and pancreatic cancers, our finding motivates further investigation into the potential use of IRE for induction of an anti-tumor immune response in vivo.

  17. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    Han, Miaojun [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Wang, Hailun [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Zhang, Hua-Tang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Yunnan (China); Han, Zhaozhong, E-mail: zhaozhong.han@vanderbilt.edu [Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN 37232 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  18. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Rivenbark Ashley G

    2008-01-01

    Full Text Available Abstract Background DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines. Results The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR, promoter methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment, and the DNA methyltransferase machinery (total DNMT activity and expression of DNMT1, DNMT3a, and DNMT3b proteins were examined in 12 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive genes revealed two groups of cell lines that possess distinct methylation signatures: (i hypermethylator cell lines, and (ii low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent methylation of six genes (CDH1, CEACAM6, CST6, ESR1, LCN2, SCNN1A, whereas the low-frequency methylator cell lines do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong cluster of primary breast tumors that express the hypermethylation signature defined by CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A. This subset of breast cancers represents 18/88 (20% tumors in the dataset analyzed, and 100% of these tumors were classified as basal

  19. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Qi, S; Pajonk, F; McCloskey, S; Low, D; Kupelian, P; Steinberg, M; Sheng, K [UCLA, Los Angeles, CA (United States)

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation

  20. In vitro study on effect of germinated wheat on human breast cancer cells

    Science.gov (United States)

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  1. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    Science.gov (United States)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  2. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Abdulrahman Khazim Al-Asmari

    Full Text Available In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90% in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for

  3. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  4. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida;

    2016-01-01

    highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in E2F4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells. Conclusions: Our study of the evolution......Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...

  5. Effect of Cytokine on the Expression of Sodium Iodide Symporter Gene in Breast Cancer Cell

    Institute of Scientific and Technical Information of China (English)

    JIAYue; LIUChao; TANGWei; LIUCui-ping; QINYou-wen; YUANQing-xing; LIQian; MAOXiao-dong; DIFu-song

    2004-01-01

    To investigate the effect of cytokines (TNF-α, IFN-γ and IL-6) on the expression of sodi-um-iodide symporter(NIS) gene in breast cancer cell (MCF-7). Methods:The breast cancer cell was cultureds with negative control culture or cultures with different concentrations of cytokines for 72 h. NIS germ mRNA in breast cancer cells cultured was determined by reverse transcriptase-polymerase chain reaction(RT-PCR). Results:Expression of sodium-iodide symporter mRNA can be found decreasing along with increasing the concentration of cytokine dose-depen-dently. Conchzs/on ~ Cytokine may play a role in iodide-uptake modulating in breast cancer cells by their effect on NIS germ expression.

  6. Diallyl trisulfide, a chemopreventive agent from Allium vegetables, inhibits alpha-secretases in breast cancer cells.

    Science.gov (United States)

    Kiesel, Violet A; Stan, Silvia D

    2017-03-18

    Breast cancer affects one in eight women throughout the course of their lifetime creating a demand for novel prevention strategies against this disease. The Notch signaling pathway is often aberrantly activated in human malignancies including breast cancer. Alpha secretases, including ADAM (A Disintegrin and Metalloprotease) -10 and -17, are proteases that play a key role in the cleavage of cell surface molecules and subsequent ligand-mediated activation of Notch signaling pathway. High expression levels of ADAM10 and 17 have been clinically associated with a lower disease-free survival in breast cancer patients. This study was undertaken to determine the effect of diallyl trisulfide (DATS), a bioactive organosulfide found in garlic and other Allium vegetables, on alpha secretases in breast cancer cells. Here we report for the first time that DATS inhibits the expression of ADAM10 and ADAM17 in estrogen-independent MDA-MB-231 and estrogen-dependent MCF-7 breast cancer cells, and in Harvey-ras (H-Ras) transformed MCF10A-H-Ras breast epithelial cells. We also show that DATS induces a dose-dependent reduction in colony formation ability of MDA-MB-231 and MCF-7 cells, suggesting a long-term effect of DATS on growth inhibition of breast cancer cells. Furthermore, we show that DATS inhibits the Notch ligands Jagged-1 and Jagged-2 involved in activation of Notch signaling pathway. Collectively, these findings show that DATS targets Notch pathway components overexpressed in breast cancer tumors and may serve as a functionally relevant bioactive for breast cancer prevention.

  7. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  8. Midregion PTHrP and Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Claudio Luparello

    2010-01-01

    Full Text Available PTHrP is a polyhormone undergoing proteolytic processing into smaller bioactive forms, comprising an N-terminal peptide, which is the mediator of the “classical” PTH-like effect, as well as midregion and C-terminal peptides. The midregion PTHrP domain (38-94-amide was found to restrain growth and invasion in vitro of some breast cancer cell lines, causing striking toxicity and accelerating death; the most responsive being MDA-MB231, whose tumorigenesis was also attenuated in vivo. In addition, midregion PTHrP appears to be imported in the nucleoplasm of cultured MDA-MB231 cells and in vitro, it can bind chromatin of metaphase spread preparations and also an isolated 20-mer oligonucleotide, thereby appearing endowed with a putative transcription factor–like DNA-binding ability. The object of this review is to discuss collectively and critically both precedent and more updated data obtained in the lab, the latter arising from assays on DNA status, and gene and protein expression patterns of treated cells, aiming to check whether the cytotoxicity of the peptide may result from a reprogramming of gene expression towards apoptotic death or, instead, it is to be ascribed to an unprogrammed perturbation of cell functions.

  9. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.

    Science.gov (United States)

    Duarte, Cristina; Gudiña, Eduardo J; Lima, Cristovao F; Rodrigues, Ligia R

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l(-1) surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l(-1) BioEG for 48 h decreased cancer cells' viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein.

  10. Down-Regulation of NDUFB9 Promotes Breast Cancer Cell Proliferation, Metastasis by Mediating Mitochondrial Metabolism.

    Directory of Open Access Journals (Sweden)

    Liang-Dong Li

    Full Text Available Despite advances in basic and clinical research, metastasis remains the leading cause of death in breast cancer patients. Genetic abnormalities in mitochondria, including mutations affecting complex I and oxidative phosphorylation, are found in breast cancers and might facilitate metastasis. Genes encoding complex I components have significant breast cancer prognostic value. In this study, we used quantitative proteomic analyses to compare a highly metastatic cancer cell line and a parental breast cancer cell line; and observed that NDUFB9, an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I, was down-regulated in highly metastatic breast cancer cells. Furthermore, we demonstrated that loss of NDUFB9 promotes MDA-MB-231 cells proliferation, migration, and invasion because of elevated levels of mtROS, disturbance of the NAD+/NADH balance, and depletion of mtDNA. We also showed that, the Akt/mTOR/p70S6K signaling pathway and EMT might be involved in this mechanism. Thus, our findings contribute novel data to support the hypothesis that misregulation of mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, suggesting that complex I deficiency is a potential and important biomarker for further basic research or clinical application.

  11. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    Science.gov (United States)

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  12. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  13. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  14. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2014-10-01

    SUBTITLE Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making Improve...to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in different breast cancer...positioned to achieve its aims. 15. SUBJECT TERMS Breast Cancer Prognosis, Mammary Stem Cells, Embryonic Development, Single Cell Transcriptomics 16

  15. Determination of HER2 amplification status in breast cancer cells using Raman spectroscopy

    Science.gov (United States)

    Bi, Xiaohong; Rexer, Brent; Arteaga, Carlos L.; Guo, Mingsheng; Li, Ming; Mahadevan-Jansen, Anita

    2010-02-01

    The overexpression of HER2 (human epidermal growth factor receptor 2) in breast cancer is associated with increased disease recurrence and worse prognosis. Current diagnosis of HER2 positive breast cancer is time consuming with an estimated 20% inaccuracy. Raman spectroscopy is a proven method for pathological diagnosis based on the molecular composition of tissues. This study aimed to determine the feasibility of Raman spectroscopy to differentially identify the amplification of HER2 in cells. Three cell lines including BT474 (HER2 overexpressing breast cancer cell), MCF-10A (human breast epithelial cell), and MCF-10A with overexpressing HER2, were investigated using a bench top confocal Raman system. A diagnostic algorithm based on generalized linear model (GLM) with elastic-net penalties was established to discriminate 318 spectra collected from the cells, and to identify the spectra regions that differentiate the cell lines. The algorithm was able to differentially identify BT474 breast cancer cells with an overall sensitivity of 100% and specificity of 99%. The results demonstrate the capability of Raman spectroscopy to determine HER2 status in cells. Raman spectroscopy shows promise for application in the diagnosis of HER2 positive breast cancer in clinical practice.

  16. Breast cancer cells stimulate osteoprotegerin (OPG production by endothelial cells through direct cell contact

    Directory of Open Access Journals (Sweden)

    Holen Ingunn

    2009-07-01

    Full Text Available Abstract Background Angiogenesis, the sprouting of capillaries from existing blood vessels, is central to tumour growth and progression, however the molecular regulation of this process remains to be fully elucidated. The secreted glycoprotein osteoprotegerin (OPG is one potential pro-angiogenic factor, and clinical studies have demonstrated endothelial cells within a number of tumour types to express high levels of OPG compared to those in normal tissue. Additionally, OPG can increase endothelial cell survival, proliferation and migration, as well as induce endothelial cell tube formation in vitro. This study aims to elucidate the processes involved in the pro-angiogenic effects of OPG in vitro, and also how OPG levels may be regulated within the tumour microenvironment. Results It has previously been demonstrated that OPG can induce tube formation on growth factor reduced matrigel. In this study, we demonstrate that OPG enhances the pro-angiogenic effects of VEGF and that OPG does not stimulate endothelial cell tube formation through activation of the VEGFR2 receptor. We also show that cell contact between HuDMECs and the T47D breast cancer cell line increases endothelial cell OPG mRNA and protein secretion levels in in vitro co-cultures. These increases in endothelial cell OPG secretion were dependent on ανβ3 ligation and NFκB activation. In contrast, the pro-angiogenic factors VEGF, bFGF and TGFβ had no effect on HuDMEC OPG levels. Conclusion These findings suggest that the VEGF signalling pathway is not involved in mediating the pro-angiogenic effects of OPG on endothelial cells in vitro. Additionally, we show that breast cancer cells cause increased levels of OPG expression by endothelial cells, and that direct contact between endothelial cells and tumour cells is required in order to increase endothelial OPG expression and secretion. Stimulation of OPG secretion was shown to involve ανβ3 ligation and NFκB activation.

  17. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Lee, Hye Min; Moon, Aree

    2016-01-01

    Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin α5 may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

  18. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies

    Science.gov (United States)

    Bae, Pan Kee; Chung, Bong Hyun

    2014-07-01

    The effective targeting of cancer cell surface antigens is an attractive approach in cancer diagnosis and therapy. Multifunctional nanoprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this study, we have fabricated biocompatible perfluorocan/quantum dot nanoemulsions as bimodal imaging nanoprobes for the targeting of breast cancer cells. Perfluorocarbon/quantum dot nanoemulsions conjugated with monoclonal antibodies, as a type of bimodal imaging nanoprobe based on 19 F-MR and optical imaging, have been synthesized and applied for targeted imaging of three different breast cancer cells (SKBR3, MCF-7, MDA-MB 468), respectively. We have shown that the cancer-detection capabilities of antibody-conjugated PFC/QDs nanoemulsions could be successfully applied to target of various breast cancer cells. These modified PFC/QDs nanoemulsions were shown to target the cancer cell surface receptors specially. Conjugation of ligands to nanoemulsions targeting over-expressed cell surface receptors is a promising approach for targeted imaging to tumor cells. We further propose that the PFC/QDs nanoemulsions could be used in targeted imaging of breast cancer cells.

  19. Overexpress of CD47 does not alter the stemness of MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Oanh Thi-Kieu Nguyen

    2016-09-01

    Full Text Available Background: CD47 is a transmembrane glycoprotein expressed on all cells in the body and particularly overexpressed on cancer cells and cancer stem cells of both hematologic and solid malignancies. In the immune system, CD47 acts as a and ldquo;don't eat me and rdquo; signal, inhibiting phagocytosis by macrophages by interaction with signal regulatory protein and #945; (SIRP and #945;. In cancer, CD47 promotes tumor invasion and metastasis. This study aimed to evaluate the stemness of breast cancer cells when CD47 is overexpressed. Methods: MCF-7 breast cancer cells were transfected with plasmid pcDNA3.4-CD47 containing the CD47 gene. The stemness of the transduced MCF7 cell population was evaluated by expression of CD44 and CD24 markers, anti-tumor drug resistance and mammosphere formation. Results: Transfection of plasmid pcDNA3.4-CD47 significantly increased the expression of CD47 in MCF-7 cells. The overexpression of CD47 in transfected MCF-7 cells led to a significant increase in the CD44+CD24- population, but did not increase doxorubicin resistance of the cells or their capacity to form mammospheres. Conclusion: CD47 overexpression enhances the CD44+CD24- phenotype of breast cancer cells as observed by an increase in the CD44+CD24- expressing population. However, these changes are insufficient to increase the stemness of breast cancer cells. [Biomed Res Ther 2016; 3(9.000: 826-835

  20. Parkin Enhances the Expression of Cyclin-dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells*

    OpenAIRE

    2010-01-01

    Although mutations in the parkin gene are frequently associated with familial Parkinsonism, emerging evidence suggests that parkin also plays a role in cancers as a putative tumor suppressor. Supporting this, we show here that parkin expression is dramatically reduced in several breast cancer-derived cell lines as well as in primary breast cancer tissues. Importantly, we found that ectopic parkin expression in parkin-deficient breast cancer cells mitigates their proliferation rate both in vit...

  1. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Rathinaraj P

    2015-02-01

    Full Text Available Pierson Rathinaraj,1 Ahmed M Al-Jumaily,1 Do Sung Huh21Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand; 2Department of Nano science and Engineering, Inje University, Gimhea, South KoreaAbstract: Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs to improve their precise interactions with breast cancer cells (SK-BR3. The mean size of the GNPs (29 nm, as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB proliferated well in the presence of herceptin-conjugated GNP (GNP–Her, while most of the breast cancer cells (SK-BR3 had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death.Keywords: herceptin, gold nanoparticles, SK-BR3 cells, intracellular uptake

  2. MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.

  3. Cyclohexylmethyl Flavonoids Suppress Propagation of Breast Cancer Stem Cells via Downregulation of NANOG

    Directory of Open Access Journals (Sweden)

    Wen-Ying Liao

    2013-01-01

    Full Text Available Breast cancer stem cells (CSCs are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG, and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs. Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres. This suppression was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to suppress the propagation of breast CSCs via reduction of NANOG.

  4. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats

    Directory of Open Access Journals (Sweden)

    Priyank Ashok Shenoy

    2016-08-01

    Full Text Available The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.

  5. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats.

    Science.gov (United States)

    Shenoy, Priyank A; Kuo, Andy; Vetter, Irina; Smith, Maree T

    2016-01-01

    The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.

  6. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Science.gov (United States)

    Lu, Kuan-Ta; Wang, Bing-Yen; Chi, Wan-Yu; Chang-Chien, Ju; Yang, Jiann-Jou; Lee, Hsueh-Te; Tzeng, Yew-Min; Chang, Wen-Wei

    2016-01-01

    Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer. PMID:27136586

  7. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Directory of Open Access Journals (Sweden)

    Kuan-Ta Lu

    2016-04-01

    Full Text Available Cancer stem/progenitor cells (CSCs are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L. Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474 to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4 and Nanog, as well as heat shock protein 27 (Hsp27, but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2 in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer.

