WorldWideScience

Sample records for breast brachytherapy d-shaped

  1. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    Science.gov (United States)

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25

  2. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  3. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  4. CT-image based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning

    International Nuclear Information System (INIS)

    Polgar, C.; Major, T.; Somogyi, A.; Takacsi-Nagy, Z.; Mangel, L.C.; Fodor, J.; Nemeth, G.; Forrai, G.; Sulyok, Z.

    2000-01-01

    In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single double and triple plane implant was used in 6,89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. Results: With the help of conformal semi-3D and 3D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, its was increased by 16.2% with 3-D planning, compared to the 2-D planning. (orig.) [de

  5. Implementation of 3D-virtual brachytherapy in the management of breast cancer: a description of a new method of interstitial brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Jaffray, David A.; Horwitz, Eric M.; Edmundson, Gregory K.; DeBiose, David A.; Kini, Vijay R.; Martinez, Alvaro A.

    1998-01-01

    Purpose: We present the initial description of a new technique of interstitial breast brachytherapy in which a computer-generated image of an implant template is applied virtually to serial-computed tomography (CT) scan images of a patient's breast. Optimal placement of the virtual template around the CT images of the proposed target volume provides the physician with a preplan for improved positioning of implant needles around the actual target volume intraoperatively. Methods and Materials: Since March of 1993, 110 patients with early-stage breast cancer were entered onto a protocol of low or high dose rate brachytherapy as the sole radiation modality for part of their breast-conserving therapy. To improve the accuracy and reproducibility of target volume coverage in patients with a closed lumpectomy cavity, 11 of these implants were performed using the virtual brachytherapy technique. The virtual implant procedure was performed by first placing radiopaque skin markers on the breast surface for reference on the CT image and ultimately as intraoperative landmarks for the placement of implant needles. A CT scan of the breast was then performed and the target volume outlined on each CT scan slice by the physician. A virtual image of the brachytherapy template was then positioned around the CT image of the target volume to achieve an idealized implant with optimal coverage. The projected entrance and exit points of all needles on the skin of the breast (from the idealized virtual implant) were then identified (by perspective rendering of multiple 3D views) and hard-copy images taken to the operating room. The implant was then constructed by referencing the virtual implant images (needle entrance and exit points) to the radiopaque skin markers on the breast. After the implant was completed, a CT scan of the breast with the template catheters or needles in position was taken for comparison of the actual target volume coverage with the virtual implant generated

  6. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  7. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  8. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best?

    International Nuclear Information System (INIS)

    Libby, B.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  9. CT-image based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Polgar, C.; Major, T.; Somogyi, A.; Takacsi-Nagy, Z.; Mangel, L.C.; Fodor, J.; Nemeth, G. [Orszagos Onkologiai Intezet, Budapest (Hungary). Dept. of Radiotherapy; Forrai, G. [Haynal Imre Univ. of Health Sciences, Budapest (Hungary). Dept. of Radiology; Sulyok, Z. [Orszagos Onkologiai Intezet, Budapest (Hungary). Dept. of Surgery

    2000-03-01

    In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single double and triple plane implant was used in 6,89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. Results: With the help of conformal semi-3D and 3D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, its was increased by 16.2% with 3-D planning, compared to the 2-D planning. (orig.) [German] Bei 103 Patientinnen mit Mammakarzinom der Stadien T1

  10. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    Science.gov (United States)

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  11. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    Energy Technology Data Exchange (ETDEWEB)

    Agasthya, G; Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  12. Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Kestin, Larry L.; Edmundson, Gregory K.; Jaffray, David A.; Wong, John W.; Kini, Vijay R.; Chen, Peter Y.; Martinez, Alvaro A.

    1999-01-01

    Purpose/Objective: The use of brachytherapy in the management of breast cancer has increased significantly over the past several years. Unfortunately, few techniques have been developed to compare dosimetric quality and target volume coverage concurrently. We present a new method of implant evaluation that incorporates computed tomography-based three-dimensional (3D) dose-volume analysis with traditional measures of brachytherapy quality. Analyses performed in this fashion will be needed to ultimately assist in determining the efficacy of breast implants. Methods and Materials: Since March of 1993, brachytherapy has been used as the sole radiation modality after lumpectomy in selected protocol patients with early-stage breast cancer treated with breast-conserving therapy. Eight patients treated with high-dose-rate (HDR) brachytherapy who had surgical clips outlining the lumpectomy cavity and underwent computed tomography (CT) scanning after implant placement were selected for this study. For each patient, the postimplant CT dataset was transferred to a 3D treatment planning system. The lumpectomy cavity, target volume (lumpectomy cavity plus a 1-cm margin), and entire breast were outlined on each axial slice. Once all volumes were entered, the programmed HDR brachytherapy source positions and dwell times were imported into the 3D planning system. Using the tools provided by the 3D planning system, the implant dataset was then registered to the visible implant template in the CT dataset. The distribution of the implant dose was analyzed with respect to defined volumes via dose-volume histograms (DVH). Isodose surfaces, the dose homogeneity index, and dosimetric coverage of the defined volumes were calculated and contrasted. All patients received 32 Gy to the entire implanted volume in 8 fractions of 4 Gy over 4 days. Results: Three-plane implants were used for 7 patients and a two-plane implant for 1 patient. The median number of needles per implant was 16.5 (range

  13. Pulsed Dose Rate (PDR - BT) brachytherapy in treatment of breast cancer

    International Nuclear Information System (INIS)

    Skowronek, J.

    2007-01-01

    Breast conserving surgery (BCS) and radiotherapy (EBRT) of the conserved breast became widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of RT after breast conservation is to treat the whole breast up to a total dose of 45 to 50 Gy. Initially brachytherapy for breast cancer was used in addition of external radiation to boost a portion of the breast to higher doses. However, over the past 10 years, the application of brachytherapy in breast cancer has changed. In early stage breast cancer, research has shown that the area that requires radiation treatment to prevent the cancer from returning is the breast tissue that surrounds the area where the initial cancer was removed. Because this typically includes only a part of the breast, brachytherapy is now being used to treat the targeted portion of the breast and as a result allows accelerated delivery of the radiation dose so that treatment is completed in four to five days. Another indications for PDR - BT as a part of treatment in locally advanced breast cancer or as a palliative treatment are discussed in the paper, too. Preliminary results with PDR - BT boost technique are promising. However, more experience and longer follow-up are required to define whether these methods might improve local tumor control for breast cancer patients. In this article the current status, indications, technical aspects and published results of PDR brachytherapy (PDR - BT) in breast cancer treatment are reviewed. (author)

  14. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to 0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Grace L., E-mail: glsmith@mdanderson.org [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-03-15

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  16. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    International Nuclear Information System (INIS)

    Huo, Jinhai; Giordano, Sharon H.; Smith, Benjamin D.; Shaitelman, Simona F.; Smith, Grace L.

    2016-01-01

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  17. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    International Nuclear Information System (INIS)

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  18. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  19. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    Science.gov (United States)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  20. Treatment planning for multicatheter interstitial brachytherapy of breast cancer – from Paris system to anatomy-based inverse planning

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2017-02-01

    Full Text Available In the last decades, treatment planning for multicatheter interstitial breast brachytherapy has evolved considerably from fluoroscopy-based 2D to anatomy-based 3D planning. To plan the right positions of the catheters, ultrasound or computed tomography (CT imaging can be used, but the treatment plan is always based on postimplant CT images. With CT imaging, the 3D target volume can be defined more precisely and delineation of the organs at risk volumes is also possible. Consequently, parameters calculated from dose-volume histogram can be used for quantitative plan evaluation. The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods (manual, geometrical, on dose points, graphical are available to shape the dose distribution to the target volume, and these influence dose homogeneities to different extent. Currently, inverse optimization algorithms offer new possibilities to improve dose distributions further considering the requirements for dose coverage, dose homogeneity, and dose to organs at risk simultaneously and automatically. In this article, the evolvement of treatment planning for interstitial breast implants is reviewed, different forward optimization methods are discussed, and dose-volume parameters used for quantitative plan evaluation are described. Finally, some questions of the inverse optimization method are investigated and initial experiences of the authors are presented.

  1. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques

    International Nuclear Information System (INIS)

    Strauss, Jonathan B.; Dickler, Adam

    2009-01-01

    To overcome the barriers to BCT, methods of PBI in the setting of breast conservation have been explored. The method of PBI with the longest published follow-up is multi-catheter interstitial brachytherapy. Balloon-based brachytherapy with the MammoSite brachytherapy applicator was designed to simplify the brachytherapy procedure for PBI, enhance the reproducibility of the dosimetry, and improve patient comfort. The rates of local recurrence following PBI with the MammoSite applicator have been low, but there are few published reports and follow-up has been relatively short. The cosmetic outcomes and toxicity of MammoSite PBI are comparable to those seen after multicatheter-based PBI. Additional methods of balloon brachytherapy, including Xoft and SenoRx Contura have been developed. Finally, long-term follow-up after PBI is important for the welfare of individual patients and in order to establish the efficacy, late toxicity and cosmetic outcomes of this technique.

  2. Weighted regularized statistical shape space projection for breast 3D model reconstruction.

    Science.gov (United States)

    Ruiz, Guillermo; Ramon, Eduard; García, Jaime; Sukno, Federico M; Ballester, Miguel A González

    2018-05-02

    The use of 3D imaging has increased as a practical and useful tool for plastic and aesthetic surgery planning. Specifically, the possibility of representing the patient breast anatomy in a 3D shape and simulate aesthetic or plastic procedures is a great tool for communication between surgeon and patient during surgery planning. For the purpose of obtaining the specific 3D model of the breast of a patient, model-based reconstruction methods can be used. In particular, 3D morphable models (3DMM) are a robust and widely used method to perform 3D reconstruction. However, if additional prior information (i.e., known landmarks) is combined with the 3DMM statistical model, shape constraints can be imposed to improve the 3DMM fitting accuracy. In this paper, we present a framework to fit a 3DMM of the breast to two possible inputs: 2D photos and 3D point clouds (scans). Our method consists in a Weighted Regularized (WR) projection into the shape space. The contribution of each point in the 3DMM shape is weighted allowing to assign more relevance to those points that we want to impose as constraints. Our method is applied at multiple stages of the 3D reconstruction process. Firstly, it can be used to obtain a 3DMM initialization from a sparse set of 3D points. Additionally, we embed our method in the 3DMM fitting process in which more reliable or already known 3D points or regions of points, can be weighted in order to preserve their shape information. The proposed method has been tested in two different input settings: scans and 2D pictures assessing both reconstruction frameworks with very positive results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. For-profit hospital ownership status and use of brachytherapy after breast-conserving surgery.

    Science.gov (United States)

    Sen, Sounok; Soulos, Pamela R; Herrin, Jeph; Roberts, Kenneth B; Yu, James B; Lesnikoski, Beth-Ann; Ross, Joseph S; Krumholz, Harlan M; Gross, Cary P

    2014-05-01

    Little is known about the relationship between operative care for breast cancer at for-profit hospitals and subsequent use of adjuvant radiation therapy (RT). Among Medicare beneficiaries, we examined whether hospital ownership status is associated with the use of breast brachytherapy--a newer and more expensive modality--as well as overall RT. We conducted a retrospective study of female Medicare beneficiaries who received breast-conserving surgery for invasive breast cancer in 2008 and 2009. We assessed the relationship between hospital ownership and receipt of brachytherapy or overall RT by using hierarchical generalized linear models. The sample consisted of 35,118 women, 8.0% of whom had breast-conserving operations at for-profit hospitals. Among patients who received RT, those who underwent operation at for-profit hospitals were more likely to receive brachytherapy (20.2%) than patients treated at not-for-profit hospitals (15.2%; odds ratio [OR] for for-profit versus not-for-profit: 1.50; 95% confidence interval [95% CI] 1.23-1.84; P profit hospital was associated with greater overall use of RT (OR 1.22; 95% CI 1.03-1.45, P = .03) and brachytherapy use (OR 1.66; 95% CI 1.18-2.34, P = .003). Operative care at for-profit hospitals was associated with increased use of the newer and more expensive RT modality, brachytherapy. Among the oldest women who are least likely to benefit from RT, operative care at a for-profit hospital was associated with greater overall use of RT, with this difference largely driven by the use of brachytherapy. Copyright © 2014 Mosby, Inc. All rights reserved.

  4. Benefit of Adjuvant Brachytherapy Versus External Beam Radiation for Early Breast Cancer: Impact of Patient Stratification on Breast Preservation

    International Nuclear Information System (INIS)

    Smith, Grace L.; Jiang, Jing; Buchholz, Thomas A.; Xu, Ying; Hoffman, Karen E.; Giordano, Sharon H.; Hunt, Kelly K.; Smith, Benjamin D.

    2014-01-01

    Purpose: Brachytherapy after lumpectomy is an increasingly popular breast cancer treatment, but data concerning its effectiveness are conflicting. Recently proposed “suitability” criteria guiding patient selection for brachytherapy have never been empirically validated. Methods: Using the Surveillance, Epidemiology, and End Results–Medicare linked database, we compared women aged 66 years or older with invasive breast cancer (n=28,718) or ductal carcinoma in situ (n=7229) diagnosed from 2002 to 2007, treated with lumpectomy alone, brachytherapy, or external beam radiation therapy (EBRT). The likelihood of breast preservation, measured by subsequent mastectomy risk, was compared by use of multivariate proportional hazards, further stratified by American Society for Radiation Oncology (ASTRO) brachytherapy suitability groups. We compared 1-year postoperative complications using the χ 2 test and 5-year local toxicities using the log-rank test. Results: For patients with invasive cancer, the 5-year subsequent mastectomy risk was 4.7% after lumpectomy alone (95% confidence interval [CI], 4.1%-5.4%), 2.8% after brachytherapy (95% CI, 1.8%-4.3%), and 1.3% after EBRT (95% CI, 1.1%-1.5%) (P<.001). Compared with lumpectomy alone, brachytherapy achieved a more modest reduction in adjusted risk (hazard ratio [HR], 0.61; 95% CI, 0.40-0.94) than achieved with EBRT (HR, 0.22; 95% CI, 0.18-0.28). Relative risks did not differ when stratified by ASTRO suitability group (P=.84 for interaction), although ASTRO “suitable” patients did show a low absolute subsequent mastectomy risk, with a minimal absolute difference in risk after brachytherapy (1.6%; 95% CI, 0.7%-3.5%) versus EBRT (0.8%; 95% CI, 0.6%-1.1%). For patients with ductal carcinoma in situ, EBRT maintained a reduced risk of subsequent mastectomy (HR, 0.40; 95% CI, 0.28-0.55; P<.001), whereas the small number of patients treated with brachytherapy (n=179) precluded definitive comparison with lumpectomy alone. In

  5. Indications and technical aspects of brachytherapy in breast conserving treatment of breast cancer

    International Nuclear Information System (INIS)

    Erik Van, Limbergen

    2003-01-01

    Improved local control rates have been demonstrated in retrospective studies as well as in randomized trials on brachytherapy with increasing doses to the tumour bed. The higher local control obtained by interstitial breast implants, as compared to external photon or electron beam boosts, have been mainly attributed to the higher doses actually delivered to the tumour bed by these implants for the same nominal dose as compared to external beam radiotherapy (RT). On the other hand, poor cosmesis has also been correlated with radiation dose to the breast skin (radiation telangiectases), and breast tissue (retraction due to fibrosis), the latter depending not only on RT dose but also on the treated boost volume. For this reason, a possible benefit of interstitial implants will only be realized when the gain in local control goes together with minimal cosmetic damage. Therefore, the ballistic advantages of interstitial implants have to be maximally exploited: i.e. the treated volume should be maximally adapted to the target volume, and additional irradiation of the breast skin by the boost technique should be avoided. This paper deals in detail with the technical aspects of breast brachytherapy that seem to be relevant for high quality outcome. (author)

  6. Dose modeling of noninvasive image-guided breast brachytherapy in comparison to electron beam boost and three-dimensional conformal accelerated partial breast irradiation.

    Science.gov (United States)

    Sioshansi, Shirin; Rivard, Mark J; Hiatt, Jessica R; Hurley, Amanda A; Lee, Yoojin; Wazer, David E

    2011-06-01

    To perform dose modeling of a noninvasive image-guided breast brachytherapy (NIIGBB) for comparison to electrons and 3DCRT. The novel technology used in this study is a mammography-based, noninvasive breast brachytherapy system whereby the treatment applicators are centered on the planning target volume (PTV) to direct (192)Ir emissions along orthogonal axes. To date, three-dimensional dose modeling of NIIGBB has not been possible because of the limitations of conventional treatment planning systems (TPS) to model variable tissue deformation associated with breast compression. In this study, the TPS was adapted such that the NIIGBB dose distributions were modeled as a virtual point source. This dose calculation technique was applied to CT data from 8 patients imaged with the breast compressed between parallel plates in the cranial-caudal and medial-lateral axes. A dose-volume comparison was performed to simulated electron boost and 3DCRT APBI. The NIIGBB PTV was significantly reduced as compared with both electrons and 3DCRT. Electron boost plans had a lower D(min) than the NIIGBB technique but higher V(100), D(90), and D(50). With regard to PTV coverage for APBI, the only significant differences were minimally higher D(90), D(100), V(80), and V(90), with 3DCRT and D(max) with NIIGBB. The NIIGBB technique, as compared with electrons and 3D-CRT, achieved a lower maximum dose to skin (60% and 10%, respectively) and chest wall/lung (70-90%). NIIGBB achieves a PTV that is smaller than electron beam and 3DCRT techniques. This results in significant normal tissue sparing while maintaining dosimetric benchmarks to the target tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dose determination in breast tumor in brachytherapy using Iridium-192

    International Nuclear Information System (INIS)

    Okuno, S.F.

    1984-01-01

    Thermoluminescent dosimetry studies in vivo and in vitro aiming to determing radiation dose in the breast tumor, in brachytherapy using Iridium-192 was done. The correlation between radiation doses in tumor and external surface of the breast was investigated for correcting the time interval of radiation source implantation. (author) [pt

  8. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  9. Patterns of Failure After MammoSite Brachytherapy Partial Breast Irradiation: A Detailed Analysis

    International Nuclear Information System (INIS)

    Chen, Sea; Dickler, Adam; Kirk, Michael; Shah, Anand; Jokich, Peter; Solmos, Gene; Strauss, Jonathan; Dowlatshahi, Kambiz; Nguyen, Cam; Griem, Katherine

    2007-01-01

    Purpose: To report the results of a detailed analysis of treatment failures after MammoSite breast brachytherapy for partial breast irradiation from our single-institution experience. Methods and Materials: Between October 14, 2002 and October 23, 2006, 78 patients with early-stage breast cancer were treated with breast-conserving surgery and accelerated partial breast irradiation using the MammoSite brachytherapy applicator. We identified five treatment failures in the 70 patients with >6 months' follow-up. Pathologic data, breast imaging, and radiation treatment plans were reviewed. For in-breast failures more than 2 cm away from the original surgical bed, the doses delivered to the areas of recurrence by partial breast irradiation were calculated. Results: At a median follow-up time of 26.1 months, five treatment failures were identified. There were three in-breast failures more than 2 cm away from the original surgical bed, one failure directly adjacent to the original surgical bed, and one failure in the axilla with synchronous distant metastases. The crude failure rate was 7.1% (5 of 70), and the crude local failure rate was 5.7% (4 of 70). Estimated progression-free survival at 48 months was 89.8% (standard error 4.5%). Conclusions: Our case series of 70 patients with >6 months' follow-up and a median follow-up of 26 months is the largest single-institution report to date with detailed failure analysis associated with MammoSite brachytherapy. Our failure data emphasize the importance of patient selection when offering partial breast irradiation

  10. Results of brachytherapy boost in high risk breast cancer patients

    International Nuclear Information System (INIS)

    Battermann, J.J.

    1996-01-01

    Introduction: in breast conserving therapy the role of brachytherapy as a boost after whole breast irradiation is not clear. The series from the Netherlands Cancer Institute show a very high local control rate, but the question could be raised whether all these patients need a brachy boost. Therefore, it was decided at our institute, to deliver a brachy boost only to high risk patients, viz. patients with incomplete resection margins and/or extensive in situ cancer (ECI). Materials and methods: in the period 1988 through 1993 a total of 148 patients with 151 breast tumours received a boost on the tumour bed using brachytherapy. Age varied from 25 till 74 years, with a mean age of 52.3 years. Incomplete resection margins were found in 60 patients, ECI in 31 and both in 49 patients. In the majority of patients, the ECI component was not completely removed. T-stage was unknown in 9 patients. T1 in 83, T2 in 49 and T3 in 10. Nodal status was N0 in 119 and N1 in 33 patients. Infiltrating duct carcinoma was the most common histology. No infiltrating growth was found in 6 patients, but one patient presented a positive node. The interval period between day of operation and day of brachytherapy implantation was between 3 and 4 months in 62%. The mean interval between completion of beam irradiation and day of implantation was 18 days, while 12 patients received their brachytherapy previous to the beam irradiation. External irradiation was with two tangential fields and a total dose of 50 Gy in 25 fractions over 6 weeks (9 fractions in two weeks). The number of needles in two planes. Most patients were implanted under local anaesthesia. Dose rate in 97 patients was 51 - 60 cGy/h. Results: follow-up for patients alive varied from 2 years till 7 years with a mean follow-up period of 4 years. One hundred and twenty five patients are alive, including 6 patients with manifest metastases. Local recurrence was encountered in 8 patients (interval 14 - 60 months, mean 30 months), with

  11. Is there any advantage of CT based 3-dimensional conformal planning over conventional orthogonal x-ray based planning in HDR brachytherapy in breast cancer

    International Nuclear Information System (INIS)

    Biswal, B.M.; Idris, N.R.; Zakaria, A.B.; Khairul, N.

    2003-01-01

    The conventional brachytherapy dose calculation is based on a particular brachytherapy rule or individual dosimetry based on the reconstruction of the sources from the orthogonal films. In the recent years many centers are using CT based 3D conformal brachytherapy in order to improve the dosimetric outcome of a given plan. Here we would like to present our experience on the use of both techniques to deliver HDR interstitial brachytherapy as boost in early breast cancer. From January 2001 to January 2003, we treated 4 breast cancer patients using conventional orthogonal x-rays and CT scan in 3 cases for the treatment plan. All patients received an external beam radiotherapy dose of 46 Gy in 23 fractions over 4.5 weeks to the whole breast using 6 MV photon beam. Subsequently the primary lesion was supplimented with HDR brachytherapy to a dose of 2.5 Gy BID for 3 consecutive days using a (192)Ir microSelectronHDR. The dose prescription was individualized to encompass the tumor volume with a 10 mm margin. The differences of the dosimetric outcome were compared. All patients completed above schedule of radiotherapy. The primary was implanted with single plane in 3 patients and multiplane implant in 4 patients. Orthogonal x-ray based localization was performed in 4 patients and CT scan based localization in 3 cases. Three patients were implanted single plane and 4 patients with multiplane implants with a median catheter number of 9 (range 6-14). The 3D conformal dose optimization was performed using Nucletron planning system (Plato). The mean 100% and 150% isodose volume was 67.3 cm 3 and 31.25cm 3 respectively. The identification of primary tumor volume, organ at risk, and identification of afterloading catheters were superior in CT based plan than conventional planning. CT scan based 3D conformal brachytherapy planning give better identification of tumor volume and its curvature, decrease the time to identify the sources and evaluate the radiation dose to organs at

  12. CT-image based conformal high-dose rate brachytherapy boost in the conservative treatment of stage I - II breast cancer - introducing the procedure

    International Nuclear Information System (INIS)

    Kubaszewska, M.; Skowronek, J.; Chichel, A.; Kanikowski, M.; Dymnicka, M.

    2008-01-01

    Aim: Breast-conserving surgery (BCS) followed by radiotherapy (RT) has become the standard treatment for the majority of patients with early breast cancer. With regard to boost technique some disagreements are found between groups that are emphasizing the value of electron boost treatment and groups pointing out the value of interstitial brachytherapy (BT) boost treatment. We present the preliminary results in treating selected patients with early-stage breast cancer using high-dose-rate brachytherapy (HD R-BT) as a boost after breast conservation therapy (BCT). Materials/Methods: Between January 2006 and August 2007, a total of 58 female patients with first and second stage breast cancer underwent BCT. This therapeutic procedure involves BCS, whole breast radiation therapy (WBRT) and additional irradiation to the tumour bed (boost) using interstitial HDR-BT via flexible implant tubes. A 10 Gy boost dose was received by all patients. The treatment planning was based on CT-guided 3D (three-dimensional) reconstruction of the surgical clips, implant tubes and critical structures localization (skin and ribs). The accuracy of tumour bed localization, the conformity of planning target volume and treated volume were analyzed. Results: The evaluations of implant parameters involved the use of: dose volume histogram (DVH), the volume encompassed by the 100% reference isodose surface (V100%), the high dose volumecalculation (V150%, V200%, V300%), the dose non-uniformity ratio (DNR), and the conformity index (COIN). Our results were as follows: the mean PTV volume, the mean high dose volume (V150%; V200%; V300%), the DNR and COIN mean value were estimated at 57.38, 42.98, 21.38, 7.90, 0.52 and 0.83 respectively. Conclusions: CT-guided 3D HDR-BT is most appropriate for planning the boost procedure after BT especially in large breast volume, in cases with a deep seated tumour bed, as well as in patients with high risk for local recurrences. This technique reduces the

  13. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  14. Aspects of the application of complementary brachytherapy for early invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Homma, L.A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital das Clinicas]. E-mail: luciahomma@terra.com.br; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br; Silva, S.Z.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital das Clinicas; Lima, C.F. [ECOGRAF, Belo Horizonte, MG (Brazil). Nucleo de Diagnostico

    2007-07-01

    Initial studies of brachytherapy with the 'Mammosite Radiation Therapy System', a device consisted by a catheter centered inside a inflate balloon, to perform breast brachytherapy was revised. A high activity source was applied into the balloon, exposing to the tumor bed to a high absorbed dose, while the surrounding areas receives one reduced by to a factor 1/r{sup 2}, during a short interval of time. The high acute dose provides a booster to conventional radiation therapy, resulting in a better local control. The acceptable esthetic impact achieved and an easier device setting stimulated the present dosimetric study. The brachytherapy with Ir{sup 192} was simulated through the development of a computerized digital voxels phantom, which represented the breast anatomy. The Monte Carlo Code (MCNP {sup TM}, 1977) was used to evaluate the radiation of the tumor bed and health tissues. Results from simulations shows, as example, an amount of radiation absorbed by the tumor bed of 11.30 Gy up to 5 mm around the balloon surface. Radiation selectivity is also shown, in which tumour bed absorbed more radiation than the surrounding tissues, whose maximum values were: skin (6.73 Gy), muscle (7.69 Gy), and lung (3.02 Gy), for a fifteen-minute exposure of a Ir-152 source. The simulation results are presented. Reliability of this radiotherapy technique as a postoperative booster in early breast cancer is presented and confirmed in this work. (author)

  15. Aspects of the application of complementary brachytherapy for early invasive breast cancer

    International Nuclear Information System (INIS)

    Homma, L.A.H.; Universidade Federal de Minas Gerais; Campos, T.P.R.; Silva, S.Z.C.; Lima, C.F.

    2007-01-01

    Initial studies of brachytherapy with the 'Mammosite Radiation Therapy System', a device consisted by a catheter centered inside a inflate balloon, to perform breast brachytherapy was revised. A high activity source was applied into the balloon, exposing to the tumor bed to a high absorbed dose, while the surrounding areas receives one reduced by to a factor 1/r 2 , during a short interval of time. The high acute dose provides a booster to conventional radiation therapy, resulting in a better local control. The acceptable esthetic impact achieved and an easier device setting stimulated the present dosimetric study. The brachytherapy with Ir 192 was simulated through the development of a computerized digital voxels phantom, which represented the breast anatomy. The Monte Carlo Code (MCNP TM , 1977) was used to evaluate the radiation of the tumor bed and health tissues. Results from simulations shows, as example, an amount of radiation absorbed by the tumor bed of 11.30 Gy up to 5 mm around the balloon surface. Radiation selectivity is also shown, in which tumour bed absorbed more radiation than the surrounding tissues, whose maximum values were: skin (6.73 Gy), muscle (7.69 Gy), and lung (3.02 Gy), for a fifteen-minute exposure of a Ir-152 source. The simulation results are presented. Reliability of this radiotherapy technique as a postoperative booster in early breast cancer is presented and confirmed in this work. (author)

  16. Manufacture and evaluation of 3-dimensional printed sizing tools for use during intraoperative breast brachytherapy

    Directory of Open Access Journals (Sweden)

    Joshua M. Walker, MD, PhD

    2016-04-01

    Full Text Available Three-dimensional (3D printing has emerged as a promising modality for the production of medical devices. Here we describe the design, production, and implementation of a series of sizing tools for use in an intraoperative breast brachytherapy program. These devices were produced using a commercially available low-cost 3D printer and software, and their implementation resulted in an immediate decrease in consumable costs without affecting the quality of care or the speed of delivery. This work illustrates the potential of 3D printing to revolutionize the field of medical devices, enabling physicians to rapidly develop and prototype novel tools.

  17. Does immediate postoperative brachytherapy allow to broaden the indications of conservative treatment in breast cancer?

    International Nuclear Information System (INIS)

    Floiras, J.L.

    1998-01-01

    A 1997 study of long-term outcomes in 109 patients with unilateral stage I or II breast cancer treated by brachytherapy between 1983 and 1985 found significantly lower recurrence rates than in a conservatively-treated group of patients managed at the same institution. The benefits of brachytherapy, of a booster dose after after surgery, and of adjuvant medical therapy are emphasized. (author)

  18. Surgical perspectives from a prospective, nonrandomized, multicenter study of breast conserving surgery and adjuvant electronic brachytherapy for the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Beatty J David

    2011-03-01

    Full Text Available Abstract Background Accelerated partial breast irradiation (APBI may be used to deliver radiation to the tumor bed post-lumpectomy in eligible patients with breast cancer. Patient and tumor characteristics as well as the lumpectomy technique can influence patient eligibility for APBI. This report describes a lumpectomy procedure and examines patient, tumor, and surgical characteristics from a prospective, multicenter study of electronic brachytherapy. Methods The study enrolled 65 patients of age 45-84 years with ductal carcinoma or ductal carcinoma in situ, and 44 patients, who met the inclusion and exclusion criteria, were treated with APBI using the Axxent® electronic brachytherapy system following lumpectomy. The prescription dose was 34 Gy in 10 fractions over 5 days. Results The lumpectomy technique as described herein varied by site and patient characteristics. The balloon applicator was implanted by the surgeon (91% or a radiation oncologist (9% during or up to 61 days post-lumpectomy (mean 22 days. A lateral approach was most commonly used (59% for insertion of the applicator followed by an incision site approach in 27% of cases, a medial approach in 5%, and an inferior approach in 7%. A trocar was used during applicator insertion in 27% of cases. Local anesthetic, sedation, both or neither were administered in 45%, 2%, 41% and 11% of cases, respectively, during applicator placement. The prescription dose was delivered in 42 of 44 treated patients. Conclusions Early stage breast cancer can be treated with breast conserving surgery and APBI using electronic brachytherapy. Treatment was well tolerated, and these early outcomes were similar to the early outcomes with iridium-based balloon brachytherapy.

  19. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  20. Combined anti-tumor therapeutic effect of targeted gene, hyperthermia, radionuclide brachytherapy in breast carcinoma

    International Nuclear Information System (INIS)

    Chen Daozhen; Tang Qiusha; Xiang Jingying; Xu Fei; Zhang Li; Wang Junfeng

    2011-01-01

    Objective: To investigate the antitumor therapeutic effect of combined therapy of magnetic induction heating by nano-magnetic particles, herpes simplex virus thymidine kinase gene (HSV-tk suicide gene) and internal radiation in mice bearing MCF-7 breast carcinoma. Methods: The transfection reagents, plasmids heat shock protein-HSV-tk (pHSP-HSV-tk), ferroso-ferric oxide nano-magnetic fluid flow and 188 Re-ganciclovir-bovine serum albumin-nanopaticles (GCV-BSA-NP) were prepared. The heating experiments in vivo were carried out using ferroso-ferric oxide nano-magnetic fluid flow. Sixty mice tumor models bearing MCF-7 breast carcinoma were established and randomly divided into six groups. Group A was the control group, B was gene transfection therapy group, C was hyperthermia group, D was gene transfection therapy combined with radionuclide brachytherapy group, E was gene therapy combined with hyperthermia group, and F was gene therapy, hyperthermia combined with radionuclide brachytherapy group. The tumor growth, tumor mass and histopathological changes were evaluated. The expression of HSV-tk in the groups of B, D, E and F was detected by RT-PCR. Poisson distribution and one-way analysis of variance (ANOVA) were used for statistical analysis by SPSS 10.0 software. Results: In the animal heating experiments, the temperature of tumor increased up to 39.6 degree C, 43.2 degree C, and 48.1 degree C quickly with different injected doses (2, 4 and 6 mg respectively) of nano-magnetic particles and maintained for 40 min. The temperature of tumor tissue reduced to 36.8 degree C, 37.5 degree C and 37.8 degree C in 10 min when alternating magnetic field (AMF) stopped. The tumor mass in Groups C ((452.50±30.29) mg), D ((240.98±35.32)mg), E((231.87±27.41) mg) and F ((141.55±23.78) mg) were much lower than that in Group A ((719.12±22.65) mg) (F=800.07, P<0.01), with the most significant treatment effect in Group F.The tumor mass in Group B((684.05±24.02) mg) was higher than

  1. A Phase II Trial of Brachytherapy Alone After Lumpectomy for Select Breast Cancer: Tumor Control and Survival Outcomes of RTOG 95-17

    International Nuclear Information System (INIS)

    Arthur, Douglas W.; Winter, Kathryn; Kuske, Robert R.; Bolton, John; Rabinovitch, Rachel; White, Julia; Hanson, William F.; Wilenzick, Raymond M.; McCormick, Beryl

    2008-01-01

    Purpose: Radiation Therapy Oncology Group 95-17 is a prospective Phase II cooperative group trial of accelerated partial breast irradiation (APBI) alone using multicatheter brachytherapy after lumpectomy in select early-stage breast cancers. Tumor control and survival outcomes are reported. Methods and Materials: Eligibility criteria included Stage I/II breast carcinoma confirmed to be <3 cm, unifocal, invasive nonlobular histology with zero to three positive axillary nodes without extracapsular extension. APBI treatment was delivered with either low-dose-rate (LDR) (45 Gy in 3.5-5 days) or high-dose-rate (HDR) brachytherapy (34 Gy in 10 twice-daily fractions over 5 days). End points evaluated included in-breast control, regional control, mastectomy-free rate, mastectomy-free survival, disease-free survival, and overall survival. The study was designed to analyze the HDR and LDR groups separately and without comparison. Results: Between 1997 and 2000, 100 patients were accrued and 99 were eligible; 66 treated with HDR brachytherapy and 33 treated with LDR brachytherapy. Eighty-seven patients had T1 lesions and 12 had T2 lesions. Seventy-nine were pathologically N0 and 20 were N1. Median follow-up in the HDR group is 6.14 years with the 5-year estimates of in-breast, regional, and contralateral failure rates of 3%, 5%, and 2%, respectively. The LDR group experienced similar results with a median follow-up of 6.22 years. The 5-year estimates of in-breast, regional, and contralateral failure rates of 6%, 0%, and 6%, respectively. Conclusion: Patients treated with multicatheter partial breast brachytherapy in this trial experienced excellent in-breast control rates and overall outcome that compare with reports from APBI studies with similar extended follow-up

  2. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-01-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  3. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    White, Shane A.; Landry, Guillaume; Reniers, Brigitte, E-mail: brigitte.reniers@maastro.nl [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN (Netherlands); Fonseca, Gabriel Paiva [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, The Netherlands and Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo CP 11049, 05422-970 (Brazil); Holt, Randy; Rusch, Thomas [Xoft, A Subsidiary of iCAD, Sunnyvale, California 94085-4115 (United States); Beaulieu, Luc [Centre Hospitalier Universitaire de Québec Université Laval, Radio-Oncologie et Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R 2J6 Canada (Canada); Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, The Netherlands and Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2014-06-15

    Purpose: The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. Methods: A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (D{sub w,m}) and dose to medium (D{sub m,m}), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. Results: All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D{sub 90} to PTV was reduced by between ∼4% and ∼40%, depending on the

  4. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  5. Evaluation of axillary dose coverage following whole breast radiotherapy: Variation with the breast volume and shape

    International Nuclear Information System (INIS)

    Aguiar, Artur; Gomes Pereira, Helena; Azevedo, Isabel; Gomes, Luciano

    2015-01-01

    Objective: To evaluate the axillary dose coverage in patients treated with tridimensional whole breast radiotherapy (3D-WBRT), according to the breast volume and shape in treatment position. Background: Several studies have demonstrated an insufficient dose contribution to the axillary levels, using 3D-WBRT, remaining unclear whether the breast volume and shape can influence it. Materials and methods: We retrospectively delineated the axillary levels on planning CT-images of 100 patients, treated with 3D-WBRT along 2012 in our institution. To estimate the shape we established an anatomic CT-based interval, defined as the Thoracic Extent (TE). The breast volume matched its CTV. Mean dose levels and V95 (volume receiving at least 95% of the prescribed dose) were evaluated. Results: Mean axillary level I (A1), II (A2) and III (A3) volume was 56.1 cc, 16.5 cc and 18.9 cc, respectively, and mean doses were 43.9 Gy, 38.6 Gy and 19.5 Gy. For breast volumes of <800 cc, 800–999 cc, 1000–1199 cc and >1200 cc, mean A1 V95 was 38%, 51%, 61.2% and 57.2% whereas median A2 V95 was 8.3%, 13.4%, 19.4% and 28% respectively. Regarding shape, where the breast relative position to the TE was categorized in intervals between 31% and 40%, 41% and 50%, 51% and 60%, and 61% and 70%, mean A1 V95 was 38.7%, 43.1%, 51.1% and 77.3% whereas mean A2 V95 was 6.1%, 11.2%, 17.1% and 37% respectively. Conclusions: We observed inadequate dose coverage to all axillary levels, even after applying a sub-analysis accounting for different breast volumes and shapes. Although higher doses were associated with the more voluminous and pendulous breasts, axillary coverage with 3D-WBRT seems to be inefficient, regardless of the breast morphology

  6. Breast-Conservative Surgery With Close or Positive Margins: Can the Breast Be Preserved With High-Dose-Rate Brachytherapy Boost?

    International Nuclear Information System (INIS)

    Guinot, Jose Luis; Roldan, Susana; Maronas, Maria; Tortajada, Isabel; Carrascosa, Maria; Chust, Maria Luisa; Estornell, Marian; Mengual, Jose Luis; Arribas, Leoncio

    2007-01-01

    Purpose: To evaluate the likelihood of preserving the breast in women who show close or positive margins after conservative surgery for early breast carcinoma. Methods and Materials: Since 1996, 125 women with less than 5 mm or positive margins and positive separate cavity margin sampling were entered in a prospective trial with high-dose radiotherapy. A standard dose of 50 Gy to the whole breast was followed by a high-dose-rate brachytherapy application delivering 3 fractions of 4.4 Gy in 24 hours. The median follow-up was 84 months. Results: There were only seven local recurrences, with an actuarial local control rate of 95.8% at 5 years and 91.1% at 9 years. Actuarial overall and cause-specific survival rates were 92.6% and 95% at 5 years and 86.7% and 90.4% at 9 years, respectively. Late fibrosis was the most common complication, in 30% of patients, with good or excellent cosmetic results in 77%. The final result was that 95.2% of breasts were preserved. Conclusions: Close or positive-margin breast cancer can be well managed with a high-dose boost in a wide tumor bed by means of high-dose-rate brachytherapy. This technique can avoid mastectomy or poor cosmetic resection, with minimal risk of local or general failure

  7. Cosmetic results in early stage breast cancer patients with high-dose brachytherapy after conservative surgery

    International Nuclear Information System (INIS)

    Torres, Felipe; Pineda, Beatriz E

    2004-01-01

    Purpose: to reveal cosmetic results in patients at early stages of low risk breast cancer treated with partial accelerated radiotherapy using high dose rate brachytherapy. Methods and materials: from March 2001 to July 2003,14 stages l and ll breast cancer patients were treated at the Colombian national cancer institute in Bogota with conservative surgery and radiotherapy upon the tumor bed (partial accelerated radiotherapy), using interstitial implants with iridium 192 (high dose rate brachytherapy) with a dose of 32 Gys, over 4 days, at 8 fractions twice a day. Results: with an average follow up of 17.7 months, good cosmetic results were found among 71.4 % of patients and excellent results among 14.3% of patients, furthermore none of the patients neither local nor regional or distant relapses. Conclusion: among patients who suffer from breast cancer at early stages, it showed is possible to apply partial accelerated radiotherapy upon the tumor bed with high doses over 4 days with good to excellent cosmetic results

  8. The use of high-dose-rate brachytherapy alone after lumpectomy in patients with early-stage breast cancer treated with breast-conserving therapy

    International Nuclear Information System (INIS)

    Baglan, Kathy L.; Martinez, Alvaro A.; Frazier, Robert C.; Kini, Vijay R.; Kestin, Larry L.; Chen, Peter Y.; Edmundson, Greg; Mele, Elizabeth; Jaffray, David; Vicini, Frank A.

    2001-01-01

    Purpose: We present the preliminary results of our in-house protocol using outpatient high-dose-rate (HDR) brachytherapy as the sole radiation modality following lumpectomy in patients with early-stage breast cancer. Methods and Materials: Thirty-seven patients with 38 Stage I-II breast cancers received radiation to the lumpectomy cavity alone using an HDR interstitial implant with 192 Ir. A minimum dose of 32 Gy was delivered on an outpatient basis in 8 fractions of 4 Gy to the lumpectomy cavity plus a 1- to 2-cm margin over consecutive 4 days. Results: Median follow-up is 31 months. There has been one ipsilateral breast recurrence for a crude failure rate of 2.6% and no regional or distant failures. Wound healing was not impaired in patients undergoing an open-cavity implant. Three minor breast infections occurred, and all resolved with oral antibiotics. The cosmetic outcome was good to excellent in all patients. Conclusion: In selected patients with early-stage breast cancer, treatment of the lumpectomy cavity alone with outpatient HDR brachytherapy is both technically feasible and well tolerated. Early results are encouraging, however, longer follow-up is necessary before equivalence to standard whole-breast irradiation can be established and to determine the most optimal radiation therapy technique to be employed

  9. Preliminary results of a phase I/II study of HDR brachytherapy alone for T1/T2 breast cancer

    International Nuclear Information System (INIS)

    Wazer, David E.; Berle, Lisa; Graham, Roger; Chung, Maureen; Rothschild, Janice; Graves, Theresa; Cady, Blake; Ulin, Kenneth; Ruthazer, Robin; DiPetrillo, Thomas A.

    2002-01-01

    Purpose: To investigate the feasibility, toxicity, cosmetic outcome, and local control of high-dose-rate (HDR) brachytherapy alone without whole breast external beam irradiation for early-stage breast carcinoma. Methods and Materials: Between June 1997 and August 1999, 32 women diagnosed with a total of 33 AJCC Stage I/II breast carcinomas underwent surgical breast excision and postoperative irradiation using HDR brachytherapy interstitial implantation as part of a multi-institutional clinical Phase I/II protocol. Eligible patients included those with T1, T2, N0, N1 (≤3 nodes positive), and M0 tumors of nonlobular histologic features with negative surgical margins, no extracapsular lymph node extension, and a negative postexcision mammogram. Brachytherapy catheters were placed at the initial excision, reexcision, or either sentinel or full-axillary sampling. Direct visualization, surgical clips, and ultrasound and/or CT scan assisted in the delineation of the target volume, defined as the excision cavity plus a 2-cm margin. High-activity 192 Ir (3-10 Ci) was used to deliver 340 cGy/fraction, 2 fractions/d, for 5 consecutive days, to a total dose of 34 Gy to the target volume. Source position and dwell times were calculated using standard volume optimization techniques. Results: The median follow-up of all patients was 33 months, and the mean patient age was 63 years. The mean tumor size was 1.3 cm, and 55% had an extensive intraductal component. Three patients had positive axillary nodes. Two patients experienced moderate perioperative pain that required narcotic analgesics. No peri- or postoperative infections occurred. No wound healing problems and no significant skin reactions related to the implant developed. The Radiation Therapy Oncology Group late radiation morbidity scoring scheme was applied to the entire 33-case cohort. In the assessment of the skin, 30 cases were Grade 0-1 and 3 cases were Grade 2. Subcutaneous toxicity was scored as 11 patients with

  10. Impact of Insurance Status on Radiation Treatment Modality Selection Among Potential Candidates for Prostate, Breast, or Gynecologic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Stephen R. [Baylor College of Medicine, Houston, Texas (United States); Walker, Gary V. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Koshy, Matthew [Department of Radiation Oncology, The University of Chicago, Chicago, Illinois (United States); Shaitelman, Simona F.; Klopp, Ann H.; Frank, Steven J.; Pugh, Thomas J.; Allen, Pamela K. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Mahmood, Usama, E-mail: UMahmood@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2015-12-01

    Purpose: The Patient Protection and Affordable Care Act looks to expand both private and Medicaid insurance. To evaluate how these changes may affect the field of radiation oncology, we evaluated the association of insurance status with the use of brachytherapy in cancers for which this treatment technique is used. Methods and Materials: A total of 190,467 patients met the inclusion criteria, of whom 95,292 (50.0%) had breast cancer, 61,096 (32.1%) had prostate cancer, 28,194 (14.8%) had endometrial cancer, and 5885 (3.1%) had cervical cancer. A multivariate logistic regression model was used to determine the association between insurance status and receipt of brachytherapy among patients treated definitively for prostate and cervical cancer or postoperatively for breast and endometrial cancer. Results: The rates of non-Medicaid insurance were 49.9% (cervical), 85.3% (endometrial), 87.4% (breast), and 90.9% (prostate) (P<.001). In a logistic regression, patients who received radiation therapy were less likely to receive brachytherapy if they had Medicaid coverage (odds ratio [OR] 0.57, 95% confidence interval [CI] 0.53-0.61, P<.001) or did not have insurance coverage (OR 0.50, 95% CI 0.45-0.56, P<.001) compared with those with non-Medicaid insurance. On subset analysis, patients with Medicaid coverage or without insurance coverage were significantly less likely to receive brachytherapy than were those with non-Medicaid insurance for all 4 sites, except for patients with endometrial cancer. Conclusions: Despite being a cost-effective treatment modality, brachytherapy is less often used in the definitive or postoperative management of cancer in patients with Medicaid coverage or without insurance. Upcoming health policy changes resulting in the expansion of private insurance and Medicaid will likely increase access to and demand for brachytherapy.

