WorldWideScience

Sample records for breakup coupling effects

  1. Breakup of Spiral Waves in Coupled Hindmarsh–Rose Neurons

    International Nuclear Information System (INIS)

    Breakup of spiral wave in the Hindmarsh–Rose neurons with nearest-neighbour couplings is reported. Appropriate initial values and parameter regions are selected to develop a stable spiral wave and then the Gaussian coloured noise with different intensities and correlation times is imposed on all neurons to study the breakup of spiral wave, respectively. Based on the mean field theory, the statistical factor of synchronization is defined to analyse the evolution of spiral wave. It is found that the stable rotating spiral wave encounters breakup with increasing intensity of Gaussian coloured noise or decreasing correlation time to certain threshold

  2. Breakup of Spiral Waves in Coupled Hindmarsh-Rose Neurons

    Institute of Scientific and Technical Information of China (English)

    MA Jun; JIA Ya; TANG Jun; YANG Li-Jian

    2008-01-01

    @@ Breakup of spiral wave in the Hindmarsh-Rose neurons with nearest-neighbour couplings is reported.Appropriate initial values and parameter regions are selected to develop a stable spiral wave and then the Gauesian coloured noise with different intensities and correlation times is imposed on all neurons to study the breakup of spiral wave, respectively.Based on the mean field theory, the statistical factor of synchronization is defined to analyse the evolution of spiral wave.It is found that the stable rotating spiral wave encounters breakup with increasing intensity of Gaussian coloured noise or decreasing correlation time to certain threshold.

  3. Status of breakup reaction theory

    International Nuclear Information System (INIS)

    Recent studies on breakup reactions with the continuum-discretized coupled-channels method are reviewed. The topics covered are: four-body breakup processes for 6He induced reaction, dynamical relativistic effects on Coulomb breakup, microscopic description of projectile breakup processes, description of ternary processes (new triple-α reaction rate) and new approach to inclusive breakup processes.

  4. Coupled channels approach to the break-up in the field of a nucleus

    International Nuclear Information System (INIS)

    The elastic scattering and break-up of the deuteron in the field of a nucleus is formulated in terms of coupled differential equations together with correct boundary conditions. Cross sections for the two processes are given in terms of the scattering coefficients. An approximate treatment of the Coulomb distortion in the break-up channel is suggested. (orig.)

  5. Finite Range Effects on Fusion and/or Breakup of 6He+238U and 11Li+208Pb Systems

    Institute of Scientific and Technical Information of China (English)

    Sukhvinder S. Duhan; Manjeet Singh; Rajesh Kharab; H.C. Sharma

    2011-01-01

    We have studied the effects of the finite range of the interaction between the fragments of the projectile on the fusion and/or breakup of 6He+238U and 11 Li+208 Pb systems at near barrier energies within the framework of dynamic polarization potential approach.It has been found that at near barrier energies the maximum flux is lost to the breakup channel and at energies well above the Coulomb barrier the fusion coupled with the breakup channel opens up, initially with sharp rise and later becoming saturated at energy nearly twice of the Coulomb barrier.Further, it is found that the breakup cross section increases with the increasing range of the interaction between the fragments of the projectile while the fusion coupled with the breakup channel cross section decreases with the increasing range.

  6. Coupled simulations of nozzle flow, primary fuel jet breakup, and spray formation

    OpenAIRE

    Berg, Eberhard von; Edelbauer, Wilfried; Alajbegović, Aleš; Tatschl, Reinhard; Volmajer, Martin; Kegl, Breda; Ganippa, Lionel C.

    2012-01-01

    Presented are two approaches for coupled simulations of the injector flow withspray formation. In the first approach the two-fluid model is used within the injector for the cavitating flow. A primary breakup model is then applied at the nozzle orifice where it is coupled with the standard discrete droplet model. In the second approach the Eulerian multi-fluid model is applied for both the nozzle and spray regions. The developed primary breakup model, used in both approaches, is based on local...

  7. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6Li and 7Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7Li at 20 and 44 MeV and (v) projectile breakup of 6Li at 178 MeV and 7Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  8. Projectile deformation effects in the breakup of $^{37}$Mg

    CERN Document Server

    Shubhchintak,; Shyam, R

    2015-01-01

    We study the breakup of $^{37}$Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the post-form finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of $^{37}$Mg.

  9. Applicability of the continuum-discretized coupled-channels method to the deuteron breakup at low energies

    CERN Document Server

    Ogata, Kazuyuki

    2016-01-01

    We re-examine the deuteron elastic breakup cross sections on 12C and 10Be at low incident energies, for which a serious discrepancy between the continuum-discretized coupled-channels method (CDCC) and the Faddeev-Alt-Grassberger-Sandhas theory (FAGS) was pointed out. We show the closed-channels neglected in the preceding study affect significantly the breakup cross section calculated with CDCC, resulting in good agreement with the result of FAGS.

  10. Systematic study of breakup effects on complete fusion at energies above the Coulomb barrier

    CERN Document Server

    Wang, Bing; Gomes, P R S; Zhao, En-Guang; Zhou, Shan-Gui

    2014-01-01

    A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the complete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions $F(x)$ are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.

  11. Breakup Effects on University Students' Perceived Academic Performance

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2012-01-01

    The Problem: Problems that might be expected to affect perceived academic performance were studied in a sample of 283 university students. Results: Breakup Distress Scale scores, less time since the breakup and no new relationship contributed to 16% of the variance on perceived academic performance. Variables that were related to academic…

  12. Effect of rf structure on cumulative beam breakup

    International Nuclear Information System (INIS)

    We treat the effect of rf structure of a linac beam on cumulative beam breakup in the presence of external focusing. Starting with the difference equations of Helm and Loew, we derive two forms of an exact analytic solution for coasting beams: as a sum of products of Gegenbauer polynomials involving external focusing and rf structure, and as an integral involving these same parameters. The continuous-beam limit of Neil, Hall, and Cooper is obtained as the bunch separation goes to zero. An explicit solution is presented for the steady state, including modulation of the incoming displacement, showing both stable and unstable behavior with distance. Asymptotic amplitude expressions are derived for the transient solution, which can lead to even larger beam displacements. Approximate solutions also are obtained for accelerated and decelerated beams. Comparison with numerical simulations are presented

  13. Nuclear Interference effects in 8B sub-Coulomb breakup

    OpenAIRE

    Nunes, F. M.; Thompson, I.J.

    1998-01-01

    The breakup of $^8$B on $^{58}$Ni below the Coulomb barrier was measured recently with the aim of determining the Coulomb breakup components. We reexamine this reaction, and perform one step quantum-mechanical calculations that include E1, E2 and nuclear contributions. We show that the nuclear contribution is by no means negligible at the intermediate angular range where data was taken. Our results indicate that, for an accurate description of this reaction, Coulomb E1, E2 and nuclear process...

  14. Effects of projectile resonances on the total, Coulomb, and nuclear breakup cross sections in the 6Li+152Sm reaction

    Science.gov (United States)

    Mukeru, B.; Lekala, M. L.

    2016-08-01

    In this paper we analyze the effects of the projectile resonances on the total, Coulomb, and nuclear breakup cross sections as well as on the Coulomb-nuclear interferences at different arbitrary incident energies. It is found that these resonances have non-negligible effects on the total, Coulomb, and nuclear breakup cross sections. Qualitatively, they have no effects on the constructiveness or destructiveness of the Coulomb-nuclear interferences. Quantitatively, we obtained that these resonances increase by 7.38%, 7.58%, and 20.30% the integrated total, Coulomb, and nuclear breakup cross sections, respectively at Elab=35 MeV . This shows that the nuclear breakup cross sections are more affected by the effects of the projectile resonances than their total and Coulomb breakup counterparts. We also obtain that the effects of the resonances on the total, Coulomb, and nuclear breakup cross sections decrease as the incident energy increases.

  15. Effects of the geometric orientations of the nozzle exit on the breakup of free liquid jet

    Energy Technology Data Exchange (ETDEWEB)

    Lad, V. N.; Murthy, Z. V. P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2016-04-15

    Free liquid jets are produced through various geometric orientations of the nozzle exit. The breakup lengths of liquid jets under various geometric orientations of the nozzle exit were studied. Images of jets were captured using a high-speed camera with a maximum frame rate of 1000 frames per second and were analyzed to determine the dynamics between jets and breakup lengths. The breakup length of jets changes with the cut angle of the nozzle exit. In addition, adding polymer reduces the effect of the cut angle of the nozzle exit on the breakup length for an entire range of velocities. The effect of the cut angle on breakup length is predominant for aqueous solutions with surfactants. This work provides motivation for further computational research to study jet dynamics in a partially covered nozzle exit, such as the case in which the boundary conditions near the nozzle opening is more complex with the cut angle and its vertex position, which directly reflects liquid jet dynamics.

  16. Breakup Effect of Weakly Bound Projectile on the Barrier Distribution Around Coulomb Barrier

    Institute of Scientific and Technical Information of China (English)

    贾会明; 林承键; 张焕乔; 刘祖华; 喻宁; 杨峰; 徐新星; 贾飞; 吴振东; 张世涛

    2012-01-01

    The excitation function of quasi-elastic (QEL) scattering at a backward angle has been measured for 9^Be+208^Pb. The barrier distribution was extracted by means of the first derivative of the measured excitation function and calculated with the coupled-channel model. The present work shows that the experimental barrier distribution extracted from QEL scattering is shifted to the low energy side by 1.5 MeV as compared with the theoretical one. This energy discrepancy indicates that breakup is important in the colliding processes of the weakly bound nucleus system.

  17. Effects of nuclear breakup channel on fusion of 6Li+64Zn system around barrier energies

    International Nuclear Information System (INIS)

    We have studied the effects of breakup, occurring due to the nuclear interaction between weakly bound 6Li and tightly bound 64Zn isotopes, on the fusion reaction at near barrier energies within the framework of dynamic polarization potential (DPP) approach. When the nuclear induced dynamic polarization potential is taken into account sub barrier enhancement and above barrier suppression have been found which improves the matching between the fusion excitation function data and predictions for 6Li+64Zn system significantly. (author)

  18. Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study

    CERN Document Server

    Gupta, Anupam

    2015-01-01

    The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number ($\\mbox {Ca}$), i.e. at changing the balance between the viscous forces and the surface tension at the interface, up to $\\mbox{Ca} \\approx 3 \\times 10^{-2}$. A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models (LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in a range of $\\mbox{Ca}$ which is broad enough to characterize all the three characteristic mechanisms of breakup in the confined T-junction, i.e. ${\\it squeezing}$, ${\\it dripping}$ and ${\\it jetting}$ regimes. The various model parameters of the FENE-P constitutive equations, including the polymer relaxation time $\\tau_P$ and the finite extensibility para...

  19. Evidence of the Coulomb force effects in the cross sections of the deuteron-proton breakup at 130 MeV

    CERN Document Server

    Kistryn, S; Bodek, K; Ciepal, I; Deltuva, A; Fonseca, A; Kalantar-Nayestanaki, N; Kis, M; Klos, B; Kozela, A; Mahjour-Shafiei, M; Micherdzinska, A; Sauer, P U; Stephan, E; Sworst, R; Zejma, J; Zipper, W; Kistryn, St.

    2006-01-01

    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.

  20. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    Science.gov (United States)

    Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.

    2016-06-01

    Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion

  1. Effect of the breakup process on the direct reaction with a 6Li projectile

    International Nuclear Information System (INIS)

    We investigate the effect of the breakup process on the direct reaction (DR) for 6Li. In order to study this effect, we introduce the experimental and semiexperimental ratio factors Rexpt and Rth by using the semiexperimental and experimental α-production cross sections and DR cross sections. The average values of the ratio Rexpt (Rth) for the 6Li+208Pb and 6Li+209Bi systems are 0.90 (0.91) and 0.86 (0.85), respectively. From these results, it can be seen that the α-production cross sections are the main contribution to the DR cross sections.

  2. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    Science.gov (United States)

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature

  3. Breakup of 9Be on 209Bi above and near the Coulomb barrier as a molecular single-particle effect: Its influence on complete fusion and scattering

    International Nuclear Information System (INIS)

    The breakup of the 9Be projectile on the 209Bi target at bombarding energies above and near the Coulomb barrier is studied in the adiabatic two-center shell model approach. The effect of 9Be→n+2α breakup channel on complete fusion, elastic and inelastic cross sections is investigated. Results show that the breakup of the projectile 9Be could be due to a molecular single-particle effect shortly before the colliding nuclei reach the Coulomb barrier

  4. The Effect of Corporate Break-ups on Information Asymmetry: A Market Microstructure Analysis

    OpenAIRE

    Bardong, Florian; Bartram, Söhnke M.; Yadav, Pradeep K.

    2006-01-01

    This paper investigates the information environment during and after a corporate break-up utilizing direct measures of information asymmetry developed in the market microstructure literature. The analysis is based on all corporate break-ups in the United States in the period 1995-2005. The results document that information asymmetry declines significantly as a result of a break-up. However, this reduction takes place not at the time of its announcement or its completion, but after it has been...

  5. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    CERN Document Server

    Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J

    2016-01-01

    Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...

  6. Role of projectile breakup effects and intrinsic degrees of freedom on fusion dynamics

    Science.gov (United States)

    Singh Gautam, Manjeet

    2016-05-01

    This article analyzes the fusion dynamics of loosely bound and stable projectiles with Zr-target isotopes within the context of the coupled channel approach and the energy-dependent Woods-Saxon potential model (EDWSP model). In the case of the 28Si + 90Zr reaction, the coupling to the inelastic surface excitations results in an adequate description of the observed fusion dynamics while in case of the 28Si + 94Zr reaction, the coupling to collective surface vibrational states as well as the neutron (multi-neutron) transfer channel is necessary in the coupled channel calculations to reproduce the below-barrier fusion data. However, the EDWSP model calculation provides an accurate explanation of the fusion data of 28Si + 90,94Zr reactions in the domain of the Coulomb barrier. In the fusion of the 6Li + 90Zr reaction, the inclusion of the nuclear structure degrees of freedom recovers the observed sub-barrier fusion enhancement but results in suppression of the above barrier fusion data by 34% with respect to the coupled channel calculations. Using EDWSP model calculations, this suppression factor is reduced by 14% and consequently, the above-barrier fusion data of 6Li + 90Zr reaction is suppressed by 20% with reference to the EDWSP model calculations. Such fusion suppression at above-barrier energies can be correlated with the breakup of the projectile (6Li) before reaching the fusion barrier, as a consequence of low binding energy. Supported by Dr. D. S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  7. Effect of target deformation and projectile breakup in complete fusion of 6Li + 152Sm

    International Nuclear Information System (INIS)

    Nuclear reaction induced by weakly bound (stable or radioactive) nuclei is a subject of current experimental and theoretical interest. Measurements of fusion cross section involving loosely bound projectile 6Li and 9Be exist with different conclusion about the enhancement or suppression of fusion cross section. Recently we have measured the fusion cross section for 6Li + 144Sm, where it has been found that there is an enhancement of fusion cross section below the barrier in comparison with single BPM calculation, where as there is an overall suppression in fusion cross section as compared to CCFULL calculation in the entire energy range measured. With this motivation, we chose a deformed target, 152Sm, with β2 = 0.24 to compare with the results of 144Sm which is a spherical target. It will also be interesting to see effect of target deformation (enhancement) versus projectile breakup (suppression) specially at subbarrier energy

  8. Experimental study of relativistic effects in the dp breakup reaction using the WASA detector

    Directory of Open Access Journals (Sweden)

    Kłos B.

    2014-03-01

    Full Text Available An experiment to investigate the 1H(d→$\\overrightarrow d $, ppn breakup reaction at 340 MeV, 360 MeV and 400 MeV deuteron beam energy has been performed at the Cooler Synchrotron COSY-Jülich with the WASA detector. The main goal was to study of various aspects of few-nucleon dynamics in the medium energy region, with a particular emphasis on relativistic effects and their interplay with three nucelon forces. The almost 4π geometry of the WASA detector gives an unique possibility to study the different aspects of nucleon-nucleon dynamics in the three nucleon system. The preliminary analysis of the collected data is presented.

  9. Effect of Air Entrainment on Breakup of Plunging Liquid Jet into Water Pool

    International Nuclear Information System (INIS)

    The steam explosion intensity is largely dependent upon the degree of volumetric fractions of melt droplets and steam in the fuel-coolant mixture. The rate of melt jet breakup and droplet sizes are, therefore, the key physical parameters in the analysis of FCIs. In a recent OECD/NEA international program SERENA, the areas where research may be needed to reduce the level of uncertainties in the code predictions have been identified. The predicted void fractions in the mixture were generally much higher than experimental data and a deficiency in melt jet breakup modeling would be one of the primary causes. In this paper, an extended study of non-boiling liquid jet breakup from the previous jet breakup experiment is reported with an emphasis on the role of air entrainment by plunging liquid jet into water pool. An improved jet breakup model is also presented with comparison to the experimental data. Non-boiling liquid jet breakup experiment was conducted and the debris size was analyzed with a new jet breakup model with an emphasis on the role of air entrainment. The predicted debris size with consideration of entrained air showed good agreement with the experimental data

  10. Effect of Air Entrainment on Breakup of Plunging Liquid Jet into Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoungtak; Bang, Kwanghyun [Korea Maritime Univ., Busan (Korea, Republic of)

    2013-05-15

    The steam explosion intensity is largely dependent upon the degree of volumetric fractions of melt droplets and steam in the fuel-coolant mixture. The rate of melt jet breakup and droplet sizes are, therefore, the key physical parameters in the analysis of FCIs. In a recent OECD/NEA international program SERENA, the areas where research may be needed to reduce the level of uncertainties in the code predictions have been identified. The predicted void fractions in the mixture were generally much higher than experimental data and a deficiency in melt jet breakup modeling would be one of the primary causes. In this paper, an extended study of non-boiling liquid jet breakup from the previous jet breakup experiment is reported with an emphasis on the role of air entrainment by plunging liquid jet into water pool. An improved jet breakup model is also presented with comparison to the experimental data. Non-boiling liquid jet breakup experiment was conducted and the debris size was analyzed with a new jet breakup model with an emphasis on the role of air entrainment. The predicted debris size with consideration of entrained air showed good agreement with the experimental data.

  11. A study of the factors effecting layer thickness uniformity and layer breakup in microlayered coextruded films

    Science.gov (United States)

    Ghumman, Bhavjit Singh

    Microlayer coextrusion offers the opportunity to economically commercialize the production of nanometer thick film. A major obstacle towards commercialization is the non-uniform thickness of these layers and their breakup into droplets, which is also known as a scattering instability. Prior research had indicated a strong interaction between material properties and process parameters. Therefore, the focus of this research effort was to better understand and then identify the coextrusion parameters and material properties that governed the layer non-uniformity and scattering. Initial studies had indicated that there existed an interaction between the two extruders, which gave rise to pressure fluctuations and non-uniform flow. The interaction of the two extruders was studied by analyzing the pressure signals at the two extruders and the junction of the two streams. A response surface method was used to analyze the two extruders individually, the number of layer multiplying elements and finally the interaction between the two extruders and the effect they had on pressure, surging, flow rate and torque. Although the interaction of the two extruders did result in higher backpressures, it did not decrease the output. The output was independent of the screw speed of the other extruder, however it did influence the melting mechanics along the screw. The more shear sensitive PMMA showed a greater degree of sensitivity than the Newtonian PC. The influence of primary; coextrusion, and secondary; chill roll, processing on the final layer thickness was studied in a second set of experiments. For this purpose primary coextrusion process parameters such as screw speed ratio, die temperature and core melt temperature were changed and the effect on the layer thickness uniformity was studied. Similarly secondary process parameters such as nip gap and chill roll speed were also investigated. Thickness was measured using an Atomic Force Microscope (AFM). The screw speed ratio was the

  12. Numerical simulation of mechanical breakup of river ice-cover

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; HE Liang; CHEN Pang-pang; SUI Jueyi

    2013-01-01

    Ice jams and ice dams in rivers will cause significant rises of water levels.Under extreme conditions,the ice flooding during winter or early spring may occur.In this paper,by considering the fluid-solid coupling effect caused by the water and the ice cover,the mechanisms of the mechanical breakup of the river ice cover are studied.A formula is obtained for determining whether or not the mechanical breakup process would happen under the hydraulic pressure of the flow.Combined with the hydraulic model under the ice covered flow,a numerical model is built and the interaction between the discharge,the hydraulic pressure under the ice cover and the date for the mechanical breakup of the river ice cover is simulated.The simulated results of the dates for the mechanical breakup of the river ice cover agree very well with the field observations of the breakups of the river ice cover in the Hequ Reach of the Yellow River.Therefore,the numerical model might serve as a good preliminary step in studying the breakup of the river ice-cover,evidencing many important parameters that affect the ice-cover process.

  13. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    International Nuclear Information System (INIS)

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for 6,7Li+59Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with 6Li (as compared to 7Li) indicates the significant role of breakup for weakly bound projectiles. A study of 4,6He induced fusion reactions with a three-body CDCC method for the 6He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)

  14. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2007-03-15

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)

  15. Effect of surface solidification on fragmentation and breakup behavior of molten material jet in coolant

    International Nuclear Information System (INIS)

    For the safety design of a Fast Breeder Reactor (FBR), Post Accident Heat Removal (PAHR) is required when a hypothetical Core Disruptive Accident (CDA) occurs. In PAHR, it is strongly required that the molten core material is solidified and cooled down by the sodium coolant in a reactor vessel. In order to estimate whether the molten material fuel jet is completely solidified by sodium coolant, it is necessary to understand the interaction between the molten material jet and the coolant. In order to clarify the dominant factor which determines the jet breakup length and the size of fragment considering solidification of molten material jet surface, we conducted the experiment in which molten material is injected into coolant. As a result, we found that the solidified crust on the molten material jet surface affects the jet breakup and the fragmentation behavior. In addition, we evaluate the influence of the solidified crust on the fragment size using the theoretical calculation in which the strength of the crust is considered. From the comparison between the calculation and the experiment, we found that our calculation can evaluate the fragment size better than the previous theory. (author)

  16. Experimental Studies of the Coulomb Force Effects in Deuteron-Proton Break-up Reaction at Medium Energy Regime

    Science.gov (United States)

    Ciepał, I.; Parol, W.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, St.; Kłos, B.; Kozela, A.; Kulessa, P.; Messchendorp, J.; Skwira-Chalot, I.; Stephan, E.; Włoch, B.

    2016-03-01

    A set of differential cross-section data of the 1H(d, pp)n breakup reaction at 130 and 160 MeV deuteron beam energies has been measured in the forward polar angles domain. The data were collected with the use of the Germanium Wall (FZ Jülich) and BINA (KVI Groningen) detectors. This part of the phase-space is special with respect to the dominant Coulomb force influence on the system dynamics. The data are compared with the theoretical calculations based on the Argonne V18 potential supplemented with the long-range electromagnetic component. The predictions also include the Urbana IX three nucleon force model. The strongest Coulomb effects are found in regions where the relative energy of the two protons is the smallest.

  17. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay

    Science.gov (United States)

    Regehr, E.V.; Lunn, N.J.; Amstrup, Steven C.; Stirling, I.

    2007-01-01

    Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5-19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as

  18. Effect of nozzle hole size coupling with exhaust gas re-circulation on the engine emission perfomance based on KH-ACT spray model

    OpenAIRE

    Zhang Liang; He Zhixia; Wang Qian; Guo Genmiao

    2015-01-01

    To research an effective measure of reducing the Soot and NOx in engine at the same time, different nozzle hole diameters coupled with exhaust gas recirculation (EGR) were adopted in this study based on KH-ACT spray breakup model, which takes the aerodynamic-induced ,cavitation-induced and turbulence-induced breakup into account. The SAGE detailed chemistry combustion and the new atomization model used in the simulation have been verified with the experimen...

  19. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  20. Measurement of the 2H(p, n) Breakup Reaction at 170 MeV and the Three-Nucleon Force Effects

    International Nuclear Information System (INIS)

    The effects of three nucleon force (3NF) have been actively studied via the nucleon–deuteron (Nd) scattering states. The differential cross sections and the vector analyzing powers Ay of the 2H(p, n) inclusive breakup reaction at 170 MeV were measured for the study of 3NF effects in the intermediate energy region. The polarized proton beam of 170 MeV was injected to the deuterated polyethylene (CD2) target and the energy of scattered neutrons were measured by using TOF method. The data were compared with the Faddeev calculations based on modern nucleon–nucleon (NN) forces with and without the 3NF. Concerning the differential cross sections, we can see large discrepancies between the data and the calculations in the region of scattered neutron energies are low, which is similar to the results of the 2H(p, p) inclusive breakup reaction at 250 MeV. (author)

  1. Study of the Three-Nucleon Force Effects in the 2H(p, n) Breakup Reaction at 170 MeV

    International Nuclear Information System (INIS)

    For the study of three nucleon force (3NF) effects in the intermediate energy region, the differential cross sections and the vector analyzing power Ay were measured for the 2H(p, n) inclusive breakup reaction at 170 MeV. The polarized proton beam of 170 MeV was injected to the deuterated polyethylene (CD2) target and the energy of scattered neutrons were deduce by TOF method. The data was compared with the results of the Faddeev calculations with and without 3NFs. Concerning about the differential cross sections, we can see large discrepancies between the data and the calculations in the region where the energies of scattered neutrons are low, which are similar to the results of the 2H(p, p) inclusive breakup reaction at 250 MeV. (author)

  2. The Effect of Marital Breakup on the Income Distribution of Women with Children

    Science.gov (United States)

    Ananat, Elizabeth O.; Michaels, Guy

    2008-01-01

    Having a female first-born child significantly increases the probability that a woman's first marriage breaks up. Using this exogenous variation, recent work finds that divorce has little effect on women's mean household income. We further investigate the effect of divorce using Quantile Treatment Effect methodology and find that it increases…

  3. Study on the breakup length of circular impinging jet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carried out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.

  4. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Mainz Univ. (Germany). Inst. fuer Physik, WA THEP; Humboldt-Univ. Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [DESY Hamburg (Germany). Theory Group; National Technical Univ., Athens (Greece). Physics Div.

    2015-11-15

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  5. Exact Bremsstrahlung and effective couplings

    Science.gov (United States)

    Mitev, Vladimir; Pomoni, Elli

    2016-06-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  6. Exact Bremsstrahlung and Effective Couplings

    CERN Document Server

    Mitev, Vladimir

    2015-01-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of $\\mathcal{N}=2$ SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the $\\mathcal{N}=4$ SYM ones, we obtain interpolating functions $f(g^2)$ such that a given $\\mathcal{N}=2$ SCFT observable is obtained by replacing in the corresponding $\\mathcal{N}=4$ SYM result the coupling constant by $f(g^2)$. These ``exact effective couplings'' encode the finite, relative renormalization between the $\\mathcal{N}=2$ and the $\\mathcal{N}=4$ gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  7. Exact Bremsstrahlung and effective couplings

    International Nuclear Information System (INIS)

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g2) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g2). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  8. An Analysis of Effect of Break-up Timing on the Necessity of a Feed-and-Bleed Operation in the case of TLOFW with Local

    International Nuclear Information System (INIS)

    A Feed-and-bleed (F and B) operation is a process to cool the reactor by the primary side directly. If adequate residual heat removal through the secondary side is not available, the heat can be removed from the RCS by F and B operation. A total loss of feedwater (TLOFW) accident is used to represent an accident involving the failure of cooling by the secondary cooling system. Even if the secondary cooling system fails, the RCS can be cooled by F and B transients when a loss of coolant accident (LOCA) with a TLOFW accident occurs. During an F and B transient, the RCS has a residual heat removal mechanism. If the break size is large, an F and B transient continuously occurs if the SIS is available. If the break size is small to sufficiently decrease the RCS pressure, the SIS cannot inject the coolant, causing the F and B transient to terminate. After the termination of the F and B transient, the residual heat cannot be removed, and the necessity of an F and B operation increases. The operators may hesitate to initiate F and B operation if a clear cue is not provided, since its initiation implies the radioactive coolant releases into the containment. Therefore, the necessity of F and B operation is needed to be identified. The factors affected the necessity of F and B operation are the availability of the safety injection system and safety depressurization system, water inventory in the primary and secondary cooling systems, break size in a loss-of-coolant accident, and time of accident occurrence. The necessity of F and B operation can be changed according to different timing of break-up despite same break size. Moreover, different timing of break-up makes the operators more complicated. To identify effect of timing of break-up, a thermohydraulic analysis was performed using the MARS code. This study is expected to provide a useful guideline to identify the necessity of an F and B operation under combined accident

  9. Elastic Coulomb breakup of $^{34}$Na

    CERN Document Server

    Singh, G; Chatterjee, R

    2016-01-01

    Purpose : The aim of this paper is to study the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb to give us a core of $^{33}$Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of $^{34}$Na. Method : A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb at 100 MeV/u. The triple differential cross-section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum and angular distributions as well as the average momenta, along with the energy-angular distributions. Results : The total one neutron removal cross-section is calculated to test the possible ground state configurations of $^{34}$Na. The average momentum results along with energy-angular calculations indicate $^{34}$Na to ha...

  10. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  11. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Waber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  12. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution that has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  13. Breakup of spiral wave under different boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Zhao Ying-Kui; Wang Guang-Rui; Chen Shi-Gang

    2007-01-01

    In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.

  14. 11Li structural information from inclusive break-up measurements

    Directory of Open Access Journals (Sweden)

    Fernández-García J. P.

    2015-01-01

    Full Text Available Structure information of 11Li halo nucleus has been obtained from the inclusive break-up measurements of the 11Li+208Pb reactions at energies around the Coulomb barrier (Elab = 24.3 and 29.8 MeV. The effective break-up energy and the slope of B(E1 distribution close to the threshold have been extracted from the experimental data.

  15. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    OpenAIRE

    Beck, C; Keeley, N.; Diaz-Torres, A.

    2007-01-01

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for $^{6,7}$Li+$^{59}$Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with $^{6...

  16. Progress in all-order breakup reaction theories

    Indian Academy of Sciences (India)

    R Chatterjee

    2010-07-01

    Progress in breakup reaction theories, like the distorted wave Born approximation, the continuum discretized coupled channels method and the dynamical eikonal approximation, is brought into focus. The need to calculate exclusive reaction observables and the utility of benchmark tests as arbitrators of theoretical models are discussed.

  17. Study on breakup mechanism of unstable nuclei with CDCC

    CERN Document Server

    Matsumoto, T

    2015-01-01

    The continuum-discretized coupled-channels method (CDCC) has been successful in describing breakup reactions involving unstable nuclei. Moreover, CDCC is a useful method for evaluation of nuclear data, which are important for nuclear engineering. In this article, we present the theoretical foundation of CDCC and some results of CDCC analyses.

  18. Breakup of molten aluminum drops

    International Nuclear Information System (INIS)

    To clarify the entrapment of water and the breakup mechanism in molten Al drops, a series of experiments was carried out by pouring molten Al of 10 to 20 g (up to 1,000degC) into a highly subcooled-water pool (room temperature) through the air. A single large-scale water jet, which is capable of penetrating a molten Al drop, was found to appear above the molten Al drop immediately after an air column which the molten drop is dragging from the water surface, is detached. It was observed with a high frequency that a molten Al drop begins swelling first, and is then broken up during falling through the water pool or after hitting the basement. It was also found that the breakup always occurs in the course of solid crust formation, and the molten drop solidified without breakup forms a large cavity inside. Based on the experimental observations, it is concluded that the swelling and the breakup of a molten Al drop should be caused by the water entrapped inside and the hydrogen remaining super-saturated. It is reasonable to consider that an intensive breakup should be caused when some quantity of water is injected into a molten Al drop with a capability that a high-pressure vapor is generated due to a rapid release of latent heat just after brittle cracks occur during swelling. (author)

  19. New technique for high-speed microjet breakup analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Synova SA, Ch. Dent d' Oche, 1024 Ecublens (Switzerland); Spiegel, A. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Couty, P. [Institute of Imaging and Applied Optics, Swiss Federal Institute of Technology, Lausanne, BM, 1015, Lausanne (Switzerland); Wagner, F.R.; Richerzhagen, B. [Synova SA, Ch. Dent d' Oche, 1024 Ecublens (Switzerland)

    2003-10-01

    In this paper we introduce a new technique for visualizing the breakup of thin high-speed liquid jets. Focused light of a He-Ne laser is coupled into a water jet, which behaves as a cylindrical waveguide until the point where the amplitude of surface waves is large enough to scatter out the light from the jet. Observing the jet from a direction perpendicular to its axis, the light that appears indicates the location of breakup. Real-time examination and also statistical analysis of the jet disruption is possible with this method. A ray tracing method was developed to demonstrate the light scattering process. (orig.)

  20. The Beam Break-Up Numerical Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  1. The Beam Break-Up Numerical Simulator

    International Nuclear Information System (INIS)

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs

  2. Systematic study of three-nucleon force effects in the cross section of the deuteron-proton breakup at 130 MeV

    CERN Document Server

    Kistryn, S; Bodek, K; Deltuva, A; Epelbaum, E; Ermisch, K; Glöckle, W; Golak, J; Kalantar-Nayestanaki, N; Kamada, H; Kis, M; Klos, B; Kozela, A; Kuros-Zolnierczuk, J; Mahjour-Shafiei, M; Meißner, Ulf G; Micherdzinska, A; Nogga, A; Sauer, P U; Skibinski, R; Stephan, E; Sworst, R; Witala, H; Zejma, J; Zipper, W

    2005-01-01

    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear prefernce for the predictions in which the 3NF's are included. The m...

  3. Systematic study of three-nucleon force effects in the cross section of the deuteron-proton breakup at 130 MeV

    Energy Technology Data Exchange (ETDEWEB)

    St. Kistryn; E. Stephan; A. Biegun; K. Bodek; A. Deltuva; E. Epelbaum; K. Ermisch; W. Gloeckle; J. Golak; N. Kalantar-Nayestanaki; H. Kamada; M. Kis; B. Klos; A. Kozela; J. Kuros-Zolnierczuk; M. Mahjour-Shafiei; U.-G. Meissner; A. Micherdzinska; A. Nogga; P. U. Sauer; R. Skibinski; R. Sworst; H. Witala; J. Zejma; W. Zipper

    2005-08-11

    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear preference for the predictions in which the 3NF's are included. The majority of the experimental data points is well reproduced by the theoretical predictions. The remaining discrepancies are investigated by inspecting cross sections integrated over certain kinematical variables. The procedure of global comparisons leads to establishing regularities in disagreements between the experimental data and the theoretically predicted values of the cross sections. They indicate deficiencies still present in the assumed models of the 3N system dynamics.

  4. Inclusive breakup of Borromean nuclei

    CERN Document Server

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  5. Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei

    CERN Document Server

    Gomez-Ramos, M

    2016-01-01

    In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  6. Entanglement of effectively coupled three atoms

    International Nuclear Information System (INIS)

    It is considered the Dicke model in the dispersive limit for the investigation of entanglement properties of three coupled atoms. Two regimes depending on the sign of the effective coupling constant are shown. The vacuum induced Stark shift modifies strongly the results of these regimes. The case of negative coupling strength exhibits entanglement in a wider range of the temperature and the atomic transition frequency values. The critical temperatures and atomic transition frequencies corresponding to vanishing of entanglement are studied

  7. The nonclassical effects in coupled optomechanical array

    Science.gov (United States)

    Zhou, Wenjun; Cheng, Jiong; Zhang, Wenzhao; Yousif, Taha; Zhou, Ling

    2015-07-01

    We investigate a coupled array of ? identical cavity optomechanical systems. By adiabatically eliminating the cavity fields, we derive an effective Hamiltonian of the ? phonon modes coupled via XX form. We show further that the coupled mechanical oscillators can be used to transmit state and the single mode of the oscillator and the two-mode of neighbor oscillators can exhibit squeezing simultaneously. Under the suitable regime of parameters, the phonon blockade is exhibited.

  8. Phase-shift analysis of pd elastic scattering below break-up threshold

    International Nuclear Information System (INIS)

    A phase-shift analysis was performed for pd elastic scattering based on measurements of differential cross sections and proton and deuteron analyzing powers for energies below the break-up threshold. The angular momenta were restricted to l <= 3; j-splitting and channel-spin mixing of the P-phases and the tensor coupling between the S- and D-phases were taken into account. The phase shifts were parameterized by the effective-range formalism and the corresponding parameters were directly deduced from the data. The results are compared with Faddeev calculations in which the Coulomb interaction is treated exactly or as a two-body approximation. (orig.)

  9. Break-up effects of 19F projectile at ≈ 4-6 MeV/A

    International Nuclear Information System (INIS)

    In the present work analysis of excitation functions (EFs) has been used to deduce the energy dependence of ICF strength function and to study the effect of Qα-values and that of mass asymmetry. To explore the influence of ICF on CF in 19F + 159Tb reactions in the energy range ≈ 80-110 MeV, an off-line γ-ray spectroscopy technique has been employed. The present results have been compared with the existing data of 12,13C + 159Tb, and 16O + 159Tb systems

  10. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  11. Effective Multi-Higgs Couplings to Gluons

    CERN Document Server

    Spira, Michael

    2016-01-01

    Standard-Model Higgs bosons are dominantly produced via the gluon-fusion mechanism $gg \\to H$ at the LHC, i.e. in a loop-mediated process with top loops providing the dominant contribution. For the measured Higgs boson mass of $\\sim 125$ GeV the limit of heavy top quarks provides a reliable approximation as long as the relative QCD corrections are scaled with the full mass-dependent LO cross section. In this limit the Higgs coupling to gluons can be described by an effective Lagrangian. The same approach can also be applied to the coupling of more than one Higgs boson to gluons. We will derive the effective Lagrangian for multi-Higgs couplings to gluons up to N$^4$LO thus extending previous results for more than one Higgs boson. Moreover we discuss gluonic Higgs couplings up to NNLO, if several heavy quarks contribute.