  8. Breast Cancer Disparities

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  9. Repression of mammosphere formation in breast cancer cells by soy isoflavone genistein and blueberry polyphenols

    Science.gov (United States)

    Epidemiological evidence implicates diets rich in fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms for their anti-tumor activities are not well-understood. A small population of mammary epithelial cells, termed cancer stem cells (CSC), may be re...

  10. Effects of Curcuma longa Extract on Telomerase Activity in Lung and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2014-10-01

    Full Text Available Background: The purpose of this study is to evaluate the effect of Curcuma longa extract on the telomerase gene expression in QU-DB lung cancer and T47D breast cancer cell lines. Materials and Methods: The present study is an experimental research. Using 3 different phases n-hexane, dichloromethane and methanol, total extract of Curcuma longa in a serial dilution was prepared and three phases was analyzed for determining which phase has more curcuminoids. Then the extract cytotoxicity effect was tested on breast cancer cell line (T47D, and lung cancer cell line (QU-DB by 24, 48 and 72 h MTT (Dimethyl thiazolyl diphenyl tetrazolium assay. Then, the cells were treated with serial concentrations of the extract. Finally, total protein was extracted from the control and test groups, its quantity was determined and telomeric repeat amplification protocol (TRAP assay was performed for measurement of possible inhibition of the telomerase activity. Results: Cell viability and MTT-based cytotoxicity assay show that the total extract of Curcuma longa has cytotoxic effect with different IC50s in breast and lung cancer cell lines. Analysis of TRAP assay also shows a significant reduction in telomerase activity on both cancer cells with different levels. Conclusion: Curcuma longa extract has anti-proliferation and telomerase inhibitory effects on QU-DB lung cancer and T47D breast cancer cells with differences in levels of telomerase inhibition.

  11. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  12. Tumor suppressor SPOP mediates the proteasomal degradation of progesterone receptors (PRs) in breast cancer cells.

    Science.gov (United States)

    Gao, Kun; Jin, Xiaofeng; Tang, Yan; Ma, Jian; Peng, Jingtiao; Yu, Long; Zhang, Pingzhao; Wang, Chenji

    2015-01-01

    Progesterone induces proliferation of breast cancer cells and contributes to the development of breast cancer. The effects of progesterone are mediated by progesterone receptors (PRs). However, it is still not fully understood how the proliferative effects of PR is regulated in vivo. Increasing amount of evidence strongly suggests that dysregulation of ubiquitin-proteasome system is closely associated with cancer pathogenesis. Speckle-type POZ protein (SPOP) is an adaptor protein of the CUL3-based E3 ubiquitin ligase complexes. SPOP represents one of the highest loci for loss of heterozygosity (LOH) in breast cancer. SPOP downregulation contributes to breast cancer cell growth and invasion. In this study, we revealed PR as a bona fide substrate for SPOP. SPOP interacts with PR in vivo and targets PR for ubiquitin-dependent proteasomal degradation. Moreover, SPOP suppresses progesteroneinduced PR transactivation, S phase entry, and Erk1/2 activation. Our study revealed novel molecular mechanisms underlying the regulation of PR protein homeostasis in breast cancer cells, and provided insights in understanding the relationship between SPOP inactivation and the development of breast cancer.

  13. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    Science.gov (United States)

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  14. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells.

    Science.gov (United States)

    Bertagnolo, Valeria; Benedusi, Mascia; Brugnoli, Federica; Lanuti, Paola; Marchisio, Marco; Querzoli, Patrizia; Capitani, Silvano

    2007-08-01

    Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies.

  15. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  16. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin.

    Science.gov (United States)

    Kai, Masaya; Kanaya, Noriko; Wu, Shang V; Mendez, Carlos; Nguyen, Duc; Luu, Thehang; Chen, Shiuan

    2015-06-01

    The aim of this study is to investigate the efficacy of combining a histone deacetylase inhibitor (LBH589) and a breast cancer stem cells (BCSC)-targeting agent (salinomycin) as a novel combination therapy for triple-negative breast cancer (TNBC). We performed in vitro studies using the TNBC cell lines to examine the combined effect. We used the mammosphere and ALDEFLUOR assays to estimate BCSC self-renewal capacity and distribution of BCSCs, respectively. Synergistic analysis was performed using CalcuSyn software. For in vivo studies, aldehyde dehydrogenase 1 ALDH1-positive cells were injected into non-obese diabetic/severe combined immunodeficiency gamma (NSG) mice. After tumor formation, mice were treated with LBH589, salinomycin, or in combination. In a second mouse model, HCC1937 cells were first treated with each treatment and then injected into NSG mice. For mechanistic analysis, immunohistochemistry and Western blot analysis were performed using cell and tumor samples. HCC1937 cells displayed BCSC properties including self-renewal capacity, an ALDH1-positive cell population, and the ability to form tumors. Treatment of HCC1937 cells with LBH589 and salinomycin had a potent synergistic effect inhibiting TNBC cell proliferation, ALDH1-positive cells, and mammosphere growth. In xenograft mouse models treated with LBH589 and salinomycin, the drug combination effectively and synergistically inhibited tumor growth of ALDH1-positive cells. The drug combination exerted its effects by inducing apoptosis, arresting the cell cycle, and regulating epithelial-mesenchymal transition (EMT). Combination of LBH589 and salinomycin has a synergistic inhibitory effect on TNBC BCSCs by inducing apoptosis, arresting the cell cycle, and regulating EMT; with no apparent associated severe toxicity. This drug combination could therefore offer a new targeted therapeutic strategy for TNBC and warrants further clinical study in patients with TNBC.

  17. A paradox of cadmium: a carcinogen that impairs the capability of human breast cancer cells to induce angiogenesis.

    Science.gov (United States)

    Pacini, Stefania; Punzi, Tiziana; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco

    2009-01-01

    Cadmium, a highly persistent heavy metal, has been categorized as a human carcinogen. Even though it is known that cadmium acts as estrogens in breast cancer cells, several studies failed to demonstrate whether cadmium is a causal factor for breast cancer. The lack of a strong association between cadmium and breast cancer could be found in the antiangiogenic properties of this heavy metal, which might counteract its carcinogenic properties in the progression of breast cancer. In this study, we exposed estrogen-responsive breast cancer cells to subtoxic levels of cadmium, and we evaluated their angiogenic potential using the chick embryo chorioallantoic membrane assay. Exposure of breast cancer cells to subtoxic levels of cadmium significantly inhibited the angiogenic potential of the breast cancer cell line, suggesting the possibility that cadmium might negatively regulate the production of proangiogenic factors in breast cancer cells. Our results suggest that cadmium might exert a paradoxical effect in breast cancer: on the one hand, it could promote carcinogenesis, and, on the other hand, it could delay the onset of tumors by inhibiting breast cancer cell-induced angiogenesis.

  18. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  19. Breast cancer in men

    Science.gov (United States)

    ... in situ - male; Intraductal carcinoma - male; Inflammatory breast cancer - male; Paget disease of the nipple - male; Breast cancer - male ... The cause of breast cancer in men is not clear. But there are risk factors that make breast cancer more likely in men: Exposure to ...

  20. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  1. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  2. Phenotypic alterations in breast cancer cells overexpressing the nuclear receptor co-activator AIB1

    Directory of Open Access Journals (Sweden)

    Azorsa David O

    2003-09-01

    Full Text Available Abstract Background Estrogen signaling plays a critical role in a number of normal physiological processes and has important implications in the treatment of breast cancer. The p160 nuclear receptor coactivator, AIB1 (amplified in breast cancer 1, is frequently amplified and overexpressed in human breast cancer and has been shown to enhance estrogen-dependent transactivation. Methods To better understand the molecular and physiological consequences of AIB1 overexpression in breast cancer cells, an AIB1 cDNA was transfected into the low AIB1 expressing, estrogen-receptor (ER negative breast cancer cell line, MDA-MB-436. The features of a derivative cell line, designated 436.1, which expresses high levels of AIB1, are described and compared with the parental cell line. Results A significant increase in the levels of CREB binding protein (CBP was observed in 436.1 cells and immunofluorescent staining revealed altered AIB1 and CBP staining patterns compared to the parental cells. Further, transient transfection assays demonstrated that the overall estrogen-dependent transactivation in 436.1 cells is approximately 20-fold higher than the parental cells and the estrogen dose-response curve is repositioned to the right. Finally, cDNA microarray analysis of approximately 7,100 cDNAs identified a number of differentially expressed genes in the 436.1 cells. Conclusion These observations lend insight into downstream signaling pathways that are influenced by AIB1.

  3. iTRAQ-based proteomic profiling of breast cancer cell response to doxorubicin and TRAIL.

    Science.gov (United States)

    Leong, Sharon; Nunez, Andrea C; Lin, Mike Z; Crossett, Ben; Christopherson, Richard I; Baxter, Robert C

    2012-07-06

    Breast cancer is a molecularly heterogeneous disease, and predicting response to chemotherapy remains a major clinical challenge. To minimize adverse side-effects or cumulative toxicity in patients unlikely to benefit from treatment, biomarkers indicating treatment efficacy are critically needed. iTRAQ labeling coupled with multidimensional LC-MS/MS of the enriched mitochondria and endoplasmic reticulum fraction, key organelles regulating apoptosis, has led to the discovery of several differentially abundant proteins in breast cancer cells treated with the chemotherapeutic agent doxorubicin followed by the death receptor ligand, TRAIL, among 571 and 801 unique proteins identified in ZR-75-1 and MDA-MB-231 breast cancer cell lines, respectively. The differentially abundant proteins represent diverse biological processes associated with cellular assembly and organization, molecular transport, oxidative stress, cell motility, cell death, and cancer. Despite many differences in molecular phenotype between the two breast cancer cell lines, a comparison of their subproteomes following drug treatment revealed three proteins displaying common regulation: PPIB, AHNAK, and SLC1A5. Changes in these proteins, detected by iTRAQ, were confirmed by immunofluorescence, visualized by confocal microscopy. These novel potential biomarkers may have clinical utility for assessing response to cancer treatment and may provide insight into new therapeutic targets for breast cancer.

  4. Expression of matrix metalloproteinases (MMPs in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

    Directory of Open Access Journals (Sweden)

    Dietl Johannes

    2009-06-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. Methods To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2 and ten grade 3 (G3 breast cancer tissues. As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1 commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. Results In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28 with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein

  5. Synergistic enhancement of breast cancer cell death using ultrasound-microbubbles in combination with cisplatin

    Science.gov (United States)

    Jetha, Sheliza; Karshafian, Raffi

    2017-03-01

    Cisplatin (CDDP), an anti-cancer agent, can effectively treat several cancerous tumourstumors such as testicular, bladder, and ovarian cancers. CDDP binds to specific DNA bases causing 1,2-intrastrand cross-links, single strand and double strand breaks inducing apoptosis. However, the effectiveness of CDDP is limited in tumourtumors such as breast cancer due to drug resistance. In this study, the application of ultrasound-microbubble (USMB) in improving the therapeutic effect of CDDP in breast cancer cell line is investigated. Human breast cancer (MDA-MB-231) cells in suspension (2×106 cells/mL concentration and 0.6 mL volume) were treated with CDDP (3 µM, 30 µM and 300 µM) and USMB at 0.5 MHz pulse centered frequency, 60 s insonation time, 16 µs pulse duration, 1 kHz pulse repetition frequency, and 1.7% v/v (volume concentration) of Definity microbubble agent. Following USMB treatment, cells were plated in 96-well plates for 24 and 48-hour incubation, after which cell viability was measured using MTT assay (VMTT). Cell viability decreased significantly with the combined treatment of CDDP and USMB compared to CDDP alone (pcancer cells. However, this enhanced effectiveness, in breast cancer cells (MDA-MB-231), is dependent on incubation time and cisplatin (CDDP) concentration.

  6. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity.

    Science.gov (United States)

    Rappa, Germana; Mercapide, Javier; Lorico, Aurelio

    2012-06-01

    Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm.

  7. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  8. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  9. Inhibition of ErbB-2 induces TFF3 downregulation in breast cancer cell lines.

    Science.gov (United States)

    Yue, Lu; Xiang, Jinyu; Shen, Zan; Wang, Zhihao; Yao, Yasai; Zhou, Quan; Ding, Aiping; Qiu, Wensheng

    2014-07-01

    ErbB-2 gene plays an important role in carcinoma formation whose overexpression was observed in many types of tumors, including breast cancer. Dysregulation of Trefoil factor 3 (TFF3), which is thought to function in the development and progression of breast cancer, was found to be upregulated in ErbB2-overexpressing breast cancers and cells. However, a putative interaction between ErbB-2 and TFF3 in breast cancer remains unknown. To determine whether TFF3 has an important role in breast tumor, its levels were measured by immunohistochemistry in 130 cases of breast infiltrating duct carcinoma and 30 cases of normal breast tissue with a specific monoclonal antibody raised against human TFF3. Patients who were positive for ErbB-2 also had high expression levels of TFF3 (p TFF3 by real-time polymerase chain reaction and Western blotting, respectively. Compared with the control groups, ErbB-2 mRNA expression was decreased in the Lenti-ShERBB2 infection group, and Western blotting indicated a concordant ErbB-2 protein reduction. On the other hand, TFF3 expression at both mRNA and protein levels was significantly downregulated by ErbB-2 silencing in SK-BR-3. These findings are a proof of the foundation for a certain relationships of ErbB-2 and TFF3, which may serve as novel therapeutic markers of ErbB2-overexpressing breast cancers in the future.

  10. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  11. On generating cell exemplars for detection of mitotic cells in breast cancer histopathology images.

    Science.gov (United States)

    Aloraidi, Nada A; Sirinukunwattana, Korsuk; Khan, Adnan M; Rajpoot, Nasir M

    2014-01-01

    Mitotic activity is one of the main criteria that pathologists use to decide the grade of the cancer. Computerised mitotic cell detection promises to bring efficiency and accuracy into the grading process. However, detection and classification of mitotic cells in breast cancer histopathology images is a challenging task because of the large intra-class variation in the visual appearance of mitotic cells in various stages of cell division life cycle. In this paper, we test the hypothesis that cells in histopathology images can be effectively represented using cell exemplars derived from sub-images of various kinds of cells in an image for the purposes of mitotic cell classification. We compare three methods for generating exemplar cells. The methods have been evaluated in terms of classification performance on the MITOS dataset. The experimental results demonstrate that eigencells combined with support vector machines produce reasonably high detection accuracy among all the methods.

  12. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  13. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression.

    Science.gov (United States)

    Long, Jianting; Ou, Caiwen; Xia, Haoming; Zhu, Yifan; Liu, Dayue

    2015-11-01

    Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.

  14. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Curry, Merril C; Peters, Amelia A; Kenny, Paraic A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-05-10

    The mitochondrial calcium uniporter (MCU) transports free ionic Ca(2+) into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca(2+) levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca(2+) levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  15. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells.