  11. Impact of Insurance Status on Radiation Treatment Modality Selection Among Potential Candidates for Prostate, Breast, or Gynecologic Brachytherapy

    International Nuclear Information System (INIS)

    Grant, Stephen R.; Walker, Gary V.; Koshy, Matthew; Shaitelman, Simona F.; Klopp, Ann H.; Frank, Steven J.; Pugh, Thomas J.; Allen, Pamela K.; Mahmood, Usama

    2015-01-01

    Purpose: The Patient Protection and Affordable Care Act looks to expand both private and Medicaid insurance. To evaluate how these changes may affect the field of radiation oncology, we evaluated the association of insurance status with the use of brachytherapy in cancers for which this treatment technique is used. Methods and Materials: A total of 190,467 patients met the inclusion criteria, of whom 95,292 (50.0%) had breast cancer, 61,096 (32.1%) had prostate cancer, 28,194 (14.8%) had endometrial cancer, and 5885 (3.1%) had cervical cancer. A multivariate logistic regression model was used to determine the association between insurance status and receipt of brachytherapy among patients treated definitively for prostate and cervical cancer or postoperatively for breast and endometrial cancer. Results: The rates of non-Medicaid insurance were 49.9% (cervical), 85.3% (endometrial), 87.4% (breast), and 90.9% (prostate) (P<.001). In a logistic regression, patients who received radiation therapy were less likely to receive brachytherapy if they had Medicaid coverage (odds ratio [OR] 0.57, 95% confidence interval [CI] 0.53-0.61, P<.001) or did not have insurance coverage (OR 0.50, 95% CI 0.45-0.56, P<.001) compared with those with non-Medicaid insurance. On subset analysis, patients with Medicaid coverage or without insurance coverage were significantly less likely to receive brachytherapy than were those with non-Medicaid insurance for all 4 sites, except for patients with endometrial cancer. Conclusions: Despite being a cost-effective treatment modality, brachytherapy is less often used in the definitive or postoperative management of cancer in patients with Medicaid coverage or without insurance. Upcoming health policy changes resulting in the expansion of private insurance and Medicaid will likely increase access to and demand for brachytherapy.

  12. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany)

    1999-12-31

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  13. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    International Nuclear Information System (INIS)

    Kolotas, C.; Zamboglou, N.

    1998-01-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  14. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  15. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  16. Radiological response of ceramic and polymeric devices for breast brachytherapy

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Passos Ribeiro de Campos, Tarcisio

    2012-01-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: ► Radiological visibility of ceramic and polymeric devices implanted in breast phantom. ► The barium incorporation in the seed improves the radiological contrast. ► Radiological monitoring shows the position, orientation and degradation of devices. ► Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  17. Phase I/II Study Evaluating Early Tolerance in Breast Cancer Patients Undergoing Accelerated Partial Breast Irradiation Treated With the MammoSite Balloon Breast Brachytherapy Catheter Using a 2-Day Dose Schedule

    International Nuclear Information System (INIS)

    Wallace, Michelle; Martinez, Alvaro; Mitchell, Christina; Chen, Peter Y.; Ghilezan, Mihai; Benitez, Pamela; Brown, Eric; Vicini, Frank

    2010-01-01

    Purpose: Initial Phase I/II results using balloon brachytherapy to deliver accelerated partial breast irradiation (APBI) in 2 days in patients with early-stage breast cancer are presented. Materials and Methods: Between March 2004 and August 2007, 45 patients received adjuvant radiation therapy after lumpectomy with balloon brachytherapy in a Phase I/II trial delivering 2800 cGy in four fractions of 700 cGy. Toxicities were evaluated using the National Cancer Institute Common Toxicity Criteria for Adverse Events v3.0 scale and cosmesis was documented at ≥6 months. Results: The median age was 66 years (range, 48-83) and median skin spacing was 12 mm (range, 8-24). The median follow-up was 11.4 months (5.4-48 months) with 21 patients (47%) followed ≥1 year, 11 (24%) ≥2 years, and 7 (16%) ≥3 years. At <6 months (n = 45), Grade II toxicity rates were 9% radiation dermatitis, 13% breast pain, 2% edema, and 2% hyperpigmentation. Grade III breast pain was reported in 13% (n = 6). At ≥6 months (n = 43), Grade II toxicity rates were: 2% radiation dermatitis, 2% induration, and 2% hypopigmentation. Grade III breast pain was reported in 2%. Infection was 13% (n = 6) at <6 months and 5% (n = 2) at ≥6 months. Persistent seroma ≥6 months was 30% (n = 13). Fat necrosis developed in 4 cases (2 symptomatic). Rib fractures were seen in 4% (n = 2). Cosmesis was good/excellent in 96% of cases. Conclusions: Treatment with balloon brachytherapy using a 2-day dose schedule resulted acceptable rates of Grade II/III chronic toxicity rates and similar cosmetic results observed with a standard 5-day accelerated partial breast irradiation schedule.

  18. Novel Use of the Contura for High Dose Rate Cranial Brachytherapy

    International Nuclear Information System (INIS)

    Scanderbeg, Daniel J.; Alksne, John F.; Lawson, Joshua D.; Murphy, Kevin T.

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator.

  19. Exeresis and Brachytherapy as Salvage Treatment for Local Recurrence After Conservative Treatment for Breast Cancer: Results of a Ten-Year Pilot Study

    International Nuclear Information System (INIS)

    Guix, Benjamin; Lejarcegui, Jose Antonio; Tello, Jose Ignacio; Zanon, Gabriel; Henriquez, Ivan; Finestres, Fernando; Martinez, Antonio; Fernandez-Ibiza, Jaume; Quinzanos, Luis; Palombo, Pau; Encinas, Xavier; Guix, Ines

    2010-01-01

    Purpose: To analyze the long-term results of a pilot study assessing excision and brachytherapy as salvage treatment for local recurrence after conservative treatment of breast cancer. Methods and Materials: Between December 1990 and March 2001, 36 patients with breast-only recurrence less than 3 cm in diameter after conservative treatment for Stage I or II breast carcinoma were treated with local excision followed by high-dose rate brachytherapy implants (30 Gy in 12 fractions over a period of 5 days). No patient was lost to follow-up. Special attention was paid to local, regional, or distant recurrences; survival; cosmesis; and early and late side effects. Results: All patients completed treatment. During follow-up (range, 1-13 years), 8 patients presented metastases (2 regional and 6 distant) as their first site of failure, 1 had a differed local recurrence, and 1 died of the disease. Actuarial results at 10 years were as follows: local control, 89.4%; disease-free survival, 64.4%; and survival, 96.7%. Cosmetic results were satisfactory in 90.4%. No patient had Grade 3 or 4 early or late complications. Of the 11 patients followed up for at least 10 years, all but 1 still had their breast in place at the 10-year stage. Conclusions: High-dose rate brachytherapy is a safe, effective treatment for small-size, low-risk local recurrence after local excision in conservatively treated patients. The dose of 30 Gy of high-dose rate brachytherapy (12 fractions over a period of 5 days twice daily) was well tolerated. The excellent results support the use of breast preservation as salvage treatment in selected patients with local recurrence after conservative treatment for breast cancer.

  20. Time factors in breast carcinoma; Influence of delay between external irradiation and brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dubray, B; Thames, H D [Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (United States); Mazeron, J J; Simon, J M; Pechoux, C le; Calitchi, E; Otmezguine, Y; Bourgeois, J.P. le; Pierquin, B [Hopital Henri-Mondor, 94 - Creteil (France)

    1992-12-01

    From 1971-1983, 398 biopsy-proven breast adenocarcinomas (33 T[sub 1], 309 T[sub 2], 56 T[sub 3]) were treated conservatively at Hopital Henri Mondor by an initial course of external irradiation (45 Gy, 25 fractions, 5 weeks) followed by interstitial iridium-192 implant for a further 37 Gy to the tumor. The mean interval between external irradiation and brachytherapy was 5.9 weeks (S.D. 1.7, range 1-18). 77 local failures were observed at 10-148 months (median 34.5). The actuarial probabilities (S.E.) of local control at 5 and 10 years were 0.86 (0.02) and 0.74 (0.03) respectively. The follow-up for patients free of local recurrence was 4-205 months (median 95). Multivariate analysis showed an increasing probability of local failure with longer interval between external irradiation and brachytherapy (Relative Risk [RR] 1.23 [95% confidence limits: 1.07, 1.41] per week, p=0.005), and a lower risk of failure in case of complete tumor regression after external irradiation (RR 0.47 [0.25, 0.90], p=0.22), and higher brachytherapy dose rate (RR 0.13 [0.02 , 1.02] per Gy/h, p=0.053). No influence of tumor size and total dose (possibly because only limited variations in total dose were observed), or histological grading (not performed in 140 [35%] patients) was found. Because of the lack of dose-control relationship, quantification of the effects of delay between external irradiation and brachytherapy (in terms of compensatory dose) and of dose rate (Incomplete Repair Model) was not possible. The present analysis suggests that the implant dose rate should be high (but no extrapolation can be made above 1 Gy/h) or that total dose should be increased to compensate lower dose rate. However, data do not indicate how much extra dose is necessary, since no dose-control relationship was elicited. In addition, the treatment duration should remain as short as possible in order to maximize local control. (author). 23 refs., 2 figs., 3 tabs.

  1. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes.

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Feng, Steve Si Jia; van Zelst, Jan; Vreemann, Suzan; Mann, Jessica Rice; D'Orsi, Carl Joseph; Sechopoulos, Ioannis

    2017-06-01

    To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P ≤ 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first

  2. Efficacy of single-stage breast-conserving treatment using multicatheter partial breast brachytherapy evaluated by GEC-ESTRO phase 3 trial.

    Science.gov (United States)

    Sato, Kazuhiko; Fuchikami, Hiromi; Kato, Masahiro; Shimo, Takahiro; Kubota, Jun; Takeda, Naoko; Inoue, Yuko; Seto, Hiroshi; Okawa, Tomohiko

    2017-10-01

    The GEC-ESTRO has reported the equivalent outcomes of partial breast irradiation (PBI) using multicatheter interstitial brachytherapy (MCB) to whole breast irradiation (WBI) in breast-conserving therapy (BCT). We performed single-stage BCT with partial breast brachytherapy by intraoperative catheter placement. After the categorization of patients into inclusion and exclusion criteria on this trial, our databases were evaluated in order to translate it to Japanese patients. Patients undergoing BCT were retrospectively examined between November 2007 and December 2015. The technique is an open-cavity implant with a dose of 32 Gy in 8 fractions. The 4-year clinical outcomes of MCB-PBI were evaluated in the 2 distinct categories, and the comparison of the outcomes of MCB-PBI with WBI was performed in patients with unfavorable features. Of a total of 501 lesions undergoing BCT, 301 lesions were treated with MCB-PBI and 200 lesions with WBI. At the median follow-up time of 52 months, the 4-year rate of ipsilateral breast tumor recurrence (IBTR)-free, disease-free (DFS), and overall survival (OS) in patients with MCB-PBI and WBI were 98.9% vs. 98.0% ( p = 0.56), 97.0% vs. 95.3% ( p = 0.78), and 99.6% vs. 98.2% ( p = 0.38), respectively. Although in exclusion cohort treated with MCB-PBI, IBTR-free, and disease-free survival were significantly worse than in inclusion cohort, non-significantly worse outcomes was demonstrated than in exclusion cohort with WBI; IBTR-free survival (95.0% vs. 97.2%, p = 0.24), and disease-free survival (95.0% vs. 95.8%, p = 0.31). Single-stage BCT using MCB-PBI offered similar tumor control rates compering to WBI. However, further research is needed to define the benefit for patients with an exclusion criteria.

  3. Cosmetic Analysis Following Breast-Conserving Surgery and Adjuvant High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer: A Prospective Clinical Study

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd; Margenthaler, Julie A.; Naughton, Michael; Aft, Rebecca; Gillanders, William E.; Eberlein, Timothy; Matesa, Melissa A.; Zoberi, Imran

    2013-01-01

    Purpose: To prospectively evaluate cosmetic outcomes in women treated with accelerated partial breast irradiation using high-dose-rate interstitial brachytherapy for early-stage breast cancer. Methods and Materials: Between 2004 and 2008, 151 patients with early-stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients had stage Tis-T2 tumors of ≤3 cm that were excised with negative margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. Both the patients and the treating radiation oncologist qualitatively rated cosmesis as excellent, good, fair, or poor over time and ascribed a cause for changes in cosmesis. Cosmetic outcome was evaluated quantitatively by percentage of breast retraction assessment (pBRA). Patients also reported their satisfaction with treatment over time. Results: Median follow-up was 55 months. The rates of excellent-to-good cosmesis reported by patients and the treating radiation oncologist were 92% and 97% pretreatment, 91% and 97% at 3 to 4 months' follow-up, 87% and 94% at 2 years, and 92% and 94% at 3 years, respectively. Breast infection and adjuvant chemotherapy were independent predictors of a fair-to-poor cosmetic outcome at 3 years. Compared to pretreatment pBRA (7.35), there was no significant change in pBRA over time. The volume receiving more than 150 Gy (V150) was the only significant predictor of pBRA. The majority of patients (86.6%) were completely satisfied with their treatment. Conclusions: Patients and the treating physician reported a high rate of excellent-to-good cosmetic outcomes at all follow-up time points. Acute breast infection and chemotherapy were associated with worse cosmetic outcomes. Multicatheter interstitial brachytherapy does not significantly change breast size as measured by pBRA

  4. Cosmetic Analysis Following Breast-Conserving Surgery and Adjuvant High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer: A Prospective Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Margenthaler, Julie A. [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Naughton, Michael [Department of Medicine, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Aft, Rebecca [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Department of Surgery, John Cochran Veterans Hospital, St. Louis, Missouri (United States); Gillanders, William E.; Eberlein, Timothy [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Matesa, Melissa A. [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Zoberi, Imran, E-mail: izoberi@radonc.wustl.edu [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-03-15

    Purpose: To prospectively evaluate cosmetic outcomes in women treated with accelerated partial breast irradiation using high-dose-rate interstitial brachytherapy for early-stage breast cancer. Methods and Materials: Between 2004 and 2008, 151 patients with early-stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients had stage Tis-T2 tumors of ≤3 cm that were excised with negative margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. Both the patients and the treating radiation oncologist qualitatively rated cosmesis as excellent, good, fair, or poor over time and ascribed a cause for changes in cosmesis. Cosmetic outcome was evaluated quantitatively by percentage of breast retraction assessment (pBRA). Patients also reported their satisfaction with treatment over time. Results: Median follow-up was 55 months. The rates of excellent-to-good cosmesis reported by patients and the treating radiation oncologist were 92% and 97% pretreatment, 91% and 97% at 3 to 4 months' follow-up, 87% and 94% at 2 years, and 92% and 94% at 3 years, respectively. Breast infection and adjuvant chemotherapy were independent predictors of a fair-to-poor cosmetic outcome at 3 years. Compared to pretreatment pBRA (7.35), there was no significant change in pBRA over time. The volume receiving more than 150 Gy (V150) was the only significant predictor of pBRA. The majority of patients (86.6%) were completely satisfied with their treatment. Conclusions: Patients and the treating physician reported a high rate of excellent-to-good cosmetic outcomes at all follow-up time points. Acute breast infection and chemotherapy were associated with worse cosmetic outcomes. Multicatheter interstitial brachytherapy does not significantly change breast size as measured by pBRA.

  5. Objective models of compressed breast shapes undergoing mammography

    Science.gov (United States)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  6. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  7. Objective models of compressed breast shapes undergoing mammography

    International Nuclear Information System (INIS)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  8. SU-F-T-60: A Quick Dose Calculation Check for Accuboost Breast Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Cancer Treatment Center of America, Tulsa, OK (United States)

    2016-06-15

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually entered into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.

  9. Novel use of the Contura for high dose rate cranial brachytherapy.

    Science.gov (United States)

    Scanderbeg, Daniel J; Alksne, John F; Lawson, Joshua D; Murphy, Kevin T

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant.

    Science.gov (United States)

    Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F

    2009-05-01

    A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100

  11. Validation of a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de Physique, de Génie Physique et d’optique et Centre de Recherche sur le Cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-oncologie et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Gardi, Lori; Barker, Kevin; Montreuil, Jacques; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada)

    2015-12-15

    Purpose: In current clinical practice, there is no integrated 3D ultrasound (3DUS) guidance system clinically available for breast brachytherapy. In this study, the authors present a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial high dose rate (HDR) brachytherapy treatment. Methods: For this work, a new computer controlled robotic 3DUS system was built to perform a hybrid motion scan, which is a combination of a 6 cm linear translation with a 30° rotation at both ends. The new 3DUS scanner was designed to fit on a modified Kuske assembly, keeping the current template grid configuration but modifying the frame to allow the mounting of the 3DUS system at several positions. A finer grid was also tested. A user interface was developed to perform image reconstruction, semiautomatic segmentation of the surgical bed as well as catheter reconstruction and tracking. A 3D string phantom was used to validate the geometric accuracy of the reconstruction. The volumetric accuracy of the system was validated with phantoms using magnetic resonance imaging (MRI) and computed tomography (CT) images. In order to accurately determine whether 3DUS can effectively replace CT for treatment planning, the authors have compared the 3DUS catheter reconstruction to the one obtained from CT images. In addition, in agarose-based phantoms, an end-to-end procedure was performed by executing six independent complete procedures with both 14 and 16 catheters, and for both standard and finer Kuske grids. Finally, in phantoms, five end-to-end procedures were performed with the final CT planning for the validation of 3DUS preplanning. Results: The 3DUS acquisition time is approximately 10 s. A paired Student t-test showed that there was no statistical significant difference between known and measured values of string separations in each direction. Both MRI and CT volume measurements were not statistically different from 3DUS volume (Student t-test: p > 0

  12. Assessment of dose homogeneity in conformal interstitial breast brachytherapy with special respect to ICRU recommendations

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2011-09-01

    Full Text Available Purpose: To present the results of dose homogeneity analysis for breast cancer patients treated with image-basedconformal interstitial brachytherapy, and to investigate the usefulness of the ICRU recommendations. Material and methods: Treatment plans of forty-nine patients who underwent partial breast irradiation with interstitialbrachytherapy were analyzed. Quantitative parameters were used to characterize dose homogeneity. Dose nonuniformityratio (DNR, dose homogeneity index (DHI, uniformity index (UI and quality index (QI were calculated.Furthermore, parameters recommended by the ICRU 58 such as minimum target dose (MTD, mean central dose (MCD,high dose volume, low dose volume and the spread between local minimum doses were determined. Correlationsbetween the calculated homogeneity parameters and usefulness of the ICRU parameters in image-based brachytherapywere investigated. Results: Catheters with mean number of 15 (range: 6-25 were implanted in median 4 (range: 3-6 planes. The volu -me of the PTV ranged from 15.5 cm3 to 176 cm3. The mean DNR was 0.32, the DHI 0.66, the UI 1.49 and the QI 1.94. Relatedto the prescribed dose, the MTD was 69% and the MCD 135%. The mean high dose volume was 8.1 cm3 (10%, whilethe low dose volume was 63.8 cm3 (96%. The spread between minimum doses in central plane ranged from –14% to+20%. Good correlation was found between the DNR and the DHI (R2 = 0.7874, and the DNR correlated well with theUI (R2 = 0.7615 also. No correlation was found between the ICRU parameters and any other volumetric parameters. Conclusions: To characterize the dose uniformity in high-dose rate breast implants, DVH-related homogeneityparameters representing the full 3D dose distributions are mandatory to be used. In many respects the current re commendationsof the ICRU Report 58 are already outdated, and it is well-timed to set up new recommendations, whichare more feasible for image-guided conformal interstitial brachytherapy.

  13. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Han, D [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  14. Clinically evident fat necrosis in women treated with high-dose-rate brachytherapy alone for early-stage breast cancer

    International Nuclear Information System (INIS)

    Wazer, David E.; Lowther, David; Boyle, Teresa; Ulin, Kenneth; Neuschatz, Andrew; Ruthazer, Robin; DiPetrillo, Thomas A.

    2001-01-01

    Purpose: To investigate the incidence of and variables associated with clinically evident fat necrosis in women treated on a protocol of high-dose-rate (HDR) brachytherapy alone without external-beam whole-breast irradiation for early-stage breast carcinoma. Methods and Materials: From 6/1997 until 8/1999, 30 women diagnosed with Stage I or II breast carcinoma underwent surgical excision and postoperative irradiation via HDR brachytherapy implant as part of a multi-institutional clinical Phase I/II protocol. Patients eligible included those with T1, T2, N0, N1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular lymph-node extension, and a negative postexcision mammogram. Brachytherapy catheters were placed at the initial excision, re-excision, or at the time of axillary sampling. Direct visualization, surgical clips, ultrasound, or CT scans assisted in delineating the target volume defined as the excision cavity plus 2-cm margin. High activity 192 Ir (3-10 Ci) was used to deliver 340 cGy per fraction, 2 fractions per day, for 5 consecutive days to a total dose of 34 Gy to the target volume. Source position and dwell times were calculated using standard volume optimization techniques. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. The median follow-up of all patients was 24 months (range, 12-36 months). Results: Eight patients (crude incidence of 27%) developed clinically evident fat necrosis postimplant in the treated breast. Fat necrosis was determined by clinical presentation including pain and swelling in the treated volume, computed tomography, and/or biopsy. All symptomatic patients (7 of 8 cases) were successfully treated with 3 to 12 months of conservative management. Continuous variables that were found to be associated significantly with fat necrosis included the number of source dwell positions (p=0.04), and the volume of tissue which received

  15. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    International Nuclear Information System (INIS)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O.

    2011-01-01

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  16. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2011-08-15

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  17. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A. [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Deshields, Teresa L. [Department of Medicine, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Margenthaler, Julie A.; Cyr, Amy E. [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Naughton, Michael [Department of Medicine, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Aft, Rebecca [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Department of Surgery, John Cochran Veterans Hospital, St. Louis, Missouri (United States); Gillanders, William E.; Eberlein, Timothy [Department of Surgery, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Matesa, Melissa A.; Ochoa, Laura L. [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States); Zoberi, Imran, E-mail: izoberi@radonc.wustl.edu [Department of Radiation Oncology, Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-12-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.

  18. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A.; Deshields, Teresa L.; Margenthaler, Julie A.; Cyr, Amy E.; Naughton, Michael; Aft, Rebecca; Gillanders, William E.; Eberlein, Timothy; Matesa, Melissa A.; Ochoa, Laura L.; Zoberi, Imran

    2013-01-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment

  19. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  20. Accurate localization of intracavitary brachytherapy applicators from 3D CT imaging studies

    International Nuclear Information System (INIS)

    Lerma, F.A.; Williamson, J.F.

    2002-01-01

    Purpose: To present an accurate method to identify the positions and orientations of intracavitary (ICT) brachytherapy applicators imaged in 3D CT scans, in support of Monte Carlo photon-transport simulations, enabling accurate dose modeling in the presence of applicator shielding and interapplicator attenuation. Materials and methods: The method consists of finding the transformation that maximizes the coincidence between the known 3D shapes of each applicator component (colpostats and tandem) with the volume defined by contours of the corresponding surface on each CT slice. We use this technique to localize Fletcher-Suit CT-compatible applicators for three cervix cancer patients using post-implant CT examinations (3 mm slice thickness and separation). Dose distributions in 1-to-1 registration with the underlying CT anatomy are derived from 3D Monte Carlo photon-transport simulations incorporating each applicator's internal geometry (source encapsulation, high-density shields, and applicator body) oriented in relation to the dose matrix according to the measured localization transformations. The precision and accuracy of our localization method are assessed using CT scans, in which the positions and orientations of dense rods and spheres (in a precision-machined phantom) were measured at various orientations relative to the gantry. Results: Using this method, we register 3D Monte Carlo dose calculations directly onto post insertion patient CT studies. Using CT studies of a precisely machined phantom, the absolute accuracy of the method was found to be ±0.2 mm in plane, and ±0.3 mm in the axial direction while its precision was ±0.2 mm in plane, and ±0.2 mm axially. Conclusion: We have developed a novel, and accurate technique to localize intracavitary brachytherapy applicators in 3D CT imaging studies, which supports 3D dose planning involving detailed 3D Monte Carlo dose calculations, modeling source positions, shielding and interapplicator shielding

  1. Current status of brachytherapy in cancer treatment – short overview

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2017-12-01

    Full Text Available Cancer incidence and mortality depend on a number of factors, including age, socio-economic status and geographical location, and its prevalence is growing around the world. Most of cancer treatments include external beam radiotherapy or brachytherapy. Brachytherapy, a type of radiotherapy with energy from radionuclides inserted directly into the tumor, is increasingly used in cancer treatment. For cervical and skin cancers, it has become a standard therapy for more than 100 years as well as an important part of the treatment guidelines for other malignancies, including head and neck, skin, breast, and prostate cancers. Compared to external beam radiotherapy, brachytherapy has the potential to deliver an ablative radiation dose over a short period of time directly to the altered tissue area with the advantage of a rapid fall-off in dose, and consequently, sparing of adjacent organs. As a result, the patient is able to complete the treatment earlier, and the risks of occurrence of another cancer are lower than in conventional radiotherapy treatment. Brachytherapy has increased its use as a radical or palliative treatment, and become more advanced with the spread of pulsed-dose-rate and high-dose-rate afterloading machines; the use of new 3D/4D planning systems has additionally improved the quality of the treatment. The aim of the present study was to present short summaries of current studies on brachytherapy for the most frequently diagnosed tumors. Data presented in this manuscript should help especially young physicians or physicists to explore and introduce brachytherapy in cancer treatments.

  2. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  3. Patient-reported outcomes of catheter-based accelerated partial breast brachytherapy and whole breast irradiation, a single institution experience.

    Science.gov (United States)

    Jethwa, Krishan R; Kahila, Mohamed M; Mara, Kristin C; Harmsen, William S; Routman, David M; Pumper, Geralyn M; Corbin, Kimberly S; Sloan, Jeff A; Ruddy, Kathryn J; Hieken, Tina J; Park, Sean S; Mutter, Robert W

    2018-05-01

    Accelerated partial breast irradiation (APBI) and whole breast irradiation (WBI) are treatment options for early-stage breast cancer. The purpose of this study was to compare patient-reported-outcomes (PRO) between patients receiving multi-channel intra-cavitary brachytherapy APBI or WBI. Between 2012 and 2015, 131 patients with ductal carcinoma in situ (DCIS) or early stage invasive breast cancer were treated with adjuvant APBI (64) or WBI (67) and participated in a PRO questionnaire. The linear analog scale assessment (LASA), harvard breast cosmesis scale (HBCS), PRO-common terminology criteria for adverse events- PRO (PRO-CTCAE), and breast cancer treatment outcome scale (BCTOS) were used to assess quality of life (QoL), pain, fatigue, aesthetic and functional status, and breast cosmesis. Comparisons of PROs were performed using t-tests, Wilcoxon rank-sum, Chi square, Fisher exact test, and regression methods. Median follow-up from completion of radiotherapy and questionnaire completion was 13.3 months. There was no significant difference in QoL, pain, or fatigue severity, as assessed by the LASA, between treatment groups (p > 0.05). No factors were found to be predictive of overall QoL on regression analysis. BCTOS health-related QoL scores were similar between treatment groups (p = 0.52).The majority of APBI and WBI patients reported excellent/good breast cosmesis, 88.5% versus 93.7% (p = 0.37). Skin color change (p = 0.011) and breast elevation (p = 0.01) relative to baseline were more common in the group receiving WBI. APBI and WBI were both associated with favorable patient-reported outcomes in early follow-up. APBI resulted in a lesser degree of patient-reported skin color change and breast elevation relative to baseline.

  4. Evaluation of dose calculation variations between manual 2D and 3D TPS for breast carcinoma

    International Nuclear Information System (INIS)

    Goswami, Pradeep; Oinam, A.S.; Kumar, Anup; Sharma, S.C.; Rana, B.S.

    2008-01-01

    The anatomy of breast varies in a complex shape. These gross variations of anatomy of intact breast and mastectomy breast pose a definite dose inhomogeniety in the chest wall being treated. 6MV photon energy from medium energy accelerator is a good choice for the treatment of lumpectomy breast (intact) as conservative management. Most of the centers use the manual 2D calculations for breast planning using the midline separation

  5. Timing of Chemotherapy After MammoSite Radiation Therapy System Breast Brachytherapy: Analysis of the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial

    International Nuclear Information System (INIS)

    Haffty, Bruce G.; Vicini, Frank A.; Beitsch, Peter; Quiet, Coral; Keleher, Angela; Garcia, Delia; Snider, Howard; Gittleman, Mark; Zannis, Victor; Kuerer, Henry; Whitacre, Eric; Whitworth, Pat; Fine, Richard; Keisch, Martin

    2008-01-01

    Purpose: To evaluate cosmetic outcome and radiation recall in the American Society of Breast Surgeons registry trial, as a function of the interval between accelerated partial breast irradiation (APBI) and initiation of chemotherapy (CTX). Methods and Materials: A total of 1440 patients at 97 institutions participated in this trial. After lumpectomy for early-stage breast cancer, patients received APBI (34 Gy in 10 fractions) with MammoSite RTS brachytherapy. A total of 148 patients received CTX within 90 days of APBI. Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good or fair/poor. Results: Chemotherapy was initiated at a mean of 3.9 weeks after the final MammoSite procedure and was administered ≤3 weeks after APBI in 54 patients (36%) and >3 weeks after APBI in 94 patients (64%). The early and delayed groups were well balanced with respect to multiple factors that may impact on cosmetic outcome. There was a superior cosmetic outcome in those receiving chemotherapy >3 weeks after APBI (excellent/good in 72.2% at ≤3 weeks vs. excellent/good in 93.8% at >3 weeks; p = 0.01). Radiation recall in those receiving CTX at ≤3 weeks was 9 of 50 (18%), compared with 6 of 81(7.4%) in those receiving chemotherapy at >3 weeks (p = 0.09). Conclusion: The majority of patients receiving CTX after APBI have excellent/good cosmetic outcomes, with a low rate of radiation recall. Chemotherapy initiated >3 weeks after the final MammoSite procedure seems to be associated with a better cosmetic outcome and lower rate of radiation recall. An excellent/good cosmetic outcome in patients receiving CTX after 3 weeks was similar to the cosmetic outcome of the overall patient population who did not receive CTX

  6. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  7. [Radiologic follow-up after breast-conserving surgery: value of MRI examination of the breast].

    Science.gov (United States)

    Polgár, C; Forrai, G; Szabó, E; Riedl, E; Fodor, J; Fornet, B; Németh, G

    1999-11-21

    The aim of the study was to establish an objective method for evaluation the extent, topography and quantity of skin and soft tissue side effects after tele- and/or brachyradiotherapy of the conserved breast and to compare the sequales of different radiation methods. 26 patients operated on for T1-2 N0-1 breast cancer underwent the following kinds of postoperative radiotherapy: 1. 46-50 Gy whole breast teletherapy + 10-16 Gy electron boost (5 patients), 2. 46-50 Gy teletherapy + 10-15 Gy HDR brachytherapy boost (12 patients), 3. 46-50 Gy teletherapy (6 patients), 4. 36,4 Gy sole HDR brachytherapy of the tumour bed (5 patients). The postirradiation side effects were examined by MRI, mammogram, US and physical examination, as well. MRI was performed on a 0.5 T, double breast coil, with SE-T1, SE-T2 and 3D-GE sequences. The findings of MRI and mammography were compared to physically detectable side effects using the RTOG/EORTC late radiation morbidity scoring scheme. US is useful in the measurement of skin thickening and in the diagnosis of fat necrosis. Mammography and physical examination are very subjective and low specificity methods to evaluate postirradiation side effects. MRI is a suitable and more objective method to detect the real extent and quantity of skin thickening and fibrosis. The incidence of > or = G2 side effects of skin and breast parenchyma were 64.5 and 32.2%, respectively. The differences between the side effects of whole breast irradiation and sole brachytherapy of the tumour bed are also clearly demonstrated. Brachytherapy alone is feasible without compromising cosmetic results. The authors established the MRI criteria for categorization the extent and grade of skin thickening and fibrosis (focal vs diffuse, grade 1-4). Breast MRI is an objective tool for assisting to the evaluation of the side effects of postoperative radiotherapy.

  8. Oblique needle segmentation and tracking for 3D TRUS guided prostate brachytherapy

    International Nuclear Information System (INIS)

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    An algorithm was developed in order to segment and track brachytherapy needles inserted along oblique trajectories. Three-dimensional (3D) transrectal ultrasound (TRUS) images of the rigid rod simulating the needle inserted into the tissue-mimicking agar and chicken breast phantoms were obtained to test the accuracy of the algorithm under ideal conditions. Because the robot possesses high positioning and angulation accuracies, we used the robot as a ''gold standard,'' and compared the results of algorithm segmentation to the values measured by the robot. Our testing results showed that the accuracy of the needle segmentation algorithm depends on the needle insertion distance into the 3D TRUS image and the angulations with respect to the TRUS transducer, e.g., at a 10 deg. insertion anglulation in agar phantoms, the error of the algorithm in determining the needle tip position was less than 1 mm when the insertion distance was greater than 15 mm. Near real-time needle tracking was achieved by scanning a small volume containing the needle. Our tests also showed that, the segmentation time was less than 60 ms, and the scanning time was less than 1.2 s, when the insertion distance into the 3D TRUS image was less than 55 mm. In our needle tracking tests in chicken breast phantoms, the errors in determining the needle orientation were less than 2 deg. in robot yaw and 0.7 deg. in robot pitch orientations, for up to 20 deg. needle insertion angles with the TRUS transducer in the horizontal plane when the needle insertion distance was greater than 15 mm

  9. Toxicity and cosmetic result of partial breast high-dose-rate interstitial brachytherapy for conservatively operated early breast cancer

    International Nuclear Information System (INIS)

    Xiu Xia; Tripuraneni Prabhakar; Giap Huan; Lin Ray; Chu Colin

    2007-01-01

    Objective: Objective To study the method, side effects and cosmetic outcome of high- dose-rate (HDR) accelerated partial breast interstitial irradiation (APBI) alone in early stage breast cancer' after conservative surgery. Methods: From February 2002 to June 2003,47 breast cancer lesions from 46 patients suffering from stage I/II breast cancer were treated with HDR 192 Ir APBI after conservative surgery. All patients were over 40 year-old, with T1-2N0-1 (≤3 lymph nodes positive), surgical margin > 1-2 mm, but those having lobular or inflammatory breast cancer were excluded. HDR brachytherapy with 34 Gy, 10 fractions/5 days was used after surgery, toxic reaction and cosmetic outcome were observed in one month, 6 and 12 months respectively. Results: Follow up of 1846 months, 34 months was carried out for the whole group. During the treatment, acute reactions including: erythema, edema, tenderness and infection, all under I-II grade, none of III-IV grade were observed in 21 patients(46%); late toxicity reactions: skin fibrosis, breast tenderness, fat necrosis, and telangiectasia, totally 20 patients (43%) were observed: 2 patients in III grade but one patient received 6 cycle chemotherapy. The result of cosmetic outcome evaluation was excellent or good, at 6 months 95% and 12 months 98%, respectively, but there was no recurfence. Conclusions: Excellent and favorable cosmetic results are noted after APBI by interstitial alone. Acute and late reactions are few. Long term observation is necessary for the rate of' local control. (authors)

  10. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  11. Clinical experience with the MammoSite[reg] radiation therapy system for brachytherapy of breast cancer: Results from an international phase II trial

    International Nuclear Information System (INIS)

    Niehoff, Peter; Polgar, Csaba; Ostertag, Horst; Major, Tibor; Sulyok, Zoltan; Kimmig, Bernhard; Kovacs, Gyoergy

    2006-01-01

    Background and purpose: In a prospective multi-center phase II trial, we investigated the MammoSite[reg] Radiation Therapy System, a new device for delivering intracavitary brachytherapy following breast conserving surgery. The MammoSite[reg] is a dual lumen, closed ended catheter with a small, spherical inflatable balloon and a port for connecting a remote afterloader to the central lumen. We analyzed the surgical procedure and placement of the MammoSite[reg], treatment planning and radiation delivery complications and cosmesis, as well the comfort for the patients. Patients and methods: Between 2002 and 2004 a total of 32 patients (pts) were implanted using the MammoSite[reg]. The reference isodose was defined 1 cm from the balloon surface. We analyzed the post-implant anatomic position of the applicator and the geometric form of the balloon via ultrasound, CT and X-ray, related side effects, cosmetic outcome and patient quality of life. Results: Twenty-three out of 32 patients (72%) were eligible for MammoSite[reg] intracavitary brachytherapy. Twenty-eight percentage had to be excluded because of different reasons. Eleven patients were treated with primary brachytherapy with a total dose of 34 Gy (2x3.4 Gy) and 12 had a boost with a mean dose of 13.3 Gy (range: 7.5-15 Gy; 2x2.5 Gy) combined with EBRT and doses ranged between 46 and 50 Gy. In three cases a balloon rupture occurred. We observed two abscesses within 3 months of implantation and serious seroma development in 10 patients (39%). Skin related side effects were erythema in 21 patients (91%), hyperpigmentation in 13 patients (56%) and teleangiectasia in six patients (26%) after mean follow-up 20 months. Conclusions: The MammoSite[reg] Radiation Therapy System is a feasible treatment modality for intracavitary brachytherapy of breast cancer after breast conserving surgery. The advantage of the system is only one applicator is necessary for the delivery of a fractionated radiotherapy. In addition, patient

  12. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    2016-01-01

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  13. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James [Dalhousie University, Nova Scotia Cancer Centre, Capital District Health Authority (Canada)

    2016-08-15

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  14. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study.

    Science.gov (United States)

    White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank

    2016-01-07

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  15. Long-term results from the Contura multilumen balloon breast brachytherapy catheter phase 4 registry trial.

    Science.gov (United States)

    Cuttino, Laurie W; Arthur, Douglas W; Vicini, Frank; Todor, Dorin; Julian, Thomas; Mukhopadhyay, Nitai

    2014-12-01

    To describe the long-term outcomes from a completed, multi-institutional phase 4 registry trial using the Contura multilumen balloon (CMLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer. Three hundred forty-two evaluable patients were enrolled by 23 institutions between January 2008 and February 2011. All patients received 34 Gy in 10 fractions, delivered twice daily. Rigorous target coverage and normal tissue dose constraints were observed. The median follow-up time was 36 months (range, 1-54 months). For the entire patient cohort of 342 patients, 10 patients experienced an ipsilateral breast tumor recurrence (IBTR). Eight of these IBTR were classified as true recurrences/marginal miss (TRMM), and 2 were elsewhere failures (EF). Local recurrence-free survival was 97.8% at 3 years. For the entire cohort, 88% of patients had good to excellent overall cosmesis. The overall incidence of infection was 8.5%. Symptomatic seroma was reported in only 4.4% of patients. A separate analysis was performed to determine whether improved outcomes would be observed for patients treated at high-volume centers with extensive brachytherapy experience. Three IBTR were observed in this cohort, only 1 of which was classified as a TRMM. Local recurrence-free survival at high-volume centers was 98.1% at 3 years. Overall cosmetic outcome and toxicity were superior in patients treated at high-volume centers. In these patients, 95% had good to excellent overall cosmesis. Infection was observed in only 2.9% of patients, and symptomatic seroma was reported in only 1.9%. Use of the CMLB for APBI delivery is associated with acceptable long-term local control and toxicity. Local recurrence-free survival was 97.8% at 3 years. Significant (grade 3) toxicity was uncommon, and no grade 4 toxicity was observed. Treatment at high-volume centers was associated with decreased late toxicity. Copyright © 2014 Elsevier Inc

  16. Long-Term Results From the Contura Multilumen Balloon Breast Brachytherapy Catheter Phase 4 Registry Trial

    Energy Technology Data Exchange (ETDEWEB)

    Cuttino, Laurie W., E-mail: lcuttino@mcvh-vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Vicini, Frank [Michigan Healthcare Professionals/21st Century Onoclogy, Farmington Hills, Michigan (United States); Todor, Dorin [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Julian, Thomas [Allegheny Hospital, Temple School of Medicine, Pittsburgh, Pennsylvania (United States); Mukhopadhyay, Nitai [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States)

    2014-12-01

    Purpose: To describe the long-term outcomes from a completed, multi-institutional phase 4 registry trial using the Contura multilumen balloon (CMLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer. Methods and Materials: Three hundred forty-two evaluable patients were enrolled by 23 institutions between January 2008 and February 2011. All patients received 34 Gy in 10 fractions, delivered twice daily. Rigorous target coverage and normal tissue dose constraints were observed. Results: The median follow-up time was 36 months (range, 1-54 months). For the entire patient cohort of 342 patients, 10 patients experienced an ipsilateral breast tumor recurrence (IBTR). Eight of these IBTR were classified as true recurrences/marginal miss (TRMM), and 2 were elsewhere failures (EF). Local recurrence-free survival was 97.8% at 3 years. For the entire cohort, 88% of patients had good to excellent overall cosmesis. The overall incidence of infection was 8.5%. Symptomatic seroma was reported in only 4.4% of patients. A separate analysis was performed to determine whether improved outcomes would be observed for patients treated at high-volume centers with extensive brachytherapy experience. Three IBTR were observed in this cohort, only 1 of which was classified as a TRMM. Local recurrence-free survival at high-volume centers was 98.1% at 3 years. Overall cosmetic outcome and toxicity were superior in patients treated at high-volume centers. In these patients, 95% had good to excellent overall cosmesis. Infection was observed in only 2.9% of patients, and symptomatic seroma was reported in only 1.9%. Conclusion: Use of the CMLB for APBI delivery is associated with acceptable long-term local control and toxicity. Local recurrence-free survival was 97.8% at 3 years. Significant (grade 3) toxicity was uncommon, and no grade 4 toxicity was observed. Treatment at high-volume centers was associated

  17. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    International Nuclear Information System (INIS)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil

    2014-01-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate 192 Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy applicators and

  18. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  19. Optimal application of the Contura multilumen balloon breast brachytherapy catheter vacuum port to deliver accelerated partial breast irradiation.

    Science.gov (United States)

    Tokita, Kenneth M; Cuttino, Laurie W; Vicini, Frank A; Arthur, Douglas W; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    The impact of using the Contura multilumen balloon (MLB) (SenoRx, Inc., Irvine, CA) breast brachytherapy catheter's vacuum port in patients treated with accelerated partial breast irradiation (APBI) was analyzed. Data from 32 patients at two sites were reviewed. Variables analyzed included the seroma fluid (SF):air volume around the MLB before and after vacuum port use and on its ability to improve (1) the eligibility of patients for APBI and (2) dose coverage of the planning target volume for evaluation (PTV_EVAL) in eligible patients. The median SF/air volume before vacuum removal was 6.8 cc vs. 0.8 cc after vacuum removal (median reduction in SF/air volume was 90.5%). Before vacuum port use, the median SF/air volume expressed as percentage of the PTV_EVAL was 7.8% (range, 1.9-26.6) in all patients. After application of the vacuum, this was reduced to 1.2%. Before vacuum port use, 10 (31.3%) patients were not considered acceptable candidates for APBI because the SF/air volume:PTV_EVAL ratio (SF:PTV) was greater than 10% (range, 10.1-26.6%; median, 15.2%). After vacuum port use, the median SF:PTV ratio was 1.6% for a median reduction of 91.5%. In addition, the percentage of the prescribed dose covering greater than or equal to 90% of the PTV_EVAL proportionally increased a median of 8% (range, 3-10%) in eligible patients. Use of the Contura MLB vacuum port significantly improved the conformity of the target tissue to the balloon surface, leading to reproducible dose delivery and increased target volume coverage. In addition, application of the vacuum allowed the safe treatment of unacceptable patients with APBI. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Ceramic and polymeric devices for breast brachytherapy - Mammographic and CT response

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2009-01-01

    The present research investigates the radiological visibility of ceramic and polymeric devices implanted in breast phantom (in vitro) for future applications in brachytherapy treatments. The main research goal is to investigate the viability of monitoring ceramic and polymeric devices, in vitro based on simple methods of radiological diagnostic, maintaining the easiest access to the population, represented by the conventional X-ray and mammography. The methodology involves the processing of ceramic devices constituted by bioglasses of Sm, SmBa, Ho, HoBa and the production of polymeric devices, such as polymeric membranes incorporating Ho e HoBa. Contrast agent of Barium was introduced in the syntheses of those devices to improve the radiological visibility in breast equivalent-tissue (TE) phantom. The breast phantom is constituted of glandular, adipose and skin TE, reproducing a 5 cm compressed real breast. In the compressed breast phantom, all types of ceramic and polymeric devices were implanted side by side. Radiological images were generated through X-ray equipment, mammography and computerized tomography (TC), for the samples implanted in the compressed breast phantom. The results show that SmBa and HoBa seeds on breast phantom presented suitable radiological visibility, on all the radiological diagnostic methods. However, the X-rays radiological visibility of Sm seeds without contrast was discreet. On mammography and TC images, it was not possible to identify those seeds, because the same ones were degraded after two months immersed in the glandular TE, after placed on the phantom. The Ho seeds were identified on all radiological diagnostic images, although non contrast agent in its constitution was added. However, the holmium polymeric membranes in direct contact with TE did not show Xray radiological visibility. However, the polymeric membranes of HoBa in the same conditions presented efficient X-rays radiological response. For mammography and TC methods

  1. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    Science.gov (United States)

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  2. 3D-navigation for interstitial stereotactic brachytherapy; 3D-Navigation in der interstitiellen stereotaktischen Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Auer, T.; Hensler, E.; Eichberger, P.; Bluhm, A.; Lukas, P. [Innsbruck Univ. (Austria). Klinik fuer Strahlentherapie und Radioonkologie; Gunkel, A.; Freysinger, W.; Bale, R.; Thumfart, W.F. [Innsbruck Univ. (Austria). Klinik fuer HNO-Krankheiten; Gaber, O. [Innsbruck Univ. (Austria). Inst. fuer Anatomie

    1998-02-01

    The aim of this paper is to describe the adaption of 3D-navigation for interstitial brachytherapy. The new method leads to prospective and therefore improved planning of the therapy (position of the needle and dose distribution) and to the possibility of a virtual simulation (control if vessels or nerves are on the pathway of the needle). The EasyGuide Neuro {sup trademark} navigation system (Philips) was adapted in the way, that needles for interstitial bracachytherapy were made connectable to the pointer and correctly displayed on the screen. To determine the positioning accuracy, several attempts were performed to hit defined targets on phantoms. Two methods were used: `Free navigation`, where the needle was under control of the navigation system, and the `guided navigation` where an aligned template was used additionally to lead the needle to the target. In addition a mask system was tested, whether it met the requirements of stable and reproducible positioning. The potential of applying this method is clinical practice was tested with an anatomical specimen. About 91% of all attempts lied within 5 mm. There were even better results on the more rigid table (94%<4 mm). No difference could be seen between both application methods (`free navigation` and `navigation with template`), they showed the same accuracy. (orig./MG) [Deutsch] Es war das Ziel dieser Arbeit, ein 3D-Infrarotnavigationssystem fuer die Anforderungen der interstitiellen stereotaktischen Brachytherapie zu adaptieren. Damit wird die Planung der Therapie verbessert (prospektive Planung der Nadelpositionen und der Dosisverteilung), und eine virtuelle Simulation wird realisierbar (Kontrolle des vorgeplanten Zugangs bezueglich Verletzungsmoeglichkeit von Gefaessen oder Nerven). Das EasyGuide-Neuro {sup trademark} -Navigagationssystem (Philips) wurde so veraendert, dass Nadeln, die in der Brachytherapie Verwendung finden, am Pointer befestigt werden konnten und am Bildschirm angezeigt wurden. Um die

  3. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

    International Nuclear Information System (INIS)

    Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

    2011-01-01

    X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

  4. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Freer, Phoebe [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Lawenda, Brian [21st Century Oncology, Las Vegas, NV (United States); Alm El-Din, Mohamed A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Clinical Oncology, Tanta University Hospital, Tanta (Egypt); Gadd, Michele A.; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence

  5. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    International Nuclear Information System (INIS)

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2012-01-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall’s tau (τ β ) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4–14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome (τ β 0.6, p β 0.5, p β 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias ≥1 cm 2 . Grade 3–4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose (τ β 0.3–0.5, p ≤ .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival, and overall survival rate was 85% (95% confidence interval, 70–97%), 72% (95% confidence interval, 54–86%), and 87% (95

  6. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-01-01

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V 200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the

  7. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V{sub 200} by 16.1% and 4.8%, respectively, compared to the original and the

  8. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0

  9. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-01-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD mean ) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value mean dose of 1.3 Gy 3 and 1.2 Gy 3 , respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals

  10. Method of localization and implantation of the lumpectomy site for high dose rate brachytherapy after conservative surgery for T1 and T2 breast cancer

    International Nuclear Information System (INIS)

    Perera, F.; Chisela, F.; Engel, J.; Venkatesan, V.