  12. Temporal variations in river-ice break-up over the Mackenzie River Basin, Canada

    Science.gov (United States)

    de Rham, Laurent P.; Prowse, Terry D.; Bonsal, Barrie R.

    2008-02-01

    SummaryFor northern and arctic regions, the spring break-up period has important socio-economic, ecological and morphological effects. While these impacts are reasonably well understood, spatial and temporal assessments of break-up timing and duration remain limited due to the lack of readily available hydrometric data. For this study, the Mackenzie River Basin (MRB) of Canada is selected as a test watershed in which the spatial and temporal aspects of observed (1913-2002) spring river-ice break-up are characterized. Data from 29 Water Survey of Canada gauging sites are used including the commonly assessed 'Last B date' (last ice effect) and two hydrometric variables extracted directly from original water-level recording charts (the timing of initiation of break-up and peak water-level during break-up). It is found that the extracted variables provide a more physically based quantitative description of the break-up season in the MRB compared to the 'Last B date' method. On average, the northwards progressing ice break-up season within the MRB lasts ∼8 weeks but historically has varied within a window representative of ∼3 months of the year. The break-up period at specific locations varies from 4 days to 4 weeks. Results also indicate an anomalous zone of earlier spring break-up in the upper Peace and Athabasca region that may be partially related to the effects of flow regulation. In addition, the Mann-Kendall test reveals significantly earlier trends in the timing of spring break-up (∼1 day/decade) in upstream portions of the major tributaries of the MRB over the period 1970-2002. While similar trends have been found for other hydroclimatic variables in the basin, this study highlights the temporal patterns and variability of the spring break-up period in the Mackenzie River system.

  13. Semiclassical treatment of fusion and breakup processes of ^{6,8}He halo nuclei

    Science.gov (United States)

    Majeed, Fouad A.; Abdul-Hussien, Yousif A.

    2016-06-01

    A semiclassical approach has been used to study the effect of channel coupling on the calculations of the total fusion reaction cross section σ _{fus}, and the fusion barrier distribution D_{fus} for the systems 6He +^{238}U and 8He +^{197}Au. Since these systems invloves light exotic nuclei, breakup states channel play an important role that should be considered in the calculations. In semiclassical treatment, the relative motion between the projectile and target nuclei is approximated by a classical trajectory while the intrinsic dynamics is handled by time-dependent quantum mechanics. The calculations of the total fusion cross section σ _{fus}, and the fusion barrier distribution D_{fus} are compared with the full quantum mechanical calculations using the coupled-channels calculations with all order coupling using the computer code and with the available experimental data.

  14. Elastic and break-up of the 1n-halo 11Be nucleus

    Science.gov (United States)

    Di Pietro, A.; Moro, A. M.; Acosta, L.; Amorini, F.; Borge, M. J. G.; Figuera, P.; Fisichella, M.; Fraile, L. M.; Gomez-Camacho, J.; Jeppesen, H.; Lattuada, M.; Martel, I.; Milin, M.; Musumarra, A.; Papa, M.; Pellegriti, M. G.; Perez-Bernal, F.; Raabe, R.; Randisi, G.; Rizzo, F.; Scuderi, V.; Tengblad, O.; Torresi, D.; Vidal, A. Maira; Voulot, D.; Wenander, F.; Zadro, M.

    2014-03-01

    The elastic and break-up angular distributions of the 10,11Be+64Zn reactions measured at Ec.m.≈1.4 VC have been analysed within the CCDC and O.M. frameworks. The suppression of the Coulomb-nuclear interference, observed in the 11Be scattering case with respect to the 10Be, has been interpreted as due to a long range absorption owing to the coupling with the break-up (Coulomb and nuclear) channels. The presence of 10Be events on the 11Be experiment data have been explained as due mainly to break-up processes.

  15. Elastic and break-up of the 1n-halo 11Be nucleus

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    2014-03-01

    Full Text Available The elastic and break-up angular distributions of the 10,11Be+64Zn reactions measured at Ec.m.≈1.4 VC have been analysed within the CCDC and O.M. frameworks. The suppression of the Coulomb-nuclear interference, observed in the 11Be scattering case with respect to the 10Be, has been interpreted as due to a long range absorption owing to the coupling with the break-up (Coulomb and nuclear channels. The presence of 10Be events on the 11Be experiment data have been explained as due mainly to break-up processes.

  16. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  17. Laser-induced break-up of water jet waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Couty, P.; Hoffmann, P. [EPFL/STI/IOA/Advanced Photonics Laboratory, Lausanne BM, 1015, Lausanne (Switzerland); Spiegel, A.; Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Ugurtas, B.I. [EPFL/STI/IMHEF/Laboratory Fluid Mechanics, Lausanne, 1015, Lausanne (Switzerland)

    2004-06-01

    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser ({lambda}=532 nm). The jet diameter was 48 {mu}m and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets. (orig.)

  18. 11Li structural information from inclusive break-up measurements

    DEFF Research Database (Denmark)

    Fernandez-Garcia, J. P.; Cubero, M.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Borge, M. J. G.; Buchmann, L.; Diget, C. A.; Falou, H. A.; Fulton, B. R.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Kanungo, R.; Lay, J. A.; Madurga, M.; Martel, I.; Moro, A. M.; Mukha, I.; Nilsson, T.; Rodriguez-Gallardo, M.; Sanchez-Benitez, A. M.; Shotter, A.; Tengblad, O.; Walden, P.

    2015-01-01

    Structure information of Li-11 halo nucleus has been obtained from the inclusive break-up measurements of the Li-11+Pb-208 reactions at energies around the Coulomb barrier (E-lab = 24.3 and 29.8 MeV). The effective break-up energy and the slope of B(E1) distribution close to the threshold have be...

  19. Deuteron–deuteron scattering above four-nucleon breakup threshold

    Directory of Open Access Journals (Sweden)

    A. Deltuva

    2015-03-01

    Full Text Available Deuteron–deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are used, including the one with effective many-nucleon forces generated by the explicit Δ-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.

  20. Deuteron-deuteron scattering above four-nucleon breakup threshold

    CERN Document Server

    Deltuva, A

    2015-01-01

    Deuteron-deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are used, including the one with effective many-nucleon forces generated by the explicit $\\Delta$-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.

  1. Deuteron–deuteron scattering above four-nucleon breakup threshold

    Energy Technology Data Exchange (ETDEWEB)

    Deltuva, A., E-mail: arnoldas.deltuva@tfai.vu.lt [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius (Lithuania); Fonseca, A.C. [Centro de Física Nuclear da Universidade de Lisboa, P-1649-003 Lisboa (Portugal)

    2015-03-06

    Deuteron–deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are used, including the one with effective many-nucleon forces generated by the explicit Δ-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.

  2. Effect of noise on coupled chaotic systems

    CERN Document Server

    Roy, M F; Roy, Manojit

    1997-01-01

    Effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with logistic map as local dynamics and driven by identical noise at each site, we report that the number of structures (a structure is a group of neighbouring lattice sites for whom values of the variable follow certain predefined patte...

  3. Coupling effects in multiphase free shear flows

    International Nuclear Information System (INIS)

    The primary goal of this research program is to examine the effects of two-way multiphase coupling on the development of organized vortex structures in free shear flows and the resultant multiphase dispersion. Previous research studies have determined that one-way coupled particle dispersion in free shear flows is strongly dependent on the vortex structures present in these flows and their interactions as well as the ratio of the particle aerodynamic response time to the time scale of the dominant vortex structures. Current research efforts are directed towards exploring the effects that two-way momentum, mass and energy coupling have on the multiphase dispersion processes previously uncovered. These efforts involve analytical, numerical and experimental investigations. Recent analytical and numerical results indicate that momentum coupling effects can significantly alter the global stability and potentially the large scale features of the multiphase flow field. These multiphase coupling effects may have significant importance with regard to predicting the performance of many energy conversion systems

  4. Coincidence cross sections within the quasi free break-up model for elastic projectile break-up

    International Nuclear Information System (INIS)

    Scrutinizing the basic break-up model of Serber we show that it is possible to derive the triple differential cross sections for particle-particle coincidences in analytical form. An alternative interpretation within the opaque version of the model suggests to assign these cross sections to the elastic nonresonant projectile break-up due to the nuclear interaction. Distortion effects by the Coulomb field of the target are included in analogy to the Serber model. Beside the well known single maximum in the break-up spectra double and triple peak structures appear for certain combinations of the observation angles. The model yields reasonable agreement to the given experimental data, concerning the multiple peak structure as well as the order of magnitude for the absolute normalisation. Its application comprises the region of forward emission angles, especially the angular range of the classical Coulomb deflection. (orig.)

  5. Pressure effects in multiphase binary diffusion couples

    Science.gov (United States)

    Subramanyam, Dilip; Notis, Michael R.; Goldstein, Joseph I.

    1985-04-01

    A systematic study has been carried out of the effect of pressure upon growth kinetics of intermediate phases formed in diffusion couples in the binary systems Ni-Al, U-A1, and U-Cu. Even though applied pressures greater than 100 MPa and long times were investigated little or no pressure effect was observed, in disagreement with previous literature reports. The magnitude of observed pressure effects falls within that expected by closure of Kirkendall porosity.

  6. Higgs Couplings in an Effective Theory Framework

    CERN Document Server

    Belusca-Maito, Hermes

    2015-01-01

    The study of the properties of the scalar boson recently discovered at the LHC (ATLAS and CMS experiments) may allow us to know whether it is well described by the Standard Model. In the case where deviations from SM predictions are present, this would be an evidence for the presence of new physics. We focus on the study of the Higgs couplings to matter in a model-independent approach by introducing a dimension-6 effective Lagrangian that includes both CP-even and CP-odd effective couplings. Constraints are set on some of these coefficients using experimental data from ATLAS and CMS as well as electroweak precision measurements from LEP, SLC and Tevatron. These data meaningfully constrain CP-even and some CP-odd couplings.

  7. The breakup of levitating water drops observed with a high speed camera

    Directory of Open Access Journals (Sweden)

    C. Emersic

    2011-10-01

    Full Text Available Collision-induced water drop breakup in a vertical wind tunnel was observed using a high speed camera for interactions between larger drop sizes (up to 7 mm diameter than have previously been experimentally observed. Three distinct collisional breakup types were observed and the drop size distributions from each were analysed for comparison with predictions of fragment distributions from larger drops by two sets of established breakup parameterisations. The observations showed some similarities with both parameterisations but also some marked differences for the breakup types that could be compared, particularly for fragments 1 mm and smaller. Modifications to the parameterisations are suggested and examined. Presented is also currently the largest dataset of bag breakup distributions observed. Differences between this and other experimental research studies and modelling parameterisations, and the associated implications for interpreting results are discussed. Additionally, the stochastic coalescence and breakup equation was solved computationally using a breakup parameterisation, and the evolving drop-size distribution for a range of initial conditions was examined. Initial cloud liquid water content was found to have the greatest influence on the resulting distribution, whereas initial drop number was found to have relatively little influence. This may have implications when considering the effect of aerosol on cloud evolution, raindrop formation and resulting drop size distributions. Calculations presented show that, using an ideal initial cloud drop-size distribution, ~1–3% of the total fragments are contributed from collisional breakup between drops of 4 and 6 mm.

  8. Observation of auroral fading before breakup

    International Nuclear Information System (INIS)

    We have obtained detailed observations of the onset of auroral breakup using a variety of instruments with time resolution of some tens of seconds. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. At the time of the fading there is a brief darkening of the poleward sky. Often the breakup is preceded by one or more rapid intensifications, each one preceded by local fading. Pseudo-breakups may also occur without the development of a major event. A bonafide breakup may begin on the fading arc, on an adjacent arc, or in an entirely new region nearby. This optical activity is closely correlated with the development of auroral radar echoes, suggesting that variations in the ionospheric and magnetospheric electric and magnetic fields are responsible for the observed auroral variations. Data from the IMS magnetometer network provide some indication of a correlated response by the local auroral and ionospheric current, although this could be partly due to changes in conductivity. Riometer recordings show a slow decrease in ionsperic radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup. The implications of these observations regarding the trigger mechanism for the expansion phase of a magnetospheric substorm are discussed. (author)

  9. Low-energy 9 Be + 208 Pb scattering, breakup and fusion within a four-body model

    Science.gov (United States)

    Hussein, Mahir; Descouvemont, Pierre; Druet, T.; Canto, L. Felipe

    2015-04-01

    We investigate the 9 Be elastic scattering, breakup and fusion at energies around the Coulomb barrier. The three processes are described simultaneously, with identical conditions of calculations. The 9 Be nucleus is defined in an α + α + n three-body model, using the hyperspherical coordinate method. We first analyze spectroscopic properties of 9 Be, and show that the model provides a fairly good description of the low-lying states. The scattering with 208 Pb is then studied with the Continuum Discretized Coupled Channel (CDCC) method, where the α + α + n continuum is approximated by a discrete number of pseudostates. The use of a three-body model for 9 Be improves previous theoretical works, where 9 Be is assumed to have a two-body structure (9 Be +n or α + 5 He), although neither 8 Be nor 5 He are bound. Optical potentials for the α+208 Pb and n+208 Pb systems are taken from the literature. Scattering, breakup and fusion cross sections are calculated. In general, a good agreement with experiment is obtained, considering that there is no parameter fitting. We show that continuum effects increase at low energies, and confirm that breakup channels enhance the fusion cross Supported by CNPq, FAPESP, FAPERJ, CAPES/ITA.

  10. Resonance and coupling effects in circular accelerators

    International Nuclear Information System (INIS)

    This thesis deals with a general theory for the description of resonance and coupling effects in circular particle accelerators. The theory is mainly applied to the proposed proton accumulator ring IKOR in West Germany and to an electron storage ring which is characteristic of existing synchrotron radiation facilities (PAMPUS; this project has since been dismissed by the Dutch government). In chapter 1 the author expands the general Hamilton function for the description of the relativistic particle motion in a time-dependent magnetic field and a HF accelerating electric field (in order to study transverse-longitudinal coupling effects) as well as for the motion in a time-independent magnetic field without acceleration (to study transverse coupling effects). The linear transverse motion is discussed in chapter 2. Analytical formulae for the so-called Twiss parameters are derived from the linear Hamilton theory. The simultaneous treatment of the betatron and synchrotron motion is developed in chapter 3 and a theory for the description of the one-dimensional non-linear betatron motion is elaborated in chapter 4. The two-dimensional non-linear betatron resonances are treated in chapter 5. The description of these resonances can be reduced rather simply to a one-dimensional problem and are treated by examination of trajectories in a phase plane. (Auth.)

  11. Considerations and calculations on the breakup of jets and drops of melt related to premixing

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, M.; Berg, E. von; Buck, M. [Inst. fuer Kernenergetik und Energiesysteme (IKE), Univ. of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    1998-01-01

    Various descriptions of jet and drop breakup are applied in premixing codes, presently. The main task is to check these descriptions over a wide range of conditions in order to assure extrapolation capabilities for the codes. Jet breakup under non-boiling conditions is relatively well described by IKEJET, based on Conte/Miles (CM) instability description and a relatively detailed stripping model, in contrast to using Kelvin/Helmholtz (KH) theory. Remaining open questions are elaborated. Especially, thick jet behavior with dominance of stripping even at small relative velocities must be distinguished from thin jets with coarse breakup. The application of IKEJET to cases with jet breakup under strong film boiling yielded significantly too little fragmentation. As a possible explanation line, multiphase effects on the wave growth and stripping are considered, due to entrainment of melt and water. Parametric checking calculations are performed with a strongly simplified approach for PREMIX and FARO experiments in order to reveal main effects and the possible physical explanation features as a basis for extended modelling. The results indicate that jet breakup may be essentially sufficient to explain the experimental behavior. Rather coalescence than further drop breakup may be expected. This is also indicated by calculations with IKE drop breakup models. (author)

  12. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena with the...... model for droplet cooling and solidification. The model is tested and validated against results from literature and experiments. Subsequently, the model is used to simulate the complex flow fields in the spray forming process and the results are discussed. The presented model of the spray forming...... process is able to predict the droplet size distribution of the spray from the process conditions, by introducing submodels for the melt fragmentation and successive secondary break-up processes as part of the spray model. Furthermore, the competition of drop break-up and solidification is derived by...

  13. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  14. Negative Emotions and Behaviors are Markers of Breakup Distress

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeanette

    2013-01-01

    Method: University students who experienced a recent romantic breakup were given several self-report measures and were then divided into high versus low breakup distress groups. Results: The high breakup distress versus the low breakup distress groups had higher scores on negative emotions scales including depression, anxiety and anger and…

  15. Intrusive Thoughts: A Primary Variable in Breakup Distress

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2013-01-01

    University students who were high versus low on breakup distress scores were given self-report measures to assess their intrusive thoughts about the romantic breakup and their somatic symptoms that followed the breakup as well as their extracurricular activities and social support that might alleviate their breakup distress. In a regression…

  16. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    International Nuclear Information System (INIS)

    Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters, the effects of coupling on calcium signalling are numerically investigated. The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster, and for either homogeneous or heterogeneous coupled clusters, the synchronization of clusters, which is important to calcium signalling, is enhanced by the coupling effect

  17. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming; MA Jun; YU Guang

    2008-01-01

    @@ Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters,the effects of coupling on calcium signalling are numerically investigated.The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster,and for either homogeneous or heterogeneous coupled clusters,the synchronization of clusters,which is important to calcium signalling,is enhanced by the coupling effect.

  18. Noise Effects on Synchronized Globally Coupled Oscillators

    OpenAIRE

    Moro, Esteban; Sánchez, Angel

    1998-01-01

    The synchronized phase of globally coupled identical nonlinear oscillators subject to noise fluctuations is studied by means of a new analytical approach able to tackle general couplings, nonlinearities, and noise temporal correlations. Our results show that the interplay between coupling and noise modi es the e ective frequency of the system in a nontrivial way. Whereas for linear couplings the e ect of noise is always to increase the e ective frequency, for nonlinear coupling...

  19. Inverted Break-up Behaviour in Continuous Inkjet (CIJ) Printing

    Science.gov (United States)

    McIlroy, Claire; Harlen, Oliver; Morrison, Neil

    2014-11-01

    Although droplet creation during continuous jetting of Newtonian fluids has been widely studied, unsolved problems surrounding the break-up dynamics remain. Jetting through a nozzle creates a stream of liquid that is rendered unstable by surface tension. This instability creates a succession of main drops connected by thin filaments, with drop separation determined by the fastest growing wavelength. In order to control break-up and increase printing speeds, continuous inkjet (CIJ) printing exploits the effects of finite amplitude modulations in the jet velocity profile giving conditions where jet stability deviates from the usual Rayleigh behaviour. To explore these non-linear effects, we have developed a one-dimensional jetting model. In particular, we identify a modulation range for which pinching occurs upstream of the connecting filament, rather than downstream - a phenomenon we call ``inverted'' break-up. Furthermore, this behaviour can be controlled by the addition of harmonics to the initial driving signal. Our results are compared to full axisymmetric simulations in order to incorporate the effects of nozzle geometry. EPSRC Innovation in Industrial Technology.

  20. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  1. Is the inhibition/enhancement of fusion due to breakup still a puzzle?

    International Nuclear Information System (INIS)

    The effect of breakup in the fusion cross section in terms of suppression versus enhancement, discussed in a conflicting way in the literature, is addressed. Data and theoretical predictions available in the literature are compared. Excitation functions of the sub- and near-barrier fusion cross-sections for a wide variety of light and heavy systems are presented and interpreted. We have measured fusion excitation functions and breakup correlation functions for the medium weight systems 6 Li + 59 Co and 7 Li + 59 Co. These measurements help to establish the influence of the projectile breakup on the fusion process at near-barrier energies and contribute to the determination of how the mass of the target affects the breakup role. The results indicate a light fusion enhancement at sub-barrier energies and a geometry dominated cross section at barrier energies. (author)

  2. QCD Effective Coupling in the Infrared Region

    CERN Document Server

    Ganbold, Gurjav

    2010-01-01

    We estimate the QCD effective charge $\\alpha_s$ in the low-energy region by exploiting the conventional meson spectrum within a relativistic quantum-field model based on analytic confinement. The ladder Bethe-Salpeter equation is solved for the masses of two-quark bound states. We found a new, independent and specific infrared-finite behavior of QCD coupling below energy scale 1 GeV. Particularly, an infrared-fixed point is extracted at $\\alpha_s(0)\\simeq 0.757$ for confinement scale $\\Lambda=345$ MeV. As an application, we estimate masses of some intermediate and heavy mesons and obtain results in reasonable agreement with recent experimental data.

  3. Statistical theory of breakup reactions

    International Nuclear Information System (INIS)

    We propose an alternative for Coupled-Channels calculations with loosely bound exotic nuclei (CDCC), based on the the Random Matrix Model of the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCCs), able in principle to take into account many pseudo channels. (author)

  4. Statistical Theory of Breakup Reactions

    CERN Document Server

    Bertulani, Carlos A; Hussein, Mahir S

    2014-01-01

    We propose alternatives to coupled-channels calculations with loosely-bound exotic nuclei (CDCC), based on the the random matrix (RMT) and the optical background (OPM) models for the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCC$_S$), able in principle to take into account many pseudo channels.

  5. Effects of Systane® Balance on noninvasive tear film break-up time in patients with lipid-deficient dry eye

    Directory of Open Access Journals (Sweden)

    Aguilar AJ

    2014-11-01

    Full Text Available Alejandro J Aguilar, Maria I Marquez, Paula A Albera, Jorge L Tredicce, Alejandro Berra Universidad de Buenos Aires, Buenos Aires, Argentina Purpose: To evaluate the ability of Systane® Balance (SYSB administered four times per day for 4 weeks to increase noninvasive tear film break-up time (NITFBUT over baseline compared with a saline (SAL control in patients with lipid-deficient dry eye (DE.Patients and methods: Patients aged ≥18 years with DE and evidence of meibomian gland dysfunction (ie, abnormal gland expression and missing meibomian glands were included in this randomized, parallel-group, controlled, investigator-masked comparison study. Patients were randomized to SYSB or SAL four times daily for 4 weeks. The primary efficacy variable was mean change in NITFBUT from baseline at week 4. Ocular surface staining, goblet cell density, and meibomian gland expression were also assessed. Safety assessments included adverse events (AEs, best-corrected visual acuity, and ocular signs.Results: A total of 49 patients received study treatments (SYSB, n=25; SAL, n=24. Most patients were women (67.4% and Caucasian (63.3%; mean ± standard deviation (SD age was 44±19 years. DE characteristics at baseline were similar between groups. After 4 weeks of treatment, the mean ± SD NITFBUT increase from baseline was significantly greater with SYSB (2.83±0.74 seconds compared with SAL (0.66±0.55 seconds; P<0.001, t-test. Improvements in conjunctival and corneal staining, percentage of patients with increased goblet cell density, and meibomian gland expression were also observed with 4 weeks of SYSB over SAL. No AEs were reported for either treatment group; best-corrected visual acuity and ocular signs remained stable or improved compared with baseline.Conclusion: SYSB restored tear film stability, improved ocular surface healing, and improved meibomian gland functionality after 4 weeks of use in patients with lipid-deficient DE. No AEs were reported

  6. Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between stratospheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s-1 to about 15 m s-1. This is accompanied with anomalous activities of planetary waves in both stratosphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s-1 to less than -10 m s-1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical coupling of stratosphere and troposphere with the

  7. Coalescence and breakup of large droplets in turbulent channel flow

    Science.gov (United States)

    Scarbolo, Luca; Bianco, Federico; Soldati, Alfredo

    2015-07-01

    Coalescence and breakup of large deformable droplets dispersed in a wall-bounded turbulent flow are investigated. Droplets much larger than the Kolmogorov length scale and characterized by a broad range of surface tension values are considered. The turbulent field is a channel flow computed with pseudo-spectral direct numerical simulations, while phase interactions are described with a phase field model. Within this physically consistent framework, the motion of the interfaces, the capillary effects, and the complex topological changes experienced by the droplets are simulated in detail. An oil-water emulsion is mimicked: the fluids are considered of same density and viscosity for a range of plausible values of surface tension, resulting in a simplified system that sets a benchmark for further analysis. In the present conditions, the Weber number (We), that is, the ratio between inertia and surface tension, is a primary factor for determining the droplets coalescence rate and the occurrence of breakups. Depending on the value of We, two different regimes are observed: when We is smaller than a threshold value (We 1), a permanent dynamic equilibrium between coalescence and breakup events is established.

  8. Nonlinear dynamics and breakup of free-surface flows

    International Nuclear Information System (INIS)

    Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems. copyright 1997 The American Physical Society

  9. Some features of spray breakup in effervescent atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Hrishikesh P.; Raghunandan, B.N. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-02-15

    The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice. (orig.)

  10. Effects of spin-orbit coupling on quantum transport

    NARCIS (Netherlands)

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mo

  11. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  12. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    International Nuclear Information System (INIS)

    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature

  13. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, A. [Badan Pengkajian dan Penerapan Teknologi, BPPT Bld. II (19thfloor), Jl. M.H. Thamrin 8, Jakarta 10340 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia); Zen, Freddy P. [Theoretical Physics Laboratory (THEPI), Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-04-16

    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.

  14. Deformation, wave phenomena, and breakup outcomes of round nonturbulent liquid jets in uniform gaseous crossflow

    Science.gov (United States)

    Ng, Chee-Loon

    Scope and method of study. An experimental and computational research is performed to study the deformation and breakup of round nonturbulent liquid jets in uniform gaseous crossflow. Pulsed photography and shadow graphy in conjunction with high-speed imaging were used to study the wave phenomena and the droplets properties/transport dynamics of a nonturbulent liquid jet injected into a uniform crossflow within the bag breakup regime. The computational study extended the previous two-dimensional study by adding the third dimension, allowing the wave properties to be modeled. The computational simulation employed the Volume of Fluid (VOF) formulation of FLUENT, and was run on a 3-processors parallel Linux cluster and P4 desktops. The validated, time-accurate, CFD simulation analyzes the surface properties of the liquid jets within the column, bag, and shear breakup regimes by considering the effects of surface tension, liquid viscosity, and crossflow Weber number at large liquid/gas density ratios (>500) and small Ohnesorge numbers (liquid jet are attributed to Rayleigh-Taylor instabilities and the nodes layout per bag affected the breakup mechanisms of the bags. Three distinctive sizes of droplets were produced in the bag breakup regime. The size of bag-droplets normalized by the nozzle exit diameter was constant. The different trajectories for bag- and node-droplets suggested that separation of bag- and node-droplets is possible. The computational results included jet deformations, jet cross-sectional area, jet velocity, wake velocity defect, wake width, and wavelengths of column and surface waves. Present computational results yielded a similarity solution for the inner wake region. In bag breakup, the lower pressure along the sides of the jet pulled the liquid away from both the upwind and downwind surfaces of the liquid cross-section. In shear breakup, the flattened upwind surface pushed the liquid towards the two sides of the jet. In bag breakup, the flow

  15. Breakup branches of Borromean beryllium-9

    International Nuclear Information System (INIS)

    The breakup reaction 9Be(4He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in 9Be have been explored including the 8Beg.s. + n, 8Be2+ + n and 5Heg.s. + 4He channels. By imposing the condition that the breakup proceeded via the 8Be ground state, clean excitation spectra for 9Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose

  16. Breakup branches of Borromean beryllium-9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: r.smith.3@pgr.bham.ac.uk; Freer, M.; Wheldon, C.; Curtis, N.; Ashwood, N. I.; Barr, M.; Kokalova, Tz.; Malcolm, J. D.; Ziman, V. A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Almaraz-Calderon, S.; Aprahamian, A.; Bucher, B.; Couder, M.; Fang, X.; Jung, F.; Lu, W.; Roberts, A.; Tan, W. P. [Institute for Structure and Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Copp, P.; Lesher, S. R. [Department of Physics, University of Wisconsin - La Crosse, La Crosse, WI 54601 (United States); and others

    2015-10-15

    The breakup reaction {sup 9}Be({sup 4}He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in {sup 9}Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in {sup 9}Be have been explored including the {sup 8}Be{sub g.s.} + n, {sup 8}Be{sub 2{sup +}} + n and {sup 5}He{sub g.s.} + {sup 4}He channels. By imposing the condition that the breakup proceeded via the {sup 8}Be ground state, clean excitation spectra for {sup 9}Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  17. Firm break-up and performance

    Czech Academy of Sciences Publication Activity Database

    Kočenda, Evžen; Hanousek, Jan

    2012-01-01

    Roč. 13, č. 2 (2012), s. 121-143. ISSN 1435-6104 R&D Projects: GA ČR GA402/09/1595 Institutional support: PRVOUK-P23 Keywords : break-up of firms * corporate performance * ownership changes Subject RIV: AH - Economics Impact factor: 0.588, year: 2012

  18. Breakup branches of Borromean beryllium-9

    Science.gov (United States)

    Smith, R.; Freer, M.; Wheldon, C.; Curtis, N.; Almaraz-Calderon, S.; Aprahamian, A.; Ashwood, N. I.; Barr, M.; Bucher, B.; Copp, P.; Couder, M.; Fang, X.; Goldring, G.; Jung, F.; Kokalova, Tz.; Lesher, S. R.; Lu, W.; Malcolm, J. D.; Roberts, A.; Tan, W. P.; Ziman, V. A.

    2015-10-01

    The breakup reaction 9Be(4He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in 9Be have been explored including the 8Beg.s. + n, 8Be2+ + n and 5Heg.s. + 4He channels. By imposing the condition that the breakup proceeded via the 8Be ground state, clean excitation spectra for 9Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  19. Fluctuation effects on QCD phase diagram at strong coupling

    CERN Document Server

    Ichihara, Terukazu

    2015-01-01

    We study the QCD phase diagram away from the strong coupling limit (SCL) with fluctuation effects in the auxiliary field Monte-Carlo (AFMC) method. First, we give an effective action which contains next-to-leading order (NLO) finite coupling effects of the strong coupling expansion as well as fluctuation effects. Second, we examine NLO effects of the strong coupling expansion in AFMC at zero quark density. We find that the chiral condensate is reduced by both NLO terms from temporal plaquettes and fluctuation effects, and almost no dependence on NLO terms from spatial plaquettes in the current analysis. These behaviors can be understood from the modification of the mass and the wave function renormalization factor by auxiliary fields as in the mean field analysis and the fluctuation effects in the strong coupling limit.

  20. Effects of spin-orbit coupling on quantum transport

    OpenAIRE

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mode mixing. * Mesoscopic Spin Hall effect: longitudinal charge current leads to transverse spin currents in a chaotic electron cavity which has universal fluctuations around a zero mean. * How smooth d...

  1. Quark and pion effective couplings from polarization effects

    CERN Document Server

    Braghin, Fabio L

    2016-01-01

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...

  2. Investigation of the Deuteron Breakup on Proton Target in the Forward Angular Region at 130 MeV

    International Nuclear Information System (INIS)

    A set of differential cross-section data of the 1H(d, pp)n breakup reaction at 130 MeV deuteron beam energy has been measured in the domain of very forward polar angles with the use of the Germanium Wall detector at the Forschungszentrum Jülich. The data obtained for over 1000 kinematical points (112 geometries) are compared with the theoretical predictions based on various models of the three-nucleon (3N) dynamics. They comprise: the realistic nucleon-nucleon potentials alone or combined with the three-nucleon force (3NF), the coupled-channel calculations with the explicit treatment of the Δ-isobar excitation and finally, the potentials derived from chiral perturbation theory. In the part of the phase space studied, the Coulomb interaction between protons has a strong impact on the differential cross section of the breakup reaction. The strongest Coulomb effects are found in regions where the relative energy of the two protons is the smallest. In these regions the data are well reproduced exclusively by calculations which include the electromagnetic repulsion between protons. In spite of the dominance of the Coulomb force in the phase space studied, the contribution of 3NF effects is also observed. (author)

  3. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing [State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, People’s Republic of China (China); Zhang, Mengzheng, E-mail: duqing@tju.edu.cn [Xi’an Aerospace Propulsion Institute, Xi’an, 710100, People’s Republic of China (China)

    2014-10-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  4. Entrainment instability and vertical motion as causes of stratocumulus breakup

    Science.gov (United States)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  5. Effect of nozzle hole size coupling with exhaust gas re-circulation on the engine emission perfomance based on KH-ACT spray model

    Directory of Open Access Journals (Sweden)

    Zhang Liang

    2015-01-01

    Full Text Available To research an effective measure of reducing the Soot and NOx in engine at the same time, different nozzle hole diameters coupled with exhaust gas recirculation (EGR were adopted in this study based on KH-ACT spray breakup model, which takes the aerodynamic-induced ,cavitation-induced and turbulence-induced breakup into account. The SAGE detailed chemistry combustion and the new atomization model used in the simulation have been verified with the experiment data from a YN4100QBZL engine. Different diesel nozzles was adopted in the study combined with different EGR rates ranging from 0% to 40%. The simulation results show that the NOx emission could be reduced effectively for both small(0.1mm and large(0.15mm diesel nozzle when increasing EGR ratio. The soot emission increases for the small nozzle hole size as the EGR increasing. However, when it comes to the large diesel nozzle, the emission increases slightly first and decrease quickly when the EGR rate above 20%.

  6. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  7. Ice breakup: Observations of the acoustic signal

    Science.gov (United States)

    Waddell, S. R.; Farmer, D. M.

    1988-03-01

    We describe observations of ambient sound beneath landfast ice in the Canadian Arctic Archipelago and interpret its evolution over the period June-August in terms of ice cracking and disintegration. The data were recorded on six bands between 50 and 14,500 Hz for the period April 2 to August 7, 1986, in Dolphin and Union Strait. The frequency dependence of the attenuation of sound in water allows separation of distant and local noise sources. In conjunction with satellite imagery and meteorological data, it is shown that strong signals in the acoustic time series are associated with major breakup events. The acoustic signal can provide predictive information about ice conditions and the approach of breakup.

  8. Nuclear break-up of 11Be

    CERN Document Server

    Lima, V; Lacroix, D; Blumenfeld, Y; Bourgeois, C; Chabot, M; Chomaz, Ph; Désesquelles, P; Duflot, V; Duprat, J; Fallot, M; Frascaria, N; Grévy, S; Guillemaud-Müller, D; Roussel-Chomaz, P; Savajols, H; Sorlin, O

    2007-01-01

    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied.

  9. A relativistic effective model with parameterized couplings for neutron stars

    International Nuclear Information System (INIS)

    We present a relativistic effective model with derivative couplings which includes genuine many-body forces simulated by nonlinear interaction terms involving scalar-isoscalar (σ, σ*), vector-isoscalar (ω, ϕ), vector-isovector (ϱ), scalar-isovector (δ) mesons. The effective model presented in this work has a philosophy quite similar to the original version of the model with parameterized couplings. But unlike that, in which the parametrization is directly inserted in the coupling constants of the Glendenning model, we present here a method for the derivation of the parametric dependence of the coupling terms, in a way that allows in one side to consistently justify this parametrization and in the other to extend in a coherent way the range of possibilities of parameterizations in effective models with derivative couplings. The extended model is then applied to the description of the mass of neutron stars. (author)

  10. Breakup of Bubbles in Turbulent Flow.

    Czech Academy of Sciences Publication Activity Database

    Vejražka, Jiří; Stanovský, Petr; Tihon, Jaroslav

    Ozarow Mazowiecki : Nobell Compressing sp. z o.o, 2015 - (Kosinsky, K.; Urbanczyk, M.; Žerko, S.), s. 70 ISBN N. [Smart and Green Interfaces Conference - SGIC2015. Belgrade (RS), 30.03.2015-01.04.2015] R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble breakup * turbulent flow * velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  11. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  12. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  13. The Effect of Spatial Coupling on Compressive Sensing

    CERN Document Server

    Kudekar, Shrinivas

    2010-01-01

    Recently, it was observed that spatially-coupled LDPC code ensembles approach the Shannon capacity for a class of binary-input memoryless symmetric (BMS) channels. The fundamental reason for this was attributed to a "threshold saturation" phenomena derived by Kudekar, Richardson and Urbanke. In particular, it was shown that the belief propagation (BP) threshold of the spatially coupled codes is equal to the maximum a posteriori (MAP) decoding threshold of the underlying constituent codes. In this sense, the BP threshold is saturated to its maximum value. Moreover, it has been empirically observed that the same phenomena also occurs when transmitting over more general classes of BMS channels. In this paper, we show that the effect of spatial coupling is not restricted to the realm of channel coding. The effect of coupling also manifests itself in compressed sensing. Specifically, we show that spatially-coupled measurement matrices have an improved sparsity to sampling threshold for reconstruction algorithms ba...

  14. Recent developments in the eikonal description of the breakup of exotic nuclei

    CERN Document Server

    Capel, P; Esbensen, H; Fukui, T; Johnson, R C; Nunes, F M; Ogata, K

    2015-01-01

    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, we briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. We describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced by the models based on the eikonal approximation at low energy and detail a correction that enables their extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile...