    Science.gov (United States)

    Liu, Hong; Ma, Yan; He, Hong-Wei; Wang, Jia-Ping; Jiang, Jian-Dong; Shao, Rong-Guang

    2015-01-01

    Autophagy, a self-catabolic process, has been found to be involved in abrogating the proliferation and metastasis of breast cancer. SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], member 3 regulator 1), a multifunctional scaffold protein, is involved in suppressing breast cancer cells proliferation and the SLC9A3R1-related signaling pathway regulates the activation of autophagy processes. However, the precise regulatory mechanism and signaling pathway of SLC9A3R1 in the regulation of autophagy processes in breast cancer cells remains unknown. Here, we report that the stability of BECN1, the major component of the autophagic core lipid kinase complex, is augmented in SLC9A3R1-overexpressing breast cancer MDA-MB-231 cells, subsequently stimulating autophagy by attenuating the interaction between BECN1 and BCL2. Initially, we found that SLC9A3R1 partially stimulated autophagy through the PTEN-PI3K-AKT1 signaling cascade in MDA-MB-231 cells. SLC9A3R1 then attenuated the interaction between BECN1 and BCL2 to stimulate the autophagic core lipid kinase complex. Further findings revealed that SLC9A3R1 bound to BECN1 and subsequently blocked ubiquitin-dependent BECN1 degradation. And the deletion of the C-terminal domain of SLC9A3R1 resulted in significantly reduced binding to BECN1. Moreover, the lack of C-terminal of SLC9A3R1 neither reduced the ubiquitination of BECN1 nor induced autophagy in breast cancer cells. The decrease in BECN1 degradation induced by SLC9A3R1 resulted in the activity of autophagy stimulation in breast cancer cells. These findings indicate that the SLC9A3R1-BECN1 signaling pathway participates in the activation of autophagy processes in breast cancer cells.

  16. In situ identification of CD44+/CD24- cancer cells in primary human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Giuseppe Perrone

    Full Text Available Breast cancer cells with the CD44+/CD24- phenotype have been reported to be tumourigenic due to their enhanced capacity for cancer development and their self-renewal potential. The identification of human tumourigenic breast cancer cells in surgical samples has recently received increased attention due to the implications for prognosis and treatment, although limitations exist in the interpretation of these studies. To better identify the CD44+/CD24- cells in routine surgical specimens, 56 primary breast carcinoma cases were analysed by immunofluorescence and confocal microscopy, and the results were compared using flow cytometry analysis to correlate the amount and distribution of the CD44+/CD24- population with clinicopathological features. Using these methods, we showed that the breast carcinoma cells displayed four distinct sub-populations based on the expression pattern of CD44 and CD24. The CD44+/CD24- cells were found in 91% of breast tumours and constituted an average of 6.12% (range, 0.11%-21.23% of the tumour. A strong correlation was found between the percentage of CD44+/CD24- cells in primary tumours and distant metastasis development (p = 0.0001; in addition, there was an inverse significant association with ER and PGR status (p = 0.002 and p = 0.001, respectively. No relationship was evident with tumour size (T and regional lymph node (N status, differentiation grade, proliferative index or HER2 status. In a multivariate analysis, the percentage of CD44+/CD24- cancer cells was an independent factor related to metastasis development (p = 0.004. Our results indicate that confocal analysis of fluorescence-labelled breast cancer samples obtained at surgery is a reliable method to identify the CD44+/CD24- tumourigenic cell population, allowing for the stratification of breast cancer patients into two groups with substantially different relapse rates on the basis of CD44+/CD24- cell percentage.

  17. The Exposure of Breast Cancer Cells to Fulvestrant and Tamoxifen Modulates Cell Migration Differently

    Directory of Open Access Journals (Sweden)

    Dionysia Lymperatou

    2013-01-01

    Full Text Available There is no doubt that there are increased benefits of hormonal therapy to breast cancer patients; however, current evidence suggests that estrogen receptor (ER blockage using antiestrogens is associated with a small induction of invasiveness in vitro. The mechanism by which epithelial tumor cells escape from the primary tumor and colonize to a distant site is not entirely understood. This study investigates the effect of two selective antagonists of the ER, Fulvestrant (Fulv and Tamoxifen (Tam, on the invasive ability of breast cancer cells. We found that 17β-estradiol (E2 demonstrated a protective role regarding cell migration and invasion. Fulv did not alter this effect while Tam stimulated active cell migration according to an increase in Snail and a decrease in E-cadherin protein expression. Furthermore, both tested agents increased expression of matrix metalloproteinases (MMPs and enhanced invasive potential of breast cancer cells. These changes were in line with focal adhesion kinase (FAK rearrangement. Our data indicate that the anti-estrogens counteracted the protective role of E2 concerning migration and invasion since their effect was not limited to antiproliferative events. Although Fulv caused a less aggressive result compared to Tam, the benefits of hormonal therapy concerning invasion and metastasis yet remain to be investigated.

  18. Interleukin-19 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2013-01-01

    Full Text Available Inflammatory cytokines within the tumor microenvironment are linked to progression in breast cancer. Interleukin- (IL- 19, part of the IL-10 family, contributes to a range of diseases and disorders, such as asthma, endotoxic shock, uremia, psoriasis, and rheumatoid arthritis. IL-19 is expressed in several types of tumor cells, especially in squamous cell carcinoma of the skin, tongue, esophagus, and lung and invasive duct carcinoma of the breast. In breast cancer, IL-19 expression is correlated with increased mitotic figures, advanced tumor stage, higher metastasis, and poor survival. The mechanisms of IL-19 in breast cancer have recently been explored both in vitro and in vivo. IL-19 has an autocrine effect in breast cancer cells. It directly promotes proliferation and migration and indirectly provides a microenvironment for tumor progression, which suggests that IL-19 is a prognostic marker in breast cancer and that antagonizing IL-19 may have therapeutic potential.

  19. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Howell, Sacha J; Farnie, Gillian; Clarke, Robert B

    2013-01-01

    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.

  20. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Directory of Open Access Journals (Sweden)

    Jin Zheng

    2012-06-01

    Full Text Available A dendritic cell (DC-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC maturation. The mean fluorescence intensity (MFI of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  1. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Qiang [Department of Hematology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jiandong [Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Ren, Qinyou [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Cao, Wei [Department of Interventional Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jingyue; Yu, Zhaocai [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yu, Fang [Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi' an, Shaanxi (China); Wu, Yanlan [Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Shi, Hengjun [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China)

    2012-04-27

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  2. In vitro spontaneous differentiation of human breast cancer stem cells and methods to control this process

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-06-01

    Full Text Available Breast cancer stem cells were considered as origins of breast cancer. Previously published studies showed that breast cancer stem cells exhibited high multi-drug resistance. This study aimed to evaluate the spontaneous differentiation of human breast cancer stem cells and investigate some in vitro conditions to control this process. Human breast cancer stem cells (BCSCs were sorted from primary culture of breast malignant tumors based on expression of CD44 and CD24. The in vitro spontaneous differentiation of BCSCs was evaluated in the popular culture medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS, 1% antibiotic-antimycotic. There were some different methods to control the spontaneous differentiation of BCSCs included free serum culture, mammosphere culture, basic fibroblast growth factor and epidermal growth factor supplement to serum medium, and hypoxia culture. The results showed that BCSCs always were spontaneously differentiated in vitro in the popular culture medium DMEM/F12 plus 10% FBS. The percentage of BCSCs gradually decreased according to sub-culture times and became stable after 20 sub-culture times. All investigated methods could not completely inhibit the spontaneous differentiation of BCSCs. Serum-free culture combined with hypoxia condition had strongest inhibition of this process. These results demonstrated that the spontaneous differentiation is nature process of BCSCs; therefore this process should be determined and suitably controlled depending on different experiments. [Biomed Res Ther 2015; 2(6.000: 290-296

  3. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    Science.gov (United States)

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  4. Breast Cancer Research Program

    Science.gov (United States)

    2010-09-01

    tion of tumor cells with red indicating the highest density of tumor cells at the primary tumor (4th mammary fat pad ) and purple/blue showing the...Idea Award Elaine Hardman and Philippe Georgel “ Maternal Consumption of Omega 3 Fatty Acids to Reduce Breast Cancer Risk in Offspring” FY09

  5. The Breast Cancer DNA Interactome

    Science.gov (United States)

    2014-12-01

    Sugumar A, Liu YC, Xia Q , Koh YS, Matsuo K. Insulin-like growth factor (IGF)-I and IGF-binding protein 3 and the risk of premenopausal breast cancer: a...stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene 32(19): 2412 2420. 29. Mehta HH, Gao Q ...Award Number: W81XWH-11-1-0474 TITLE: The Breast Cancer DNA Interactome PRINCIPAL INVESTIGATOR: Andrew R. Hoffman CONTRACTING ORGANIZATION

  6. MiR-888 regulates side population properties and cancer metastasis in breast cancer cells.

    Science.gov (United States)

    Huang, Shengjian; Chen, Liangbiao

    2014-08-01

    Cancer stem cells (CSCs) have recently been reported to possess properties related to cancer metastasis. However, the mechanism by which microRNAs (miRNAs) regulate these properties remains unclear. This study aims to investigate a correlation between miRNAs and the side population (SP) of human breast cancer cell line MCF-7 with CSC properties. miR-888 was found in our previous study to be up-regulated in SP cells and predicted to target E-Cadherin directly, indicating a potential role in maintaining SP properties and regulating the epithelial-mesenchymal transition (EMT) and cancer metastasis. After the over-expression of miR-888 in MCF-7 cells and knock-down of its expression in SP cells, we found that miR-888 played a role in maintaining CSC-related properties. Next, miR-888 was found to regulate the EMT process by targeting related gene expression. Lastly, MCF-7 cells over-expressing miR-888 exhibited a significant reduction in their ability to adhere to the extracellular matrix and an increased potential for migration and invasion, whereas knock-down of miR-888 expression in SP cells reversed these trends. In conclusion, miR-888 maintains SP properties and regulates EMT and metastasis in MCF-7 cells, potentially by targeting E-Cadherin expression.

  7. Do Cells from the Fetus Contribute to Breast Cancer

    Science.gov (United States)

    2009-09-01

    Journal of Clinical Oncology, Vol 27, (June Supplement), 2009 (ASCO Annual Meeting Proceedings). (45th ASCO Annual Meeting, May 29-June 2, 2009...Heppner GH. (1997) Immunological enhancement of breast cancer. Parasitology 115:S141-53. PMID: 9571699 6. Yang, YH., Yoo, HS, and Kim, IK...Published Abstract). In: Journal of Clinical Oncology, Vol 27, (June Supplement), 2009 (ASCO Annual Meeting Proceedings). (45th ASCO Annual Meeting

  8. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Emmanuel Reyes-Uribe

    2015-08-01

    Full Text Available Discoidin domain receptors (DDRs are receptor tyrosine kinases that are activated by native collagens and have an important role during cell adhesion, development, differentiation, proliferation, and migration. DDR deregulation is associated with progression of several different cancers. However, there is limited information about the role of DDRs in the progression of breast cancer. In this review we attempt to collect the most relevant information about DDR signaling and their role in various cancer-related processes such as adhesion, epithelial to mesenchymal transition, migration, invasion, and survival, with a focus on breast cancer.

  9. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity.

    Science.gov (United States)

    Giordano, Cinzia; Chemi, Francesca; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Cordella, Angela; Campana, Antonella; Hashim, Adnan; Rizza, Pietro; Leggio, Antonella; Győrffy, Balázs; Simões, Bruno M; Clarke, Robert B; Weisz, Alessandro; Catalano, Stefania; Andò, Sebastiano

    2016-01-12

    Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.

  10. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  11. Cell cycle related proteins in hyperplasia of usual type in breast specimens of patients with and without breast cancer

    Directory of Open Access Journals (Sweden)

    Gobbi Helenice

    2006-07-01

    Full Text Available Abstract Background Hyperplasia of usual type (HUT is a common proliferative lesion associated with a slight elevated risk for subsequent development of breast cancer. Cell cycle-related proteins would be helpful to determine the putative role of these markers in the process of mammary carcinogenesis. The aim of this study was to analyze the expression of cell cycle related proteins in HUT of breast specimens of patients with and without breast cancer, and compare this expression with areas of invasive carcinomas. Results Immunohistochemical evaluation was performed using antibodies against cell cycle related proteins ER, PR, p53, p21, p63, and Ki-67 in hyperplasia of usual type (HUT in specimens of aesthetic reduction mammaplasty (ARM, in specimens of mammaplasty contralateral to breast cancer (MCC, and in specimens of invasive mammary carcinomas (IMC presenting HUT in the adjacent parenchyma. The results showed that the immunoexpression of ER, PR, p21, p53, p63, and KI-67 was similar in HUT from the three different groups. The p63 expression in myoepithelial cells showed discontinuous pattern in the majority of HUT, different from continuous expression in normal lobules. Nuclear expression of p53 and p21 was frequently higher expressed in IMC and very rare in HUT. We also found cytoplasmic expression of p21 in benign hyperplastic lesions and in neoplastic cells of IMC. Conclusion Our data failed to demonstrate different expression of cell cycle related proteins in HUT from patients with and without breast cancer. However, we found discontinuous expression of p63 in myoepithelial cells around HUT adjacent to carcinomas and cytoplasmic expression of p21 in epithelial cells of hyperplastic foci. Further studies are needed to determine how these subgroups relate to molecular abnormalities and cancer risk.

  12. Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yuhan Zhao

    Full Text Available BACKGROUND: Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive. PRINCIPAL FINDINGS: We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS upregulates the expression of Metadherin (MTDH, a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production. CONCLUSIONS: These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer.

  13. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling.

    Science.gov (United States)

    Nehybova, Tereza; Smarda, Jan; Daniel, Lukas; Brezovsky, Jan; Benes, Petr

    2015-08-01

    Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.

  14. Kinesin-1 Translocation along Human Breast Cancer Cell Microtubules in Vitro

    Science.gov (United States)

    Shojania Feizabadi, Mitra; Jun, Yonggun

    2015-03-01

    A principle approach to better understand intra-cellular microtubule based transport is to study such it in vitro. Such in vitro examinations have predominantly used microtubules polymerized from bovine brain tubulin, but motor function can also in principle be affected by the specific tubulin isotypes present in different cells. The human breast cancer cells carry different beta tubulin isotype distribution. However, it is entirely unknown whether transport along the microtubules is different in these cells. In this work we have characterized, for the first time, the translocation specifications of kinesin-1 along human breast cancer cell microtubules polymerized in vitro. We found that as compared with the translocation along bovine brain microtubules, kinesin-1 shows a fifty percent shorter processive run length and slightly slower velocity under similar experimental conditions. These first time results support the regulatory role of tubulin isotypes in regards to motor protein translocations, and quantify the translocation specifications of kinesin-1 along microtubules of human breast cancer cells.

  15. Markers of tumor-initiating cells predict chemoresistance in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chang Gong

    Full Text Available PURPOSE: Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors. METHODS: Immunohistochemical staining(IHC was used to examine the expression of aldehyde dehydrogenase 1 (ALDH1 and proliferating cell nuclear antigen, and TUNEL was used to detect the apoptosis index. The significance of various variables in patient survival was analyzed using a Cox proportional hazards model. The percentage of BT-ICs in breast cancer cell lines and primary breast tumors was determined by ALDH1 enzymatic assay, CD44(+/CD24(- phenotype and mammosphere formation assay. RESULTS: ALDH1 expression determined by IHC in primary breast cancers was associated with poor clinical response to neoadjuvant chemotherapy and reduced survival in breast cancer patients. Breast tumors that contained higher proportion of BT-ICs with CD44(+/CD24(- phenotype, ALDH1 enzymatic activity and sphere forming capacity were more resistant to neoadjuvant chemotherapy. Chemoresistant cell lines AdrR/MCF-7 and SK-3rd, had increased number of cells with sphere forming capacity, CD44(+/CD24(- phenotype and side-population. Regardless the proportion of T-ICs, FACS-sorted CD44(+/CD24(- cells that derived from primary tumors or breast cancer lines were about 10-60 fold more resistant to chemotherapy relative to the non- CD44(+/CD24(- cells and their parental cells. Furthermore, our data demonstrated that MDR1 (multidrug resistance 1 and ABCG2 (ATP-binding cassette sub-family G member 2 were upregulated in CD44(+/CD24(- cells. Treatment with lapatinib or salinomycin reduced the proportion of BT-ICs by nearly 50 fold, and thus enhanced the sensitivity of breast cancer cells to chemotherapy by around 30 fold. CONCLUSIONS: These data suggest that the proportion of BT-ICs is associated with chemotherapeutic

  16. Specific recruitment of γδ regulatory T cells in human breast cancer

    OpenAIRE

    Ye, Jian; MA, CHUNLING; Wang, Fang; Hsueh, Eddy C; Toth, Karoly; Huang, Yi; Mo, Wei; Liu, Shuai; Han, Bing; Varvares, Mark A.; Hoft,Daniel F; Peng, Guangyong

    2013-01-01

    Understanding the role of different subtypes of tumor-infiltrating lymphocytes (TILs) in the immunosuppressive tumor microenvironment is essential to improving cancer treatment. Enriched γδ1 T cell populations in tumor-infiltrating lymphocytes (TILs) suppress T cell responses and dendritic cell maturation in breast cancer, where their presence is correlated negatively with clinical outcomes. However, mechanism(s) that explain the increase in this class of T regulatory cells (γδ Treg) in breas...