    1995-01-01

    Purpose: This article describes our technique of localization and implantation of the lumpectomy site of patients with T1 and T2 breast cancer. Our method was developed as part of our Phase I/II pilot study of high dose rate (HDR) brachytherapy alone after conservative surgery for early breast cancer. Methods and Materials: In March 1992, we started a pilot study of HDR brachytherapy to the lumpectomy site as the sole radiotherapy after conservative surgery for clinical T1 or T2 invasive breast cancer. Initially, the protocol required intraoperative placement of the interstitial needles at the time of definitive surgery to the breast. The protocol was then generalized to allow the implantation of the lumpectomy site after definitive surgery to the breast, either at the time of subsequent axillary nodal dissection or postoperatively. To date, five patients have been implanted intraoperatively at the time of definitive breast surgery. Twelve patients were implanted after definitive breast surgery, with 7 patients being done at the time of axillary nodal dissection and 5 patients postoperatively. We devised a method of accurately localizing and implanting the lumpectomy site after definitive breast surgery. The method relies on the previous placement of surgical clips by the referring surgeon to mark the lumpectomy site. For each patient, a breast mold is made with radio-opaque angiocatheters taped onto the mold in the supero-inferior direction. A planning CT scan is then obtained through the lumpectomy site. The volume of the lumpectomy site, the number of implant planes necessary, and the orientation of the implants are then determined from the CT scan. The angiocatheters provide a reference grid on the CT films to locate the entry and exit points of the interstitial needles on the plastic mold. The entry and exit points for reference needles are then transferred onto the patient's skin enabling implantation of the lumpectomy site. Needle positions with respect to

  11. Overview of brachytherapy resources in Europe: A survey of patterns of care study for brachytherapy in Europe

    International Nuclear Information System (INIS)

    Guedea, Ferran; Ellison, Tracey; Venselaar, Jack; Borras, Josep Maria; Hoskin, Peter; Poetter, Richard; Heeren, Germaine; Nisin, Roselinne; Francois, Guy; Mazeron, Jean Jacques; Limbergen, Erik Van; Ventura, Montserrat; Taillet, Michel; Cottier, Brian

    2007-01-01

    Background and purpose: The Patterns of Care for Brachytherapy in Europe (PCBE) study is aimed at establishing a detailed information system on brachytherapy throughout Europe. Materials and methods: The questionnaire was web-based and the analysis used data from each radiotherapy department with brachytherapy. There were three groups: Group I with 19 countries (15 initial European Community (EC) countries plus Iceland, Monaco, Norway and Switzerland -EC+4-), Group II with 10 countries (New European Community countries -NEC-) and Group III with 14 countries (Other European Countries -OEC-). Results: In the European area there are 36 of 43 countries (85%) which achieved data collection from at least 50% of centres, and were included in the analysis. The tumour site that had the largest number of treated patients was gynaecological tumours. Several variations have been found in the mean number of patients treated per consultant radiation oncologist and physicist; and in the proportion of brachytherapy patients with gynaecology, prostate and breast tumours, by country and by European area. The provided data showed that the average number of brachytherapy patients per centre increased by 10% between 1997 and 2002. Conclusions: A European wide evaluation of brachytherapy practice using a web-based questionnaire is feasible and that there is considerable variation in both patterns of practice and available resources

  12. Doses to internal organs for various breast radiation techniques - implications on the risk of secondary cancers and cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Keller Brian M

    2011-01-01

    Full Text Available Abstract Background Breast cancers are more frequently diagnosed at an early stage and currently have improved long term outcomes. Late normal tissue complications induced by adjuvant radiotherapy like secondary cancers or cardiomyopathy must now be avoided at all cost. Several new breast radiotherapy techniques have been developed and this work aims at comparing the scatter doses of internal organs for those techniques. Methods A CT-scan of a typical early stage left breast cancer patient was used to describe a realistic anthropomorphic phantom in the MCNP Monte Carlo code. Dose tally detectors were placed in breasts, the heart, the ipsilateral lung, and the spleen. Five irradiation techniques were simulated: whole breast radiotherapy 50 Gy in 25 fractions using physical wedge or breast IMRT, 3D-CRT partial breast radiotherapy 38.5 Gy in 10 fractions, HDR brachytherapy delivering 34 Gy in 10 treatments, or Permanent Breast 103Pd Seed Implant delivering 90 Gy. Results For external beam radiotherapy the wedge compensation technique yielded the largest doses to internal organs like the spleen or the heart, respectively 2,300 mSv and 2.7 Gy. Smaller scatter dose are induced using breast IMRT, respectively 810 mSv and 1.1 Gy, or 3D-CRT partial breast irradiation, respectively 130 mSv and 0.7 Gy. Dose to the lung is also smaller for IMRT and 3D-CRT compared to the wedge technique. For multicatheter HDR brachytherapy a large dose is delivered to the heart, 3.6 Gy, the spleen receives 1,171 mSv and the lung receives 2,471 mSv. These values are 44% higher in case of a balloon catheter. In contrast, breast seeds implant is associated with low dose to most internal organs. Conclusions The present data support the use of breast IMRT or virtual wedge technique instead of physical wedges for whole breast radiotherapy. Regarding partial breast irradiation techniques, low energy source brachytherapy and external beam 3D-CRT appear safer than 192Ir HDR

  13. Phase II trial of brachytherapy alone after lumpectomy for select breast cancer: Toxicity analysis of RTOG 95-17

    International Nuclear Information System (INIS)

    Kuske, Robert R.; Winter, Kathryn; Arthur, Douglas W.; Bolton, John; Rabinovitch, Rachel; White, Julia; Hanson, William; Wilenzick, R.M.

    2006-01-01

    Purpose: Accelerated partial breast irradiation (APBI) can be delivered with brachytherapy within 4-5 days compared with 5-6 weeks for conventional whole breast external beam radiotherapy. Radiation Therapy Oncology Group 95-17 is the first prospective phase I-II cooperative group trial of APBI alone after lumpectomy in select patients with breast cancer. The toxicity rates are reported for low-dose-rate (LDR) and high-dose-rate (HDR) APBI on this trial. Methods and Materials:: The inclusion criteria for this study included invasive nonlobular tumors ≤3 cm after lumpectomy with negative surgical margins and axillary dissection with zero to three positive axillary nodes without extracapsular extension. The patients were treated with either LDR APBI (45 Gy in 3.5-5 days) or HDR APBI (34 Gy in 10 twice-daily fractions within 5 days). Chemotherapy (≥2 weeks after APBI) and/or tamoxifen could be given at the discretion of the treating physicians. Results: Between August 1997 and March 2000, 100 women were enrolled in this study, and 99 were evaluated. Of the 99 women, 33 were treated with LDR and 66 with HDR APBI. The median follow-up for all patients was 2.7 years (range, 0.6-4.4 years) and was 2.9 years for LDR and 2.7 years for HDR patients. Toxicities attributed to APBI included erythema, edema, tenderness, pain, and infection. Of the 66 patients treated with HDR APBI, 2 (3%) had Grade 3 or 4 toxicity. Of the 33 patients treated with LDR, 3 (9%) had Grade 3 or 4 toxicity during brachytherapy. Late toxicities included skin thickening, fibrosis, breast tenderness, and telangiectasias. No patient experienced late Grade 4 toxicity; the rate of Grade 3 toxicity was 18% for the LDR and 4% for the HDR groups. Conclusion: Acute and late toxicity for this invasive breast radiation technique was modest and acceptable. Patients receiving chemotherapy, a nonprotocol therapy, had a greater rate of Grade 3 toxicity. The study design did not allow for this to be tested

  14. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    International Nuclear Information System (INIS)

    Rivard, MJ; Ghadyani, HR; Bastien, AD; Lutz, NN; Hepel, JT

    2015-01-01

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  15. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Ghadyani, HR [SUNY Farmingdale State College, Farmingdale, NY (United States); Bastien, AD; Lutz, NN [Univeristy Massachusetts Lowell, Lowell, MA (United States); Hepel, JT [Rhode Island Hospital, Providence, RI (United States)

    2015-06-15

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  16. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia, E-mail: Julia.White@osumc.edu [Department of Radiation Oncology, The James, Ohio State University, Columbus, Ohio (United States); Winter, Kathryn [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Kuske, Robert R. [Department of Radiation Oncology, Arizona Breast Cancer Specialists, Scottsdale, Arizona (United States); Bolton, John S. [Department of Radiation Oncology, Oschner Clinic, New Orleans, Louisiana (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Scroggins, Troy [Department of Radiation Oncology, Oschner Clinic, New Orleans, Louisiana (United States); Rabinovitch, Rachel A. [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Kelly, Tracy [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Toonkel, Leonard M. [Mount Sinai Comprehensive Cancer Center, Miami, Florida (United States); Vicini, Frank A. [Department of Radiation Oncology, Botsford Hospital, Farmington Hills, Michigan (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2016-08-01

    Purpose: To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Methods and Materials: Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days for low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. Results: The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. Conclusion: This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up.

  17. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    White, Julia; Winter, Kathryn; Kuske, Robert R.; Bolton, John S.; Arthur, Douglas W.; Scroggins, Troy; Rabinovitch, Rachel A.; Kelly, Tracy; Toonkel, Leonard M.; Vicini, Frank A.; McCormick, Beryl

    2016-01-01

    Purpose: To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Methods and Materials: Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days for low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. Results: The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. Conclusion: This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up.

  18. Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources

    International Nuclear Information System (INIS)

    Awan, Shahid B.; Meigooni, Ali S.; Mokhberiosgouei, Ramin; Hussain, Manzoor

    2006-01-01

    The original and updated protocols recommended by Task Group 43 from the American Association of Physicists in Medicine (i.e., TG-43 and TG-43U1, respectively), have been introduced to unify brachytherapy source dosimetry around the world. Both of these protocols are based on experiences with sources less than 1.0 cm in length. TG-43U1 recommends that for 103 Pd sources, 2D anisotropy function F(r,θ), should be tabulated at a minimum for radial distances of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Anisotropy functions defined in these protocols are only valid when the point of calculation does not fall on the active length of the source. However, for elongated brachytherapy sources (active length >1 cm), some of the calculation points with r 103 Pd source at radial distances of 2.5, 3.0, and 4.0 cm were 2.95, 1.74, and 1.19, respectively, with differences up to about a factor of 3. Therefore, the validity of the linear interpolation technique for an elongated brachytherapy source with such a large variation in F(r,θ) needs to be investigated. In this project, application of the TG-43U1 formalism for dose calculation around an elongated RadioCoil trade mark sign 103 Pd brachytherapy source has been investigated. In addition, the linear interpolation techniques as described in TG-43U1 for seed type sources have been evaluated for a 5.0 cm long RadioCoil trade mark sign 103 Pd brachytherapy source. Application of a polynomial fit to F(r,θ) has also been investigated as an alternate approach to the linear interpolation technique. The results of these investigations indicate that the TG-43U1 formalism can be extended for elongated brachytherapy sources, if the two-dimensional (2D) anisotropy function is tabulated at a minimum for radial distances of 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 cm, L/2, and L/2±0.2 cm. Moreover, with the addition of recommended radial distances for 2D anisotropy functions, the linear interpolation technique more closely replicates

  19. Enhancing breast projection in autologous reconstruction using the St Andrew's coning technique and 3D volumetric analysis.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren Matthew; Patel, Nakul Gamanlal; Hunter-Smith, David J; Ramakrishnan, Venkat

    2017-12-01

    An increasing number of women undergo mastectomy for breast cancer and post-mastectomy autologous breast reconstruction has been shown to significantly improve the psychosexual wellbeing of the patients. A goal of treatment is to achieve symmetry and projection to match the native breast, and/or the contralateral breast in the case of a unilateral reconstruction. Autologous reconstruction, particularly with the deep inferior epigastric artery perforator (DIEP) flap, is particularly advantageous as it can be manipulated to mimic the shape and turgor of the native breast. However, very few techniques of shaping the breast conus when insetting the DIEP flap to enhance aesthetic outcome have been reported to date. With the aide of three-dimension (3D) photography and 3D-printed mirrored image of the contralateral breast as a guide intraoperatively, we describe our St Andrew's coning technique to create a personalized flap projection. We report a prospective case series of 3 delayed unilateral breast reconstructions where symmetrization procedure to the contralateral breast was not indicated. Using a commercial 3D scanner (VECTRA XR, Canfield Scientific), the breast region was imaged. The mirrored image was 3D-printed in-house using a desktop 3D printer. In all cases, projection of the breast mound was able to be safely achieved, with a demonstrated central volume (or 'cone') able to be highlighted on imaging and a 3D printed breast. A 3D print of the contralateral breast was able to be used intraoperatively to guide the operative approach. The St Andrew's coning technique is a useful aesthetic maneuver for achieving breast projection during DIEP flap breast reconstruction, with 3D imaging techniques able to assist in perioperative assessment of breast volume.

  20. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  1. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  2. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  3. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  4. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  5. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  6. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  7. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed.

    Science.gov (United States)

    Sedlmayer, F; Rahim, H B; Kogelnik, H D; Menzel, C; Merz, F; Deutschmann, H; Kranzinger, M

    1996-03-15

    To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern afterloading techniques offer possibilities of

  8. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed

    International Nuclear Information System (INIS)

    Sedlmayer, Felix; Rahim, Hassan B. K.; Kogelnik, H. Dieter; Menzel, Christian; Merz, Florian; Deutschmann, Heinz; Kranzinger, Manfred

    1996-01-01

    Purpose: To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. Methods and Materials: During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Results: Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Conclusion: Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern

  9. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study

    International Nuclear Information System (INIS)

    Martin, T.; Baltas, D.; Kurek, R.; Roeddiger, S.; Kontova, M.; Anagnostopoulos, G.; Skazikis, G.; Zamboglou, N.; Dannenberg, T.; Buhleier, T.; Tunn, U.

    2004-01-01

    Purpose: pilot study to evaluate feasibility, acute toxicity and conformal quality of three-dimensional (3-D) conformal high-dose-rate (HDR) brachytherapy as monotherapy for localized prostate cancer using intraoperative real-time planning. Patients and methods: between 05/2002 and 05/2003, 52 patients with prostate cancer, prostate-specific antigen (PSA) ≤ 10 ng/ml, Gleason score ≤ 7 and clinical stage ≤ T2a were treated. Median PSA was 6.4 ng/ml and median Gleason score 5. 24/52 patients had stage T1c and 28/52 stage T2a. For transrectal ultrasound-(TRUS-)guided transperineal implantation of flexible plastic needles into the prostate, the real-time HDR planning system SWIFT trademark was used. After implantation, CT-based 3-D postplanning was performed. All patients received one implant for four fractions of HDR brachytherapy in 48 h using a reference dose (D ref ) of 9.5 Gy to a total dose of 38.0 Gy. Dose-volume histograms (DVHs) were analyzed to evaluate the conformal quality of each implant using D 90 , D 10 urethra, and D 10 rectum. Acute toxicity was evaluated using the CTC (common toxicity criteria) scales. Results: median D 90 was 106% of D ref (range: 93-115%), median D 10 urethra 159% of D ref (range: 127-192%), and median D 10 rectum 55% of D ref (range: 35-68%). Median follow-up is currently 8 months. In 2/52 patients acute grade 3 genitourinary toxicity was observed. No gastrointestinal toxicity > grade 1 occurred. Conclusion: 3-D conformal HDR brachytherapy as monotherapy using intraoperative real-time planning is a feasible and highly conformal treatment for localized prostate cancer associated with minimal acute toxicity. Longer follow-up is needed to evaluate late toxicity and biochemical control. (orig.)

  10. A Multi-Institutional Study of Feasibility, Implementation, and Early Clinical Results With Noninvasive Breast Brachytherapy for Tumor Bed Boost

    International Nuclear Information System (INIS)

    Hamid, Subarna; Rocchio, Kathy; Arthur, Douglas; Vera, Robyn; Sha, Sandra; Jolly, Michele; Cavanaugh, Sean; Wooten, Eric; Benda, Rashmi; Greenfield, Brad; Prestidge, Bradley; Ackerman, Scot; Kuske, Robert; Quiet, Coral; Snyder, Margaret; Wazer, David E.

    2012-01-01

    Purpose: To evaluate the feasibility, implementation, and early results of noninvasive breast brachytherapy (NIBB) for tumor bed boost with whole breast radiation therapy (WBRT). Methods and Materials: NIBB is a commercially available (AccuBoost, Billerica, MA) mammography-based, brachytherapy system in which the treatment applicators are centered on the planning target volume (PTV) to direct 192 Ir emissions along orthogonal axes. A privacy-encrypted online data registry collected information from 8 independent academic and community-based institutions. Data were from 146 consecutive women with early-stage breast cancer after lumpectomy and WBRT receiving boost with NIBB between July 2007 and March 2010. Toxicity and cosmesis were graded according to the Common Toxicity Criteria (v. 3.0) and the Harvard scale. Median follow-up was 6 months (1–39 months). Results: Grade 1–2 skin toxicity was observed in 64%, 48%, and 21% during the acute (1–3 weeks), intermediate (4–26 weeks), and late-intermediate (>26 weeks) periods. There was no Grade 4 toxicity. At 6 months, for the entire cohort, cosmesis was excellent/good in 62%/38%. The subset receiving NIBB before WBRT had cosmetic scores of 32% and 63%, whereas during WBRT, 58% and 37% were rated as excellent and good, respectively. Breast compression was scored as “uncomfortable” in 12%, 29%, and 59% when NIBB was delivered before, during, or after WBRT. For each patient, the fraction-to-fraction variability in PTV was low. Skin flash was associated with a higher proportion of excellent cosmesis (58% vs. 42%) relative to having the applicator all within breast tissue. Conclusions: These data indicate that NIBB is feasible and can be consistently implemented in a broad array of practice settings. Preliminary evaluation suggests that NIBB is associated with acceptably mild normal tissue toxicity and favorable early cosmesis. The application of NIBB before WBRT may be associated with better patient tolerance at

  11. A Multi-Institutional Study of Feasibility, Implementation, and Early Clinical Results With Noninvasive Breast Brachytherapy for Tumor Bed Boost

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Subarna, E-mail: shamid@tuftsmedicalcenter.org [Department of Radiation Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (United States); Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States); Rocchio, Kathy [Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States); Arthur, Douglas; Vera, Robyn [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Sha, Sandra; Jolly, Michele [Central Florida Cancer Institute, Davenport, FL (United States); Cavanaugh, Sean; Wooten, Eric [Atlanta Oncology Associates, Hawkinsville, GA (United States); Benda, Rashmi; Greenfield, Brad [Department of Radiation Oncology, Boca Raton Community Hospital, Boca Raton, FL (United States); Prestidge, Bradley [Texas Cancer Clinic, San Antonio, TX (United States); Ackerman, Scot [First Coast Oncology, Jacksonville, FL (United States); Kuske, Robert; Quiet, Coral; Snyder, Margaret [Arizona Breast Cancer Specialists, Phoenix, AZ (United States); Wazer, David E. [Department of Radiation Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (United States); Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States)

    2012-08-01

    Purpose: To evaluate the feasibility, implementation, and early results of noninvasive breast brachytherapy (NIBB) for tumor bed boost with whole breast radiation therapy (WBRT). Methods and Materials: NIBB is a commercially available (AccuBoost, Billerica, MA) mammography-based, brachytherapy system in which the treatment applicators are centered on the planning target volume (PTV) to direct {sup 192}Ir emissions along orthogonal axes. A privacy-encrypted online data registry collected information from 8 independent academic and community-based institutions. Data were from 146 consecutive women with early-stage breast cancer after lumpectomy and WBRT receiving boost with NIBB between July 2007 and March 2010. Toxicity and cosmesis were graded according to the Common Toxicity Criteria (v. 3.0) and the Harvard scale. Median follow-up was 6 months (1-39 months). Results: Grade 1-2 skin toxicity was observed in 64%, 48%, and 21% during the acute (1-3 weeks), intermediate (4-26 weeks), and late-intermediate (>26 weeks) periods. There was no Grade 4 toxicity. At 6 months, for the entire cohort, cosmesis was excellent/good in 62%/38%. The subset receiving NIBB before WBRT had cosmetic scores of 32% and 63%, whereas during WBRT, 58% and 37% were rated as excellent and good, respectively. Breast compression was scored as 'uncomfortable' in 12%, 29%, and 59% when NIBB was delivered before, during, or after WBRT. For each patient, the fraction-to-fraction variability in PTV was low. Skin flash was associated with a higher proportion of excellent cosmesis (58% vs. 42%) relative to having the applicator all within breast tissue. Conclusions: These data indicate that NIBB is feasible and can be consistently implemented in a broad array of practice settings. Preliminary evaluation suggests that NIBB is associated with acceptably mild normal tissue toxicity and favorable early cosmesis. The application of NIBB before WBRT may be associated with better patient tolerance

  12. Use of 3D imaging and awareness of GEC-ESTRO recommendations for cervix cancer brachytherapy throughout Australia and New Zealand

    International Nuclear Information System (INIS)

    Dyk, S Van; Bernshaw, D.; Byram, D.

    2010-01-01

    Full text: A 2005 survey of practices indicated limited use of three dimensional (3D) imaging modalities and planning methods in cervix cancer brachytherapy in Australia and New Zealand. However, advancing technologies and published recommendations are influencing change. This survey aims to identify both changes in practice and awareness and uptake of Groupe European de Curietherapie of the European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) recommendations. Methods: A survey was emailed to all radiotherapy departments with brachytherapy facilities. Twenty departments practise brachytherapy for cancer of the cervix. The survey consisted of five questions enquiring about use and type of 3D imaging; rate of reimaging and replanning; and contouring, prescribing and reporting practices. Results: A 100% response rate was obtained. Sixty-five per cent of departments use 3D CT imaging to plan brachytherapy insertions. Thirty per cent of departments use two-dimensional ( 2D ) x-rays. Four departments (20%) use a combination of imaging modalities including CT, ultrasound and MRI. Sixtyfive per cent of departments reimage and replan for each insertion. Four departments (20%) contour, prescribe dose and report treatment according to GEC-ESTRO recommendations. Conclusions: There has been a marked increase in the use of 3D imaging and awareness of GEC-ESTRO recommendations. Implementation and reporting of image-based gynaecological brachytherapy is strongly dependent on local resources and infrastructure.

  13. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  14. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma

    International Nuclear Information System (INIS)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O.; Remonnay, R.; Morelle, M.; Pommier, P.; Pommier, P.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Delannes, M.; Castelain, B.; Peignaux, K.; Kirova, Y.; Romestaing, P.; Williaume, D.; Krzisch, C.; Thomas, L.; Lang, P.; Baron, M.H.; Cussac, A.; Lesaunier, F.; Maillard, S.; Barillot, I.; Charra-Brunaud, C.; Peiffert, D.

    2010-01-01

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  15. Development of a physical 3D anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  16. Accelerated partial breast irradiation in the elderly: 5-year results of high-dose rate multi-catheter brachytherapy

    International Nuclear Information System (INIS)

    Genebes, Caroline; Hannoun-Levi, Jean-Michel; Chand, Marie-Eve; Gal, Jocelyn; Gautier, Mathieu; Raoust, Ines; Ihrai, Tarik; Courdi, Adel; Ferrero, Jean-Marc; Peyrottes, Isabelle

    2014-01-01

    To evaluate clinical outcome after accelerated partial breast irradiation (APBI) in the elderly after high-dose-rate interstitial multi-catheter brachytherapy (HIBT). Between 2005 and 2013, 70 patients underwent APBI using HIBT. Catheter implant was performed intra or post-operatively (referred patients) after lumpectomy and axillary sentinel lymph node dissection. Once the pathological results confirmed the indication of APBI, planification CT-scan was performed to deliver 34 Gy/10f/5d or 32 Gy/8f/4d. Dose-volume adaptation was manually achieved (graphical optimization). Dosimetric results and clinical outcome were retrospectively analyzed. Physician cosmetic evaluation was reported. With a median follow-up of 60.9 months [4.6 – 90.1], median age was 80.7 years [62 – 93.1]. Regarding APBI ASTRO criteria, 61.4%, 18.6% and 20% were classified as suitable, cautionary and non-suitable respectively. Axillary sentinel lymph node dissection was performed in 94.3%; 8 pts (11.5%) presented an axillary involvement. A median dose of 34 Gy [32 – 35] in 8 to 10 fractions was delivered. Median CTV was 75.2 cc [16.9 – 210], median D90 EQD2 was 43.3 Gy [35 – 72.6] and median DHI was 0.54 [0.19 – 0.74]. One patient experienced ipsilateral recurrence (5-year local free recurrence rate: 97.6%. Five-year specific and overall survival rates were 97.9% and 93.2% respectively. Thirty-four patients (48%) presented 47 late complications classified grade 1 (80.8%) and grade 2 (19.2%) with no grade ≥ 3. Cosmetic results were considered excellent/good for 67 pts (95.7%). APBI using HIBT and respecting strict rules of implantation and planification, represents a smart alternative between no post-operative irradiation and whole breast irradiation delivered over 6 consecutive weeks

  17. Five-Year Analysis of Treatment Efficacy and Cosmesis by the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial in Patients Treated With Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Vicini, Frank; Beitsch, Peter; Quiet, Coral; Gittleman, Mark; Zannis, Vic; Fine, Ricky; Whitworth, Pat; Kuerer, Henry; Haffty, Bruce; Keisch, Martin; Lyden, Maureen

    2011-01-01

    Purpose: To present 5-year data on treatment efficacy, cosmetic results, and toxicities for patients enrolled on the American Society of Breast Surgeons MammoSite breast brachytherapy registry trial. Methods and Materials: A total of 1440 patients (1449 cases) with early-stage breast cancer receiving breast-conserving therapy were treated with the MammoSite device to deliver accelerated partial-breast irradiation (APBI) (34 Gy in 3.4-Gy fractions). Of 1449 cases, 1255 (87%) had invasive breast cancer (IBC) (median size, 10 mm) and 194 (13%) had ductal carcinoma in situ (DCIS) (median size, 8 mm). Median follow-up was 54 months. Results: Thirty-seven cases (2.6%) developed an ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial rate of 3.80% (3.86% for IBC and 3.39% for DCIS). Negative estrogen receptor status (p = 0.0011) was the only clinical, pathologic, or treatment-related variable associated with IBTR for patients with IBC and young age (<50 years; p = 0.0096) and positive margin status (p = 0.0126) in those with DCIS. The percentage of breasts with good/excellent cosmetic results at 60 months (n = 371) was 90.6%. Symptomatic breast seromas were reported in 13.0% of cases, and 2.3% developed fat necrosis. A subset analysis of the first 400 consecutive cases enrolled was performed (352 with IBC, 48 DCIS). With a median follow-up of 60.5 months, the 5-year actuarial rate of IBTR was 3.04%. Conclusion: Treatment efficacy, cosmesis, and toxicity 5 years after treatment with APBI using the MammoSite device are good and similar to those reported with other forms of APBI with similar follow-up.

  18. Factors Associated With Optimal Long-Term Cosmetic Results in Patients Treated With Accelerated Partial Breast Irradiation Using Balloon-Based Brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Keisch, Martin; Shah, Chirag; Goyal, Sharad; Khan, Atif J.; Beitsch, Peter D.; Lyden, Maureen; Haffty, Bruce G.

    2012-01-01

    Purpose: To evaluate factors associated with optimal cosmetic results at 72 months for early-stage breast cancer patients treated with Mammosite balloon-based accelerated partial breast irradiation (APBI). Methods and Materials: A total of 1,440 patients (1,449 cases) with early-stage breast cancer undergoing breast-conserving therapy were treated with balloon-based brachytherapy to deliver APBI (34 Gy in 3.4-Gy fractions). Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good (E/G) or fair/poor (F/P). Follow-up was evaluated at 36 and 72 months to establish long-term cosmesis, stability of cosmesis, and factors associated with optimal results. Results: The percentage of evaluable patients with excellent/good (E/G) cosmetic results at 36 months and more than 72 months were 93.3% (n = 708/759) and 90.4% (n = 235/260). Factors associated with optimal cosmetic results at 72 months included: larger skin spacing (p = 0.04) and T1 tumors (p = 0.02). Using multiple regression analysis, the only factors predictive of worse cosmetic outcome at 72 months were smaller skin spacing (odds ratio [OR], 0.89; confidence interval [CI], 0.80–0.99) and tumors greater than 2 cm (OR, 4.96, CI, 1.53–16.07). In all, 227 patients had both a 36-month and a 72-month cosmetic evaluation. The number of patients with E/G cosmetic results decreased only slightly from 93.4% at 3 years to 90.8% (p = 0.13) at 6 years, respectively. Conclusions: APBI delivered with balloon-based brachytherapy produced E/G cosmetic results in 90.4% of cases at 6 years. Larger tumors (T2) and smaller skin spacing were found to be the two most important independent predictors of cosmesis.

  19. Debate about breast cancer: 'Cons: Intraoperative radiotherapy'; Debats autour du cancer du sein: 'contre' la radiotherapie peroperatoire

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, C.; Heymann, S.; Verstraet, R.; Biron, B.; Marsiglia, H. [Departement de radiotherapie, institut Gustave-Roussy, 114, rue edouard-Vaillant, 94800 Villejuif (France)

    2011-10-15

    Early breast cancer incidence increases owing to mammography screening. Hypo-fractionated radiotherapy is more and more proposed in women with low local relapse risk breast cancer, especially accelerated partial breast irradiation. Various irradiation modalities have been reported: brachytherapy, intraoperative irradiation, 3D-conformal accelerated partial breast irradiation. We describe limitations of intraoperative irradiation and the advantages of alternative techniques. (authors)

  20. A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients.

    Science.gov (United States)

    León-Pizarro, Concha; Gich, Ignasi; Barthe, Emma; Rovirosa, Angeles; Farrús, Blanca; Casas, Francesc; Verger, Eugènia; Biete, Albert; Craven-Bartle, Jordi; Sierra, Jordi; Arcusa, Angeles

    2007-11-01

    The randomized study aimed to determine the efficacy of psychological intervention consisting of relaxation and guided imagery to reduce anxiety and depression in gynecologic and breast cancer patients undergoing brachytherapy during hospitalization. Sixty-six patients programmed to receive brachytherapy in two hospitals in Barcelona (Spain) were included in this study. The patients were randomly allocated to either the study group (n=32) or the control group (n=34). Patients in both groups received training regarding brachytherapy, but only study group patients received training in relaxation and guided imagery. After collection of sociodemographic data, all patients were given a set of questionnaires on anxiety and depression: the Hospital Anxiety and Depression Scale (HADS), and on quality of life: Cuestionario de Calidad de Vida QL-CA-AFex (CCV), prior to, during and after brachytherapy. The study group demonstrated a statistically significant reduction in anxiety (p=0.008), depression (p=0.03) and body discomfort (p=0.04) compared with the control group. The use of relaxation techniques and guided imagery is effective in reducing the levels of anxiety, depression and body discomfort in patients who must remain isolated while undergoing brachytherapy. This simple and inexpensive intervention enhances the psychological wellness in patients undergoing brachytherapy.State: This study has passed Ethical Committee review.

  1. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Agasthya, G.A.; Sechopoulos, I.

    2017-01-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along

  2. Accelerated partial-breast irradiation vs conventional whole-breast radiotherapy in early breast cancer: A case-control study of disease control, cosmesis, and complications

    Directory of Open Access Journals (Sweden)

    Wadasadawala Tabassum

    2009-01-01

    Full Text Available Context: Accelerated partial-breast irradiation (APBI using various approaches is being increasingly employed for selected women with early breast cancer (EBC. Aims: To conduct a case-control study comparing disease control, cosmesis, and complications in patients with EBC undergoing APBI using multicatheter interstitial brachytherapy vs those receiving conventional whole breast radiotherapy (WBRT. Settings and Design: Women with EBC fulfilling the American Brachytherapy Society (ABS criteria were selected as ′cases′ if treated with APBI or as ′controls′ if offered WBRT during the period from May 2000 to December 2004. Materials and Methods: APBI patients were treated with high-dose-rate brachytherapy (HDR to a dose of 34 Gy/10#/6-8 days. WBRT was delivered to the whole breast to a dose of 45 Gy/25# followed by tumor bed boost, either with electrons (15 Gy/6# or interstitial brachytherapy (HDR 10 Gy/1#. Results: At the median follow-up of 43.05 months in APBI and 51.08 months in WBRT there was no difference in overall survival (OS, disease-free survival (DFS, late arm edema, and symptomatic fat necrosis between the two groups. However, APBI resulted in increase in mild breast fibrosis at the tumor bed. Telangiectasias were observed in three patients of the APBI group. The cosmetic outcome was significantly better in the APBI group as compared to the WBRT group (P = 0.003. Conclusions: This study revealed equivalent locoregional and distant disease control in the two groups. APBI offered better overall cosmetic outcome, though at the cost of a slight increase in mild breast fibrosis and telangiectasias.

  3. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Mohammadyari, P; Faghihi, R; Shirazi, M Mosleh; Lotfi, M; Meigooni, A

    2014-01-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD

  4. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadyari, P [Nuclear Engineering Department, School of Mechanical Engineering, Shiraz Un, Ilam (Iran, Islamic Republic of); Faghihi, R [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Shirazi, M Mosleh [Radiotherapy and Oncology Department, Namazi Hospital, Shiraz University of M, Shiraz (Iran, Islamic Republic of); Lotfi, M [Shiraz University of Medical Sciences, Medical Imaging Research Center, Shiraz (Iran, Islamic Republic of); Meigooni, A [Comprehensive cancer center of Nevada - University of Nevada Las Vegas UNL, Las Vegas, NV (United States)

    2014-06-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD

  5. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.

    Science.gov (United States)

    White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte

    2014-06-01

    The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study

  6. Recent advances in radiotherapy: Partial Breast Irradiation (PBI) in breast cancer patients after breast conserving surgery

    International Nuclear Information System (INIS)

    Niwinska, A.

    2003-01-01

    The interest in accelerated partial breast irradiation (PBI) after conservative surgery has increased over the past decade as a result of many factors, including clinical and pathological data questioning the efficacy of whole breast irradiation in highly selected patients, as well as factors related to patient's convenience. High dose rate and low dose rate brachytherapy, brachytherapy MammoSite, Electron Intraoperative Therapy - ELIOT and Targeted Intraoperative Radiotherapy - TARGIT are the subject of investigation. The tolerability and efficacy of the treatment are of special interest. In this review article, methods of accelerated PBI, eligibility criteria, techniques of radiotherapy, early results and side effects are reviewed. (author)

  7. Oncentra brachytherapy planning system.

    Science.gov (United States)

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  8. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  9. Patterns of care for brachytherapy in Europe. Results in Spain.

    Science.gov (United States)

    López Torrecilla, J; Guedea, F; Heeren, G; Nissin, R; Ellison, T; Cottier, B

    2006-05-01

    In 2003 ESTRO began a project whose primary objective, was to make a map in the European area of infrastructures in technology and personnel for brachytherapy. A survey and a web site were elaborated. The survey was sent to the 76 Spanish Radiation Oncology departments in May 2003. By the end of 2003, 66 (86.8%) services had responded, 40 (71.4%) of which had brachytherapy. The services with brachytherapy treated 73.5% of the total patients, an average of 1,199 patients. The mean number of patients treated with brachytherapy by department was 135.5 and the number of applications was 265 annually. The average number of specialists was 7, 4 of them trained in brachytherapy. The average weekly work load of the radiation oncologists, physicists, and technicians was 22.6 h, 13.8 h and 21.0 h, respectively. The mean time dedicated to each patient by radiation oncologists, physicists and technicians was 9.2 h; 6.19 h; 7.2 h, respectively. The total number of afterloaders was 43 (22 HDR, 18 LDR, 3 PDR). The tumours most frequently treated with brachytherapy were gynaecological (56.24%), breast (14.2%) and prostate (11.7%). High dose rate was used in 47.46% of the patients and low dose rate in 47.24%. Between 1997 and 2002 there was an increase of 50.53% in patients treated with brachytherapy. The survey shows the brachytherapy resources and activity in Spain up to 2003. Increased use of brachytherapy in prostate tumours, prevalence of gynaecology brachytherapy and similar number of treatments with HDR and LDR are demonstrated in the Patterns of Care of Brachytherapy in Europe (PCBE) study in Spain.

  10. Fat necrosis in women with early-stage breast cancer treated with accelerated partial breast irradiation (APBI) using interstitial brachytherapy

    International Nuclear Information System (INIS)

    Budrukkar, Ashwini; Jagtap, Vikas; Kembhavi, Seema; Munshi, Anusheel; Jalali, Rakesh; Seth, Tanuja; Parmar, Vani; Raj Upreti, Ritu; Badwe, Rajendra; Sarin, Rajiv

    2012-01-01

    Purpose: To report the incidence of clinical, pathological and radiological fat necrosis (FN) in women treated with accelerated partial breast irradiation (APBI) using interstitial brachytherapy (BRT) for early-stage breast cancer and to study certain variables associated with it. Methods and materials: Between May 2000 and August 2008, 171 women were treated with APBI using high dose rate (HDR) BRT. Patients were treated to a dose of 34 Gy/10 fractions/1 week with two fractions/day after intraoperative/postoperative placement of catheters. Results: At a median follow up of 48 months (SD: 28) 20 women developed FN with median time to detection being 24 months (range: 4–62 months, SD: 20). Actuarial 5 and 7 year FN rate was 18% and 23%, respectively. Grade 1 FN was seen in 4, grade 2 in 8 and grade 4 in 8 women. Additional investigations such as aspiration/biopsy were done in 9 patients. Volume of excision was the only significant factor affecting FN (p = 0.04). Conclusions: Actuarial FN rate of 18% at 5 years in our study was comparable to other reported series of FN. Median time of detection of FN was 24 months. Higher volume of excision resulted in an increased incidence of fat necrosis.

  11. Fat Necrosis After Partial-Breast Irradiation With Brachytherapy or Electron Irradiation Versus Standard Whole-Breast Radiotherapy-4-Year Results of a Randomized Trial

    International Nuclear Information System (INIS)

    Loevey, Katalin; Fodor, Janos; Major, Tibor; Szabo, Eva; Orosz, Zsolt; Sulyok, Zoltan; Janvary, Levente; Froehlich, Georgina; Kasler, Miklos; Polgar, Csaba

    2007-01-01

    Purpose: To examine the incidence and clinical relevance of fat necrosis after accelerated partial-breast irradiation (PBI) using interstitial high-dose-rate brachytherapy (HDR-BT) in comparison with partial-breast electron irradiation (ELE) and whole-breast irradiation (WBI). Methods and Materials: Between 1998 and 2004, 258 early-stage breast cancer patients were randomized to receive 50 Gy WBI (n = 130) or PBI (n = 128). The latter consisted of either 7 x 5.2 Gy HDR-BT (n = 88) or 50 Gy ELE (n = 40). The incidence of fat necrosis, its impact on cosmetic outcome, accompanying radiologic features, and clinical symptoms were evaluated. Results: The 4-year actuarial rate of fat necrosis was 31.1% for all patients, and 31.9%, 36.5%, and 17.7% after WBI, HDR-BT and ELE, respectively (p WBI/HDR-BT = 0.26; p WBI/ELE = 0.11; p ELE/HDR-BT = 0.025). The respective rate of asymptomatic fat necrosis was 20.2%, 25.3%, and 10% of patients. The incidence of symptomatic fat necrosis was not significantly different after WBI (8.5%), HDR-BT (11.4%), and ELE (7.5%). Symptomatic fat necrosis was significantly associated with a worse cosmetic outcome, whereas asymptomatic fat necrosis was not. Fat necrosis was detectable with mammography and/or ultrasound in each case. Additional imaging examinations were required in 21% of cases and aspiration cytology in 42%. Conclusions: Asymptomatic fat necrosis is a common adverse event of breast-conserving therapy, having no significant clinical relevance in the majority of the cases. The incidence of both symptomatic and asymptomatic fat necrosis is similar after conventional WBI and accelerated partial-breast HDR-BT

  12. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Wei Zhouping; Wan Gang; Gardi, Lori; Mills, Gregory; Downey, Donal; Fenster, Aaron

    2004-01-01

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  13. Are the American Society for Radiation Oncology Guidelines Accurate Predictors of Recurrence in Early Stage Breast Cancer Patients Treated with Balloon-Based Brachytherapy?

    Directory of Open Access Journals (Sweden)

    Moira K. Christoudias

    2013-01-01

    Full Text Available The American Society for Radiation Oncology (ASTRO consensus statement (CS provides guidelines for patient selection for accelerated partial breast irradiation (APBI following breast conserving surgery. The purpose of this study was to evaluate recurrence rates based on ASTRO CS groupings. A single institution review of 238 early stage breast cancer patients treated with balloon-based APBI via balloon based brachytherapy demonstrated a 4-year actuarial ipsilateral breast tumor recurrence (IBTR rate of 5.1%. There were no significant differences in the 4-year actuarial IBTR rates between the “suitable,” “cautionary,” and “unsuitable” ASTRO categories (0%, 7.2%, and 4.3%, resp., P=0.28. ER negative tumors had higher rates of IBTR than ER positive tumors. The ASTRO groupings are poor predictors of patient outcomes. Further studies evaluating individual clinicopathologic features are needed to determine the safety of APBI in higher risk patients.

  14. The american brachytherapy society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis

    International Nuclear Information System (INIS)

    Nag, Subir; Bice, William; Wyngaert, Keith de; Prestidge, Bradley; Stock, Richard; Yu Yan

    2000-01-01

    Purpose: The purpose of this report is to establish guidelines for postimplant dosimetric analysis of permanent prostate brachytherapy. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate dosimetry evaluation performed a literature review and supplemented with their clinical experience formulated guidelines for performing and analyzing postimplant dosimetry of permanent prostate brachytherapy. Results: The ABS recommends that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy for optimal patient care. At present, computed tomography (CT)-based dosimetry is recommended, based on availability cost and the ability to image the prostate as well as the seeds. Additional plane radiographs should be obtained to verify the seed count. Until the ideal postoperative interval for CT scanning has been determined, each center should perform dosimetric evaluation of prostate implants at a consistent postoperative interval. This interval should be reported. Isodose displays should be obtained at 50%, 80%, 90%, 100%, 150%, and 200% of the prescription dose and displayed on multiple cross-sectional images of the prostate. A dose-volume histogram (DVH) of the prostate should be performed and the D 90 (dose to 90% of the prostate gland) reported by all centers. Additionally, the D 80, D 100, the fractional V 80, V 90, V 100, V 150, and V 200, (i.e., the percentage of prostate volume receiving 80%, 90%, 100%, 150%, and 200% of the prescribed dose, respectively), the rectal, and urethral doses should be reported and ultimately correlated with clinical outcome in the research environment. On-line real-time dosimetry, the effects of dose heterogeneity, and the effects of tissue heterogeneity need further investigation. Conclusion: It is essential that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy. Guidelines were established for the performance

  15. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  16. Vitamin D and Breast Cancer

    OpenAIRE

    Shao, Theresa; Klein, Paula; Grossbard, Michael L.