  15. Numerical simulation of liquid jet breakup using smoothed particle hydrodynamics (SPH)

    CERN Document Server

    Pourabdian, Majid; Morad, Mohammad Reza

    2016-01-01

    In this paper, breakup of liquid jet is simulated using smoothed particle hydrodynamics (SPH) which is a meshless Lagrangian numerical method. For this aim, flow governing equations are discretized based on SPH method. In this paper, SPHysics open source code has been utilized for numerical solutions. Therefore, the mentioned code has been developed by adding the surface tension effects. The proposed method is then validated using dam break with obstacle problem. Finally, simulation of twodimensional liquid jet flow is carried out and its breakup behavior considering one-phase flow is investigated. Length of liquid breakup in Rayleigh regime is calculated for various flow conditions such as different Reynolds and Weber numbers and the results are validated by an experimental correlation. The whole numerical solutions are accomplished for both Wendland and cubic spline kernel functions and Wendland kernel function gave more accurate results. The results are compared to MPS method for inviscid liquid as well. T...

  16. Coupled channels effects in heavy ion elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to /sup 18/O + /sup 184/W and other heavy ion reactions. (SDF)

  17. Coulomb versus nuclear break-up of 11Be halo nucleus in a non perturbative framework

    CERN Document Server

    Fallot, M; Lacroix, D; Chomaz, P; Margueron, J; Chomaz, Ph.

    2002-01-01

    The 11Be break-up is calculated using a non perturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data.

  18. Droplet Breakup of the Nematic Liquid Crystal MBBA

    CERN Document Server

    Nachman, Benjamin

    2012-01-01

    Droplet breakup is a well studied phenomena in Newtonian fluids. One property of this behavior is that, independent of initial conditions, the minimum radius exhibits power law scaling with the time left to breakup tau. Because they have additional structure and shear dependent viscosity, liquid crystals pose an interesting complication to such studies. Here, we investigate the breakup of a synthetic nematic liquid crystal known as MBBA. We determine the phase of the solution by using a cross polarizer setup in situ with the liquid bridge breakup apparatus. Consistent with previous studies of scaling behavior in viscous-inertial fluid breakup, when MBBA is in the isotropic phase, the minimum radius decreases as tau^{1.03 \\pm 0.04}. In the nematic phase however, we observe very different thinning behavior. Our measurements of the thinning profile are consistent with two interpretations. In the first interpretation, the breakup is universal and consists of two different regimes. The first regime is characterize...

  19. Comparison of the effects of couplings to breakup channels in reactions induced by {sup 6}Li and {sup 6}He on the same {sup 64}Zn target

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-García, J. P., E-mail: fernandez@lns.infn.it; Di Pietro, A.; Figuera, P.; Fisichella, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, 1-95123 Catania (Italy); Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Scuderi, V.; Torresi, D. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, 1-95123 Catania (Italy); Dipartamento di Fisica e Astronomia, via S. Sofia 64, I-95123 Catania (Italy); Moro, A. M. [Departamento de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Seville (Spain); Zadro, M. [Ruder Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb (Croatia)

    2015-10-15

    The experimental elastic scattering angular distributions for the weakly bound nuclei {sup 6,7}Li and for the halo nucleus {sup 6}He on the same {sup 64}Zn target at several energies around the Coulomb barrier were measured at the Laboratori Nazionali del Sud (LNS, Italy) and at the Cyclotron Research Center, Louvain La Neuve (Belgium), respectively. The measured elastic scattering angular distributions of these three systems at the same center of mass energy have been compared. The experimental data of the {sup 6,7}Li+ {sup 64}Zn systems have been analyzed within the CDCC method, while the {sup 6}He+{sup 64}Zn data have been compared with both both CDCC and CRC calculations.

  20. Interchannel coupling effects in the valence photoionization of SF6

    Science.gov (United States)

    Jose, Jobin; Lucchese, Robert; Rescigno, Tom

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1 g, 5t1 u, 1t2 u, 3eg, 1t2 g, 4t1 u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near threshold and to induce resonant features in other channels to which resonances are coupled.

  1. Effect of interfacial coupling on rectification in organic spin rectifiers

    Science.gov (United States)

    Hu, Gui-Chao; Zuo, Meng-Ying; Li, Ying; Zhang, Zhao; Ren, Jun-Feng; Wang, Chuan-Kui

    2015-07-01

    The effect of interfacial coupling on rectification in an organic co-oligomer spin diode is investigated theoretically by considering spin-independent and spin-resolved couplings respectively. In the case of spin-independent coupling, an optimal interfacial coupling strength with a significant enhanced rectification ratio is found, whose value depends on the structural asymmetry of the molecule. In the case of spin-resolved coupling, we found that only the variation of the interfacial coupling with specific spin is effective to modulate the rectification, which is due to the spin-filtering property of the central asymmetric magnetic molecule. A transition of the spin-current rectification between parallel spin-current rectification and antiparallel spin-current rectification may be observed with the variation of the spin-resolved interfacial coupling. The interfacial effect on rectification is further analyzed from the spin-dependent transmission spectrum at different biases. Project supported by the National Natural Science Foundation of China (Grant No. 1374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  2. Does the association between broken partnership and first time myocardial infarction vary with time after break-up?

    DEFF Research Database (Denmark)

    Kriegbaum, Margit; Christensen, Ulla; Andersen, Per Kragh;

    2013-01-01

    Marriage is associated with lower risk of coronary heart disease, but it is unknown if the association depends on time since break-up with a partner. In this study we included both married and unmarried couples to study if the association between broken partnership (BP) and first time incident...

  3. With or Without You? Contextualizing the Impact of Romantic Relationship Breakup on Crime Among Serious Adolescent Offenders.

    Science.gov (United States)

    Larson, Matthew; Sweeten, Gary; Piquero, Alex R

    2016-01-01

    The decline and delay of marriage has prolonged adolescence and the transition to adulthood, and consequently fostered greater romantic relationship fluidity during a stage of the life course that is pivotal for both development and offending. Yet, despite a growing literature of the consequences of romantic relationships breakup, little is known about its connection with crime, especially among youth enmeshed in the criminal justice system. This article addresses this gap by examining the effects of relationship breakup on crime among justice-involved youth-a key policy-relevant group. We refer to data from the Pathways to Desistance Study, a longitudinal study of 1354 (14% female) adjudicated youth from the juvenile and adult court systems in Phoenix and Philadelphia, to assess the nature and complexity of this association. In general, our results support prior evidence of breakup's criminogenic influence. Specifically, they suggest that relationship breakup's effect on crime is particularly acute among this at-risk sample, contingent upon post-breakup relationship transitions, and more pronounced for relationships that involve cohabitation. Our results also extend prior work by demonstrating that breakup is attenuated by changes in psychosocial characteristics and peer associations/exposure. We close with a discussion of our findings, their policy implications, and what they mean for research on relationships and crime among serious adolescent offenders moving forward. PMID:26092231

  4. Breakup of oil droplets in turbulent flows

    International Nuclear Information System (INIS)

    The oil droplets, or water-in-oil emulsions, which form after an oil is spilled at sea, were studied. The mechanism that disintegrates an oil film into droplets was critically examined. A theoretical interpretation was developed for the mechanical shear associated with small turbulent eddies. This mechanism has been suggested to be the cause of the droplet breakup. A formula for maximum droplet sizes to be expected in turbulent flows was derived. It was found that the dissipation rates required by the shear mechanism were higher than typical values found in breaking waves in the upper ocean. 27 refs., 1 tab., 3 figs

  5. Percolation picture of nucleus break-up

    International Nuclear Information System (INIS)

    The production of nuclear fragments in multifragmentation and spallation reactions is viewed as a percolation phenomenon. A model of nuclear percolation is proposed. The criteria for linkage of nucleons to a cluster are defined in real and momentum spaces. In addition, ''compactness'' conditions are imposed to the clusters in both spaces. This model behaves in many respects as a two-dimensional site percolation model, exhibiting a rather well defined percolation threshold at psub(c) approximately 0.6. The concentration p is related to the number of fast particles leaving the nuclear volume. We discuss possible experimental signatures of this new break-up mechanism

  6. Breakup Behavior of Molten Wood's Metal Jet in Subcooled Water

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2014-10-15

    There are safety characteristics of the metal fueled sodium fast-cooled reactor (SFR), by identifying the possibility of early termination of severe accidents. If the molten fuel is ejected from the cladding, the ejected molten fuel can interact with the coolant in the reactor vessel. This phenomenon is called as fuel-coolant interaction (FCI). The FCI occurs at the initial phase leading to severe accidents like core disruptive accident (CDA) in the SFR. A part of the corium energy is intensively transferred to the coolant in a very short time during the FCI. The coolant vaporizes at high pressure and expands so results in steam explosion that can threat to the integrity of nuclear reactor. The intensity of steam explosion is determined by jet breakup and the fragmentation behavior. Therefore, it is necessary to understand the jet breakup between the molten fuel jet and the coolant in order to evaluate whether the steam explosion occurs or not. The liquid jet breakup has been studied in various areas, such as aerosols, spray and combustion. In early studies, small diameter jets of low density liquids were studied. The jet breakup for large density liquids has been studied in nuclear reactor field with respect to safety. The existence of vapor film layer between the melt and liquid fluid is only in case of large density breakup. This paper deals with the jet breakup experiment in non-boiling conditions in order to analyze hydraulic effect on the jet behavior. In the present study, the wood's metal was used as the jet material. It has similar properties to the metal fuel. The physical properties of molten materials and coolants are listed in Table I, respectively. It is easy to conduct the experiment due to low melting point of the wood's metal. In order to clarify the dominant factors determining jet breakup and size distribution of the debris, the experiment that the molten wood's metal was injected into the subcooled condition was conducted. The

  7. Breakup Behavior of Molten Wood's Metal Jet in Subcooled Water

    International Nuclear Information System (INIS)

    There are safety characteristics of the metal fueled sodium fast-cooled reactor (SFR), by identifying the possibility of early termination of severe accidents. If the molten fuel is ejected from the cladding, the ejected molten fuel can interact with the coolant in the reactor vessel. This phenomenon is called as fuel-coolant interaction (FCI). The FCI occurs at the initial phase leading to severe accidents like core disruptive accident (CDA) in the SFR. A part of the corium energy is intensively transferred to the coolant in a very short time during the FCI. The coolant vaporizes at high pressure and expands so results in steam explosion that can threat to the integrity of nuclear reactor. The intensity of steam explosion is determined by jet breakup and the fragmentation behavior. Therefore, it is necessary to understand the jet breakup between the molten fuel jet and the coolant in order to evaluate whether the steam explosion occurs or not. The liquid jet breakup has been studied in various areas, such as aerosols, spray and combustion. In early studies, small diameter jets of low density liquids were studied. The jet breakup for large density liquids has been studied in nuclear reactor field with respect to safety. The existence of vapor film layer between the melt and liquid fluid is only in case of large density breakup. This paper deals with the jet breakup experiment in non-boiling conditions in order to analyze hydraulic effect on the jet behavior. In the present study, the wood's metal was used as the jet material. It has similar properties to the metal fuel. The physical properties of molten materials and coolants are listed in Table I, respectively. It is easy to conduct the experiment due to low melting point of the wood's metal. In order to clarify the dominant factors determining jet breakup and size distribution of the debris, the experiment that the molten wood's metal was injected into the subcooled condition was conducted. The

  8. Exploring the effects of sexual desire discrepancy among married couples.

    Science.gov (United States)

    Willoughby, Brian J; Farero, Adam M; Busby, Dean M

    2014-04-01

    Previous studies have found associations between the individual discrepancy of desired sexual frequency and actual sexual frequency and relational outcomes among premarital couples. The present study extended this research by using a sample of 1,054 married couples to explore how actor and partner individual sexual desire discrepancy (SDD) scores were associated with relationship satisfaction, stability, communication, and conflict during marriage. All participants took an online survey which assessed both couple sexual dynamics and relationship outcomes. Findings suggested that higher actor individual SDD was generally associated with negative relational outcomes, including lower reported relationship satisfaction, stability, and more reported couple conflict. These effects were found after controlling for background factors, baseline sexual frequency and desire, and couple desire discrepancies. Some partner effects were also found and were generally in the same direction. Marital length did not moderate the effects found although gender moderated associations between individual SDD and reported couple communication. Negative associations between individual SDD and communication were particularly strong when the husband reported high discrepancies between desired and actual sexual frequency. Results suggested that higher individual sexual desire discrepancies among married individuals may undermine relationship well-being. Applications of these findings to a clinical setting are also discussed. PMID:24045904

  9. Limits on Higgs boson couplings in Effective field theory

    Science.gov (United States)

    Belyaev, N.; Reid, T.

    2016-02-01

    We review the Effective Field Theory (EFT) to make projections on physics beyond the Standard Model in the Higgs sector. We provide relations between the non-Standard Model couplings of the Strongly-Interacting Light Higgs (SILH) effective Lagrangian implemented in the eHDecay package and the corresponding terms of the spin-0 Higgs Characterisation model's effective Lagrangian used with the aMC@NLO Monte Carlo generator. Constraints on BSM couplings are determined on the basis of existing experimental limits on Higgs boson width and branching ratios.

  10. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  11. Breakup of partially wetting nanoscale nematic liquid films

    Science.gov (United States)

    Lam, Michael; Linda Cummings Collaboration; Lou Kondic Collaboration; Te-Sheng Lin Collaboration

    2015-11-01

    The breakup of nematic liquid crystals (NLCs) films with thicknesses less than a micrometer is studied. Particular attention is paid to the interplay between the bulk elasticity and the anchoring (boundary) conditions at the substrate and free surface. Within the framework of the long wave approximation, a fourth order nonlinear partial differential equation (PDE) is derived for the free surface height. Numerical simulations of a perturbed flat film show that, depending on the initial average thickness of the film, satellite droplets form and persist on time scales much longer than dewetting. Formulating the model in terms of an effective disjoining pressure (elastic response and van der Waals interaction), simulations further suggest that satellite droplets form when the initial average film thickness corresponds to a positive effective disjoining pressure. Our results may shed light on the so-called ''forbidden film thicknesses'' seen in experiments. Supported by NSF grant DMS-1211713.

  12. Scattering and breakup probabilities in nuclear few-body systems

    International Nuclear Information System (INIS)

    One can state that the three-body model calculations based on the solution of Faddeev-type equations have been successful in predicting scattering and breakup probabilities for the three-nucleon case as well as for the α-d system. However, much remains to be done, such as more precision experiments and the laborious critical evaluation of existing data. It would be extremely valuable to have a quick way to handle the Coulomb problem. Experiments on d-16O and d-40Ca might aid in finding a way to do this. It will still be quite some time before we can make any definite statements about the offshell effects or about three-body forces in the three-nucleon case, i e effects which are not already contained in the knowledge of the triton binding energy

  13. Application of a hybrid breakup model for the spray simulation of a multi-hole injector used for a DISI gasoline engine

    International Nuclear Information System (INIS)

    A hybrid atomization and breakup model was developed for the simulation of the fuel injection processes of multi-hole injectors for direct injection spark ignition (DISI) gasoline engines. In modeling primary breakup, a competition between the Huh–Gosman and Kelvin–Helmholtz (KH) breakup mechanisms was adopted. In addition to the two breakup mechanisms above, the Rayleigh–Taylor (RT) model was selected as a third competing mechanism in simulating secondary breakup. The hybrid model was implemented in the Star-CD software to simulate the effect of the background and injection pressures on the breakup processes of gasoline jets in a constant volume vessel, and on the mixture stratification of a wall-guided DISI gasoline engine with a newly-designed cavity in the piston. Results indicate that a higher background pressure intensifies the aerodynamically induced breakup along the tip of spray although it tends to reduce the overall breakup of spray. The spray atomization enhanced by increasing injection pressures is more pronounced at elevated background pressures. With the retard of fuel injection timing, the inhomogeneity of mixture increases in the DISI gasoline engine. Double injection with elevated second injection pressure can reduce the overall inhomogeneity of the mixture and effectively direct the mixture towards the spark plug. - Highlights: •A hybrid breakup model was developed to simulate injection process in a DISI engine. •Higher fuel injection pressure enhances breakup and evaporation at the spray tip. •Single fuel injection leads to a narrow spark timing range. •Two-stage fuel injection improves the homogeneity of the mixture. •The second injection with higher fuel pressure decreases over-rich mixture

  14. Direct coupled amplifiers using field effect transistors

    International Nuclear Information System (INIS)

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10-8 A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10-10 A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with very different

  15. 24 CFR 982.315 - Family break-up.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Family break-up. 982.315 Section... SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Leasing a Unit § 982.315 Family break-up... assistance in the program if the family breaks up. The PHA administrative plan must state PHA policies on...

  16. Theoretical study of the elastic breakup of weakly bound nuclei at near barrier energies

    CERN Document Server

    Otomar, D R; Lubian, J; Canto, L F; Hussein, M S

    2015-01-01

    We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.

  17. Simulating Topological Effects with Photons in Coupled QED Cavity Arrays

    Science.gov (United States)

    Noh, Changsuk; Angelakis, Dimitris G.

    2014-01-01

    We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.

  18. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena with t...... describing the thermal state of the particles in the spray. Therefore, the model includes a full thermal solver for the droplets, which also takes the rapid solidification of different drop sizes into account.......The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena with the...... model for droplet cooling and solidification. The model is tested and validated against results from literature and experiments. Subsequently, the model is used to simulate the complex flow fields in the spray forming process and the results are discussed. The presented model of the spray forming...

  19. Effect of interlayer exchange coupling on magnetic chiral structures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C. [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  20. Elastic nucleon-deuteron scattering and breakup with chiral forces

    Directory of Open Access Journals (Sweden)

    Witała Henryk

    2016-01-01

    Full Text Available Results on three-nucleon (3N elastic scattering and breakup below the pion production threshold are discussed. The large discrepancies found between a theory based on numerical solutions of 3N Faddeev equations with standard nucleon-nucleon (NN potentials only and data point to the need for three-nucleon forces (3NF’s. This notion is supported by the fact that another possible reason for the discrepancies in elastic nucleon-deuteron (Nd scattering, relativistic effects, turned out to be small. Results for a new generation of chiral NN forces (up to N4LO together with theoretical truncation errors are shown. They support conclusions obtained with standard NN potentials

  1. Trilinear Neutral Gauge Boson Couplings in Effective Theories

    CERN Document Server

    Larios, F; Tavares-Velasco, G; Toscano, J J

    2001-01-01

    We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson couplings Z-Z-Photon, Z-Photon-Photon, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear realizations of the SU(2)_{L} X U(1)_Y gauge symmetry. In the linear scenario we find that these couplings can be generated only by dimension eight operators necessarily including the Higgs boson field, whereas in the nonlinear case they are induced by dimension six operators. We consider the impact of these couplings on some precision measurements such as the magnetic and electric dipole moments of fermions, as well as the Z boson rare decay Z -> neutrino+antineutrino+ photon. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear scenario where these couplings have the more promising prospects of being perceptible through high pr...

  2. Trilinear neutral gauge boson couplings in effective theories

    Science.gov (United States)

    Larios, F.; Pérez, M. A.; Tavares-Velasco, G.; Toscano, J. J.

    2001-06-01

    We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson couplings ZZγ, Zγγ, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear realizations of SU(2)L × U(1)Y gauge symmetry. In the linear scenario we find that these couplings can be generated only by dimension-8 operators necessarily including the Higgs boson field, whereas in the nonlinear case they are induced by dimension-6 operators. We consider the impact of these couplings on some precision measurements such as the magnetic and electric dipole moments of fermions, as well as the Z boson rare decay Z-->νν¯γ. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear scenario where these couplings have the more promising prospects of being perceptible through high precision experiments.

  3. Comment on breakup densities of hot nuclei

    International Nuclear Information System (INIS)

    In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy

  4. Synchronization of coupled stochastic oscillators: The effect of topology

    Indian Academy of Sciences (India)

    Amitabha Nandi; Ram Ramaswamy

    2008-06-01

    We study sets of genetic networks having stochastic oscillatory dynamics. Depending on the coupling topology we find regimes of phase synchronization of the dynamical variables. We consider the effect of time-delay in the interaction and show that for suitable choices of delay parameter, either in-phase or anti-phase synchronization can occur.

  5. Visco-elastic effects in strongly coupled dusty plasmas

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    We report on experimental evidence of visco-elastic effects in a strongly coupled dusty plasma through investigations of the propagation characteristics of low frequency dust acoustic waves and by excitations of transverse shear waves in a DC discharge Argon plasma.

  6. Effective Hamiltonian for non-minimally coupled scalar fields

    OpenAIRE

    Mese, Emine; Pirinccioglu, Nurettin; Acikgoz, Irfan; Binbay, Figen

    2006-01-01

    Performing a relativistic approximation as the generalization to a curved spacetime of the flat space Klein-Gordon equation, an effective Hamiltonian which includes non-minimial coupling between gravity and scalar field and also quartic self-interaction of scalar field term is obtained.

  7. Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

    Institute of Scientific and Technical Information of China (English)

    F. J. Sabina; A. B. Movchan

    2009-01-01

    In this paper, we discuss waves in piezoelectric periodic composite, with the emphasis on the connection between the electromechanical coupling and the effects of dispersion of Bloch-Floquet waves. A particular attention is given to structures containing interfaces between dissimi-lar media and localization of the electrical fields near such interfaces.

  8. Team formation and breakup in multiagent systems

    Science.gov (United States)

    Rao, Venkatesh Guru

    The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.

  9. Breakup fusion theory of nuclear reactions

    International Nuclear Information System (INIS)

    Continuum spectra of particles emitted in incomplete fusion reactions are one of the major interests in current nuclear reaction studies. Based on an idea of the so-called breakup fusion (BF) reaction, several authors derived closed formulas for the singles cross section of the particles that are emitted. There have been presented, however, two conflicting cross section formulas for the same BF reaction. For convenience, we shall call one of them the IAV (Ichimura, Austern and Vincent) and the other UT (Udagawa and Tamura) cross section formulas. In this work, the formulation of the UT cross section formula (prior-form) is presented, and the post-form version of the IAV cross section formula is evaluted for a few α- and d-induced reactions based on the exact finite range method. It is shown that the values thus calculated are larger by an order of magnitude as compared with the experimental cross sections for the α-induced reactions, while they are comparable with the experimental cross sections for the d-induced reactions. A possible origin of why such a large cross section is resulted in the case of α-induced reactions is also discussed. Polarization of the residual compound nucleus produced in breakup fusion reactions are calculated and compared with experiments. It is shown that the polarization is rather sensitive to the deflection angles of the strongly absortive partial waves and to obtain a good fit with the experimental data a l-dependent potential in the incident channel is needed in order to stress the lower partial waves

  10. Causes and consequences of continental breakup in the South Atlantic: lessons learned from the SAMPLE program

    Science.gov (United States)

    Trumbull, Robert B.

    2014-05-01

    after breakup. Unexpected are the implied short time and spatial scales of topographic variations, which challenge conventional wisdom on how passive margins evolve. These variations in surface topography are critical observables for testing models of shallow vs. deep-mantle buoyancy effects. Studies of sedimentary basins offshore complement the denudation studies and are linked with 3D lithospheric models of the margins. A group of projects examines structures, sedimentary sequences and thermal/subsidence histories of selected conjugate basins, and finds major asymmetries. Allied studies of hydrocarbon systems in the basins involve mapping present and paleo gas escape/sequestration features (mud volcanoes, pockmarks, gas chimneys) combined with 3D petroleum systems models. Relating the offshore sedimentary record to lithospheric dynamics requires understanding effects of paleo-oceanography. Major changes in Atlantic circulation due to tectonic events and the geometry of the ocean basin are recorded in erosive and depositional features of offshore sediments. SAMPLE projects use high-resolution seismic data to map and date these features, and in a further step, to study the influence of paleo-ocean circulation on global climate using coupled atmosphere-ocean models.

  11. The Effect of Job Displacement on Couples? Fertility Decisions

    OpenAIRE

    Huttunen, Kristiina; Kellokumpu, Jenni

    2012-01-01

    This paper analyzes the effects of job displacement on fertility using Finnish longitudinal employer-employee data (FLEED) matched to birth records. We distinguish between male and female job losses. We focus on couples where one spouse has lost his/her job due to a plant closure or mass layoff and follow them for several years both before and following the job loss. As a comparison group we use similar couples that were not affected by job displacement. In order to examine the possible chann...

  12. Coupled channel effects in pion pion S-wave interaction

    OpenAIRE

    Wu, F. Q.; Zou, B. S.

    2004-01-01

    We study coupled channel effects upon isospin I=2 and I=0 $\\pi\\pi$ S-wave interaction. With introduction of the $\\pi\\pi\\to\\rho\\rho\\to\\pi\\pi$ coupled channel box diagram contribution into $\\pi\\pi$ amplitude in addition to $\\rho$ and $f_2 (1270)$ exchange, we reproduce the $\\pi \\pi$ I=2 S-wave and D-wave scattering phase shifts and inelasticities up to 2 GeV quite well in a K-matrix formalism. For I=0 case, the same $\\pi\\pi\\to\\rho\\rho\\to\\pi\\pi$ box diagram is found to give the largest contribut...

  13. Inclusive measurements of the break-up of 156 MeV 6Li-ions at extreme forward angles and the quasi free break-up model

    International Nuclear Information System (INIS)

    Inclusive alpha particle and deuteron spectra from collisions of 156 MeV 6Li-ions with 12C and 208Pb were measured at extreme forward emission angles including zero degree. The measurements were performed with the Karlsruhe magnetic spectrograph 'Little John' and required an efficient reduction of the background from small-angle scattering. The observed double differential cross sections and angular distributions have been analysed on the basis of Serber's spectator break-up model. When going to angles smaller than grazing, where Coulomb effects are expected to the dominating, transitional features may appear. Corresponding effects probably associated with Coulomb break-up are observed with the 208Pb-target and require a slight extension of the Serber approach. In the case of the 12C-target the break-up cross sections in forward direction seem to reflect the shape of the internal momentum distribution of the alpha particle and deuteron cluster in the 6Li-projectile and are in agreement with a 2S-type wave function. However, at larger angles the shape appears to be distorted, possibly by final state interactions. (orig.)

  14. Effect of temperature coupling on ozone depletion prediction

    Science.gov (United States)

    Chandra, S.; Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The effects of chlorine perturbations on both the temperature and the ozone distribution in the stratosphere have been studied using a simplified radiative-photochemical model. The model solves the hydrostatic equation for total density in a self-consistent manner as the temperature is changed. Radiative coupling is found to have a significant effect on both the thermal structure and the ozone distribution, particularly in the 35-50-km region. By increasing the ClX mixing ratio by 5.0 ppbv, the temperature in this region is decreased by 5 to 10 K with a slight increase below 30 km. The local ozone depletion around 40 km due to added ClX is smaller compared with the estimate made by keeping the temperature fixed to the ambient condition. However, the integrated effect of radiative coupling is to increase the calculated column ozone depletion by 15% to 25% in this model.

  15. The TAB method for numerical calculation of spray droplet breakup

    Science.gov (United States)

    Orourke, P. J.; Amsden, A. A.

    A short history is given of the major milestones in the development of the stochastic particle method for calculating liquid fuel sprays. The most recent advance has been the discovery of the importance of drop breakup in engine sprays. A new method, called TAB, for calculating drop breakup is presented. Some theoretical properties of the method are derived; its numerical implementation in the computer program KIVA is described; and comparisons are presented between TAB-method calculations and experiments and calculations using another breakup model.

  16. Closed system of coupling effects in generalized thermo-elastoplasticity

    Science.gov (United States)

    Śloderbach, Z.

    2016-05-01

    In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  17. The Effectiveness of Emotionally Focused Couples Therapy on Sexual Satisfaction and Marital Adjustment of Infertile Couples with Marital Conflicts

    Directory of Open Access Journals (Sweden)

    Ali Akbar Soleimani

    2015-07-01

    Full Text Available Background: The purpose of this investigation is to determine the efficacy of emotionally focused couples therapy (EFT-C on enhancement of marital adjustment in infertile couples. Materials and Methods: This was a semi-experimental study with a pre- and post-test design. We selected 30 infertile couples (60 subjects by purposive sampling. Couples were randomly assigned to two groups, sample and control. Each group consisted of 15 couples who had marital maladjustment and low sexual satisfaction. Couples answered the marital adjustment and sexual satisfaction questionnaires at baseline after which the sample group received 10 sessions of EFT-C. Results: Results of pre-test and post-test showed that EFT-C significantly impacted marital adjustment and sexual satisfaction. Conclusion: EFT-C had a significant effect on enhancement of satisfaction, cohesion and affectional expression. This approach impacted physical and emotional sexual satisfaction of infertile couples.

  18. Electromagnetomechanical coupling effects for non-ferromagnetic and ferromagnetic structures

    International Nuclear Information System (INIS)

    This paper describes the coupling effects between strong magnetic fields with structural vibrations of non-ferromagnetic and ferromagnetic plates. The dynamic behavior of a ferromagnetic cantilevered plate, which is set along the uniform magnetic field, shows that natural frequency increases as external magnetic induction does. This means that magnetic stiffness effect occurs in a ferromagnetic plate due to magnetization. The behaviors of non-ferromagnetic and ferromagnetic plates show that magnetic viscous damping effect becomes larger in proportional to the square of external magnetic induction. (author)

  19. Effective squark/chargino/neutralino couplings: MadGraph implementation

    Energy Technology Data Exchange (ETDEWEB)

    Abrahantes, Arian [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Guasch, Jaume [Universitat de Barcelona, Departament de Fisica Fonamental, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain); Penaranda, Siannah [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Universitat de Barcelona, Departament de Fisica Fonamental, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain); Sanchez-Florit, Rauel [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain)

    2013-04-15

    We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos. (orig.)

  20. Effective field theory of quantum gravity coupled to scalar electrodynamics

    Science.gov (United States)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  1. Magnetoelectric coupling effects in multiferroic complex oxide composite structures.

    Science.gov (United States)

    Vaz, Carlos A F; Hoffman, Jason; Ahn, Charles H; Ramesh, Ramamoorthy

    2010-07-20

    The study of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices. In this Progress Report, we present an overview of recent developments in the field, with emphasis on magnetoelectric coupling effects in complex oxide multiferroic composite materials. PMID:20414887

  2. Effect of reactive feedback on the transverse mode coupling instability

    International Nuclear Information System (INIS)

    An important and realistic test to examine the effect of reactive feedback on the transverse mode coupling instability could be performed at PEP using the existing feedback system with some minor modifications. This test would of necessity take place at low energy and low synchrotron tune. Such an experiment is of great importance for the design of the LEP reactive feedback system and for the ultimate evaluation of LEP performance

  3. Coupling effect on the electronic transport through dimolecular junctions

    International Nuclear Information System (INIS)

    Using nonequilibrium Green's function and first-principle calculations, we investigate the transport behaviors of a dimolecule device with two 1,4-Dithiolbenzenes (DTB) sandwiched between two gold electrodes. The results show that the intermolecular coupling effect plays an important role in the conducting behavior of the system. By changing the dihedral angles between the two DTB molecules, namely changing the magnitude of the intermolecular interaction, a different transport behavior can be observed in the system

  4. Effective Supergravity from the Weakly Coupled HeteroticString

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.

    2005-05-01

    The motivation for Calabi-Yau-like compactifications of the weakly coupled E{sub 8} {circle_times} E{sub 8} heterotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly reviewed. Modular invariant models for hidden sector condensation and supersymmetry breaking are described at the quantum level of the effective field theory. Their phenomenological and cosmological implications, including a possible origin for R-parity, are discussed.

  5. Investigation of the intermediate-energy deuteron breakup reaction

    International Nuclear Information System (INIS)

    The Udagawa-Tamura formalism is employed to calculate the proton singles both in the bound and unbound regions. Both the Elastic-Breakup (EB) and the Breakup-Fusion (BF) processes are considered to calculate the doubly-differential cross section for light and intermediate mass nuclei. The calculated spectra for 25 and 56 MeV deuterons reproduce the experimental spectra very well except for the spectra at large angle and at low energies, of the outgoing particle. Contributions due to precompound and evaporation processes are estimated to supplement the spectral results based on the Elastic-Breakup and Breakup-Fusion mechanisms. An extension of the model calculations to higher deuteron energies is being made to test the (EB + BF) model limitations. 5 refs., 1 fig

  6. Study on the breakup lengths of free round liquid jets

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; WAN Yun-xia; HUANG Yong; PENG Xin-ke

    2007-01-01

    An experiment was conducted to measure the breakup lengths of water jets with a high-speed video camera for Weber numbers from 0 to about 1.1 × 103. The initial jet diameters are changed from 0.3mm to 1.0mm. The results indicate that at low jet velocity the breakup lengths of the jets are increased linearly from 0 to a maximum value. At the Weber number about 20 the breakup length of the jet reaches its maximum value for different initial jet diameter. A computation based on the dispersion equation is conducted to study the relationship between the growth rate of the jet surface wave and the maximum breakup length. The computations show that the maximum growth rate for the axisymmetric surface wave has a turning point at Weber number about 20, and that agrees well with the experiments.

  7. Capillary Breakup of a Liquid Bridge: Identifying Regimes and Transitions

    CERN Document Server

    Li, Yuan

    2016-01-01

    Computations of the breakup of a liquid bridge are used to establish the limits of applicability of similarity solutions derived for different breakup regimes. These regimes are based on particular viscous-inertial balances, that is different limits of the Ohnesorge number $Oh$. To accurately establish the transitions between regimes, the minimum bridge radius is resolved through four orders of magnitude using a purpose-built multiscale finite element method. This allows us to construct a quantitative phase diagram for the breakup phenomenon which includes the appearance of a recently discovered low-$Oh$ viscous regime. The method used to quantify the accuracy of the similarity solutions allows us to identify a number of previously unobserved features of the breakup, most notably an oscillatory convergence towards the viscous-inertial similarity solution. Finally, we discuss how the new findings open up a number of challenges for both theoretical and experimental analysis.

  8. Reactive Coupling Effects on Amplitude Death of Coupled Limit-Cycle Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-Hua; LI Xiao-Wen

    2009-01-01

    Amplitude death in coupled limit-cycle systems induced by the reactive coupling is studied. The presence of reactive coupling parameter changes the amplitude death process of the system,and increases the critical coupling strength for the emergence of amplitude death.When the systems are in the state of complete or partial amplitude death,increasing the reactive coupling will increase the number of partial synchronization groups,implying the increase of disorder of the system.Increasing the reactive coupling makes the elimination of the amplitude death of the systems harder.

  9. On the Effects of Coupled Scalar Fields on Structure Formation

    CERN Document Server

    Li, Baojiu

    2010-01-01

    A coupling between a scalar field (representing the dark energy) and dark matter could produce rich phenomena in cosmology. It affects cosmic structure formation mainly through the fifth force, a velocity-dependent force that acts parallel to particle's direction of motion and proportional to its speed, an effective rescaling of the particle masses, and a modified background expansion rate. In many cases these effects entangle and it is difficult to see which is the dominant one. Here we perform N-body simulations to study their qualitative behaviour and relative importance in affecting the key structure formation observables, for a model with exponential scalar field coupling. We find that the fifth force, a prominent example of the scalar-coupling effects, is far less important than the rescaling of particle mass or the modified expansion rate. In particular, the rescaling of particle masses is shown to be the key factor leading to less concentration of particles in halos than in LCDM, a pattern which is al...

  10. Vibrating Breakup of Jet for Uniform Metal Droplets

    Institute of Scientific and Technical Information of China (English)

    Shengdong GAO; Yingxue YAO; Chengsong CUI

    2007-01-01

    Uniform droplet formation from capillary stream breakup provides promising opportunities for many applications such as solder balls manufacturing, circuit board printing and rapid prototype manufacturing. In this study an apparatus capable of making monosize metal spheres by vibrating breakup has been developed. The droplets were electrically charged to avoid collision and merging with one another during flight. As a result, uniformly sized tin powders (180μm in diameter) were obtained after cooling and solidification.

  11. Influence of the breakup on the fusion and scattering process

    International Nuclear Information System (INIS)

    We present results of the study of the influence of the break-up process on the fusion, scattering and reaction cross sections, at near barrier energies. Most of the discussed reactions and scattering mechanisms are induced by the stable weakly bound nuclei 6,7 Li and 9 Be, although comparisons with reactions induced by strongly bound nuclei are also made. We give a picture of the break-up and fusion mechanisms at energies above the Coulomb barrier. (author)

  12. Coherent soliton propagation through doped optical fibers: cloning, breakup, and soliton interactions

    Directory of Open Access Journals (Sweden)

    CAVALCANTI SOLANGE B.

    2001-01-01

    Full Text Available The simultaneous propagation of two optical pulses through a doped nonlinear dispersive medium modelled by a resonant three-level system was investigated numerically, within the framework of a pair of coupled extended nonlinear Schrödinger equations. These included the contribution of the dopant resonances whose dynamics is governed by Bloch equations. In this work, we review the interesting possibilities on the manipulation of fields such as cloning, breakup and soliton interactions, that the combination of coherent population trapping with nonlinear dispersive media offers.

  13. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  14. Coupling effect of quantum wells on band structure

    Science.gov (United States)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  15. Coupling effect of quantum wells on band structure

    International Nuclear Information System (INIS)

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps. (paper)

  16. Chiral symmetry effect on the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear σ- model. First, we introduce the linear σ-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+πNN(q2) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear σ-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear σ-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of gπnn (q2) and of the mean square radius. (author)

  17. Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model

    OpenAIRE

    HSIAO, Chao-Tsung; Chahine, Georges L.