  17. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    Science.gov (United States)

    Debeb, Bisrat G; Lacerda, Lara; Xu, Wei; Larson, Richard; Solley, Travis; Atkinson, Rachel; Sulman, Erik P.; Ueno, Naoto T; Krishnamurthy, Savitri; Reuben, James M; Buchholz, Thomas A; Woodward, Wendy A

    2015-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical trials. We hypothesized that HDAC inhibitors reprogram differentiated cancer cells towards the more resistant stem cell-like state. Two highly aggressive breast cancer cell lines, SUM159 and MDA-231, were FACS-sorted based on ALDH activity and subsequently ALDH-negative and ALDH-positive cells were treated with one of two known HDAC inhibitors, VA or SAHA (suberoylanilide hydroxamic acid). In addition, primary tumor cells from patients with metastatic breast cancer were evaluated for ALDH activity following treatment with HDAC inhibitors. We demonstrate that single cell sorted ALDH- negative cells spontaneously generated ALDH-positive cells in vitro. Treatment of ALDH-negative cells with HDAC inhibitors promoted the expansion of ALDH-positive cells and increased mammosphere forming efficiency. Most importantly, it significantly increased the tumor-initiating capacity of ALDH- negative cells in limiting dilution outgrowth assays. Moreover, while HDAC inhibitors upregulated β-catenin expression and significantly increased WNT reporter activity, a TCF4 dominant negative construct abolished HDAC-inhibitor induced expansion of CSCs. These results demonstrate that HDAC inhibitors promote the expansion of breast CSCs through dedifferentiation and have important clinical implications for the use of HDAC inhibitors in the treatment of cancer. PMID:22961641

  18. The Role of Breast Cancer Stem Cells in Metastasis and Therapeutic Implications

    OpenAIRE

    2011-01-01

    Cancer stem cells (CSCs) possess the capacity to self-renew and to generate heterogeneous lineages of cancer cells that comprise tumors. A substantial body of evidence supports a model in which CSCs play a major role in the initiation, maintenance, and clinical outcome of cancers. In contrast, analysis of the role of CSCs in metastasis has been mainly conceptual and speculative. This review summarizes recent data that support the theory of CSCs as the source of metastatic lesions in breast ca...

  19. Male Breast Cancer

    Science.gov (United States)

    ... ducts that carry milk to the nipples, and fat. During puberty, women begin developing more breast tissue, and men do not. But because men are born with a small amount of breast tissue, they can develop breast cancer. Types of breast cancer diagnosed in men include: Cancer ...

  20. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Banys, Malgorzata, E-mail: maggybanys@yahoo.de [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany); Department of Obstetrics and Gynecology, Marienkrankenhaus Hamburg, Hamburg D-22087 (Germany); Krawczyk, Natalia; Fehm, Tanja [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany)

    2014-01-15

    Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs) in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  1. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Malgorzata Banys

    2014-01-01

    Full Text Available Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  2. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models.

    Science.gov (United States)

    Suetsugu, Atsushi; Honma, Kimi; Saji, Shigetoyo; Moriwaki, Hisataka; Ochiya, Takahiro; Hoffman, Robert M

    2013-03-01

    Exosomes play an important role in cell-to-cell communication to promote tumor metastasis. In order to image the fate of cancer-cell-derived exosomes in orthotopic nude mouse models of breast cancer, we used green fluorescent protein (GFP)-tagged CD63, which is a general marker of exosomes. Breast cancer cells transferred their own exosomes to other cancer cells and normal lung tissue cells in culture. In orthotopic nude-mouse models, breast cancer cells secreted exosomes into the tumor microenvironment. Tumor-derived exosomes were incorporated into tumor-associated cells as well as circulating in the blood of mice with breast cancer metastases. These results suggest that tumor-derived exosomes may contribute to forming a niche to promote tumor growth and metastasis. Our results demonstrate the usefulness of GFP imaging to investigate the role of exosomes in cancer metastasis.

  3. Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target.

    Science.gov (United States)

    Ginestier, Christophe; Monville, Florence; Wicinski, Julien; Cabaud, Olivier; Cervera, Nathalie; Josselin, Emmanuelle; Finetti, Pascal; Guille, Arnaud; Larderet, Gaelle; Viens, Patrice; Sebti, Said; Bertucci, François; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle

    2012-07-01

    There is increasing evidence that breast tumors are organized in a hierarchy, with a subpopulation of tumorigenic cancer cells, the cancer stem cells (CSCs), which sustain tumor growth. The characterization of protein networks that govern CSC behavior is paramount to design new therapeutic strategies targeting this subpopulation of cells. We have sought to identify specific molecular pathways of CSCs isolated from 13 different breast cancer cell lines of luminal or basal/mesenchymal subtypes. We compared the gene expression profiling of cancer cells grown in adherent conditions to those of matched tumorsphere cultures. No specific pathway was identified to be commonly regulated in luminal tumorspheres, resulting from a minor CSC enrichment in tumorsphere passages from luminal cell lines. However, in basal/mesenchymal tumorspheres, the enzymes of the mevalonate metabolic pathway were overexpressed compared to those in cognate adherent cells. Inhibition of this pathway with hydroxy-3-methylglutaryl CoA reductase blockers resulted in a reduction of breast CSC independent of inhibition of cholesterol biosynthesis and of protein farnesylation. Further modulation of this metabolic pathway demonstrated that protein geranylgeranylation (GG) is critical to breast CSC maintenance. A small molecule inhibitor of the geranylgeranyl transferase I (GGTI) enzyme reduced the breast CSC subpopulation both in vitro and in primary breast cancer xenografts. We found that the GGTI effect on the CSC subpopulation is mediated by inactivation of Ras homolog family member A (RHOA) and increased accumulation of P27(kip1) in the nucleus. The identification of protein GG as a major contributor to CSC maintenance opens promising perspectives for CSC targeted therapy in basal breast cancer.

  4. Fusarin C acts like an estrogenic agonist and stimulates breast cancer cells in vitro

    DEFF Research Database (Denmark)

    Søndergaard, Teis; Hansen, Frederik Teilfeldt; Purup, Stig;

    2011-01-01

    Fusarin C is a mycotoxin produced by several Fusarium species and has been associated with esophageal cancer due to its carcinogenic effects. Here, we report that fusarin C stimulates growth of the breast cancer cell line MCF-7. This suggests that fusarin C can act as an estrogenic agonist...

  5. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Science.gov (United States)

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t < 0.05) were identified to be biomarkers. Eleven metabolites such as butanedioic acid, phosphoric acid, L-leucine and isoleucine which had a significant contribution to classification were selected and preliminarily identified due to the accurate mass. Cell cycle assay was analyzed by FACSCalibur. Since the cells in the phase of G1 were increased significantly after the treatment of lupeol, we speculated that lupeol has a blocking effect on the generation of succinyl-CoA and the reaction of substrate phosphorylation of tricarboxylic acid cycle of MCF-7 cells. This study provided a novel approach to the mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics.

  6. Preliminary research on dendritic cells loaded with resistant breast cancer antigens in breast cancer-bearing nude mice

    Institute of Scientific and Technical Information of China (English)

    Wei Zhuang; Limin Lun

    2015-01-01

    Objective The aim of the study was to investigate the inhibitory ef ects of dendritic cel s (DCs) loaded with resistant breast cancer antigens on breast cancer in nude mice. Methods A single-cel suspension was prepared from a primary breast cancer and chemotherapeutic drugs were screened using the ATP-PCA susceptibility testing system. Cancer cel s were treated with 1/10 × IC50, 1/5 × IC50, 1/2 × IC50, 1 × IC50, and 2 × IC50 medium until their growth became steady in the 2 × IC50 medium. Peripheral blood mononuclear cel s (PBMCs) were obtained from the peripheral blood of patients with leukapheresis. The obtained adherent cel s were induced by granulocyte-macrophage colony-stimu-lating factor (GM-CSF) and interleukin-4 (IL-4) to generate DCs, which carried resistant strain cel lysis compounds or non-treated cancer cel lysis compounds. The former mature DCs carried resistant breast tumor antigens. A breast tumor-bearing nude mouse model was established with these resistant strains and the mice were randomly divided in three groups. The mice in the treatment group were injected with DCs loaded with resistant breast cancer antigens. The control group consisted of mice injected with DCs loaded with primary tumor cel antigens and the blank group consisted of mice injected with the same volume of normal saline. Changes in the cancers were observed. Results After treatment with the ef ector cel s, the cancer volume and weight were significantly dif erent to those before treatment in every group of mice (P Conclusion DCs loaded with resistant breast cancer antigens demonstrated a significant inhibition ef ect on the cancers of breast tumor-bearing nude mice.

  7. Gasdermin-B promotes invasion and metastasis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Marta Hergueta-Redondo

    Full Text Available Gasdermin B (GSDMB belongs to the Gasdermin protein family that comprises four members (GSDMA-D. Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases. We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2 the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2. The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.

  8. Microarray-based analysis of microRNA expression in breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Wang Zhi-xin

    2010-12-01

    Full Text Available Abstract Background This study aimed to determine the miRNA profile in breast cancer stem cells (BCSCs and to explore the functions of characteristic BCSC miRNAs. Methods We isolated ESA+CD44+CD24-/low BCSCs from MCF-7 cells using fluorescence-activated cell sorting (FACS. A human breast cancer xenograft assay was performed to validate the stem cell properties of the isolated cells, and microarray analysis was performed to screen for BCSC-related miRNAs. These BCSC-related miRNAs were selected for bioinformatic analysis and target prediction using online software programs. Results The ESA+CD44+CD24-/low cells had up to 100- to 1000-fold greater tumor-initiating capability than the MCF-7 cells. Tumors initiated from the ESA+CD44+CD24-/low cells were included of luminal epithelial and myoepithelial cells, indicating stem cell properties. We also obtained miRNA profiles of ESA+CD44+CD24-/low BCSCs. Most of the possible targets of potential tumorigenesis-related miRNAs were oncogenes, anti-oncogenes or regulatory genes. Conclusions We identified a subset of miRNAs that were differentially expressed in BCSCs, providing a starting point to explore the functions of these miRNAs. Evaluating characteristic BCSC miRNAs represents a new method for studying breast cancer-initiating cells and developing therapeutic strategies aimed at eradicating the tumorigenic subpopulation of cells in breast cancer.

  9. Functional Geonic Analysis of Breast Cancer Cell Tumorigenicity Using a Noval Gene Silencing Resource

    Science.gov (United States)

    2007-04-01

    a possible trigger of apoptosis in these cells. The end-product of FASN activity, palmitate, and other saturated fatty acids like it are toxic to...variety of cell types, including breast cancer cell lines 45, 46 suggest that this lipotoxicity is specific for saturated fatty acids and that

  10. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martin, Keith R; Brophy, Sara K

    2010-11-01

    Worldwide, over one million women will be newly diagnosed with breast cancer in the next year. Moreover, breast cancer is the second leading cause of cancer death in the USA. An accumulating body of evidence suggests that consumption of dietary mushrooms can protect against breast cancer. In this study, we tested and compared the ability of five commonly consumed or specialty mushrooms to modulate cell number balance in the cancer process using MCF-7 human breast cancer cells. Hot water extracts (80°C for 2 h) of maitake (MT, Grifola frondosa), crimini (CRIM, Agaricus bisporus), portabella (PORT, Agaricus bisporus), oyster (OYS, Pleurotus ostreatus) and white button (WB, Agaricus bisporus) mushrooms or water alone (5% v/v) were incubated for 24 h with MCF-7 cells. Cellular proliferation determined by bromodeoxyuridine incorporation was significantly (P mushrooms, with MT and OYS being the most effective. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction, an often used mitochondrion-dependent marker of proliferation, was unchanged although decreased (P > 0.05) by 15% with OYS extract. Lactate dehydrogenase release, as a marker of necrosis, was significantly increased after incubation with MT but not with other test mushrooms. Furthermore, MT extract significantly increased apoptosis, or programmed cell death, as determined by terminal deoxynucleotidyl end labeling method, whereas other test mushrooms displayed trends of ∼15%. The total numbers of cells per flask, determined by hemacytometry, were not different from control cultures. Overall, all test mushrooms significantly suppressed cellular proliferation, with MT further significantly inducing apoptosis and cytotoxicity in human breast cancer cells. This suggests that both common and specialty mushrooms may be chemoprotective against breast cancer.

  11. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  12. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jing [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Xu, Xiaojie [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Kang, Lei [Department of Nuclear Medicine, Peking University First Hospital, Beijing (China); Zhou, Liying [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Wang, Shibin [Department of General Surgery, 307 Hospital of PLA, Beijing (China); Lu, Juming [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Cheng, Long; Fan, Zhongyi; Yuan, Bin [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Tian, Peirong [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Zheng, Xiaofei [Beijing Institute of Radiation Medicine, Beijing (China); Yu, Chengze, E-mail: yuchengze@sina.com [Department of General Surgery, 307 Hospital of PLA, Beijing (China); Ye, Qinong, E-mail: yeqn66@yahoo.com [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Lv, Zhaohui, E-mail: metabolism301@126.com [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China)

    2014-03-07

    Highlights: • miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. • The miR-30a/EYA2 axis regulates breast cancer cell proliferation and migration. • The miR-30a/EYA2 axis modulates G1/S cell cycle progression. • The miR-30a/EYA2 axis is dysregulated in breast cancer patients. - Abstract: Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.

  13. Cell-Based Memory of DNA Damage in Breast Cancer

    Science.gov (United States)

    2009-09-01

    yeast [ Ajo -Franklin et al., 2007]. A set of transcriptional activators was constructed and stably transformed into U2OS cells. In the resting state...therapeutic action within breast tumors. References: Ajo -Franklin CM, Drubin DA, Esking JA, Gee EP, Landgraf D, Phillips I and Silver PA. Rational

  14. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  15. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  16. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  17. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth.

    Science.gov (United States)

    Johnson, Kailee A; Vemuri, Sravan; Alsahafi, Sameerh; Castillo, Rudy; Cheriyath, Venugopalan

    2016-01-01

    Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (Psoy isoflavone extracts may exert estrogenic effects and promote ER+ breast cancer growth.