    2012-01-01

    Vitamin D metabolism and its mechanism of action, the current evidence on the relationship between vitamin D and breast cancer, and the optimal dosing of vitamin D for breast cancer prevention are summarized.

  17. Outcomes of Node-positive Breast Cancer Patients Treated With Accelerated Partial Breast Irradiation Via Multicatheter Interstitial Brachytherapy: The Pooled Registry of Multicatheter Interstitial Sites (PROMIS) Experience.

    Science.gov (United States)

    Kamrava, Mitchell; Kuske, Robert R; Anderson, Bethany; Chen, Peter; Hayes, John; Quiet, Coral; Wang, Pin-Chieh; Veruttipong, Darlene; Snyder, Margaret; Demanes, David J

    2018-06-01

    To report outcomes for breast-conserving therapy using adjuvant accelerated partial breast irradiation (APBI) with interstitial multicatheter brachytherapy in node-positive compared with node-negative patients. From 1992 to 2013, 1351 patients (1369 breast cancers) were treated with breast-conserving surgery and adjuvant APBI using interstitial multicatheter brachytherapy. A total of 907 patients (835 node negative, 59 N1a, and 13 N1mic) had >1 year of data available and nodal status information and are the subject of this analysis. Median age (range) was 59 years old (22 to 90 y). T stage was 90% T1 and ER/PR/Her2 was positive in 87%, 71%, and 7%. Mean number of axillary nodes removed was 12 (SD, 6). Cox multivariate analysis for local/regional control was performed using age, nodal stage, ER/PR/Her2 receptor status, tumor size, grade, margin, and adjuvant chemotherapy/antiestrogen therapy. The mean (SD) follow-up was 7.5 years (4.6). The 5-year actuarial local control (95% confidence interval) in node-negative versus node-positive patients was 96.3% (94.5-97.5) versus 95.8% (87.6-98.6) (P=0.62). The 5-year actuarial regional control in node-negative versus node-positive patients was 98.5% (97.3-99.2) versus 96.7% (87.4-99.2) (P=0.33). The 5-year actuarial freedom from distant metastasis and cause-specific survival were significantly lower in node-positive versus node-negative patients at 92.3% (82.4-96.7) versus 97.8% (96.3-98.7) (P=0.006) and 91.3% (80.2-96.3) versus 98.7% (97.3-99.3) (P=0.0001). Overall survival was not significantly different. On multivariate analysis age 50 years and below, Her2 positive, positive margin status, and not receiving chemotherapy or antiestrogen therapy were associated with a higher risk of local/regional recurrence. Patients who have had an axillary lymph node dissection and limited node-positive disease may be candidates for treatment with APBI. Further research is ultimately needed to better define specific criteria for APBI

  18. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  19. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy; Puesta en marcha de la tecnica de irradiacion parcial acelerada de la mama con braquterapia de alta tasa de dosis (HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-07-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  20. A comparison in cosmetic outcome between per-operative interstitial breast implants and delayed interstitial breast implants after external beam radiotherapy

    International Nuclear Information System (INIS)

    Pieters, Bradley R.; Hart, Augustinus A.M.; Russell, Nicola S.; Jansen, Edwin P.M.; Peterse, Johannes L.; Borger, Jacques; Rutgers, Emiel J.Th.

    2003-01-01

    Background and purpose: Interstitial implants for brachytherapy boost in the breast conserving therapy of breast cancer can be performed in two ways; implants during the tumor excision (per-operative implants) or after the external beam therapy (delayed interstitial implants). Differences in cosmetic outcome were investigated. Patients and methods: Cosmetic results in 47 patients having a per-operative implant were compared to 123 patients having a delayed interstitial implant in a matched case-control study. Cosmesis was scored on a four-point-scale varying from 0 (excellent) to 3 (poor). Results: After mean follow-up of 63 months, three observers found no difference in cosmetic outcome between the two groups after adjustment for variables found to be related with cosmesis (difference in mean score 0.50, P=0.26). Implant volume at 100% isodose was not found to differ (P=0.084) between the per-operative group (mean 102 cm 3 , S.D. 34 cm 3 ) and the delayed group (mean 93 cm 3 , S.D. 29 cm 3 ). Conclusions: Performing per-operative implants has not led to smaller implants. The method of performing brachytherapy does not result in marked differences in cosmetic outcome

  1. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  2. Who Really Benefits from 3D-Based Planning of Brachytherapy for Cervical Cancer?

    Science.gov (United States)

    Ha, In Bong; Jeong, Bae Kwon; Kang, Ki Mun; Jeong, Hojin; Lee, Yun Hee; Choi, Hoon Sik; Lee, Jong Hak; Choi, Won Jun; Shin, Jeong Kyu; Song, Jin Ho

    2018-04-30

    Although intracavitary radiotherapy (ICR) is essential for the radiation therapy of cervical cancer, few institutions in Korea perform 3-dimensional (3D)-based ICR. To identify patients who would benefit from 3D-based ICR, dosimetric parameters for tumor targets and organs at risk (OARs) were compared between 2-dimensional (2D)- and 3D-based ICR. Twenty patients with locally advanced cervical cancer who underwent external beam radiation therapy (EBRT) following 3D-based ICR were retrospectively evaluated. New 2D-based plans based on the Manchester system were developed. Tumor size was measured by magnetic resonance imaging. The mean high risk clinical target volume (HR-CTV) D90 value was about 10% lower for 2D- than for 3D-based plans (88.4% vs. 97.7%; P = 0.068). Tumor coverage did not differ between 2D- and 3D-based plans in patients with tumors ≤ 4 cm at the time of brachytherapy, but the mean HR-CTV D90 values in patients with tumors > 4 cm were significantly higher for 3D-based plans than for 2D-based plans (96.0% vs. 78.1%; P = 0.017). Similar results were found for patients with tumors > 5 cm initially. Other dosimetric parameters for OARs were similar between 2D- and 3D-based plans, except that mean sigmoid D2cc was higher for 2D- than for 3D-based plans (67.5% vs. 58.8%; P = 0.043). These findings indicate that 3D-based ICR plans improve tumor coverage while satisfying the dose constraints for OARs. 3D-based ICR should be considered in patients with tumors > 4 cm size at the time of brachytherapy or > 5 cm initially.

  3. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Anderson, Richard L.; Kurko, Brian S.; Lief, Jonathan H.; Allen, Zachariah A.

    2005-01-01

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V 100/150/200 ); the dose delivered to 90% of the prostate gland (D 90 ); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal

  4. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  5. 3D tumor measurement in cone-beam CT breast imaging

    Science.gov (United States)

    Chen, Zikuan; Ning, Ruola

    2004-05-01

    Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).

  6. Brachytherapy of endometrial cancers

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C.

    2003-01-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  7. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Lindegaard, Jacob Christian; Lænsø Madsen, Mads; Hansen, Anders Traberg

    2016-01-01

    Intracavitary–interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented...

  8. Objective and Longitudinal Assessment of Dermatitis After Postoperative Accelerated Partial Breast Irradiation Using High-Dose-Rate Interstitial Brachytherapy in Patients With Breast Cancer Treated With Breast Conserving Therapy: Reduction of Moisture Deterioration by APBI

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Yamazaki, Hideya; Yoshida, Ken; Takenaka, Tadashi; Masuda, Norikazu; Kotsuma, Tadayuki; Yoshioka, Yasuo; Inoue, Takehiro

    2011-01-01

    Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50–60 Gy in 25–30 fractions within 5–6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in a∗ (reddish) and reduction in L∗ (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6–12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b∗ values, and EBRT did not, demonstrating that the reduction in b∗ values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.

  9. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  10. Shapes, Proportions, and Variations in Breast Aesthetic Ideals: The Definition of Breast Beauty, Analysis, and Surgical Practice.

    Science.gov (United States)

    Mallucci, Patrick; Branford, Olivier Alexandre

    2015-10-01

    There are few objective analyses in the plastic surgical literature to define an aesthetically pleasing template for breast shape and proportion. The authors previously identified key objective parameters that define breast aesthetic ideals in 2 studies: an observational analysis of 100 models with natural breasts, and a population analysis with 1315 respondents. From these data a simple yet reproducible formula for surgical planning in breast augmentation has been developed to consistently achieve beautiful breasts, namely the ICE principle. This article proposes that this principle be used as the basis for design in aesthetic breast surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. 2D/ 3D Quantitative Ultrasound of the Breast

    Science.gov (United States)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  12. SU-F-T-01: Optimization of the Accelerated Partial Breast Brachytherapy Fractionation with Consideration of Physical Doses to Tumor and Organ at Risk

    Energy Technology Data Exchange (ETDEWEB)

    Fu, W; Huq, M [University of Pittsburgh Cancer Institute Pittsburgh, PA (United States)

    2016-06-15

    Purpose: The accelerated partial breast irradiation (APBI) with brachytherapy prescribes 34Gy to be delivered in 10 fractions over 5 consecutive working days without considering the physical dose to the target and organs at risk (OARs) for an individual patient. The purpose of this study is to optimize the fractionation scheme by evaluating the radiation effect on tumor and OARs with a modified linear-quadratic (LQ) model based on dose-volume histograms (DVHs). Methods: Five breast patients treated with multilumen balloon brachytherapy were selected. The minimum skin and rib spacing were ranged from 2.5mm to 14.3mm and from 1.0mm to 25.0mm, respectively. The LQ model parameters were set as: (1) breast: α=0.08, β=0.028, doubling time Tpot=14.4 days, and starting time Tk=21days; (2) skin: acute reaction α=0.101, β=0.009; late reaction α=0.064, β=0.029; (3) rib: α=0.3, β=0.12. Boundary dose Dt was 6 Gy for both target and OARs. The relation between radiation effects on the tumor (ET) and OARs (EOAR) were plotted for fraction number from 1 to 20. Results: The value of radiation effect from routine 3.4Gyx10 fractions was used as reference, ETref and EOARref. If set ET=ETref, the fractionation that results in minimum EOAR values correspond to the optimal fractionation. For these patients, the optimal numbers are 10 fractions for skin acute reaction, 18 fractions for skin and rib late reaction while the doses per fraction are 3.4Gy and 2.05–2.10Gy, respectively. If set EOAR=EOARref, the fractionation that results in a maximum ET value corresponds to the optimal fractionation. The optimal fractionation is 3.4Gyx10 fractions for skin acute reaction, and 2.10–2.25Gyx18 fractions for skin late reaction and rib. Conclusion: For APBI brachytherapy, the routine 3.4Gyx10 fractions is optimal fractionation for skin acute reaction, while 2.05–2.25Gyx18 fractions is optimal fractionation for late reaction of skin and rib.

  13. Pulse dose-rate brachytherapy and treatment of uterine cervix cancer: impact of a 3D or a 2D dosimetric support

    International Nuclear Information System (INIS)

    Tournat, H.; Chilles, A.; Charra-Brunaud, C.; Peiffert, D.; Ahmad, F.; Metayer, Y.

    2007-01-01

    Purpose To evaluate two dosimetric supports used in pulse dose rate brachytherapy (P.D.R.): coverage of target volumes, dose to organs at risk, residual tumor after surgery, survival. Patients and methods Twenty patients treated for uterine cervix tumor first by brachytherapy P.D.R. had a dosimetric CT-scan after implantation. For 9 patients, the treatment was planned from standard radiographies and then reported on CT-scan images. For 11 patients, it was directly planned from CT-scan. Six weeks after, 18 patients underwent surgery. Results With a median follow-up of 22 months, 2 year actuarial survival was 89%. Six patients developed grade II urinary or gynecological complications (LENT SOMA scale). No residual tumor was found for 12 patients (7 with a 3D treatment and 5 a 2 D treatment). Ninety-five percent of C.T.V.H.R. received 53 Gy (2D treatment) or 63 Gy (3D treatment). Two cm 3 of bladder wall received 63 Gy (2D) or 74 Gy (3D) although 2 cm 3 of rectal wall received 37 Gy (2D) and 35 Gy (3D). Conclusion Using CT-scan made us improve the coverage of the uterine cervix but increase the dose received by the bladder, without increasing the rate of histological remission after surgery. We should be prudent before changing our practice. (authors)

  14. Pulsed-dose-rate peri-operative brachytherapy as an interstitial boost in organ-sparing treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Krystyna Serkies

    2016-12-01

    Full Text Available Purpose : To evaluate peri-operative multicatheter interstitial pulsed-dose-rate brachytherapy (PDR-BT with an intra-operative catheter placement to boost the tumor excision site in breast cancer patients treated conservatively. Material and methods: Between May 2002 and October 2008, 96 consecutive T1-3N0-2M0 breast cancer patients underwent breast-conserving therapy (BCT including peri-operative PDR-BT boost, followed by whole breast external beam radiotherapy (WBRT. The BT dose of 15 Gy (1 Gy/pulse/h was given on the following day after surgery. Results: No increased bleeding or delayed wound healing related to the implants were observed. The only side effects included one case of temporary peri-operative breast infection and 3 cases of fat necrosis, both early and late. In 11 patients (11.4%, subsequent WBRT was omitted owing to the final pathology findings. These included eight patients who underwent mastectomy due to multiple adverse prognostic pathological features, one case of lobular carcinoma in situ, and two cases with no malignant tumor. With a median follow-up of 12 years (range: 7-14 years, among 85 patients who completed BCT, there was one ipsilateral breast tumor and one locoregional nodal recurrence. Six patients developed distant metastases and one was diagnosed with angiosarcoma within irradiated breast. The actuarial 5- and 10-year disease free survival was 90% (95% CI: 84-96% and 87% (95% CI: 80-94%, respectively, for the patients with invasive breast cancer, and 91% (95% CI: 84-97% and 89% (95% CI: 82-96%, respectively, for patients who completed BCT. Good cosmetic outcome by self-assessment was achieved in 58 out of 64 (91% evaluable patients. Conclusions : Peri-operative PDR-BT boost with intra-operative tube placement followed by EBRT is feasible and devoid of considerable toxicity, and provides excellent long-term local control. However, this strategy necessitates careful patient selection and histological confirmation

  15. Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid?

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Daniel, E-mail: dmorton@bccancer.bc.ca [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Hilts, Michelle [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Batchelar, Deidre [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Crook, Juanita [Department of Radiation Oncology, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada)

    2016-07-01

    Purpose: To evaluate seed placement accuracy in permanent breast seed implant brachytherapy (PBSI), to identify any systematic errors and evaluate their effect on dosimetry. Methods and Materials: Treatment plans and postimplant computed tomography scans for 20 PBSI patients were spatially registered and used to evaluate differences between planned and implanted seed positions, termed seed displacements. For each patient, the mean total and directional seed displacements were determined in both standard room coordinates and in needle coordinates relative to needle insertion angle. Seeds were labeled according to their proximity to the anatomy within the breast, to evaluate the influence of anatomic regions on seed placement. Dosimetry within an evaluative target volume (seroma + 5 mm), skin, breast, and ribs was evaluated to determine the impact of seed placement on the treatment. Results: The overall mean (±SD) difference between implanted and planned positions was 9 ± 5 mm for the aggregate seed population. No significant systematic directional displacements were observed for this whole population. However, for individual patients, systematic displacements were observed, implying that intrapatient offsets occur during the procedure. Mean displacements for seeds in the different anatomic areas were not found to be significantly different from the mean for the entire seed population. However, small directional trends were observed within the anatomy, potentially indicating some bias in the delivery. Despite observed differences between the planned and implanted seed positions, the median (range) V{sub 90} for the 20 patients was 97% (66%-100%), and acceptable dosimetry was achieved for critical structures. Conclusions: No significant trends or systematic errors were observed in the placement of seeds in PBSI, including seeds implanted directly into the seroma. Recorded seed displacements may be related to intrapatient setup adjustments. Despite observed seed

  16. Radiation-induced circumscribed superficial morphea after brachytherapy for endometrial adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Apoorva Trivedi, BS

    2017-12-01

    Full Text Available Radiation-induced morphea (RIM is a rare and underrecognized complication of radiation therapy that most commonly occurs in women after treatment for breast cancer. Although not fully understood, RIM is hypothesized to arise from an increase in cytokines that stimulate collagen production and extracellular matrix formation. Most documented cases of RIM occur 1 year after radiation therapy and are localized to areas that were treated for breast cancer. We report on a case of a female patient with stage IB endometrial adenocarcinoma who was treated with 24 Gray of adjuvant brachytherapy. The patient developed a diffuse morpheaform, pruritic eruption only at distant sites from the brachytherapy treatment field. Although treatment for RIM is generally unsatisfactory, our patient experienced improvement in the pruritus and a regression of the lesions while applying topical 0.1% tacrolimus ointment and 0.1% triamcinolone creme. An early diagnosis of RIM can prevent extensive workup, guide treatment, and improve quality of life for patients. Keywords: radiation-induced morphea, postirradiation morphea

  17. SU-E-I-58: Objective Models of Breast Shape Undergoing Mammography and Tomosynthesis Using Principal Component Analysis.

    Science.gov (United States)

    Feng, Ssj; Sechopoulos, I

    2012-06-01

    To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.

  18. Patient Preferences and Physician Practice Patterns Regarding Breast Radiotherapy

    International Nuclear Information System (INIS)

    Hoopes, David J.; Kaziska, David; Chapin, Patrick; Weed, Daniel; Smith, Benjamin D.; Hale, E. Ronald; Johnstone, Peter A.

    2012-01-01

    Purpose: There are multiple current strategies for breast radiotherapy (RT). The alignment of physician practice patterns with best evidence and patient preferences will enhance patient autonomy and improve cancer care. However, there is little information describing patient preferences for breast RT and physician practice patterns. Methods and Materials: Using a reliable and valid instrument, we assessed the preferences of 5,000 randomly selected women (with or without cancer) undergoing mammography. To assess practice patterns, 2,150 randomly selected physician-members of American Society for Radiation Oncology were surveyed. Results: A total of 1,807 women (36%) and 363 physicians (17%) provided usable responses. The 95% confidence interval is < ±2.3% for patients and < ±5.3% for physicians. Patient preferences were hypofractionated whole breast irradiation (HF-WBI) 62%, partial breast irradiation (PBI) 28%, and conventionally fractionated whole breast irradiation (CF-WBI) 10%. By comparison, 82% of physicians use CF-WBI for more than 2/3 of women and 56% never use HF-WBI. With respect to PBI, 62% of women preferred three-dimensional (3D)-PBI and 38% favor brachytherapy-PBI, whereas 36% of physicians offer 3D-PBI and 66% offer brachytherapy-PBI. 70% of women prefer once-daily RT over 10 days vs. twice-daily RT over 5 days. 55% of physicians who use PBI do not offer PBI on clinical trial. Conclusions: HF-WBI, while preferred by patients and supported by evidence, falls behind the unproven and less preferred strategy of PBI in clinical practice. There is a discrepancy between women’s preferences for PBI modality and type of PBI offered by physicians. Further alignment is needed between practice patterns, patient preferences, and clinical evidence.

  19. Patient Preferences and Physician Practice Patterns Regarding Breast Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hoopes, David J., E-mail: david.hoopes@wpafb.af.mil [Uniformed Services University of the Health Sciences, Department of Radiology and Radiological Sciences, WPAFB, OH (United States); Kaziska, David; Chapin, Patrick [Air Force Institute of Technology, WPAFB, OH (United States); Weed, Daniel [Clarian Healthcare, Methodist Hospital, Department of Radiation Oncology, Indianapolis, IN (United States); Smith, Benjamin D. [M.D. Anderson Cancer Center, Department of Radiation Oncology, Houston, TX (United States); Hale, E. Ronald [Wright-Patterson Medical Center, Department of Radiation Oncology, WPAFB, OH (United States); Johnstone, Peter A. [Indiana University School of Medicine, Department of Radiation Oncology, Indianapolis, IN (United States)

    2012-02-01

    Purpose: There are multiple current strategies for breast radiotherapy (RT). The alignment of physician practice patterns with best evidence and patient preferences will enhance patient autonomy and improve cancer care. However, there is little information describing patient preferences for breast RT and physician practice patterns. Methods and Materials: Using a reliable and valid instrument, we assessed the preferences of 5,000 randomly selected women (with or without cancer) undergoing mammography. To assess practice patterns, 2,150 randomly selected physician-members of American Society for Radiation Oncology were surveyed. Results: A total of 1,807 women (36%) and 363 physicians (17%) provided usable responses. The 95% confidence interval is < {+-}2.3% for patients and < {+-}5.3% for physicians. Patient preferences were hypofractionated whole breast irradiation (HF-WBI) 62%, partial breast irradiation (PBI) 28%, and conventionally fractionated whole breast irradiation (CF-WBI) 10%. By comparison, 82% of physicians use CF-WBI for more than 2/3 of women and 56% never use HF-WBI. With respect to PBI, 62% of women preferred three-dimensional (3D)-PBI and 38% favor brachytherapy-PBI, whereas 36% of physicians offer 3D-PBI and 66% offer brachytherapy-PBI. 70% of women prefer once-daily RT over 10 days vs. twice-daily RT over 5 days. 55% of physicians who use PBI do not offer PBI on clinical trial. Conclusions: HF-WBI, while preferred by patients and supported by evidence, falls behind the unproven and less preferred strategy of PBI in clinical practice. There is a discrepancy between women's preferences for PBI modality and type of PBI offered by physicians. Further alignment is needed between practice patterns, patient preferences, and clinical evidence.

  20. Trans-abdominal ultrasound (US) and magnetic resonance imaging (MRI) correlation for conformal intracavitary brachytherapy in carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Mahantshetty, Umesh; Khanna, Nehal; Swamidas, Jamema; Engineer, Reena; Thakur, Meenakshi H.; Merchant, Nikhil H.; Deshpande, Deepak D.; Shrivastava, Shyamkishore

    2012-01-01

    Purpose: Trans-abdominal ultrasonography (US) is capable of determining size, shape, thickness, and diameter of uterus, cervix and disease at cervix or parametria. To assess the potential value of US for image-guided cervical cancer brachytherapy, we compared US-findings relevant for brachytherapy to the corresponding findings obtained from MR imaging. Materials and methods: Twenty patients with biopsy proven cervical cancer undergoing definitive radiotherapy with/without concomitant Cisplatin chemotherapy and suitable for brachytherapy were invited to participate in this study. US and MR were performed in a similar reproducible patient positioning after intracavitary application. US mid-sagittal and axial image at the level of external cervical os was acquired. Reference points D1 to D9 and distances were identified with respect to central tandem and flange, to delineate cervix, central disease, and external surface of the uterus. Results: Thirty-two applications using CT/MR compatible applicators were evaluable. The D1 and D3 reference distances which represent anterior surface had a strong correlation with R = 0.92 and 0.94 (p < 0.01). The D2 and D4 reference distances in contrast, which represent the posterior surface had a moderate (D2) and a strong (D4) correlation with R = 0.63 and 0.82 (p < 0.01). Of all, D2 reference distance showed the least correlation of MR and US. The D5 reference distance representing the fundal thickness from tandem tip had a correlation of 0.98. The reference distances for D6, D7, D8, and D9 had a correlation of 0.94, 0.82, 0.96, and 0.93, respectively. Conclusions: Our study evaluating the use of US, suggests a reasonably strong correlation with MR in delineating uterus, cervix, and central disease for 3D conformal intracavitary brachytherapy planning.

  1. Patterns of care for brachytherapy in Europe: Updated results

    International Nuclear Information System (INIS)

    Guedea, Ferran; Venselaar, Jack; Hoskin, Peter; Hellebust, Taran Paulsen; Peiffert, Didier; Londres, Bradley; Ventura, Montse; Mazeron, Jean-Jacques; Van Limbergen, Erik; Poetter, Richard; Kovacs, Gyorgy

    2010-01-01

    Objective: This descriptive survey evaluated brachytherapy (BT) practices and resources in the European area. This was a follow-up study to the original patterns of care for brachytherapy in Europe (PCBE). Materials and methods: A total of 1121 radiotherapy (RT) centres from 41 countries were asked to complete an online questionnaire on BT practices and resources. Countries with fewer than 50% of centres responding were excluded. Participating countries were divided into three groups based on gross domestic product (GDP); group I contained the countries with the highest GDP. Results: The response rate was 56% (633/1121 centres) with 30/41 countries (73%) meeting the inclusion criteria. Sixty percent of reporting centres provided brachytherapy. Responding centres treated an average of 138 (±10, 1 SD) patients with BT; in group I, the mean was 110/centre, an increase of 18% from 2002. CT-dosimetry increased to 61% of centres vs. 33% in 2002. HDR (high-dose rate) BT was the most commonly reported technique (65% of centres). Most BT interventions were for gynaecological tumors (59% of all cases), followed by prostate (17%), breast (9%), lung/bronchus (3%), and esophagus tumors(2%). Conclusion: Gynaecological BT remains the most common application, although both prostate and breast BT have increased. CT-based dosimetry has become increasingly common since 2002. The use of HDR and PDR (pulsed-dose rate) techniques has increased markedly, while both LDR and MDR (medium-dose rate) have declined.

  2. 3D-CRT, Proton, or Brachytherapy APBI in Treating Patients With Invasive and Non-invasive Breast Cancer

    Science.gov (United States)

    2017-12-29

    Ductal Breast Carcinoma In Situ; Estrogen Receptor Positive; Grade 1 Invasive Breast Carcinoma; Grade 2 Invasive Breast Carcinoma; Grade 3 Invasive Breast Carcinoma; Invasive Ductal and Lobular Carcinoma In Situ; Mucinous Breast Carcinoma; Tubular Breast Carcinoma

  3. Double Back Cut in Post-mastectomy Breast Skin (Fish-Shaped Skin Paddle) in Delayed Pedicled TRAM Flap Breast Reconstruction.

    Science.gov (United States)

    Berezovsky, Alexander Bogdanov; Pagkalos, Vasileios A; Shoham, Yaron; Krieger, Yuval; Silberstein, Eldad

    2015-08-01

    Breast reconstruction has become standard of care for female patients with breast cancer. The transverse rectus abdominis musculo-cutaneous flap (TRAMf) is the most common method of immediate or delayed autologous breast reconstruction following mastectomy. We share our experience with modified, double back cut of post-mastectomy skin in delayed pedicled TRAMf breast reconstruction, resulting in fish-shaped skin paddle. This sort of back cut is a simple, reliable way to obtain a natural, esthetically pleasant breast mound with inconspicuous hidden scars.

  4. SU-G-201-14: Is Maximum Skin Dose a Reliable Metric for Accelerated Partial Breast Irradiation with Brachytherapy?

    International Nuclear Information System (INIS)

    Park, S; Ragab, O; Patel, S; Demanes, J; Kamrava, M; Kim, Y

    2016-01-01

    Purpose: To evaluate the reliability of the maximum point dose (Dmax) to the skin surface as a dosimetric constraint, we investigated the correlation between Dmax at the skin surface and dose metrics at various definitions of skin thickness. Methods: 42 patients treated with APBI using a Strut Adjusted Volume Implant (SAVI) applicator between 2010 and 2014 were retrospectively reviewed. Target (PTV-EVAL) and organs at risk (OARs: skin, lung, and ribs) were delineated on a CT following NSABP B-39 guidelines. Six skin structures were contoured: a rind 3cm external to the body surface and 1, 2, 3, 4, and 5mm thick rinds deep to the body surface. Inverse planning simulated annealing optimization was used to deliver 32–34Gy in 8-10 fractions to the target while minimizing OAR doses. Dmax, D0.1cc, D1.0cc, and D2.0cc to the various skin structures were calculated. Linear regressions between the metrics were evaluated using the coefficient of determination (R"2). Results: The average±SD PTV-EVAL volume and cavity-to-skin distances were 71.1±28.5cc and 6.9±5.0mm. The target V90 and V95 were 97.3±2.3% and 95.1±3.2%. The Dmax to the skin structures were 78.7±10.2% (skin surface), 82.2±10.7% (skin-1mm), 89.4±12.6% (skin-2mm), 97.9±15.4% (skin-3mm), 114.1±32.5% (skin-4mm), and 157.0±85.3% (skin-5mm). Linear regression analysis showed D1.0cc and D2.0cc to the skin 1mm and Dmax to the skin-4mm and 5mm were poorly correlated with other metrics (R"2=0.413±0.204). Dmax to the skin surface was well correlated (R"2=0.910±0.047) and D1.0cc to the skin-3mm was strongly correlated with all subsurface skin layers (R"2=0.935±0.050). Conclusion: Dmax to the skin surface is a relevant metric for breast skin dose. Contouring discontinuities in the skin with a 1mm subsurface rind and the active dwells in the skin 4 and 5mm introduced significant variations in skin DVH. D0.1cc, D1.0cc, and D2.0cc to a 3mm skin rind are more robust metrics in breast brachytherapy.

  5. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source

    International Nuclear Information System (INIS)

    White, Shane A.; Landry, Guillaume; Reniers, Brigitte; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank

    2014-01-01

    Purpose: The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy ( w,m ) and dose to medium (D m,m ), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. Results: All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D 90 to PTV was reduced by between ∼4% and ∼40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%–15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. Conclusions: TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources

  6. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  7. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    International Nuclear Information System (INIS)

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-01-01

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. Conclusions: The proposed needle segmentation

  8. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow.

    Science.gov (United States)

    Arenas, Meritxell; Sabater, Sebastià; Sintas, Andreu; Arguís, Monica; Hernández, Víctor; Árquez, Miguel; López, Iolanda; Rovirosa, Àngeles; Puig, Doménec

    2017-06-01

    Skin cancer is the most common tumor in the population. There are different therapeutic modalities. Brachytherapy is one of the techniques used, in which it is necessary to build customized moulds for some patients. Currently, these moulds are made by hand using rudimentary techniques. We present a new procedure based on 3D printing and the analysis of the clinical workflow. Moulds can be made either by hand or by automated 3D printing. For making moulds by hand, a patient's alginate negative is created and, from that, the gypsum cast and customized moulds are made by hand from the patient's negative template. The new process is based on 3D printing. The first step is to take a 3D scan of the surface of the patient and then, 3D modelling software is used to obtain an accurate anatomical reconstruction of the treatment area. We present the clinical workflow using 3D scanning and printing technology, comparing its costs with the usual custom handmade mould protocol. The time spent for the new process is 6.25 hours, in contrast to the time spent for the conventional process, which is 9.5 hours. We found a 34% reduction in time required to create a mould for brachytherapy treatment. The labor cost of the conventional process is 211.5 vs. 152.5 hours, so the reduction is 59 hours. There is also a 49.5% reduction in the financial costs, mostly due to lack of need of a computed tomography (CT) scan of the gypsum and the mould. 3D scanning and printing offers financial benefits and reduces the clinical workload. As the present project demonstrates, through the application of 3D printing technologies, the costs and time spent during the process in the clinical workload in brachytherapy treatment are reduced. Overall, 3D printing is a promising technique for brachytherapy that might be well received in the community.

  9. Re-irradiation of the chest wall for local breast cancer recurrence. Results of salvage brachytherapy with hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Auoragh, A. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Hospital Fuerth, Department of Radiation Oncology, Fuerth (Germany); Strnad, V.; Ott, O.J.; Fietkau, R. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Beckmann, M.W. [University Hospital Erlangen, Department of Gynecology and Obstetrics, Erlangen (Germany)

    2016-09-15

    Following mastectomy and adjuvant external beam radiation therapy in patients with breast cancer, the incidence of local or locoregional recurrence is approximately 9 % (2-20 %). Alongside the often limited possibilities of surgical treatment, radiation therapy combined with superficial hyperthermia is the most effective local therapy. In the present work, a retrospective analysis of salvage brachytherapy combined with superficial hyperthermia for chest wall recurrences is presented. Between 2004 and 2011, 18 patients with a total of 23 target volumes resulting from chest wall recurrences after previously mastectomy and external beam radiation therapy (median 56 Gy, range 50-68 Gy) were treated with superficial brachytherapy as salvage treatment: 8 patients (44 %) had macroscopic tumor, 3 (17 %) had microscopic tumor (R1), and 7 (39 %) had undergone R0 resection and were treated due to risk factors. A dose of 50 Gy was given (high-dose rate [HDR] and pulsed-dose rate [PDR] procedures). In all, 5 of 23 patients (22 %) received additional concurrent chemotherapy, and in 20 of 23 (87 %) target volumes additional superficial hyperthermia was carried out twice weekly. The 5-year local recurrence-free survival was 56 %, the disease-free survival was 28 %, and a 5-year overall survival was 22 %. Late side effects Common Toxicity Criteria (CTC) grade 3 were reported in 17 % of the patients: 2 of 18 (11 %) had CTC grade 3 fibrosis, and 1 of 18 (6 %) had a chronic wound healing disorder. Re-irradiation as salvage brachytherapy with superficial hyperthermia for chest wall recurrences is a feasible and safe treatment with good local control results and acceptable late side effects. (orig.) [German] Nach einer Mastektomie und adjuvanter Strahlentherapie bei Patientinnen mit Mammakarzinom kommt es bei 9 % (2-20 %) zum lokalen bzw. lokoregionaeren Rezidiv. Neben den oft limitierten operativen Behandlungsmoeglichkeiten ist die Strahlentherapie mit Oberflaechenhyperthermie die

  10. Brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Spikalovas, V.; Mudenas, A.; Karoesiene, E.; Mickevicius, R.

    1996-01-01

    In 1987-1995 a total of 347 patients with breast cancer underwent interstitial treatment. Two methods of irradiation were applied. 1. When patients refused surgery, external radiotherapy was given followed by implant radiotherapy for a dose of 20-30 Gy. Needle sources were applied for treatment with an increasing activity on the ends. The application of special template devices made it possible to implant radioactive sources in a strictly pre-set geometry. This allowed to place the sources in the necessary geometry for the whole course of irradiation. Dosimetric planning was performed in Gray-equivalents to a selected isodose curve mostly 85%. Treatment time was 20-50 hours. 2. In cases when the tumour was localized in the medial quadrant of breast, interstitial therapy was applied to the parasternal lymph nodes. During mastectomy catheters were placed in a. thoracica interna of the corresponding side. On the first or second postoperative day flexible radioactive sources were inserted into catheters. Their active length was 10-12 cm. Irradiation dose at a distance of 2 cm from the centre of source was 40-45 Gy. Results: There was minimum radiation effect on the adjusting organs and tissues. Local recurrence of tumour in the region of irradiation was in 6 patients. Conclusions: The application of interstitial radiotherapy in treatment of breast cancer is effective and the results of radiation treatment are encouraging

  11. Large breast size as a risk factor for late adverse effects of breast radiotherapy: Is residual dose inhomogeneity, despite 3D treatment planning and delivery, the main explanation?

    International Nuclear Information System (INIS)

    Goldsmith, Christy; Haviland, Joanne; Tsang, Yat; Sydenham, Mark; Yarnold, John

    2011-01-01

    Background and Purpose: Large breast size is associated with an increased risk of late adverse effects after breast conservation surgery and radiotherapy, even when 3D dosimetry is used. The purpose of this study is to test the hypothesis that residual dose inhomogeneity is sufficient to explain the association. Methods: Patients previously treated after breast conservation surgery with whole breast radiotherapy using 3D dosimetry and followed up in the UK FAST hypofractionation trial were selected for this analysis. The residual level of dose inhomogeneity across the whole breast treatment volume was used to test for association between residual dosimetry and post-treatment change in breast appearance at 2 years post-radiotherapy. Results: At 2 years, 201/279 (72%) of women had no change in photographic breast appearance, 61 (22%) had mild change and 17 (6%) had marked change. Breast size and dosimetry were both significantly associated with late effects in univariate analyses, but only breast size remained an independent significant risk factor for change in breast appearance when included in a multiple regression model together with other prognostic factors (p = 0.006 for trend). Conclusion: Large-breasted women are more likely to suffer change in breast size and shape after whole breast radiotherapy delivered using 3D dosimetry, but residual dose inhomogeneity is insufficient to explain the association.

  12. High-Dose-Rate Brachytherapy Boost Effect on Local Tumor Control in Young Women With Breast Cancer

    International Nuclear Information System (INIS)

    Guinot, Jose-Luis; Baixauli-Perez, Cristobal; Soler, Pablo; Tortajada, Maria Isabel; Moreno, Araceli; Santos, Miguel Angel; Mut, Alejandro; Gozalbo, Francisco; Arribas, Leoncio

    2015-01-01

    Purpose: To evaluate the local control rate and complications of a single fraction of high-dose-rate brachytherapy (HDR BT) boost in women aged 45 yeas and younger after breast-conserving therapy. Methods and Materials: Between 1999 and 2007, 167 patients between the ages of 26 and 45 years old (72 were 40 years old or younger), with stages T1 to T2 invasive breast cancer with disease-free margin status of at least 5 mm after breast-conserving surgery received 46 to 50 Gy whole-breast irradiation plus a 7-Gy HDR-BT boost (“fast boost”). An axillary dissection was performed in 72.5% of the patients and sentinel lymph node biopsy in 27.5%. A supraclavicular area was irradiated in 19% of the patients. Chemotherapy was used in 86% of the patients and hormone treatment in 77%. Clinical nodes were present in 18% and pathological nodes in 29%. The pathological stage was pT0: 5%, pTis: 3%, pT1: 69% and pT2: 23%. Intraductal component was present in 40% and 28% were G3. Results: At a median follow-up of 92 months, 9 patients relapsed on the margin of the implant, and 1 patient in another quadrant, resulting in a 10-year local relapse rate of 4.3% and a breast relapse rate of 4.9%, with breast preservation in 93.4%; no case of mastectomy due to poor cosmesis arose. Actuarial 5- and 10-year disease-free, cause-specific, and overall survival rates were 87.9% and 85.8%, and 92.1% and 88.4%, and 92.1% and 87.3%, respectively. In a univariate analysis, triple-negative cases and negative hormone receptors did worse, but in a multivariate analysis, only the last factor was significant for local and breast control. Asymptomatic fibrosis G2 was recorded in 3 cases, and there were no other late complications. Cosmetic results were good to excellent in 97% of cases. Conclusions: A single dose of 7 Gy using the fast-boost technique is well tolerated, with a low rate of late complications and improved local tumor control in women aged 45 and younger, compared to published data

  13. High-Dose-Rate Brachytherapy Boost Effect on Local Tumor Control in Young Women With Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, Jose-Luis, E-mail: jguinot@fivo.org [Department of Radiation Oncology, Fundacion Instituto Valenciano de Oncologia, Valencia (Spain); Baixauli-Perez, Cristobal [Health Services Research Unit, Center for Public Health Research, Valencia (Spain); Soler, Pablo; Tortajada, Maria Isabel; Moreno, Araceli; Santos, Miguel Angel; Mut, Alejandro [Department of Radiation Oncology, Fundacion Instituto Valenciano de Oncologia, Valencia (Spain); Gozalbo, Francisco [Department of Pathology, Fundacion Instituto Valenciano de Oncologia, Valencia (Spain); Arribas, Leoncio [Department of Radiation Oncology, Fundacion Instituto Valenciano de Oncologia, Valencia (Spain)

    2015-01-01

    Purpose: To evaluate the local control rate and complications of a single fraction of high-dose-rate brachytherapy (HDR BT) boost in women aged 45 yeas and younger after breast-conserving therapy. Methods and Materials: Between 1999 and 2007, 167 patients between the ages of 26 and 45 years old (72 were 40 years old or younger), with stages T1 to T2 invasive breast cancer with disease-free margin status of at least 5 mm after breast-conserving surgery received 46 to 50 Gy whole-breast irradiation plus a 7-Gy HDR-BT boost (“fast boost”). An axillary dissection was performed in 72.5% of the patients and sentinel lymph node biopsy in 27.5%. A supraclavicular area was irradiated in 19% of the patients. Chemotherapy was used in 86% of the patients and hormone treatment in 77%. Clinical nodes were present in 18% and pathological nodes in 29%. The pathological stage was pT0: 5%, pTis: 3%, pT1: 69% and pT2: 23%. Intraductal component was present in 40% and 28% were G3. Results: At a median follow-up of 92 months, 9 patients relapsed on the margin of the implant, and 1 patient in another quadrant, resulting in a 10-year local relapse rate of 4.3% and a breast relapse rate of 4.9%, with breast preservation in 93.4%; no case of mastectomy due to poor cosmesis arose. Actuarial 5- and 10-year disease-free, cause-specific, and overall survival rates were 87.9% and 85.8%, and 92.1% and 88.4%, and 92.1% and 87.3%, respectively. In a univariate analysis, triple-negative cases and negative hormone receptors did worse, but in a multivariate analysis, only the last factor was significant for local and breast control. Asymptomatic fibrosis G2 was recorded in 3 cases, and there were no other late complications. Cosmetic results were good to excellent in 97% of cases. Conclusions: A single dose of 7 Gy using the fast-boost technique is well tolerated, with a low rate of late complications and improved local tumor control in women aged 45 and younger, compared to published data

  14. Interstitial high-dose-rate brachytherapy boost: The feasibility and cosmetic outcome of a fractionated outpatient delivery scheme

    International Nuclear Information System (INIS)

    Manning, Matthew A.; Arthur, Douglas W.; Schmidt-Ullrich, Rupert K.; Arnfield, Mark R.; Amir, Cyrus; Zwicker, Robert D.

    2000-01-01

    Purpose: To evaluate the feasibility, potential toxicity, and cosmetic outcome of fractionated interstitial high dose rate (HDR) brachytherapy boost for the management of patients with breast cancer at increased risk for local recurrence. Methods and Materials: From 1994 to 1996, 18 women with early stage breast cancer underwent conventionally fractionated whole breast radiotherapy (50-50.4 Gy) followed by interstitial HDR brachytherapy boost. All were considered to be at high risk for local failure. Seventeen had pathologically confirmed final surgical margins of less than 2 mm or focally positive. Brachytherapy catheter placement and treatment delivery were conducted on an outpatient basis. Preplanning was used to determine optimal catheter positions to enhance dose homogeneity of dose delivery. The total HDR boost dose was 15 Gy delivered in 6 fractions of 2.5 Gy over 3 days. Local control, survival, late toxicities (LENT-SOMA), and cosmetic outcome were recorded in follow-up. In addition, factors potentially influencing cosmesis were analyzed by logistic regression analysis. Results: The minimum follow-up is 40 months with a median 50 months. Sixteen patients were alive without disease at last follow-up. There have been no in-breast failures observed. One patient died with brain metastases, and another died of unrelated causes without evidence of disease. Grade 1-2 late toxicities included 39% with hyperpigmentation, 56% with detectable fibrosis, 28% with occasional discomfort, and 11% with visible telangiectasias. Grade 3 toxicity was reported in one patient as persistent discomfort. Sixty-seven percent of patients were considered to have experienced good/excellent cosmetic outcomes. Factors with a direct relationship to adverse cosmetic outcome were extent of surgical defect (p = 0.00001), primary excision volume (p = 0.017), and total excision volume (p = 0.015). Conclusions: For high risk patients who may benefit from increased doses, interstitial HDR

  15. A comparison in cosmetic outcome between per-operative interstitial breast implants and delayed interstitial breast implants after external beam radiotherapy

    NARCIS (Netherlands)

    Pieters, Bradley R.; Hart, Augustinus A. M.; Russell, Nicola S.; Jansen, Edwin P. M.; Peterse, Johannes L.; Borger, Jacques; Rutgers, Emiel J. Th

    2003-01-01

    Background and purpose: Interstitial implants for brachytherapy boost in the breast conserving therapy of breast cancer can be performed in two ways; implants during the tumor excision (per-operative implants) or after the external beam therapy (delayed interstitial implants). Differences in

  16. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy

    DEFF Research Database (Denmark)

    Andersen, Else Stougård; Noe, Karsten Østergaaard; Sørensen, Thomas Sangild

    2013-01-01

    Background and purpose: Variations in organ position, shape, and volume cause uncertainties in dose assessment for brachytherapy (BT) in cervix cancer. The purpose of this study was to evaluate uncertainties associated with bladder dose accumulation based on DVH parameter addition (previously...... called "the worst case assumption") in fractionated BT. Materials and methods: Forty-seven patients treated for locally advanced cervical cancer were included. All patients received EBRT combined with two individually planned 3D image-guided adaptive BT fractions. D2 and D0.1 were estimated by DVH...

  17. Modeling and Analysis of Shape with Applications in Computer-aided Diagnosis of Breast Cancer

    CERN Document Server

    Guliato, Denise

    2011-01-01

    Malignant tumors due to breast cancer and masses due to benign disease appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. In spite of the established importance of shape factors in the analysis of breast tumors and masses, difficulties exist in obtaining accurate and artifact-free boundaries of the related

  18. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

    International Nuclear Information System (INIS)

    Poetter, Richard; Haie-Meder, Christine; Limbergen, Erik van; Barillot, Isabelle; Brabandere, Marisol De; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm 3 ; optional 5 and 10 cm 3 . Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm 3 . Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD 2 )-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Poetter R, Van Limbergen E et al

  19. First symposium accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    2012-01-01

    The First symposium accelerated partial breast irradiation, was organized by the Marie Curie Foundation, between the 14 to 16 june 2012, in the Cordoba city of Argentina. In this event were presented some papers on the following topics: radiotherapy in breast cancer; interaction between systemic treatments and radiotherapy; interstitial brachytherapy.

  20. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  1. Vitamin D and Breast Cancer

    National Research Council Canada - National Science Library

    Janowsky, Esther

    1997-01-01

    The purpose of our current work is to determine whether there are differences in blood levels of 1,25-dihydroxy- vitamin D between women with breast cancer and two control groups of women without breast cancer...

  2. Investigation of normal tissue complication probabilities in prostate and partial breast irradiation radiotherapy techniques

    International Nuclear Information System (INIS)

    Bezak, E.; Takam, R.; Bensaleh, S.; Yeoh, E.; Marcu, L.