    2013-01-01

    A simplified three-dimensional (3-D) zero-thickness shell model was developed to recover the non-spherical response of thick-shelled encapsulated microbubbles subjected to ultrasound excitation. The model was validated by comparison with previously developed models and was then used to study the mechanism of bubble break-up during non-spherical deformations resulting from the presence of a nearby rigid boundary. The effects of the shell thickness and the bubble standoff distanc...

  18. Coulomb dissociation and momentum distributions for 11Li → 9Li + n + n breakup reactions

    International Nuclear Information System (INIS)

    Momentum distributions for the 11Li → 9Li+n+n breakup reaction, generated by Coulomb dipole excitations, axe calculated in a 3-body model for 11Li. The relative momentum distribution of the two neutrons is in good agreement with recent 3-body coincidence measurements but the momentum distribution for the 9Li recoil and the decay energy spectrum are much narrower than observed. These discrepancies may be due to higher order dynamical effects which have been ignored

  19. Desired change in couples: gender differences and effects on communication.

    Science.gov (United States)

    Heyman, Richard E; Hunt-Martorano, Ashley N; Malik, Jill; Slep, Amy M Smith

    2009-08-01

    Using a sample (N = 453) drawn from a representative sampling frame of couples who are married or living together and have a 3 to 7 year-old child, this study investigates (a) the amount and specific areas of change desired by men and women, (b) the relation between relationship adjustment and desired change; and (c) the ways in which partners negotiate change. On the Areas of Change Questionnaire, women compared with men, wanted greater increases in their partners' emotional and companionate behaviors, instrumental support, and parenting involvement; men wanted greater increases in sex. Using the Actor-Partner Interdependence Model (Kenny, 1996), both men's and women's relationship adjustment predicted desired change (i.e., actor effects), over and above the effects of their partners' adjustment (i.e., partner effects); partner effects were not significant. Each couple was also observed discussing the man's and the woman's top desired change area. Both men and women behaved more positively during the partner-initiated conversations than during their own-initiated conversations. Women, compared with men, were more negative in their own and in their partners' conversations. PMID:19685983

  20. Coulomb versus nuclear break-up of sup 1 sup 1 Be halo nucleus in a nonperturbative framework

    CERN Document Server

    Fallot, M; Lacroix, D; Chomaz, P; Margueron, J

    2002-01-01

    The sup 1 sup 1 Be break-up is calculated at 41 MeV per nucleon incident energy on different targets using a nonperturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data.

  1. Study of the role of breakup following neutron transfer in fusion induced by 9Be at near barrier energies

    International Nuclear Information System (INIS)

    The studies on the breakup effects of weakly bound nuclei, both stable and radioactive, on fusion cross section is a subject of contemporary interest. These weakly bound nuclei have low breakup threshold (binding energy) that makes the fusion induced by these nuclei fundamentally different from that induced by tightly bound nuclei. Among these nuclei, the nucleus 9Be is very interesting because it has low break up threshold of 1.67 MeV and has a possible three body n+α+α Borromean structure. So far, numbers of experiments have been carried out to study the fusion reactions induced by 9Be on various targets at near barrier energies

  2. Equivalence of post and prior sum rules for inclusive breakup reactions

    International Nuclear Information System (INIS)

    A critical examination of sum rules derived previously by Austern and Vincent (post form) and by Udagawa and Tamura (prior form) demonstrates that agreement between the two approaches is obtained if certain approximations implicit in the Udagawa-Tamura prior-form derivation are avoided. We examine the relation of the two approaches to singularities of the post-form distorted wave Born approximation matrix element and to the procedures for reduction of a many-body theory by use of effective operators in a model space. The two-step heuristic model is seen to be invalid for prior-form inelastic breakup; it is necessary to take account of nuclear excitations during projectile breakup. Careful treatment of the non-Hermiticity of kinetic energy operators with respect to continuum wave functions is required

  3. Total cross section for p-d breakup below 30 MeV

    CERN Document Server

    Kievsky, A; Viviani, M

    2000-01-01

    The total cross section for p-d breakup is studied in terms of the elastic S-matrix through the unitary condition. Calculations using the complex Kohn variational method along with the Pair Correlated Hyperspherical Harmonic basis are presented. The results have been restricted to energies below Ep=30 MeV where Coulomb effects are expected to be sizable and are compared to the existing data. Two different measurements have been found in the literature: 40 years ago, Gibbons and Macklin (1959); and 26 years ago, Carlosn et al. (1973). The calculations are found to be in reasonable agreement with these old data, though a discrepancy is observed near the deuteron breakup threshold. Moreover, a detailed analysis of the contributions to the observable from different partial waves has been presented. Unexpectedly, the main contribution for a wide range of energies has been detected in the J=3/2- state.

  4. Hard breakup of two nucleons from the 3He nucleus

    International Nuclear Information System (INIS)

    We investigate a large angle photodisintegration of two nucleons from the 3He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic 3He wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of 3He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2/3).

  5. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  6. Coriolis coupling effects in giant resonances on rotating nuclei

    International Nuclear Information System (INIS)

    Giant resonances on high spin states are described as scaling solutions of a linearized Vlasov equation in a rotating frame. Apart from effects of dynamical deformations we obtain a further splitting of the giant resonance due to the Coriolis coupling just through an approximate choice of the scaling which takes into account the shift of the Fermi sphere due to the rotation. Results are shown for 168Er. From the evaluation of the EM strengths we predict a small shift of the GR centroid to lower energy with increasing angular velocity. (orig.)

  7. Study of coupled-bunch collective effects in the ALS

    International Nuclear Information System (INIS)

    We present an overview of the calculated longitudinal and transverse coupled-bunch (CB) growth rates using the measured RF cavity higher order mode (HOM) impedance for the Advanced Light Source (ALS), a 1.5 GeV electron storage ring for producing synchrotron radiation. We also describe a visual method of representing the effective beam impedance and corresponding growth rates which is especially useful for understanding the dependence of growth rate on HOM frequency and Q, for determining the requirements of the CB feedback system, and for interpreting measured beam spectra

  8. DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin

    2008-01-01

    To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.

  9. Vector and tensor analyzing powers in deuteron-proton breakup

    International Nuclear Information System (INIS)

    Vector and tensor analyzing powers of the 1H(d-bar,pp)n breakup reaction at 130 and 100 MeV deuteron beam energies have been measured at KVI Groningen with the use of the detection systems covering large fractions of the phase space. The high precision data are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. The tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for Axy such discrepancies usually appear, or are enhanced, when model 3N forces (3NFs), TM99 or Urbana IX, are included. Problems of all theoretical approaches with describing Axx and Ayy are limited to very small regions of the phase space, usually characterized with the lowest relative energies of the two protons. Predicted effects of 3NFs are much lower at 100 MeV, therefore at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  10. Supernova neutrinos: Strong coupling effects of weak interactions

    CERN Document Server

    Fogli, G L; Marrone, A; Mirizzi, A

    2008-01-01

    In core-collapse supernovae, neutrinos and antineutrinos are initially subject to significant self-interactions induced by weak neutral currents, which may induce strong-coupling effects on the flavor evolution (collective transitions). The interpretation of the effects is simplified when self-induced collective transitions are decoupled from ordinary matter oscillations, as for the matter density profile that we discuss. In this case, approximate analytical tools can be used (pendulum analogy, swap of energy spectra). For inverted neutrino mass hierarchy, the sequence of effects involves: synchronization, bipolar oscillations, and spectral split. Our simulations shows that the main features of these regimes are not altered when passing from simplified (angle-averaged) treatments to full, multi-angle numerical experiments.

  11. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air.

    Science.gov (United States)

    Zhang

    1999-04-01

    This paper presents a numerical study of the dynamics of a viscous liquid drop that is being formed directly at the tip of a vertical tube into ambient air. A model is developed to predict the evolution of the drop shape and its breakup based on RIPPLE, which is a solution algorithm for computing transient, two-dimensional, incompressible fluid flow with surface tension on free surfaces of general topology (D. B. Kothe and R. C. Mjolsness, AIAA J. 30, 2694 (1992)). The full Navier-Stokes system is solved by using finite-difference formulation on a Eulerian mesh. The mesh is fixed in space, with the flow and surface moving through it to ensure accurate calculations of complex free surface flows and topology, including surface breakup and coalescence. The novel feature of the numerical algorithm is the use of a Eulerian volume-tracking approach which allows the calculations to pass the breaking point during formation of a drop continuously without interruption or numerical modification and, therefore, to explore the features of generation of satellite droplets. The effects of physical and geometric parameters on the nonlinear dynamics of drop growth and breakup are investigated. The focus here is on drop breakup and subsequent formation of satellite droplets. The effects of finite inertial, capillary, viscous, and gravitational forces are all accounted for to classify different formation dynamics and to elucidate features of satellite droplet generation. The numerical predictions are compared with experimental measurements for water drops, and the results show good agreement. Copyright 1999 Academic Press. PMID:10072280

  12. Dynamics of bubble breakup at a T junction

    Science.gov (United States)

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z.

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time.

  13. Lithosphere erosion and breakup due to the interaction between extension and plume upwelling

    Science.gov (United States)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2016-04-01

    We have built up 2D numerical models of coupled crust - lithospheric mantle - upper mantle systems. The reconstructed sections are subjected to external velocity fields and mantle plume impingement beneath the lithosphere, both acting simultaneously. The models are designed to simulate the interaction between plumes and lithosphere in an extensional setting with the main purpose to contribute to address the following questions: 1) Are plumes capable of weakening certain lithospheric regions? Where and when are the main effects observed? 2a) Can a plume really cause a plate break-off and drifting with no external contribution; 2b) if yes, are there any particularly favorable conditions required? In our models a novel aspect is melt generation due to plume, upper mantle and lithospheric mantle partial melting. Produced melts are capable to ascend across the reconstructed sections due to buoyancy. Furthermore, heat transport related to melt movement is taken into account and leads to a significant heating of host rocks at the melt neutral buoyancy depth. In absence of external stress or velocity fields, the effects of plume impingement beneath the lithosphere are negligible at surface. Here the main observed feature is the production of doming at various length scales, depending on the adopted rheology for the crust. At depth, the main effect is a thermo-mechanical erosion of the lithospheric mantle with production of melts and subsequent underplating of the crust. The heat flux due to plume impingement and crust underplating determines a weakening of crust and lithosphere. However, the strength drop is not followed by an appreciable deformation. When external stress or velocity fields are applied, the coupled effects with plume presence and melt production lead to great modifications of the lithospheric structure. Topography profiles are characterized by the presence of a horst and graben structure, and extensive erosion of the lithosphere always occurs. The presence

  14. Coupled Simulations of RF Effects on Tearing Modes

    International Nuclear Information System (INIS)

    Full text: We present integrated feedback simulations of neoclassical tearing modes in tokamak plasmas. The implementation relies on the NIMROD and GENRAY codes, along with new codes for calculating a local quasilinear operator, and for performing the code coupling. The mathematical formulation relies on the formulation of a third-order electron drift-kinetic equation that captures the bootstrap current effects and is consistent with ECCD-driven kinetic distortion effects such as the Fisch-Boozer and Ohkawa current drives. Numerically solving the drift-kinetic equation relies on a new high-order continuum discretization scheme suitable for solving the equation in the presence of a macroscopic three-dimensional magnetic field. Implementing these new kinetic closures implicitly, along with the drift-kinetic terms, provides many numerical challenges and requires careful verification. (author)

  15. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  16. Rapid three-dimensional passive rotation micromixer using the breakup process

    Science.gov (United States)

    Park, Sung-Jin; Kim, Jung Kyung; Park, Junha; Chung, Seok; Chung, Chanil; Chang, Jun Keun

    2004-01-01

    Stretching and folding, diffusion, and breakup are three basic processes that occur while mixing fluids. Although stretching and folding the interface of two fluids by rotation enables the mixing at microscale level in both low and high Reynolds number flows, rotation is not as effective at a low Reynolds number as at a high Reynolds number. Therefore, developing a rapid micromixer for microfluidic systems that can be used at a low Reynolds number is a challenging task, because it can demonstrate the full potential of microfluidic systems in commercial markets. Here, to enhance the mixing efficiency of a micromixer based on passive rotation, we present a breakup method. The breakup method not only generates interface actively but also enhances the diffusion process at the interface. With our novel design, over 70% mixing can be achieved only after passing through a 4 mm long microchannel. In this work, the mixer was easily fabricated with polydimethylsiloxane by soft lithography and a self-aligned bonding method with methanol. We analyzed the flow in the micromixer using the computational fluid dynamics method. Also, we conducted quantitative analyses using a confocal scanning microscope and image processing.

  17. Coulomb and nuclear breakup at low energies: Scaling laws

    International Nuclear Information System (INIS)

    We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei. (authors)

  18. Significance Of Deuteron Breakup In A Halo Transfer Reaction

    CERN Document Server

    Yilmaz, M; Yilmaz, Mustafa; Gonul, Bulent

    2000-01-01

    We discuss the quasi-adiabatic approximations to the three-body wavefunction in breakup processes, clarifying the assumptions underlying the model. This suggests alternative approximation schemes. Using different theoretical three-body models, calculated differential cross section angular distributions for the Be-11(p,d) reaction,for which new preliminary data have been reported at 35 MeV, are presented. We show that calculations are sensitive to the inclusion of deuteron breakup and to the breakup model used, particularly if used to deduce absolute spectroscopic information on the 0{+} and 2{+} Be-10 core state parentages. There is also considerable sensitivity to the model used in calculations of the relative cross sections to the two states.

  19. Breakup of Droplets in Micro and Nanofluidic T-Junctions

    Directory of Open Access Journals (Sweden)

    A. bedram

    2013-01-01

    Full Text Available We employ numerical simulations to investigate the breakup of droplets in micro- and nanoscale T junctions, which are used to produce small droplets from a large droplet. For this purpose a Volume f Fluid (VOF based method is used and for verifying the reliability of the numerical outcomes, the results are compared with the available experimental and analytical results. Our results reveal that breakup time and breakup length of the droplets play important roles in handling these systems optimally. Our results also indicate that for nanoscale Tjunctions by increasing the capillary number the performance increases while for the micro-scale systems there is a specific capillary number for which the system is in its optimum condition.

  20. Break-up stage restoration in multifragmentation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Raduta, Ad.R. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay cedex (France)]|[NIPNE, Bucharest-Magurele, POB-MG 6 (Romania); Bonnet, E.; Borderie, B.; Le Neindre, N.; Rivet, M.F. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay cedex (France); Piantelli, S. [Dip. di Fisica e Sezione INFN, Universita di Firenze, I-50019 Sesto Fiorentino, Fi (Italy)

    2007-02-15

    In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up fragments are built-up from the experimentally detected ones using evaluations of light particle evaporation multiplicities which thus settle fragment internal excitation. Freeze-out characteristics are extracted from experimental kinetic energy spectra under the assumption of full decoupling between fragment formation and energy dissipated in different degrees of freedom. Thermal kinetic energy is determined uniquely while for freeze-out volume - collective energy a multiple solution is obtained. Coherence between the solutions of the break-up restoration algorithm and the predictions of a multifragmentation model with identical definition of primary fragments is regarded as a way to select the true value. The broad kinetic energy spectrum of {sup 3}He is consistent with break-up genesis of this isotope. (authors)

  1. Scaling laws for near barrier Coulomb and Nuclear Breakup

    CERN Document Server

    Hussein, M S; Lubian, J; Otomar, D R; Canto, L F

    2013-01-01

    We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.

  2. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  3. Mechanisms of Li-projectile breakup-up

    International Nuclear Information System (INIS)

    Various experimental and theoretical features observed in recent studies of break-up of 6Li and 7Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.)

  4. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong;

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling bet...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented.......Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  5. Effective field theory of weakly coupled inflationary models

    International Nuclear Information System (INIS)

    The application of Effective Field Theory (EFT) methods to inflation has taken a central role in our current understanding of the very early universe. The EFT perspective has been particularly useful in analyzing the self-interactions determining the evolution of co-moving curvature perturbations (Goldstone boson modes) and their influence on low-energy observables. However, the standard EFT formalism, to lowest order in spacetime differential operators, does not provide the most general parametrization of a theory that remains weakly coupled throughout the entire low-energy regime. Here we study the EFT formulation by including spacetime differential operators implying a scale dependence of the Goldstone boson self-interactions and its dispersion relation. These operators are shown to arise naturally from the low-energy interaction of the Goldstone boson with heavy fields that have been integrated out. We find that the EFT then stays weakly coupled all the way up to the cutoff scale at which ultraviolet degrees of freedom become operative. This opens up a regime of new physics where the dispersion relation is dominated by a quadratic dependence on the momentum ω ∼ p2. In addition, provided that modes crossed the Hubble scale within this energy range, the predictions of inflationary observables — including non-Gaussian signatures — are significantly affected by the new scales characterizing it

  6. Effective field theory of weakly coupled inflationary models

    Science.gov (United States)

    Gwyn, Rhiannon; Palma, Gonzalo A.; Sakellariadou, Mairi; Sypsas, Spyros

    2013-04-01

    The application of Effective Field Theory (EFT) methods to inflation has taken a central role in our current understanding of the very early universe. The EFT perspective has been particularly useful in analyzing the self-interactions determining the evolution of co-moving curvature perturbations (Goldstone boson modes) and their influence on low-energy observables. However, the standard EFT formalism, to lowest order in spacetime differential operators, does not provide the most general parametrization of a theory that remains weakly coupled throughout the entire low-energy regime. Here we study the EFT formulation by including spacetime differential operators implying a scale dependence of the Goldstone boson self-interactions and its dispersion relation. These operators are shown to arise naturally from the low-energy interaction of the Goldstone boson with heavy fields that have been integrated out. We find that the EFT then stays weakly coupled all the way up to the cutoff scale at which ultraviolet degrees of freedom become operative. This opens up a regime of new physics where the dispersion relation is dominated by a quadratic dependence on the momentum ω ~ p2. In addition, provided that modes crossed the Hubble scale within this energy range, the predictions of inflationary observables — including non-Gaussian signatures — are significantly affected by the new scales characterizing it.

  7. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  8. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  9. Final state interactions in electron induced trinucleon breakup reactions

    International Nuclear Information System (INIS)

    This thesis presents an exact analysis of the electromagnetic breakup process of a trinucleon system. The one-photon exchange mechanism is reviewed. The relevant components of the nuclear current are discussed and the off-shell one-body current matrix elements are derived to accommodate the evaluation of the trinucleon nuclear structure functions. The Faddeev equations are introduced. To facilitate the numerical evaluations the unitary pole expansion (UPE) is employed to describe a local S-wave spin-dependent interaction in a series of separable potential terms. The UPE convergence properties for the trinucleon bound state as well as for the N-N and N-d scattering observables are investigated. In view of the electromagnetic two-body and three-body breakup analysis the half off-shell wave functions for 3N→Nd and 3N→3N scattering are calculated. The nuclear structure functions of the electromagnetic two-body breakup structure functions of the electromagnetic two-body breakup processes are derived and exactly calculated. Results are presented and discussed for several kinetamic configurations. The nuclear response functions of the trinucleon breakup processes are calculated for a momentum transfer Q = 400 MeV/c. The results are compared with recent experimental data for the longitudinal and transverse response of both trinucleon systems. The three-body contributions to the response functions result from an essentially fourfold numerical integration of the invariant electromagnetic three-body breakup amplitude. A detailed derivation of this amplitude is presented and the treatment of the subsequent integration is discussed. An extension is formulated to include D-state components in the trinucleon bound state as well as in the disconnected final state components for the two-body breakup process. One kinematic situation is studied with the D-state extension. For the three-body breakup processes only the PWIA response is determined with the D-state component in the

  10. Coupled effects of local movement and global interaction on contagion

    CERN Document Server

    Zhong, Li-Xin; Chen, Rong-Da; Qiu, Tian; Zhong, Chen-Yang

    2014-01-01

    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we investigate the coupled effects of random walk and intragroup interaction on contagion. Compared with the situation where only local movement or individual-based linkage exists, the coexistence of them leads to a wider spread of infectious disease. The roles of narrowing segregated spatial domain and reducing mobility in epidemic control are checked, these two measures are found to be conducive to curbing the spread of infectious disease. Considering heterogeneous time scales between local movement and global interaction, a log-log relation between the change in the number of infected individuals and the timescale $\\tau$ is found. A theoretical analysis indicates that the evolutionary dynamics in the present model is related to the encounter probability and the encounter time. A functional relation between the epidemic threshold and the ratio of shortcuts, and a functional relation...

  11. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-01-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...

  12. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  13. Effects of nicardipine on ventriculo-arterial coupling in humans.

    Science.gov (United States)

    Tanaka, K; Oshita, S; Kitahata, H; Kimura, H; Kawahito, S; Park, Y C; Sakabe, T

    1998-08-01

    The ratio of effective arterial elastance (Ea) to left ventricular elastance (Ees) is an indicator of the coupling between ventricular properties and arterial load properties. Another criterion for the coupling between an energy source and its load is the principle of economical fuel consumption, or mechanical efficiency, which is defined as the ratio of stroke work (SW) to myocardial oxygen consumption per beat (MVO2). It has been revealed that SW of ventricular contraction is maximized when Ea/Ees = 1, while mechanical efficiency is maximized when Ea/Ees = 0.5. The purpose of the present study was to investigate the ventriculo-arterial coupling during hypertension, and the effects of nicardipine on this relationship in surgical patients using Ea/Ees and SW/MVO2 as indicators. Anaesthesia was maintained with isoflurane, nitrous oxide, and fentanyl. Radial artery pressure was displayed on a polygraph, and left ventricular end-systolic and end-diastolic volumes were determined by use of transoesophageal echocardiography. Ees was calculated as MAP/(ESVI-4), where MAP is mean arterial pressure and ESVI is end-systolic volume index. Ea was calculated as the ratio of MAP to stroke volume index (SVI). Stroke work index (SWI) was calculated as the product of MAP and SVI. MVO2 was assessed by estimating the ventricular pressure-volume area index (PVAI), which is expressed as the sum of SWI and the end-systolic potential energy index. Before (baseline), and 3, 10, 20, and 30 min after i.v. nicardipine (30 micrograms kg-1), Ea/Ees and SWI/PVAI were determined in 14 surgical patients with intraoperative hypertension. Before nicardipine (during hypertension), Ea was almost equal to Ees, whereas Ea/Ees was significantly reduced to about 0.5-0.6 at 3, 10, and 20 min after nicardipine. SWI/PVAI was maximized and significantly greater than the baseline value at 3 min after nicardipine. These results suggest that, during hypertension, ventricular and arterial properties were so

  14. Magnetoelastic coupling and possibility of spintronic electromagnetomechanical effects

    International Nuclear Information System (INIS)

    Nanoelectromagnetomechanical systems (NEMMS) open up a new path for the development of high speed autonomous nanoresonators and signal generators that could be used as actuators, for information processing, as elements of quantum computers etc. Those NEMMS that include ferromagnetic layers could be controlled by the electric current due to effects related with spin transfer. In the present paper we discuss another situation when the current-controlled behavior of nanorod that includes an antiferro- (instead of one of ferro-) magnetic layer. We argue that in this case ac spin-polarized current can also induce resonant coupled magnetomechanical oscillations and produce an oscillating magnetization of antiferromagnetic (AFM) layer. These effects are caused by i) spin-transfer torque exerted to AFM at the interface with nonmagnetic spacer and by ii) the effective magnetic field produced by the spin-polarized free electrons due to sd-exchange. The described nanorod with an AFM layer can find an application in magnetometry and as a current-controlled high-frequency mechanical oscillator.

  15. Asymptotic and near-target direct breakup of 6Li and 7Li

    Science.gov (United States)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  16. Polarization measurements in pion deuteron breakup and absorption

    International Nuclear Information System (INIS)

    The reactions which form the pion-NN system are discussed. Rare and sensitive spin transfer observables involving the deuteron spin are reported. The improvements performed in the uncertainty associated with the only observable measured in pion deuteron breakup are presented

  17. Capillary breakup of suspensions near pinch-off

    Science.gov (United States)

    Mathues, Wouter; McIlroy, Claire; Harlen, Oliver G.; Clasen, Christian

    2015-09-01

    We present new findings on how the presence of particles alters the pinch-off dynamics of a liquid bridge. For moderate concentrations, suspensions initially behave as a viscous liquid with dynamics determined by the bulk viscosity of the suspension. Close to breakup, however, the filament loses its homogeneous shape and localised accelerated breakup is observed. This paper focuses on quantifying these final thinning dynamics for different sized particles with radii between 3 μm and 20 μm in a Newtonian matrix with volume fractions ranging from 0.02 to 0.40. The dynamics of these capillary breakup experiments are very well described by a one-dimensional model that correlates changes in thinning dynamics with the particle distribution in the filament. For all samples, the accelerated dynamics are initiated by increasing particle-density fluctuations that generate locally diluted zones. The onset of these concentration fluctuations is described by a transition radius, which scales with the particle radius and volume fraction. The thinning rate continues to increase and reaches a maximum when the interstitial fluid is thinning between two particle clusters. Contrary to previous experimental studies, we observe that the final thinning dynamics are dominated by a deceleration, where the interstitial fluid appears not to be disturbed by the presence of the particles. By rescaling the experimental filament profiles, it is shown that the pinching dynamics return to the self-similar scaling of a viscous Newtonian liquid bridge in the final moments preceding breakup.

  18. Approximations in fusion and breakup reactions induced by radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, W.H.Z.; Carlin Filho, N.; Hussein, M.S. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Canto, L.F.; Donangelo, R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Lubian, J. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica; Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Romanelli, A. [Facultad de Ingenieria, Montevideo (Uruguay). Inst. de Fisica

    2000-07-01

    Some commonly used approximations for complete fusion and breakup transmission coefficients in collisions of weakly bound projectiles at near barrier energies are assessed. We show that they strongly depend on the adopted classical trajectory and can be significantly improved with proper treatment of the incident and emergent currents in the WKB approximation. (author)

  19. Thermal energy conversion by coupled shape memory and piezoelectric effects

    International Nuclear Information System (INIS)

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations. (paper)

  20. Thermal energy conversion by coupled shape memory and piezoelectric effects

    Science.gov (United States)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  1. Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons are investigated. The effect of small- world type connection is often simplified with local regular connection and the long-range connection with certain probability. The network effect on the development of spiral wave can be better described by local regular connection and changeable long-range connection probability than fixed long-range connection probability because the long-range probability could be changeable in realistic biological system. The effect from the changeable probability for long-range connection is simplified by multiplicative noise. At first, a stable rotating spiral wave is developed by using appropriate initial values, parameters and no-flux boundary conditions, and then the effect of networks is investigated. Extensive numerical studies show that spiral wave keeps its alive and robust when the intensity of multiplicative noise is below a certain threshold, otherwise, the breakup of spiral wave occurs. A statistical factor of synchronization in two-dimensional array is defined to study the phase transition of spiral wave by checking the membrane potentials of all neurons corresponding to the critical parameters(the intensity of noise or forcing current)in the curve for factor of synchronization. The Hindmarsh-Rose model is investigated, the Hodgkin-Huxley neuron model in the presence of the channel noise is also studied to check the model independence of our conclusions. And it is found that breakup of spiral wave is easier to be induced by the multiplicative noise in presence of channel noise.

  2. PLATYPUS: a code for fusion and breakup in reactions induced by weakly-bound nuclei within a classical trajectory model with stochastic breakup

    CERN Document Server

    Diaz-Torres, Alexis

    2007-01-01

    A self-contained Fortran-90 program based on a classical trajectory model with stochastic breakup is presented, which should be a powerful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates complete and incomplete fusion cross sections and their angular momentum distribution, as well as breakup observables (angle, kinetic energy and relative energy distributions).

  3. A study of proton breakup from exotic nuclei through various reaction mechanisms in 40 A - 80 AMeV energy range

    International Nuclear Information System (INIS)

    We have studied the single proton breakup from weakly bound exotic nuclei due to several reaction mechanisms separately and their total and the interference effects, in order to clarify quantitatively which mechanism would dominate the measured observables. We have considered: first, the recoil effect of the core-target Coulomb potential which we distinguish from the direct proton-target Coulomb potential, and secondly the nuclear breakup, which consists of stripping and diffraction. Thus, we have calculated the absolute values of breakup cross sections and parallel momentum distributions (LMD) for 8B and 17F projectiles on a light and a heavy target in a range of intermediate incident energies (40 A-80 A MeV) for each reaction mechanism. Furthermore the interference among the two Coulomb effects and nuclear diffraction has been studied in detail. The calculation of the direct and recoil Coulomb effects separately and of their interference is the new and most relevant aspect of this work. (authors)

  4. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    performed. The coolant temperature was found to significantly affect the shape and size of the debris. The maximum fragment size was found to increase with reduction in coolant temperature. No effect of coolant voiding on the fragment size distribution was observed. A series of high temperature melt jet experiments were performed, in the MIRA-20L experimental facility. Three types of oxidic melts, namely; CaO-B2O3, MnO-TiO2 and WO3-CaO were employed as melt jet liquid. The melt jet fragmentation was classified into two regimes, the hydrodynamic-controlled regime and the solidification-controlled regime. The delineation between those regimes was observed from the size characteristic and morphology of the solidified debris which was formed. The temperature of the coolant was the primary parameter in determining which regime the jet fragmentation would fall into. It was found, at low subcooling, the fragments are relatively large and irregular compared to smaller particles produced at higher subcooling. The melt density was found to have significant effect on the particle size. The mass mean size of the debris changes proportional to the square root of the coolant to melt density ratio. A systematic investigation of the performance of statistical distributions which may be used to describe the size distributions of fragments obtained from molten fuel coolant interaction (MFCI) experiments was performed. The statistical analysis of the debris produced in both experiments showed that the sequential fragmentation theory fits best the particle distribution produced during the jet fragmentation process. In the second part of the second chapter, analysis of the jet breakup experiments are performed. The low temperature jet fragmentation experiments are simulated with a recently developed Multiphase Eulerian Lagrangian Method. The effect of particle diameter and particle drag on the jet dynamics and penetration behavior is investigated. The third part of the second chapter deals with

  5. Development and validation of models for bubble coalescence and breakup

    International Nuclear Information System (INIS)

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  6. Coupling strength effect on shot noise in boron devices

    International Nuclear Information System (INIS)

    The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green's function. It is found that the shot noise and Fano factors can be tuned by changing the structures, the size, and the coupling strength. The shot noise is suppressed momentarily as we switch on the bias voltage, and the electron correlation is significant. The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context. In the weak-coupling context, the Fano factors are almost invariant with the increase of length and width over a wide bias range

  7. Effects of coupling and asymmetries on load resilience of IC (Ion Cyclotron) ITER-like coupling structures

    International Nuclear Information System (INIS)

    In the ITER ion cyclotron system reference design, plasma loading is modelled by a 'transmission line' estimate of the diagonal term Zii of the coupling impedance matrix. The basic element of the ITER array, called ITER-like structure (ILS) is itself a poloidal array of 2 short-circuited current straps, each in series with a tuning capacitive reactance, and connected in parallel to the output of a RF power source, via a step-up impedance transformer. In this paper the effects of plasma coupling and other asymmetries are analysed for a generic ILS. It has been shown that any reasonable level of coupling and other electrical asymmetries do not affect load resilience in array of ILS, provided that conjugate symmetry between half sections currents is maintained in each array element by a suitable control system

  8. Joint venture breakup and the exploration-exploitation trade-off

    OpenAIRE

    Long, Ngo Van; Soubeyran, Antoine; Soubeyran, Raphael

    2009-01-01

    This paper explores the effect of a potential joint-venture breakup on the level of technology transfer in a set-up with exploration-exploitation trade-offs in the presence of time compression costs. We consider a joint-venture relationship between a technologically advanced multinational firm and a local firm operating in a developing economy where the ability to enforce contracts is weak, and the local firm can quit without penalties. The multinational firm has to consider the advantages an...

  9. Evidence of strong dynamic core excitation in $^{19}$C resonant break-up

    OpenAIRE

    Lay, J. A.; Diego, R. de; Crespo, R.; Moro, A. M.; Arias, J. M; Johnson, R.C.

    2016-01-01

    The resonant break-up of $^{19}$C on protons measured at RIKEN [Phys. Lett. B 660, 320 (2008)] is analyzed in terms of a valence-core model for $^{19}$C including possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of $5/2^{+}$ for this state. Inclusion of core-excitation effects are found to be essential to give the correct magni...

  10. Effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy

    Indian Academy of Sciences (India)

    S Haddad

    2013-05-01

    The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect increases with the increasing neutron number in the nucleus.

  11. Influence of neutron correlations on nuclear break-up reaction both from theoretical and experimental point of view

    International Nuclear Information System (INIS)

    Nuclear break-up has been studied both from an experimental and a theoretical point of view and has shown to be a powerful tool to probe nucleon correlations in nuclei. A theory beyond mean-field, called TDDM, (Time Dependant Density Matrix) taking into account two-body correlations has been developed. The dynamical evolution of a correlated nuclei can be described and especially nuclear break-up. This study shows that the distributions of relative angle between the two neutrons strongly differ when varying initial correlations: two nucleons close together in the nuclei will lead to small relative angle after emission whereas two nucleons far from each other gives large relative angles. From an experimental point of view, correlations between the two neutrons in the halo of the Borromean nucleus He6 have been investigated. Its ground state is predicted to have two dominant configurations: the di-neutron configuration where the two neutrons are very close to each other and the cigar configuration, where the two neutrons are on opposite side with respect to the core. Nuclear break-up of He6 on a lead target has been studied at GANIL with a SPIRAL beam. The alpha particles coming out of the break-up where detected by a stripped Silicon detector coupled to a Silicon-Lithium detector and the neutrons by EDEN and the Neutron Wall, in order to get a large angular coverage. Angular correlation functions extracted from data show both strong correlation at small relative angles and at large relative angle corresponding respectively to the contribution of the di-neutron configuration and of the cigar like configuration. So He6 ground state seems to be a superposition of these two configurations. (author)

  12. The study on the relationship between breakup modes and gas-liquid interfaces

    Institute of Scientific and Technical Information of China (English)

    DU Qing; LIU Ning; YIN Jun

    2008-01-01

    Based on the linear instability analysis, the study on the relationship between breakup modes and gas-liquid interfaces of a viscous annular liquid jet moving in two swirling gas streams has been car-ried out. From the numerical results of the dispersion equation, the relevancy of the breakup mode between an annular liquid jet and two liquid jets of limiting cases, namely the cylindrical liquid jet and hollow gas jet, as well as the effects of injecting factors on the instability of an annular liquid jet, is studied in detail. Considering the effects of inner and outer interface radii on the instability of the jet, it is proved that the para-sinuous mode mainly relates to the inner interface, whereas the para-varicose mode mainly relates to the outer interface. The results also indicate that all the forces produced by liquid jet have similar impacts on either the instability of para-sinuous mode or para-varicose mode due to the fact that they can affect both inner and outer gas-liquid interfaces. On the other hand, all the forces exerting only on the inner interface have more powerful effects on the instability of para-sinuous mode, and all the forces exerting only on the outer interface have more powerful effects on the insta-bility of para-varicose mode. That is to say, the effects of forces are weakened greatly when penetrating the liquid jet.

  13. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    Science.gov (United States)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-08-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.

  14. Computational and Experimental Study of Sprays from the Breakup of Water Sheets

    DEFF Research Database (Denmark)

    Madsen, Jesper

    modeled using three approaches: 1) a volume of fluid (VOF) method using laminar viscosity only, 2) a VOF method using subgrid-scale turbulence modeling, and 3) a two-fluid Euler/Euler method using the laminar viscosity only. The primary focus of the analysis is on the internal flow characteristics in the...... equation (PBE) is coupled to the continuity and momentum balance equations. The direct quadrature method of moments (DQMOM) is implemented to simulate the evolution of the droplet size distribution (DSD) due to breakup and coalescence. The DQMOM-multi-fluid model uses source terms for the first 2N moments......-of-focus particle images. The velocity of each particle is simultaneously determined using particle tracking velocimetry (PTV) on focused images. Results are compared to PDA measurements. In shape and trends the data acquired with IPI and PDA are very similar, however due to different sampling methods employed by...

  15. Population of Metastable States in Stable Hafnium and Ytterbium Nuclei via Beam Break-up

    International Nuclear Information System (INIS)

    The ''Chessboard'' section of the DIAMANT charged-particle array has been coupled with the AFRODITE γ-ray spectrometer at the iThemba Laboratory for Accelerator Based Sciences. Charged-particle-γ-ray coincidence data were recorded during the bombardment of a 176Yb target with a 13C beam at an energy of 90 MeV. The purpose of the investigation was to study the population of metastable states in hafium nuclei via incomplete fusion reactions in which the beam breaks up due to its α-cluster character. Of note was the observation of the band based on the Kπ = 16+, T1/2 = 31 year isomer in 178Hf to its 19+ member. Also, decays from the high-K isomeric states in 174Yb and 176Yb. which were populated via 3αxn channels, indicative of complete break-up of the 13C beam

  16. High Energy Break-Up of Few-Nucleon Systems

    Science.gov (United States)

    Sargsian, Misak

    2008-03-01

    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon by the outgoing two nucleons. Within HRM we discuss hard break-up reactions involving 2D and 3He targets. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  17. High Energy Break-Up of Few-Nucleon Systems

    CERN Document Server

    Sargsian, Misak M

    2008-01-01

    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon by the outgoing two nucleons. Within HRM we discuss hard break-up reactions involving $^2D$ and $^3He$ targets. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  18. Improvement of Jet Breakup Model in Fuel Coolant Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Kim, Kyung Kyu; Nam, Yang Ho [Korea Maritime Univ., Jinhae (Korea, Republic of)

    2007-02-15

    The objective of this work is to improve TRACER-II code in conjunction with the OECD SERENA project for validation of vapor explosion analysis codes. FCI breakup model is to be improved by building four-fluid multiphase flow model and existing models and experimental data are examined for the validation of the model. Four-fluid multiphase flow model has been built in TRACER-II code and jet breakup model has been included. Kelvin-Helmholtz instability is modelled for the jet side and boundary layer stripping is modelled for the jet leading edge. This work can contributes to the reduction of uncertainty in the FCI models for reactor safety analysis.