  18. Androgen receptor- and PIAS1-regulated gene programs in molecular apocrine breast cancer cells.

    Science.gov (United States)

    Malinen, Marjo; Toropainen, Sari; Jääskeläinen, Tiina; Sahu, Biswajyoti; Jänne, Olli A; Palvimo, Jorma J

    2015-10-15

    We have analyzed androgen receptor (AR) chromatin binding sites (ARBs) and androgen-regulated transcriptome in estrogen receptor negative molecular apocrine breast cancer cells. These analyses revealed that 42% of ARBs and 39% androgen-regulated transcripts in MDA-MB453 cells have counterparts in VCaP prostate cancer cells. Pathway analyses showed a similar enrichment of molecular and cellular functions among AR targets in both breast and prostate cancer cells, with cellular growth and proliferation being among the most enriched functions. Silencing of the coregulator SUMO ligase PIAS1 in MDA-MB453 cells influenced AR function in a target-selective fashion. An anti-apoptotic effect of the silencing suggests involvement of the PIAS1 in the regulation of cell death and survival pathways. In sum, apocrine breast cancer and prostate cancer cells share a core AR cistrome and target gene signature linked to cancer cell growth, and PIAS1 plays a similar coregulatory role for AR in both cancer cell types.

  19. Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.

    Science.gov (United States)

    Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Marinkin, I O; Varaksin, N A; Autenshlyus, A I; Lyakhovich, V V

    2016-01-01

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma.

  20. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    Science.gov (United States)

    1998-07-01

    In: Cancer: Principles and Practice of Oncology . DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB Lippincott Co., Philadelphia, p. 293, 1993. 2...Alteration of signal transduction in T cells from cancer patients. In: Important Advances in Oncology 1995. DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB...Rosenberg SA: Cell transfer therapy: Clinical applications. In: Biologic Therapy of Cancer. DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB Lippincott

  1. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells.

    Science.gov (United States)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B; Lobaton, Marlin; Handa, Kazuko; Hakomori, Sen-itiroh

    2013-03-26

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced through epithelial-mesenchymal transition, using mass spectrometry, TLC immunostaining, and cell staining. We found that (i) Fuc-(n)Lc4Cer and Gb3Cer were drastically reduced in CSCs, whereas GD2, GD3, GM2, and GD1a were greatly increased in CSCs; (ii) among various glycosyltransferases tested, mRNA levels for ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2 were increased in CSCs, which could explain the increased expression of GD3, GD2, GM2, and GD1a in CSCs; (iii) the majority of GD2+ cells and GD3+ cells were detected in the CD44(hi)/CD24(lo) cell population; and (iv) knockdown of ST8SIA1 and B4GALNT1 significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest a possible novel approach in targeting human breast CSCs to interfere with cancer recurrence.

  2. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells

    Science.gov (United States)

    Ding, Hanzhi; Quan, Hong; Yan, Weiguo; Han, Jing

    2016-01-01

    Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell-fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral shRNAs to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumours in vivo. Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of proliferating cell nuclear antigen (PCNA), CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells. PMID:27582508

  3. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells.

    Science.gov (United States)

    Pu, Jin; McCaig, Colin D; Cao, Lin; Zhao, Zhiqiang; Segall, Jeffrey E; Zhao, Min

    2007-10-01

    The mechanisms by which cancer cells migrate to metastasise are not fully understood. Breast cancers are accompanied by electrical depolarisation of tumour epithelial cells. The electrical changes can be detected on the skin and are used to differentiate malignant from benign breast tumours. Could the electrical signals play a role in metastasis by promoting tumour cell migration? We report that electric fields stimulate and direct migration of human breast cancer cells. Importantly, these effects were more significant in highly metastatic tumour cells than in low metastatic tumour cells. Electric-field-enhanced directional migration correlates well with the expression level of EGF receptor (EGFR/ErbB1). To confirm this, we transfected low metastatic clone MTC cells with human ErbB1, which significantly increased the electrotactic response. Inhibition of ErbB1 completely abolished the directional response of MTLn3 cells to an electric field. Transfection of MTLn3 cells and MDA-MB-435 cells with expression vectors for ErbB family members ErbB1, ErbB2 and ErbB3 also significantly enhanced EF-induced migration. These results suggest that electric signals might play a role in metastasis of breast cancers by enhancing cell migration through the ErbB-signalling pathway.

  4. RON confers lapatinib resistance in HER2-positive breast cancer cells.

    Science.gov (United States)

    Wang, Quanren; Quan, Haitian; Zhao, Jie; Xie, Chengying; Wang, Lei; Lou, Liguang

    2013-10-28

    Lapatinib-resistance is a major problem for HER2-positive breast cancer treatment. SK-BR-3-LR, a lapatinib-resistant cell clone, was established from HER2-positive SK-BR-3 breast cancer cells following chronic exposure to lapatinib. The PI3K/AKT signaling pathway was demonstrated to be resistant to HER2 inhibition in SK-BR-3-LR cells. However, both small-molecular Recepteur d'Origine Nantais (RON) inhibitors and RON-targeted small interfering RNA (siRNA) effectively restored lapatinib sensitivity in these cells by inhibiting PI3K/AKT activation. Our results demonstrate for the first time the important role of RON in mediating lapatinib resistance and suggest that RON-targeted therapy may become a novel, promising therapeutic strategy after the failure of lapatinib treatment in patients with HER2-positive breast cancer.

  5. Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal.

    Science.gov (United States)

    Gradilone, Angela; Raimondi, Cristina; Nicolazzo, Chiara; Petracca, Arianna; Gandini, Orietta; Vincenzi, Bruno; Naso, Giuseppe; Aglianò, Anna Maria; Cortesi, Enrico; Gazzaniga, Paola

    2011-05-01

    Circulating tumour cells (CTCs) are independent predictor of prognosis in metastatic breast cancer. Nevertheless, in one third of patients, circulating tumour cells are undetected by conventional methods. Aim of the study was to assess the prognostic value of circulating tumour cells expressing mesenchymal markers in metastatic breast cancer patients. We isolated CTC from blood of 55 metastatic breast cancer patients. CTC were characterized for cytokeratins and markers of epithelial mesenchymal transition. The gain of mesenchymal markers in CTC was correlated to prognosis of patients in a follow-up of 24 months. The presence of mesenchymal markers on CTC more accurately predicted worse prognosis than the expression of cytokeratins alone. Because of the frequent loss of epithelial antigens by CTC, assays targeting epithelial antigens may miss the most invasive cell population. Thus, there is an urgent need to improve detection methods to identify CTC which undergone epithelial mesenchymal transition program.

  6. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  7. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  8. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Jørgensen, Stine

    2011-01-01

    Low-risk and high-risk breast cancer patients are stratified primarily according to their lymph node (LN) status and grading. However, some low-risk patients relapse, and some high-risk patients have a favorable clinical outcome, implying a need for better prognostic and predictive tests. Micro...... RNAs are often aberrantly expressed in cancer and microRNA-21 is upregulated in a variety of cancers, including breast cancer. High miR-21 levels have been associated with poor prognosis. To determine the cellular localization of miR-21 and to compare its expression levels with histopathological...... features, we performed in situ hybridization and semi-quantitative assessment of the miR-21 signal on 12 LN negative grade I (assumed low risk), and 12 LN positive grade II (high risk) breast cancers. miR-21 was predominantly seen in cancer associated fibroblast-like cells, with no difference in expression...

  9. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers.

    Directory of Open Access Journals (Sweden)

    Wendy W Hwang-Verslues

    Full Text Available Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44(+/CD24(-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR(+/ESA(+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44(+/CD24(-/low, ESA(+, CD133(+, CXCR4(+ and PROCR(+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer.

  10. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development

    Science.gov (United States)

    Czerwińska, Patrycja; Shah, Parantu K.; Tomczak, Katarzyna; Klimczak, Marta; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Korski, Konstanty; Filas, Violetta; Mackiewicz, Andrzej; Andersen, Jannik N.; Wiznerowicz, Maciej

    2017-01-01

    The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors. PMID:27845900

  11. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  12. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  13. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  14. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunga [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of); Kim, Ki Mo [Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), 305811, Daejeon (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of)

    2011-12-15

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: Black-Right-Pointing-Pointer We studied the mechanism which cordycepin-induced cell death association with

  15. Knockdown of LRP/LR Induces Apoptosis in Breast and Oesophageal Cancer Cells.

    Science.gov (United States)

    Khumalo, Thandokuhle; Ferreira, Eloise; Jovanovic, Katarina; Veale, Rob B; Weiss, Stefan F T

    2015-01-01

    Cancer is a global burden due to high incidence and mortality rates and is ranked the second most diagnosed disease amongst non-communicable diseases in South Africa. A high expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of cancer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor angiogenesis, metastasis and especially for this study, the evasion of apoptosis. In the current study, the role of LRP/LR on cellular viability of breast MCF-7, MDA-MB 231 and WHCO1 oesophageal cancer cells was investigated. Western blot analysis revealed that total LRP expression levels of MCF-7, MDA-MB 231 and WHCO1 were significantly downregulated by targeting LRP mRNA using siRNA-LAMR1. This knockdown of LRP/LR resulted in a significant decrease of viability in the breast and oesophageal cancer cells as determined by an MTT assay. Transfection of MDA-MB 231 cells with esiRNA-RPSA directed against a different region of the LRP mRNA had similar effects on LRP/LR expression and cell viability compared to siRNA-LAMR1, excluding an off-target effect of siRNA-LAMR1. This reduction in cellular viability is as a consequence of apoptosis induction as indicated by the exposure of the phosphatidylserine protein on the surface of breast MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer cells, respectively, detected by an Annexin-V/FITC assay as well as nuclear morphological changes observed post-staining with Hoechst. These observations indicate that LRP/LR is crucial for the maintenance of cellular viability of breast and oesophageal cancer cells and recommend siRNA technology targeting LRP expression as a possible novel alternative technique for breast and oesophageal cancer treatment.

  16. The role of the chemokine receptor XCR1 in breast cancer cells

    Science.gov (United States)

    Yang, Xiao Li; Qi, Li Guo; Lin, Feng Juan; Ou, Zhou Luo

    2017-01-01

    Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A) and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3). We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1) in XCR1 low expression cell line MDA-MB-231 (231). The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1) and their parental cell line MDA-MB-231/Vector (simplified as “231/Vector”); 5×106/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro can promote the migration and invasion partially due to decreasing the protein level of β-catenin. Therefore, XCR1 can affect the biological characteristics of some special breast cancer cells through complex signal transduction pathway.

  17. Paeoniflorin prevents hypoxia-induced epithelial–mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2016-04-01

    Full Text Available Zhenyu Zhou,1,* Shunchang Wang,1,* Caijuan Song,2 Zhuang Hu11Department of Thyroid and Breast, Huaihe Hospital, Henan University, Kaifeng, 2Department of Immunization Program, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: Paeoniflorin (PF is a monoterpene glycoside extracted from the root of Paeonia lactiflora Pall. Previous studies have demonstrated that PF inhibits the growth, invasion, and metastasis of tumors in vivo and in vitro. However, the effect of PF on hypoxia-induced epithelial–mesenchymal transition (EMT in breast cancer cells remains unknown. Therefore, the objective of this study was to investigate the effect of PF on hypoxia-induced EMT in breast cancer cells, as well as characterize the underlying mechanism. The results presented in this study demonstrate that PF blocks the migration and invasion of breast cancer cells by repressing EMT under hypoxic conditions. PF also significantly attenuated the hypoxia-induced increase in HIF-1α level. Furthermore, PF prevented hypoxia-induced expression of phosphorylated PI3K and Akt in MDA-MB-231 cells. In conclusion, PF prevented hypoxia-induced EMT in breast cancer cells by inhibiting HIF-1α expression via modulation of PI3K/Akt signaling pathway. This finding provides evidence that PF can serve as a therapeutic agent for the treatment of breast cancer.Keywords: paeoniflorin, breast cancer, hypoxia, epithelial–mesenchymal transition, PI3K/Akt signaling pathway

  18. Low-power laser irradiation did not stimulate breast cancer cells following ionizing radiation

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Cabral, F. V.; Ribeiro, M. S.

    2016-03-01

    Cancer has become a public health problem worldwide. Radiotherapy may be a treatment to a number of types of cancer, frequently using gamma-radiation with sources such as 137Cs and 60Co, with varying doses, dose rates, and exposure times to obtain a better as a stimulant for cell proliferation and tissue healing process. However, its effects on cancer cells are not yet well elucidated. The purpose of this work was to evaluate the effects of the LPL on breast cancer cultures after ionizing radiation. The breast cancer-MDA-MB-231 cells were gamma irradiated by a 60Co source, with dose of 2.5 Gy. After 24h, cells were submitted to LPL irradiation using a red laser emitting at λ= 660 nm, with output power of 40 mW and exposure time of 30 s and 60 s. The plates were uniformly irradiated, with energy of 1.2 J and 2.4 J, respectively. Cell viability was analyzed using the exclusion method with trypan blue. Our results show that breast cancer cells submitted to LPL after ionizing radiation remained 95 % viable. No statistically significant differences were observed between laser and control untreated cells, (P > 0.05). These findings suggest that LPL did not influenced cancer cells viability.

  19. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  20. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Syed M Meeran

    Full Text Available BACKGROUND: Sulforaphane (SFN, an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. PRINCIPAL FINDINGS: We found that SFN significantly inhibits the viability and proliferation of breast cancer cells in vitro while it has negligible effects on normal breast cells. Inhibition of telomerase has received considerable attention because of its high expression in cancer cells and extremely low level of expression in normal cells. SFN treatment dose- and time-dependently inhibited human telomerase reverse transcriptase (hTERT, the catalytic regulatory subunit of telomerase, in both MCF-7 and MDA-MB-231 human breast cancer cells. DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3a, were also decreased in SFN-treated breast cancer cells suggesting that SFN may repress hTERT by impacting epigenetic pathways. Down-regulation of DNMTs in response to SFN induced site-specific CpG demethylation occurring primarily in the first exon of the hTERT gene thereby facilitating CTCF binding associated with hTERT repression. Chromatin immunoprecipitation (ChIP analysis of the hTERT promoter revealed that SFN increased the level of active chromatin markers acetyl-H3, acetyl-H3K9 and acetyl-H4, whereas the trimethyl-H3K9 and trimethyl-H3K27 inactive chromatin markers were decreased in a dose-dependent manner. SFN-induced hyperacetylation facilitated the binding of many hTERT repressor proteins such as MAD1 and CTCF to the hTERT regulatory region. Depletion of CTCF using siRNA reduced the SFN-induced down-regulation of hTERT mRNA transcription in these breast cancer cells. In addition, down-regulation of hTERT expression facilitated the induction of cellular apoptosis in human breast

  1. Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ERα Inhibition

    Directory of Open Access Journals (Sweden)

    Pao-Hsuan Huang

    2013-01-01

    Full Text Available The anthraquinones emodin and aloe-emodin are abundant in rhubarb. Several lines of evidence indicate that emodin and aloe-emodin have estrogenic activity as phytoestrogens. However, their effects on estrogen receptor α (ERα activation and breast cancer cell growth remain controversial. The goal of this study is to investigate the effects and molecular mechanisms of emodin and aloe-emodin on breast cancer cell proliferation. Our results indicate that both emodin and aloe-emodin are capable of inhibiting breast cancer cell proliferation by downregulating ERα protein levels, thereby suppressing ERα transcriptional activation. Furthermore, aloe-emodin treatment led to the dissociation of heat shock protein 90 (HSP90 and ERα and increased ERα ubiquitination. Although emodin had similar effects to aloe-emodin, it was not capable of promoting HSP90/ERα dissociation and ERα ubiquitination. Protein fractionation results suggest that aloe-emodin tended to induce cytosolic ERα degradation. Although emodin might induce cytosolic ERα degradation, it primarily affected nuclear ERα distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ERα protein stability through distinct mechanisms. These findings suggest a possible application of anthraquinones in preventing or treating breast cancer in the future.