    2011-01-01

    Full text: Normal- Tissue-Complication Probabilities of rectum, bladder and urethra following various radiation techniques for prostate cancer were evaluated using the relative-seriality and Lyman models. NTCPs of lungs, heart and skin, their dependence on sourceposition, balloon-deformation were also investigated for HDR mammosite brachytherapy. The prostate treatment techniques included external three dimentional conformal-radiotherapy, Low-Dose-Rate brachytherapy (1-125), High-Dose-Rate brachytherapy (Ir-I92). Dose- Volume-Histograms of critical structures for prostate and breast radiotherapy, retrieved from corresponding treatment planning systems, were converted to Biological Effective Dose (BEffD)-based and Equivalent Dose(Deq)-based DVHs to account for differences in radiation delivery and fractionation schedule. Literature-based model parameters were used to calculate NTCPs. Hypofractionated 3D-CRT (2.75 Gy/fraction, total dose 55 Gy) NTCPs of rectum, bladder and urethra were less than those for standard fractionated 4-field 3D-CRT (2-Gy/fraction, 64 Gy) and dose-escalated 4- and 5-field 3D-CRT (74 Gy). Rectal and bladder NTCPs (5.2% and 6.6%) following the dose-escalated 4-field 3D-CRT (74 Gy) were the highest among analyzed techniques. The average NTCP for rectum and urethra were 0.6% and 24.7% for LDRBT and 0.5% and 11.2% for HDR-BT. For Mammosite, NTCP was estimated to be 0.1 %, 0.1 %, 1.2% and 3.5% for skin desquamation, erythema, telangiectasia and fibrosis respectively (the source positioned at the balloon centre). A 4 mm Mammosite-balloon deformation leads to overdosing of PTV regions by ∼40%, resulting in excessive skin dose and increased NTCP. Conclusions Prostate brachytherapy resulted in NTCPs lower compared to external beam techniques. Mammosite-brachytherapy resulted in no heart/lung complications regardless of balloon deformation. However, 4 mm deformation caused 0.6% increase in tissue fibrosis NTCP.

  3. Who Should Bear the Cost of Convenience? A Cost-effectiveness Analysis Comparing External Beam and Brachytherapy Radiotherapy Techniques for Early Stage Breast Cancer.

    Science.gov (United States)

    McGuffin, M; Merino, T; Keller, B; Pignol, J-P

    2017-03-01

    Standard treatment for early breast cancer includes whole breast irradiation (WBI) after breast-conserving surgery. Recently, accelerated partial breast irradiation (APBI) has been proposed for well-selected patients. A cost and cost-effectiveness analysis was carried out comparing WBI with two APBI techniques. An activity-based costing method was used to determine the treatment cost from a societal perspective of WBI, high dose rate brachytherapy (HDR) and permanent breast seed implants (PBSI). A Markov model comparing the three techniques was developed with downstream costs, utilities and probabilities adapted from the literature. Sensitivity analyses were carried out for a wide range of variables, including treatment costs, patient costs, utilities and probability of developing recurrences. Overall, HDR was the most expensive ($14 400), followed by PBSI ($8700), with WBI proving the least expensive ($6200). The least costly method to the health care system was WBI, whereas PBSI and HDR were less costly for the patient. Under cost-effectiveness analyses, downstream costs added about $10 000 to the total societal cost of the treatment. As the outcomes are very similar between techniques, WBI dominated under cost-effectiveness analyses. WBI was found to be the most cost-effective radiotherapy technique for early breast cancer. However, both APBI techniques were less costly to the patient. Although innovation may increase costs for the health care system it can provide cost savings for the patient in addition to convenience. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A [Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA (United States); Boone, J [Departments of Radiology and Biomedical Engineering, University of California Davis, Sacramento, CA (United States)

    2016-06-15

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically. These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis

  5. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    International Nuclear Information System (INIS)

    Hernandez, A; Boone, J

    2016-01-01

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically. These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis

  6. Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study

    International Nuclear Information System (INIS)

    Polgar, Csaba; Major, Tibor; Fodor, Janos; Sulyok, Zoltan; Somogyi, Andras; Loevey, Katalin; Nemeth, Gyoergy; Kasler, Miklos

    2010-01-01

    Background and purpose: To report the 12-year updated results of accelerated partial-breast irradiation (APBI) using multicatheter interstitial high-dose-rate (HDR) brachytherapy (BT). Patients and methods: Forty-five prospectively selected patients with T1N0-N1mi, nonlobular breast cancer without the presence of an extensive intraductal component and with negative surgical margins were treated with APBI after breast-conserving surgery (BCS) using interstitial HDR BT. A total dose of 30.3 Gy (n = 8) and 36.4 Gy (n = 37) in seven fractions within 4 days was delivered to the tumour bed plus a 1-2 cm margin. The median follow-up time was 133 months for surviving patients. Local and regional control, disease-free (DFS), cancer-specific (CSS), and overall survival (OS), as well as late side effects, and cosmetic results were assessed. Results: Four (8.9%) ipsilateral breast tumour recurrences were observed, for a 5-, 10-, and 12-year actuarial rate of 4.4%, 9.3%, and 9.3%, respectively. A total of two regional nodal failures were observed for a 12-year actuarial rate of 4.4%. The 12-year DFS, CSS, and OS was 75.3%, 91.1%, and 88.9%, respectively. Grade 3 fibrosis was observed in one patient (2.2%). No patient developed grade 3 teleangiectasia. Fat necrosis requiring surgical intervention occurred in one woman (2.2%). Cosmetic results were rated excellent or good in 35 patients (77.8%). Conclusions: Twelve-year results with APBI using HDR multicatheter interstitial implants continue to demonstrate excellent long-term local tumour control, survival, and cosmetic results with a low-rate of late side effects.

  7. A dosimetric comparison of IORT techniques in limited-stage breast cancer

    International Nuclear Information System (INIS)

    Nairz, O.; Deutschmann, H.; Kopp, M.; Wurstbauer, K.; Kametriser, G.; Fastner, G.; Merz, F.; Sedlmayer, F.; Reitsamer, R.; Menzel, C.

    2006-01-01

    Background and purpose: for intraoperative radiotherapy (IORT) during breast-conserving treatment four different techniques have been addressed: interstitial brachytherapy, an inflatable balloon with a central high-dose-rate source (MammoSite), a miniature orthovolt system (Intrabeam), and linac-based electron radiotherapy (IOERT). The dosimetric properties of these methods are compared. Material and methods: planning target volumes (PTVs) of the same size but of different shapes are assumed, corresponding to the technique's specific situs. Dose distributions for the PTVs and for surrounding tissues are demonstrated by dose-volume histograms and a list of physical parameters. A dose inhomogeneity index (DII) is introduced to describe the deviation of a delivered from the prescribed dose, reaching its minimal value 0 in case of perfect homogeneity. Results: in terms of DII, IOERT reaches the lowest value followed by the MammoSite, the Intrabeam and interstitial implants. The surrounding tissues receive the smallest average dose with IOERT, closely followed by the orthovolt system. Conclusion: when comparing simplified geometric figures, IOERT delivers the most homogeneous dose distributions. However, in clinical reality PTVs often present asymmetric shapes instead of ideal geometries. Due to a strictly centric dose fall-off, any system with a round central applicator will have technical limits. During IOERT margin-directed applicator guidance is possible and interstitial brachytherapy allows for polygonal dose shaping. These techniques seem to be superior for asymmetric PTV irradiation. (orig.)

  8. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    Science.gov (United States)

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron

    2017-05-01

    Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical

  10. Shaping the breast in secondary microsurgical breast reconstruction: single- vs. two-esthetic unit reconstruction.

    Science.gov (United States)

    Gravvanis, Andreas; Smith, Roger W

    2010-10-01

    The esthetic outcome is dictated essentially not only by the position, size, and shape of the reconstructed breast, but also by the extra scaring involved. In the present study, we conducted a visual analog scale survey to compare the esthetic outcome in delayed autologous breast reconstruction following two different abdominal flaps inset. Twenty-five patients had their reconstruction using the Single-esthetic Unit principle and were compared with 25 patients that their breast was reconstructed using the Two-Esthetic Unit principle. Photographic images were formulated to a PowerPoint presentation and cosmetic outcomes were assessed from 30 physicians, by means of a Questionnaire and a visual analog scale. Our data showed that the single-esthetic unit breast reconstruction presents significant advantages over the traditional two-esthetic units, due to inconspicuous flap reconstruction, better position of the inframammary fold, and more natural transition from native and reconstructed tissues. Moreover, patient self-evaluation of esthetic outcome and quality of life showed that single-esthetic unit reconstruction is associated with higher patient satisfaction, therefore should be considered the method of choice. © 2010 Wiley-Liss, Inc.

  11. Full-view 3D imaging system for functional and anatomical screening of the breast

    Science.gov (United States)

    Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei

    2018-04-01

    Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies

  12. A Japanese prospective multi-institutional feasibility study on accelerated partial breast irradiation using interstitial brachytherapy: treatment planning and quality assurance

    International Nuclear Information System (INIS)

    Otani, Yuki; Nose, Takayuki; Dokiya, Takushi; Saeki, Toshiaki; Kumazaki, Yu

    2015-01-01

    In Japan, breast-conserving surgery with closed cavity has generally been performed for breast cancer patients, and accelerated partial breast irradiation (APBI) is considered difficult because Asian females generally have smaller breast sizes than Western females. Therefore, common identification of target and treatment plan method in APBI is required. A prospective multicenter study was conducted in Japan to determine institutional compliance with APBI using high-dose-rate interstitial brachytherapy (ISBT) designed for Japanese female patients. For this study, 46 patients were recruited at eight institutions from January 2009 to December 2011. The reproducibility of the ISBT–APBI plan was evaluated using three criteria: (1) minimum clinical target volume dose with a clip dose ≥ 6 Gy/fraction, (2) irradiated volume constraint of 40-150 cm 3 , and (3) uniformity of dose distribution, expressed as the dose non-uniformity ratio (DNR, V150/V100) < 0.35. The ISBT–APBI plan for each patient was considered reproducible when all three criteria were met. When the number of non-reproducible patients was ≤ 4 at study completion, APBI at this institution was considered statistically reproducible. Half of the patients (52 %) had a small bra size (A/B cup). The mean values of the dose-constrained parameters were as follows: Vref, 117 cm 3 (range, 40-282), DNR, 0.30 (range, 0.22-0.51), and clip dose, 784 cGy (range, 469-3146). A total of 43/46 treatment plans were judged to be compliant and ISBT–APBI was concluded to be reproducible. This study showed that multi-institutional ISBT–APBI treatment plan was reproducible for small breast patient with closed cavity

  13. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

    International Nuclear Information System (INIS)

    Showalter, Shayna L.; Petroni, Gina; Trifiletti, Daniel M.; Libby, Bruce; Schroen, Anneke T.; Brenin, David R.; Dalal, Parchayi; Smolkin, Mark; Reardon, Kelli A.; Showalter, Timothy N.

    2016-01-01

    Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.

  14. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Shayna L., E-mail: snl2t@virginia.edu [Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Petroni, Gina [Division of Translation Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Trifiletti, Daniel M.; Libby, Bruce [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Schroen, Anneke T.; Brenin, David R. [Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Dalal, Parchayi [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Smolkin, Mark [Division of Translation Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Reardon, Kelli A.; Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States)

    2016-09-01

    Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.

  15. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  16. A new applicator design for endocavitary brachytherapy of cancer in the nasopharynx

    International Nuclear Information System (INIS)

    Levendag, Peter C.; Peters, Rob; Meeuwis, Cees A.; Visch, Leo L.; Sipkema, Dick; Pan, Connie de; Schmitz, Paul I.M.

    1997-01-01

    Introduction: In attempting to improve local tumor control by higher doses of radiation, there has been a resurgence of interest in the implementation of brachytherapy in the management of primary and recurrent cancers of the nasopharynx. Brachytherapy with its steep dose fall-off is of particular interest because of the proximity of critical dose limiting structures. Recent developments in brachytherapy, such as the introduction of pulsed-dose-rate and high-dose-rate computerized afterloaders, have encouraged further evolution of brachytherapy techniques. Materials and methods: We have designed an inexpensive, re-usable and flexible silicone applicator, tailored to the shape of the soft tissues of the nasopharynx, which can be used with either low-dose-rate brachytherapy or high (pulsed)-dose-rate remote controlled afterloaders. Results and conclusions: This Rotterdam nasopharynx applicator proved to be easy to introduce, patient friendly and can remain in situ for the duration of the treatment (2-6 days). The design, technique of application and the first consecutive 5 years of clinical experience in using this applicator are presented

  17. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Landry, Guillaume; White, Shane; Reniers, Brigitte; Verhaegen, Frank; D’Amours, Michel; Beaulieu, Luc

    2014-01-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192 Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. (paper)

  18. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    International Nuclear Information System (INIS)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G; Joshi, C P; Falkson, C; Schreiner, L John

    2014-01-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  19. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  20. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    International Nuclear Information System (INIS)

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-01-01

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper's ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as β exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  1. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    Science.gov (United States)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  2. A study of Brachytherapy for Intraocular Tumor

    International Nuclear Information System (INIS)

    Ji, Kwang Soo; Yoo, Dae Hyun; Lee, Sung Goo; Kim, Jae Hu; Ji, Young Hun

    1996-01-01

    The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm Maximum error is -11.3% and 0.8 mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192

  3. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    Energy Technology Data Exchange (ETDEWEB)

    Burnside, W [Mountain View, CA (United States)

    2015-06-15

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.

  4. Localization of the surgical bed using supine magnetic resonance and computed tomography scan fusion for planification of breast interstitial brachytherapy

    International Nuclear Information System (INIS)

    Jolicoeur, Marjory; Racine, Marie-Lynn; Trop, Isabelle; Hathout, Lara; Nguyen, David; Derashodian, Talar; David, Sandrine

    2011-01-01

    Purpose: To evaluate the feasibility of supine breast magnetic resonance imaging (MR) for definition and localization of the surgical bed (SB) after breast conservative surgery. To assess the inter-observer variability of surgical bed delineation on computed tomography (CT) and supine MR. Materials and methods: Patients candidate for breast brachytherapy and no contra-indications for MR were eligible for this study. Patients were placed in supine position, with the ipsilateral arm above the head in an immobilization device. All patients underwent CT and MR in the same implant/treatment position. Four points were predefined for CT-MRI image fusion. The surgical cavity was drawn on CT then MRI, by three independent observers. Fusion and analysis of CT and MR images were performed using the ECLIPSE treatment planning software. Results: From September 2005 to November 2008, 70 patients were included in this prospective study. For each patient, we were able to acquire axial T1 and T2 images of good quality. Using the predefined fusion points, the median error following the fusion was 2.7 mm. For each observer, volumes obtained on MR were, respectively, 30%, 38% and 40% smaller than those derived from CT images. A highly significant inter-observer variability in the delineation of the SB on CT was demonstrated (p < 0.0001). On the contrary, all three observers agreed on the volume of the SB drawn on MR. Conclusion: Supine breast MRI yields a more precise definition of the SB with a smaller inter-observer variability than CT and may obviate the need for surgical clips. The volume of the SB is smaller with MRI. In our opinion, CT-MRI fusion should be used for SB delineation, in view of partial breast irradiation.

  5. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Kim, Yongbok; Trombetta, Mark G.

    2011-01-01

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D max Man -D max DVH |) and relative (Rediff[%]=100x(|D max Man -D max DVH |)/D max DVH ) maximal skin and rib dose differences between the manual selection method (D max Man ) and the objective method (D max DVH ) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average±standard deviation of maximal dose difference was 1.67%±1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value max >90%) compared with lower dose range (D max <90%): 2.16%±1.93% vs 1.19%±1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the inverse square factor and there was no statistically significant difference (p value=0.8931) between high and low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was <2% of PD, on average, if appropriate attention is paid to selecting a manual dose point in 3D planning CT images.

  6. American brachytherapy society (ABS) consensus guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Nag, Subir; Herskovic, Arnold; Mantravadi, Rao; Speiser, Burton

    1997-01-01

    Introduction: There is wide variation in the indications, treatment regimens, and dosimetry for brachytherapy in the treatment of cancer of the esophagus. No guidelines for optimal therapy currently exist. Methods and Materials: Utilizing published reports and clinical experience, representatives of the Clinical Research Committee of the American Brachytherapy Society (ABS) formulated guidelines for brachytherapy in esophageal cancer. Results: Recommendations were made for brachytherapy in the definitive and palliative treatment of esophageal cancer. (A) Definitive treatment: Good candidates for brachytherapy include patients with unifocal thoracic adeno- or squamous cancers ≤ 10 cm in length, with no evidence of intra-abdominal or metastatic disease. Contraindications include tracheal or bronchial involvement, cervical esophagus location, or stenosis that cannot be bypassed. The esophageal brachytherapy applicator should have an external diameter of 6-10 mm. If 5FU-based chemotherapy and 45-50-Gy external beam are used, recommended brachytherapy is either: (i) HDR 10 Gy in two weekly fractions of 5 Gy each; or (ii) LDR 20 Gy in a single course at 0.4-1 Gy/hr. All doses are specified 1 cm from the midsource or middwell position. Brachytherapy should follow external beam radiation therapy and should not be given concurrently with chemotherapy. (B) Palliative treatment: Patients with adeno- or squamous cancers of the thoracic esophagus with distant metastases or unresectable local disease progression/recurrence after definitive radiation treatment should be considered for brachytherapy with palliative intent. After limited dose (30 Gy) EBRT, the recommended brachytherapy is either: (i) HDR 10-14 Gy in one or two fractions; or (ii) LDR 20-25 Gy in a single course at 0.4-1 Gy/hr. The need for external beam radiation in newly diagnosed patients with a life expectancy of less than 3 months is controversial. In these cases, HDR of 15-20 Gy in two to four fractions or

  7. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  8. Survey of brachytherapy practice in France in 1995. Definitive results

    International Nuclear Information System (INIS)

    Peiffert, D.; Simon, J.M.; Baillet, F.

    1998-01-01

    A survey questionnaire was sent to the 189 French departments of radiation Oncology and 166 responded (88%). Ninety-nine departments declared treating patients by brachytherapy and 358 shielded rooms were available. In Low Dose Rate (LDR) 81 departments used Cesium sources (159 after-loaders, 1,060 sources); Iridium wires were used by 84 departments (673 meters used). Only six departments used other elements. Twenty-six departments were equipped with high dose rate after loaders (HDR) all of them also using LDR techniques for most of the patients. A total of 9,160 patients were treated: 7,868 with LDR and 1,292 with HDR. The common sites treated by LDR were utero-vagina (4,300), breast (1,415), head and neck (1,409), skin (610), anorectal (220) and urologic (70). HDR was used for vaginal cuff (628), bronchi (371), oesophagus (232). PDR just started (33 patients) for a feasibility trial. The rate of patients treated by brachytherapy is around 6-8% of the irradiated patients, but the indications vary is each department. The diffusion of the techniques, and new indications should increase the number of patients being treated by brachytherapy. (authors)

  9. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  10. [Is there a relation between mammaplasties incisions and the final shape of the breast?].

    Science.gov (United States)

    Moufarrège, R; Dionyssopoulos, A; Aymeric, A; Sauvageau, J

    2010-04-01

    The results of reduction mammoplasty and mastopexy demonstrate a great variety of shapes derived from the particularities inherent to each technique. More precisely, it has become apparent to us that the usage of an abnormally long vertical scar leads to a suboptimal final shape of the breast due to the excessive projection compared to its height. Although our clientele continually asks to minimize scars, we have noticed a resurgence in the literature of vertical incision mammoplasty techniques albeit with a scar of an excessive length. The multitude of publications leads to an evident and consistent conclusion: breasts reconstructed with an overly long vertical incision all suffer the same deformity characterized by a banana or squash-shaped breast. We studied the totality of publications on vertical incision technique mammoplasty from the last 15 years and realised they all presented the same problem: an abnormally low height/projection ratio. These numbers have been confronted by the golden ratio established by the first author (2005) [1]. The breast's golden ratio developed by Moufarrège is optimal at a number close to, or superior to 2. Results between 2 and 1.5 are acceptable. All height/projection ratios inferior to 1.5 correspond to suboptimal breast shapes. Furthermore, the totality of results in the vertical scar mammoplasty technique which displayed unsatisfying results had a height/projection ratio inferior to 1.5. Those who promote the vertical incision have the greatest drive to encourage other plastic surgeons to abandon the traditional mutilating boat anchor scar. Nevertheless, they should always remember the deforming effect caused by exaggerated vertical incisions which may be avoided by transforming it into an inverted T with short horizontal branches, a small price to pay to obtain a superior aesthetic result. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  11. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Science.gov (United States)

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F; Lintecum, Kelly M; Senechal, Patti; Bussey, Kimberly J; Davies, Paul C W; Johnson, Roger H; Meldrum, Deirdre R

    2012-01-01

    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At pfibrocystic from the metastatic cell populations. Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.

  12. Reproducing 2D breast mammography images with 3D printed phantoms

    Science.gov (United States)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  13. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.; Hayes, John K.; Hsu, I-Chow J.; Morris, David E.; Rabinovitch, Rachel A.; Tward, Jonathan D.; Rosenthal, Seth A.

    2011-01-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  14. 3D dosimetry study of 188Re liquid balloon for intravascular brachytherapy using BANG polymer gel dosemeters

    International Nuclear Information System (INIS)

    Wuu, S.; Schiff, P.B.; Maryanski, M.; Liu, T.; Borzillary, S.; Weinberger, J.

    2002-01-01

    It has been suggested that the combination of intravascular brachytherapy and coronary stent implantation may result in further reduction of restenosis after percutaneous balloon angioplasty. The use of an angioplasty balloon filled with a P 188 Re liquid beta source for intravascular brachytherapy provides the advantage of accurate source positioning and uniform dose distribution to the coronary vessel wall. The effect of source edge and stent on the dose distribution of the target tissue may be clinically important. In BANG gels, the absorbed radiation produces free-radical chain polymerisation of acrylic monomers that are initially dissolved in the gel. The number of polymer particles is proportional to the absorbed dose. In this study, 3D dose distributions are presented for 188 Re balloons, with and without stents, using a prototype He-Ne laser CT scanner and the proprietary BANG polymer gel dosemeters. (author)

  15. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States); Todor, Dorin A. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Julian, Thomas B. [Allegheny General Hospital, Temple University School of Medicine, Pittsburgh, Pennsylvania (United States); Cuttino, Laurie W.; Mukhopadhyay, Nitai D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States)

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125% of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.

  16. Contura Multi-Lumen Balloon breast brachytherapy catheter: comparative dosimetric findings of a phase 4 trial.

    Science.gov (United States)

    Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D

    2013-06-01

    Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights

  17. 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints

    Science.gov (United States)

    Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent

    2017-12-01

    The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.

  18. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Jorge A. Belgodere

    2018-05-01

    Full Text Available The extracellular matrix (ECM is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D, physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1 biochemical factors modulating breast cancer cell-ECM interactions and (2 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.

  19. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Feng, S.S.J.; Zelst, J.C.M. van; Vreemann, S.; Mann, J.R.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    PURPOSE: To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and

  20. American brachytherapy society (ABS) guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Nag, Subir; Gaspar, Laurie; Herskovic, Arnold; Mantravadi, Prasad; Speiser, Burton

    1996-01-01

    Introduction: There is wide variation in the indications, techniques, treatment regimens and dosimetry being used to treat cancer of the esophagus and no guidelines exist for optimal therapy. Methods: The Clinical Research Committee of the ABS met to formulate consensus guidelines for brachytherapy in esophageal cancer. Results: Good candidates for brachytherapy include patients with unifocal disease, with thoracic tumor 10 cm primary regional lymph adenopathy or tumor located in the gastro-esophageal junction or cervical esophagus. Contraindications include tracheo-esophageal fistula or stenosis that cannot be by-passed. The esophageal or nasogastric tube inserted should have a diameter of 6-10 mm whenever possible. If 5FU-based chemotherapy and 50 Gy external beam (EBRT) are used, it is suggested that the low dose rate brachytherapy (LDR) dose be 20 Gy at 0.4-1 Gy/hr, prescribed at 1 cm from the source. If high dose rate (HDR) is used, the dose recommended is 10 Gy in 2 weekly fractions of 5 Gy each, given after EBRT. Chemotherapy is not usually given concurrently with brachytherapy, and when it is, the brachytherapy dose is reduced. The length of esophagus treated by brachytherapy includes the post-EBRT involved area and a 1-2 cm margin proximally and distally. Supportive care, given during EBRT includes an antifungal agent (e.g., diflucan) and carafate. Gradual dilatation of the esophagus is required post-treatment for esophageal strictures. Conclusion: Guidelines were developed for brachytherapy in esophageal cancer. As more clinical data becomes available, these guidelines will be updated by the ABS

  1. Review of MammoSite brachytherapy: Advantages, disadvantages and clinical outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Bensaleh, Saleh; Bezak, Eva; Borg, Martin (Dept. of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia))

    2009-05-15

    Background. The MammoSite radiotherapy system is an alternative treatment option for patients with early-stage breast cancer to overcome the longer schedules associated with external beam radiation therapy. The device is placed inside the breast surgical cavity and inflated with a combination of saline and radiographic contrast to completely fill the cavity. The treatment schedule for the MammoSite monotherapy is 34 Gy delivered in 10 fractions at 1.0 cm from the balloon surface with a minimum of 6 hours between fractions on the same day. Material and methods. This review article presents the advantages, disadvantages, uncertainties and clinical outcomes associated with the MammoSite brachytherapy (MSB). Results. Potential advantages of MSB are: high localised dose with rapid falloff for normal tissue sparing, minimum delay between surgery and RT, catheter moves with breast, improved local control, no exposure to staff, likely side-effects reduction and potential cost/time saving (e.g. for country patients). The optimal cosmetic results depend on the balloon-to-skin distance. Good-to-excellent cosmetic results are achieved for patients with balloon-skin spacing of =7 mm. There have been very few published data regarding the long term tumour control and cosmesis associated with the MSB. The available data on the local control achieved with the MSB were comparable with other accelerated partial breast irradiation techniques. The contrast medium inside the balloon causes dose reduction at the prescription point. Current brachytherapy treatment planning systems (BTPS) do not take into account the increased photon attenuation due to high Z of contrast. Some BTPS predicted up to 10% higher dose near the balloon surface compared with Monte Carlo calculations using various contrast concentrations (5-25%). Conclusion. Initial clinical results have shown that the MammoSite device could be used as a sole radiation treatment for selected patients with early stage breast cancer

  2. Review of MammoSite brachytherapy: Advantages, disadvantages and clinical outcomes

    International Nuclear Information System (INIS)

    Bensaleh, Saleh; Bezak, Eva; Borg, Martin

    2009-01-01

    Background. The MammoSite radiotherapy system is an alternative treatment option for patients with early-stage breast cancer to overcome the longer schedules associated with external beam radiation therapy. The device is placed inside the breast surgical cavity and inflated with a combination of saline and radiographic contrast to completely fill the cavity. The treatment schedule for the MammoSite monotherapy is 34 Gy delivered in 10 fractions at 1.0 cm from the balloon surface with a minimum of 6 hours between fractions on the same day. Material and methods. This review article presents the advantages, disadvantages, uncertainties and clinical outcomes associated with the MammoSite brachytherapy (MSB). Results. Potential advantages of MSB are: high localised dose with rapid falloff for normal tissue sparing, minimum delay between surgery and RT, catheter moves with breast, improved local control, no exposure to staff, likely side-effects reduction and potential cost/time saving (e.g. for country patients). The optimal cosmetic results depend on the balloon-to-skin distance. Good-to-excellent cosmetic results are achieved for patients with balloon-skin spacing of =7 mm. There have been very few published data regarding the long term tumour control and cosmesis associated with the MSB. The available data on the local control achieved with the MSB were comparable with other accelerated partial breast irradiation techniques. The contrast medium inside the balloon causes dose reduction at the prescription point. Current brachytherapy treatment planning systems (BTPS) do not take into account the increased photon attenuation due to high Z of contrast. Some BTPS predicted up to 10% higher dose near the balloon surface compared with Monte Carlo calculations using various contrast concentrations (5-25%). Conclusion. Initial clinical results have shown that the MammoSite device could be used as a sole radiation treatment for selected patients with early stage breast cancer

  3. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  4. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  5. Automatic seed picking for brachytherapy postimplant validation with 3D CT images.

    Science.gov (United States)

    Zhang, Guobin; Sun, Qiyuan; Jiang, Shan; Yang, Zhiyong; Ma, Xiaodong; Jiang, Haisong

    2017-11-01

    Postimplant validation is an indispensable part in the brachytherapy technique. It provides the necessary feedback to ensure the quality of operation. The ability to pick implanted seed relates directly to the accuracy of validation. To address it, an automatic approach is proposed for picking implanted brachytherapy seeds in 3D CT images. In order to pick seed configuration (location and orientation) efficiently, the approach starts with the segmentation of seed from CT images using a thresholding filter which based on gray-level histogram. Through the process of filtering and denoising, the touching seed and single seed are classified. The true novelty of this approach is found in the application of the canny edge detection and improved concave points matching algorithm to separate touching seeds. Through the computation of image moments, the seed configuration can be determined efficiently. Finally, two different experiments are designed to verify the performance of the proposed approach: (1) physical phantom with 60 model seeds, and (2) patient data with 16 cases. Through assessment of validated results by a medical physicist, the proposed method exhibited promising results. Experiment on phantom demonstrates that the error of seed location and orientation is within ([Formula: see text]) mm and ([Formula: see text])[Formula: see text], respectively. In addition, the most seed location and orientation error is controlled within 0.8 mm and 3.5[Formula: see text] in all cases, respectively. The average process time of seed picking is 8.7 s per 100 seeds. In this paper, an automatic, efficient and robust approach, performed on CT images, is proposed to determine the implanted seed location as well as orientation in a 3D workspace. Through the experiments with phantom and patient data, this approach also successfully exhibits good performance.

  6. Evaluation of Vitamin D in Breast Cancer in a Tertiary Care Hospital

    Directory of Open Access Journals (Sweden)

    MN Suma

    2017-10-01

    Full Text Available Introduction: Vitamin D has been implicated to play a very important role in different types of cancers due to its pleotropic effects such as cell proliferation, cell differentiation, apoptosis etc. The implications of vitamin D deficiency are more evident in breast, prostate and colorectal cancer. Studies have revealed vitamin D supplementation reduces the risk of Breast cancer. Aim: The main objective of our study was to find out whether low serum 25-hydroxy vitamin D levels was associated with breast cancer. Materials and Methods: Study group included 25 diagnosed cases of breast cancer. Equal number of age and sex matched healthy persons were included in the control group. Serum 25-hydroxy vitamin D was estimated by electrochemiluminiscence immunoassay. Results: Mean vitamin D levels were low in breast cancer patients, when compared to controls (p-value < 0.05,which shows that low vitamin D levels are associated with increased risk of breast cancer. Conclusion: Our study showed that low levels of vitamin D are associated with breast cancer when compared to apparently healthy controls. Estimation of serum vitamin D in patients with breast cancer might help in the early diagnosis and treatment of breast cancer.

  7. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F.; Srougi, Miguel; Nesrallah, Adriano

    1999-01-01

    The transperineal brachytherapy with 125 I/Pd 103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  8. Vitamin D and breast cancer: Indian perspective

    Directory of Open Access Journals (Sweden)

    Afrozul Haq

    2017-04-01

    Full Text Available Cancer is a major public health problem and cause of death worldwide. According to WHO, cancer accounted for 7.6 million deaths in 2008, which is projected to continue rising with an estimated 13.1 million deaths in 2030. Breast Cancer (BC is the most common cancer in women worldwide and it represents the second leading cause of death among women, after lung cancer. In India, BC is the most common diagnosed malignancy with 75,000 new cases of breast cancer diagnosed every year. The factors associated with BC are genetic mutation, reproductive factors, family history, breast density, increasing age and nutritional risk factors. Retrospective and prospective epidemiologic studies have revealed that vitamin D deficiency is associated with an increased risk of developing and dying of BC. Several recent reports have found vitamin D intake is beneficial not only for cancer prevention but also for women recently diagnosed with BC. In India, vitamin D deficiency ranges between 70% and 100%. There is paucity of literature available on association of vitamin D and risk of BC in Indian women. The aim of this review is to present the association of vitamin D deficiency with BC. Given the high prevalence of vitamin D deficiency and a higher incidence of breast cancer in India, interventional possibilities to increase vitamin D status should be done. Revising the Recommended Dietary Allowances (RDA for vitamin D intake and defining serum 25(OHD cut off levels for the Asian population should be done with a high priority.

  9. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Directory of Open Access Journals (Sweden)

    Hooshiar Zolfagharnasab

    2018-01-01

    Full Text Available Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained.

  10. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Science.gov (United States)

    Zolfagharnasab, Hooshiar; Bessa, Sílvia; Oliveira, Sara P.; Faria, Pedro; Teixeira, João F.; Cardoso, Jaime S.

    2018-01-01

    Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained. PMID:29315279

  11. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  12. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  13. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  14. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  15. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    International Nuclear Information System (INIS)

    Ouhib, Z.

    2015-01-01

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  16. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    International Nuclear Information System (INIS)

    Sinha, Neeharika; Cifter, Gizem; Sajo, Erno; Kumar, Rajiv; Sridhar, Srinivas; Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike; Ngwa, Wilfred

    2015-01-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  17. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  18. Using x-ray mammograms to assist in microwave breast image interpretation.

    Science.gov (United States)

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  19. Vitamin D content in human breast milk

    DEFF Research Database (Denmark)

    Við Streym, Susanna; Højskov, Carsten S; Møller, Ulla Kristine

    2016-01-01

    BACKGROUND: Parents are advised to avoid the direct sun exposure of their newborns. Therefore, the vitamin D status of exclusively breastfed newborns is entirely dependent on the supply of vitamin D from breast milk. OBJECTIVES: We explored concentrations of ergocalciferol (vitamin D2......) and cholecalciferol (vitamin D3) (vitamin D) and 25-hydroxivitamin D2 plus D3 (25-hydroxyvitamin D [25(OH)D]) in foremilk and hindmilk during the first 9 mo of lactation and identified indexes of importance to the concentrations. DESIGN: We collected blood and breast-milk samples from mothers at 2 wk (n = 107), 4 mo......, (n = 90), and 9 mo (n = 48) postpartum. Blood samples from infants were collected 4 and 9 mo after birth. We measured concentrations of vitamin D metabolites in blood and milk samples with the use of liquid chromatography-tandem mass spectrometry. RESULTS: Concentrations of vitamin D and 25(OH)D...

  20. Partial breast irradiation as sole therapy for low risk breast carcinoma: Early toxicity, cosmesis and quality of life results of a MammoSite brachytherapy phase II study

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Chauvet, Marie-Pierre; Giard, Sylvia; Villette, Sylviane; Lacornerie, Thomas; Bonodeau, Francois; Baranzelli, Marie-Christine; Bonneterre, Jacques; Lartigau, Eric

    2009-01-01

    Purpose: The MammoSite is a device that was developed with the goal of making breast-conserving surgery (BCT) more widely available. Our objective was to evaluate the MammoSite device performances after an open cavity placement procedure and quality of life in highly selected patients with early-stage breast cancer. Methods and materials: From March 2003 to March 2005, 43 patients with T1 breast cancer were enrolled in a phase II study. The median age was 72 years. Twenty-five (58%) patients were treated with high-dose rate brachytherapy using the MammoSite applicator to deliver 34 Gy in 10 fractions. The main disqualifying factor was pathologic sentinel node involvement (10/43; 23%). There were no device malfunctions, migration or rupture of the balloon. Results: After a median follow-up of 13 months, there were no local recurrences and one contralateral lobular carcinoma. Seventeen (68%), 13 (52%), 8 (32%), 5 (20%) and 2 (8%) patients had erythema, seroma, inflammation, hematoma and sever infection, respectively. Only 2 patients developed telangiectasia. At 1 year the rate of 'good to excellent' cosmetic results was 84%. Significant changes in QoL were observed for emotional and social well-being between 3 and 12 months. At 24 months, only emotional well-being subscore changes were statistically significant (p = 0.015). Conclusions: Our data in patients older than 60 years support the previously published data. Histologic features were the main disqualifying criteria. With higher skin spacing levels we observed very low incidence of telangiectasia. QoL evaluation indicates that baseline scores were satisfactory. Changes concerned emotional and social well-being

  1. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Directory of Open Access Journals (Sweden)

    Vivek Nandakumar

    Full Text Available Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the

  2. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.

    Science.gov (United States)

    James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K

    2017-02-01

    We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.

  3. Clinical outcomes of prospectively treated 140 women with early stage breast cancer using accelerated partial breast irradiation with 3 dimensional computerized tomography based brachytherapy

    International Nuclear Information System (INIS)

    Budrukkar, Ashwini; Gurram, Lavanya; Upreti, Ritu Raj; Munshi, Anusheel; Jalali, Rakesh; Badwe, Rajendra; Parmar, Vani; Shet, Tanuja; Gupta, Sudeep; Wadasadawala, Tabassum; Sarin, Rajiv

    2015-01-01

    Purpose: To study the clinical outcomes of women with early breast cancer (EBC) treated with accelerated partial breast irradiation (APBI) with multicatheter interstitial brachytherapy (MIB) using 3 dimensional computerized tomography (3DCT) based planning. Materials and methods: During August 2005 to January 2013, 140 women with EBC were treated prospectively with APBI using high dose rate (HDR) MIB. After 3DCT based planning patients were treated to a dose of 34 Gy/10 #/1 week with bid regimen. Results: Median age was 57 years and tumor size 2 cm (range: 0.6–3.2 cm). Infiltrating duct carcinoma (IDC) was the most common histology; grade III tumors were seen in 82%. Median dose homogeneity index (DHI) was 0.76 (range: 0.49–0.85). The median coverage index (CI) of the cavity was 90% (61.4–100) and 80.5% (53.6–97.4) for planning target volume (PTV). Median follow up was 60 months (1–102 months). The 5 and 7 year local control rates (LC) were 97% and 92% respectively. Her2 positivity was the only prognostic factor which had an adverse impact on LC (p = 0.01). Five and 7 year disease free survival (DFS) and overall survival (OAS) were 93%, 84%, 97.5% and 89% respectively. Good to excellent cosmetic outcomes at last follow up were seen in 87 (77%) women. Conclusions: 3DCT based MIB results in excellent long term outcomes and good to excellent cosmesis. Her2 positivity has an adverse impact on LC rates

  4. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  5. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  6. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  8. A quantitative analysis of two-dimensional manually segmented transrectal ultrasound axial images in planning high dose rate brachytherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Dabić-Stanković Kata

    2017-01-01

    Full Text Available Background/Aim. Prostate delineation, pre-planning and catheter implantation procedures, in high-dose rate brachytherapy (HDR-BT, are commonly based on the prostate manually segmented transrectal ultrasound (TRUS images. The aim of this study was to quantitatively analyze the consistency of prostate capsule delineation, done by a single therapist, prior to each HDR-BT fraction and the changes in the shape of the prostate capsule during HDR-BT, using two dimensional (2D TRUS axial image. Methods. A group of 16 patients were treated at the Medical System Belgrade Brachytherapy Department with definitive HDRBT. The total applied median dose of 52 Gy was divided into four individual fractions, each fraction being delivered 2– 3 weeks apart. Real time prostate axial visualization and the manual segmentation prior to each fraction were performed using B-K Medical ultrasound. Quantitative analyses, analysis of an area and shape were applied on 2D-TRUS axial images of the prostate. Area analyses were used to calculate the average value of the cross-sectional area of the prostate image. The parameters of the prostate shape, the fractal dimension and the circularity ratio of the prostate capsule contour were estimated at the maximum axial cross section of the prostate image. Results. The sample group consisted of four phases, each phase being performed prior to the first, second, third and fourth HDR-BT fraction, respectively. Statistical analysis showed that during HDR-BT fractions there were no significant differences in the average value of area, as well as in the maximum shape of prostate capsule. Conclusions. Quantitative analysis of TRUS axial prostate segmented images shows a successful capsule delineation in the series of manually segmented TRUS images, and the prostate maximum shape remaining unchanged during HDR-BT fractions.

  9. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner

    International Nuclear Information System (INIS)

    Zhang, Jing; Lai, Xing-Jian; Zhu, Qing-Li; Wang, Hong-Yan; Jiang, Yu-Xin; Liu, He; Dai, Qing; You, Shan-Shan; Xiao, Meng-Su

    2012-01-01

    Objective: To evaluate the interobserver agreement of radiologists in the description and final assessment of breast sonograms obtained using an automated breast volume scanner (ABVS) using a unique descriptor of three-dimensional ultrasound (3D US) and the Breast Imaging Reporting and Data System (BI-RADS) US lexicon. Methods: From October to December 2010, 208 patients were subjected to an ABVS examination in the supine position, and data were automatically sent to the ABVS workstation. Two radiologists independently evaluated 234 breast masses (148 benign and 86 malignant masses) using a unique descriptor from the 3D US and the BI-RADS US lexicon. The reviewers were blinded to the patient's mammographic images, medical history, and pathologic findings. The interobserver agreement was measured using kappa statistics. Results: Substantial agreement was obtained for lesion shape, orientation, margin, echo pattern, posterior acoustic features, calcification and final assessment (κ = 0.79, 0.74, 0.76, 0.69, 0.68, 0.71 and 0.70, respectively). Fair agreement was obtained for retraction phenomenon and lesion boundary (κ = 0.54 and 0.42, respectively). Conclusions: The interobserver agreement for breast sonograms obtained by ABVS is good, especially for lesion shape and margin; however, the interobserver agreement for the retraction phenomenon, which is a unique descriptor of coronal-plane 3D US, needs to be improved

  10. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  11. Brachytherapy boost for breast cancer: what do we know? where do we go?

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Marsiglia, H.

    2004-01-01

    Since many years, Brachytherapy (BT) appears to play an important role in the treatment of many solid tumors. For breast cancer, BT is usually used as boost after postoperative external beam radiation therapy. In certain circumstances. BT can be used as sole radiation technique focalized on the tumor bed or more rarely, as second conservative treatment in case of local recurrence for woman refusing salvage mastectomy. Boost BT is most often applied via an interstitial technique while the dose rate can vary from low to high close rate through pulse dose rate. All of those boost techniques were published and some of them compared the results obtained with BT and external beam electron therapy. The analysis of the published phase II and III trials was not able to show significant differences between the two boost techniques in term of local control as well as late skin side effects. However, we noted that the patients who received BT boost presented a higher risk of local recurrence compare to those treated with electron therapy, due to age, margin status or presence of extensive intraductal component. Only a phase III trial randomizing BT boost vs electron therapy boost could show a possible improvement of local control rate in the BT arm; however, this trial should enroll patients with a real high risk of local recurrence in order to take benefit from the dosimetric advantages of BT. (author)

  12. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Harkenrider, Matthew M. [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Cho, Linda P. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Department Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Small, Christina [Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Small, William [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2016-03-01

    Purpose: To provide an update of the 2007 American brachytherapy survey on image-based brachytherapy, which showed that in the setting of treatment planning for gynecologic brachytherapy, although computed tomography (CT) was often used for treatment planning, most brachytherapists used point A for dose specification. Methods and Materials: A 45-question electronic survey on cervical cancer brachytherapy practice patterns was sent to all American Brachytherapy Society members and additional radiation oncologists and physicists based in the United States between January and September 2014. Responses from the 2007 survey and the present survey were compared using the χ{sup 2} test. Results: There were 370 respondents. Of those, only respondents, not in training, who treat more than 1 cervical cancer patient per year and practice in the United States, were included in the analysis (219). For dose specification to the target (cervix and tumor), 95% always use CT, and 34% always use MRI. However, 46% use point A only for dose specification to the target. There was a lot of variation in parameters used for dose evaluation of target volume and normal tissues. Compared with the 2007 survey, use of MRI has increased from 2% to 34% (P<.0001) for dose specification to the target. Use of volume-based dose delineation to the target has increased from 14% to 52% (P<.0001). Conclusion: Although use of image-based brachytherapy has increased in the United States since the 2007 survey, there is room for further growth, particularly with the use of MRI. This increase may be in part due to educational initiatives. However, there is still significant heterogeneity in brachytherapy practice in the United States, and future efforts should be geared toward standardizing treatment.

  13. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  14. 3D-CT implanted interstitial brachytherapy for T2b nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ren, Yu-Feng; Gao, Yuan-Hong; Cao, Xin-Ping; Ye, Wei-Jun; Teh, Bin S

    2010-01-01

    To compare the results of external beam radiotherapy in combination with 3D- computed tomography (CT)-implanted interstitial high dose rate brachytherapy (ERT/3D-HDR-BT) versus conventional external beam radiotherapy (ERT) for the treatment of stage T2b nasopharyngeal carcinoma (NPC). Forty NPC patients diagnosed with stage T2b NPC were treated with ERT/3D-HDR-BT under local anesthesia. These patients received a mean dose of 60 Gy, followed by 12-20 Gy administered by 3D-HDR-BT. Another 101 patients diagnosed with non-metastatic T2b NPC received a mean dose of 68 Gy by ERT alone during the same period. Patients treated with ERT/3D-HDR-BT versus ERT alone exhibited an improvement in their 5-y local failure-free survival rate (97.5% vs. 80.2%, P = 0.012) and disease-free survival rate (92.5% vs. 73.3%, P = 0.014). Using multivariate analysis, administration of 3D-HDR-BT was found to be favorable for local control (P = 0.046) and was statistically significant for disease-free survival (P = 0.021). The incidence rate of acute and chronic complications between the two groups was also compared. It is possible that the treatment modality enhances local control due to improved conformal dose distributions and the escalated radiation dose applied

  15. 2-D or 3-D Mammography?: The Future of Breast Cancer Detection | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Future of Breast Cancer Detection Follow us 2-D or 3-D Mammography?: The Future of Breast Cancer Detection NIH- ... will test two types of imaging tools—2-D and 3-D mammography. 2-D mammography takes ...

  16. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy.

    Science.gov (United States)

    Chaswal, V; Thomadsen, B R; Henderson, D L

    2012-02-21

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10(Ur), D90(Ur) and V150(Ur) and for the rectum region the V100cc, D2cc, D90(Re) and V90(Re) all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  17. Development of an adjoint sensitivity field-based treatment-planning technique for the use of newly designed directional LDR sources in brachytherapy

    Science.gov (United States)

    Chaswal, V.; Thomadsen, B. R.; Henderson, D. L.