  19. Microscopic Description of Diffractive Deuteron Breakup by He-3 Nuclei

    CERN Document Server

    Kovalchuk, Valery

    2016-01-01

    A microscopic formalism for describing observed cross sections for deuteron breakup by three-nucleon nuclei was developed on the basis of the diffraction nuclear model. A general formula that describes the amplitude for the reaction d+3He->3He+p+n and which involves only one adjustable parameter was obtained by using expansions of the integrands involved in terms of a Gaussian basis. This formula was used to analyze experimental data on the exclusive cross sections for deuteron breakup by He-3 nuclei at the projectile energy of 89.4 MeV. The importance of employing, in calculations, a deuteron wave function that has a correct asymptotic behavior at large nucleon-nucleon distances was demonstrated.

  20. Elastic breakup cross sections of well-bound nucleons

    CERN Document Server

    Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M

    2014-01-01

    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.

  1. Study on breakup behavior of molten material JET in coolant

    International Nuclear Information System (INIS)

    It is important to estimate the jet breakup behavior of the molten core material jet in coolant during a core distractive accident (CDA) of a fast breeder reactor (FBR). In the present study, the molten jet of U-alloy 78 simulating the core material is injected into the water simulating the coolant. The visual data of the molten jet breakup behavior is observed by using the high-speed video camera. The front velocity of the molten jet is estimated by using the image processing technique from the visual data. It shows that the front velocity of the molten jet can be divided into three regions in time. In first region, the front velocity of the molten jet increases. In second region, the front velocity of the molten jet suddenly decreases. In third region, the front velocity of the molten jet keeps at low and steady. In first region, the column diameter of the molten jet decreases with the passage of time. At the location between first region and second region, the column of the molten jet breaks up and disappears. It is experimentally observed that the molten material column in the molten material jet from breaks up and disappears as the border time between the first and the second regions. In the present study, the jet breakup length is defined as the distance from the water surface to the location between the first and the second regions, since the main body of the molten material jet column is fragmented at the time and location. From the present experimental results, it is clarified that the jet breakup behavior depends on the injection nozzle diameter but independs on the penetration velocity of the molten material jet. The present experimental results are different from qualitative tendency of the formula by Saito at al. but are qualitatively similar by Epstein et al.. (author)

  2. Break-up of a non-Newtonian jet injected downwards in a Newtonian liquid

    Indian Academy of Sciences (India)

    Absar M Lakdawala; Rochish Thaokar; Atul Sharma

    2015-05-01

    The present work on downward injection of non-Newtonian jet is an extension of our recent work (Lakdawala et al, Int. J. Multiphase Flow. 59: 206–220, 2014) on upward injection of Newtonian jet. The non-Newtonian rheology of the jet is described by a Carreau type generalized Newtonian fluid (GNF) model, which is a phenomenological constitutive equation that accounts for both rate-thinning and rate-thickening. Level set method based numerical study is done for Newtonian as well as various types of shear thinning and thickening jet fluid. Effect of average injection velocity ($V_{av,i}$) is studied at a constant Reynolds number Re = 14.15, Weber number W e = 1, Froude number F r = 0.25, density ratio $\\chi$ = 0.001 and viscosity ratio $\\eta$ = 0.01. CFD analysis of the temporal variation of interface and jet length ($L_{j}$) is done to propose different types of jet breakup regimes. At smaller, intermediate and larger values of $V_{av,i}$, the regimes found are periodic uniform drop (P-UD), quasi-periodic non-uniform drop (QP-NUD) and no breakup (NB) regimes for a shear thinning jet; and periodic along with Satellite Drop (P+S), jetting (J) and no breakup (NB) regimes for a shear thickening jet, respectively. This is presented as a drop-formation regime map. Shear thickening (thinning) is shown to produce long (short) jet length. Diameter of the primary drop increases and its frequency of release decreases, due to increase in stability of the jet for shear thickening as compared to thinning fluid.

  3. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  4. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  5. Manipulating effective spin orbit coupling based on proximity effect in magnetic bilayers

    International Nuclear Information System (INIS)

    A proximity effect of spin orbit coupling (SOC) is proposed in nonmagnetic metal/ferromagnet (NM/FM) bilayers by extending the Crépieux-Bruno (CB) theory. We demonstrate that over 1000% enhancement of the SOC strength can be realized based on this effect (Pt/FM bilayers) and it brings greatly enhanced anomalous Hall effect and anomalous Nernst effect. This work could help maximize the performance of magnetic transport property for the spintronics device using NM/FM as the key structure

  6. Hard breakup of the deuteron into two Δ isobars

    International Nuclear Information System (INIS)

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels to be similar.

  7. Investigation of correlations in the breakup of He8

    International Nuclear Information System (INIS)

    Correlations in light neutron-rich nuclei are of considerable importance in understanding their structure. In this context the breakup of He8 into He6 + 2n has been investigated at 15 MeV/nucleon. The measurements were undertaken using a setup composed of two detector arrays: CHARISSA to detect the charged fragments and DEMON to detect the neutrons. The interpretation of the results was facilitated using a Monte Carlo simulation which was developed to take into account the correlations, the reaction and the experimental setup. Two techniques were used to study the correlations in the breakup of He8. The first, intensity interferometry, provides, via the construction of the neutron-neutron correlation function, for a first estimate of the source size and thus the average separation between the neutrons. The second, using Dalitz plots, allows both the neutron-neutron and core-neutron correlations to be probed. Here, sequential decay via the ground state resonance of He7 and has been found to dominate the dissociation of He8. The spatial and temporal characteristics of the breakup of He8 have thus been deduced and a root-mean-square separation between the two valence neutrons in the continuum states was estimated to be (7.3 ± 0.6) fm with a time delay between their emission of (1000 ± 300) fm/c. (author)

  8. Longitudinal Effects of Conflict Behaviors on Depressive Symptoms in Young Couples

    OpenAIRE

    Laurent, Heidemarie K.; Kim, Hyoun K.; Capaldi, Deborah M.

    2009-01-01

    This study investigated relationship dynamics contributing to gender differences in depression by testing longitudinal associations between observed conflict behaviors and depressive symptoms in young couples. Direct effects of psychological aggression, positive engagement, and withdrawal, as well as indirect effects via relationship satisfaction were considered. Participants were 68 heterosexual couples involving men from the Oregon Youth Study who remained in a stable relationship across at...

  9. MAFIA analysis of the effects of coupling slots in linacs

    Science.gov (United States)

    Adams, F. P.; Ungrin, J.; de Jong, M. S.

    1991-05-01

    We have used the MAFIA codes to analyze on-axis slot-coupled {π}/{2}- mode standing-wave linac structures. Quadrupolar fields in the structure are found to produce an elliptical accelerated beam. A modification to the design, yielding reduced beam ellipticity, is proposed.

  10. Higgs-Z-photon coupling from effect of composite resonances

    International Nuclear Information System (INIS)

    We explore the Higgs-Z-photon coupling in the Minimal Composite Higgs Model with vector and axial resonances. The electroweak precision measurement, i.e. S and T, is estimated for this model. We calculate the signal strength for Higgs decay into Z-photon and notable enhancement is found in certain EWPT allowed parameter region

  11. Effects of long-range coupling on aggregation

    International Nuclear Information System (INIS)

    Numerical simulations of a 2D biharmonic equation ∇4u = 0 show that a transition from dense to multibranched growth is a consequence of long-range coupling between displacements on the patter formation of fractal aggregates. (author). 7 refs, 2 figs

  12. A methodology of MSL breakup analysis for Earth accidental reentry and its application to breakup analysis for Mars off-nominal entry

    Science.gov (United States)

    Salama, Ahmed; Ling, Lisa

    2005-01-01

    Vehicle breakup analysis has been performed for missions that may carry nuclear fuel for heating or power purposes to assess nuclear safety in case of launch failure leading to atmospheric reentry. Also, failure scenarios exist which could lead to breakup during Entry / Descent / Landing (EDL) at Mars due to off-nominal entries, with implications for planetary protection requirements. Since the Mars Science Laboratory (MSL) spacecraft may include a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), an analysis of breakup in case of launch failure is required. Also, breakup during Mars EDL due to off-nominal entries could release the RTG heat source that has implications for planetary protection requirements. This paper presents a methodology of MSL breakup analysis for launch failure with application to Mars off-nominal entry.

  13. COMPENSATION FOR THE MUTUAL COUPLING EFFECT FOR THE ESPRIT ALGORITHM IN SINGLE SNAPSHOT ARRAY PROCESSING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An effective method is introduced to compensate the effects of mutual coupling for the Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) direction finding algorithm in application of signal snapshot array processing. Changing the covariance matrix into a Teoplitz matrix can achieve high resolution in the Direction Of Arrive (DOA) estimation. How the mutual coupling affects the array antennas has been discussed and a new definition of mutual impedance has been used to characterize the mutual coupling effects between the array elements. Based on the new mutual impedance matrix, a practical method is presented to eliminate the effects of mutual coupling for ESPRIT in the single snapshot data processing. The simulation results show that,this new method not only properly reduces the effects of mutual coupling, but also maintains its steady performance even for weak signals.

  14. Effects of quantum coupling on the performance of metal-oxide-semiconductor field transistors

    Indian Academy of Sciences (India)

    Ling-Feng Mao

    2009-02-01

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled Schrödinger–Poisson equations with the finite-difference method. The results show that the quantum coupling between the transverse and the longitudinal components of the electron motion can largely affect device performance. It suggests that the quantum coupling effect should be considered for the performance of a ballistic MOSFET due to the high injection velocity of the channel electron.

  15. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  16. Psychological distress of marital and cohabitation breakups.

    Science.gov (United States)

    Tavares, Lara Patrício; Aassve, Arnstein

    2013-11-01

    Using data from a large survey, the British Household Panel Survey (BHPS), this paper explores the extent to which marital and cohabiting unions differ with respect to the short-term effects of union dissolution on mental health. We compare married individuals who divorced or separated with cohabitors whose first union ended and test the hypothesis that married individuals experience larger negative effects. Results show that initial differences are not statistically significant once the presence of children is controlled for, suggesting that the presence of children is a particularly significant source of increased psychological distress in union dissolutions. However, parenthood does not explain serious psychological distress, which appears to be associated with enduring traits (the personality trait neuroticism). PMID:24090854

  17. Fano effect through parallel-coupled double Coulomb islands

    International Nuclear Information System (INIS)

    By means of the nonequilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dot (DQD) in the presence of on-dot Coulomb interaction U. With focus on the quantum interference in the U-dominant parallel-coupled DQD, we find two types of Fano interferences in the conductance spectra. If the one-particle DQD bonding and antibonding bands are well separated from their Coulomb blockade counterparts, the main features of Fano interference in usual DQD systems are recovered with minor revisions. The most interesting is the hybridization between the antibonding state and the Coulomb counterpart of the bonding state, which gives rises to two new channels for Fano resonance. The Fano interference in the Coulomb hybridized systems can be controlled by the electrostatic and magnetic approaches, and exhibits properties quite different from what are reported in the noninteracting Fano-Anderson model

  18. The Coupling Effect of Spatial Reticulated Shell Structure with Cables

    Institute of Scientific and Technical Information of China (English)

    MA Jun; ZHOU Dai; FU Xu-chen

    2005-01-01

    The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore,such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.

  19. Desired Change in Couples: Gender Differences and Effects on Communication

    OpenAIRE

    HEYMAN, RICHARD E.; Hunt, Ashley N.; Malik, Jill; Smith Slep, Amy M.

    2009-01-01

    Using a sample (N = 453) drawn from a representative sampling frame of couples who are married or living together and have a 3–7 year old child, this study investigates (a) the amount and specific areas of change desired by men and women, (b) the relation between relationship adjustment and desired change; and (c) the ways in which partners negotiate change. On the Areas of Change Questionnaire, women, compared with men, wanted greater increases in their partners’ emotional and companionate b...

  20. Electron--phonon coupling and anharmonic effects in metal clusters

    CERN Document Server

    Karpeshin, F F; Providência, J

    2004-01-01

    The periods of the harmonic oscillations of the ion core of charged sodium clusters around the equilibrium shapes are considered. It is found that these periods are of the order of magnitude of the experimentally measured relaxation times of the plasmons, which suggests the importance of the electron-ion coupling and stresses the role played by the electron-phonon interaction in the dissipation of the plasmon energy. The relation of the process to fission is briefly discussed.

  1. A relativistic effective model with parameterized couplings for neutron stars: the role of antikaon condensates

    International Nuclear Information System (INIS)

    We study the effects of antikaon condensates in neutron stars in the framework of a relativistic effective model with derivative couplings which includes genuine many-body forces simulated by nonlinear interaction terms involving scalar-isoscalar (σ, σ*), vector-isoscalar (ω, ϕ), vector-isovector (ϱ), scalar-isovector (δ) mesons. The effective model presented in this work has a philosophy quite similar to the original version of the model with parameterized couplings. But unlike that, in which the parametrization is directly inserted in the coupling constants of the Glendenning model, we present here a method for the derivation of the parametric dependence of the coupling terms, in a way that allows in one side to consistently justify this parametrization and in the other to extend in a coherent way the range of possibilities of parameterizations in effective models with derivative couplings. The extended model is then applied to the description of the mass of neutron stars. (author)

  2. Couplings in multiphasic geo-materials: temperature and chemistry effects

    International Nuclear Information System (INIS)

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  3. Effectiveness of psychiatric and counseling interventions On fertility rate in infertile couples

    OpenAIRE

    Ramezanzadeh F; Noorbala AA.; Malak Afzali H.; Abedinia N.; Rahimi A; Shariet M.; Rashidi B.; Tehraninajad A.; Sohravand F.; Bagheri M

    2007-01-01

    Background: Considering the psycho-social model of diseases, the aim of this study was to evaluate the effect of psychiatric intervention on the pregnancy rate of infertile couples.Methods: In a randomized clinical trial, 638 infertile patients referred to a university infertility clinic were evaluated. Among them, 140 couples with different levels of depression in at least one of the spouses were included in this substudy. These couples were divided randomly into two groups. The patients in ...

  4. Effects of a psychological intervention on Quality of life in infertile couples

    OpenAIRE

    Nasrin Abedinia; Fatemeh Ramezanzadeh; Ahmad Ali Noorbala1

    2009-01-01

    Objective: This study aimed to determine factors affecting depression in infertile couples and effect of psychological intervention on pregnancy rate of infertile couples.Materials and Methods: In this study, 638 infertile patients referring to a university infertility clinic were evaluated. Among them, 140 couples with different levels of depression in at least one of the spouses were found and the study was continued by dividing them randomly into two groups, entering a randomized clinical ...

  5. Isobar width effects in the coupling of nucleon to isobar channels

    OpenAIRE

    González Marhuenda, Pedro; Lomon, Earle L.

    1986-01-01

    The investigation of the effects of isobar coupling to two-nucleon channels has been extended to include additional physical features. A new code discretizes the mass distribution of the isobar widths and treats each mass as a separate channel. This allows the treatment of width in the presence of coupling by transition potentials, in addition to the previously permitted boundary coupling. It also produces the S-matrix components required to describe the many-body final-state distributions. W...

  6. Modification of the Doppler Effect due to the Helicity-Rotation Coupling

    OpenAIRE

    Mashhoon, Bahram

    2002-01-01

    The helicity-rotation coupling and its current empirical basis are examined. The modification of the Doppler effect due to the coupling of photon spin with the rotation of the observer is considered in detail in connection with its applications in the Doppler tracking of spacecraft. Further implications of this coupling and the possibility of searching for it in the intensity response of a rotating detector are briefly discussed.

  7. Breakup mechanisms for 7Li + 197Au, 204Pb systems at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Luong D.H.

    2013-12-01

    Full Text Available Coincidence measurements of breakup fragments were carried out for the 7Li + 197Au and 204Pb systems at sub-barrier energies. The mechanisms triggering breakup, and time-scales of each process, were identified through the reaction Q-values and the relative energy of the breakup fragments. Binary breakup of 7Li were found to be predominantly triggered by nucleon transfer, with p-pickup leading to 8Be → α + α decay being the preferred breakup mode. From the time-scales of each process, the coincidence yields were separated into prompt and delayed components, allowing the identification of breakup process important in the suppression of complete fusion of 7Li at above-barrier energies.

  8. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    Science.gov (United States)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2010-03-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. The commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 10^6 s-1 and the influence of transientextensional rheology in the jet breakup. The presence of inertial, elastic and viscous effects typically leads to complex dynamics in a necking fluid thread. We show that by carefully controlling the excitation frequency, it is possible to drive the break-up in a particularly simple and symmetric mode, which can be used to extract extensional viscosity information using capillary thinning analysis.

  9. The use of the nonlinear optical loop mirror for investigations of pulse breakup in optical fibers

    Science.gov (United States)

    Kuzin, Evgeny A.; Pottiez, Olivier; Ibarra-Escamilla, Baldemar

    2011-03-01

    Pulse breakup and the formation of a bunch of solitons are the principal processes at the initial stage of the supercontinuum generation using long pulses for pumping. Most investigations use the measurement of the output spectrum to characterize the development of the supercontinuum. The extraction of an individual soliton or a group of solitons with similar parameters from the bunch can reveal details that are usually hidden when only the output spectrum is measured. Earlier we have studied the NOLM including a twisted fiber and a quarter wave retarder (QWR) in the loop. Its operation is based on the nonlinear polarization rotation effect. We showed that this NOLM is stable to changes of environmental conditions, and allows simple and predictable changes of its characteristics. In previous works we demonstrated its application for mode-locked lasers, pedestal suppression, or retrieval of a pulse shape. In this work we demonstrate that the NOLM is a viable device for the investigation of pulse breakup process and soliton formation. The operation principle is based on the fact that the NOLM has a maximum transmission for the solitons with specific durations while solitons with shorter and longer durations are strongly rejected. The duration associated with high transmission depends on the NOLM length and can also be changed by amplification of the solitons before entering the NOLM. By an appropriate choice of the NOLM parameters and the amplification of the bunch of solitons, the extraction of the solitons with selected parameters is possible.

  10. The break-up dynamics of liquid threads revealed by laser radiation pressure and optocapillarity

    Science.gov (United States)

    Petit, Julien; Robert de Saint Vincent, Matthieu; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2014-09-01

    We show how optocapillary stresses and optical radiation pressure effects in two-phase liquids open the way for investigating the difficult problem of liquid thread breakup at small scales when surfactants are present at the interface or when the roughness of the interface becomes significant. Using thermocapillary stresses driven by light to pinch a surfactant-laden microjet, we observe deviations from the expected visco-capillary law governed by a balance between viscosity and interfacial tension. We suggest that these deviations are due to time varying interfacial tension resulting from the surfactant depletion at the neck pinching location, and we experimentally confirm this mechanism. The second case is representative of the physics of nanojets. Considering a near critical liquid-liquid interface, where the roughness of the interfaces may be tuned, we use the radiation pressure of a laser wave to produce stable fluctuating liquid columns and study their breakup. We show how pinching crosses over from the visco-capillary to a fluctuation dominated regime and describe this new regime. These experiments exemplify how optofluidics can reveal new physics of fluids.

  11. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  12. Analyzing powers of the deuteron-proton breakup in a wide phase space region

    International Nuclear Information System (INIS)

    Deuteron-proton breakup can serve as a very rich testing ground for modern calculations based on model nucleon-nucleon interactions and including also subtle effects of the so-called three-nucleon force (3NF). In the case of experiment exploring a significant part of the phase space, data obtained for continuum of final states constitute a large base for comparisons with theoretical predictions. Moreover, studies with transversally polarized deuterons give access to two vector and three tensor analyzing powers, some of which vanish in the case of the elastic scattering process. A dedicated experiment has been performed at KVI Groningen, with the use of 130 MeV polarized deuteron beam and high acceptance position-sensitive detection system. About 800 data points have been analyzed for each spin observable: vector Ax, Ay and tensor Axx, Axy, Ayy analyzing powers of the 1H(vector (d),pp)n breakup reaction. Theoretical predictions generally describe analyzing power data quite well and the quality of description provided by various approaches is rather similar. There are, however, configurations where the agreement between the data and theory is not so satisfactory. These discrepancies are not always cured by inclusion of 3NF, what indicates incompleteness of the treatment of the spin part of three nucleon system dynamics.

  13. Vibration and Nonlinear Resonance in the Break-up of an Underwater Bubble

    CERN Document Server

    Lai, Lipeng; Fezzaa, Kamel; Zhang, Wendy W; Nagel, Sidney R

    2013-01-01

    We use high-speed X-ray phase-contrast imaging, weakly nonlinear analysis and boundary integral simulations to characterize the final stage of underwater bubble break-up. The X-ray imaging study shows that an initial azimuthal perturbation to the shape of the bubble neck gives rise to oscillations that increasingly distort the cross-section shape. These oscillations terminate in a pinch-off where the bubble surface develops concave regions that contact similar to what occurs when two liquid drops coalesce. We also present a weakly nonlinear analysis that shows that this coalescence-like mode of pinch-off occurs when the initial shape oscillation interferes constructively with the higher harmonics it generates and thus reinforce each other's effects in bringing about bubble break-up. Finally we present numerical results that confirm the weakly nonlinear analysis scenario as well as provide insight into observed shape reversals. They demonstrate that when the oscillations interfere destructively, a qualitativel...

  14. Medium modifications of the nucleon--deuteron break--up cross section in the Faddeev approach

    OpenAIRE

    M. Beyer; G. Röpke; Sedrakian, A.

    1996-01-01

    The three--nucleon scattering problem in a nuclear medium is considered within the Faddeev technique. In particular the deuteron break--up cross section that governs the formation and the break--up reactions of deuterons (NNN Nd) in a nuclear environment is calculated at finite temperatures and densities. A significant enhancement of the in--medium break--up cross section with increasing density has been found.

  15. Effects of running couplings on jet conversion photons

    CERN Document Server

    Bhattacharya, Lusaka

    2011-01-01

    We calculate photons from jet-plasma interaction considering collisional and radiative energy loss of jet parton. The phase space distribution of the participating jet is dynamically evolved by solving Fokker-Planck equation. We treat the strong coupling constant ($\\alpha_s$) as function of momentum and temperature while calculating the drag and diffusion coefficients. It is observed that the quenching factor is substantially modified as compared to the case when $\\alpha_s$ is taken as constant. It is shown that the Phenix data is reasonably well reproduced when contributions from all the relevant sources are taken into account.

  16. Experimental study on breakup characteristics of molten jet falling in gas plenum and water pool

    Energy Technology Data Exchange (ETDEWEB)

    Akinaga, Makoto; Kurita, Tomohisa; Yokobori, Seiichi [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2001-07-01

    The breakup characteristics of liquid jet issuing to air plenum and flowing into liquid pool were experimentally clarified. The jet breakup behavior around air was classified varying liquid substance. The bismuth and stannum molten jet was found to maintain its original shape. Moreover, breakup behavior of this molten jet during falling into the water pool was visualized. From the lump sedimented to the bottom, break-up behavior was found to be affected by the water subcooling which determining the balance between boiling and solidifying. (author)

  17. Experimental study on breakup characteristics of molten jet falling in gas plenum and water pool

    International Nuclear Information System (INIS)

    The breakup characteristics of liquid jet issuing to air plenum and flowing into liquid pool were experimentally clarified. The jet breakup behavior around air was classified varying liquid substance. The bismuth and stannum molten jet was found to maintain its original shape. Moreover, breakup behavior of this molten jet during falling into the water pool was visualized. From the lump sedimented to the bottom, break-up behavior was found to be affected by the water subcooling which determining the balance between boiling and solidifying. (author)

  18. Application of Multiphase Particle Methods in Atomization and Breakup Regimes of Liquid Jets

    CERN Document Server

    Farrokhpanah, Amirsaman

    2016-01-01

    Multiphase Smoothed Particle Hydrodynamics (SPH) method has been used to study the jet breakup phenomena. It has been shown that this method is well capable of capturing different jet breakup characteristics. The value obtained for critical Weber number here in transition from dripping to jetting is a very good match to available values in literature. Jet breakup lengths are also agreeing well with several empirical correlations. Successful usage of SPH, as a comparably fast CFD solver, in jet breakup analysis helps in speeding up the numerical study of this phenomenon.

  19. Influence of End-Effects on Static Torque Performance of Misaligned Cylindrical Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Hansen, Hilary; Jensen, Bogi Bech;

    2014-01-01

    Permanent magnet couplings are widely used in applications requiring torque to be transmitted through an air- gap. The aim of this study is to observe and explain the effect of radial and axial misalignment in a 12-pole, cylindrical permanent magnet coupling. Pull-out torque was measured for two...... coupling pairs which showed an increase of 3.1% and 3.8%, respectively, at maximum radial misalignment. When modeled in finite element analysis software, the coupling produces 3.7% more static pull- out torque than the aligned case. For axial misalignment the pull-out torque at different misalignment...

  20. Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms

    International Nuclear Information System (INIS)

    We have studied electromagnetically induced transparency (EIT) in the 5S1/2-5P3/2-5D5/2 ladder-type system of Rb. We observed relative changing magnitude of EIT hyperfine structures depending on not only the polarizations of the lasers but also the intensity of the coupling laser. The coupling-intensity effects are attributed to the nonlinear increase of the EIT signal to the coupling intensity. EIT signals nonlinear on the coupling intensity are analyzed by considering coherent interaction between atom and laser fields

  1. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    Science.gov (United States)

    Vawter, G. Allen

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  2. The Effectiveness of PREP with Lower-Income Racial/Ethnic Minority Couples

    Science.gov (United States)

    Owen, Jesse; Quirk, Kelley; Bergen, Carrie; Inch, Leslie J.; France, Tiffany

    2012-01-01

    The current study examined the effectiveness of the Prevention and Relationship Enhancement Program (PREP) with lower-income and racial/ethnic minority (African American and Latino/a) couples. Additionally, we tested whether relationship outcomes varied based on the delivery format (i.e., group format vs. couple format). The sample included 321…

  3. Bag-breakup control of surface drag in hurricanes

    Science.gov (United States)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  4. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  5. Phenomenological effects of CP conserving Higgs bosons self couplings in SM×S(3)

    International Nuclear Information System (INIS)

    A detailed analysis of a minimal S3-invariant extension of the Standard Model including an extended S3-Higgs sector is performed. In this model, we study the trilinear Higgs couplings and its dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We study quantitatively the trilinear Higgs couplings, and compare these couplings to the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. A precise measurement of the trilinear Higgs self coupling will also make it possible to test this extended S(3)-Standard Model which has a different trilinear Higgs couplings as compared to the Standard Model. Finally, partial numerical results of the phenomenological Higgs effects are presented.

  6. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  7. Investigations of nuclear projectile break-up reactions

    International Nuclear Information System (INIS)

    The cross sections for radiative capture of α-particles, deuterons and protons by light nuclei at very low relative energies are of particular importance for the understanding of the nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar burning processes at various astrophysical sites. As example we quote the reactions α+d → 6Li+γ, α+3He → 7Be+γ, or α+12C → 16O+γ. As an alternative to the direct experimental study of these processes we consider the inverse process, the photodisintegration, by means of the virtual photons provided by a nuclear Coulomb field: Z+a → Z+b+c. The radiative capture process b+c → a+γ is related to the inverse process, the photodisintegration γ+a → b+c by the detailed balance theorem. Except for the extreme case very close to the threshold the phase space favours the photodisintegration cross section as compared to the radiative capture. The Coulomb dissociation cross section proves to be enhanced due to the large virtual photon number, seen by the passing projectile, and the kinematics of the process leads to particular advantages for studies of the interaction of the two break-up fragments at small relative energies Ebc. The conditions of dedicated experimental investigations are discussed and demonstrated by recent experimental and theoretical studies of the break-up of 156 MeV 6Li projectiles. In addition, a brief review about general features of break-up processes of light ions in the field of atomic nuclei is given. (orig.)

  8. Breakup conditions of projectile spectators from dynamical observables

    International Nuclear Information System (INIS)

    Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  9. Coupling effect in a near-field object-superlens system

    Science.gov (United States)

    Liu, Zhengtong; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2012-04-01

    The coupling effect in a near-field object-superlens system has been studied, where the object is a silver cylinder and the superlens is a silver slab. A semi-analytical formulation has been established to study the system with and without the coupling effect. The analysis shows that the coupling effect significantly changes the field distributions of both the object and the image, leading to the conclusion that such a system must be designed and analyzed as a whole. Our study also suggests that it is possible to design a superlens system with mismatched permittivities.

  10. Coupling effect in a near-field object-superlens system

    OpenAIRE

    Liu, Zhengtong; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2012-01-01

    The coupling effect in a near-field object-superlens system has been studied, where the object is a silver cylinder and the superlens is a silver slab. A semi-analytical formulation has been established to study the system with and without the coupling effect. The analysis shows that the coupling effect significantly changes the field distributions of both the object and the image, leading to the conclusion that such a system must be designed and analyzed as a whole. Our study also suggests t...

  11. Propulsive effects of vortex coupling between parallel pulsed jets

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2015-11-01

    For vehicles that use pulsed jet propulsion, nature provides inspiration for different ways to improve propulsive performance. Communities of marine invertebrates called salps improve the efficiency of cruising locomotion by aggregating into large multi-animal chains. In this process, the cylindrical animals physically connect to each other side-by-side to form an array of individual pulsed jets whose synchronous pulsing propels the entire chain forward. Some benefits of this chaining behavior can be described using existing models of pulsed jet propulsion for steady, cruising conditions. However, during unsteady conditions such as impulsive maneuvering at low speeds, it remains unclear how interactions between neighboring jets will affect the chain's propulsive performance. Using bench-top experiments, we investigate the unsteady interactions between two parallel pulsed jets. Under some conditions, the pulsed jets form vortex rings that coalesce before vortex formation is complete, coupling the hydrodynamics of the independent jets. We measure how different degrees of vortex coupling alter the energy and momentum transfer in the two-jet system. Finally, we explore the energy and momentum scalings that would guide the design of a vehicle using multi-jet maneuvering techniques. This work was supported by the Office of Naval Research.

  12. Control rod calibration including the rod coupling effect

    International Nuclear Information System (INIS)

    In a reactor containing more than one control rod, which includes all reactors licensed in the United States, there will be a 'coupling' or 'shadowing' of control rod flux at the location of a control rod as a result of the flux depression caused by another control rod. It was decided to investigate this phenomenon further, and eventually to put calibration table data or formulae in a small computer in the control room, so once could insert the positions of the three control rods and receive the excess reactivity without referring to separate tables. For this to be accomplished, a 'three control- rod reactivity function' would be used which would include the flux coupling between the rods. The function is design and measured data was fitted into it to determine the calibration constants. The input data for fitting the trial functions consisted of 254 data points, each consisting of the position of the reg, shim, and transient rods, and the total excess reactivity. (About 200 of these points were 'critical balance points', that is the rod positions for which reactor was critical, and the remainder were determined by positive period measurements.) Although this may be unrealistic from a physical viewpoint, the function derived gave a very accurate recalculation of the input data, and thus would faithfully give the excess reactivity for any possible combination of the locations of the three control rods. The next step, incorporation of the three-rod function into the minicomputer, will be pursued in the summer and fall of 1984

  13. Bubble breakup in two-dimensional Stokes flow

    International Nuclear Information System (INIS)

    A new class of exact solutions is reported for an evolving bubble in a two-dimensional slow viscous flow. It is observed that for an expanding bubble the interface grows smoother with time, whereas the contracting-bubble solutions display a tendency to form sharp corners (''near cusps'') for small values of surface tension. In the latter case, we also obtain analytic solutions that describe bubble breakup: For a large class of initial shapes, the interface will eventually develop a thin ''neck'' whose width goes to zero before the bubble is completely removed from the liquid

  14. Chaotic behaviour as a signal of nuclear breakup

    International Nuclear Information System (INIS)

    The nuclear breakup process is studied under the assumption that the energy transfer between the target and the projectile nucleus in the peripheral collisions can induce a chaotic behaviour of the nuclear Fermi systems, provided by the matching between the Woods - Saxon wall frequency and the uni - nucleonic frequency oscillation. Such a behaviour could be emphasized by uni-nucleonic phase - space maps, Poincare maps, power spectra, autocorrelation function and Lyapunov exponents ranging the nuclear interaction time scale: 10-22 s - 10-23 s. It is also shown that this method could be applied for various different fields and problems regarding nuclear dynamics. (authors)

  15. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    Science.gov (United States)

    Chiolerio, Alessandro; Allia, Paolo; Graziano, Mariagrazia

    2012-09-01

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  16. Wave packet analysis and break-up length calculations for an accelerating planar liquid jet

    International Nuclear Information System (INIS)

    This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the

  17. Effects on the two-point correlation function from the coupling of quintessence to dark matter

    CERN Document Server

    Lee, Seokcheon; Ng, Kin-wang

    2009-01-01

    We investigate the effects of the nonminimal coupling between the scalar field dark energy (quintessence) and the dark matter on the two- point correlation function. It is well known that this coupling shifts the turnover scale as well as suppresses the amplitude of the matter power spectrum. However, these effects are too small to be observed when we limit the coupling strength to be consistent with observations. Since the coupling of quintessence to baryons is strongly constrained, species dependent coupling may arise. This results in a baryon bias that is dif- ferent from unity. Thus, we look over the correlation function in this coupled model. We find that even the non-coupled quintessence model gives the better fit to the correlation function compared to the cosmo- logical constant model. We are also able to observe the enhancement of the baryon acoustic oscillation (BAO) peak due to the increasing bias factor of baryon from this species dependent coupling. In order to avoid the damping effect of the BAO...

  18. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester

    International Nuclear Information System (INIS)

    This paper investigates the influence of the electromechanical coupling effect on the performances of a hybrid piezoelectric and electromagnetic energy harvester. For a common hybrid energy harvester, we derive an accurate analytical solution and get expressions for the resonant frequency shift, output power, amplitude and conversion efficiency. Then, based on various degrees of coupling effect, the performance of the harvester is studied with different load and excitation frequency, and compared with piezoelectric-only and electromagnetic-only energy harvesters. The results show that the bigger the coupling coefficient, the greater the resonant frequency shift, output power and conversion efficiency. In the weak coupling and medium coupling, the performances of the hybrid energy harvester are better than those of the two separate energy harvesting techniques; however, the hybrid energy harvester does not increase the power and conversion efficiency in contrast with the piezoelectric-only and electromagnetic-only energy harvester in strong coupling. In addition, the optimal load resistance of the hybrid energy harvester is related to the strength of the coupling effect; moreover, the optimal load resistance of the electromagnetic harvesting element for the hybrid harvester is bigger than that of the electromagnetic-only harvester in the medium and strong coupling. Through analysis of the results, ways of boosting the performances of the hybrid energy harvester are found. (papers)

  19. MULTIPHASE DROPLET/SLUG BREAK-UP MECHANISM IN MICROFLUIDIC T-JUNCTIONS AT VARIOUS WEBER NUMBERS

    Directory of Open Access Journals (Sweden)

    Wan Leng (Dawn Leow

    2011-10-01

    Full Text Available Normal 0 false false false EN-MY X-NONE X-NONE The formation of immiscible liquid droplets, or slugs, in microchannels features the advantages of volume control and mixing enhancement over single-phase microflows. Although the applications of droplet-based microfluidics have been widely demonstrated, the fundamental physics governing droplet break-up remains an area of active research. This study defines an effective Weber (Weeff number that characterizes the interplay of interfacial tension, shear stress and channel pressure drop in driving slug formation in T-junction microchannel for a relative range of low, intermediate and high flow rates. The immiscible fluid system in this study consists of Tetradecane slug formation in Acetonitrile. The progressive deformation of slug interfaces during break-up events is observed. Experimental results indicate that, at a relatively low Weeff, clean slug break-up occurs at the intersection of the side and main channels. At intermediate Weeff, the connecting neck of the dispersed phase is stretched to a short and thin trail of laminar flow prior to breaking up a short distance downstream of the T-junction. At a relatively high Weeff, the connecting neck develops into a longer and thicker trail of laminar flow that breaks up further downstream of the main channel.