  2. Breast cancer awareness

    OpenAIRE

    2012-01-01

    The incidence of breast cancer is rising among women in many European countries, affecting up to 1 in 16 women and has become the most common cause of cancer in European women. In Malta breast cancer is the commonest oncological cause of death in females. In fact 5.2% of all deaths in females in 2010 was from breast cancer.

  3. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  4. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    Science.gov (United States)

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  5. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer.

  6. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells.

    Science.gov (United States)

    Brockhausen, I; Yang, J M; Burchell, J; Whitehouse, C; Taylor-Papadimitriou, J

    1995-10-15

    The product of the MUC1 gene, the polymorphic epithelial mucin (PEM) is aberrantly glycosylated in breast and other carcinomas, resulting in exposure of normally cryptic peptide epitopes. PEM expressed by breast cancer cells contains more sialylated O-glycans and has a lower GlcNAc content than that expressed by normal cells. The exposure of peptide epitopes is thus thought to be due to the sugar side chains being shorter on the tumour-associated mucin. To investigate possible mechanisms underlying the different pattern of glycosylation in breast cancer cells, we analysed the pathways involved in the biosynthesis of O-glycan chains of mucins in normal and cancerous mammary epithelial cells. An immortalized mammary epithelial cells line originating from normal human milk. MTSV1-7, and three human breast cancer cell lines, BT20, MCF-7 and T47D, were studied. Glycosyltransferase activities assembling, elongating and terminating O-glycan core-1 [Gal beta 1-3GalNAc alpha-R] and core-2 [GlcNac beta 1-6 (Gal beta 1-3) GalNAc alpha-R] were present in the normal mammary cell line. Many of the glycosyltransferase activities were also expressed at variable levels in breast cancer cells. However, a sialyltransferase activity (CMP-sialic acid Gal beta 1-3GalNAc alpha 3-sialyltransferase) was increased several fold in all three cancer cell lines. Moreover, mammary cancer cell lines BT20 and T47D have lost the ability to synthesize core-2, as shown by the lack of UDP-GlcNAc: Gal beta 1-3GalNAc (GlcNAc to GalNAc) beta 6-GlcNAc-transferase activity, which corresponded to the absence of the mRNA transcript. However, MCF-7 breast cancer cells expressed this enzyme. Thus, the mechanism for the exposure of peptide epitopes in BT20 and T47D cells is proposed to be the loss of core-2 branching leading to shorter, sialylated O-glycan chains. A different mechanism is proposed for MCF-7 breast cancer cells.

  7. Brief reports: A distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome.

    Science.gov (United States)

    El Helou, Rita; Wicinski, Julien; Guille, Arnaud; Adélaïde, Jose; Finetti, Pascal; Bertucci, François; Chaffanet, Max; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe

    2014-11-01

    Self-renewal and differentiation are two epigenetic programs that regulate stem cells fate. Dysregulation of these two programs leads to the development of cancer stem cells (CSCs). Recent evidence suggests that CSCs are relatively resistant to conventional therapies and responsible for metastasis formation. Deciphering these processes will help understand oncogenesis and allow the development of new targeted therapies. Here, we have used a whole genome promoter microarray to establish the DNA methylation portraits of breast cancer stem cells (bCSCs) and non-bCSCs. A total of 68 differentially methylated regions (DMRs) were more hypomethylated in bCSCs than in non-bCSCs. Using a differentiation assay we demonstrated that DMRs are rapidly hypermethylated within the first 6 hours following induction of CSC differentiation whereas the cells reached the steady-state within 6 days, suggesting that these DMRs are linked to early CSC epigenetic regulation. These DMRs were significantly enriched in genes coding for TGF-β signaling-related proteins. Interestingly, DMRs hypomethylation was correlated to an overexpression of TGF-β signaling genes in a series of 109 breast tumors. Moreover, patients with tumors harboring the bCSC DMRs signature had a worse prognosis than those with non-bCSC DMRs signature. Our results show that bCSCs have a distinct DNA methylation landscape with TGF-β signaling as a key epigenetic regulator of bCSCs differentiation.

  8. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells.

    Science.gov (United States)

    Debeb, Bisrat G; Cohen, Evan N; Boley, Kimberly; Freiter, Erik M; Li, Li; Robertson, Fredika M; Reuben, James M; Cristofanilli, Massimo; Buchholz, Thomas A; Woodward, Wendy A

    2012-07-01

    Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.

  9. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2.

    Science.gov (United States)

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Hu, Sasa; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-06-15

    Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

  10. NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer

    Science.gov (United States)

    Vazquez-Santillan, Karla; Melendez-Zajgla, Jorge; Jimenez-Hernandez, Luis Enrique; Gaytan-Cervantes, Javier; Muñoz-Galindo, Laura; Piña-Sanchez, Patricia; Martinez-Ruiz, Gustavo; Torres, Javier; Garcia-Lopez, Patricia; Gonzalez-Torres, Carolina; Ruiz, Victor; Avila-Moreno, Federico; Velasco-Velazquez, Marco; Perez-Tapia, Mayra; Maldonado, Vilma

    2016-01-01

    Breast cancer stem cells (BCSCs) overexpress components of the Nuclear factor-kappa B (NF-κB) signaling cascade and consequently display high NF-κB activity levels. Breast cancer cell lines with high proportion of CSCs exhibit high NF-κB-inducing kinase (NIK) expression. The role of NIK in the phenotype of cancer stem cell regulation is poorly understood. Expression of NIK was analyzed by quantitative RT-PCR in BCSCs. NIK levels were manipulated through transfection of specific shRNAs or an expression vector. The effect of NIK in the cancer stem cell properties was assessed by mammosphere formation, mice xenografts and stem markers expression. BCSCs expressed higher levels of NIK and its inhibition through small hairpin (shRNA), reduced the expression of CSC markers and impaired clonogenicity and tumorigenesis. Genome-wide expression analyses suggested that NIK acts on ERK1/2 pathway to exert its activity. In addition, forced expression of NIK increased the BCSC population and enhanced breast cancer cell tumorigenicity. The in vivo relevance of these results is further supported by a tissue microarray of breast cancer samples in which we observed correlated expression of Aldehyde dehydrogenase (ALDH) and NIK protein. Our results support the essential involvement of NIK in BCSC phenotypic regulation via ERK1/2 and NF-κB. PMID:27876836

  11. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells.

    Science.gov (United States)

    Shirure, Venktesh S; Reynolds, Nathan M; Burdick, Monica M

    2012-01-01

    Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by

  12. Inhibition of Hypoxia-Induced Cell Motility by p16 in MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Liyuan Li, Yi Lu

    2010-01-01

    Full Text Available Our previous studies indicated that p16 suppresses breast cancer angiogenesis and metastasis, and downregulates VEGF gene expression by neutralizing the transactivation of the VEGF transcriptional factor HIF-1α. Hypoxia stimulates tumor malignant progression and induces HIF-1α. Because p16 neutralizes effect of HIF-1α and attenuates tumor metastatic progression, we intended to investigate whether p16 directly affects one or more aspects of the malignant process such as adhesion and migration of breast cancer cells. To approach this aim, MDA-MB-231 and other breast cancer cells stably transfected with Tet-on inducible p16 were used to study the p16 effect on growth, adhesion and migration of the cancer cells. We found that p16 inhibits breast cancer cell proliferation and migration, but has no apparent effect on cell adhesion. Importantly, p16 inhibits hypoxia-induced cell migration in breast cancer in parallel with its inhibition of HIF-1α transactivation activity. This study suggests that p16's ability to suppress tumor metastasis may be partially resulted from p16's inhibition on cell migration, in addition to its known functions on inhibition of cell proliferation, angiogenesis and induction of apoptosis.

  13. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Osman Abdel-Moneim M

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common cancer in the Arab world and it ranked first among Saudi females. Doxorubicin (DOX, an anthracycline antibiotic is one of the most effective anticancer agents used to treat breast cancer. chronic cardiotoxicity is a major limiting factor of the use of doxorubicin. Therefore, our study was designed to assess the role of a natural product resveratrol (RSVL on sensitization of human breast cancer cells (MCF-7 to the action of DOX in an attempt to minimize doxorubicin effective dose and thereby its side effects. Methods Human breast cancer cell line MCF-7, was used in this study. Cytotoxic activity of DOX was determined using (sulforhodamine SRB method. Apoptotic cells were quantified after treatment by annexin V-FITC- propidium iodide (PI double staining using flow-cytometer. Cell cycle disturbance and doxorubicin uptake were determined after RSVL or DOX treatment. Results Treatment of MCF-7 cells with 15 μg/ml RSVL either simultaneously or 24 h before DOX increased the cytotoxicity of DOX, with IC50 were 0.056 and 0.035 μg/ml, respectively compared to DOX alone IC50 (0.417 μg/ml. Moreover, flow cytometric analysis of the MCF-7 cells treated simultaneously with DOX (0.5 μg/ml and RSVL showed enhanced arrest of the cells in G0 (80%. On the other hand, when RSVL is given 24 h before DOX although there was more increased in the cytotoxic effect of DOX against the growth of the cells, however, there was decreased in percentage arrest of cells in G0, less inhibition of DOX-induced apoptosis and reduced DOX cellular uptake into the cells. Conclusion RSVL treatment increased the cytotoxic activity of DOX against the growth of human breast cancer cells when given either simultaneously or 24 h before DOX.

  14. Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vikas Sehdev

    2009-01-01

    Full Text Available Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.

  15. NFkB signaling is important for growth of antiestrogen resistant breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Emdal, Kristina Bennet; Guerra, Barbara;

    2012-01-01

    resistant cell growth and a potential target for re-sensitizing resistant cells to endocrine therapy. We used an MCF-7-derived cell model for antiestrogen resistant breast cancer to investigate dependence on NF¿B signaling for antiestrogen resistant cell growth. We found that targeting NF¿B preferentially...... inhibited resistant cell growth. Antiestrogen resistant cells expressed increased p50 and RelB, and displayed increased phosphorylation of p65 at Ser529 and Ser536. Moreover, transcriptional activity of NF¿B after stimulation with tumor necrosis factor a was enhanced in antiestrogen resistant cell lines...... resistant cells increased sensitivity to tamoxifen treatment. Our data provide evidence that NF¿B signaling is enhanced in antiestrogen resistant breast cancer cells and plays an important role for antiestrogen resistant cell growth and for sensitivity to tamoxifen treatment in resistant cells. Our results...

  16. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity

    Institute of Scientific and Technical Information of China (English)

    韩明勇; 郑树; 于金明; 彭佳萍; 郭其森; 王家林

    2004-01-01

    To study the effect of interleukin-18 gene transfection on the tumorigenesis of breast cancer cell line Bacp37, human breast cancer cell line Bcap37 were transfected with Lipofectamine and selected by G418. The biological expression of rhIL-18 was tested by RT-PCR and ELISA method; nude mice were injected with Bcap37 cell with or without the hIL-18 gene. The hIL-18 cDNA was successfully integrated into Bcap37 cell; 126.3±4.5 pg hIL-18 secreted by one million transduced cells in 24 hours. Nude mice injected with IL-18 gene engineered Bcap37 cell had no tumor growth. These findings indicated that human breast cancer cells were successfully modified by the gene of IL-18 cytokine; the IL-18 gene engineered Bcap37 cells secreted hIL-18 and lost their tumorigenicity. The Bcap37 cells transduced with IL-18 gene may be used as breast cancer vaccine.

  17. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity

    Institute of Scientific and Technical Information of China (English)

    韩明勇; 郑树; 于金明; 彭佳萍; 郭其森; 王家林

    2004-01-01

    To study the effect of interleukin-18 gene transfection on the tumorigenesis of breast cancer cell line Bacp37,human breast cancer cell line Bcap37 were transfected with Lipofectamine and selected by G418.The biological expression of rhIL-18 was tested by RT-PCR and ELISA method;nude mice were injected with Bcap37 cell with or without the hIL-18 gene.The hIL-18 cDNA was successfully integrated into Bcap37 cell; 126.3±4.5pg hIL-18 secreted by one million transduced cells in 24 hours. Nude mice injected with IL-18 gene engineered Bcap37 cell had no tumor growth.These findings indicated that human breast cancer cells were successfully modified by the gene of IL-18 cytokine;the IL-18 gene engineered Bcap37 cells secreted hIL-18 and lost their tumorigenicity.The Bcap37 cells transduced with IL-18 gene may be used as breast cancer vaccine.

  18. DNA Repair by Homologous Recombination, But Not by Nonhomologous End Joining, Is Elevated in Breast Cancer Cells12

    Science.gov (United States)

    Mao, Zhiyong; Jiang, Ying; Liu, Xiang; Seluanov, Andrei; Gorbunova, Vera

    2009-01-01

    Aberrant double-stranded break (DSB) repair leads to genomic instability, which is a hallmark of malignant cells. Double-stranded breaks are repaired by two pathways: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). It is not known whether these repair pathways are affected in sporadic breast tumors. Here, we examined the efficiency of HR and NHEJ repair in a panel of sporadic breast cancer cell lines and tested whether the efficiency of HR or NHEJ correlates with radioresistance. Homologous recombination and NHEJ in breast cancer cells were analyzed using in vivo fluorescent assays. Unexpectedly, our analysis revealed that the efficiency of HR is significantly elevated in breast cancer cells compared with normal mammary epithelial cells. In contrast, the efficiency of NHEJ in breast cancer cells is not different from normal cells. Overall, breast cancer cells were more sensitive to radiation than normal cells, but the levels of resistance did not correlate with either HR or NHEJ efficiency. Thus, we demonstrate that sporadic breast cancers are not associated with a deficiency in DSB repair, but rather with upregulation of the HR pathway. Our finding of elevated HR in sporadic breast cancer cell lines suggests that therapies directed against the components of HR will be highly tumor-specific. PMID:19568413

  19. DNA Repair by Homologous Recombination, But Not by Nonhomologous End Joining, Is Elevated in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhiyong Mao

    2009-07-01

    Full Text Available Aberrant double-stranded break (DSB repair leads to genomic instability, which is a hallmark of malignant cells. Double-stranded breaks are repaired by two pathways: homologous recombination (HR and nonhomologous DNA end joining (NHEJ. It is not known whether these repair pathways are affected in sporadic breast tumors. Here, we examined the efficiency of HR and NHEJ repair in a panel of sporadic breast cancer cell lines and tested whether the efficiency of HR or NHEJ correlates with radioresistance. Homologous recombination and NHEJ in breast cancer cells were analyzed using in vivo fluorescent assays. Unexpectedly, our analysis revealed that the efficiency of HR is significantly elevated in breast cancer cells compared with normal mammary epithelial cells. In contrast, the efficiency of NHEJ in breast cancer cells is not different from normal cells. Overall, breast cancer cells were more sensitive to radiation than normal cells, but the levels of resistance did not correlate with either HR or NHEJ efficiency. Thus, we demonstrate that sporadic breast cancers are not associated with a deficiency in DSB repair, but rather with upregulation of the HR pathway. Our finding of elevated HR in sporadic breast cancer cell lines suggests that therapies directed against the components of HR will be highly tumor-specific.

  20. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer.

    Science.gov (United States)

    Tiede, Benjamin; Kang, Yibin

    2011-02-01

    Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy. In recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer. In particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ER/PR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/PR(+) tumors.