    2012-02-01

    The development and application of an automated 3D greedy heuristic (GH) optimization algorithm utilizing the adjoint sensitivity fields for treatment planning to assess the advantage of directional interstitial prostate brachytherapy is presented. Directional and isotropic dose kernels generated using Monte Carlo simulations based on Best Industries model 2301 I-125 source are utilized for treatment planning. The newly developed GH algorithm is employed for optimization of the treatment plans for seven interstitial prostate brachytherapy cases using mixed sources (directional brachytherapy) and using only isotropic sources (conventional brachytherapy). All treatment plans resulted in V100 > 98% and D90 > 45 Gy for the target prostate region. For the urethra region, the D10Ur, D90Ur and V150Ur and for the rectum region the V100cc, D2cc, D90Re and V90Re all are reduced significantly when mixed sources brachytherapy is used employing directional sources. The simulations demonstrated that the use of directional sources in the low dose-rate (LDR) brachytherapy of the prostate clearly benefits in sparing the urethra and the rectum sensitive structures from overdose. The time taken for a conventional treatment plan is less than three seconds, while the time taken for a mixed source treatment plan is less than nine seconds, as tested on an Intel Core2 Duo 2.2 GHz processor with 1GB RAM. The new 3D GH algorithm is successful in generating a feasible LDR brachytherapy treatment planning solution with an extra degree of freedom, i.e. directionality in very little time.

  18. SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, H; Wu, X [University of Iowa, Iowa City, IA (United States); Flynn, R; Kim, Y [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2015-06-15

    Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways that rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD{sub 2cc} tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D{sub 90} changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients

  19. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  20. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...

  1. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  2. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  3. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition....... Furthermore, we study metrics based on repated annotations of a training set. We define a way of assessing the correlation between landmarks contrary to landmark coordinates. Finally, we apply the proposed methods to a 2D data set consisting of outlines of lungs and a 3D/(4D) data set consisting of sets...

  4. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, Shahram [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Fleury, Emmanuelle [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Lai, Priscilla [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Merino, Tomas [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiotherapy Unit, School of Medicine, Departamento de Hemato-oncologia, Pontificia Universidad Católica de Chile, Santiago (Chile); Lechtman, Eli [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Kiss, Alex [Sunnybrook Research Institute, Toronto, Ontario (Canada); McCann, Claire [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Pignol, Jean-Philippe, E-mail: j.p.pignol@erasmusmc.nl [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiation Oncology Department, Erasmus Medical Center, Cancer Institute, Rotterdam (Netherlands)

    2016-03-15

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.

  5. Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    Full Text Available Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  6. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.

    Science.gov (United States)

    Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko

    2017-09-01

    In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Radiation recall secondary to adjuvant docetaxel after balloon-catheter based accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Wong, Nathan W.; Wong, William W.; Karlin, Nina J.; Gray, Richard J.

    2010-01-01

    For early stage breast cancer, wide local excision and post-operative whole breast irradiation is a standard treatment. If adjuvant chemotherapy is recommended, radiation is usually given after completion of chemotherapy. In recent years, accelerated partial breast irradiation (APBI) with balloon-cathetered based brachytherapy has become an option for selected patients. For these patients, adjuvant chemotherapy would have to be administered after radiation. The sequence of treatment with radiation followed by chemotherapy results in increased risk of radiation recall reaction (RRD) in these patients. Docetaxel is becoming a more commonly used drug as adjuvant treatment for breast cancer. Here we report a case of docetaxel induced RRD after APBI with balloon-cathetered based brachytherapy. Such reaction would have an adverse impact on the cosmetic outcome and quality of life of the patient. For patients who develop an intense skin reaction after the administration of docetaxel following APBI, RRD should be considered in the differential diagnosis.

  8. Image-guided focal therapies for breast cancer

    International Nuclear Information System (INIS)

    Marqa, Mohamad-Feras

    2011-01-01

    Breast cancer is the most common in women, affecting one in ten women, by geographic area. Accelerated Partial Breast Irradiation (APBI) is a new concept of postoperative irradiation after breast conserving surgery for cancer at low risk of local recurrence. In the first chapter of this thesis, we present the rational use of the APBI method as an alternative to the whole breast irradiation and then we discuss the principles, the benefits, and the drawbacks of the different techniques used. One of these techniques is the multi catheters high dose rate (HDR) interstitial brachytherapy. Multi catheter interstitial brachytherapy was the originally employed APBI technique and as a consequence has generated clinical experience with the longest follow-up duration, and with encouraging results. The accuracy of treatment planning system (TPS) in the source location and the dose calculation is absolutely necessary to ensure the planned dose. Sievert Integral and TG43 formalism provide quick and easy methods to check and to verify the dose calculated by the TPS. In the second chapter, we discuss a dose calculation and optimization tool for the APBI method using HDR sources. This tool simulates the dose from the parameters defined by the physicist. Often, the radiotherapist performs during the procedure a mental re-adjustment of catheters positions simulated on the CT images. This operation could lead to errors due to differences in breast form and catheters positions on the intra-operative ultrasound images compared to the planed one on CT images. In chapter three of this thesis, we propose a registration method between data from planning and the one from intra-operative ultrasound images as a solution that will allow to the radiotherapist to report planning data automatically on the brachytherapy template to visualize all data on the computer monitor. The APBI technique is considered an invasive and expensive method due to radiation protection reasons. Laser Interstitial

  9. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Science.gov (United States)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  10. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    International Nuclear Information System (INIS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-01-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  11. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha [College of Medicine, Hallym Univ., Seoul (Korea, Republic of)

    2001-09-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited.

  12. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    International Nuclear Information System (INIS)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha

    2001-01-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited

  13. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-01-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold 198 , Cesium 137 and Iridium 192 . The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  14. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States); Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A [East Carolina University, Greenville, NC (United States); Corbett, M [Greenville Health System, Greenville, SC (United States)

    2016-06-15

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  15. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    International Nuclear Information System (INIS)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N; Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A; Corbett, M

    2016-01-01

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  16. The role of long half-life isotopes for use in LDR brachytherapy. Report of the advisory group meeting (325-E3-AG-1086)

    International Nuclear Information System (INIS)

    2000-08-01

    Brachytherapy is a growing activity in the management of cancer. Where indications exist for brachytherapy, LDR still retains a significant but decreasingly important role in the overall management. It remains the preferred form of brachytherapy in a few sites such as the nose, lip, vagina and penis. It is well tested in the paediatric population where long-term sequelae are highly significant and have not yet been evaluated for mHDR. Prostatic cancer permanent seed implant boosts is currently the only application where LDR is receiving increasing clinical support. LDR still can play an equally effective role when brachytherapy is required in gynaecological, breast and head and neck cancer and soft tissue sarcomas. The meeting recognised the growing role of mHDR as the major modality in brachytherapy administration. It is further noted that changing circumstances and opinions regarding mHDR may exert a major influence on the continued future of LDR as a treatment modality. LDR brachytherapy special techniques are becoming less widely distributed and less frequently performed. Only a few centres remain where sufficient procedures are performed to give adequate training in a period of a few months. The meeting recommended that the Agency should promote the creation of regional training centres of excellence where the practice of LDR brachytherapy should be available. The meeting recommended that the Member States should continue support for LDR brachytherapy techniques beyond gynaecological techniques until such time as clear evidence is presented for discontinuation

  17. Results of the European research project 'Improving the effectiveness of cancer treatment with 3D Brachytherapy'

    International Nuclear Information System (INIS)

    Solc, J.; Sochor, V.; Selbach, H.-J.; Aubineau-Laniec, I.; Lourenco, V.; Gabris, F.; Grindborg, J.-E.; Kosunen, A.; Jarvinen, H.; Sipila, P.; Gouldstone, C.; Sander, T.; Sharpe, P.; Zeman, J.; Portugal, L.; Rodrigues, M.; Carlsson Tedgren, A.; Pooter de, M

    2011-01-01

    The project iMERA + T2.J06 'Improving the effectiveness of cancer treatment using 3D brachytherapy' was solved in the period 2008-2011 in collaboration of metrology institutes from 10 European Union countries, including participation of the Czech Republic. Its main objective was to create a means to ensure metrological quantity absorbed dose in water from brachyterapeutical (BT) sources enabling more accurate assessment of therapeutic benefit than using existing dosimetry protocols that are based on the quantity kerma in the air. This project is discussed on the poster.

  18. Clinical outcome and cosmetic results of conservative surgery plus radiation therapy in early stage breast cancer patients

    International Nuclear Information System (INIS)

    Jin Yening; Wang Yajie; Zhang Xiaoqing; Meng Yan; Li Rongqing; Shi Junyi

    2005-01-01

    Objective: To evaluate the clinical outcome and cosmetic results in early stage breast cancer patients treated with conservative surgery plus radiation therapy. Methods: From May 1995 to December 2002, 109 such patients were so treated. The post-operative radiotherapy consisted of whole-breast 6 MV linear accelerator irradiation with two tangential half-fields to a total dose of 45-52 Gy (mean 48.6 Gy), followed by a boost irradiation to the tumor bed. Among them, 79 patients received 10-12 Gy (DB) boost by interstitial implantation brachytherapy ( 192 Ir HDR, Nucletron), with single plane implantation for T1 and double plane implantation for T2 tumor. Thirty patients received 15 Gy boost by electron beam. Adjuvant/concurrent chemotherapy (CMF or CEF) and hormonotherapy were also used according to the patients' clinical characteristics. The cosmetic results were scored by both the doctor and the patients. Results: The overall actuarial 5-year survival was 93.8%, with local recurrence of 6.5%. No radiation-induced ulcer was observed in the breast except for acute inflammation at skin pinholes in 5 patients treated by interstitial implant brachytherapy. Among the 75 patients who had had breast examination, cosmetic result scored as good by patient and doctor were 81% and 87%, respectively. The good rate assessed by doctor in brachytherapy boost group and electron beam boost group were 81.2% (39/48) and 85.2% (23/27), There was no significant difference between these two boost techniques (P>0.05). Conclusions: Tumor bed boost irradiation by either brachytherapy or electron beam technique can provide satisfactory local control in early breast cancer treated with conservative surgery plus radiotherapy without increasing the side effects. There is no significant difference in cosmetic result between these two boost techniques. (authors)

  19. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  20. Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in 192Ir breast brachytherapy applications.

    Science.gov (United States)

    Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P

    2016-10-01

    To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Significance of TLR4/MyD88 expression in breast cancer

    Science.gov (United States)

    Chen, Xiangjin; Zhao, Feng; Zhang, Huihao; Zhu, Youzhi; Wu, Kunlin; Tan, Guozheng

    2015-01-01

    Objective: To investigate the expression of TLR4/MyD88 in breast cancer, and explore the relationship between their expression and breast cancer tumor growth and invasion. Methods: We examined the protein expression of TLR4 and MyD88 in 60 cases of histologically confirmed breast cancer. The relationship of their protein expressions with clinical features including age at diagnosis, tumor size and stage, lymph node metastasis and distant metastasis were analyzed. Results: The IHC results showed that TLR4 and MyD88 were expressed in 63.3% (38/60) and 58.3% (35/60) of malignant breast tumors respectively. TLR4 expression in breast cancer were significantly higher than in fibroadenoma (n = 4, 20.0%) and adjacent normal tissues (n = 2, 10.0%) (P fibroadenoma (n = 4, 20.0%) and adjacent normal tissue (n = 3, 15.0%) (P fibroadenoma and adjacent normal tissues (P < 0.05). The protein expressions of TLR4 and MyD88 were also significantly associated with poor clinical features (P < 0.05). Conclusion: TLR4 and MyD88 expression might be associated with breast cancer growth and regional and distant metastases. PMID:26261595

  2. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  3. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  4. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  5. Measurement of mean cardiac dose for various breast irradiation techniques and corresponding risk of major cardiovascular event.

    Directory of Open Access Journals (Sweden)

    Tomas Rodrigo Merino Lara

    2014-10-01

    Full Text Available After breast conserving surgery, early stage breast cancer patients are currently treated with a wide range of radiation techniques including whole breast irradiation (WBI, accelerated partial breast irradiation (APBI using high dose rate (HDR brachytherapy, or 3D conformal radiotherapy (3D-CRT. This study compares the mean heart’s doses for a left breast irradiated with different breast techniques.An anthropomorphic Rando phantom was modified with gelatin-based breast of different sizes and tumors located medially or laterally. The breasts were treated with WBI, 3D-CRT or HDR APBI. The heart’s mean doses were measured with Gafchromic films and controlled with optically stimulated luminescent dosimeters (OSLDs. Following the model reported by Darby (16, major cardiac were estimated assuming a linear risk increase with the mean dose to the heart of 7.4% per gray.Whole breast irradiation lead to the highest mean heart dose (2.99 Gy compared to 3D-CRT APBI, (0.51 Gy, multicatheter (1.58 Gy and balloon HDR (2.17 Gy for a medially located tumor. This translated into long-term coronary event increases of 22%, 3.8%, 11.7%, and 16% respectively. The sensitivity analysis showed that the tumor location had almost no effect on the mean heart dose for 3D-CRT APBI and a minimal impact for HDR APBI. For WBI large breast size and set-up errors lead to sharp increases of the mean heart dose. Its value reached 10.79 Gy for women with large breast and a set-up error of 1.5 cm. Such a high value could increase the risk of having long-term coronary events by 80%.Comparison among different irradiation techniques demonstrates that 3D-CRT APBI appears the safest one with less probability of having cardiovascular events in the future. A sensitivity analysis showed that WBI is the most challenging technique for patients with large breasts or when significant set-up errors are anticipated. In those cases additional heart shielding techniques are required.

  6. Salient features in 3-D haptic shape perception

    NARCIS (Netherlands)

    Plaisier, Myrthe A; Bergmann Tiest, Wouter M.; Kappers, Astrid M L

    2009-01-01

    Shape is an important cue for recognizing an object by touch. Several features, such as edges, curvature, surface area, and aspect ratio, are associated with 3-D shape. To investigate the saliency of 3-D shape features, we developed a haptic search task. The target and distractor items consisted of

  7. A case report on bilateral partial breast irradiation using SAVI

    Energy Technology Data Exchange (ETDEWEB)

    Gloi, Aime M., E-mail: agloi@stvgb.org [Radiation Oncology, St. Vincent Hospital, Green Bay, WI (United States); Buchanan, Robert [Southeast Alabama Medical Center, Radiation Oncology Department, Dothan, AL 36301 (United States); Nuskind, Jeff; Zuge, Corrie; Goettler, Anndrea [Radiation Oncology, St. Vincent Hospital, Green Bay, WI (United States)

    2012-07-01

    To assess dosimetric parameters in a case study where bilateral accelerated partial breast irradiation (APBI) is delivered using a strut-adjusted volume implant (SAVI) device. A 59-year-old female received APBI in both breasts over 5 days, with fractions of 3.4 Gy twice daily. A Vac-lok system was used for immobilization, and a C-arm was used for daily imaging. We generated dose-volume histograms (DVHs) for the brachytherapy plans to derive several important biologic factors. We calculated the normal tissue complication probability (NTCP), equivalent uniform dose (EUD), and tumor control probability (TCP) using the Lyman-Kutcher-Burman model parameters {alpha} = 0.3 Gy{sup -1}, {alpha}/{beta} = 4 Gy, n = 0.1, and m = 0.3. In addition, we assessed the dose homogeneity index (DHI), overdose index, and dose nonuniformity ratio. D95 was >95% and V150 was <50 mL for both breasts. The DHIs were 0.469 and 0.512 for the left and right breasts, respectively. The EUDs (normalized to 3.4 Gy b.i.d.) were 33.53 and 29.10 Gy. The TCPs were estimated at 99.2% and 99.9%, whereas the NTCP values were 4.2% and 2.57%. In this clinical case, we were able to quantify the dosimetric parameters of an APBI treatment performed with a SAVI device.

  8. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  9. Challenging metastatic breast cancer with the natural defensin PvD1.

    Science.gov (United States)

    Figueira, Tiago N; Oliveira, Filipa D; Almeida, Inês; Mello, Érica O; Gomes, Valdirene M; Castanho, Miguel A R B; Gaspar, Diana

    2017-11-09

    Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD 1 : it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD 1 's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD 1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.

  10. SU-F-I-14: 3D Breast Digital Phantom for XACT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Laaroussi, R; Chen, J; Samant, P; Xiang, L [University of Oklahoma, Norman, OK (United States); Chen, Y; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Yang, K [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The X-ray induced acoustic computed tomography (XACT) is a new imaging modality which combines X-ray contrast and high ultrasonic resolution in a single modality. Using XACT in breast imaging, a 3D breast volume can be imaged by only one pulsed X-ray radiation, which could dramatically reduce the imaging dose for patients undergoing breast cancer screening and diagnosis. A 3D digital phantom that contains both X-ray properties and acoustic properties of different tissue types is indeed needed for developing and optimizing the XACT system. The purpose of this study is to offer a realistic breast digital phantom as a valuable tool for improving breast XACT imaging techniques and potentially leading to better diagnostic outcomes. Methods: A series of breast CT images along the coronal plane from a patient who has breast calcifications are used as the source images. A HU value based segmentation algorithm is employed to identify breast tissues in five categories, namely the skin tissue, fat tissue, glandular tissue, chest bone and calcifications. For each pixel, the dose related parameters, such as material components and density, and acoustic related parameters, such as frequency-dependent acoustic attenuation coefficient and bandwidth, are assigned based on tissue types. Meanwhile, other parameters which are used in sound propagation, including the sound speed, thermal expansion coefficient, and heat capacity are also assigned to each tissue. Results: A series of 2D tissue type image is acquired first and the 3D digital breast phantom is obtained by using commercial 3D reconstruction software. When giving specific settings including dose depositions and ultrasound center frequency, the X-ray induced initial pressure rise can be calculated accordingly. Conclusion: The proposed 3D breast digital phantom represents a realistic breast anatomic structure and provides a valuable tool for developing and evaluating the system performance for XACT.

  11. Temporal relationship between prostate brachytherapy and the diagnosis of colorectal cancer

    International Nuclear Information System (INIS)

    Gutman, Sarah A.; Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Galbreath, Robert W.; Adamovich, Edward

    2006-01-01

    Purpose: To identify the location of pretreatment and posttreatment colorectal malignancies and posttreatment colorectal polyps in patients with clinically localized prostate cancer managed with brachytherapy. Methods and Materials: From April 1995 through July 2004, 1,351 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (American Joint Committee on Cancer, 2002) prostate cancer. Supplemental external beam radiotherapy (XRT) was administered to 699 patients. The median follow-up was 4.6 years. Operative and pathology reports were reviewed for all patients with pretreatment and posttreatment colorectal cancer and posttreatment colorectal polyps. Multiple parameters were evaluated for the development of colorectal cancer or colorectal polyps. Results: Colorectal cancer was diagnosed in 23 and 25 patients before and after prostate brachytherapy, respectively. No differences were identified in the distribution of colorectal cancers either before or after treatment (3 and 4 rectal cancers in the pre- and postbrachytherapy cohorts). Thirty-five of the 48 colorectal cancers (73%) were diagnosed within 5 years of brachytherapy with a peak incidence 1 year after brachytherapy. One hundred ninety-two colorectal polyps were diagnosed after brachytherapy, 160 (83%) occurred within 4 years of brachytherapy, and only 27 (14%) were located in the rectum. In multivariate Cox regression analysis, prostate D 9 (minimum percentage of the dose covering 90% of the target volume) predicted for posttreatment colorectal cancer. Rectal polyps were most closely related to patient age and percent positive biopsies, whereas sigmoid/colon polyps were best predicted by patient age, planning volume, and supplemental XRT. Conclusions: Colorectal cancer was diagnosed with equal frequency before and after brachytherapy with comparable geographic distributions. In addition, the vast majority of postbrachytherapy colorectal polyps were located beyond the confines of the rectum

  12. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    International Nuclear Information System (INIS)

    Roberts, Kenneth B.; Soulos, Pamela R.; Herrin, Jeph; Yu, James B.; Long, Jessica B.; Dostaler, Edward

    2013-01-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy

  13. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kenneth B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Soulos, Pamela R. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Herrin, Jeph [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Health Research and Educational Trust, Chicago, Illinois (United States); Yu, James B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Long, Jessica B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Dostaler, Edward [Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); and others

    2013-04-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy.

  14. Quality control in pulsed dose rate brachytherapy; Controle de qualite en curietherapie de debit de dose pulse

    Energy Technology Data Exchange (ETDEWEB)

    Metayer, Y.; Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, Unite de Radiophysique, 54 - Vandoeuvre-les-Nancy (France); Meyer, P. [Centre Paul-Strauss, 67 - Strasbourg (France)

    2009-07-15

    A prospective multicenter study (P.D.R.) was leaded on pulsed dose rate brachytherapy over 2 years (2005/2006) in 20 French centres, as part of a programme entitled (Support for the innovative and expensive techniques) S.t.i.c.-P.D.R. and supported by the French ministry of health. Eight hundred and fifty patients were treated for cervix carcinoma with 2D classic or 3D innovative brachytherapy (425 in each arm). The main objectives of this study were to assess the cost of P.D.R. brachytherapy with dose optimization compared to traditional treatments, and to evaluate the complications and local control. A joint programme of quality control was established by the physicists of the different centres, concerning the software treatment planning, the source replacement, the projector and the technical parameters of the course of patient treatment. This technical note lists these controls, and their frequency. (authors)

  15. Time-Driven Activity-Based Costing: A Comparative Cost Analysis of Whole-Breast Radiotherapy Versus Balloon-Based Brachytherapy in the Management of Early-Stage Breast Cancer.

    Science.gov (United States)

    Schutzer, Matthew E; Arthur, Douglas W; Anscher, Mitchell S

    2016-05-01

    Value in health care is defined as outcomes achieved per dollar spent, and understanding cost is critical to delivering high-value care. Traditional costing methods reflect charges rather than fundamental costs to provide a service. The more rigorous method of time-driven activity-based costing was used to compare cost between whole-breast radiotherapy (WBRT) and accelerated partial-breast irradiation (APBI) using balloon-based brachytherapy. For WBRT (25 fractions with five-fraction boost) and APBI (10 fractions twice daily), process maps were created outlining each activity from consultation to post-treatment follow up. Through staff interviews, time estimates were obtained for each activity. The capacity cost rates (CCR), defined as cost per minute, were calculated for personnel, equipment, and physical space. Total cost was calculated by multiplying the time required of each resource by its CCR. This was then summed and combined with cost of consumable materials. The total cost for WBRT was $5,333 and comprised 56% personnel costs and 44% space/equipment costs. For APBI, the total cost was $6,941 (30% higher than WBRT) and comprised 51% personnel costs, 6% space/equipment costs, and 43% consumable materials costs. The attending physician had the highest CCR of all personnel ($4.28/min), and APBI required 24% more attending time than WBRT. The most expensive activity for APBI was balloon placement and for WBRT was computed tomography simulation. APBI cost more than WBRT when using the dose/fractionation schemes analyzed. Future research should use time-driven activity-based costing to better understand cost with the aim of reducing expenditure and defining bundled payments. Copyright © 2016 by American Society of Clinical Oncology.

  16. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    International Nuclear Information System (INIS)

    Bensaleh, S.

    2010-01-01

    The MammoSite ® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192 Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

  17. Magnetic resonance image-guided brachytherapy for cervical cancer. Prognostic factors for survival

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon-Joo; Kim, Joo-Young [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); National Cancer Center, Center for Uterine Cancer, Goyang (Korea, Republic of); Kim, Youngkyong; Lim, Young Kyung; Jeong, Jonghwi [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Jeong, Chiyoung [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Meyoung [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Dongnam Inst. of Radiology and Medical Sciences, Research center, Busan (Korea, Republic of); Lim, Myong Cheol; Seo, Sang-Soo; Park, Sang-Yoon [National Cancer Center, Center for Uterine Cancer, Goyang (Korea, Republic of)

    2016-12-15

    The purpose of this work was to identify prognostic factors for survival after magnetic resonance image (MRI)-guided brachytherapy combined with external beam radiotherapy for cervical cancer. External beam radiotherapy of 45-50.4 Gy was delivered by either three-dimensional conformal radiotherapy or helical tomotherapy. Patients also received high-dose-rate MRI-guided brachytherapy of 5 Gy in 6 fractions. We analyzed 128 patients with International Federation of Gynecology and Obstetrics stage IB-IVB cervical cancer who underwent MRI-guided brachytherapy. Most patients (96 %) received concurrent chemotherapy. Pelvic lymph node metastases and para-aortic lymphadenopathies were found in 62 % and 14 % of patients, respectively. The median follow-up time was 44 months. Complete remission was achieved in 119 of 128 patients (93 %). The 5-year local recurrence-free, cancer-specific, and overall survival rates were 94, 89, and 85 %, respectively. Negative pelvic lymphadenopathy, gross tumor volume (GTV) dose covering 90 % of the target (GTV D90) of >110 Gy, and treatment duration ≤56 days were associated with better overall survival in univariate analyses. Multivariable analysis showed that GTV D90 of >110 Gy and treatment duration ≤56 days were possibly associated with overall survival with near-significant P-values of 0.062 and 0.073, respectively. The outcome of MRI-guided brachytherapy combined with external beam radiotherapy in patients with cervical cancer was excellent. GTV D90 of >110 Gy and treatment duration ≤56 days were potentially associated with overall survival. (orig.) [German] Ziel der Arbeit war es, prognostische Faktoren nach magnetresonanztomographisch (MRT-)gesteuerter Brachytherapie in Verbindung mit externer Strahlentherapie fuer Gebaermutterhalskrebs zu identifizieren. Externe Strahlentherapie von 45-50,4 Gy erfolgte entweder mittels dreidimensionaler konformaler Strahlentherapie oder helikaler Tomotherapie. Die Patientinnen erhielten auch

  18. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    Science.gov (United States)

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  19. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter

    2009-01-01

    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  20. Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Wazer, David E.; Kaufman, Seth; Cuttino, Laurie; Di Petrillo, Thomas; Arthur, Douglas W.

    2006-01-01

    Purpose: To perform a detailed analysis of variables associated with late tissue effects of high-dose-rate (HDR) interstitial brachytherapy accelerated partial breast irradiation (APBI) in a large cohort of patients with prolonged follow-up. Methods and Materials: Beginning in 1995, 75 women with Stage I/II breast cancer were enrolled in identical institutional trials evaluating APBI as monotherapy after lumpectomy. Patients eligible included those with T1-2, N0-1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular nodal extension, and negative results on postexcision mammogram. All patients underwent surgical excision and postoperative irradiation with HDR interstitial brachytherapy. The planning target volume was defined as the excision cavity plus a 2-cm margin. Treatment was delivered with a high-activity Ir-192 source at 3.4 Gy per fraction twice daily for 5 days to a total dose of 34 Gy. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. All patients were evaluated at 3-6-month intervals and assessed with a standardized cosmetic rating scale and according to Radiation Therapy Oncology Group late normal tissue toxicity scoring criteria. Clinical and therapy-related features were analyzed for their relationship to cosmetic outcome and toxicity rating. Clinical features analyzed included age, volume of resection, history of diabetes or hypertension, extent of axillary surgery, and systemic therapies. Therapy-related features analyzed included volume of tissue encompassed by the 100%, 150%, and 200% isodose lines (V100, V150, and V200, respectively), the dose homogeneity index (DHI), number of source dwell positions, and planar separation. Results: The median follow-up of all patients was 73 months (range, 43-118 months). The cosmetic outcome at last follow-up was rated as excellent, good, and fair/poor in 67%, 24%, and 9% of patients, respectively

  1. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  2. Accelerated partial-breast irradiation with interstitial implants. Analysis of factors affecting cosmetic outcome

    International Nuclear Information System (INIS)

    Ott, Oliver J.; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav

    2009-01-01

    Purpose: To analyze patient-, disease-, and treatment-related factors for their impact on cosmetic outcome (CO) after interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 171 patients with early breast cancer were recruited in Erlangen for this subanalysis of the German-Austrian APBI phase II-trial. 58% (99/171) of the patients received pulsed-dose-rate (PDR), and 42% (72/171) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour. Total treatment time was 3-4 days. Endpoint of this evaluation was the CO, graded as excellent, good, fair, or poor. Patients were divided in two groups with an excellent (n = 102) or nonexcellent (n = 69) cosmetic result. Various factors were analyzed for their impact on excellent CO. Results: The median follow-up time was 52 months (range: 21-91 months). Cosmetic results were rated as excellent in 59.6% (102/171), good in 29.8% (51/171), fair in 9.9% (17/171), and poor in 0.6% (1/171). The initial cosmetic status was significantly worse for the nonexcellent CO group (p = 0.000). The percentage of patients who received PDR brachytherapy APBI was higher in the nonexcellent CO group (68.1% vs. 51%; p = 0.026). Acute toxicity was higher in the nonexcellent CO group (24.6% vs. 12.7%; p = 0.045). Furthermore, the presence of any late toxicity was found to be associated with a worse cosmetic result (65.2% vs. 18.6%; p = 0.000). In detail, the appearance of skin hyperpigmentation (p 0.034), breast tissue fibrosis (p = 0.000), and telangiectasia (p = 0.000) had a negative impact on CO. Conclusion: The initial, surgery-associated cosmetic status, brachytherapy modality, and the presence of acute and late toxicities were found to have an impact on overall CO. Our data have proven that

  3. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Breast gigantism induced by D-penicillamine: case report

    International Nuclear Information System (INIS)

    Cha, Ji Hyeon; Kim, Hak Hee; Kim, Sun Mi; Seo, Myung Hee; Yoon, Hoi Soo

    2004-01-01

    D-penicillamine, a chelating agent of copper, is the drug of choice for the treatment of Wilson's disease. Breast enlargement is a rare complication arising from its use, and we report a case of breast gigantism which developed after it had been used for ten months to treat this condition. Mammography demonstrated bilaterally enlarged dense breasts; ultrasonography, similarly, demonstrated enlargement, revealing the presence of a mass, shown at biopsy to be benign, in the left one

  5. Breast gigantism induced by D-penicillamine: case report

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Ji Hyeon; Kim, Hak Hee; Kim, Sun Mi; Seo, Myung Hee; Yoon, Hoi Soo [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)

    2004-03-01

    D-penicillamine, a chelating agent of copper, is the drug of choice for the treatment of Wilson's disease. Breast enlargement is a rare complication arising from its use, and we report a case of breast gigantism which developed after it had been used for ten months to treat this condition. Mammography demonstrated bilaterally enlarged dense breasts; ultrasonography, similarly, demonstrated enlargement, revealing the presence of a mass, shown at biopsy to be benign, in the left one.

  6. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    National Research Council Canada - National Science Library

    Cutler, Spencer J

    2007-01-01

    .... A retrospective study of 103 clinical MRI uncompressed breast scans was conducted to create surface renderings of the uncompressed breasts and analyze how to adapt existing acquisition orbits for varying breast shapes...

  7. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  8. Vitamin D, Breast Cancer, and Bone Health

    Science.gov (United States)

    2011-05-01

    vitamin D and bone from David Feldman, MD and from David Karpf, MD. I am thankful for Department of Defense, Breast Cancer Research Program for...Clin Nutr. Jul 2008;88(1):133-139. 3. Crew KD, Shane E, Cremers S, McMahon DJ, Irani D, Hershman DL. High prevalence of vitamin D deficiency despite

  9. Automation of brachytherapy planning based on RADPLAN system

    International Nuclear Information System (INIS)

    Costa, Helder Rodrigues da; Campos, Tarcisio P.R.

    2000-01-01

    RADPLAN is a software to automate the clinical planning of doses in brachytherapy managing the radionuclide source position and time. It intends to be a important tools to assist cancer treatment in the radiotherapy services. It evaluates the tridimensional isodoses for a set of radioactive sources implanted on tissue or placed inside a body cavity. RADPLAN allows visualization of virtual frames in which isodose curves overlap medical images produced in computerized tomography), X-ray and nuclear magnetic resonance equipment. In this work, the software function is explained and a hypothetic case of medical information management is presented, specifically illustrations of isodoses curves obtained for a spatial distribution of Ir 192 wires implanted in a breast. (author)

  10. Multi-shape active composites by 3D printing of digital shape memory polymers.

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  11. Multi-shape active composites by 3D printing of digital shape memory polymers

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  12. A 3D computer graphics approach to brachytherapy planning.

    Science.gov (United States)

    Weichert, Frank; Wawro, Martin; Wilke, Carsten

    2004-06-01

    Intravascular brachytherapy (IVB) can significantly reduce the risk of restenosis after interventional treatment of stenotic arteries, if planned and applied correctly. In order to facilitate computer-based IVB planning, a three-dimensional reconstruction of the stenotic artery based on intravascular ultrasound (IVUS) sequences is desirable. For this purpose, the frames of the IVUS sequence are properly aligned in space, possible gaps inbetween the IVUS frames are filled by interpolation with radial basis functions known from scattered data interpolation. The alignment procedure uses additional information which is obtained from biplane X-ray angiography performed simultaneously during the capturing of the IVUS sequence. After IVUS images and biplane angiography data are acquired from the patient, the vessel-wall borders and the IVUS catheter are detected by an active contour algorithm. Next, the twist (relative orientation) between adjacent IVUS frames is determined by a sequential triangulation method. The absolute orientation of each frame is established by a stochastic analysis based on anatomical landmarks. Finally, the reconstructed 3D vessel model is visualized by methods of combined volume and polygon rendering. The reconstruction is then used for the computation of the radiation-distribution within the tissue, emitted from a beta-radiation source. All these steps are performed during the percutaneous intervention.

  13. 2D-3D shape reconstruction of the distal femur from stereo X-Ray imaging using statistical shape models

    DEFF Research Database (Denmark)

    Baka, N.; Kaptein, B. L.; de Bruijne, Marleen

    2011-01-01

    Three-dimensional patient specific bone models are required in a range of medical applications, such as pre-operative surgery planning and improved guidance during surgery, modeling and simulation, and in vivo bone motion tracking. Shape reconstruction from a small number of X-ray images is desired...... as it lowers both the acquisition costs and the radiation dose compared to CT. We propose a method for pose estimation and shape reconstruction of 3D bone surfaces from two (or more) calibrated X-ray images using a statistical shape model (SSM). User interaction is limited to manual initialization of the mean...... pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations...

  14. Practical Implications of the Publication of Consensus Guidelines by the American Society for Radiation Oncology: Accelerated Partial Breast Irradiation and the National Cancer Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Shaitelman, Simona F., E-mail: sfshaitelman@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Heather Y.; Smith, Benjamin D. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Yu; Bedrosian, Isabelle [Department of Breast Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Marsh, Gary D.; Bloom, Elizabeth S. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, MI (United States); Buchholz, Thomas A. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Babiera, Gildy V. [Department of Breast Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-02-01

    Purpose: To examine utilization trends of accelerated partial breast irradiation (APBI) in the American College of Surgeons' National Cancer Database and changes in APBI use after the 2009 publication of the American Society for Radiation Oncology (ASTRO) guidelines. Methods and Materials: A total of 399,705 women were identified who were diagnosed from 2004 to 2011 with nonmetastatic invasive breast cancer or ductal carcinoma in situ who were treated with breast-conserving surgery and radiation therapy to the breast. Patients were divided by the type of treatment received (whole breast irradiation or APBI) and by suitability to receive APBI as defined by the ASTRO guidelines. Logistic regression was applied to study APBI use overall and within guideline categorization, and a multivariable model was created to determine predictors of treatment with brachytherapy-based APBI based on guideline categorization. Results: For all patients, APBI use increased, from 3.8% in 2004 to 10.6% in 2011 (P<.0001). Overall rates of APBI utilization were higher among “suitable” than “cautionary”/“unsuitable” patients (14.8% vs 7.1%, P<.0001). The majority of APBI treatment was delivered using brachytherapy, for which use peaked in 2008. Starting in 2009, among “suitable” patients, utilization of APBI via brachytherapy plateaued, whereas for “cautionary”/“unsuitable” patients, treatment with brachytherapy-based APBI declined and then plateaued. Conclusion: Use of APBI across all patient groups increased from 2004 through 2008. After publication of the ASTRO APBI guidelines in 2009, rates of brachytherapy-based APBI treatment plateaued among “suitable” patients and declined and then plateaued among “cautionary”/“unsuitable” patients. Our study highlights how large national databases can be used to assess national trends in radiation use in response to the publication of guidelines.

  15. A comparison of complications between ultrasound-guided prostate brachytherapy and open prostate brachytherapy

    International Nuclear Information System (INIS)

    Benoit, Ronald M.; Naslund, Michael J.; Cohen, Jeffrey K.

    2000-01-01

    Purpose: Prostate brachytherapy has reemerged during the 1990s as a treatment for clinically localized prostate cancer. The renewed popularity of prostate brachytherapy is largely due to the use of transrectal ultrasound of the prostate, which allows for more accurate isotope placement within the prostate when compared to the open approach. The present study investigates whether this improved cancer control is at the expense of increased morbidity by comparing the morbidity after transrectal ultrasound-guided prostate brachytherapy to the morbidity after prostate brachytherapy performed via an open approach. Methods and Materials: All men in the Medicare population who underwent prostate brachytherapy in the year 1991 were identified. These men were further stratified into those men who underwent prostate brachytherapy via an open approach and the men who underwent prostate brachytherapy with ultrasound guidance. All subsequent inpatient, outpatient, and physician (Part B) Medicare claims for these men from the years 1991-1993 were then analyzed to determine outcomes. Results: In the year 1991, 2124 men in the Medicare population underwent prostate brachytherapy. An open approach was used in 715 men (33.7%), and ultrasound guidance was used in 1409 men (66.3%). Mean age for both cohorts was 73.7 years with a range of 50.7-92.8 years for the ultrasound group and 60.6-92.1 years for the open group. A surgical procedure for the relief of bladder outlet obstruction was performed in 122 men (8.6%) in the ultrasound group and in 54 men (7.6%) in the open group. An artificial urinary sphincter was placed in 2 men (0.14%) in the ultrasound group and in 2 men (0.28%) in the open group. A penile prosthesis was implanted in 10 men (0.71%) in the ultrasound group and in 4 men (0.56%) in the open group. A diagnosis code for urinary incontinence was carried by 95 men (6.7%) in the ultrasound group and by 45 men (6.3%) in the open group. A diagnosis code for erectile dysfunction

  16. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  17. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  18. 3D shape decomposition and comparison for gallbladder modeling

    Science.gov (United States)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  19. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  20. Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources

    Science.gov (United States)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-11-01

    A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.

  1. Accelerated partial breast irradiation for elderly women with early breast cancer: A compromise between whole breast irradiation and omission of radiotherapy.

    Science.gov (United States)

    Sumodhee, Shakeel; Levy, Johan; Chamorey, Emmanuel; Lam Cham Kee, Daniel; Chand, Marie-Eve; Gautier, Mathieu; Peyrottes, Isabelle; Barranger, Emmanuel; Hannoun-Levi, Jean-Michel

    Regarding adjuvant radiation therapy making decision for elderly women, Albert (2013) published a nomogram predicting the mastectomy-free survival (MFS) rate with or without adjuvant irradiation. Based on this approach, we proposed to investigate the use of accelerated partial breast irradiation (APBI) vs. whole breast irradiation (WBI) or endocrine therapy alone in elderly low-risk breast cancer patients. For each elderly woman treated by conserving surgery and APBI (multicatheter interstitial high-dose-rate brachytherapy), 5- and 10-year MFS rates were calculated. For each treated patient, using the Albert nomogram, we calculated the estimated MFS rates at 5 and 10 years, with and without WBI. Then, we compared the estimated MFS rates after no irradiation and WBI vs. observed MFS rates after APBI. From 2005 to 2016, 79 patients were treated. Median followup was 96.8 months [68.6-104.9], median age was 77 years [66-89]. Expected 5- and 10-year mastectomy rates calculated with the Albert nomogram without WBI were 2.95% and 7.25%, respectively, leading to a 10-year MFS rate of 92.7%. Expected 5- and 10-year mastectomy rates after WBI were 1.41% and 3.66%, respectively, leading to a 10-year MFS rate of 96.3%. Regarding observed MFS rate, 1 pt (1.3%) experienced a salvage mastectomy. The 10-year MFS rate after APBI was 97.4% vs. 96.3% after WBI (p = 1) and 92.7% after no irradiation (p = 0.27). No toxicity Grade 3 or more was observed. APBI seems to be an attractive compromise between WBI and no irradiation for elderly women with early stage breast cancer as far as local control, quality of life and cost benefit is concerned. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  3. Accuracy evaluation of a 3D-printed individual template for needle guidance in head and neck brachytherapy

    International Nuclear Information System (INIS)

    Huang, Ming-Wei; Zhang, Jian-Guo; Zheng, Lei; Liu, Shu-Ming; Yu, Guang-Yan

    2016-01-01

    To transfer the preplan for the head and neck brachytherapy to the clinical implantation procedure, a preplan-based 3D-printed individual template for needle insertion guidance had previously been designed and used. The accuracy of needle insertion using this kind template was assessed in vivo. In the study, 25 patients with head and neck tumors were implanted with 125 I radioactive seeds under the guidance of the 3D-printed individual template. Patients were divided into four groups based on the site of needle insertion: the parotid and masseter region group (nine patients); the maxillary and paranasal region group (eight patients); the submandibular and upper neck area group (five patients); and the retromandibular region group (six patients). The distance and angular deviations between the preplanned and placed needles were compared, and the complications and time required for needle insertion were assessed. The mean entrance point distance deviation for all 619 needles was 1.18 ± 0.81 mm, varying from 0.857 ± 0.545 to 1.930 ± 0.843 mm at different sites. The mean angular deviation was 2.08 ± 1.07 degrees, varying from 1.85 ± 0.93 to 2.73 ± 1.18 degrees at different sites. All needles were manually inserted to their preplanned positions in a single attempt, and the mean time to insert one needle was 7.5 s. No anatomical complications related to inaccurately placed implants were observed. Using the 3D-printed individual template for the implantation of 125 I radioactive seeds in the head and neck region can accurately transfer a CT-based preplan to the brachytherapy needle insertion procedure. Moreover, the addition of individual template guidance can reduce the time required for implantation and minimize the damage to normal tissues.

  4. Breast Cancer and its Radiotherapeutic Methods

    International Nuclear Information System (INIS)

    Zeinali Rafsanjani, B.; Mosleh-Shirazi, M. A.; Faghihi, R.; Mosalaei, A.; Omidvar, Sh.; Hadad, K.; Karbasi, S.

    2012-01-01

    Breast cancer is the most common cancer in women after skin cancer. In Iran, the presentation age of this cancer is younger than the global average. There are different therapeutic methods for treatment of breast cancer and the choice of treatment depends on the stage of the disease as well as its type and characteristics. Therapeutic methods include surgery, radiotherapy, and systemic therapies, each consisting of a variety of techniques. The two main surgical techniques are lumpectomy and mastectomy. The main systemic methods are biological therapy (immunotherapy), hormone therapy, and chemotherapy. Radiotherapy is mainly categorized into external-beam radiotherapy and brachytherapy. In this paper, we present a brief review of the different types of breast cancer and their treatments using conventional and modern radiotherapy methods, as well as the treatment efficacy and side effects of breast radiotherapy.

  5. Breast Cancer and its Radiotherapeutic Methods

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2012-03-01

    Full Text Available Breast cancer is the most common cancer in women after skin cancer. In Iran, the presentation age of this cancer is younger than the global average. There are different therapeutic methods for treatment of breast cancer and the choice of treatment depends on the stage of the disease as well as its type and characteristics. Therapeutic methods include surgery, radiotherapy, and systemic therapies, each consisting of a variety of techniques. The two main surgical techniques are lumpectomy and mastectomy. The main systemic methods are biological therapy (immunotherapy, hormone therapy, and chemotherapy. Radiotherapy is mainly categorized into external-beam radiotherapy and brachytherapy. In this paper, we present a brief review of the different types of breast cancer and their treatments using conventional and modern radiotherapy methods, as well as the treatment efficacy and side effects of breast radiotherapy.

  6. Development of optimized dosimetric models for HDR brachytherapy

    International Nuclear Information System (INIS)

    Thayalan, K.; Jagadeesan, M.