  20. Neutrino-Electron Scattering: Charge Radius and Effective Couplings

    International Nuclear Information System (INIS)

    In this work the neutral-current scattering cross-section for neutrinos on electrons is calculated assuming that a massive Dirac neutrino is characterized by a phenomenological parameters, a charge radius (r2) and the right-handed currents are present in the framework of a Left-Right symmetric model (LR). Using the CHARM II result for the charge radius of the muon-neutrino |(r2)| < 6.0 × 10−33 cm2, we place a bound on −7.9 × 10−33 cm2 ≤ (r2)LR ≤ 7.9 × 10−33 cm2. We discuss the relationship between the electron neutral couplings gveV and gveA and the LR model parameters

  1. Strong-coupling effects in a plasma of confining gluons

    CERN Document Server

    Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad

    2015-01-01

    The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk and shear viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, bulk to shear viscosity ratio, scales linearly with the difference $1/3 - c_s^2$, where $c_s$ is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.

  2. Effectively Blocked Mechanism in Quantum Tunnelling of n-Coupled Single-Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-De

    2005-01-01

    @@ We present theoretical study on quantum tunnelling in n-coupled single-molecule magnets (SMMs) by spincoherent-state path integral. It is found that, due to weak coupling between SMMs, the tunnelling process involving more than one-spin-flip is effectively blocked and the main contribution to the relaxation of the magnetization comes from the tunnelling processes involving just one-spin-flip. Starting from the negative saturated magnetization, the effect of the antiferromagnetic on tunnelling coupling is found to be qualitatively different from the ferromagnetic coupling. A criterion is developed to determine both the nature and the strength of the exchange coupling from the position of the first resonance of a spherical sample with homogeneous magnetization.

  3. Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2013-09-01

    Full Text Available The coupling effects in bilayer thick metal (silver films perforated with rectangular nanohole arrays are investigated using the finite-difference time-domain technique. Many interesting light phenomena are observed as the distance between the metal rectangular nanohole arrays varies. Coupling effects are found to play very important roles on the optical and electronic properties of bilayer metal rectangular nanohole arrays: antisymmetric coupling between surface plasmon polaritons near the top and bottom film plane, and antisymmetric coupling between localized surface plasmon resonances near the two long sides of the rectangular hole, are probably excited in each layer of bilayer metal rectangular nanohole arrays; antisymmetric and symmetric magnetic coupling probably occur between the metal rectangular nanohole arrays.

  4. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the research proposed herein is to define the coupled (combined) effect of critical environments on the structural performance of composite...

  5. How effective are slurry storage, cover or catch crops, woodland creation, controlled trafficking or break-up of compacted layers, and buffer strips as on-farm mitigation measures for delivering an improved water environment?

    Directory of Open Access Journals (Sweden)

    Randall Nicola P

    2012-10-01

    Full Text Available Abstract Background Agriculture has intensified over the last 50 years resulting in increased usage of fertilizers and agrochemicals, changes in cropping practices, land drainage and increased stocking rates. In Europe, this has resulted in declines in the quality of soils and waters due to increased run off and water pollution. Fifty percent of nitrates in European rivers are derived from agricultural sources in the UK this value is as high as 70%, where agriculture also contributes to approximately 28% of phosphates and 76% of sediments recorded in rivers. Catchments dominated by agricultural land use have increased levels of pesticides and bacterial pathogens. European member states have a policy commitment to tackle water pollution through the Water Framework Directive. An analysis of the effectiveness of water pollution mitigation measures should enable decision makers and delivery agencies to better facilitate catchment planning. The aim of this systematic review is to assess the effectiveness of slurry storage, cover/catch crops, woodland creation, controlled trafficking/break-up of compacted layers and buffer strips, as on farm mitigation measures, for delivering an improved water environment. Methods The systematic review will consist of a searchable systematic map database for all the named interventions. Where possible, quantitative analysis will be used to assess the effectiveness of interventions. Electronic databases, the internet, and organisational websites will be searched, and stakeholders will be contacted for studies that investigate the impact of the on-farm mitigation measures on water quality. All studies found will be assessed for suitability for inclusion in the next stage. Inclusion criteria will be based on subject, intervention, comparator and outcome. The details of included studies will be incorporated into the systematic map database, and studies scored for effectiveness of intervention and study design. Where

  6. A theoretical study of the nonlinear thermo-magneto-electric coupling effect in magnetoelectric laminates

    International Nuclear Information System (INIS)

    For the tri-layer symmetric magnetoelectric (ME) laminates made of giant magnetostrictive materials and piezoelectric materials, we established a theoretical model for the nonlinear thermo-magneto-electric coupling effect in laminates. This model was nonlinear and calculated in an iterative approach. It adopted the nonlinear magneto-thermo-mechanical magnetostrictive constitutive and the linear mechanical-thermo-electric piezoelectric constitutive and introduced the interface coupling factor to describe the strain transfer efficiency between layers. The predictions of ME coefficient versus temperature curves coincide well with experiments qualitatively and quantitatively. This model then was adopted to predict the influences of the temperature, interface coupling factor and thermal expansion coefficient of the giant magnetostrictive materials on ME coupling. It showed that: the laminates had the strongest ME effect at 0 °C; increasing the coupling factor would contribute to obtaining a larger ME coupling in a smaller bias magnetic field and lowering the ME effect attenuation caused by temperature variations; a smaller thermal expansion coefficient was also conducive to obtaining a larger ME coupling in a smaller bias magnetic field and decreasing the ME effect attenuation caused by temperature variations. This model can provide a theoretical basis for the preparation and application of ME devices under different temperature conditions. (paper)

  7. A theoretical study of the nonlinear thermo-magneto-electric coupling effect in magnetoelectric laminates

    Science.gov (United States)

    Zhou, Hao-Miao; Cui, Xiao-Le

    2014-10-01

    For the tri-layer symmetric magnetoelectric (ME) laminates made of giant magnetostrictive materials and piezoelectric materials, we established a theoretical model for the nonlinear thermo-magneto-electric coupling effect in laminates. This model was nonlinear and calculated in an iterative approach. It adopted the nonlinear magneto-thermo-mechanical magnetostrictive constitutive and the linear mechanical-thermo-electric piezoelectric constitutive and introduced the interface coupling factor to describe the strain transfer efficiency between layers. The predictions of ME coefficient versus temperature curves coincide well with experiments qualitatively and quantitatively. This model then was adopted to predict the influences of the temperature, interface coupling factor and thermal expansion coefficient of the giant magnetostrictive materials on ME coupling. It showed that: the laminates had the strongest ME effect at 0 °C increasing the coupling factor would contribute to obtaining a larger ME coupling in a smaller bias magnetic field and lowering the ME effect attenuation caused by temperature variations; a smaller thermal expansion coefficient was also conducive to obtaining a larger ME coupling in a smaller bias magnetic field and decreasing the ME effect attenuation caused by temperature variations. This model can provide a theoretical basis for the preparation and application of ME devices under different temperature conditions.

  8. Control Methods Using Cross-Coupling Effects for Suppression of Rotor/Stator Rubbing System

    OpenAIRE

    Shang Zhiyong; Zhang Haiying; Shaymurat Talgar

    2015-01-01

    This paper investigated the influence of cross-coupling effects on the rubbing-related dynamics of rotor/stator systems, The stability analysis on the synchronous full annular rub solution of a rotor/stator system, which includes both the dynamics of the stator and the deformation on the contact surface as well as the cross-coupling terms in velocities and displacements, is carried out. It is found that some cross-coupling effects will benefit the synchronous full annular rubs and some will n...

  9. Effects of Herzberg--Teller vibronic coupling on coherent excitation energy transfer

    CERN Document Server

    Zhang, Hou-Dao; Xu, Rui-Xue; Yan, YiJing

    2016-01-01

    In this work, we study the effects of non-Condon vibronic coupling on the quantum coherence of excitation energy transfer, via the exact dissipaton-equation-of-motion (DEOM) evaluations on excitonic model systems. Field-triggered excitation energy transfer dynamics and two dimensional coherent spectroscopy are simulated for both Condon and non-Condon vibronic couplings. Our results clearly demonstrate that the non-Condon vibronic coupling intensifies the dynamical electronic-vibrational energy transfer and enhances the total system-and-bath quantum coherence. Moreover, the hybrid bath dynamics for non-Condon effects enriches the theoretical calculation, and further sheds light on the interpretation of the experimental nonlinear spectroscopy.

  10. Break-up dynamics of fluctuating liquid threads.

    Science.gov (United States)

    Petit, Julien; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2012-11-01

    The thinning dynamics of a liquid neck before break-up, as may happen when a drop detaches from a faucet or a capillary, follows different rules and dynamic scaling laws depending on the importance of inertia, viscous stresses, or capillary forces. If now the thinning neck reaches dimensions comparable to the thermally excited interfacial fluctuations, as for nanojet break-up or the fragmentation of thermally annealed nanowires, these fluctuations should play a dominant role according to recent theory and observations. Using near-critical interfaces, we here fully characterize the universal dynamics of this thermal fluctuation-dominated regime and demonstrate that the cross-over from the classical two-fluid pinch-off scenario of a liquid thread to the fluctuation-dominated regime occurs at a well-defined neck radius proportional to the thermal length scale. Investigating satellite drop formation, we also show that at the level of the cross-over between these two regimes it is more probable to produce monodisperse droplets because fluctuation-dominated pinch-off may allow the unique situation where satellite drop formation can be inhibited. Nonetheless, the interplay between the evolution of the neck profiles from the classical to the fluctuation-dominated regime and the satellites' production remains to be clarified. PMID:23090994

  11. Effects of coupling and asymmetries on load resilience of IC ITER-like structures

    International Nuclear Information System (INIS)

    ITER-like structures feature an intrinsic resilience to load variations, which is related to the symmetry of the currents in the two branches of the structure. It has been suggested that the effects of coupling between the array elements would significantly impair the load resilience of the structure. In this paper the effect of inter strap coupling and of however induced electrical array asymmetries on the structure load resilience are quantitatively examined

  12. Selecting the pre-detection characteristics for effective fiber coupling of entangled photon sources

    OpenAIRE

    Anwar, Ali; P, Chithrabhanu; Reddy, Salla Gangi; Lal, Nijil; Singh, R P

    2016-01-01

    Photon modes have an important role in characterizing the quantum sources of light. Proper coupling of various photon modes obtained in spontaneous parametric down conversion (SPDC) process in optical fibers is essential to generate an effective source of entangled photons. The two main pre-detection factors affecting the biphoton mode coupling in SPDC are the pump beam focusing parameter and the crystal thickness. We present the numerical and experimental results on the effect of pump focusi...

  13. Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems

    OpenAIRE

    Zhong, WX; Hui, SYR; Lee, CK

    2012-01-01

    In this paper, the effects of the magnetic coupling of nonadjacent resonators on the optimal frequency of wireless power transfer are addressed. A power analysis has been carried out to identify the adjacent and nonadjacent power flow components. It is found that such cross-coupling effects of nonadjacent resonators would cause the maximum efficiency operation to slightly shift away from the resonance frequency of the resonators. Theoretical reasons for such phenomena are provided and experim...

  14. Continuum-Discretized Coupled-Channels calculations with core excitation

    CERN Document Server

    de Diego, R; Lay, J A; Moro, A M

    2013-01-01

    The effect of core excitation in the elastic scattering and breakup of a two-body halo nucleus on a stable target nucleus is studied. The structure of the weakly-bound projectile is described in the weak-coupling limit, assuming a particle-rotor model. The eigenfunctions and the associated eigenvalues are obtained by diagonalizing this Hamiltonian in a square-integrable basis (pseudo- states). For the radial coordinate between the particle and the core, a transformed harmonic oscil- lator (THO) basis is used. For the reaction dynamics, an extension of the Continuum-Discretized Coupled-Channels (CDCC) method, which takes into account dynamic core excitation and deexci- tation due to the presence of non-central parts in the core-target interaction, is adapted to be used along with a pseudo-states (PS) basis.

  15. Experimental investigation of spray induced gas stratification break-up and mixing in two interconnected vessels

    International Nuclear Information System (INIS)

    Highlights: → Two containment spray tests were performed in two interconnected PANDA vessels. → Non-condensible gases influence depressurization and temperature of the system. → Slower depressurization rate is observed when more non-condensible gases involved. → Helium-rich layer erosion transient is dependent on density differences. → Helium gas concentration increased in the adjacent vessel. - Abstract: To analyze the effect of containment spray on gas mixing and depressurization, two experiments (ST31 and ST32) were performed with two interconnected vessels. These experiments were conducted in the frame of the OECD/SETH-2 project using the PANDA facility. The vessels were preconditioned such that a helium-rich layer is formed in the upper section of the first vessel, henceforth referred to as Vessel-1. In the case of the first experiment (ST31), the remaining volume of Vessel-1 and the entirety of the second vessel, Vessel-2, were filled with pure steam. For ST32, the second experiment presented here, pure steam was replaced with a steam-air mixture instead. Water was injected from the top of Vessel-1 with a spray nozzle projecting downwards. Transient behavior of system pressure, as well as global redistribution of gases is investigated. The results reveal that spray activation is very effective in containment system depressurization. Additionally it is found that the depressurization occurs at a higher rate for the systems containing more steam and less non-condensible gas. The depressurization rate gradually slows down, however, as the steam concentration decreases due to condensation, and non-condensible gases spread over the vessel system. It is also observed that the spray activation initiates the breakup of the helium-rich layer. The composition of the gas atmosphere plays a crucial role in determining the initiation time of the breakup; the presence of large amounts of non-condensible gas such as air delays the beginning of the helium layer

  16. Vector and tensor analyzing powers in deuteron-proton breakup reaction

    International Nuclear Information System (INIS)

    High precision data for vector and tensor analyzing powers of the 1H( d-vector ,pp)n breakup reaction at 130 and 100 MeV deuteron beam energies have been measured in a large fraction of the phase space. They are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. Tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for Axy such discrepancies usually appear, or are enhanced, when model 3N forces are included. Predicted effects of 3NFs are much lower at 100 MeV and at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  17. The Kondo and Fano Effects in Triple Quantum Dots Coupled to Noncollinear Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    HUANG Rui; MING Shan-Wen; WANG Yong

    2012-01-01

    We use the equation-of-motion technique and non-equilibrium Green's function theory to study the Kondo effect and the Fano effect in triple quantum dots (QDs) coupled to symmetrically ferromagnetic leads whose magnetic moments are noncollinear. We address the question of how the noncollinear ferromagnetic leads influence the Kondo effect and how the side-coupled QDs present Fano interference. The results show that the spin splitting of the density of state (DOS) takes place in an intermediate direction between the magnetic moments in the two leads. When interdot coupling strength ti is nonzero, Fano interference begins to play a major role in complicating the DOS of QD0.%We use the equation-of-motion technique and non-equilibrium Green's function theory to study the Kondo effect and the Fano effect in triple quantum dots (QDs) coupled to symmetrically ferromagnetic leads whose magnetic moments are noncollinear.We address the question of how the noncollinear ferromagnetic leads influence the Kondo effect and how the side-coupled QDs present Fano interference.The results show that the spin splitting of the density of state (DOS) takes place in an intermediate direction between the magnetic moments in the two leads.When interdot coupling strength ti is nonzero,Fano interference begins to play a major role in complicating the DOS of QD0.

  18. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    performed. The coolant temperature was found to significantly affect the shape and size of the debris. The maximum fragment size was found to increase with reduction in coolant temperature. No effect of coolant voiding on the fragment size distribution was observed. A series of high temperature melt jet experiments were performed, in the MIRA-20L experimental facility. Three types of oxidic melts, namely; CaO-B{sub 2}O{sub 3}, MnO-TiO{sub 2} and WO{sub 3}-CaO were employed as melt jet liquid. The melt jet fragmentation was classified into two regimes, the hydrodynamic-controlled regime and the solidification-controlled regime. The delineation between those regimes was observed from the size characteristic and morphology of the solidified debris which was formed. The temperature of the coolant was the primary parameter in determining which regime the jet fragmentation would fall into. It was found, at low subcooling, the fragments are relatively large and irregular compared to smaller particles produced at higher subcooling. The melt density was found to have significant effect on the particle size. The mass mean size of the debris changes proportional to the square root of the coolant to melt density ratio. A systematic investigation of the performance of statistical distributions which may be used to describe the size distributions of fragments obtained from molten fuel coolant interaction (MFCI) experiments was performed. The statistical analysis of the debris produced in both experiments showed that the sequential fragmentation theory fits best the particle distribution produced during the jet fragmentation process. In the second part of the second chapter, analysis of the jet breakup experiments are performed. The low temperature jet fragmentation experiments are simulated with a recently developed Multiphase Eulerian Lagrangian Method. The effect of particle diameter and particle drag on the jet dynamics and penetration behavior is investigated. The third part of the

  19. Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects.

    Science.gov (United States)

    Wenbing Zhang; Yang Tang; Qingying Miao; Wei Du

    2013-08-01

    This paper investigates the synchronization problem of coupled switched neural networks (SNNs) with mode-dependent impulsive effects and time delays. The main feature of mode-dependent impulsive effects is that impulsive effects can exist not only at the instants coinciding with mode switching but also at the instants when there is no system switching. The impulses considered here include those that suppress synchronization or enhance synchronization. Based on switching analysis techniques and the comparison principle, the exponential synchronization criteria are derived for coupled delayed SNNs with mode-dependent impulsive effects. Finally, simulations are provided to illustrate the effectiveness of the results. PMID:24808570

  20. Hindered magnetic dipole transitions between P-wave bottomonia and coupled-channel effects

    Science.gov (United States)

    Guo, Feng-Kun; Meißner, Ulf-G.; Yang, Zhi

    2016-09-01

    In the hindered magnetic dipole transitions of heavy quarkonia, the coupled-channel effects originating from the coupling of quarkonia to a pair of heavy and anti-heavy mesons can play a dominant role. Here, we study the hindered magnetic dipole transitions between two P-wave bottomonia, χb (nP) and hb (n‧ P), with n ≠n‧. In these processes the coupled-channel effects are expected to lead to partial widths much larger than the quark model predictions. We estimate these partial widths which, however, are very sensitive to unknown coupling constants related to the vertices χb0 (nP) B B bar . A measurement of the hindered M1 transitions can shed light on the coupled-channel dynamics in these transitions and hence on the size of the coupling constants. We also suggest to check the coupled-channel effects by comparing results from quenched and fully dynamical lattice QCD calculations.

  1. Analytical tool development for coarse break-up of a molten jet in a deep water pool

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi [Thermohydraulic Safety Research Group, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)]. E-mail: moriyama.kiyofumi@jaea.go.jp; Nakamura, Hideo [Thermohydraulic Safety Research Group, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Maruyama, Yu [Thermohydraulic Safety Research Group, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-10-15

    A computer code JASMINE-pre was developed for the prediction of premixing conditions of fuel-coolant interactions and debris bed formation behavior relevant to severe accidents of light water reactors. In JASMINE-pre code, a melt model which consists of three components of sub-models for melt jet, melt particles and melt pool, is coupled with a two-phase flow model derived from ACE-3D code developed at JAERI. The melt jet and melt pool models are one-dimensional representations of a molten core stream falling into a water pool and a continuous melt body agglomerated on the bottom, respectively. The melt particles generated by the melt jet break-up are modeled based on a Lagrangian grouped particle concept. Additionally, a simplified model pmjet was developed which considers only steady state break-up of the melt jet, cooling and settlement of particles in a stationary water pool. The FARO corium quenching experiments with a saturation temperature water pool and a subcooled water pool were simulated with JASMINE-pre and pmjet. JASMINE-pre reproduced the pressurization and fragmentation behavior observed in the experiments with a reasonable accuracy. Also, the influences of model parameters on the pressurization and fragmentation were examined. The calculation results showed a quasi-steady state phase of melt jet break-up during which the amount of molten mass contained in the premixture was kept almost constant, and the steady state molten premixed masses evaluated by JASMINE-pre and pmjet agreed well.

  2. Numerical simulation of particle fluxes formation generated as a result of space objects breakups in orbit

    Science.gov (United States)

    Aleksandrova, A. G.; Galushina, T. Yu.

    2015-12-01

    The paper describes the software package developed for the numerical simulation of the breakups of natural and artificial objects and algorithms on which it is based. A new software "Numerical model of breakups" includes models of collapse of the spacecraft (SC) as a result of the explosion and collision as well as two models of the explosion of an asteroid.

  3. Light-particle multiplicity accompanying projectile breakup at 20 MeV/A

    International Nuclear Information System (INIS)

    A large-solid-angle array has been used to determine the multiplicity of Z = 1 and Z = 2 particles accompanying projectile breakup into two fragments each with 5 ≤ Z ≤ 8. The charge balance obtained shows that projectile breakup is not associated with an unusual charge transfer to the target. 13 refs., 1 fig

  4. Self-similar drop-size distributions produced by breakup in chaotic flows

    International Nuclear Information System (INIS)

    Deformation and breakup of immiscible fluids in deterministic chaotic flows is governed by self-similar distributions of stretching histories and stretching rates and produces populations of droplets of widely distributed sizes. Scaling reveals that distributions of drop sizes collapse into two self-similar families; each family exhibits a different shape, presumably due to changes in the breakup mechanism

  5. Investigation on the effect of aperture sizes and receiver positions in coupled rooms.

    Science.gov (United States)

    Xiang, Ning; Escolano, Jose; Navarro, Juan M; Jing, Yun

    2013-06-01

    Some recent concert hall designs have incorporated coupled reverberation chambers to the main hall that have stimulated a range of research activities in architectural acoustics. The coupling apertures between two or more coupled-volume systems are of central importance for sound propagation and sound energy decays throughout the coupled-volume systems. In addition, positions of sound sources and receivers relative to the aperture also have a profound influence on the sound energy distributions and decays. This work investigates the effect of aperture size on the behavior of coupled-volume systems using both acoustic scale-models and diffusion equation models. In these physical and numerical models, the sound source and receiver positions relative to the aperture are also investigated. Through systematic comparisons between results achieved from both physical scale models and numerical models, this work reveals valid ranges and limitations of the diffusion equation model for room-acoustic modeling. PMID:23742351

  6. Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads.

    Science.gov (United States)

    Kang, Hyun Suk; Esemoto, Nopondo N; Diers, James R; Niedzwiedzki, Dariusz M; Greco, Jordan A; Akhigbe, Joshua; Yu, Zhanqian; Pancholi, Chirag; Bhagavathy, Ganga Viswanathan; Nguyen, Jamie K; Kirmaier, Christine; Birge, Robert R; Ptaszek, Marcin; Holten, Dewey; Bocian, David F

    2016-01-28

    Achieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle β-pyrrole (3- or 13-) or meso (15-) positions. The strong electronic communication between constituent chromophores is indicated by the doubling of prominent absorption features, split redox waves, and paired linear combinations of frontier molecular orbitals. Relative to the benchmarks, the chlorin dyads in toluene show substantial bathochromic shifts of the long-wavelength absorption band (17-31 nm), modestly reduced singlet excited-state lifetimes (τS = 3.6-6.2 ns vs 8.8-12.3 ns), and increased fluorescence quantum yields (Φf = 0.37-0.57 vs 0.34-0.39). The bacteriochlorin dyads in toluene show significant bathochromic shifts (25-57 nm) and modestly reduced τS (1.6-3.4 ns vs 3.5-5.3 ns) and Φf (0.09-0.19 vs 0.17-0.21) values. The τS and Φf values for the bacteriochlorin dyads are reduced substantially (up to ∼20-fold) in benzonitrile. The quenching is due primarily to the increased S1 → S0 internal conversion that is likely induced by increased contribution of charge-resonance configurations to the S1 excited state in the polar medium. The fundamental insights gained into the physicochemical properties of the strongly coupled hydroporphyrin dyads may aid their utilization in solar-energy conversion and photomedicine. PMID:26765839

  7. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    Science.gov (United States)

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  8. Numerical simulation of jet breakup behavior by the lattice Boltzmann method

    International Nuclear Information System (INIS)

    In order to understand the jet breakup behavior of the molten core material into coolant during a core disruptive accident (CDA) for a sodium-cooled fast reactor (SFR), we simulated the jet breakup due to the hydrodynamic interaction using the lattice Boltzmann method (LBM). The applicability of the LBM to the jet breakup simulation was validated by comparison with our experimental data. In addition, the influence of several dimensionless numbers such as Weber number and Froude number was examined using the LBM. As a result, we validated applicability of the LBM to the jet breakup simulation, and found that the jet breakup length is independent of Froude number and in good agreement with the Epstein's correlation when the jet interface becomes unstable. (author)

  9. An investigation of the effects of pitch-roll (de)coupling on helicopter handling qualities

    Science.gov (United States)

    Blanken, C. L.; Pausder, H. J.; Ockier, C. J.

    1995-01-01

    An extensive investigation of the effects of pitch-roll coupling on helicopter handling qualities was performed by the U.S. Army and Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR), using a NASA ground-based and a DLR in-flight simulator. Over 90 different coupling configurations were evaluated using a high gain roll-axis tracking task. The results show that although the current ADS-33C coupling criterion discriminates against those types of coupling typical of conventionally controlled helicopters, it is not always suited for the prediction of handling qualities of helicopters with modern control systems. Based on the observation that high frequency inputs during tracking are used to alleviate coupling, a frequency domain pitch-roll coupling criterion that uses the average coupling ratio between the bandwidth and neutral stability frequency is formulated. This criterion provides a more comprehensive coverage with respect to the different types of coupling, shows excellent consistency, and has the additional benefit that compliance testing data are obtained from the bandwidth/phase delay tests, so that no additional flight testing is needed.

  10. Effects of coupled dark energy on the Milky Way and its satellites

    Science.gov (United States)

    Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.

    2016-09-01

    We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.

  11. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    International Nuclear Information System (INIS)

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  12. Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei

    Institute of Scientific and Technical Information of China (English)

    SONG Chun-Yan; YAO Jiang-Ming; MENG Jie

    2011-01-01

    Effects of △w-tensor coupling on the spin symmetry of A spectra in A-nucleus systems are studied using relativis-tic mean-field theory. Taking 12C+A as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of A by a factor of 5 but has a negligible effect on the wave functions of A. Similar conclusions are observed in other A-nuclei, including 16O+A, 40Ca+A and 20SPb+A. It is indicated that the spin symmetry in anti-lambda-nucleus systems is still a good approximation irrespective of the tensor coupling.%@@ Effects of(∧∧)ω-tensor coupling on the spin symmetry of(∧)spectra in(∧)-nucleus systems are studied using relativis-tic mean-field theory.Taking 12C+(∧)as an example,it is found that the tensor coupling enlarges the spin-orbit splittings of(∧)a factor of 5 but has a negligible effect on the wave functions of(∧).Similar conclusions are observed in other(∧)-nuclei,including 16O+(∧),40Ca+(∧)and 20gPb+(∧).It is indicated that the spin symmetry in anti-lambdarnucleus systems is still a good approximation irrespective of the tensor coupling.

  13. Magnetic domain wall creep in the presence of an effective interlayer coupling field

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, P.J. [Laboratoire de Physique des Solides, University of Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex (France); School of Physics, M013, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)], E-mail: metaxas@physics.uwa.edu.au; Jamet, J.P.; Ferre, J. [Laboratoire de Physique des Solides, University of Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex (France); Rodmacq, B.; Dieny, B. [SPINTEC, URA CNRS/CEA 2512, CEA-Grenoble, 38054 Grenoble Cedex 9 (France); Stamps, R.L. [School of Physics, M013, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2008-11-15

    We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, H{sub J}, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.

  14. Magnetic domain wall creep in the presence of an effective interlayer coupling field

    Science.gov (United States)

    Metaxas, P. J.; Jamet, J. P.; Ferré, J.; Rodmacq, B.; Dieny, B.; Stamps, R. L.

    We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, HJ, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.

  15. Effects of the Rashba spin-orbit coupling on Hofstadter’s butterfly

    International Nuclear Information System (INIS)

    We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around + 1 or - 1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states. (paper)

  16. Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer

    International Nuclear Information System (INIS)

    To the second order in metric and the first order in equations of motion in the local coordinates of an accelerated rotating observer, the inertial effects and gravitational effects are simply additive. To look into the coupled inertial and gravitational effects, we derive the third-order expansion of the metric and the second-order expansion of the equations of motion in local coordinates. Besides purely gravitational (purely curvature) effects, the equations of motion contain, in this order, the following coupled inertial and gravitational effects: redshift corrections to electric, magnetic, and double-magnetic type curvature forces; velocity-induced special relativistic corrections; and electric, magnetic, and double-magnetic type coupled inertial and gravitational forces. An example is provided with a static observer in the Schwarzchild spacetime

  17. Light particle emission and projectile breakup in 35A MeV 12C induced collisions

    International Nuclear Information System (INIS)

    Inclusive spectra of p, d, t, 3He from 35A MeV 12C + C, Al, Cu, Au reactions as wll as coincidences between projectile-like fragments and light particles have been measured. The apparent temperature does not seem to depend on the size of the coincident fragment. An independent way to determine source velocities indicates that high energy protons are emitted from a source with a velocity close to half the beam velocity even in assymmetric reactions. We observed in in-plane enhancement in the azimuthal angular distributions of coincident projectile-like fragments which gets stronger with increasing mass of the triggering particle or the fragment. A discussion around momentum conservation effects shows that p * B correlations may originate form a combination of pure projectile breakup- and nucleon-nucleon quasi-elastic scattering process. The correlations observed in less peripheral collision need the introduction of a second, light particle emitting source

  18. Evidence of strong dynamic core excitation in $^{19}$C resonant break-up

    CERN Document Server

    Lay, J A; Crespo, R; Moro, A M; Arias, J M; Johnson, R C

    2016-01-01

    The resonant break-up of $^{19}$C on protons measured at RIKEN [Phys. Lett. B 660, 320 (2008)] is analyzed in terms of a valence-core model for $^{19}$C including possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of $5/2^{+}$ for this state. Inclusion of core-excitation effects are found to be essential to give the correct magnitude of the cross section for this state. By contrast, the calculation assuming an inert $^{18}$C core is found to largely underestimate the data.

  19. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    Science.gov (United States)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  20. Investigation of the effective aperture area of sliding and hinged doors between coupled spaces.

    Science.gov (United States)

    Luizard, Paul; Katz, Brian F G

    2014-08-01

    Acoustical coupling between architectural spaces can be implemented by sliding or hinged doors. This study compares the effects of these variable coupling area designs on the sound field using temporal energy decay curve analysis. Varying the aperture size alters the multi-slope decay curve properties such as the decay rate of each slope and their point of intersection (time and level). A predictive model is proposed, based on a geometrical approach and statistical theory for coupled volumes. Differences between scale model measurements and analytical predictions are quantified by means of deviations of acoustical parameters; reasonable agreement is found. PMID:25096137

  1. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    Science.gov (United States)

    Jiang, Xin; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen

    2015-09-01

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  2. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    International Nuclear Information System (INIS)

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field

  3. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin, E-mail: jiangxinyj@gmail.com; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen, E-mail: Qunwen.Leng@wdc.com [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

    2015-09-15

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  4. COMPENSATION FOR THE EFFECTS OF MUTUAL COUPLING ON THE PERFORMANCE OF ADAPTIVE ARRAYS

    Institute of Scientific and Technical Information of China (English)

    Gao Xue; Hu Hongfei; Fu Demin

    2002-01-01

    Using the Method of Moments(MoM) and the spectral method, the effect of mutual coupling on the performance of adaptive arrays is compensated. First, the MoM is used to compute the behavior of the array, where the accurate analytical model and odd nnmbers of piecewise sinusoids are applied. Then the covariance matrix with mutual coupling being taken into account is analyzed, and the expression for the weight of the Least Mean Square(LMS)algorithm with mutual coupling being compensated is given. Finally, the method given in this letter is tested on an example.

  5. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  6. Mode-coupling effects in anisotropic flow in heavy-ion collisions

    CERN Document Server

    Qian, Jing; Liu, Jia

    2016-01-01

    Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. We find significant sensitivity of the mode coupling coefficients to the initial fluctuation spectrum, strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.

  7. The effect of Yukawa couplings on unification predictions and the non-perturbative limit

    International Nuclear Information System (INIS)

    We investigate the effects of Yukawa couplings on the phenomenological predictions for a class of supersymmetric models which allows for the presence of complete SU(5) multiplets in addition to the minimal supersymmetric standard model spectrum. We develop a two-loop analytical approach to quantify the predictions for gauge unification including Yukawa couplings. The effects of the heavy thresholds of the model are also included. In some cases accurate predictions can be made for the unification scale, irrespective of the initial (unknown) Yukawa couplings, so long as perturbation theory remains valid. We also consider the limit of a large number of extra states and compute the predictions in a resummed perturbation series approach to show that the results are stable in this limit. Finally we consider the possibility of making predictions for the case the gauge and Yukawa couplings enter the non-perturbative domain below the unification scale and estimate the errors which affect these predictions. (orig.)

  8. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  9. Lateral coupling and immunity to substrate effect in ΩFET devices

    Science.gov (United States)

    Ritzenthaler, R.; Cristoloveanu, S.; Faynot, O.; Jahan, C.; Kuriyama, A.; Brevard, L.; Deleonibus, S.

    2006-04-01

    The inter-gate coupling effects in multiple-gate SOI devices with Omega configuration, metal gate and HfO 2 dielectric are investigated. Electrical measurements together with 3D numerical simulations show that the back-gate influence is reduced for narrow devices due to a strong lateral coupling between the two lateral sides of the main gate. In spite of the full depletion of the transistor body, the threshold voltage and the subthreshold slope are no longer dependent on the back gate bias. It is also shown that the conduction channels can be separated in wide ΩFETs using the back-gate coupling in accumulation mode. DIVSB (drain-induced virtual substrate biasing) can be drastically reduced when the lateral coupling screens the drain influence. Narrow devices are then virtually immune to substrate effects.

  10. Effect of coupling transformer on the performance of microwave ion source: simulation and experiment

    International Nuclear Information System (INIS)

    A 2.45 GHz high current microwave ion source is currently operational at VECC. It is able to produce more than 12 mA of beam current with just 300 watts of microwave power. The extracted beam current from the ion source depends strongly on the microwave coupling transformer. In order to understand the effect of microwave coupling on the performance of ion source, we have designed three different types of coupling transformers using ANSYS HFSS code, namely WR-284 waveguide and two double ridged waveguides one with 24 mm ridge width and another with 48 mm ridge width. We have fabricated these transformers and studied experimentally their effect on the extracted current from the ion source. This paper presents simulation details and experimental results of different microwave coupling transformers on performance of the ion source. (author)

  11. Mode-coupling effects in anisotropic flow in heavy-ion collisions

    Science.gov (United States)

    Qian, Jing; Heinz, Ulrich; Liu, Jia

    2016-06-01

    Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.

  12. Control Methods Using Cross-Coupling Effects for Suppression of Rotor/Stator Rubbing System

    Directory of Open Access Journals (Sweden)

    Shang Zhiyong

    2015-01-01

    Full Text Available This paper investigated the influence of cross-coupling effects on the rubbing-related dynamics of rotor/stator systems, The stability analysis on the synchronous full annular rub solution of a rotor/stator system, which includes both the dynamics of the stator and the deformation on the contact surface as well as the cross-coupling terms in velocities and displacements, is carried out. It is found that some cross-coupling effects will benefit the synchronous full annular rubs and some will not. Based on the finding, a control method by generating cross-coupling damping on the stator through the active auxiliary bearing is then proposed in order to suppress the contact severity and avoid the rubbing instability. Numerical simulation shows the validity of the mehtod.

  13. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  14. Plasma effect in silicon charge coupled devices (CCDs)

    International Nuclear Information System (INIS)

    Plasma effect is observed in CCDs exposed to heavy ionizing α-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region (≥3.5 MeV). The measurements were extended to lower energies using α-particles produced by (n,α) reactions of neutrons in a 10B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of α particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  15. Effective-mass theory for coupled quantum dots grown on (11N)-oriented substrates

    Institute of Scientific and Technical Information of China (English)

    Li Shu-Shen; Xia Jian-Bai

    2007-01-01

    The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.

  16. Anomalous $tqZ$ coupling effects in rare B- and K-meson decays

    CERN Document Server

    Li, Xin-Qiang; Yuan, Xing-Bo

    2011-01-01

    As a top-factory, the LHC is performing a direct study of top-quark anomalous FCNC couplings, which are, however, correlated closely with the rare B- and K-meson decays. In this paper, we study the effects of anomalous $tqZ$ (with $q=u,c$) couplings in the rare decays $B_{s,d}\\to \\mu^+\\mu^-$, $B\\to X_s \

  17. The Kaon electromagnetic form factor and effects of running coupling constant

    International Nuclear Information System (INIS)

    The Borel transform and resumed expression for the kaon electromagnetic form factor Fk(Q2) are obtained in the context of QCD running coupling αS(Q2(1-x) (1-y)) approach. It is demonstrated that effects of running coupling (infrared renormalons) can be taken into account by scale-setting procedure αS(Q2) → αS(ef(Q2)Q2) in the leading order expression. (author). 7 refs, 2 figs

  18. On the Coupling Effects between Elastic and Electromagnetic Fields from the Perspective of Conservation of Energy

    OpenAIRE

    Zhou, Peng

    2015-01-01

    In a natural system, coupling effects among different physical fields substantially reflect the conversion of energy from one form to another. According to the law of conservation of energy (LCE), the loss of energy in one field must equal to the gain of energy in another field. In this paper, this LCE is applied to analyze the reversible processes coupled between elastic and electromagnetic fields. Here, it is called the energy formulation. For simple physical processes such as mechanical mo...

  19. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    OpenAIRE

    Kohei Mizuno; Naoki Shinohara; Junji Miyakoshi

    2015-01-01

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MH...

  20. Effects of consistent and inconsistent isobar coupling in the nuclear medium

    OpenAIRE

    Korpa, C. L.