  1. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin Tiede; Yibin Kang

    2011-01-01

    Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy, in recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer, in particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ERJPR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/ PR(+) tumors.

  2. Targeting CXCR1 on breast cancer stem cells: signaling pathways and clinical application modelling.

    Science.gov (United States)

    Brandolini, Laura; Cristiano, Loredana; Fidoamore, Alessia; De Pizzol, Maria; Di Giacomo, Erica; Florio, Tiziana Marilena; Confalone, Giuseppina; Galante, Angelo; Cinque, Benedetta; Benedetti, Elisabetta; Ruffini, Pier Adelchi; Cifone, Maria Grazia; Giordano, Antonio; Alecci, Marcello; Allegretti, Marcello; Cimini, Annamaria

    2015-12-22

    In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2. Recently, the IL-8/CXCR1 axis was proposed as an attractive pathway for the design of specific therapies against breast cancer stem cells. Reparixin, a powerful CXCR1 inhibitor, was effective in reducing in vivo the tumour-initiating population in several NOD/SCID mice breast cancer models, showing that the selective targeting of CXCR1 and the combination of reparixin and docetaxel resulted in a concomitant reduction of the bulk tumour mass and CSC population. The available data indicate that IL-8, expressed by tumour cells and induced by chemotherapeutic treatment, is a key regulator of the survival and self-renewal of the population of CXCR1-expressing CSC. Consequently, this investigation on the mechanism of action of the reparixin/paclitaxel combination, was based on the observation that reparixin treatment contained the formation of metastases in several experimental models. However, specific data on the formation of breast cancer brain metastases, which carry remarkable morbidity and mortality to a substantial proportion of advanced breast cancer patients, have not been generated. The obtained data indicate a beneficial use of the drug combination reparixin and paclitaxel to counteract brain tumour metastasis due to CSC, probably due to the combined effects of the two drugs, the pro-apoptotic action of paclitaxel and the cytostatic and anti-migratory effects of reparixin.

  3. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment

    Science.gov (United States)

    Zou, Peng; Liu, Longhua; Zheng, Louise D.; Payne, Kyle K.; Idowu, Michael O.; Zhang, Jinfeng; Schmelz, Eva M.

    2016-01-01

    Overactive mitochondrial fission was shown to promote cell transformation and tumor growth. It remains elusive how mitochondrial quality is regulated in such conditions. Here, we show that upregulation of mitochondrial fission protein, dynamin related protein-1 (Drp1), was accompanied with increased mitochondrial biogenesis markers (PGC1α, NRF1, and Tfam) in breast cancer cells. However, mitochondrial number was reduced, which was associated with lower mitochondrial oxidative capacity in breast cancer cells. This contrast might be owing to enhanced mitochondrial turnover through autophagy, because an increased population of autophagic vacuoles engulfing mitochondria was observed in the cancer cells. Consistently, BNIP3 (a mitochondrial autophagy marker) and autophagic flux were significantly upregulated, indicative of augmented mitochondrial autophagy (mitophagy). The upregulation of Drp1 and BNIP3 was also observed in vivo (human breast carcinomas). Importantly, inhibition of Drp1 significantly suppressed mitochondrial autophagy, metabolic reprogramming, and cancer cell viability. Together, this study reveals coordinated increase of mitochondrial biogenesis and mitophagy in which Drp1 plays a central role regulating breast cancer cell metabolism and survival. Given the emerging evidence of PGC1α contributing to tumor growth, it will be of critical importance to target both mitochondrial biogenesis and mitophagy for effective cancer therapeutics. PMID:27746856

  4. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Peng Zou

    2016-01-01

    Full Text Available Overactive mitochondrial fission was shown to promote cell transformation and tumor growth. It remains elusive how mitochondrial quality is regulated in such conditions. Here, we show that upregulation of mitochondrial fission protein, dynamin related protein-1 (Drp1, was accompanied with increased mitochondrial biogenesis markers (PGC1α, NRF1, and Tfam in breast cancer cells. However, mitochondrial number was reduced, which was associated with lower mitochondrial oxidative capacity in breast cancer cells. This contrast might be owing to enhanced mitochondrial turnover through autophagy, because an increased population of autophagic vacuoles engulfing mitochondria was observed in the cancer cells. Consistently, BNIP3 (a mitochondrial autophagy marker and autophagic flux were significantly upregulated, indicative of augmented mitochondrial autophagy (mitophagy. The upregulation of Drp1 and BNIP3 was also observed in vivo (human breast carcinomas. Importantly, inhibition of Drp1 significantly suppressed mitochondrial autophagy, metabolic reprogramming, and cancer cell viability. Together, this study reveals coordinated increase of mitochondrial biogenesis and mitophagy in which Drp1 plays a central role regulating breast cancer cell metabolism and survival. Given the emerging evidence of PGC1α contributing to tumor growth, it will be of critical importance to target both mitochondrial biogenesis and mitophagy for effective cancer therapeutics.

  5. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  6. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation.

    Science.gov (United States)

    Yao, Wenfang; Feng, Duiping; Bian, Weihua; Yang, Longyan; Li, Yang; Yang, Zhiyu; Xiong, Ying; Zheng, Junfang; Zhai, Renyou; He, Junqi

    2012-11-01

    Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.

  7. Alterations of the exo- and endometabolite profiles in breast cancer cell lines: A mass spectrometry-based metabolomics approach.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Hirschfeld, Marc; Erbes, Thalia; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2016-06-21

    In recent years, knowledge about metabolite changes which are characteristic for the physiologic state of cancer cells has been acquired by liquid chromatography coupled to mass spectrometry. Distinct molecularly characterized breast cancer cell lines provide an unbiased and standardized in vitro tumor model reflecting the heterogeneity of the disease. Tandem mass spectrometry is a widely applied analytical platform and highly sensitive technique for analysis of complex biological samples. Endo- and exometabolite analysis of the breast cancer cell lines MDA-MB-231, -453 and BT-474 as well as the breast epithelial cell line MCF-10A has been performed using two different analytical platforms: UPLC-ESI-Q-TOF based on a scheduled precursor list has been applied for highlighting of significant differences between cell lines and HPLC-ESI-QqQ using multiple reaction monitoring has been utilized for a targeted approach focusing on RNA metabolism and interconnected pathways, respectively. Statistical analysis enabled a clear discrimination of the breast epithelial from the breast cancer cell lines. As an effect of oxidative stress, a decreased GSH/GSSG ratio has been detected in breast cancer cell lines. The triple negative breast cancer cell line MDA-MB-231 showed an elevation in nicotinamide, 1-ribosyl-nicotinamide and NAD+ reflecting the increased energy demand in triple negative breast cancer, which has a more aggressive clinical course than other forms of breast cancer. Obtained distinct metabolite pattern could be correlated with distinct molecular characteristics of breast cancer cells. Results and methodology of this preliminary in vitro study could be transferred to in vivo studies with breast cancer patients.

  8. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells

    Science.gov (United States)

    Cook, Matthew T; Liang, Yayun; Besch-Williford, Cynthia; Hyder, Salman M

    2017-01-01

    Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC. PMID:28096694

  9. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’-Diindolylmethane (DIM)

    Science.gov (United States)

    2007-08-01

    cancer cells. Front Biosci 2005;10:236-43. 34. Rahman KM, Aranha O, Sarkar FH. Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in...by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci 2005;10:236-43. 27. Rahman KM, Aranha O, Sarkar FH. Indole-3-carbinol (I3C...breast cancer cells. Cancer research 1999;59:1244-51. 45. Rahman KM, Aranha O, Glazyrin A, Chinni SR, Sarkar FH. Translocation of Bax to mitochondria

  10. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    Science.gov (United States)

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  11. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A.

    Science.gov (United States)

    Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-Yu; Jiang, Xiaohong; Hou, Dongxia

    2014-11-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

  12. Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells.

    Science.gov (United States)

    Bozkurt, Emir; Atmaca, Harika; Kisim, Asli; Uzunoglu, Selim; Uslu, Ruchan; Karaca, Burcak

    2012-01-01

    Thymus (T.) serpyllum (wild thyme) is an aromatic medicinal plant due to its several biological properties, including anticancer activity. Breast cancer is one of the most common malignancies and increasing evidence supports that it is not only a genetic but also an epigenetic disease. Epigenetics investigates changes in gene expression caused by mechanisms that do not involve alterations in DNA sequence. DNA methylation and histone acetylation are the most widely studied epigenetic changes in cancer cells. This study evaluated the effects of T. serpyllum on apoptosis and epigenetic events in breast cancer cells. XTT cell viability assay was used to determine cytotoxicity. DNA fragmentation and caspase 3/7 activity assays were used in the assesment of apoptosis. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were evaluated by ELISA and verified by qRT-PCR. T. serpyllum extract induced significant cytotoxicity in breast cancer cells (MCF-7 and MDA-MB-231) but not in normal cells. It also induced apoptosis and inhibited the DNMT and HDAC activities in MDA-MB-231 cells. In the present study, the first preliminary data on the effects of the methanolic extract of T. serpyllum in normal and breast cancer cells were obtained and suggest that T. serpyllum may be a promising candidate in the development of novel therapeutic drugs for breast cancer treatment.

  13. Effects of chemically modified nanostructured PLGA on functioning of lung and breast cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-05-01

    Full Text Available Lijuan Zhang,1 Thomas J Webster21Department of Chemistry, 2School of Engineering, Brown University, Providence, RI, USABackground: The aim of this study was to investigate the effects of poly-lactic-co-glycolic acid (PLGA nanotopographies with alginate or chitosan protein preadsorption on the functioning of healthy and cancerous lung and breast cells, including adhesion, proliferation, apoptosis, and release of vascular endothelial growth factor (VEGF, which promotes tumor angiogenesis and secretion.Methods: We used a well established cast-mold technique to create nanoscale surface features on PLGA. Some of the nanomodified PLGA films were then exposed to alginate and chitosan. Surface roughness and the presence of protein was confirmed by atomic force microscopy. Surface energy was quantified by contact angle measurement.Results: Nanostructured PLGA surfaces with 23 nm features decreased synthesis of VEGF in both lung and breast cancer cells compared with conventional PLGA. Preadsorbing alginate further decreased cancer cell function, with nanostructured PLGA preadsorbed with alginate achieving the greatest decrease in synthesis of VEGF in both lung and breast cancer cells. In contrast, compared with nonmodified smooth PLGA, healthy cell functions were either not altered (ie, breast or were enhanced (ie, lung by use of nanostructured features and alginate or chitosan protein preadsorption.Conclusion: Using this technique, we developed surface nanometric roughness and modification of surface chemistry that could selectively decrease breast and lung cancer cell functioning without the need for chemotherapeutics. This technique requires further study in a wide range of anticancer and regenerative medicine applications.Keywords: breast, lung, cancer, nanotechnology, alginate, chitosan

  14. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer

    NARCIS (Netherlands)

    Edgington-Mitchell, L.E.; Rautela, J.; Duivenvoorden, H.M.; Jayatilleke, K.M.; Linden, W.A. van der; Verdoes, M.; Bogyo, M.; Parker, B.S.

    2015-01-01

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvi

  15. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  16. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells.

    Science.gov (United States)

    Pandiri, Indira; Chen, Yingqing; Joe, Yeonsoo; Kim, Hyo Jeong; Park, Jeongmin; Chung, Hun Taeg; Park, Jeong Woo

    2016-02-01

    Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin's anti-proliferative activity in cancer cells.

  17. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression.

    Science.gov (United States)

    Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang

    2016-08-02

    The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.

  18. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Raissouni Soundouss

    2012-08-01

    Full Text Available Abstract Background Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. Case presentation A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. Conclusion We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders.

  19. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells.

    Science.gov (United States)

    Fessler, Shawn P; Wotkowicz, Mark T; Mahanta, Sanjeev K; Bamdad, Cynthia

    2009-11-01

    In the United States, 211,000 women are diagnosed each year with breast cancer. Of the 42,000 breast cancer patients who overexpress the HER2 growth factor receptor, Herceptin). Despite those statistics, women diagnosed with breast cancer are now tested to determine how much of this important growth factor receptor is present in their tumor because patients whose treatment includes trastuzumab are three-times more likely to survive for at least 5 years and are two-times more likely to survive without a cancer recurrence. Unfortunately, even among the group whose cancers originally respond to trastuzumab, 25% of the metastatic breast cancer patients acquire resistance to trastuzumab within the first year of treatment. Follow-on "salvage" therapies have prolonged life for this group but have not been curative. Thus, it is critically important to understand the mechanisms of trastuzumab resistance and develop therapies that reverse or prevent it. Here, we report that molecular analysis of a cancer cell line that was induced to acquire trastuzumab resistance showed a dramatic increase in the amount of the cleaved form of the MUC1 protein, called MUC1*. We recently reported that MUC1* functions as a growth factor receptor on cancer cells and on embryonic stem cells. Here, we show that treating trastuzumab-resistant cancer cells with a combination of MUC1* antagonists and trastuzumab, reverses the drug resistance. Further, HER2-positive cancer cells that are intrinsically resistant to trastuzumab became trastuzumab-sensitive when treated with MUC1* antagonists and trastuzumab. Additionally, we found that tumor cells that had acquired Herceptin resistance had also acquired resistance to standard chemotherapy agents like Taxol, Doxorubicin, and Cyclophosphamide. Acquired resistance to these standard chemotherapy drugs was also reversed by combined treatment with the original drug plus a MUC1* inhibitor.

  20. TGF-beta and BMP in breast cancer cell invasion

    NARCIS (Netherlands)

    Naber, Hildegonda Petronella Henriëtte

    2012-01-01

    TGF-beta and BMPs are members of the TGF-beta superfamily of cytokines which play an important role in a multitude of processes. In cancer, TGF-beta is known for its dual role: in early stages it inhibits cancer cell proliferation, whereas in later stages it promotes invasion and metastasis. In this

  1. Breast cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  2. Enrichment of breast cancer stem cells using a keratinocyte serum-free medium

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-zhen; CHEN Ping; LU Zhen-duo; CUI Shu-de; DONG Zi-ming

    2011-01-01

    Background Keratinocyte serum-free medium (K-SFM) is a defined medium used to support the growth of primary keratinocytes and embryonic stem cell. The aim of this research was to optimize enrichment of breast cancer stem cells (CSCs) using K-SFM.Methods A K-SFM was used to enrich CSCs from two breast cancer cell lines and a primary culture of breast cancer.RPMI-1640 supplemented with 10% fetal calf serum (FCS) was used as a control. CSCs were identified with flow cytometry using CD44+/CD24-as molecular markers. The expression of a variety of CSC markers (Oct-4, ABCG2, Nanog,N-cadherin, and E-cadherin) was analyzed with real-time PCR.Results Much higher percentage of CSCs was achieved with K-SFM: 17.3% for MCF-7 cells, 17.4% for SKBR-3, and 20.0% for primary breast cancer culture. Less than 1% CSC was achieved using RPMI-1640 supplemented with 10% FCS. In comparison to the CSCs obtained with RPMI-1640, CSCs in the K-SFM expressed higher levels of Oct-4,ABCG2, Nanog and N-cadherin, and lower level of E-cadherin.Conclusion K-SFM is an optimal culture medium to maintain and to enrich breast CSCs.