    2003-01-01

    High dose rate brachytherapy (HDRB) systems are in clinical use for more than four decades particularly in cervical cancer. Optimization is the method to produce dose distribution which assures that doses are not compromised at the treatment sites whilst reducing the risk of overdosing critical organs. Hence HDRB optimization begins with the desired dose distribution and requires the calculations of the relative weighting factors for each dwell position with out changing the source activity. The optimization for Ca. uterine cervix treatment is simply duplication of the dose distribution used for Low dose rate (LDR) applications. In the present work, two optimized dosimetric models were proposed and studied thoroughly, to suit the local clinical conditions. These models are named as HDR-C and HDR-D, where C and D represent configuration and distance respectively. These models duplicate exactly the LDR pear shaped dose distribution, which is a golden standard. The validity of these models is tested in different clinical situations and in actual patients (n=92). These models: HDR-C and HDR-D reduce bladder dose by 11.11% and 10% and rectal dose by 8% and 7% respectively. The treatment time is also reduced by 12-14%. In a busy hospital setup, these models find a place to cater large number of patients, while addressing individual patients geometry. (author)

  7. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  8. 3D dosimetry in HDR brachytherapy resonance imaging nuclear magnetic (b= 0.2 t) using a base acrylic gel (MAGIC)

    International Nuclear Information System (INIS)

    Batista Hernandez, Guillermo; Velez, Graciela R.; Schurrer, Clemar

    2009-01-01

    Dosimetry gels using magnetic resonance imaging (MRI) has been extended in recent literature. Our study presents the preparation, calibration IRM of acrylic gel (MAGIC) and its application in measuring dose in a 3D distribution HDR Brachytherapy with 192Ir source. The first gels used were the type Fricke gels based on the relationship of dose and time T1 relaxation. In 2001, Fong presented a new normoxic gel known as MAGIC whose main components are Methacrylic Acid (polymerizing), and Hydroquinone (inhibitor of self-curing) based on the relationship of dose and T2 relaxation time. Subsequent studies make changes in the concentrations component of the MAGIC (Methacrylic Acid and Hydroquinone in particular) to observe the behavior of the sensitivity of the gel with respect to its components and beam magnetic resonance equipment using magnetic fields higher to 0.5 T. This is done with equipment available to the staff of a Radiotherapy clinic setting. MAGIC gel is prepared according to composition by Crescenti (6% methacrylic acid), is calibrated with a 60Co unit TERADI INVAP 8002c (Argentina). Was raised shooting in a Siemens MRI scanner of 0.2 T Magnetom Concerto irradiated with a team of Brachytherapy High Dose Rate (HDR) Micro selectron Nucletron's V2 HDR for comparison with dose distributions provided by the planning system from Nucletron PLATO Sunrise. Was obtained a calibration curve for doses ranging from 0 to 8.0 Gy and a field strength 0.2 T magnetic We compared the sensitivity obtained in our calibration (Slope of the calibration curve) with those presented in the literature. Two phantoms were prepared for measurement in brachytherapy: a PMMA and a PVC. It was noted that MAGIC gel reacts chemically with PMMA and cured prior to irradiation. The phantom of PVC (no reactions) were irradiated with Micro selectron equipment and measured the dose distribution in 3D MRI. Were measured doses at the points specified by the Planning System and PLATO Sunrise compared

  9. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  10. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  11. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  12. Clinical outcome and cosmetics in breast cancer patients treated with conservative surgery and radiotherapy

    International Nuclear Information System (INIS)

    Li Rongqing; Jin Yening; Wang Yajie

    2005-01-01

    Objective: To evaluate the effectiveness and the cosmetics result of radiotherapy after conservative surgery for early breast cancer. Methods: Altogether 109 patients were treated by post-operative whole-breast irradiation and a tumor bed boost from May, 1995 to December, 2002. Among them 79 cases received a brachytherapy boost ( 192 Ir HDR implant Nucletron ) of 10-12 Gy(DB) by single plan of implantation with 1.5 cm between the needles for T1 and double plan for T2-4 tumors, and 30 cases received an electron beam boost with 15 Gy. External beam irradiation was applied to the whole breast with 45-52 Gy(mean 48.6 Gy) in 25 fractions over 5 weeks followed or concurrently with chemotherapy (CMF or CEF) and hormonotherapy. The cosmetic result was scored by a doctor and patients via questionnaire. Results: The median follow-up time was 52 months. The actuarial 5-year overall survival rate was 93.8% using Kaplan-Meier method and the within breast recurrence rate was 6.5%. No radiation- induced ulcer in the breast occurred except acute inflammation of skin around the pinholes in 5 patients. Cosmetic results were scored to be good by patients and the doctor (81% and 87%, respectively) for 75 followed-up cases, and good cosmetic rate was reported by the doctor for 82% (39/48) of the cases treated with brachytherapy boost and 85.2%(23/27) for those treated with external beam boost. There was no difference in cosmetic results between these two groups(P>0.05). Conclusion: In patients at high risk for local recurrence, tumor-bed boost with brachytherapy or electron beam carried out after limited surgery and external radiotherapy can provide satisfactory local control without morbidity. Cosmetic result may not be influenced by the boost technique. (authors)

  13. Ph.D. Post-Doctoral Training Program in Breast Cancer Research

    National Research Council Canada - National Science Library

    Edwards, Dean

    2002-01-01

    .... The curriculum of the Breast Cancer Training Program extends beyond that of the normal Ph.D. requirements to include didactic classroom teaching, journal clubs, seminars, workshops and mini-symposiums on relevant topics in breast cancer...

  14. Ph.D. Post-Doctoral Training Program in Breast Cancer Research

    National Research Council Canada - National Science Library

    Edwards, Dean

    2001-01-01

    .... The curriculum of the Breast Cancer Training Program extends beyond that of the normal Ph.D. requirements to include didactic classroom teaching, journal clubs, seminars, workshops and mini-symposiums on relevant topics in breast cancer...

  15. Ph.D. Post-Doctoral Training Program in Breast Cancer Research

    National Research Council Canada - National Science Library

    Edwards, Dean

    2004-01-01

    .... The curriculum of the Breast Cancer Training Program extends beyond that of the normal Ph.D. requirements to include didactic classroom teaching, journal clubs, seminars, workshops and mini-symposiums on relevant topics in breast cancer...

  16. File list: NoD.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210215,ERX210213,ERX210206,ERX210205,ERX210207,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.50.AllAg.Breast_cancer_cells.bed ...

  17. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Syam [Malabar Cancer Centre, Kannur, Kerala (India); Sitha [University of Calicut, Calicut, Kerala (India)

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  18. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    International Nuclear Information System (INIS)

    Kumar, Syam; Sitha

    2015-01-01

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly

  19. Genitourinary Toxicity After High-Dose-Rate (HDR) Brachytherapy Combined With Hypofractionated External Beam Radiotherapy for Localized Prostate Cancer: An Analysis to Determine the Correlation Between Dose-Volume Histogram Parameters in HDR Brachytherapy and Severity of Toxicity

    International Nuclear Information System (INIS)

    Ishiyama, Hiromichi; Kitano, Masashi; Satoh, Takefumi; Kotani, Shouko; Uemae, Mineko; Matsumoto, Kazumasa; Okusa, Hiroshi; Tabata, Ken-ichi; Baba, Shiro; Hayakawa, Kazushige

    2009-01-01

    Purpose: To evaluate the severity of genitourinary (GU) toxicity in high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy (EBRT) for prostate cancer and to explore factors that might affect the severity of GU toxicity. Methods and Materials: A total of 100 Japanese men with prostate cancer underwent 192 Ir HDR brachytherapy combined with hypofractionated EBRT. Mean (SD) dose to 90% of the planning target volume was 6.3 (0.7) Gy per fraction of HDR. After 5 fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administrated. The urethral volume receiving 1-15 Gy per fraction in HDR brachytherapy (V1-V15) and the dose to at least 5-100% of urethral volume in HDR brachytherapy (D5-D100) were compared between patients with Grade 3 toxicity and those with Grade 0-2 toxicity. Prostate volume, patient age, and International Prostate Symptom Score were also compared between the two groups. Results: Of the 100 patients, 6 displayed Grade 3 acute GU toxicity, and 12 displayed Grade 3 late GU toxicity. Regarding acute GU toxicity, values of V1, V2, V3, and V4 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Regarding late GU toxicity, values of D70, D80, V12, and V13 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Conclusions: The severity of GU toxicity in HDR brachytherapy combined with hypofractionated EBRT for prostate cancer was relatively high. The volume of prostatic urethra was associated with grade of acute GU toxicity, and urethral dose was associated with grade of late GU toxicity.

  20. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    Science.gov (United States)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  1. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    International Nuclear Information System (INIS)

    Shanmugam, S

    2016-01-01

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  2. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S

    2016-06-15

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have also provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be

  3. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma;Evaluation economique de la curietherapie de debit pulse gynecologique (PDR) avec optimisation de la dose pour les cancers du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O. [Lyon Univ., 69 (France); Remonnay, R.; Morelle, M.; Pommier, P. [Axe Economie de la Sante, GATE, CNRS-UMR 5824, Centre Leon-Berard, 69 - Lyon (France); Pommier, P. [Centre Leon-Berard, 69 - Lyon (France); Haie-Meder, C. [Institut Gustave-Roussy, 94 - Villejuif (France); Quetin, P. [Centre Paul-Strauss, 67 - Strasbourg (France); Kerr, C. [Centre Val-d' Aurelle, parc Euromedecine, 34 - Montpellier (France); Delannes, M. [Institut Claudius-Regaud, 31 - Toulouse (France); Castelain, B. [Centre Oscar-Lambret, 59 - Lille (France); Peignaux, K. [Centre Georges Francois Leclerc, 21 - Dijon (France); Kirova, Y. [Institut Curie, 75 - Paris (France); Romestaing, P. [Centre hospitalier Lyon Sud, 69 - Pierre-Benite (France); Williaume, D. [Centre Eugene-Marquis, 35 - Rennes (France); Krzisch, C. [Hopital Sud, 80 - Amiens (France); Thomas, L. [Institut Bergonie, 33 - Bordeaux (France); Lang, P. [Groupe hospitalier Pitie-Salpetriere, 75 - Paris (France); Baron, M.H. [Hopital Jean-Minjoz, 25 - Besancon (France); Cussac, A. [Centre Rene-Gauducheau, 44 - Nantes-Saint-Herblain (France); Lesaunier, F. [Centre Francois-Baclesse, 14 - Caen (France); Maillard, S. [Institut Jean-Godinot, 51 - Reims (France); Barillot, I. [Hopital Bretonneau, 37 - Tours (France); Charra-Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    2010-06-15

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  4. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    International Nuclear Information System (INIS)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu; Kang, Seung Hee

    2010-01-01

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  5. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu [Ajou University School of Medicine, Seoul (Korea, Republic of); Kang, Seung Hee [Inje University, Ilsan Paik Hospital, Ilsan (Korea, Republic of)

    2010-11-15

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  6. Long-Term Results of Brachytherapy With Temporary Iodine-125 Seeds in Children With Low-Grade Gliomas

    International Nuclear Information System (INIS)

    Korinthenberg, Rudolf; Neuburger, Daniela; Trippel, Michael; Ostertag, Christoph; Nikkhah, Guido

    2011-01-01

    Purpose: To retrospectively review the results of temporary I-125 brachytherapy in 94 children and adolescents with low-grade glioma. Methods and Materials: Treatment was performed in progressive tumors roughly spherical in shape with a diameter of up to 5 cm, including 79 astrocytomas, 5 oligodendrogliomas, 4 oligoastrocytomas, 1 ependymoma, and 5 other tumors. Location was suprasellar/chiasmal in 44, thalamic/basal ganglia in 18, hemispheric in 15, midbrain/pineal region in 13, and lower brainstem in 3. Initially, 8% of patients were free of symptoms, 47% were symptomatic but not disabled, and 30% were slightly, 6% moderately, and 3% severely disabled. Results: 5- and 10-year survival was 97% and 92%. The response to I-125 brachytherapy over the long term was estimated after a median observation period of 38.4 (range, 6.4-171.0) months. At that time, 4 patients were in complete, 27 in partial, and 18 in objective remission; 15 showed stable and 30 progressive tumors. Treatment results did not correlate with age, sex, histology, tumor size, location, or demarcation of the tumor. Secondary treatment became necessary in 36 patients, including 19 who underwent repeated I-125 brachytherapy. At final follow-up, the number of symptom-free patients had risen to 21%. Thirty-eight percent showed symptoms without functional impairment, 19% were slightly and 11% moderately disabled, and only 4% were severely disabled. Conclusions: Response rates similar to those of conventional radiotherapy or chemotherapy can be anticipated with I-125 brachytherapy in tumors of the appropriate size and shape. We believe it to be a useful contribution to the treatment of low-grade gliomas in children.

  7. A feasibility study of a hybrid breast-immobilization system for early breast cancer in proton beam therapy.

    Science.gov (United States)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Matsuyama, Mitsugi; Kondo, Naoaki; Miyazaki, Hideki; Sakuragi, Akari; Ohara, Takayuki; Ogo, Etsuyo; Hishikawa, Yoshio

    2017-04-01

    We aimed to develop a new breast-immobilizing system for proton beam therapy (PBT) of early breast cancer (EBC) that would provide the optimum breast shape during the treatment as well as increased fixation reliability by reducing the influence of respiratory movement. The breast-immobilizing system (HyBIS; hybrid breast-immobilizing system) consists of a whole body immobilization system (WBIS), position-converting device (to change patient position), photo-scanning system, breast cup (made using a three-dimensional printer), breast cup-fitting apparatus, breast cup-holding device (to ensure the breast remains lifted in the supine position), and dedicated stretcher fixed to the WBIS (to carry the patient). We conducted a phantom experiment to evaluate the effect of the HyBIS on breast immobilization during the respiratory cycle. Thirteen markers were embedded in the right breast of a female phantom that simulated respiratory thoracic movement at an amplitude of 15 mm, and their displacements on four-dimensional computed tomography were compared between conditions with and without immobilization by HyBIS. When immobilization was applied with the HyBIS, breast protrusion was maintained in the phantom in the supine treatment position. The mean values of the anteroposterior, superoinferior, lateral, and three-dimensional (3D) displacement of the markers were 2.7 ± 1.7, 0.3 ± 0.5, 0.9 ± 0.8, and 3.1 ± 1.6 mm with HyBIS, and 5.5 ± 2.9, 0.6 ± 0.8, 0.5 ± 0.4, and 5.6 ± 2.9 mm without HyBIS, respectively; thus, the anteroposterior (P = 0.014) and 3D (P = 0.007) displacements significantly improved with HyBIS. We demonstrated that the HyBIS can help retain the protruded breast shape in the supine position during treatment and can reduce the influence of respiratory movement. Thus, the HyBIS can help to reliably and precisely perform PBT for EBC. © 2017 American Association of Physicists in Medicine.

  8. Cyclin D1, Id1 and EMT in breast cancer

    International Nuclear Information System (INIS)

    Tobin, Nicholas P; Sims, Andrew H; Lundgren, Katja L; Lehn, Sophie; Landberg, Göran

    2011-01-01

    Cyclin D1 is a well-characterised cell cycle regulator with established oncogenic capabilities. Despite these properties, studies report contrasting links to tumour aggressiveness. It has previously been shown that silencing cyclin D1 increases the migratory capacity of MDA-MB-231 breast cancer cells with concomitant increase in 'inhibitor of differentiation 1' (ID1) gene expression. Id1 is known to be associated with more invasive features of cancer and with the epithelial-mesenchymal transition (EMT). Here, we sought to determine if the increase in cell motility following cyclin D1 silencing was mediated by Id1 and enhanced EMT-features. To further substantiate these findings we aimed to delineate the link between CCND1, ID1 and EMT, as well as clinical properties in primary breast cancer. Protein and gene expression of ID1, CCND1 and EMT markers were determined in MDA-MB-231 and ZR75 cells by western blot and qPCR. Cell migration and promoter occupancy were monitored by transwell and ChIP assays, respectively. Gene expression was analysed from publicly available datasets. The increase in cell migration following cyclin D1 silencing in MDA-MB-231 cells was abolished by Id1 siRNA treatment and we observed cyclin D1 occupancy of the Id1 promoter region. Moreover, ID1 and SNAI2 gene expression was increased following cyclin D1 knock-down, an effect reversed with Id1 siRNA treatment. Similar migratory and SNAI2 increases were noted for the ER-positive ZR75-1 cell line, but in an Id1-independent manner. In a meta-analysis of 1107 breast cancer samples, CCND1 low /ID1 high tumours displayed increased expression of EMT markers and were associated with reduced recurrence free survival. Finally, a greater percentage of CCND1 low /ID1 high tumours were found in the EMT-like 'claudin-low' subtype of breast cancer than in other subtypes. These results indicate that increased migration of MDA-MB-231 cells following cyclin D1 silencing can be mediated by Id

  9. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  10. Implementation of three-dimensional planning in brachytherapy of high dose rate for gynecology therapies

    International Nuclear Information System (INIS)

    Sales, Camila Pessoa de

    2015-01-01

    This work aims to implement the three-dimensional (3D) planning for gynecological brachytherapy treatments. For this purpose, tests of acceptance and commissioning of brachytherapy equipment were performed to establish a quality and periodic assurance program. For this purpose, an important step was searching for a material to be used as a dummy source, since the applicators do not have any specific dummy. In addition, the validation of the use of applicators library was made for reconstruction in computed tomography (CT) and magnetic resonance imaging (MRI). In order to validate 3D planning, comparison of doses in dose assessment points used in bidimensional (2D) plans have been performed with volumetric doses to adjacent organs to the tumor. Finally, a protocol was established for 3D brachytherapy planning alternately using magnetic resonance image (MRI) and CT images, making evaluation of the dose in the tumor through the recording of MR and CT images. It was not possible to find a suitable material that could be used as dummy in MRI. However, the acquisition of the license's library for the applicators made possible the 3D planning based on MRI. No correlation was found between volumetric and specific doses analyzed, showing the importance of the implementation of 3D planning. The average ratio between D 2cc and ICRU Bladder dose was 1,74, 22% higher than the ratio found by others authors. For the rectum, D 2cc was less than dose point for 60% of fractions; the average difference was 12,5%. The average ratio between D 2cc and point dose rectum, 0,85, is equivalent to the value showed by Kim et al, 0,91. The D 2cc for sigmoid was 69% higher than point dose used, unless it was not possible compare this value, since the sigmoid point used in the 2D procedures is not used in others institutes. Relative dose in 2 cc of sigmoid was 57% of the prescription dose, the same value was found by in literature. This work enabled the implementation of a viable

  11. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  12. SEMA6D Expression and Patient Survival in Breast Invasive Carcinoma

    Directory of Open Access Journals (Sweden)

    Dongquan Chen

    2015-01-01

    Full Text Available Breast cancer (BC is the second most common cancer diagnosed in American women and is also the second leading cause of cancer death in women. Research has focused heavily on BC metastasis. Multiple signaling pathways have been implicated in regulating BC metastasis. Our knowledge of regulation of BC metastasis is, however, far from complete. Identification of new factors during metastasis is an essential step towards future therapy. Our labs have focused on Semaphorin 6D (SEMA6D, which was implicated in immune responses, heart development, and neurogenesis. It will be interesting to know SEMA6D-related genomic expression profile and its implications in clinical outcome. In this study, we examined the public datasets of breast invasive carcinoma from The Cancer Genome Atlas (TCGA. We analyzed the expression of SEMA6D along with its related genes, their functions, pathways, and potential as copredictors for BC patients’ survival. We found 6-gene expression profile that can be used as such predictors. Our study provides evidences for the first time that breast invasive carcinoma may contain a subtype based on SEMA6D expression. The expression of SEMA6D gene may play an important role in promoting patient survival, especially among triple negative breast cancer patients.

  13. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  14. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    Lemaréchal, Yannick; Bert, Julien; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris; Falconnet, Claire; Després, Philippe; Valeri, Antoine

    2015-01-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125 I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10 −6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  15. 3D primary grain shapes resulting from semi-solid metal processing

    CSIR Research Space (South Africa)

    Curle, Ulyate A

    2017-07-01

    Full Text Available ) size. Are these 2D globules also spherical in shape in 3D or are these 2D shapes remnants of the 3D shapes after sectioning along planes? An Al-Si-Mg alloy is semi-solid processed using a patented processing coil that induces contactless stirring while...

  16. A three-dimensional breast software phantom for mammography simulation

    International Nuclear Information System (INIS)

    Bliznakova, K; Bliznakov, Z; Bravou, V; Kolitsi, Z; Pallikarakis, N

    2003-01-01

    This paper presents a methodology for three-dimensional (3D) computer modelling of the breast, using a combination of 3D geometrical primitives and voxel matrices that can be further subjected to simulated x-ray imaging, to produce synthetic mammograms. The breast phantom is a composite model of the breast and includes the breast surface, the duct system and terminal ductal lobular units, Cooper's ligaments, the pectoral muscle, the 3D mammographic background and breast abnormalities. A second analytical x-ray matter interaction modelling module is used to generate synthetic images from monoenergetic fan beams. Mammographic images of various synthesized breast models differing in size, shape and composition were produced. A preliminary qualitative assessment performed by three radiologists and a quantitative evaluation study using fractal and grey-level histogram analysis were conducted. A comparative study of extracted features with published data has also been performed. The evaluation results indicated good correlation of characteristics between synthetic and actual radiographs. Applications foreseen are not only in the area of breast imaging experimentation but also in education and training

  17. Inverse planning in brachytherapy from radium to high rate 192 iridium afterloading

    International Nuclear Information System (INIS)

    Lahanas, M.; Mould, R.F.; Baltas, D.; Karauzakis, K.; Giannouli, S.; Baltas, D.

    2004-01-01

    We consider the inverse planning problem in brachytherapy, i.e. the problem to determine an optimal number of catheters, number of sources for low-dose rate brachytherapy (LDR) and the optimal dwell times for high-dose rate brachytherapy (HDR) necessary to obtain an optimal as possible dose distribution. Starting from the 1930s, inverse planning for LDR brachytherapy used geometrically derived rules to determine the optimal placement of sources in order to achieve a uniform dose distribution of a specific level in planes, spheres and cylinders. Rules and nomograms were derived which still are widely used. With the rapid development of 3D imaging technologies and the rapidly increasing computer power we have now entered the new era of computer-based inverse planning in brachytherapy. The inverse planning is now an optimisation process adapted to the individual geometry of the patient. New inverse planning optimisation algorithms are anatomy-based that consider the real anatomy of the tumour and the organs at risk (OAR). Computer-based inverse planning considers various effects such as stability of solutions for seed misplacements which cannot ever be solved analytically without gross simplifications. In the last few years multiobjective (MO) inverse planning algorithms have been developed which recognise the MO optimisation problem which is inherent in inverse planning in brachytherapy. Previous methods used a trial and error method to obtain a satisfactory solution. MO optimisation replaces this trial and error process by presenting a representative set of dose distributions that can be obtained. With MO optimisation it is possible to obtain information that can be used to obtain the optimum number of catheters, their position and the optimum distribution of dwell times for HDR brachytherapy. For LDR brachytherapy also the stability of solutions due to seed migration can also be improved. A spectrum of alternative solutions is available and the treatment planner

  18. Diagnostic serum vitamin D level is not a reliable prognostic factor for resectable breast cancer.

    Science.gov (United States)

    Mizrak Kaya, Dilsa; Ozturk, Bengi; Kubilay, Pinar; Onur, Handan; Utkan, Gungor; Cay Senler, Filiz; Alkan, Ali; Yerlikaya, Halis; Koksoy, Elif B; Karci, Ebru; Demirkazik, Ahmet; Akbulut, Hakan; Icli, Fikri

    2018-05-09

    There are inconsistent results about the effects of vitamin D level on breast cancer prognosis. We aimed to investigate the effect of vitamin D levels on the prognosis of resectable breast cancer in a patient group with highly different clothing styles. A total of 186 breast cancer patients were enrolled in the study. Vitamin D level was sufficient, insufficient and deficient in 17.2, 52.2 and 30.6% of patients, respectively. There was a significant relationship between clothing style and serum 25 (OH) D levels. We could not establish any relation between vitamin D level and tumor characteristics or survival. Vitamin D supplementation can be more important than diagnostic serum vitamin D level on prognosis of breast cancer.

  19. Sci-Thur PM – Brachytherapy 02: Positional accuracy in Pd-103 permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Amy; Watt, Elizabeth; Peacock, Michael; Husain, Siraj; Meyer, Tyler; Roumeliotis, Michael [University of Calgary, Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: This retrospective study aims to quantify the positional accuracy of seed delivery in permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC). Methods: Treatment planning and post-implant CT scans for 5 patients were rigidly registered using the MIM Symphony™ software (MIM Software, Cleveland, OH) and used to evaluate differences between planned and implanted seed positions. Total and directional seed displacements were calculated for each patient in a clinically relevant ‘needle coordinate system’, defined relative to the angle of fiducial needle insertion. Results: The overall average total seed displacement was 10±8 mm. Systematic seed displacements were observed in individual patients and the magnitude and direction of these offsets varied among patients. One patient showed a significant directional seed displacement in the shallow-deep direction compared with the other four patients. With the exception of this one patient outlier, no significant systematic directional displacements in the needle coordinate system were observed for this cohort; the average directional displacements were −1±5 mm, 2±3 mm, and −2±4 mm in the shallow-deep, up-down, and right-left directions respectively. Conclusion: With the exception of one patient outlier, the magnitude of seed displacements were relatively consistent among patients. The results indicate that the shallow-deep direction possesses the largest uncertainty for the seed delivery method used at the TBCC. The relatively large uncertainty in seed placement in this direction is expected, as this is the direction of needle insertion. Further work will involve evaluating deflections of delivered needle tracks from their planned positions.

  20. 3D shaping of electron beams using amplitude masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Arie, Ady

    2017-06-15

    Highlights: • Electron beams are shaped in 3D with examples of curves and lattices. • Computer generated holograms are manifested as binary amplitude masks. • Applications in electron-optical particle trapping, manipulation, and synthesis. • Electron beam lithography fabrication scheme explained in detail. • Measurement paradigms of 3D shaped beams are discussed. - Abstract: Shaping the electron wavefunction in three dimensions may prove to be an indispensable tool for research involving atomic-sized particle trapping, manipulation, and synthesis. We utilize computer-generated holograms to sculpt electron wavefunctions in a standard transmission electron microscope in 3D, and demonstrate the formation of electron beams exhibiting high intensity along specific trajectories as well as shaping the beam into a 3D lattice of hot-spots. The concepts presented here are similar to those used in light optics for trapping and tweezing of particles, but at atomic scale resolutions.

  1. Permanent Seed Implant Dosimetry (PSID)TM 4.5 version as isodose and Treatment Planning System (TPS) programme for brachytherapy

    International Nuclear Information System (INIS)

    Indra Saptiama; Moch Subechi; Anung Pujiyanto; Hotman Lubis; Herlan Setiawan

    2014-01-01

    The medical treatment using radiation therapy for cancer diseases is increasingly developed. One of the method used in radiotherapy is brachytherapy. Brachytherapy is radiation therapy method in which a radiation source is implanted in cancer cell directly so the dose accepted by cancer cell is the highest dose and the dose accepted by normal cell is the lowest dose. I-125 Seed have been made successfully in domestic. To support the implant of I-125 seed for brachytherapy needs computer programme for the isodose calculation and Treatment Planning System (TPS). Permanent Seed Implant Dosimetry (PSID) 4.5 is one of the isodose calculation and Treatment Planning System (TPS) programme that is owned by Center for Radioisotope and Radiopharmaceutical-BATAN. In isodose calculation, PSID 4.5 uses 1D formalism and 2D formalism based on AAPM-TG43 (Association of American Physicist in Medicine- Task Group No.43). Anisotropic function on 1D formalism depend on distance function while on 2D formalism count on distance and angle function therefore 2D formalism has isodose calculation better than 1D formalism usage. PSID 4.5 can display the isodose contour of the seed I-125 radiation source in 2 dimension (2D) and 3 dimension (3D). The computer programme of isodose calculation and TPS uses PSID 4.5 is expected able to help planning for seed I-125 implantation process for brachytherapy that used by paramedics and to support the usage of seed I-125 as domestic product. (author)

  2. Permanent Prostate Brachytherapy in Prostate Glands 3

    International Nuclear Information System (INIS)

    Mayadev, Jyoti; Merrick, Gregory S.; Reed, Joshua R.; Butler, Wayne M.; Galbreath, Robert W.; Allen, Zachariah A.; Wallner, Kent E.

    2010-01-01

    Purpose: To investigate the dosimetry, treatment-related morbidity, and biochemical outcomes for brachytherapy in patients with prostate glands 3 . Methods and Materials: From November 1996 to October 2006, 104 patients with prostate glands 3 underwent brachytherapy. Multiple prostate, urethral, and rectal dosimetric parameters were evaluated. Treatment-related urinary and rectal morbidity were assessed from patient questionnaires. Cause-specific survival, biochemical progression-free survival, and overall survival were recorded. Results: The median patient age, follow up, and pre-treatment ultrasound volume was 64 years, 5.0 years and 17.6cm 3 , respectively. Median day 0 dosimetry was significant for the following: V100 98.5%, D90 126.1% and R100 <0.5% of prescription dose. The mean urethral and maximum urethral doses were 119.6% and 133.8% of prescription. The median time to International Prostate Symptom Score resolution was 4 months. There were no RTOG grade III or IV rectal complications. The cause-specific survival, biochemical progression-free survival, and overall survival rates were 100%, 92.5%, and 77.8% at 9 years. For biochemically disease-free patients, the median most recent postbrachytherapy PSA value was 0.02 ng/mL. Conclusion: Our results demonstrate that brachytherapy for small prostate glands is highly effective, with an acceptable morbidity profile, excellent postimplant dosimetry, acceptable treatment-related morbidity, and favorable biochemical outcomes.

  3. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  4. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  5. Patterns of failure after use of 18F-FDG PET/CT in integration of extended-field chemo-IMRT and 3D-brachytherapy plannings for advanced cervical cancers with extensive lymph node metastases

    International Nuclear Information System (INIS)

    Chung, Yih-Lin; Horng, Cheng-Fang; Lee, Pei-Ing; Chen, Fong-Lin

    2016-01-01

    The study is to evaluate the patterns of failure, toxicities and long-term outcomes of aggressive treatment using 18 F-FDG PET/CT-guided chemoradiation plannings for advanced cervical cancer with extensive nodal extent that has been regarded as a systemic disease. We retrospectively reviewed 72 consecutive patients with 18 F-FDG PET/CT-detected widespread pelvic, para-aortic and/or supraclavicular lymph nodes treated with curative-intent PET-guided cisplatin-based extended-field dose-escalating intensity-modulated radiotherapy (IMRT) and adaptive high-dose-rate intracavitary 3D-brachytherapy between 2002 and 2010. The failure sites were specifically localized by comparing recurrences on fusion of post-therapy recurrent 18 F-FDG PET/CT scans to the initial PET-guided radiation plannings for IMRT and brachytherapy. The median follow-up time for the 72 patients was 66 months (range, 3–142 months). The 5-year disease-free survival rate calculated by the Kaplan-Meier method for the patients with extensive N1 disease with the uppermost PET-positive pelvic-only nodes (26 patients), and the patients with M1 disease with the uppermost PET-positive para-aortic (31 patients) or supraclavicular (15 patients) nodes was 78.5 %, and 41.8–50 %, respectively (N1 vs. M1, p = 0.0465). Eight (11.1 %), 18 (25.0 %), and 3 (4.2 %) of the patients developed in-field recurrence, out-of-field and/or distant metastasis, and combined failure, respectively. The 6 (8.3 %) local failures around the uterine cervix were all at the junction between IMRT and brachytherapy in the parametrium. The rate of late grade 3/4 bladder and bowel toxicities was 4.2 and 9.7 %, respectively. When compared to conventional pelvic chemoradiation/2D-brachytherapy during 1990–2001, the adoption of 18 F-FDG PET-guided extended-field dose-escalating chemoradiation plannings in IMRT and 3D-brachytherapy after 2002 appeared to provide higher disease-free and overall survival rates with acceptable toxicities in

  6. [Brachytherapy of brainstem tumors].

    Science.gov (United States)

    Julow, Jenö; Viola, Arpád; Major, Tibor; Valálik, István; Sági, Sarolta; Mangel, László; Kovács, Rita Beáta; Repa, Imre; Bajzik, Gábor; Németh, György

    2004-01-20

    The optimal therapy of brain stem tumours of different histopathology determines the expected length of survival. Authors report 125Iodine interstitial irradiation of brain stem tumours with stereotactic brachytherapy. Two patients having brain stem tumours were suffering from glioma or from metastases of a carcinoma. In Case 1 the tumour volume was 1.98 cm3 at the time of planning interstitial irradiation. The control MRI examination performed at 42 months post-op showed a postirradiation cyst size of 5.73 cm3 indicating 65.5% shrinkage. In Case 2 the shrinkage was more apparent as the tumour volume measured on the control MRI at 8 months post-op was only 0.16 cm3 indicating 97.4% shrinkage of the 6.05 cm3 target volume at the time of brachytherapy with the metastasis practically disappearing. Quick access to histopathological results of the stereotactic intraoperative biopsy made it possible to carry out the 125Iodine stereotactic brachytherapy immediately after the biopsy, resulting in less inconvenience for patients of a second possible intervention. The control MRI scans show significant shrinkage of tumours in both patients. The procedure can be performed as a biopsy. The CT and image fusion guided 125Iodine stereotactic brachytherapy can be well planned dosimetrically and is surgically precise.

  7. Improvements in critical dosimetric endpoints using the Contura multilumen balloon breast brachytherapy catheter to deliver accelerated partial breast irradiation: preliminary dosimetric findings of a phase iv trial.

    Science.gov (United States)

    Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. TU-D-201-00: Use of End-Of-Life Brachytherapy Devices

    International Nuclear Information System (INIS)

    2015-01-01

    Brachytherapy devices and software are designed to last for a certain period of time. Due to a number of considerations, such as material factors, wear-and-tear, backwards compatibility, and others, they all reach a date when they are no longer supported by the manufacturer. Most of these products have a limited duration for their use, and the information is provided to the user at time of purchase. Because of issues or concerns determined by the manufacturer, certain products are retired sooner than the anticipated date, and the user is immediately notified. In these situations, the institution is facing some difficult choices: remove these products from the clinic or perform tests and continue their usage. Both of these choices come with a financial burden: replacing the product or assuming a potential medicolegal liability. This session will provide attendees with the knowledge and tools to make better decisions when facing these issues. Learning Objectives: Understand the meaning of “end-of-life or “life expectancy” for brachytherapy devices and software Review items (devices and software) affected by “end-of-life” restrictions Learn how to effectively formulate “end-of-life” policies at your institution Learn about possible implications of “end-of-life” policy Review other possible approaches to “end-of-life” issue

  9. Image-guided brachytherapy for cervical cancer: analysis of D2 cc hot spot in three-dimensional and anatomic factors affecting D2 cc hot spot in organs at risk.

    Science.gov (United States)

    Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui

    2014-01-01

    To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Perioperative interstitial brachytherapy for recurrent keloid scars

    International Nuclear Information System (INIS)

    Rio, E.; Bardet, E.; Peuvrel, P.; Martinet, L.; Perrot, P.; Baraer, F.; Loirat, Y.; Sartre, J.Y.; Malard, O.; Ferron, C.; Dreno, B.

    2010-01-01

    Purpose: Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (L.D.R.) Ir-192 in the treatment of keloid scars. Patients and methods: We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medico surgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Results: Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6 h). The median dose was 20 Gy (range, 15-40 Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6 cm long. The rate was 100% for treated scars below 4.5 cm in length, 95% (95% CI: 55-96) for those 4.5-6 cm long, and 75% (95% CI: 56-88) beyond 6 cm (p = 0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Conclusion: Early perioperative L.D.R. brachytherapy delivering 20 Gy at 5 mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. (authors)

  11. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    Science.gov (United States)

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  13. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.

    Science.gov (United States)

    Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik

    2015-09-16

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied

  14. Acute genitourinary toxicity after high dose rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Noda, Shin-ei; Ito, Kazuto; Yamamoto, Takumi; Kashiwagi, Bunzo; Nakano, Takashi

    2005-01-01

    for Research and Treatment of Cancer toxicity criteria. Results: The main symptoms of acute GU toxicity were dysuria and increase in the urinary frequency or nocturia. The grade distribution of acute GU toxicity in the patients was as follows: Grade 0-1, 42 patients (63%); Grade 2-3, 25 patients (37%). The urethral dose in HDR brachytherapy was determined using the following dose-volume histogram (DVH) parameters: V30 (percentage of the urethral volume receiving 30% of the prescribed radiation dose), V80, V90, V100, V110, V120, V130, and V150. In addition, the D5 (dose covering 5% of the urethral volume), D10, D20, and D50 of the urethra were also estimated. The V30-V150 values in the patients with Grade 2-3 acute GU toxicity were significantly higher than those in patients with Grade 0-1 toxicity. The D10 and D20, but not D5 and D50, values were also significantly higher in the patients with Grade 2-3 acute GU toxicity than in those with Grade 0-1 toxicity. Regarding the influence of the number of needles implanted, there was no correlation between the number of needles implanted and the severity of acute GU toxicity or the V30-V150 values and D5-D50 values. Conclusions: It was concluded that HDR brachytherapy combined with hypofractionated EBRT is feasible for localized prostate cancer, when considered from the viewpoint of acute toxicity. However, because the urethral dose was closely associated with the grade of severity of the acute GU toxicity, the urethral dose in HDR brachytherapy must be kept low to reduce the severity of acute GU toxicity

  15. The Comparison 2D and 3D Treatment Planning in Breast Cancer Radiotherapy with Emphasis on Dose Homogeneity and Lung Dose

    Directory of Open Access Journals (Sweden)

    Zahra Falahatpour

    2010-09-01

    Full Text Available Introduction: Breast conserving radiotherapy is one of the most common procedures performed in any radiation oncology department. A tangential parallel-opposed pair is usually used for this purpose. This technique is performed using 2D or 3D treatment planning systems. The aim of this study was to compare 2D treatment planning with 3D treatment planning in tangential irradiation in breast conserving radiotherapy. In this comparison, homogeneity of isodoses in the breast volume and lung dose were considered. Material and Methods: Twenty patients with breast cancer treated with conservative surgery were included in this study. The patients were CT scanned. Two-dimensional treatment planning with the Alfard 2D TPS was performed for each patient using a single central CT slice. The data used on the Alfard 2D TPS was imported into the Eclipse 3D TPS, on which 3D treatment planning was performed. Cobalt-60 beams were used in all plans. Results: Comparing 2D and 3D treatment planning, homogeneity of isodoses was improved in 3D treatment planning (p30Gy was increased in 3D treatment planning (p< 0.01. Discussion and Conclusion: 3D treatment planning is a more suitable option for patients with breast cancer treated with conservative surgery because of improved dose homogeneity in 3D treatment planning. The results of the treatment can be improved with reduced recurrence probability and skin problems.

  16. 3D deblending of simultaneous source data based on 3D multi-scale shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin

    2018-04-01

    We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.

  17. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  18. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  19. Development of Adjustable 3D computational phantoms for breast radiotherapy

    International Nuclear Information System (INIS)

    Emam, Zohal Alnour Ahmed

    2016-06-01

    Radiotherapy has become an essential part of breast cancer treatment and it was given a great concern during last decades due to aspects of managing breast cancer successfully, reducing recurrence and breast cancer mortality. Monte Carlo simulation has been used heavily in this issue. To use monte Carlo the suitable data set must be found to perform the study. This process is not straight forward and difficult to achieve and an effort is needed to obtain it. In this work we aimed to develop a methodology for obtaining 3D adjustable computational phantoms with different breast sizes to treat this problem. At first make human software was used to generate outer surfaces models with desired anthropomorphic features for our purpose. Three breasts cup sizes have been developed: small (A), medium (C) and large (D) according to European standardization system of dress, then blender software was used to join skeleton and internal organs outer surfaces of the body models in correct anatomical positions and the results were poly mesh anthropomorphic phantom has three breast sizes easy to manipulate positioning and modifying, the prepared models have been voxelised in 3D matrixes (256*256*256) using Binvox software, then voxelised models prepared in suitable formats for Gate (mhd/raw) in 70 axial slice with voxel dimension of 1.394*1.394*5 mm 3 for width, depth and length respectively. Gate monte Carlo was used to simulate the irradiation of virtual tumor bed site in left breasts with direct field electron beam, each breast size was treated with five energies 6, 9, 12, 15, and 18 MeV by field size 5*5 cm 2 , and 100 cm source surface distance (SSD). The results were studied to evaluate the effect of breast size variation on dose distribution. According to criteria of tumor bed coverage by 100% 90% normalised maximum dose and minimum dose to heart and lug which are considering the organs at risks, results show the energy 6 MeV give under cover to tumor bed in the small, medium

  20. The PROSPER robot for prostate brachytherapy: design, development and preclinical evaluation

    International Nuclear Information System (INIS)

    Long, J.A.

    2012-01-01

    Objectives: reporting the design, development and experiments of a new robotic system for prostate brachytherapy including prostate tracking and MRI to Ultrasound registration. Material and methods: a robot for trans-perineal needle insertion has been developed. It includes the ability to track the prostate position and shape. Experiments on 90 targets inside 9 deformable phantoms have been conducted. A feasibility on 2 cadavers has also been performed. The robot had to place glass seeds simulating brachytherapy seeds as close as possible to physical targets included into the phantom or inside the prostates. A post-operative CT scan of the phantom or prostate was performed in order to measure the accuracy of the system. Results: the median accuracy was 2.73 mm with a median prostate motion of 5.46 mm. The accuracy in the base region was superior to the accuracy in the apex region (2.28 mm vs 3.83 mm, p≤0.01) and was not significantly different for horizontal or oblique needles (2.7 vs 2.82 mm, p=0.18). Cadaver experiments demonstrated that the approach was feasible and that the robot could be used in a real clinical environment. Conclusion: the robot for prostate brachytherapy is the first system enabling prostate tracking. Targets can be accurately reached despite prostate motion and deformation. It could be applied to focal therapy for prostate cancer. (author)

  1. Results of ten centers, participating to the S.T.I.C. P.D.R. programme in relation with the external quality control in brachytherapy

    International Nuclear Information System (INIS)

    Metayer, Y.; Peiffert, D.; Brenier, J.P.; Bellec, J.; Goubard, O.; Chemin, A.; Chea, M.; Gaillot, N.

    2007-01-01

    Under the programme of S.T.I.C. P.D.R. brachytherapy a part of the quality control is realized internally (control of the Ir-192 source, the projector, treatment) and another is performed externally. It mainly concerns the use planning software. This control has helped to detect two problems of reconstruction, assess and validate the procedures for the acquisition, transfer and use of 3D images, check that the agreement issued on the dose is better than 5% on 10 projectors sources. S.T.I.C. ( supporting to costly innovative techniques; P.D.R (pulsed dose rate). (N.C.)

  2. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  3. Brachytherapy at the Institut Gustave-Roussy: Personalized vaginal mould applicator: technical modification and improvement

    International Nuclear Information System (INIS)

    Albano, M.; Dumas, I.; Haie-Meder, C.

    2008-01-01

    Brachytherapy plays an important role in the treatment of patients with gynaecological cancers. At the Institut Gustave-Roussy, the technique of vaginal mould applicator has been used for decades. This technique allows a personalized tailored irradiation, integrating tumour shape, size and extension and vaginal anatomy. Vaginal expansion reduces the dose to the vaginal mucosa and to the organs at risk. We report a modification of the material used for vaginal mould manufacture. The advantages of the new material are a lighter weight, and transparency allowing a better accuracy in the placement of catheters for radioactive sources. This material is applicable for low dose-rate, pulse dose-rate and high dose-rate brachytherapy. Since 2001, more than 700 vaginal moulds have been manufactured with this new approach without any intolerance. (authors)

  4. SU-F-I-01: Normalized Mean Glandular Dose Values for Dedicated Breast CT Using Realistic Breast-Shaped Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A [Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA (United States); Boone, J [Departments of Radiology and Biomedical Engineering, Biomedical Engeering Graduate Group, University of California Davis, Sacramento, CA (United States)

    2016-06-15

    Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dose coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered

  5. Effect of permanent 103Pd radioactive seed implantation on brachytherapy of malignant tumor

    International Nuclear Information System (INIS)

    Chen Ping; Wei Xianzhong; Liu Yanmin; Wu Kaijun; Liang Jianxin; Chen Hanzhang

    2003-01-01

    Objective: To investigate and assess the brachytherapeutic effectiveness of 103 Pd radioactive seeds in malignant tumor therapy. Methods: 196.1-2127.5 MBq 103 Pd seeds were implanted in 21 confirmed malignant tumor patients. The seeds were evenly scattered in 15/21 patients' tumors and peripherally in the remaining 6 cases' tumors. The size and shape, local recurrence and remote metastasis of the tumors were observed. Results: The brachytherapy of 103 Pd seeds in tumor patients resulted in obvious efficacy. No local recurrence and remote metastasis were observed. 19/21 (90.5%) patients scored 0 and 2/21 (9.5%) of them scored 1 in skin acute radiation morbidity scoring criteria within the observation period. Conclusion: The 103 Pd seeds can be safely used in brachytherapy of malignant tumors with lower or medium sensitivity to radiation therapy

  6. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Chan, L; Hausen, H [Xoft Inc., San Jose, CA (United States)

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  7. [Vitamin D deficiency among women diagnosed with breast cancer and unclear benefits of vitamin supplementation].

    Science.gov (United States)

    Bednarek, Anna; Chudek, Jerzy; Karwasiecka, Dobromiła; Kubeczko, Marcin; Wojnar, Jerzy

    2015-01-01

    Breast cancer is the most common cancer in the world and also in Poland. Morbidity for breast cancer is increasing, but mortality rate is still on the same level. In Poland morbidity has increased almost two times during the last 30 years. Vitamin D deficiency in the general population is a common phenomenon, especially among obese and elder. It increases the risk of development and worsens the prognosis in breast cancer. In recent years, the role of vitamin D and its nuclear receptor (VDR) in cancer epidemiology, and its impact on the regulation of immune processes have raised interest. VDR acts as ligand-activated transcription factor. Recent studies suggest a role of vitamin D in the regulation of energy pathways in tumor cells. Another observation on vitamin D is its inhibitory effect on inflammation and regulation of glucose metabolism in neoplastic cell. This article explores the available literature on the effect of vitamin D supplementation in women with breast cancer, describes the potential regulatory vitamin D depend mechanisms occurring in the breast cancer. Due to the limited data on the efficacy and safety, the optimal dose of vitamin D in supplementation of patients with cancer breast has not been determined.

  8. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma.

    Science.gov (United States)

    Nemoto, Miho Watanabe; Iwai, Yuma; Togasaki, Gentaro; Kurokawa, Marie; Harada, Rintarou; Kobayashi, Hiroki; Uno, Takashi

    2017-12-01

    We propose a method of image-guided brachytherapy (IGBT) that combines MRI-based target volume delineation for the first fraction with CT datasets of subsequent fractions, using an automatic, applicator-based co-registration, and report our preliminary experience. The MRI of the first fraction was used for the first brachytherapy planning. For each subsequent brachytherapy fraction, after the same applicator insertion, a new CT scan with the applicator in place was obtained. The MR image set was registered to the subsequent brachytherapy treatment planning CT using the applicator for rigid body registration. To demonstrate the registration quality, we used here the Dice index as a measurement of tandem delineation overlap between CT and MRI. The median Dice index was 0.879 (range 0.610-0.932), which indicated that the contours on CT and MRI fitted well. With this combination method, the median D90 of HR CTV and the calculated D2 cm 3 of the bladder, rectum, and sigmoid in each fraction were 7.2 (4.0-10.4), 5.9 (2.3-7.7), 4.0 (1.9-6.7), and 3.8 (0.6-7.2) Gy, respectively. Our described method of MRI-guided IGBT offers a practical option for the benefits of target delineation.

  9. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    Science.gov (United States)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  10. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    International Nuclear Information System (INIS)

    Damato, Antonio L.; Townamchai, Kanopkis; Albert, Michele; Bair, Ryan J.; Cormack, Robert A.; Jang, Joanne; Kovacs, Arpad; Lee, Larissa J.; Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L.; Lewis, John H.; Viswanathan, Akila N.