    2011-01-01

    We investigate effects of consistent (conserving the number of degrees of freedom) and inconsistent pion-nucleon-isobar couplings on the isobar propagator in vacuum and in nuclear medium. Using the consistent coupling in conjunction with a convenient basis leads to significant simplification of the isobar vacuum and in-medium self energy and dressed propagator compared to the case of inconsistent interaction. The higher-derivative nature of the consistent interaction requires a suitable compe...

  1. Effective field theory of weakly coupled inflationary models

    OpenAIRE

    Gwyn, Rhiannon; Palma, Gonzalo A; Sakellariadou, Mairi; Sypsas, Spyros

    2013-01-01

    The application of Effective Field Theory (EFT) methods to inflation has taken a central role in our current understanding of the very early universe. The EFT perspective has been particularly useful in analyzing the self-interactions determining the evolution of co-moving curvature perturbations (Goldstone boson modes) and their influence on low-energy observables. However, the standard EFT formalism, to lowest order in spacetime differential operators, does not provide the most general para...

  2. Anisotropic Paramagnetic Meissner Effect by Spin-Orbit Coupling

    Science.gov (United States)

    Espedal, Camilla; Yokoyama, Takehito; Linder, Jacob

    2016-03-01

    Conventional s -wave superconductors repel an external magnetic field. However, a recent experiment [A. Di Bernardo et al., Phys. Rev. X 5, 041021 (2015)] has tailored the electromagnetic response of superconducting correlations via adjacent magnetic materials. We consider another route of altering the Meissner effect where spin-orbit interactions induce an anisotropic Meissner response that changes sign depending on the field orientation. The tunable electromagnetic response opens new paths in the utilization of hybrid systems comprising magnets and superconductors.

  3. Numerical simulation of the effect of coupling support of bolt-mesh-anchor in deep tunnel

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-ming; CAI Feng; YANG Jun; CAO Wu-fu

    2009-01-01

    The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths. It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock. It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support. The strength of the surrounding rock mass can be mobilized to control the deformation of the surrounding rock by a pre-stress and time-space effect of the anchor support. The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.

  4. Equation of state of hot nuclei before break-up

    International Nuclear Information System (INIS)

    Following the method developed by the authors, recently, the equation of state of hot nuclei (238U* in concrete) before break-up was investigated numerically. The isotherms are drawn in the plane of the general pressure P versus volume VRT. They are similar to those of Van der Waals gas. The critical temperature of phase transition should correspond to the isotherm with one truning point only. It turns out that the data of mas yield distribution can be reproduced by many pairs of parameters T and VRT (freeze-out temperature and freezeout volume) varying in certain range. For each isotherm (each T), the data are always best reproduced by the value of VRT located at the maximum general pressure within two phases coexistence region

  5. Space debris characterization in support of a satellite breakup model

    Science.gov (United States)

    Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.

    1992-01-01

    The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.

  6. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  7. Basis for breakup states of three identical particles

    International Nuclear Information System (INIS)

    A new basis for expanding three-body momentum-space states for three identical particles is studied. The basis states are simultaneously eigenstates of the total angular momentum and the total antisymmetrization operator. The total kinetic energy and two Dalitz-Fabri variables are chosen as the remaining three continuous variables. Zernike polynomials are used as a basis set for a generalized Fourier expansion in the Dalitz-Fabri variables. Born approximations to the nucleon-deuteron breakup amplitude zero total orbital angular momentum) are calculated for Malfliet-Tjon I-III potentials and displayed in a Dalitz plot that shows the global structures of the reaction probabilities. Numerical results are presented, which indicate favorable convergence properties of the generalized Fourier expansion. These results suggest that the new basis set may be attractive in more realistic calculations. (author)

  8. Effect of the discretization and neutronic thermal hydraulic coupling on LWR transients

    International Nuclear Information System (INIS)

    Coupled multiphysics problems solve different physical phenomena with time scales of varying orders of magnitude. These phenomena are coupled in a nonlinear way making it difficult to find an accurate and efficient solution. Many of the present generation of codes for LWR are based on 3-D neutronic nodal methods coupled with first order thermal hydraulic methods. Moreover, the spatial and temporal meshes used to solve each field are different reflecting the scales of each phenomenon. This paper discusses the effect of the spatial and temporal discretization as well as the effect of different coupling schemes, with different level of implicitness, between the neutronic and core thermal hydraulics in SIMULATE-3K (S3K). S3K is a best estimate code used by many utilities, regulatory authorities and research institutes for the analysis of LWR transients that require the coupling of neutronic, fuel pin, and core hydraulic models. Examples of S3K applications are BWR stability analysis, fast anticipated operational occurrences, with or without scram, and reactivity initiated transients. Three different applications will be discussed in this paper to illustrate the effect of the discretization and coupling methods in multiphysics problems, namely: the NEA PWR rod ejection, the Ringhals-1 BWR stability, and the Peach Bottom turbine trip benchmarks. (author)

  9. Quantitative analysis of liquid jets breakup with SAXS

    International Nuclear Information System (INIS)

    Full text: The breakup of liquid jets represents a wide area of research in the field of multiphase flows, fully justified by their wide presence both in industrial and in scientific applications. Moreover, the recent development of microfluidic systems has raised great interest in understanding the flows in small spatial dimensions. Such interest has been further increased due to the evolution of free electron lasers and the consequent need to develop new, high throughput techniques to characterize biological macromolecules. Jet instability has been widely described both theoretically and by performing simulations, however there is still need to have accurate sets of experimental data. In fact most of them are based on light scattering which is disturbed by reflection, absorption and multiple scattering of droplets and air interface morphology, and on camera imaging which is limited by the dimension of the phenomena that can be seen. In the present communication we want to show the potentiality of synchrotron SAXS in providing quantitative information on the dynamics of liquid jets at the nanoscale. To this purpose, we have investigated free liquid jets in air with circular nozzle geometry of different diameters (450μm-100μm), flow rates (2-10 ml/min), and solvents (water, ethanol, isopropanol and their mixtures). We determined their time dependent morphology and their breakup length in the Rayleigh and rst wind-induced regimes. The resulting data are considered as basis for the use of free jet micromixers to examine the evolution of chemical and biological reactions by SAXS. (author)

  10. The influence of experimental setup on the spectroscopy investigation of $^{\\mathrm{14}}$Be by Coulomb breakup reaction

    CERN Document Server

    Song, Yu-Shou; Hu, Li-Yuan; Liu, Hui-Lan; Wu, Hong-Yi

    2015-01-01

    The two-body core+$2n$ cluster structure was implemented to describe the two-neutron halo nucleus $^{\\mathrm{14}}\\mathrm{Be}$, where the core$^{\\mathrm{12}}\\mathrm{Be}$ was assumed inert and at ground state and the dineutron was assumed at pure $2S_0$ state. Based on such a structure the three-body continuum-discretized coupled-channel (CDCC) calculation was successfully used to deal with the $^{\\mathrm{14}}\\mathrm{Be}$ breakup reactions of $^{\\mathrm{14}}\\mathrm{Be}+^{\\mathrm{12}}\\mathrm{C}$ at 68~MeV/nucleon and $^{\\mathrm{14}}\\mathrm{Be}+ $Pb at 35~MeV/nucleon.Consequently, we modeled the kinematically complete measurement experiment of $^{\\mathrm{14}}\\mathrm{Be}$ (35~MeV/nucleon) Coulomb breakup at a lead target with the help of Geant4. From the simulation data the relative energy spectrum was constructed by the invariant mass method and $B(E1)$ spectrum was extracted using virtual photon model. The influence of the target thickness and detector performance on the spectroscopy was investigated.

  11. Concrete Damage and Neutralization under Coupling Effect of Carbonation and Freeze-thaw Cyeles

    Institute of Scientific and Technical Information of China (English)

    NIU Ditao; XIAO Qianhui; ZHU Wenping

    2012-01-01

    Simulating the coupling effect brought by freeze-thaw and carbonation environment,we experimentally investigated concrete durability,the variation characteristics of both concrete dynamic elastic modulus,and its neutralization depth.The influences imposed by carbonation on the freeze-thaw damage of concrete was studied as well and vise versa so as to shed light on the influencing mechanism together with the mutual interaction between them.The experimental results show that the damage caused by the coupling effect of freeze-thaw and carbonation on concrete is severer than any single effect of them two could bring.This provides certain theoretical references and paves down foundations for the further study in concrete durability related by the coupling environmental effect.

  12. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    International Nuclear Information System (INIS)

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect

  13. The Gate-Oxide Breakdown Effect Coupled by Channel Hot-Carrier-Effect in SOI MOSFET's

    Institute of Scientific and Technical Information of China (English)

    HAO Yue; ZHU Jiangang; REN Hongxia; ZHANG Weidong

    2001-01-01

    Based on SIMOS SOI devices, the gate-oxide breakdown effect coupled by channel hot carriers is studied in this paper. It is found that,in n-channel devices, the gate-oxide breakdown is at tributed to the fixed defect in SiO2 crystal lattice structure induced by high-energy hole injection into gate oxide. And the trapping of electron negative charge in gate oxide also accelerates the breakdown.While in PMOS devices, both local electric field in oxide enhancement caused by trapped electrons ,and the electric field on interface increasing induced by trapped holes and the generation of permanent damage in crystal lattice, can lead to gate oxide breakdown directly. The studies also show that the behavior after oxide layer broken down in NMOS and PMOS is different.

  14. Jahn-Teller and spin-orbit coupling effects in transition-metal trifluorides

    International Nuclear Information System (INIS)

    Graphical abstract: Vibronic spectra for 5E' state of MnF3 using a two-mode Jahn-Teller Hamiltonian including spin-orbit coupling. Display Omitted Highlights: → Jahn-Teller potential-energy surfaces of 5E' states of MnF3 and CoF3 calculated. → The JT coupling parameters have been determined up to sixth order. → Vibronic spectra computed with two-mode JT Hamiltonian including spin-orbit coupling. → First ab initio study of the dynamical JT effect in transition-metal trifluorides. - Abstract: The effects of linear and higher-order Jahn-Teller couplings as well as spin-orbit coupling in orbitally degenerate electronic states of the transition-metal trifluorides MnF3 and CoF3 have been systematically explored with multi-configuration ab initio methods. The adiabatic potential-energy surfaces of low-lying 5E' and 5E'' states have been calculated with the CASSCF method. The spin-orbit coupling is described by matrix elements of the Breit-Pauli operator with nonrelativistic CASSCF wave functions. The Jahn-Teller coupling parameters of the Jahn-Teller active in-plane bending and stretching modes have been determined up to sixth order and fourth order, respectively, in the normal-mode expansion. Vibronic spectra have been computed, employing a Jahn-Teller Hamiltonian up to sixth order in the degenerate bending mode and fourth order in the degenerate stretching mode. These results represent the first ab initio study of the dynamical Jahn-Teller effect in transition-metal trifluorides with inclusion of spin-orbit coupling.

  15. Effect of fatty acids on energy coupling processes in mitochondria.

    Science.gov (United States)

    Wojtczak, L; Schönfeld, P

    1993-11-01

    Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions. PMID:8399375

  16. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  17. Effect of couple-stress on the pure bending of a prismatic bar

    International Nuclear Information System (INIS)

    An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite

  18. Units and numerical values of the effective couplings in perturbative heterotic string vacua

    International Nuclear Information System (INIS)

    We determine the units and numerical values for a class of couplings in the effective theory of perturbative heterotic string vacua, with the emphasis on the correct translation between the canonical gauge coupling g and Planck scale MPlanck∼1.2x1019GeV as used in the effective theory description and the string coupling gstring and string tension α' as used in the S-matrix amplitude calculation. In particular, we determine the effective couplings in the superpotential and reexamine the Fayet-Iliopoulos (FI) term in a class of models with an anomalous U(1). We derive the values of the effective Yukawa couplings (at the third and fourth order) after the restabilization of vacuum along a particular F- and D-flat direction and show that they are comparable in magnitude. The result corrects results quoted in the literature, and may have implications for the string derived phenomenology, e.g., that of fermion textures. copyright 1999 The American Physical Society

  19. Interchannel coupling and ground state correlation effects in the photoionization of CO

    International Nuclear Information System (INIS)

    We describe a general procedure for applying the complex Kohn variational method to the calculation of molecular photoionization cross sections and asymmetry parameters. In this initial application of the method, we examine the effects of interchannel coupling and ground state correlation on the X 2Σ+(5σ-1), A 2Π(1π-1), and B 2Σ+(4σ-1) partial photoionization cross sections and asymmetry parameters for the CO molecule. We find that the dominant effect of interchannel coupling is to remove a spurious π→π* resonance feature from the continuum that appears at the frozen-core Hartree--Fock level. We also find that it appears to be important to combine the effects of final channel coupling with a correlated initial target state to achieve quantitatively correct cross sections

  20. COUPLING EFFECT OF SEEPAGE FLOW AND RIVER FLOW ON THE BANK FAILURE

    Institute of Scientific and Technical Information of China (English)

    NING Bo; WU Shi-qiang; TAN Ye-fei; XIE Xing-hua; YAN Jun; YAN Zhong-min; GENG Yan-qiong

    2011-01-01

    On the basis of the generalized physical model of the riverbank,the experiments were conducted to study the mechanisms of riverbank failure under the coupling effect of seepage flow and river flow.The experimental setup was specially designed,as well as test point location,parameters and procedures,and the main influencing factors were analyzed affecting riverbank failure based on the failure types,the variations of pore water pressure and soil displacement.The results indicated that the coupling effect has different influences on the bank failure in three aspects:the failure type,the process and the extent.In addition,the river flow played a more important role than the seepage flow in the coupling effect on the bank failure.

  1. The Kondo and Fano Effects in Triple Quantum Dots Coupled to Noncollinear Ferromagnetic Leads

    International Nuclear Information System (INIS)

    We use the equation-of-motion technique and non-equilibrium Green's function theory to study the Kondo effect and the Fano effect in triple quantum dots (QDs) coupled to symmetrically ferromagnetic leads whose magnetic moments are noncollinear. We address the question of how the noncollinear ferromagnetic leads influence the Kondo effect and how the side-coupled QDs present Fano interference. The results show that the spin splitting of the density of state (DOS) takes place in an intermediate direction between the magnetic moments in the two leads. When interdot coupling strength ti is nonzero, Fano interference begins to play a major role in complicating the DOS of QD0. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. SU(2) low energy quark effective couplings in weak external magnetic field

    CERN Document Server

    Braghin, Fabio L

    2016-01-01

    In this work corrections to the usual flavor SU(2) Nambu-Jona-Lasinio coupling due to a weak external magnetic field are calculated by considering polarization in a one (dressed) gluon exchange mechanism for quark interactions. The quark field is splitted into two components, one that condenses and another one is a background field for interacting quarks, being that the former is integrated out. The resulting determinant is expanded for relatively large quark mass and small magnetic field, $(eB_0/{M^*}^2)<1$ by resolving magnetic field dependent low energy quark effective interactions. Besides corrections to the NJL and vector NJL effective couplings, different $B_0-$dependent effective couplings that break isospin and chiral symmetry emerge.

  3. A Review of Fragmentation Models Relative to Molten UO2 Breakup when Quenched in Sodium Coolant

    International Nuclear Information System (INIS)

    An important aspect of the fuel-coolant interaction problem relative to liquid metal fast breeder reactor (LMFBR) safety analysis is the fragmentation of molten oxide fuel during contact with liquid sodium coolant. A proper description of the kinetics of such an event requires an understanding of the breakup process and an estimate of the size and dispersion of such finely divided fuel in coolant. In recent years, considerable interest has centered on the problem of determining the nature of such fragmentation. In this paper, both analytic and experimental studies pertaining to such breakup are reviewed in light of recent developments in the understanding of heat transfer and solidification phenomena during quenching of UO2 in sodium. A more extensive review of this subject can be found in Ref. 1. In conclusion: As discussed, a number of models have been proposed in an attempt to understand the nature of the UO2 fragmentation process. The four principle mechanisms considered likely to cause such fragmentation (impact forces, boiling, violent gas release, and shell solidification) have been developed to the point where comparative analysis is possible. In addition, recent developments in the understanding of the physics of oxide fuel behavior in sodium coolant (boiling regime criteria, vapor nucleation theories, and prediction of solidification kinetics enable us to asses whether or not the various model assumptions are realistic. In view of this knowledge the following conclusions are made. For the case of hydrodynamic influence on fragmentation, it can be said that although the disruptive forces of impact and viscous drag may contribute to breakup, their effects are not controlling with respect to high temperature materials, including UO2-sodium. With respect to the vapor bubble growth and collapse mechanism it was shown that for sodium quenching, where coolant contact may, be expected (as opposed to water), the thermodynamic work potential of the bubble is more

  4. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery

    Science.gov (United States)

    Cooley, Sarah; Pavelsky, Tamlin

    2016-04-01

    The annual spring breakup of river ice has important consequences for northern ecosystems and significant economic implications for Arctic industry and transportation. River ice breakup research is restricted by the sparse distribution of hydrological stations in the Arctic, where limited available data suggests a trend towards earlier ice breakup. The specific climatic mechanisms driving this trend, however, are complex and can vary both regionally and within river systems. Consequently, understanding the response of river ice processes to a warming Arctic requires simultaneous examination of spatial and temporal patterns in breakup timing. Here we present an automated algorithm for river ice breakup detection using MODIS satellite imagery that enables identification of spatial and temporal breakup patterns at large scales. We examine breakup timing on the Mackenzie, Lena, Ob' and Yenisey rivers for the period 2000-2014. First, we split each river into 10 km segments. Next, for each day of the breakup season, we classify each river pixel as snow/ice, mixed ice/water or open water based on MODIS reflectance values and remove all cloud-covered segments using the MODIS cloud product. We then define the breakup date as the first day where the segment is 75% open water. Using this method, we are able to determine breakup dates with a mean uncertainty of +/-1.3 days. We find our remotely sensed breakup dates to be highly correlated to ground breakup dates and the timing of peak discharge. All statistically significant temporal trends in breakup timing are negative, indicating an overall shift towards earlier breakup. Considerable variability in the statistical significance and magnitude of trends along each river suggests that different climatic and physiographic drivers are impacting spatial patterns in breakup. Trends detected on the lower Mackenzie corroborate recent studies indicating weakening ice resistance and earlier breakup timing near the Mackenzie Delta. In

  5. Coulomb breakup of neutron-rich $^{29,30}$Na isotopes near the island of inversion

    CERN Document Server

    Rahaman, A; Aumann, T; Beceiro-Novo, S; Boretzky, K; Caesar, C; Carlson, B V; Catford, W N; Chakraborty, S; Chartier, M; Cortina-Gil, D; Angelis, G De; Gonzalez-Diaz, D; Emling, H; Fernandez, P Diaz; Fraile, L M; Ershova, O; Geissel, H; Jonson, B; Johansson, H; Kalantar-Nayestanaki, N; Krücken, R; Kröll, T; Kurcewicz, J; Langer, C; Bleis, T Le; Leifels, Y; Münzenberg, G; Marganiec, J; Nilsson, T; Nociforo, C; Nowacki, F; Najafi, A; Panin, V; Paschalis, S; Plag, R; Poves, A; Ray, I; Reifarth, R; Rigollet, C; Ricciardi, V; Rossi, D; Scheit, H; Simon, H; Scheidenberger, C; Typel, S; Taylor, J; Togano, Y; Volkov, V; Weick, H; Wagner, A; Wamers, F; Weigand, M; Winfield, J S; Yakorev, D; Zoric, M

    2016-01-01

    First results are reported on the ground state configurations of the neutron-rich $^{29,30}$Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a $^{208}Pb$ target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 $(7)$ mb and 167 $(13)$ mb up to excitation energy of 10 MeV for one neutron removal from $^{29}$Na and $^{30}$Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of $^{29}$Na${(3/2^+)}$ and $^{30}$Na${(2^+)}$ is the $d$ orbital with small contribution in the $s$-orbital which are coupled with ground ...

  6. Recent Advances in Nuclear Reaction Theories for Weakly Bound Nuclei: Reexamining the Problem of Inclusive Breakup

    Science.gov (United States)

    Moro, Antonio M.; Lei, Jin

    2016-05-01

    The problem of the calculation of inclusive breakup cross sections in nuclear reactions is reexamined. For that purpose, the theory proposed by Ichimura et al. (Phys Rev C 32:431, 1985) is revisited, both in its prior and post representations. We briefly outline the connection of this theory with that proposed by Udagawa and Tamura (Phys Rev C 24:1348, 1981) and apply both theories to the inclusive breakup of ^6Li on ^{209}Bi at near-barrier energies, comparing also with available data. The relative importance of elastic versus non-elastic breakup, as a function of the incident energy and of the projectile separation energy, is also investigated.

  7. Electron fluxes in the breakup region according to measurements at Kosmos-426

    International Nuclear Information System (INIS)

    Results of electron flux measurement conducted at KOSMOS-426 satellite within magnetosphere region, where breakup propagated, are analyzed. Maximum of electron fluxes with particle isotropic pinch-angular distribution measured with different pinch-angles is recorded in breakup region. Energy spectrum of 0.25-2 MeV electrons is harded near the boundary of radiation belt. Essential decrease of the intensity within latitude narrow range is marked during breakup in E≤1 keV energy electron fluxes behind the boundary of radiation belt

  8. No-capture breakup and incomplete fusion reactions induced by stable weakly bound nucleus 9Be

    Science.gov (United States)

    Seyyedi, S. A.

    2016-06-01

    The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.

  9. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  10. Effective mass of the ground state of the strong-coupling exciton in a quantum well

    Institute of Scientific and Technical Information of China (English)

    Eerdunchaolu; Xin Wei

    2009-01-01

    The properties of the effective mass of the ground state of the exciton, for which the electron (hole) is strongly coupled with interface-optical (IO) phonons but weakly coupled with bulk-longitudinal-optical (LO) phonons in a quantum well, are studied by means of Tokuda's improved linear combination operator and a modified second Lee-Low-Pines transformation method. The results indicate that the contributions of the interaction between the electron (hole) and the different phonon branches to the effective mass are greatly different, and change with the well width and the relative position between the electron and the hole.

  11. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  12. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  13. Measurement of the reaction 2H(e,e') at 180 degrees close to the deuteron breakup threshold.

    Science.gov (United States)

    Ryezayeva, N; Arenhövel, H; Burda, O; Byelikov, A; Chernykh, M; Enders, J; Griesshammer, H W; Kalmykov, Y; von Neumann-Cosel, P; Ozel, B; Poltoratska, I; Pysmenetska, I; Rangacharyulu, C; Rathi, S; Richter, A; Schrieder, G; Shevchenko, A; Yevetska, O

    2008-05-01

    Inclusive inelastic electron scattering off the deuteron under 180 degrees has been studied at the S-DALINAC close to the breakup threshold at momentum transfers q=0.27 fm;{-1} and 0.74 fm;{-1} with good energy resolution sufficient to map in detail the spin flip M1 response, which governs the starting reaction pn-->dgamma of big-bang nucleosynthesis over most of the relevant temperature region. Results from potential model calculations and (for q=0.27 fm;{-1}) from pionless nuclear effective field theory are in excellent agreement with the data. PMID:18518283

  14. Effective hadronic Lagrangian in the lattice QCD with Susskind fermions in strong-coupling approximation

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular, N=3) an effective potential, vacuum expectation value of the (χ-barχ), and an effective action for the physical meson field π(χ) are found

  15. Effective hadronic Lagrangian in latice QCD with Susskind fermions in the strong-coupling approximation

    International Nuclear Information System (INIS)

    An effective hadronic action in lattice QCD with Susskind fermions and with U(N) or SU(N) gauge groups is constructed in the framework of the strong-coupling expansion. The effective potential, the vacuum expectation value left-angle bar χχ right-angle, and the effective action for the physical meson field π(x) are found for arbitrary finite (odd) N (in particular for N=3)

  16. Effective hadronic Lagrangian in latice QCD with Susskind fermions in the strong-coupling approximation

    Energy Technology Data Exchange (ETDEWEB)

    Azakov, S.I.; Aliev, E.S. (Institute of Physics, Academy of Science of Azerbaidzhan SSR (SU))

    1989-05-01

    An effective hadronic action in lattice QCD with Susskind fermions and with U({ital N}) or SU({ital N}) gauge groups is constructed in the framework of the strong-coupling expansion. The effective potential, the vacuum expectation value {l angle}{bar {chi}}{chi}{r angle}, and the effective action for the physical meson field {pi}({ital x}) are found for arbitrary finite (odd) {ital N} (in particular for {ital N}=3).

  17. Effective hadronic lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular N=3) we find an effective potential, vacuum expectation value of the (χ-barχ) and an effective action for the physical meson field π(x). (author). 19 refs

  18. [Coupling effects of water and chemical fertilizers on Hevea brasiliensis latex yield].

    Science.gov (United States)

    Hua, Yuan-Gang; Chen, Qiu-Bo; Lin, Zhao-Mu; Luo, Wei

    2008-06-01

    Water and nutrient are the two main factors limiting Hevea brasiliensis growth and its latex yield. With 17 year-old Clone SCATC 7-33-97 H. brasiliensis as test material, the coupling effects of water and chemical N, P and K fertilizers on latex yield were studied by general orthogonal rotation design of quadratic regression with four factors and five levels under field condition, and a regressive mathematical model was set up based on the latex yield by quadratic regression analysis. The results showed that all test coupling levels of water and chemical fertilizers had significant effects on the latex yield. The yield-increasing effect of test factors was in the order of N application rate > irrigation amount > P application rate > K application rate, while the coupling effect of water and chemical fertilizers was in the sequence of water and N > N and P > water and P > water and K. There was a negative coupling effect of K application rate and soil moisture content. For latex yield, the optimum application rates of chemical fertilizers were 476.39 kg x hm(-2) of urea, 187.70 kg x hm(-2) of superphosphate and 225.77 kg x hm(-2) of potassium chloride, and the optimum irrigation amount was to have 82.78% soil relative water content. PMID:18808010

  19. The coupled effect of tides and stellar winds on the evolution of compact binaries

    CERN Document Server

    Repetto, Serena

    2014-01-01

    We follow the evolution of compact binaries under the coupled effect of tides and stellar winds until the onset of Roche-lobe overflow. These binaries contain a compact object (either a black-hole, a neutron-star, or a planet) and a stellar component. We integrate the full set of tidal equations, which are based on Hut's model for tidal evolution, and we couple them with the angular momentum loss in a stellar wind. Our aim is twofold. Firstly, we wish to highlight some interesting evolutionary outcomes of the coupling. When tides are coupled with a non-massive stellar wind, one interesting outcome is that in certain types of binaries, the stellar spin tends to reach a quasi-equilibrium state, where the effect of tides and wind are counteracting each other. When tides are coupled with a massive wind, we parametrize the evolution in terms of the decoupling radius, at which the wind decouples from the star. Even for small decoupling radii this \\emph{wind braking} can drive systems on the main sequence to Roche-l...

  20. Selective effects of noise by stochastic multi-resonance in coupled cells system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By investigating a stochastic model for intracellular calcium oscillations proposed by Hfer,we have analyzed the transmission behavior of calcium signaling in a one-dimensional two-way coupled hepatocytes system.It is shown that when the first cell is subjected to the external noise,the output signal-to-noise ratio(SNR) in the cell exhibits two maxima as a function of external noise intensity,indicating the occurrence of stochastic bi-resonance(SBR).It is more important that when cells are coupled together,the resonant behavior in the 1st cell propagates along the chain with different features through the coupling effect.The cells whose locations are comparatively close to or far from the 1st cell can show SBR,while the cells located in the middle position can display stochastic multi-resonance(SMR).Fur-thermore,the number of cells that can show SMR increases with coupling strength enhancing.These results indicate that the cells system may make an effective choice in response to external signaling induced by noise,through the mechanism of SMR by adjusting coupling strength.

  1. Local Residents Trained As ‘Influence Agents’ Most Effective In Persuading African Couples On HIV Counseling and Testing

    OpenAIRE

    Lambdin, Barrot; Kanweka, William; Inambao, Mubiana; Mwananyanda, Lawrence; Shah, Heena; Linton, Sabriya; Wong, Frank; Luisi, Nicole; Tichacek, Amanda; Kalowa, James; Chomba, Elwyn; Allen, Susan

    2011-01-01

    Couples in sub-Saharan Africa are the largest group in the world at risk for HIV infection. Couples counseling and testing programs have been shown to reduce HIV transmission, but such programs remain rare in Africa. Before couples counseling and testing can become the norm, it is essential to increase demand for the services. We evaluated the effectiveness of several promotional strategies during a two -year program in Kitwe and Ndola, Zambia. The program attracted more than 7,600 couples th...

  2. Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed.

  3. Generalized breakup and coalescence models for population balance modelling of liquid-liquid flows

    CERN Document Server

    Traczyk, Marcin; Thompson, Chris

    2015-01-01

    Population balance framework is a useful tool that can be used to describe size distribution of droplets in a liquid-liquid dispersion. Breakup and coalescence models provide closures for mathematical formulation of the population balance equation (PBE) and are crucial for accu- rate predictions of the mean droplet size in the flow. Number of closures for both breakup and coalescence can be identified in the literature and most of them need an estimation of model parameters that can differ even by several orders of magnitude on a case to case basis. In this paper we review the fundamental assumptions and derivation of breakup and coalescence ker- nels. Subsequently, we rigorously apply two-stage optimization over several independent sets of experiments in order to identify model parameters. Two-stage identification allows us to estab- lish new parametric dependencies valid for experiments that vary over large ranges of important non-dimensional groups. This be adopted for optimization of parameters in breakup...

  4. Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    Science.gov (United States)

    Gobyzov, Oleg; Lozhkin, Yuriy; Ryabov, Mikhail; Markovich, Dmitriy

    2016-03-01

    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed.

  5. Asymptotic method for determining the amplitude for three-particle breakup: Neutron-deuteron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Belov, P. A., E-mail: pavelbelov@gmail.com; Yakovlev, S. L., E-mail: yakovlev@cph10.phys.spbu.ru [St. Petersburg State University, Department of Computational Physics (Russian Federation)

    2013-02-15

    The process of neutron-deuteron scattering at energies above the deuteron-breakup threshold is described within the three-body formalism of Faddeev equations. Use is made of the method of solving Faddeev equations in configuration space on the basis of expanding wave-function components in the asymptotic region in bases of eigenfunctions of specially chosen operators. Asymptotically, wave-function components are represented in the form of an expansion in an orthonormalized basis of functions depending on the hyperangle. This basis makes it possible to orthogonalize the contributions of elastic-scattering and breakup channels. The proposed method permits determining scattering and breakup parameters from the asymptotic representation of the wave function without reconstructing it over the entire configuration space. The scattering and breakup amplitudes for states of total spin S = 1/2 and 3/2 were obtained for the s-wave Faddeev equation.

  6. Multipass beam breakup in the CEBAF [Continuous Electron Beam Accelerator Facility] superconducting linac

    International Nuclear Information System (INIS)

    Multipass beam breakup can severely limit current in superconducting linear accelerators due to the inherently high Q's of transverse deflecting modes of the rf cavities. The success of higher-order-mode damping in increasing threshold currents for the 4-pass CEBAF SRF linac design is investigated with computer modeling. This simulation is shown to be in agreement with theoretical analyses which have successfully described beam breakup in the Stanford superconducting, recirculating linac. Numerical evaluation of an analytic treatment by Gluckstern of multipass beam breakup with distributed cavities is also found to be consistent with the computer model. Application of the simulation to the design array of 400 five-cell CEBAF/Cornell cavities with measured higher-order-mode damping indicates that the beam breakup threshold current is at least an order of magnitude above the CEBAF design current of 200 μA

  7. Study of direct and sequential break-up reactions in 6Li+ 112Sn system

    International Nuclear Information System (INIS)

    The 6Li projectile while moving in the field of a target nucleus can not only dissociate into α+d but it can also first exchange a few nucleon with the target and then break up into two fragments. Identification of all these processes is important to understand the break-up mechanism of 6Li projectile and also to find the origin of the high yield of alpha particle production in such a reaction. In this paper, we present the exclusive measurement of breakup cross sections in 6Li+112Sn reaction exploring the above possibilities. Cross sections for both sequential as well as direct breakup are measured and compared with the theoretical calculations. The measured elastic scattering angular distributions were used as a constraint to the potential parameters that were used in the calculations to explain both elastic scattering and the breakup processes simultaneously

  8. Effective hadronic Lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions

    International Nuclear Information System (INIS)

    The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the frame-work of the strong coupling approximation. For N=3 the authors find the expectation value of the left-angle bar χχ right-angle and the hadron masses

  9. Analysis on Overhead Shielded Coupling Effectiveness of Ring Seam by Matlab

    Directory of Open Access Journals (Sweden)

    Chun-jiang Shuai

    2013-08-01

    Full Text Available it was important to study the shielded effectiveness to reduce the electromagnetic interference and to protect electronic components. in this paper, the boundary element equation of linear segment was derived from the two-dimension boundary integral equation and linear interpolating function, and the formulas of potential and electric field intensity were also given. To demonstrate the accuracy and flexibility of the LBEM (linear boundary element method, the influence of the deformation degree of shielded deformed coaxial cable compared with the multipole theory on the results were discussed.  Taking the overhead shielded coaxial cable and the overhead shielded two-core cable of ring seam as the research objects. The influences of ring seam in shielded effectiveness were analyzed by applying the LBEM with Matlab. The engineering example results showed that for overhead shield two-core cable, the change of coupling capacitance was related with the ring seam in deep layer of overhead shield two-core cable at the location of parallel core distance; and the change tendency of coupling capacitor with the ring seam at the vertical core distance was almost the same as the ring seam at the parallel core distance. But, when the ring seam depth was quite deep, very likely one core was exposed, and then the coupling capacitor decreased rapidly. Therefore the study of coupling effectiveness was instructive for more effective to defense EMI and will improve the overhead shielded cable electromagnetic compatibility.

  10. Electromagnetically induced transparency and dynamic Stark effect in coupled quantum resonators

    CERN Document Server

    De Ponte, M A; Serra, R M; Moussa, M H Y

    2004-01-01

    In this work we reproduce the phenomenology of the electromagnetically induced transparency and dynamic Stark effect in a dissipative system composed by two coupled bosonic fields under linear and nonlinear amplification process. Such a system can be used as a quantum switch in networks of oscillators.

  11. The effect of top-loop on the coupling of P30a to the gluon-photon

    International Nuclear Information System (INIS)

    The main production mechanism of colour octet isotriplet neutral PGB's (denoted by P30α) is via g-γ fusion. The total effective Lagrangian of P30α anomalous coupling to the gluon-photon is given. The effect of the top-quark loop on the coupling is calculated. Such an effect significantly changes the coupling strength. The net result is a more favourable situation for the detection of P30α at ep colliders (HERA and LEP/LHC). (author)

  12. Measuring the area of tear film break-up by image analysis software

    Science.gov (United States)

    Pena-Verdeal, Hugo; García-Resúa, Carlos; Ramos, Lucía.; Mosquera, Antonio; Yebra-Pimentel, Eva; Giráldez, María. Jesús

    2013-11-01

    Tear film breakup time (BUT) test only examines the first break in the tear film, but subsequent tear film events are not monitored. We present a method of measuring the area of breakup after the appearance of the first breakup by using open source software. Furthermore, the speed of the rupture was determined. 84 subjects participated in the study. 2 μl volume of 2% sodium fluorescein was instilled using a micropipette. The subject was seated behind a slit-lamp using a cobalt blue filter together with a Wratten 12 yellow filter. Then, the tear film was recorded by a camera attached to the slit lamp. 4 frames of each video was extracted, the first rupture (BUT_0), breakup after 1 second (BUT_1), rupture after 2 seconds (BUT_2) and breakup before the last blink (BUT_F). Open source software of measurement based on Java (NIH ImageJ) was used to measure the number of pixels in areas of breakup. These areas were divided by the area of exposed cornea to obtain the percentage of ruptures. Instantaneous breakup speed was calculated for second 1 as the difference between BUT_1 - BUT_0, whereas instant speed for second 2 was BUT_2 - BUT_1. Mean area of breakup obtained was: BUT_0 = 0.26%, BUT_1 = 0.48%, BUT_2 = 0.79% and BUT_F = 1.61%. Break speed was 0.22 area/sec for second 1 and 0.31 area/sec for second 2, showing a statistical difference between them (p = 0.007). Post BUT analysis may be easily monitoring with the aid of this software.

  13. Sub-picosecond pulse break-up in an InGaAsP optical amplifier

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal

    broadening and eventual break-up for input pulse energies on the order of picoJoules. This break-up is present in the gain region (6-14 dB), while for absorption (-6 dB9 and transparency, pulse narrowing by a factor of two is evidenced. We observe that not only the amplitude is modulated, but also the linear...

  14. Evidence for elastic {sup 16}O breakup into the {alpha}-{sup 12}C continuum

    Energy Technology Data Exchange (ETDEWEB)

    Tatischeff, V.; Auger, P.; Bogaert, G.; Coc, A.; Kiener, J.; Lefebvre, A. [Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), 75 - Paris (France); Disdier, D.; Kraus, L.; Linck, I. [Strasbourg-1 Univ., 67 (France); Mittig, W. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Stephan, C. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; and others

    1996-09-01

    Radiative capture cross section have been measured by the method of breakup of a {sup 16}O beam at 95 MeV/A, which is particularly sensitive to the E2 part. The elastic breakup of {sup 16}O into {sup 12}C and {alpha} induced by Coulomb interaction with the electric field of a heavy nucleus may be regarded as the time reversed radiative capture reaction. (K.A.). 11 refs.