  3. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  4. Determination of telomerase activity in stem cells and non-stem cells of breast cancer

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; HE Yanli; ZHANG Jiahua; ZHANG Jinghui; HUANG Tao

    2007-01-01

    Although all normal tissue cells,including stem cells,are genetically homologous,variation in gene expression patterns has already determined the distinct roles for individual cells in the physiological process due to the occurrence of epigenetic modification.This is of special importance for the existenee of tissue stem cells because they are exclusively immortal within the body,capable of selfreplicating and differentiating by which tissues renew and repair itself and the total tissue cell population maintains a steady-state.Impairment of tissue stem cells is usually accompanied by a reduction in cell number,slows down the repair process and causes hypofunction.For instance,chemotherapy usually leads to depression of bone marrow and hair loss.Cellular aging is closely associated with the continuous erosion of the telomere while activation of telomerase repairs and maintains telomeres,thus slowing the aging process and prolonging cell life.In normal adults,telomerase activation mainly presents in tissue stem cells and progenitor cells giving them unlimited growth potential.Despite the extensive demonstration of telomerase activation in malignancy(>80%),scientists found that heterogeneity also exists among the tumor cells and only minorities of cells,designated as cancer stem cells,andergo processes analogous to the self-renewal and differentiation of normal stem ceils while the rest have limited lifespans.In this study,telomerase activity was measured and compared in breast cancer stem cells and non-stem cells that were phenotypically sorted by examining surface marker expression.The results indicated that cancer stem cells show a higher level of enzyme activity than non-stem cells.In addition,associated with the repair of cancer tissue(or relapse)after chemotherapy,telomerase activity in stem cells was markedly increased.

  5. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wei [Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Yang, An-Gang [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Rui, E-mail: ruizhang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Fan, Jing, E-mail: jingfan@fmmu.edu.cn [Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Bian, Ka, E-mail: kakamax85@hotmail.com [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-08-07

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.

  6. Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Suwit Duangmano

    2012-01-01

    Full Text Available Purpose. To explore the effects of cucurbitacin B on the radiation survival of human breast cancer cells and to elucidate the cellular mechanism of radiosensitization if any. Materials and Methods. Human breast carcinoma cell lines were treated with cucurbitacin B before irradiation with 0–10 Gy of C137s gamma rays. The effect of cucurbitacin B on cell-survival following irradiation was evaluated by colony-forming assay. Cell cycle distributions were investigated using flow cytometry. Real-time PCR and western blots were performed to investigate the expression of cell cycle checkpoints. Results. Cucurbitacin B inhibited breast cancer cell proliferation in a dose-dependent manner. Only MDA-MB-231 and MCF7:5C cells but not SKBR-3 cells were radiosensitized by cucurbitacin B. Flow cytometric analysis for DNA content indicated that cucurbitacin B resulted in G2/M arrest in MDA-MB-231 and MCF7:5C but not SKBR-3 cells. Moreover, Real-time PCR and western blot analysis demonstrated upregulated p21 expression before irradiation, a likely cause of the cell cycle arrest. Conclusion. Taken together, these findings suggest that cucurbitacin B causes radiosensitization of some breast cancer cells, and that cucurbitacin B induced G2/M arrest is an important mechanism. Therefore, combinations of cucurbitacin B with radiotherapy may be appropriate for experimental breast cancer treatment.

  7. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    Science.gov (United States)

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  8. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    Science.gov (United States)

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  9. [Establishment and identification of the near-infrared fluorescence labeled exosomes in breast cancer cell lines].

    Science.gov (United States)

    Li, Taiming; Lan, Wenjun; Huang, Can; Zhang, Chun; Liu, Xiaomei

    2016-05-01

    Exosomes, a population of extracellular membrane vesicles of 30-100 nm in diameter, play important roles in cell biological functions, intercellular signal transduction and especially in cancer diagnosis and therapy. To better apply exosomes in mechanistic study of breast cancer signal transduction, we constructed recombinant eukaryotic expression vector expressing the near-infrared fluorescence protein and CD63 fusion protein through cloning iRFP682 gene and exosomal marker protein CD63 gene into plasmid containing the ITR of AAV. The constructed plasmids were co-transfected with helper plasmid in AAV-293 cell lines and were packaged into rAAV. After titer measurement, the recombinant plasmids were transfected into breast cancer cell lines. The cell lines that stably expressing near-infrared fluorescence protein were selected by fluorescence. Through isolation, purification and identification, we finally obtained a new biomarker: iRFP682 labeled exosomes secreted by breast cancer cell lines, which could be used in further studies of the distribution and signal transduction of exosomes in breast cancer microenvironment.

  10. Breast Cancer Early Detection and Diagnosis

    Science.gov (United States)

    ... En Español Category Cancer A-Z Breast Cancer Breast Cancer Early Detection and Diagnosis Breast cancer is sometimes ... cancer screening is so important. Learn more. Can Breast Cancer Be Found Early? Breast cancer is sometimes found ...

  11. Mechanisms of autophagy and apoptosis:Recent developments in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Juan; M; Esteve; Erwin; Knecht

    2011-01-01

    Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.

  12. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  13. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Directory of Open Access Journals (Sweden)

    Aragon Robert J

    2010-10-01

    Full Text Available Abstract Background The Ras association domain family 1 (RASSF1 gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.

  14. Breast Cancer and Infertility

    OpenAIRE

    2015-01-01

    Breast cancer is the most common malignancy among women and may accompany infertility. The relationship between infertility treatment and breast cancer has not yet been proven. However, estrogen exposure is well known to cause breast cancer. Recent advances in treatment options have provided young patients with breast cancer a chance of being mother [Archives Medical Review Journal 2015; 24(3.000): 317-323

  15. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  16. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen.

    Directory of Open Access Journals (Sweden)

    Samar Basu

    Full Text Available Current evidences suggest that expression of Ki67, cyclooxygenase (COX, aromatase, adipokines, prostaglandins, free radicals, β-catenin and α-SMA might be involved in breast cancer pathogenesis. The main objective of this study was to compare expression/localization of these potential compounds in breast cancer tissues with tissues collected adjacent to the tumor using immunohistochemistry and correlated with clinical pathology. The breast cancer specimens were collected from 30 women aged between 49 and 89 years who underwent breast surgery following cancer diagnosis. Expression levels of molecules by different stainings were graded as a score on a scale based upon staining intensity and proportion of positive cells/area or individually. AdipoR1, adiponectin, Ob-R, leptin, COX-1, COX-2, aromatase, PGF2α, F2-isoprostanes and α-SMA were localised on higher levels in the breast tissues adjacent to the tumor compared to tumor specimens when considering either score or staining area whereas COX-2 and AdipoR2 were found to be higher considering staining intensity and Ki67 on score level in the tumor tissue. There was no significant difference observed on β-catenin either on score nor on staining area and intensity between tissues adjacent to the tumor and tumor tissues. A positive correlation was found between COX-1 and COX-2 in the tumor tissues. In conclusion, these suggest that Ki67, COXs, aromatase, prostaglandin, free radicals, adipokines, β-catenin and α-SMA are involved in breast cancer. These further focus the need of examination of tissues adjacent to tumor, tumor itself and compare them with normal or benign breast tissues for a better understanding of breast cancer pathology and future evaluation of therapeutic benefit.

  17. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell.

    Science.gov (United States)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery.

  18. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation.

    Science.gov (United States)

    Falany, Josie L; Macrina, Nancy; Falany, Charles N

    2002-07-01

    Estrogen stimulation is an important factor in human breast cancer cell growth and development. Metabolism of beta-estradiol (E2), the major endogenous human estrogen, is important in regulating both the level and activity of the hormone in breast tissues. Conjugation of E2 with a sulfonate moiety is an inactivation process since the sulfate ester formed by this reaction can not bind and activate the estrogen receptor. In human tissues including the breast, estrogen sulfotransferase (EST, SULT1E1) is responsible for high affinity E2 sulfation activity. EST is expressed in human mammary epithelial (HME) cells but not in most cultured breast cancer cell lines, including estrogen responsive MCF-7 cells. Stable expression of EST in MCF-7 cells at levels similar to those detected in HME cells significantly inhibits cell growth at physiologically relevant E2 concentrations. The mechanism of cell growth inhibition involves the abrogation of responses observed in growth factor expression in MCF-7 cells following E2 stimulation. MCF-7 cells expressing EST activity did not show a decrease in estrogen receptor-alpha levels, nor a characteristic increase in progesterone receptor or decrease in transforming growth factor-beta expression upon exposure to 100 pM or 1 nM E2. The lack of response in these MCF-7 cells is apparently due to the rapid sulfation and inactivation of free E2 by EST. These results suggest that loss of EST expression in the transformation of normal breast tissues to breast cancer may be an important factor in increasing the growth responsiveness of preneoplastic or tumor cells to estrogen stimulation.

  19. Differences in integrin expression and signaling within human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Yongqing

    2011-07-01

    Full Text Available Abstract Background Integrins are used as prognostic indicators in breast cancer. Following engagement with extracellular matrix proteins, their signaling influences numerous cellular processes including migration, proliferation, and death. Integrin signaling varies between cell types through differential expression of integrin subunits, and changes within a given cell upon exposure to a cell agonist or through changes in its surroundings. These variations in signaling can profoundly affect the phenotypic, tumorogenecity and metastatic properties of cancer cells. In the present study, we investigated if there were differences in the expression of integrins, integrin structures, and integrin co-receptors within three breast cancer cells and if these differences effected integrin signaling. Methods Expression of integrins, urokinase receptor and vascular endothelial cell growth factor receptor (VEGFR in metastatic MDA-MB-435 and MDA-MB-231, non-metastatic MCF7 and non-breast cancer Hek-293 cells was measured by flow cytometry. Cell adhesion was assessed using collagen, fibrinogen, fibronectin and vitronectin coated plates. Changes in kinase levels following PMA stimulation, and cell adhesion-induced activation of kinases were determined by western blot analysis. Distribution of actin stress fibers and focal adhesions was assessed by immunocytochemistry. Results All cells expressed αv integrins, while high β5 and αvβ5 expression was restricted to the cancer cells and high β3 and αvβ3 expression was restricted to MDA-MB-435 cells. The two metastatic cells were the least adhesive, but all cells adhered well to most proteins in the absence of PMA. All proliferating cells expressed activated pSrc, but only proliferating metastatic cells expressed high pMEK levels. PMA treatment resulted in time-dependent changes in activated kinase levels, and only MDA-MB-231 cells constitutively expressed high levels of activated pMEK. MDA-MB-435 cells formed

  20. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines.

    Science.gov (United States)

    Arora, Himanshu; Qureshi, Rehana; Park, Woong-Yang

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.

  1. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Himanshu Arora

    Full Text Available Epithelial-mesenchymal transition (EMT is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.

  2. microRNAs and EMT in mammary cells and breast cancer.

    Science.gov (United States)

    Wright, Josephine A; Richer, Jennifer K; Goodall, Gregory J

    2010-06-01

    MicroRNAs are master regulators of gene expression in many biological and pathological processes, including mammary gland development and breast cancer. The differentiation program termed the epithelial to mesenchymal transition (EMT) involves changes in a number of microRNAs. Some of these microRNAs have been shown to control cellular plasticity through the suppression of EMT-inducers or to influence cellular phenotype through the suppression of genes involved in defining the epithelial and mesenchymal cell states. This has led to the suggestion that microRNAs maybe a novel therapeutic target for the treatment of breast cancer. In this review, we will discuss microRNAs that are involved in EMT in mammary cells and breast cancer.

  3. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-12-01

    Piperine is a bioactive component of black pepper, Piper nigrum Linn, commonly used for daily consumption and in traditional medicine. Here, the molecular mechanisms by which piperine exerts antitumor effects in HER2-overexpressing breast cancer cells was investigated. The results showed that piperine strongly inhibited proliferation and induced apoptosis through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level. Blockade of ERK1/2 signaling by piperine significantly reduced SREBP-1 and FAS expression. Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-κB activation by interfering with ERK1/2, p38 MAPK, and Akt signaling pathways resulting in a reduction in migration. Finally, piperine pretreatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression.

  4. SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis.

    Science.gov (United States)

    Siddharth, Sumit; Das, Sarita; Nayak, Anmada; Kundu, Chanakya Nath

    2016-10-01

    Cancer stem cells drive the metastatic cascade by undergoing epithelial to mesenchymal transition (EMT) and again mesenchymal to epithelial transition (MET). Using multiple breast cancer cell lines including cigarette smoke induced breast cancer cells and tumor derived primary cells from patient sample; we developed a breast cancer metastasis model and reported the existence of an adherent, distinct pre-metastatic phase, quiescent-breast cancer stem cells (Q-BCSCs) prior to attaining an EMT. SURVIVIN was found to be expressed in Q-BCSCs. Time dependant biphasic expression of SURVIVIN in Q-BCSCs reveals that Q-BCSCs is a pre-metastatic phase distinct from both epithelial and mesenchymal counterparts. SURVIVIN favours metastasis and up-regulates WNT/β-CATENIN pathway in a PI3 K/AKT-dependant manner for self-renewal. Knockdown of SURVIVIN in Q-BCSCs lost the metastatic property of cells by inhibiting invasion, EMT-MET, PI3 K/AKT/WNT cascade, and induced apoptosis. Thus, our data suggest the existence of a novel pre-metastatic phase (Q-BCSCs) before EMT and SURVIVIN acts as a marker for Quiescent-BCSCs.

  5. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    Science.gov (United States)

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future.

  6. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    OpenAIRE

    Gonzalez, Maria E.; Martin, Emily E.; Talha Anwar; Caroline Arellano-Garcia; Natasha Medhora; Arjun Lama; Yu-Chih Chen; Kevin S. Tanager; Euisik Yoon; Kidwell, Kelley M.; Chunxi Ge; Franceschi, Renny T.; Celina G. Kleer

    2017-01-01

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with co...

  7. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Smeets, Evelien E.J.W. [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Rijk, Jeroen C.W. [RIKILT - Institute for Food Safety, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen (Netherlands); Nijmeijer, Sandra M.; Berg, Martin van den [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands)

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  8. Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Muhammad Yusran Abdul Aziz

    2016-09-01

    Full Text Available Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.

  9. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Rajeshwari Mehta

    Full Text Available BACKGROUND: Treatment of breast cancer patients with antiestrogens and aromatase inhibitor(s or Herceptin have shown significant success in steroid receptor positive or Her-2+ breast cancers respectively. However, choice of treatments for breast cancer patients with negative status for estrogen, progesterone receptors and HER2/neu is limited. As a result, search for appropriate therapy regimen for these triple negative breast cancers (TNBC has become a major focus of investigations for many laboratories. Recently, Deguelin, a natural product isolated from African plant Mundulea sericea (Leguminossae has shown both antiproliferative actions in various cancers including breast as well as chemoprenventive activity against carcinogen induced experimental cancers. In this report we evaluated efficacy and mechanism of action of Deguelin in triple negative breast cancer cell lines. METHODS/FINDINGS: In vitro, Deguelin in a dose and time dependent manner inhibited the growth of MDA-MB-231, MDA-MB-468, BT-549 and BT-20 cells. Deguelin (2 or 4 mg/kg body weight, when injected intraperitoneally, reduced the in vivo tumor growth of MDA-MB-231 cells transplanted subcutaneously in athymic mice. Moreover it was nontoxic as evident from daily observations on mobility, food and water consumption and comparison of bodyweight and other visceral organ weights with those in control animals at the termination of the study. The western blot analyses and immunostaining studies indicated that the deguelin effects may be mediated through EGFR-PAKT/c-Met p-ERK and NF-κB by down regulating their downstream targets such as p-STAT3, c-Myc, Survivin. CONCLUSION/SIGNIFICANCE: These results suggest that Deguelin may have a significant therapeutic value for the treatment of TNBC patients.

  10. In vitro Studies on anticancer activity of fungal taxol against human breast cancer cell line MCF-7