    2014-01-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI gen ), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D 0.1cc and D 2cc was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD TOT ) was calculated. Results: The population mean ± 1 standard deviation of κ, CI gen , and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD TOT = 72 ± 64 Gy) for D 0.1cc and CV = 16% ± 10% (SD TOT = 9 ± 6 Gy) for D 2cc ; for rectum, CV = 11% ± 5% (SD TOT = 16 ± 17 Gy) for D 0.1cc and CV = 7% ± 2% (SD TOT = 4 ± 3 Gy) for D 2cc ; for sigmoid, CV = 39% ± 28% (SD TOT = 12 ± 18 Gy) for D 0.1cc and CV = 34% ± 19% (SD TOT = 4 ± 4 Gy) for D 2cc. Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D 0.1cc. Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with higher variability in the total brachytherapy dose but rather may be due to the

  11. New inverse planning technology for image-guided cervical cancer brachytherapy: Description and evaluation within a clinical frame

    International Nuclear Information System (INIS)

    Trnkova, Petra; Poetter, Richard; Baltas, Dimos; Karabis, Andreas; Fidarova, Elena; Dimopoulos, Johannes; Georg, Dietmar; Kirisits, Christian

    2009-01-01

    Purpose: To test the feasibility of a new inverse planning technology based on the Hybrid Inverse treatment Planning and Optimisation (HIPO) algorithm for image-guided cervical cancer brachytherapy in comparison to conventional manual optimisation as applied in recent clinical practice based on long-term intracavitary cervical cancer brachytherapy experience. Materials and methods: The clinically applied treatment plans of 10 tandem/ring (T/R) and 10 cases with additional needles (T/R + N) planned with PLATO v14.3 were included. Standard loading patterns were manually optimised to reach an optimal coverage with 7 Gy per fraction to the High Risk CTV and to fulfil dose constraints for organs at risk. For each of these patients an inverse plan was retrospectively created with Oncentra GYN v0.9.14. Anatomy based automatic source activation was based on the topography of target and organs. The HIPO algorithm included individual gradient and modification restrictions for the T/R and needle dwell times to preserve the spatial high-dose distribution as known from the long-term clinical experience in the standard cervical cancer brachytherapy and with manual planning. Results: HIPO could achieve a better target coverage (V100) for all T/R and 7 T/R + N patients. Changes in the shape of the overdose volume (V200/400) were limited. The D 2cc per fraction for bladder, rectum and sigmoid colon was on average lower by 0.2 Gy, 0.4 Gy, 0.2 Gy, respectively, for T/R patients and 0.6 Gy, 0.3 Gy, 0.3 Gy for T/R + N patients (a decrease from 4.5 to 4 Gy per fraction means a total dose reduction of 5 Gy EQD2 for a 4-fraction schedule). In general the dwell times in the additional needles were lower compared to manual planning. The sparing factors were always better for HIPO plans. Additionally, in 7 T/R and 7 T/R + N patients all three D 0.1cc , D 1cc and D 2cc for vagina wall were lower and a smaller area of vagina was covered by the reference dose in HIPO plans. Overall loading

  12. Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruna T.; Rostelato, Maria E.C.M.; Souza, Carla D.; Tozetti, Cíntia A.; Zeituni, Carlos A.; Nogueira, Beatriz R.; Silva, José T.; Júnior, Dib K.; Fernandes, Vagner; Souza, Raquel V.; Abreu, Rodrigo T., E-mail: bteigarodrigues@gmail.com, E-mail: elisaros@ipen.br, E-mail: carladdsouza@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil)

    2017-07-01

    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain. (author)

  13. Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy

    International Nuclear Information System (INIS)

    Rodrigues, Bruna T.; Rostelato, Maria E.C.M.; Souza, Carla D.; Tozetti, Cíntia A.; Zeituni, Carlos A.; Nogueira, Beatriz R.; Silva, José T.; Júnior, Dib K.; Fernandes, Vagner; Souza, Raquel V.; Abreu, Rodrigo T.

    2017-01-01

    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain. (author)

  14. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    Science.gov (United States)

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH) 2 D 3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH) 2 D 3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest

  15. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    International Nuclear Information System (INIS)

    Vordermark, Dirk

    2006-01-01

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 μg/l in 3-DC boost patients and 8.1 μg/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles

  16. Simple shape space for 3D face registration

    Science.gov (United States)

    Košir, Andrej; Perkon, Igor; Bracun, Drago; Tasic, Jurij; Mozina, Janez

    2009-09-01

    Three dimensional (3D) face recognition is a topic getting increasing interest in biometric applications. In our research framework we developed a laser scanner that provides 3D cloud information and texture data. In a user scenario with cooperative subjects with indoor light conditions, we address three problems of 3D face biometrics: the face registration, the formulation of a shape space together with a special designed gradient algorithm and the impact of initial approximation to the convergence of a registration algorithm. By defining the face registration as a problem of aligning a 3D data cloud with a predefined reference template, we solve the registration problem with a second order gradient algorithm working on a shape space designed for reducing the computational complexity of the method.

  17. The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States.

    Science.gov (United States)

    Nag, S; Orton, C; Young, D; Erickson, B

    1999-04-01

    The purpose of this study was to survey the brachytherapy practice for cervical cancer in the United States. The Clinical Research Committee of the American Brachytherapy Society (ABS) performed a retrospective survey of individual physicians of the ABS and American Society of Therapeutic Radiologists and Oncologists regarding the details of the brachytherapy techniques they personally used in the treatment of cervical cancer patients for the year 1995. The replies (some of which may have been an estimate only) were tabulated. The scope of this survey did not allow us to verify the data by chart audits. A total of about 3500 questionnaires were mailed out; 521 responses were received. Of these responders, 206 (40%) did not perform any brachytherapy for carcinoma of the cervix in 1995. Of the other 315 responders reporting a total of 4892 patients treated in 1995, 88% used low dose rate (LDR) while 24% used high dose rate (HDR). There was a wide variation in the doses used. For LDR treatments, the median total external beam radiation therapy (EBRT) dose was 45 and 50 Gy and the LDR dose was 42 and 45 Gy for early and advanced cancers, respectively. For HDR treatments, the median EBRT dose was 48 and 50 Gy and the median HDR dose was 29 and 30 Gy for early and advanced cancers, respectively. The median dose per fraction was 6 Gy for a median of five fractions. Interstitial brachytherapy was used as a component of the treatment in 6% of the patients by 21% of responders. Very few responders treated with pulsed or medium dose rates. This retrospective survey showed the current brachytherapy practice pattern in the treatment of cervical cancer in the United States and can serve as a basis for future prospective national brachytherapy data registry. There was wide variation in the practice pattern, emphasizing the urgent need for consensus on these issues. Copyright 1999 Academic Press.

  18. Predictive factors for acute and late urinary toxicity after permanent interstitial brachytherapy in Japanese patients

    International Nuclear Information System (INIS)

    Tanimoto, Ryuta; Bekku, Kensuke; Katayama, Norihisa

    2013-01-01

    The objectives of this study were to describe the frequency of and to determine predictive factors associated with Radiation Therapy Oncology Group urinary toxicity in prostate brachytherapy patients. From January 2004 to April 2011, 466 consecutive Japanese patients underwent permanent iodine-125-seed brachytherapy (median follow up 48 months). International Prostate Symptom Score and Radiation Therapy Oncology Group toxicity data were prospectively collected. Prostate volume, International Prostate Symptom Score before and after brachytherapy, and postimplant analysis were examined for an association with urinary toxicity, defined as Radiation Therapy Oncology Group urinary toxicity of Grade 1 or higher. Logistic regression analysis was used to examine the factors associated with urinary toxicity. The rate of Radiation Therapy Oncology Group urinary toxicity grade 1 or higher at 1, 6, 12, 24, 36 and 48 months was 67%, 40%, 21%, 31%, 27% and 28%, respectively. Grade 2 or higher urinary toxicity was less than 1% at each time-point. International Prostate Symptom Score was highest at 3 months and returned to normal 12 months after brachytherapy. On multivariate analysis, patients with a larger prostate size, greater baseline International Prostate Symptom Score, higher prostate V100, higher prostate V150, higher prostate D90 and a greater number of seeds had more acute urinary toxicities at 1 month and 12 months after brachytherapy. On multivariate analysis, significant predictors for urinary toxicity at 1 month and 12 months were a greater baseline International Prostate Symptom Score and prostate V100. Most urinary symptoms are tolerated and resolved within 12 months after prostate brachytherapy. Acute and late urinary toxicity after brachytherapy is strongly related to the baseline International Prostate Symptom Score and prostate V100. (author)

  19. SU-F-T-31: Shape and Isodose Distributions in Co60 HDR Brachytherapy for Different Utero-Vaginal Time Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sprinberg, G [Faculty of Sciences, Montevideo, Montevideo (Venezuela, Bolivarian Republic of); Piriz, G [Hospital Pereyra Rossell, Montevideo, Montevideo (Venezuela, Bolivarian Republic of)

    2016-06-15

    Purpose: To optimize the dose in bladder and rectum and show the different shapes of the isodose volumes in Co60-HDR brachytherapy, considering different utero and vaginal sources dwell ratio times (TU:TV). Methods: Besides Ir192-HDR, new Co60-HDR sources are being incorporated. We considered different TU:TV times and computed the dosis in bladder, rectum and at the reference points of the Manchester system. Also, we calculated the isodose volume and shape in each case. We used a EZAG-BEBIG Co0.A86 model with TPS HDRplus3.0.4. and LCT42-7, LCT42-2(R,L) applicators. A reference dose RA= 1.00 Gy was given to the A-right point. We considered the TU:TV dwell time ratios 1:0.25, 1:0.33, 1:0.5, 1:1, 1:2, 1:3, and 1:4. Given TU:TV, the stop time at each dwell position is fixed for each applicator. Results: Increasing TU:TV systematically results in a decreasing of the dose in bladder and rectum, e.g. 9% and 27% reduction were found in 1:0.25 with respect to 1:1, while 12% and 34% increase were found in 1:4 with respect to 1:1. Also, the isodose volume parameters height (h), width (w), thickness (t) and volume (hwt) increased from the 1:0.25 case to the 1:4 value: hwt is 25% lower and 31% higher than the 1:1 reference volume in these cases. Also w decreased for higher TU:TV and may compromise the tumoral volume coverage, decreasing 17% in the 1:0.25 case compared to the 1:1 case. The shape of the isodose volume was obtained for the different TU:TV considered. Conclusion: We obtained the shape of isodose volumes for different TU:TV values in gynecological Co60-HDR. We studied the dose reduction in bladder and rectum for different TU:TV ratios. The volume parameters and hwt are strongly dependent on this ratio. This information is useful for a quantitative check of the TPS and as a starting point towards optimization.

  20. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  1. Validation of single-plane fluoroscopy and 2D/3D shape-matching for quantifying shoulder complex kinematics.

    Science.gov (United States)

    Lawrence, Rebekah L; Ellingson, Arin M; Ludewig, Paula M

    2018-02-01

    Fluoroscopy and 2D/3D shape-matching has emerged as the standard for non-invasively quantifying kinematics. However, its accuracy has not been well established for the shoulder complex when using single-plane fluoroscopy. The purpose of this study was to determine the accuracy of single-plane fluoroscopy and 2D/3D shape-matching for quantifying full shoulder complex kinematics. Tantalum markers were implanted into the clavicle, humerus, and scapula of four cadaveric shoulders. Biplane radiographs were obtained with the shoulder in five humerothoracic elevation positions (arm at the side, 30°, 60°, 90°, maximum). Images from both systems were used to perform marker tracking, while only those images acquired with the primary fluoroscopy system were used to perform 2D/3D shape-matching. Kinematics errors due to shape-matching were calculated as the difference between marker tracking and 2D/3D shape-matching and expressed as root mean square (RMS) error, bias, and precision. Overall RMS errors for the glenohumeral joint ranged from 0.7 to 3.3° and 1.2 to 4.2 mm, while errors for the acromioclavicular joint ranged from 1.7 to 3.4°. Errors associated with shape-matching individual bones ranged from 1.2 to 3.2° for the humerus, 0.5 to 1.6° for the scapula, and 0.4 to 3.7° for the clavicle. The results of the study demonstrate that single-plane fluoroscopy and 2D/3D shape-matching can accurately quantify full shoulder complex kinematics in static positions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  3. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Science.gov (United States)

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. WE-AB-BRA-10: Assessment of Fiber Bragg Grating (FBG)-Based Sensing for Real-Time Needle Tracking During MR-Guided Brachytherapy

    International Nuclear Information System (INIS)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W; Van Vulpen, M; Moerland, M A; Denis de Senneville, B; Hautvast, G; Binnekamp, D

    2016-01-01

    Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its position and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de

  5. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  6. Quantifying shape changes of silicone breast implants in a murine model using in vivo micro-CT.

    Science.gov (United States)

    Anderson, Emily E; Perilli, Egon; Carati, Colin J; Reynolds, Karen J

    2017-08-01

    A major complication of silicone breast implants is the formation of a capsule around the implant known as capsular contracture which results in the distortion of the implant. Recently, a mouse model for studying capsular contracture was examined using micro-computed tomography (micro-CT), however, only qualitative changes were reported. The aim of this study was to develop a quantitative method for comparing the shape changes of silicone implants using in vivo micro-CT. Mice were bilaterally implanted with silicone implants and underwent ionizing radiation to induce capsular contracture. On day 28 post-surgery mice were examined in vivo using micro-CT. The reconstructed cross-section images were visually inspected to identify distortion. Measurements were taken in 2D and 3D to quantify the shape of the implants in the normal (n = 11) and distorted (n = 5) groups. The degree of anisotropy was significantly higher in the distorted implants in the transaxial view (0.99 vs. 1.19, p = 0.002) and the y-axis lengths were significantly shorter in the sagittal (9.27 mm vs. 8.55 mm, p = 0.015) and coronal (9.24 mm vs. 8.76 mm, p = 0.031) views, indicating a deviation from the circular cross-section and shortening of the long axis. The 3D analysis revealed a significantly lower average thickness (sphere-fitting method) in distorted implants (6.86 mm vs. 5.49 mm, p = 0.002), whereas the volume and surface area did not show significant changes. Statistically significant differences between normal and distorted implants were found in 2D and 3D using distance measurements performed via micro-CT. This objective analysis method can be useful for a range of studies involving deformable implants using in vivo micro-CT. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1447-1452, 2017. © 2016 Wiley Periodicals, Inc.

  7. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  8. Resolving the brachytherapy challenges with government funded hospital.

    Science.gov (United States)

    Nikam, D S; Jagtap, A S; Vinothraj, R

    2016-01-01

    The objective of this study is to rationalize the feasibility and cost-effectiveness of high dose rate (HDR) cobalt 60 (Co-60) source versus 192-Iridium (192-Ir) source brachytherapy in government funded hospitals and treatment interruption gap because of exchange of sources. A retrospective study of gynecological cancer patients, treated by radiotherapy with curative intent between April 2005 and September 2012 was conducted. We analyzed the total number of patients treated for external beam radiotherapy (EBRT) and brachytherapy (Intracavitary brachytherapy or cylindrical vaginal source). The dates for 192-Ir sources installation and the last date and first date of brachytherapy procedure before and after source installation respectively were also analyzed and calculated the gap in days for brachytherapy interruptions. The study was analyzed the records of 2005 to September 2012 year where eight 192-Ir sources were installed. The mean gap between treatment interruptions was 123.12 days (range 1-647 days). The Institutional incidence of gynecological cancer where radiotherapy was treatment modality (except ovary) is 34.9 percent. Around 52.25 percent of patients who received EBRT at this institute were referred to outside hospital for brachytherapy because of unavailability of Iridium source. The cost for 5 year duration for single cobalt source is approximately 20-22 lakhs while for 15 Iridium sources is approximately 52-53 lakhs. The combined HDR Co-60 brachytherapy and EBRT provide a useful modality in the treatment of gynecological cancer where radiotherapy is indicated, the treatment interruption because of source exchange is longer and can be minimized by using cobalt source as it is cost-effective and has 5 year working life. Thus, Co-60 source for brachytherapy is a feasible option for government funded hospitals in developing countries.

  9. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth

    Directory of Open Access Journals (Sweden)

    Naiara Perurena

    2017-01-01

    Full Text Available Abstract Background Activated protein C/endothelial protein C receptor (APC/EPCR axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1 silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR

  10. Increased Detection of Lymphatic Vessel Invasion by D2-40 (Podoplanin) in Early Breast Cancer: Possible Influence on Patient Selection for Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Debald, Manuel; Poelcher, Martin; Flucke, Uta; Walgenbach-Bruenagel, Gisela

    2010-01-01

    Purpose: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly increases the frequency of LVI detection compared with conventional hematoxylin and eosin (HE) staining in early-stage breast cancer. Our purpose was to retrospectively assess the hypothetical change in management from APBI to whole breast radiotherapy with the application of D2-40. Patients and Methods: Immunostaining with D2-40 was performed on 254 invasive breast tumors of 247 patients. The following criteria were used to determine the eligibility for APBI: invasive ductal adenocarcinoma of ≤3 cm, negative axillary node status (N0), and unifocal disease. Of the 247 patients, 74 with available information concerning LVI, as detected by D2-40 immunostaining and routine HE staining, formed our study population. Results: Using D2-40, our results demonstrated a significantly greater detection rate (p = .031) of LVI compared with routine HE staining. LVI was correctly identified by D2-40 (D2-40-positive LVI) in 10 (13.5%) of 74 tumors. On routine HE staining, 4 tumors (5.4%) were classified as HE-positive LVI. Doublestaining of these specimens with D2-40 unmasked false-positive LVI status in 2 (50%) of the 4 tumors. According to the current recommendations for APBI, immunostaining with D2-40 would have changed the clinical management from APBI to whole breast radiotherapy in 8 (10.8%) of 74 patients and from whole breast radiotherapy to APBI in 2 patients (2.7%). Conclusion: These data support the implementation of D2-40 immunostaining in the routine workup to determine a patient's eligibility for APBI.

  11. Critical Organ Preservation in Reirradiation Brachytherapy by Injectable Spacer

    International Nuclear Information System (INIS)

    Kishi, Kazushi; Sonomura, Tetsuo; Shirai, Shintaro; Sato, Morio; Tanaka, Kayo

    2009-01-01

    Purpose: This case series study evaluated the feasibility and effectiveness of an interstitial high-dose rate brachytherapy (HDR-BT) procedure combined with an at-risk organ-sparing procedure. Methods and Materials: Thirty patients who were scheduled for reirradiation treatment for recurrent cancer after receiving a median dose of 60 Gy (range, 44-70 Gy) in 2-Gy fractions of previous external beam treatment were enrolled. Thirteen patients had lesions in the head and neck, and other lesions were located in the axilla, skeleton, breast, pelvis, and abdominal wall. Chief complaints included local masses (for 25) and refractory pain (for 21). After high-dose rate brachytherapy applicator needle implantation, an optimal CT-based three-dimensional brachytherapy plan was created with a virtual at-risk organ shift from the target. According to the plan, hyaluronic acid gel was injected to maintain the shift during irradiation. The prescribed dose was the result of an individualized tradeoff between target dose and at-risk organ dose, to avoid serious complications. A single-fraction dose of 18.0 Gy (median, equivalent to 75.6 Gy at an α/β value of 3; range, 16-20 Gy) was applied to the tumor. Results: The at-risk organ dose decreased from 9.1 ± 0.9 Gy to 4.4 ± 0.4 Gy (mean ± standard deviation, p < 0.01), and the normal tissue complication probability decreased from 60.8% ± 12.6% to 16.1% ± 19.8% (p < 0.01). The shift effect lasted at least 4 hours and disappeared gradually. Distinct tumor shrinkage in 20 of 21 eligible patients, including tumor disappearance in 6 patients, pain reduction in 18 of 21 eligible patients, and no unexpected late toxicity greater than grade 2 were observed during the 19.5-month observation period. Conclusions: This at-risk organ-sparing preservation procedure may provide a safe and efficient reirradiation treatment.

  12. Guidelines for comprehensive quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Goldson, A.L.; Nibhanupudy, J.R.

    1984-01-01

    Brachytherapy treatment techniques can provide significant improvement in local control and overall survival, but only when quality assurance can be guaranteed. To establish brachytherapy quality assurance, basic requirements for three predetermined subdivisions of clinical institutions will be forwarded. These are: (1) centers having minimum requirements to provide brachytherapy, (2) intermediate centers such as regional or community hospitals, and (3) optimal centers such as university hospital and cancer centers. This presentation will highlight personnel needs, equipment requirements, academic activities, clinical experience with these systems and proposed quality assurance guidelines

  13. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Directory of Open Access Journals (Sweden)

    Shehla Pervin

    Full Text Available Vitamin D signaling in mammary cancer stem cells (MCSCs, which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+ had increased ability to form mammospheres compared to ALDH(- cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR was significantly down-regulated in mammospheres, as well as in ALDH(+ breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D, the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas cells with DETA NONOate, a nitric oxide (NO-donor led to induction of MAP-kinase phosphatase -1 (MKP-1 and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in

  14. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Science.gov (United States)

    Pervin, Shehla; Hewison, Martin; Braga, Melissa; Tran, Lac; Chun, Rene; Karam, Amer; Chaudhuri, Gautam; Norris, Keith; Singh, Rajan

    2013-01-01

    Vitamin D signaling in mammary cancer stem cells (MCSCs), which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+)) had increased ability to form mammospheres compared to ALDH(-) cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR) was significantly down-regulated in mammospheres, as well as in ALDH(+) breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D), the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas) cells with DETA NONOate, a nitric oxide (NO)-donor led to induction of MAP-kinase phosphatase -1 (MKP-1) and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in prospective

  15. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Isoyama-Shirakawa, Yuko; Abe, Madoka; Nakamura, Katsumasa

    2015-01-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer. (author)

  16. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Carson, Paul

    1997-01-01

    This project is to improve the diagnosis and management of patients with breast cancer through development and evaluation of 3D ultrasound imaging and quantification techniques emphasizing vascularity...

  17. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Directory of Open Access Journals (Sweden)

    Stefano Eduardo J

    2009-04-01

    Full Text Available Abstract Background The literature supporting high-dose rate brachytherapy (HDR in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52, local recurrence (p = 0.68, or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06 rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix

  18. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Science.gov (United States)

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  19. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E; Hautvast, G; Binnekamp, D [Philips Group Innovation - Biomedical Systems, Eindhoven (Netherlands); Beaulieu, L [Centre Hospitalier Univ de Quebec, Quebec, QC (Canada)

    2015-06-15

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc was carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.

  20. Current status of brachytherapy in Korea: a national survey of radiation oncologists.

    Science.gov (United States)

    Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae

    2016-07-01

    The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.

  1. Second conservative radiosurgical treatment for ipsilateral breast cancer recurrence

    International Nuclear Information System (INIS)

    Castelli, J.; Courdi, A.; Hannoun-Levi, J.M.; Figl, A.; Raoust, I.; Lallement, M.; Flipo, B.; Ettore, F.; Chapelier, C.; Ferrero, J.M.

    2011-01-01

    Purpose. - Currently, radical mastectomy represents the gold standard for ipsilateral breast cancer recurrence. However, we already showed that a second conservative treatment was feasible combining lumpectomy plus low-dose rate interstitial brachytherapy. In this study, we reported the preliminary results of a second conservative treatment using a high-dose rate brachytherapy. Patients and methods. - From June 2005 to July 2009, 42 patients presenting with an ipsilateral breast cancer recurrence underwent a second conservative treatment. Plastic tubes were implanted intraoperatively at the time of the lumpectomy. After a post-implant CT scan, a total dose of 34 Gy in 10 fractions over 5 consecutive days was delivered through an ambulatory procedure. The toxicity evaluation used the Common Terminology Criteria for Adverse Events v3.0. Results. - The median follow-up was 21 months (6-50 months), median age at the time of the local recurrence was 65 years (30-85 years). The median delay between the primary and the recurrence was 11 years (1-35 years). The location of the recurrence was in the tumor bed for 22 patients (52.4%), in the same quadrant for 14 patients (33.3%) and unknown for six patients (14.3%). The median tumor size of the recurrence was 12 mm (2-30 mm). The median number of plastic tubes and plans were nine (5-12) and two (1-3) respectively. The median CTV was 68 cm 3 (31.2-146 cm 3 ). The rate of second local control was 97%. Twenty-two patients (60%) experienced complications. The most frequent side effect consisted in cutaneous and sub-cutaneous fibrosis (72% of all the observed complications). Conclusion. - A second conservative treatment for ipsilateral breast cancer recurrence using high-dose rate brachytherapy appears feasible leading to encouraging results in terms of second local control with an acceptable toxicity. Considering that a non-inferiority randomized trial comparing mastectomy versus second conservative treatment could be difficult

  2. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  3. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  5. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Chu, Tian-Li; Zhao, Hong-Meng; Li, Yue; Chen, Ao-Xiang; Sun, Xuan; Ge, Jie

    2014-01-01

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy

  6. American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Ellis, Rodney J.; Merrick, Gregory S.; Bahnson, Robert; Wallner, Kent; Stock, Richard

    2002-01-01

    Purpose: To standardize the reporting of brachytherapy-related prostate morbidity to guide ongoing clinical practice and future investigations. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate brachytherapy performed a literature review and, guided by their clinical experience, formulated specific recommendations for reporting on morbidity related to prostate brachytherapy. Results: The ABS recommends using validated, patient-administered health-related quality-of-life instruments for the determination of baseline and follow-up data regarding bowel, urinary, and sexual function. Both actuarial and crude incidences should be reported, along with the temporal resolution of specific complications, and correlated with the doses to the normal tissues. The International Prostate Symptom Score is recommended to assess urinary morbidity, and any dysuria, gross hematuria, urinary retention, incontinence, or medication use should be quantified. Likewise, the ''Sexual Health Inventory for Men,'' which includes the specific erectile questions of the International Index of Erectile Function, is the preferred instrument for reporting sexual function, and the loss of sexual desire, incidence of hematospermia, painful orgasm (orgasmalgia), altered orgasm intensity, decreased ejaculatory volume, use of erectile aids, and use of hormones for androgen deprivation should be quantified. The ABS recommends adoption of the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer acute and late radiation morbidity scoring scheme for reporting rectal morbidity and noting the incidence of rectal steroid, laser, or antidiarrheal use. Conclusion: It is important to focus on health-related quality-of-life issues in the treatment of prostate cancer, because the control rates are very similar between appropriate treatment modalities. The ABS recommends using the International Prostate Symptom Score, International Index of

  7. Sexual function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Galbreath, R.W.; Merrick, G.S.; Butler, W.M.; Stipetich, R.L.; Abel, L.J.; Lief, J.H.

    2001-01-01

    Purpose: To determine the incidence of potency preservation following permanent prostate brachytherapy and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Materials and Methods: 425 patients underwent permanent prostate brachytherapy from April 1995 to October 1999. 209 patients who were potent prior to brachytherapy and currently not receiving hormonal manipulation were mailed an International Index of Erectile Function (IIEF) questionnaire with a pre-addressed stamped envelope. 180 patients completed and returned the questionnaire. Median patient follow-up was 39 months (range 18-74 months). Pre-implant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Post-implant potency was defined as an IIEF score >11. Clinical parameters evaluated for sexual function included patient age, clinical T stage, elapsed time since implantation, hypertension, diabetes mellitus, and tobacco consumption. Evaluated treatment parameters included the utilization of neoadjuvant hormonal manipulation and the choice of isotope. The efficacy of sildenafil citrate in brachytherapy induced erectile dysfunction (ED) was also evaluated. Results: A pre-treatment erectile function score of 2 and 1 were assigned to 126 and 54 patients respectively. With 6 year follow up, 39% of patients maintained potency following prostate brachytherapy with a plateau on the curve. Post-implant preservation of potency (IIEF>11) correlated with pre-implant erectile function (50% versus 14% for pre-implant scores of 2 and 1 respectively, p≤0.0001), patient age (56%, 38%, and 23% for patients <60 years of age, 60-69 years of age, and ≥70 years of age respectively, p=0.012) and a history of diabetes mellitus

  8. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  9. Determining profile of dose distribution for PD-103 brachytherapy source

    International Nuclear Information System (INIS)

    Berkay, Camgoz; Mehmet, N. Kumru; Gultekin, Yegin

    2006-01-01

    contributions from all source components. In experiments it is impossible to determine inner factors of source rather than inadequate conditions. There are several brachytherapy sources. In Pd-103 sample we obtained differential parameters. Using this data it will be easier to concept new source models. Separate calculations are agreed with accepted literature values acquired from massive calculations. In tissue dose distribution can be shaped more sensitive with this method. To do just computer simulation is available. There are massive sources (I-125, Ir-192, etc.). Same process should be done by cutting the source into many radioactive parts in virtual experiments. This is the novel approach for sensitive database to use it in practical clinical treatments

  10. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  11. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  12. Understanding 3D human torso shape via manifold clustering

    Science.gov (United States)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  13. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  14. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions

    International Nuclear Information System (INIS)

    Lopes, Nair; Schmitt, Fernando; Sousa, Bárbara; Martins, Diana; Gomes, Madalena; Vieira, Daniella; Veronese, Luiz A; Milanezi, Fernanda; Paredes, Joana; Costa, José L

    2010-01-01

    Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions. We have used a cohort comprising normal breast, benign mammary lesions, carcinomas in situ and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry. The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in in situ and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%). From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone

  15. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    International Nuclear Information System (INIS)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F.

    2011-01-01

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations (α,β,γ) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate, fast, and completely

  16. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  17. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm.

    Science.gov (United States)

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-02-01

    To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations (alpha, beta, gamma) were estimated with accuracies of 0.6 mm and 2 degrees, respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. This work describes a novel, accurate, fast, and completely automatic method to

  18. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks; Li, Wilmot; Guibas, Leonidas J.; Mitra, Niloy J.

    2011-01-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  19. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks

    2011-07-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  20. Radiation Exposure Reduction to Brachytherapy Staff By Using Remote Afterloading

    International Nuclear Information System (INIS)

    Attalla, E.M.

    2005-01-01

    The radiation exposures to the personnel staff from patients with brachytherapy implants in a brachytherapy service were reviewed. Exposures to the brachytherapy personnel, as determined by Thermoluminescence Dosimeter (TLD) monitors, indicates a four-fold reduction in exposures after the implantation of the use of remote afterloading devices. Quarterly TLD monitor data for seven quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the brachytherapy staff of 2543 Μ Sv. After the implantation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per person of 153 Μ Sv. This is 76% reduction in exposure to brachytherapy personnel with the use of these devices

  1. A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures.

    Science.gov (United States)

    Su, Meng; Huang, Zhandong; Li, Yifan; Qian, Xin; Li, Zheng; Hu, Xiaotian; Pan, Qi; Li, Fengyu; Li, Lihong; Song, Yanlin

    2018-01-01

    3D printing or fabrication pursues the essential surface behavior manipulation of droplets or a liquid for rapidly and precisely constructing 3D multimaterial architectures. Further development of 3D fabrication desires a self-shaping strategy that can heterogeneously integrate functional materials with disparate electrical or optical properties. Here, a 3D liquid self-shaping strategy is reported for rapidly patterning materials over a series of compositions and accurately achieving micro- and nanoscale structures. The predesigned template selectively pins the droplet, and the surface energy minimization drives the self-shaping processing. The as-prepared 3D circuits assembled by silver nanoparticles carry a current of 208-448 µA at 0.01 V impressed voltage, while the 3D architectures achieved by two different quantum dots show noninterfering optical properties with feature resolution below 3 µm. This strategy can facilely fabricate micro-nanogeometric patterns without a modeling program, which will be of great significance for the development of 3D functional devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  3. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S.; Dumas, I.; Lhomme, C.; Morice, P.; Barillot, I.

    2009-01-01

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  4. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  5. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won

    1997-01-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20

  6. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  7. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Townamchai, Kanopkis [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Albert, Michele [Department of Radiation Oncology, Saint Anne' s Hospital Regional Cancer Center, Fall River, Massachusetts (United States); Bair, Ryan J. [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Cormack, Robert A. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Jang, Joanne [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Kovacs, Arpad [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Lee, Larissa J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Lewis, John H.; Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  8. Precipitate shape fitting and reconstruction by means of 3D Zernike functions

    Science.gov (United States)

    Callahan, P. G.; De Graef, M.

    2012-01-01

    3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes.

  9. Precipitate shape fitting and reconstruction by means of 3D Zernike functions

    International Nuclear Information System (INIS)

    Callahan, P G; De Graef, M

    2012-01-01

    3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes

  10. HFE H63D mutation frequency shows an increase in Turkish women with breast cancer

    Directory of Open Access Journals (Sweden)

    Guler Emine

    2006-02-01

    Full Text Available Abstract Background The hereditary hemochromatosis gene HFE plays a pivotal role in iron homeostasis. The association between cancer and HFE hetero- or homozygosity has previously been shown including hepatocellular and nonhepatocellular malignancies. This study was performed to compare frequencies of HFE C282Y and H63D variants in Turkish women with breast cancer and healthy controls. Methods Archived DNA samples of Hacettepe University Oncology Institute were used in this study. The HFE gene was investigated by PCR-RFLP. Results All subjects studied were free from C282Y mutation. Thirty-nine patients had H63D mutation and were all heterozygous. H63D allele frequency was 22.2% (39/176 in the breast cancer patients, and 14% (28/200 in the healthy volunteers. Statistical analysis of cases with HFE H63D phenotype showed significant difference between breast cancer and healthy volunteers (P = 0.02. Conclusion Our results suggest that HFE H63D mutation frequencies were increased in the breast cancer patients in comparison to those in the general population. Also, odds ratios (odds ratio = 2.05 computed in this study suggest that H63D has a positive association with breast cancer.

  11. A New 3D Object Pose Detection Method Using LIDAR Shape Set.

    Science.gov (United States)

    Kim, Jung-Un; Kang, Hang-Bong

    2018-03-16

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.

  12. Statistical 3D shape analysis of gender differences in lateral ventricles

    Science.gov (United States)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  13. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Amelia Yilin Lee

    2017-10-01

    Full Text Available The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

  14. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Larissa J. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adverse Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure

  15. Divided attention limits perception of 3-D object shapes

    Science.gov (United States)

    Scharff, Alec; Palmer, John; Moore, Cathleen M.

    2013-01-01

    Can one perceive multiple object shapes at once? We tested two benchmark models of object shape perception under divided attention: an unlimited-capacity and a fixed-capacity model. Under unlimited-capacity models, shapes are analyzed independently and in parallel. Under fixed-capacity models, shapes are processed at a fixed rate (as in a serial model). To distinguish these models, we compared conditions in which observers were presented with simultaneous or sequential presentations of a fixed number of objects (The extended simultaneous-sequential method: Scharff, Palmer, & Moore, 2011a, 2011b). We used novel physical objects as stimuli, minimizing the role of semantic categorization in the task. Observers searched for a specific object among similar objects. We ensured that non-shape stimulus properties such as color and texture could not be used to complete the task. Unpredictable viewing angles were used to preclude image-matching strategies. The results rejected unlimited-capacity models for object shape perception and were consistent with the predictions of a fixed-capacity model. In contrast, a task that required observers to recognize 2-D shapes with predictable viewing angles yielded an unlimited capacity result. Further experiments ruled out alternative explanations for the capacity limit, leading us to conclude that there is a fixed-capacity limit on the ability to perceive 3-D object shapes. PMID:23404158

  16. Triple shape memory polymers by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  17. Anti-3D Weapon Model Detection for Safe 3D Printing Based on Convolutional Neural Networks and D2 Shape Distribution

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-03-01

    Full Text Available With the development of 3D printing, weapons are easily printed without any restriction from the production managers. Therefore, anti-3D weapon model detection is necessary issue in safe 3D printing to prevent the printing of 3D weapon models. In this paper, we would like to propose an anti-3D weapon model detection algorithm to prevent the printing of anti-3D weapon models for safe 3D printing based on the D2 shape distribution and an improved convolutional neural networks (CNNs. The purpose of the proposed algorithm is to detect anti-3D weapon models when they are used in 3D printing. The D2 shape distribution is computed from random points on the surface of a 3D weapon model and their geometric features in order to construct a D2 vector. The D2 vector is then trained by improved CNNs. The CNNs are used to detect anti-3D weapon models for safe 3D printing by training D2 vectors which have been constructed from the D2 shape distribution of 3D weapon models. Experiments with 3D weapon models proved that the D2 shape distribution of 3D weapon models in the same class is the same. Training and testing results also verified that the accuracy of the proposed algorithm is higher than the conventional works. The proposed algorithm is applied in a small application, and it could detect anti-3D weapon models for safe 3D printing.

  18. SU-F-T-55: Reproducibility of Interstitial HDR Brachytherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Ellis, R; Traughber, B; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with the MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan

  19. Evolution of brachytherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Qin Lan

    2005-01-01

    Brachytherapy is one of the most main management to prostate carcinoma. This method has been rapidly accepted in clinical application since it is a convenient, little-traumatic, and outpatient therapy. With the development of techniques of production of radio-seeds, imaging modality and three-dimensional radiotherapy plan system, brachytherapy has been made a virtually progress in improving curative-effect and reducing damage to surrounding normal tissue. (authors)

  20. The influence of patient positioning in breast CT on breast tissue coverage and patient comfort

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, A.C.; Althoff, F.; Kalender, W. [Erlangen Univ. (Germany). Inst. of Medical Physics; Wenkel, E. [University Hospital of Erlangen (Germany). Radiological Inst.

    2015-02-15

    The presented study aimed at optimizing a patient table design for breast CT (BCT) systems with respect to breast tissue coverage and patient comfort. Additionally, the benefits and acceptance of an immobilization device for BCT using underpressure were evaluated. Three different study parts were carried out. In a positioning study women were investigated on an MRI tabletop with exchangeable inserts (flat and cone-shaped with different opening diameters) to evaluate their influence on breast coverage and patient comfort in various positioning alternatives. Breast length and volume were calculated to compare positioning modalities including various opening diameters and forms. In the second study part, an underpressure system was tested for its functionality and comfort on a stereotactic biopsy table mimicking a future CT scanner table. In the last study part, this system was tested regarding breast tissue coverage. Best results for breast tissue coverage were shown for cone-shaped table inserts with an opening of 180 mm. Flat inserts did not provide complete coverage of breast tissue. The underpressure system showed robust function and tended to pull more breast tissue into the field of view. Patient comfort was rated good for all table inserts, with highest ratings for cone-shaped inserts. Cone-shaped tabletops appeared to be adequate for BCT systems and to allow imaging of almost the complete breast. An underpressure system proved promising for the fixation of the breast during imaging and increased coverage. Patient comfort appears to be adequate.

  1. Proficiency-based cervical cancer brachytherapy training.

    Science.gov (United States)

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  2. Volume based DCE-MRI breast cancer detection with 3D visualization system

    International Nuclear Information System (INIS)

    Chia, F.K.; Sim, K.S.; Chong, S.S.; Tan, S.T.; Ting, H.Y.; Abbas, S.F.; Omar, S.

    2011-01-01

    In this paper, a computer aided design auto probing system is presented to detect breast lesions based on Dynamic contrast enhanced Magnetic resonance imaging (DCE-MRI) images. The system is proposed in order to aid the radiologists and doctors in the interpretation of MRI breast images and enhance the detection accuracy. A series of approaches are presented to enhance the detection accuracy and refine the breast region of interest (Roil) automatically. Besides, a semi-quantitative analysis is used to segment the breast lesions from selected breast Roil and classify the detected tumour is whether benign, suspicious or malignant. The entire breast Roil including the detected tumour will display in 3D. The methodology has been applied on 104 sets of digital imaging and communications in medicine (Dico) breast MRI datasets images. The biopsy results are verified by 2 radiologists from Hospital Malaysia. The experimental results are demonstrated the proposed scheme can precisely identify breast cancer regions with 93% accuracy. (author)

  3. Comparison of a 3D multi‐group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri

    Science.gov (United States)

    Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas

    2009-01-01

    A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw

  4. Computed tomography in brachytherapy

    International Nuclear Information System (INIS)

    Mansfield, C.M.; Lee, K.R.; Dwyer, S.; Zellmer, D.; Cook, P.

    1983-01-01

    CT scanning adds to the ability to evaluate brachytherapy techniques. It provides an additional method in the assessment of patients who are candidates for or who are being treated by brachytherapy. The CT scan can give information regarding the position of the sources and their relation to the tumor and normal structures with greater ease than do orthogonal views. This makes it possible to accurately calculate areas of high or low dose. Potential areas of overdose can be recognized, thereby decreasing the chances of postbrachytherapy complications. CT scanning can be used at various levels of complexity in dosimetry evaluation. Adequate brachytherapy dosimetry information is obtainable from CT slices through one or more levels of the implanted volume. In some instances it is possible to obtain additional information by reconstructing the scans in other planes, e.g., coronal or sagittal. Three-dimensional viewing of the implant is desirable, but it should be pointed out that this approach is time-consuming and beyond the capabilities of most institutions at present. It will be necessary to continue work on three-dimensional treatment planning to make it readily available

  5. Brachytherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Yoo, Seong Yul

    1999-01-01

    Brachytherapy has been proved to be an effective method for the purpose of increasing radiation dose to the tumor and reducing the dose to the surrounding normal tissue. In head and neck cancer, the rationale of brachytherapy is as follows; Firstly, early small lesion is radiocurative and the major cause of failure is local recurrence. Secondly, it can diminish evidently the dose to the normal tissue especially masseteric muscle and salivary gland. Thirdly, the anatomy of head and neck is suitable to various technique of brachytherapy. On background of accumulated experience of LDR iridium brachytherapy of head and neck cancer for the last 15 years, the author reviewed the history of radioisotope therapy, the characteristics of radionuclides, and some important things in the method, clinical technique and treatment planning. The author analyzed the clinical result of 185 cases of head and neck cancer treated in the Korea Cancer Center Hospital. Finally the future prospect of brachytherapy of head and neck cancer is discussed

  6. Intravascular ultrasound based dose assessment in endovascular brachytherapy

    International Nuclear Information System (INIS)

    Catalano, Gianpiero; Tamburini, Vittorio; Colombo, Antonio; Nishida, Takahiro; Parisi, Giovanni; Mazzetta, Chiara; Orecchia, Roberto

    2003-01-01

    Background: the role of endovascular brachytherapy in restenosis prevention is well documented. Dose is usually prescribed at a fixed distance from the source axis by angiographic quantification of vessel diameter. Recently, intravascular ultrasound (IVUS) was introduced in dose prescription, allowing a better evaluation of the vessel anatomy. This study retrospectively explores the difference between prescription following angiographic vessel sizing and delivered dose calculated with IVUS. Methods and results: Seventeen lesions were studied with IVUS, identifying on irradiated segment, three sections on which measuring minimal and maximal distance from the centre of IVUS catheter to the adventitia; using dedicated software, corresponding doses were calculated. The dose ranged widely, with maximal and minimal values of 71.6 and 4.9 Gy; furthermore, heterogeneity in dose among different sections was observed. In the central section, the maximal dose was 206% of the one prescribed with the QCA model at 2 mm from the source axis, while the minimal dose was 96%. In proximal and distal sections, respective values were 182, 45, 243, and 122%. Conclusions: Our analysis confirmed the dose inhomogeneity delivered with an angiographic fixed-dose prescription strategy. A dose variation was found along the irradiated segment due to the differences in vessel thickness. IVUS emerged as an important tool in endovascular brachytherapy, especially for irregular-shaped vessels

  7. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-01-01

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  8. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  9. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  10. Methods for prostate stabilization during transperineal LDR brachytherapy.

    Science.gov (United States)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  11. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Yu Yan; Sherman, Jason; Rubens, Deborah; Strang, John; Messing, Edward; Ng, Wan-Sing

    2008-01-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  12. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzari, G L; Negri, G L; Ozzello, F

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy. 42 refs.

  13. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    International Nuclear Information System (INIS)

    Sannazzari, G.L.; Negri, G.L.; Ozzello, F.

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy

  14. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories.

    Science.gov (United States)

    Tagliafico, A S; Tagliafico, G; Cavagnetto, F; Calabrese, M; Houssami, N

    2013-11-01

    To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging-Reporting and Data System (BI-RADS) categories, using automated software. Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity(©), developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (pBI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, pBI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories.

  15. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions regarding clinical significance.

  16. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    International Nuclear Information System (INIS)

    Kolotas, C.; Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N.; Strassmann, G.; Aebersold, D.M.

    2003-01-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR 192 Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm 3 with a range of 41-2,103 cm 3 . Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  17. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland); Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Strassmann, G. [Dept. of Radiotherapy, Univ. Hospital, Philipps Univ., Marburg (Germany); Aebersold, D.M. [Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland)

    2003-07-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR {sup 192}Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm{sup 3} with a range of 41-2,103 cm{sup 3}. Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  18. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation

    International Nuclear Information System (INIS)

    Saidi, Pooneh; Sadeghi, Mahdi; Enferadi, Milad; Aslani, Gholamreza

    2011-01-01

    Highlights: → We report the cyclotron production of 103-palladium via 103 Rh(p,n) 103 Pd reaction. → 103 Pd was absorbed on resin beads for brachytherapy seed preparation. → The optimum absorption of 103 Pd in resin was achieved at 0.5 M HCl. → Version 5 of MCNP code was employed to model a new 103 Pd brachytherapy seed. - Abstract: In this study, design and fabrication of 103 Pd brachytherapy seed was investigated. The excitation functions of 103 Rh(p,n) 103 Pd and 103 Rh(d,2n) 103 Pd reactions were calculated using EMPIRE (version 3.1 Rivoli), ALICE/ASH and TALYS-1.2 codes, the TENDL-2010 database and compared with the published data. Production of 103 Pd was done via 103 Rh(p,n) 103 Pd nuclear reaction. The target was bombarded with 18 MeV protons at 200 μA beam current for 15 h. After irradiation and radiochemical separation of the electroplated rhodium target, the optimum condition for absorption of 103 Pd into Amberlite (registered) IR-93 resin was achieved at 0.5 M HCl. Version 5 of the (MCNP) Monte Carlo radiation transport code was employed to calculate the dosimetric parameters around the 103 Pd brachytherapy seed. Finally the calculated results were compared with published results for other commercial sources.

  19. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    Science.gov (United States)

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover

  20. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.