  15. Ice breakup forecast in the reach of the Yellow River: the support vector machines approach

    OpenAIRE

    Zhou, H; Li, W.; C. Zhang; Liu, J.

    2009-01-01

    Accurate lead-time forecast of ice breakup is one of the key aspects for ice flood prevention and reducing losses. In this paper, a new data-driven model based on the Statistical Learning Theory was employed for ice breakup prediction. The model, known as Support Vector Machine (SVM), follows the principle that aims at minimizing the structural risk rather than the empirical risk. In order to estimate the appropriate parameters of the SVM, Multiobj...

  16. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics

    Institute of Scientific and Technical Information of China (English)

    Ping Wu; Zhaofeng Luo; Zhifeng Liu; Zida Li; Chi Chen; Lili Feng; Liqun He

    2015-01-01

    Based on viscous drag-induced breakup mechanism, a simple model was proposed to predict the dripping drop-let size as a function of controllable parameters in flow focusing micro devices. The size of thread before breakup was also investigated through laminar flow theory. Experiments and numerical simulations by VOF are carried out simultaneously to validate the theoretical analysis, showing that droplet size decreases rapidly with the in-crease of the flow rate ratio and capil ary number.

  17. A Genesis breakup and burnup analysis in off-nominal Earth return and atmospheric entry

    Science.gov (United States)

    Salama, Ahmed; Ling, Lisa; McRonald, Angus

    2005-01-01

    The Genesis project conducted a detailed breakup/burnup analysis before the Earth return to determine if any spacecraft component could survive and reach the ground intact in case of an off-nominal entry. In addition, an independent JPL team was chartered with the responsibility of analyzing several definitive breakup scenarios to verify the official project analysis. This paper presents the analysis and results of this independent team.

  18. Aerosol cluster impact and break-up : model and implementation.

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B.

    2010-10-01

    In this report a model for simulating aerosol cluster impact with rigid walls is presented. The model is based on JKR adhesion theory and is implemented as an enhancement to the granular (DEM) package within the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, powders, colloidal suspensions, etc.). Modeling the behavior of aerosol particles during agglomeration and cluster dynamics upon impact with a wall is of particular interest. In this report we describe preliminary efforts to develop and implement physical models for aerosol particle interactions. Future work will consist of deploying these models to simulate aerosol cluster behavior upon impact with a rigid wall for the purpose of developing relationships for impact speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster sizes if break-up occurs. These relationships will be developed consistent with the need for inputs into system-level codes. Section 2 gives background and details on the physical model as well as implementations issues. Section 3 presents some preliminary results which lead to discussion in Section 4 of future plans.

  19. Asteroid breakup linked to the Great Ordovician Biodiversification Event

    Science.gov (United States)

    Schmitz, Birger; Harper, David A. T.; Peucker-Ehrenbrink, Bernhard; Stouge, Svend; Alwmark, Carl; Cronholm, Anders; Bergström, Stig M.; Tassinari, Mario; Xiaofeng, Wang

    2008-01-01

    The rise and diversification of shelled invertebrate life in the early Phanerozoic eon occurred in two major stages. During the first stage (termed as the Cambrian explosion), a large number of new phyla appeared over a short time interval ~540Myrago. Biodiversity at the family, genus and species level, however, remained low until the second stage marked by the Great Ordovician Biodiversification Event in the Middle Ordovician period. Although this event represents the most intense phase of species radiation during the Palaeozoic era and led to irreversible changes in the biological make-up of Earth's seafloors, the causes of this event remain elusive. Here, we show that the onset of the major phase of biodiversification ~470Myrago coincides with the disruption in the asteroid belt of the L-chondrite parent body-the largest documented asteroid breakup event during the past few billion years. The precise coincidence between these two events is established by bed-by-bed records of extraterrestrial chromite, osmium isotopes and invertebrate fossils in Middle Ordovician strata in Baltoscandia and China. We argue that frequent impacts on Earth of kilometre-sized asteroids-supported by abundant Middle Ordovician fossil meteorites and impact craters-accelerated the biodiversification process.

  20. MODEL OF CENTRIFUGAL EFFECT AND ATTITUDE MANEUVER STABILITY OF A COUPLED RIGID-FLEXIBLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bin; WANG Zhao-lin; WANG Tian-shu; LIU Ning

    2005-01-01

    The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigidflexible system was deduced from the idea of "cenlrifugal potential field", and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected,in the condition that only the measured values of attitude and attitude speed are available,and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.

  1. Isovector channel of quark-meson-coupling model and its effect on symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.B. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Qi, C. [KTH (Royal Institute of Technology), Alba Nova University Center, SE-10691 Stockholm (Sweden); Xu, F.R., E-mail: frxu@pku.edu.cn [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for Theoretical Nuclear Physics, National Laboratory for Heavy Ion Physics, Lanzhou 730000 (China)

    2011-08-15

    The non-relativistic approximation of the quark-meson-coupling model has been discussed and compared with the Skyrme-Hartree-Fock model which includes spin exchanges. Calculations show that the spin-exchange interaction has important effect on the descriptions of finite nuclei and nuclear matter through the Fock exchange. Also in the quark-meson-coupling model, it is the Fock exchange that leads to a nonlinear density-dependent isovector channel and changes the density-dependent behavior of the symmetry energy.

  2. Synchronization effects in two coupled one-dimensional lattices of phase oscillators

    International Nuclear Information System (INIS)

    We study synchronization effects in a model consisting of two identical unidirectionally coupled 1-D arrays of phase oscillators. The master array is in the spatio-temporal chaos regime and the coupling across the two arrays is not strong enough in order to reach complete synchronization. The time series of the distance between the arrays is the main object of our study and this shows on-off intermittency. We can approximate the dynamics of the aforementioned time series with that of a first-order Markov process with two symbols. This model can be implemented in arrays of phase-locked loops (PPL) and Josephson junctions. (author)

  3. Effect of biquadratic coupling on current induced magnetization switching in Co/Cu/Ni-Fe nanopillar

    Science.gov (United States)

    Aravinthan, D.; Sabareesan, P.; Daniel, M.

    2016-05-01

    The effect of biquadratic coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the free layer magnetization switching dynamics governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The LLGS equation is numerically solved by using Runge-Kutta fourth order procedure for an applied current density of 5 × 1012 Am-2. Presence of biquadratic coupling in the ferromagnetic layers reduces the magnetization switching time of the nanopillar device from 61 ps to 49 ps.

  4. Effects of Unequal Couplings on Fidelity of a Quantum Controlled-Controlled-Not Gate

    Institute of Scientific and Technical Information of China (English)

    WU Yin-Zhong; SHI Cui-Hua; PAN Tao; LI Zhen-Ya

    2009-01-01

    By numerically solving the Schodinger equation of a three-nuclear-spin system, the effects of the non-uniform nearest-neighbor (NN) interaction on the fidelity of a quantum controlled-controlled-not (CCN) gate are investigated for a digital initial state and a superposition initial state respectively. It is found from our simulation that the ratio of the deviation of the NN coupling δJ to the NAT coupling J should be smaller than 0.0005 to ensure a high fidelity of the quantum CCN gate.

  5. Effects of curvature-Higgs coupling on electroweak fine-tuning

    International Nuclear Information System (INIS)

    It is shown that nonminimal coupling between the Standard Model (SM) Higgs field and spacetime curvature, present already at the renormalizable level, can be fine-tuned to stabilize the electroweak scale against power-law ultraviolet divergences. The nonminimal coupling acts as an extrinsic stabilizer with no effect on the loop structure of the SM, if gravity is classical. This novel fine-tuning scheme, which could also be interpreted within Sakharov's induced gravity approach, works neatly in extensions of the SM involving additional Higgs fields or singlet scalars.

  6. The effects of electronic delocalization in highly coupled mixed valence systems

    OpenAIRE

    Lear, Benjamin James

    2007-01-01

    The trinuclear ruthenium cluster RuO(OAc)₆L₃ (where L is an ancillary ligand) is used to make a variety of mixed valence compounds in which two or more clusters are joined together by an organic bridging ligand. The magnitude of electronic coupling in the mixed valance state of these compounds is quite large and the complexes reside on the Robin-Day class II/class III borderline. The large degree of coupling in these complexes gives rise to ultrafast electron transfer whose effects are observ...

  7. On the Coupling Effects between Elastic and Electromagnetic Fields from the Perspective of Conservation of Energy

    CERN Document Server

    Zhou, Peng

    2015-01-01

    In this paper, the law of conservation of energy is applied to analyze reversible and coupling processes between elastic and electromagnetic fields. This approach is here called the energy formulation. For simple physical processes such as mechanical movement, diffusion and electrodynamic process, it is shown their governing equations all satisfy the law of conservation of energy. Then, analysis is extended to coupling effects. First, it is found the constitutive equations of the linear direct and converse piezoelectric and piezomagnetic effects guarantee that energy is conserved during the conversion of energies. Second, analyses found that for the generalized Villari effects, the electromagnetic energy can be treated as an extra term in the generalized elastic energy. Third, both the laws of conservation of momentum and energy are used to analyze electrostriction and magnetostriction. It is argued that both of these strictive effects are induced by the Maxwell stress. In addition, their energy is purely ele...

  8. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    CERN Document Server

    Wang, Ruijie; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. For channels of planar surfaces, simulations are performed in a wide range of Knudsen number and our numerical results show good agreement with the literature results. For channels of ratchet surfaces, simulations are performed for both the slip and transition regimes and our numerical results not only confirm the theoretical prediction [Phys. Rev. Lett. 107, 164502 (2011)] for Knudsen number in the slip regime but also show that the off-diagonal kinetic coefficients for cross coupling effects are maximized at a Knudsen n...

  9. Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects

    CERN Document Server

    Hervé, Benjamin; Mahé, Hervé; Jezequel, Louis

    2008-01-01

    This paper deals with an audible disturbance known as automotive clutch squeal noise from the viewpoint of friction-induced mode coupling instability. Firstly, an auto-coupling model is presented showing a non-conservative circulatory effect originating from friction forces. Secondly, the stability of an equilibrium is investigated by determining the eigenvalues of the system linearized equations. The effects of the circulatory and gyroscopic actions are examined analytically and numerically to determine their influence on the stability region. Separate and combined effects are analysed with and without structural damping and important information is obtained on the role of each parameter and their interactions regarding overall stability. Not only is structural damping shown to be of primary importance, as reported in many previous works, this article also highlights a particular relationship with gyroscopic effects. A method of optimizing both the stability range and its robustness with respect to uncertain...

  10. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  11. Investigation of coupling geometry and dimerization effects on thermoelectric properties of a C60 molecular transistor

    OpenAIRE

    Tagani, M. Bagheri; Golsanamlou, Z.; Izadi, S; Soleimani, H. Rahimpour

    2013-01-01

    Thermoelectric properties of a C60 molecular transistor are studied using Green function formalism in linear response regime. A tight-binding model is used to investigate the effect of the dimerization and coupling geometry on the electrical conductance, thermopower, and figure of merit. Increase of the connection points between the molecule and electrodes results in decrease of the number of the peaks of the electrical conductance owing to the interference effects. In addition, oscillation o...

  12. Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie

    2016-06-01

    Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.

  13. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  14. The Effects of In-Work Benefit Reform in Britain on Couples: Theory and Evidence

    OpenAIRE

    Francesconi, Marco; Rainer, Helmut; van der Klaauw, Wilbert

    2007-01-01

    This paper examines the effects of the Working Families' Tax Credit (WFTC) on couples in Britain. We develop a simple model of household decisions which explicitly accounts for the role played by the tax and benefit system. Its main implications are then tested using panel data from the British Household Panel Survey collected between 1991 and 2002. Overall, the financial incentives of the reform had negligible effects on a wide range of married mothers' decisions, such as eligible (working a...

  15. Effects of phonon-phonon coupling on properties of pygmy resonance in 124-132Sn

    Directory of Open Access Journals (Sweden)

    Voronov V. V.

    2012-12-01

    Full Text Available Starting from an effective Skyrme interaction we study effects of phonon-phonon coupling on the low-energy electric dipole response in 124-132Sn. The QRPA calculations are performed within a finite rank separable approximation. The inclusion of two-phonon configurations gives a considerable contribution to low-lying strength. Comparison with available experimental data shows a reasonable agreement for the low-energy E1 strength distribution.

  16. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    OpenAIRE

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estima...

  17. Study of turning takeoff maneuver in free-flying dragonflies: effect of dynamic coupling

    CERN Document Server

    Zeyghami, Samane

    2015-01-01

    Turning takeoff flights of several dragonflies were recorded during which a dragonfly takes off while changing the flight direction at the same time. Center of mass was elevated about 1-2 body lengths. Five of these maneuvers were selected for 3D body surface reconstruction and the body orientation measurement. In oppose to conventional banked turn model, which neglects interactions between the rotational motions, in this study we investigated the strength of the dynamic coupling by dividing pitch, roll and yaw angular accelerations into two contributions: one from aerodynamic torque and one from dynamic coupling effect. The latter term is referred to as Dynamic Coupling Acceleration (DCA). The DCA term can be measured directly from instantaneous rotational velocities of the insect. We found a strong correlation between pitch and yaw velocities at the end of each wingbeat and the time integral of the corresponding DCA term. Generation of pitch, roll and yaw torques requires different aerodynamic mechanisms an...

  18. DOA Estimation under Unknown Mutual Coupling and Multipath with Improved Effective Array Aperture

    Science.gov (United States)

    Wang, Yuexian; Trinkle, Matthew; Ng, Brian W.-H.

    2015-01-01

    Subspace-based high-resolution direction of arrival (DOA) estimation significantly deteriorates under array manifold perturbation and rank deficiency of the covariance matrix due to mutual coupling and multipath propagation, respectively. In this correspondence, the unknown mutual coupling can be circumvented by the proposed method without any passive or active calibration process, and the DOA of the coherent signals can be accurately estimated accordingly. With a newly constructed matrix, the deficient rank can be restored, and the effective array aperture can be extended compared with conventional spatial smoothing. The proposed method achieves a good robustness and DOA estimation accuracy with unknown mutual coupling. The simulation results demonstrate the validity and efficiency of the proposed method. PMID:26670235

  19. The effective U(1)-Higgs theory at strong coupling on optical lattices?

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Meurice, Yannick

    2014-01-01

    We discuss the U(1)-Higgs model in two dimensions in the strongly coupled regime. If we neglect the plaquette interactions, we generate an effective theory where link variables are integrated out, producing 4-field operators. Plaquette interactions can be restored order by order as in recent calculations with staggered fermions. In the case of a SU(2) gauge theory with fermions, this strong coupling expansion can be related to the strong coupling expansion of Fermi-Hubbard models possibly implementable on optical lattice. We would like to provide a similar construction relating the U(1)-Higgs model to some Bose-Hubbard model. As a first step in this direction, we discuss a recent proposal to implement the O(2) model on optical lattices using a 87Rb and 41K Bose-Bose mixture of cold atoms.

  20. 8D likelihood effective Higgs couplings extraction framework in the golden channel

    International Nuclear Information System (INIS)

    In this paper we build a comprehensive analysis framework to perform direct extraction of all possible effective Higgs couplings to neutral electroweak gauge bosons in the decay to electrons and muons, the so called 'golden channel'. Our framework is based on a maximum likelihood method constructed from analytic expressions of the fully differential cross sections for h→4ℓ and for the dominant irreducible qq ¯ →4ℓ background, where 4ℓ=2e2μ,4e,4μ . Detector effects are included by an explicit convolution of these analytic expressions with the appropriate transfer function over all center of mass variables. Using the full set of decay observables, we construct an unbinned 8-dimensional detector-level likelihood function which is continuous in the effective couplings and includes systematic uncertainties. We consider all possible ZZ , Zγ and γγ couplings, allowing for general CP odd/even admixtures and any possible phases. We describe how the convolution is performed and demonstrate the validity and power of the framework with a number of supporting checks and example fits. The framework can be used to perform a variety of multi-parameter extractions, including their correlations, to determine the Higgs couplings to neutral electroweak gauge bosons using data obtained at the LHC and other future colliders

  1. Coupled model of deformation and gas flow process with temperature and slippage effect

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    2015-06-01

    Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code

  2. Effects of temperature on intergranular exchange coupling in L10 FePt thin films

    Science.gov (United States)

    Huang, Efrem Y.; Kryder, Mark H.

    2014-06-01

    The effects of temperature on intergranular exchange coupling for FePt:X:FePt (X = TaOx, SiOx, Cr) sputtered thin film stacks were investigated. In-plane FePt layers separated by a thin layer of segregant were used as an experimental model for the intergranular region in perpendicular recording media. Magnetic hysteresis was measured for varying segregant thicknesses (0.5 nm-1.5 nm) at varying temperatures (300 K-700 K). Exchange coupling energies were calculated using the reversal field, saturation magnetization, and coercivity. The intergranular exchange coupling energy was observed to be well-behaved, decreasing linearly with increasing temperature to 600 K. TaOx resulted in the lowest exchange coupling energy at any given temperature, while SiOx and Cr showed similar decoupling capabilities. At 600 K and beyond, antiferromagnetic behavior was observed. Exchange coupling was found to be negligible at operating temperatures above 600 K even with as little as 0.5 nm of TaOx segregant or 1 nm of SiOx segregant.

  3. Broadband Metallic Planar Microlenses in an Array: the Focusing Coupling Effect.

    Science.gov (United States)

    Yu, Yiting; Wang, Ping; Zhu, Yechuan; Diao, Jinshuai

    2016-12-01

    The microlens arrays (MLAs) are widely utilized for various applications. However, when the lens size and the spacing between two adjacent microlenses are of the length scale of the working wavelength, the diffraction effect plays a vital role in the final focusing performance. We suggest a kind of broadband metallic planar microlenses, based on which the ultra-compact microlens arrays are also constructed. The focusing coupling effect revealing for such devices is then investigated in detail by using the finite-difference time-domain (FDTD) method, with the emphasis on the changing spacing between adjacent microlenses, the working wavelength, the diameter of microlenses, and the array size. The results show that a larger spacing, a larger lens size, a shorter wavelength, or a smaller array scale can lead to a weaker focusing coupling effect. This research provides an important technological reference to design an array of metallic planar microlenses with the well-controlled focusing performance. PMID:26922796

  4. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing...... thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other with...... large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules. It...

  5. Investigation of the thermo-optic effect in doubly coupled photonic crystal split-beam nanocavities

    Science.gov (United States)

    Lin, Tong; Tao, Jifang; Chau, Fook Siong; Deng, Jie; Zhou, Guangya; Gu, Yuandong

    2016-07-01

    We design and experimentally demonstrate doubly coupled photonic crystal split-beam nanocavities. The thermal response of the coupled nanocavities is characterized by controlling the device temperature: the resonant wavelengths of the odd mode (1557.28 nm) and even mode (1567.18 nm) are both redshifted linearly from 17.4 °C to 46.5 °C. The tuning ratio of the two modes is measured to be 97.4%, implying that they respond almost the same to temperature changes. Therefore, changes of the wavelength difference between this pair of modes can be applied to effectively decouple the thermo-optic effect from the optomechanical effect without on-chip temperature self-referencing. Additionally, the topmost quality-factor approaches 28 300 throughout the thermal tuning. The proposed structure paves the way for studying purely optomechanical actuations.

  6. Nuclear Density-Dependent Effective Coupling Constants in the Mean-Field Theory

    CERN Document Server

    Lee, J H; Lee, S J; Lee, Jae Hwang; Lee, Young Jae; Lee, Suk-Joon

    1996-01-01

    It is shown that the equation of state of nuclear matter can be determined within the mean-field theory of $\\sigma \\omega$ model provided only that the nucleon effective mass curve is given. We use a family of the possible nucleon effective mass curves that reproduce the empirical saturation point in the calculation of the nuclear binding energy curves in order to obtain density-dependent effective coupling constants. The resulting density-dependent coupling constants may be used to study a possible equation of state of nuclear system at high density or neutron matter. Within the constraints used in this paper to $M^*$ of nuclear matter at saturation point and zero density, neutron matter of large incompressibility is strongly bound at high density while soft neutron matter is weakly bound at low density. The study also exhibits the importance of surface vibration modes in the study of nuclear equation of state.

  7. Triple-differential cross section of the 208Pb(6Li, αd)208 Pb Coulomb breakup and astrophysical S-factor of the d(α,γ)6 Li reaction at extremely low energies

    International Nuclear Information System (INIS)

    A method of calculation of the triple-differential cross section of the 208Pb(6Li, αd)208Pb Coulomb breakup at astrophysically relevant energies E of the relative motion of the breakup fragments, taking into account the three-body (α - d - 208Pb) Coulomb effects and the contributions from the E1- and E2- multipoles, including their interference, has been proposed. The new results for the astrophysical S-factor of the direct radiative capture d(α, γ)6 Li reaction at E ≤ 250 keV have been obtained. It is shown that the experimental triple-differential cross section of the 208Pb(6Li, αd)208Pb Coulomb breakup can also be used to give information about the value of the modulus squared of the nuclear vertex constant for the virtual 6Li → α + d. (author)

  8. Optical model parallel description of elastic, fusion and breakup cross sections for systems with weakly bound projectiles

    Science.gov (United States)

    Gómez Camacho, A.; Gomes, P. R. S.; Lubian, J.; Aguilera, E. F.

    2014-03-01

    A brief description is presented of the results obtained in recent years for the simultaneous analysis of elastic and fusion cross section data of nuclear reactions for several nuclear systems with weakly bound and halo projectiles. The method used in this description, consists of simultaneously determine the parameters of fusion UF and direct reaction UDR polarization potentials of Woods-Saxon geometric shapes, that fit the elastic and fusion data. As a matter of fact, UFis an energy dependent potential, with real VF and imaginary WFcomponents, that is responsible for fusion reactions. Similarly, UDR is also energy dependent with real VDR and imaginary WDR parts, that accounts for direct reactions. A general finding for all the systems presented is that, the real and imaginary parts of the fusion potential and direct reaction potentials, are related by a dispersion relation and their energy dependence around and below the Coulomb barrier, show the so-called Breakup Threshold Anomaly. The effect of breakup reactions on fusion cross sections is studied by analyzing the separate effect of the absorption potential WDR and the fusion barrier rising produced by VDR.

  9. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  10. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  11. Coupling and corona effects research plan for transmission lines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J E; Formanek, V C

    1976-06-01

    Concern has arisen over the possible effects of electric and magnetic fields produced by EHV-UHV transmission lines. Past and ongoing research concerning the electric and magnetic field effects from EHV-UHV transmission lines was reviewed as it pertains to the following areas: (1) electromagnetic interference, (2) acoustic noise, (3) generation of gaseous effluents, and (4) safety considerations of induced voltages and currents. The intent of this review was to identify the short and long range research projects required to address these areas. The research plan identifies and gives priority to twenty programs in corona and coupling effects. In the case of the corona effects, a number of programs were recommended for acoustic noise and electromagnetic interference to delineate improved power line design criteria in terms of social, meteorological, geographical and cost constraints. Only one project is recommended in the case of ozone generation, because the results of comprehensive analyses, laboratory studies and field measurements have demonstrated that power lines do not contribute significant quantities of ozone. In the case of the coupling effects, a number of programs are recommended for HVAC transmission lines to improve the theoretically developed design guidelines by considering practical constraints. For HVDC transmission lines, programs are suggested to engender a better theoretical understanding and practical measurements capability for the coupling mechanisms of the dc electric and magnetic field with nearby objects. The interrelationship of the programs and their role in a long-term research plan is also discussed.

  12. Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach

    Science.gov (United States)

    Chen, Jing-Yuan; Kolb, Edward W.; Wang, Lian-Tao

    2013-12-01

    If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W+W-, hh, and ffbar, and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals.

  13. The Effect of Teaching Communicative Patterns of Pluralistic Family on Couples Happiness

    Directory of Open Access Journals (Sweden)

    H Molavi

    2010-07-01

    Full Text Available Introduction & Objective: One of the basic elements declared in positive psychology is the concept of happiness. Researches have shown that without concerning how achieved, happiness can enhance our health. People who are happy feel more secure, decide easier, and are more satisfied of the people who live with. The aim of the present study was to measure the efficiency of teaching communicative pattern of pluralistic family on the happiness of couples. Materials & Method:This experimental study was designed to have a pre-test and post test and also a control group. Subjects of this study were comprised of consultation centers clients in Shiraz and was based on random sampling. Forty couples were selected according to the revised version of family communication patterns of Koerner and Fitzpatrick. Two dimensions, namely laisseze fair and protective family patterns, were taken into account through the process of selection . Oxford Happiness Invintory was administered to 40 couples and they were randomly divided into a control and an experimental group. Ten training sessions, 90- minute each, were held for experimental group exposed to pluralistic communication patterns. Three Couples declined and finally 34 couples were analyzed.The test was run for both groups and data was analyzed with covariance analysis method using SPSSI5. Results:The results of the present study revealed that with regard to happiness, there is a meaningful difference in both groups (p<0.005. The difference also existed between the pretest and post test scores of happiness test in both groups (p<0.0001. However, communication patterns and interaction between both groups did not reach a meaningful level. Conclusion: Based on the finding, it can be concluded that listening to and speaking with each other play a key role in happiness, therefore pluralistic communication methods based on high levels of listing speaking interactions can be effective happiness of couples.

  14. The oil body formation and breakup in the compound vortex

    Science.gov (United States)

    Chaplina, T. O.; Stepanova, E. V.

    2012-04-01

    The flows in the Ocean and Atmosphere combine different types of motion: streams, jets, wakes, vortices and waves. When flows transport solid bodies or immiscible admixtures picturesque flow patterns are revealed and indicated the type of flow. Different spiral patterns visualize vortex flow structure. In experiments is studied the transport of finite volumes of immiscible admixture introduced on the free surface of water drawn into the vortex motion in the vertical cylindrical container. The basic medium was tap water, preliminary degasified to make the visualization less difficult. The fixed volume of immiscible admixture (castor or sunflower oil) is introduced on the quiescent free surface of water inside the cylindrical container. The generation of compound vortex in the cylindrical container started after all the disturbances caused by deposition of the oil volume are damped. In compound vortex the flow oil patch with smooth boundary placed onto free surface is transformed into a set of spiral arms and separate drops contacting with the central oil volume. The droplets are separated from the central spot and slowly travel towards the container sidewall. With time, the spot is transformed into pronounced spiral arms. The most part of oil under the influence of vortex flow is gathered into the central volume contacting with the free surface. This volume is called "the oil body". On the lower frequencies of disk rotation and respectively slow flow gyration the oil body has smooth boundaries with water and air. The growth of disk rotation frequency leads to more pronounced deformation of the contact surface between liquid and air, the boundary of the oil body and water then is covered by small pimples. At the further increase of disk rotation frequency the oil body comes to the breakup, the water-oil boundary become irregular and on the lowest part of the oil body the analog of foam appears (the water-oil emulsion). The work is supported by Ministry of Education

  15. Coupling a system code with computational fluid dynamics for the simulation of complex coolant reactivity effects

    International Nuclear Information System (INIS)

    The current doctoral research is focused on the development and validation of a coupled computational tool, to combine the advantages of computational fluid dynamics (CFD) in analyzing complex flow fields and of state-of-the-art system codes employed for nuclear power plant (NPP) simulations. Such a tool can considerably enhance the analysis of NPP transient behavior, e.g. in the case of pressurized water reactor (PWR) accident scenarios such as Main Steam Line Break (MSLB) and boron dilution, in which strong coolant flow asymmetries and multi-dimensional mixing effects strongly influence the reactivity of the reactor core, as described in Chap. 1. To start with, a literature review on code coupling is presented in Chap. 2, together with the corresponding ongoing projects in the international community. Special reference is made to the framework in which this research has been carried out, i.e. the Paul Scherrer Institute's (PSI) project STARS (Steady-state and Transient Analysis Research for the Swiss reactors). In particular, the codes chosen for the coupling, i.e. the CFD code ANSYS CFX V11.0 and the system code US-NRC TRACE V5.0, are part of the STARS codes system. Their main features are also described in Chap. 2. The development of the coupled tool, named CFX/TRACE from the names of the two constitutive codes, has proven to be a complex and broad-based task, and therefore constraints had to be put on the target requirements, while keeping in mind a certain modularity to allow future extensions to be made with minimal efforts. After careful consideration, the coupling was defined to be on-line, parallel and with non-overlapping domains connected by an interface, which was developed through the Parallel Virtual Machines (PVM) software, as described in Chap. 3. Moreover, two numerical coupling schemes were implemented and tested: a sequential explicit scheme and a sequential semi-implicit scheme. Finally, it was decided that the coupling would be single

  16. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    Energy Technology Data Exchange (ETDEWEB)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  17. Gauge Coupling Field, Currents, Anomalies and N=1 Super-Yang-Mills Effective Actions

    CERN Document Server

    Ambrosetti, Nicola; Derendinger, Jean-Pierre; Hartog, Jelle

    2016-01-01

    Working with a gauge coupling field in a linear superfield, we construct effective Lagrangians for N=1 super-Yang-Mills theory fully compatible with the expected all-order behaviour or physical quantities. Using the one-loop dependence on its ultraviolet cutoff and anomaly matching or cancellation of R and dilatation anomalies, we obtain the Wilsonian effective Lagrangian. With similar anomaly matching or cancellation methods, we derive the effective action for gaugino condensates, as a function of the real coupling field. Both effective actions lead to a derivation of the NSVZ beta function from algebraic arguments only. The extension of results to N=2 theories or to matter systems is briefly considered. The main tool for the discussion of anomalies is a generic supercurrent structure with 16_B+16_F operators (the S multiplet), which we derive using superspace identities and field equations for a fully general gauge theory Lagrangian with the linear gauge coupling superfield, and with various U(1)_R currents...

  18. The effective lifetime and temperature coefficient in a coupled fast-thermal reactor

    International Nuclear Information System (INIS)

    The theory of coupled systems was extensively developed by Avery and co-workers at the Argonne National Laboratory. One of the main points of interest in a coupled system is the larger effective lifetime of neutrons. The effect of the thermal component acts as a sort of neutron-delayer. As in the theory of delayed neutrons the delaying effect disappears if the reactivity worth is high enough to make the fast component critical by itself. In the study a coupled reactor is considered where the fast component suffers a sudden reactivity step α0. Because of the increasing power-level the temperature rises and two temperature coefficients start to work: the temperature coefficient of the fast component and the temperature coefficient of the thermal component. The problem is considered with one group of delayed neutrons (in the ordinary meaning). A formalism is given to express the effective lifetime and temperature coefficient during the different stages of the excursion. Excursions for different α0 are given so that the limit of fast-reactor kinetics is reached. (author)

  19. Tuning the effective coupling of an AFM lever to a thermal bath

    International Nuclear Information System (INIS)

    Fabrication of high quality nano-electromechanical systems (NEMS) is nowadays extremely efficient. These NEMS will be used as sensors and actuators in integrated systems. Their use, however, raises questions about their interface (actuation, detection, read out) with external detection and control systems. Their operation implies many fundamental questions related to single particle effects such as Coulomb blockade, light matter interactions such as radiation pressure, thermal effects, Casimir forces and the coupling of nanosystems to the external world (thermal fluctuations, back action effect). Here we specifically present how the damping of an oscillating cantilever can be tuned in two radically different ways: (i) through an electromechanical coupling in the presence of a strong Johnson noise, (ii) through an external feedback control of thermal fluctuations which is the cold damping closely related to Maxwell's demon. This shows how the interplay between external control of micro-EMS (MEMS) or NEMS and their coupling to a thermal bath can lead to a wealth of effects that are nowadays extensively studied in different areas

  20. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  1. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  2. The effect of noise and coupling on beta cell excitation dynamics

    DEFF Research Database (Denmark)

    numerical simulations. We show here how the application of two recent methods allows an analytic treatment of the stochastic effects on the location of the saddle-node and homoclinic bifurcations, which determine the burst period. Thus, the stochastic system can be analyzed similarly to the deterministic...... isolated and coupled cells has been suggested to be due to stochastic fluctuations of the plasma membrane ion channels, which are supposed to have a stronger effect on single cells than on cells situated in clusters (the channel sharing hypothesis). This effect of noise has previously been studied using...

  3. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    OpenAIRE

    Xu-Guang Huang

    2016-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...

  4. Anomalous coupling, top-mass and parton-shower effects in W + W - production

    Science.gov (United States)

    Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.

    2016-05-01

    We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.

  5. Thermoelectric effect in the Kondo dot side-coupled to a Majorana mode

    Science.gov (United States)

    Khim, Heunghwan; López, Rosa; Lim, Jong Soo; Lee, Minchul

    2015-06-01

    We investigate the linear thermoelectric response of an interacting quantum dot side-coupled by one of two Majorana modes hosted by a topological superconducting wire. We employ the numerical renormalization group technique to obtain the thermoelectrical conductance L in the Kondo regime while the background temperature T, the Majorana-dot coupling Γm, and the overlap ɛm between the two Majorana modes are tuned. We distinguish two transport regimes in which L displays different features: the weak- (ΓmTK) regimes, where TK is the Kondo temperature. For an infinitely long nanowire where the Majorana modes do not overlap (ɛm = 0), the thermoelectrical conductance in the weak-coupling regime exhibits a peak at T ~ ΓmFano resonance between the asymmetric Kondo resonance and the zero-energy Majorana bound state. In the strong-coupling regime, on the other hand, the Kondo-induced peak in L is affected by the induced Zeeman splitting in the dot. For finite but small overlap (0 interference between the two Majorana modes restores the Kondo effect in a smaller energy scale Γ'm and gives rise to an additional peak in Γ ~ Γ'm, whose sign is opposite to that at T ~ Γm. In the strong-coupling regime this additional peak can cause a non-monotonic behavior of L with respect to the dot gate. Finally, in order to identify the fingerprint of Majorana physics, we compare the Majorana case with its counterpart in which the Majorana bound states are replaced by a (spin-polarized) ordinary bound state and find that the thermoelectric features for finite ɛm are the genuine effect of the Majorana physics.

  6. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    Institute of Scientific and Technical Information of China (English)

    YAO Jiang-Ming; L(U) Hong-Feng; Hillhouse Greg; MENG Jie

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in 13Λ C,17Λ O,and 41Λ Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar,vector and tensor potentials.It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling.The Λ tensor potential reduces the spin-orbit splitting of PΛ states considerably.However,almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the Λ tensor potential in the electromagnetic current vertex.The deviations of magnetic moments for pΛ states from the Schmidt values are found to increase with nuclear mass number.

  7. Effects of randomness on chaos and order of coupled logistic maps

    International Nuclear Information System (INIS)

    Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics

  8. Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence

    CERN Document Server

    Hamza, Abdelaziz M

    2015-01-01

    The fundamental problem of Farley-Buneman turbulence in the auroral $E$-region has been discussed and debated extensively in the past two decades. In the present paper we intend to clarify the different steps that the auroral $E$-region plasma has to undergo before reaching a steady state. The mode-coupling calculation, for Farley-Buneman turbulence, is developed in order to place it in perspective and to estimate its magnitude relative to the anomalous effects which arise through the nonlinear wave-particle interaction. This nonlinear effect, known as nonlinear ``Landau damping'' is due to the coupling of waves which produces other waves which in turn lose energy to the bulk of the particles by Landau damping. This leads to a decay of the wave energy and consequently a heating of the plasma. An equation governing the evolution of the field spectrum is derived and a physical interpration for each of its terms is provided.

  9. Quantum well effect based on hybridization bandgap in deep subwavelength coupled meta-atoms

    Science.gov (United States)

    Chen, Yongqiang; Li, Yunhui; Wu, Qian; Jiang, Haitao; Zhang, Yewen; Chen, Hong

    2015-09-01

    In this paper, quantum well (QW) effect in a hybridization bandgap (HBG) structure via hiring deep subwavelength coupled meta-atoms is investigated. Subwavelength zero-index-metamaterial-based resonators acting as meta-atoms are side-coupled to a microstrip, forming the HBG structure. Both numerical and microwave experimental results confirm that, through properly hiring another set of meta-atoms, band mismatch between two HBGs can be introduced resulting in the HBG QW effect. Compared with the conventional QW structure based on Bragg interferences in photonic crystal, the device length of the proposed HBG QW structure can be reduced to only 1/4, demonstrating well the deep subwavelength property. Therefore, the above features make our design of HBG QW structures suitable to be utilized as multi-channel filters or multiplexers in microwave and optical communication system.

  10. Effect of incorporation of ethylene glycol into PEDOT:PSS on electron phonon coupling and conductivity

    International Nuclear Information System (INIS)

    The effect of incorporation of ethylene glycol (EG) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on electron phonon coupling and conductivity is investigated. It is shown that the carrier density (NC) increases significantly and the carrier mobility (μ) increases slightly at 300 K. The increased intensity of the Raman spectrum between 1400 and 1450 cm−1, following EG treatment (that is, the quinoid-dominated structures of the PEDOT chain), leads to an increase in the number of polarons (bipolarons), which leads to an increase in NC. In addition, μ in PEDOT:PSS samples with or without EG addition exhibits a strong temperature dependence, which demonstrates the dominance of tunneling (hopping) at low (high) temperatures. The high conductivity of PEDOT:PSS samples with the addition of EG is attributed to the combined effect of the modification of the electron-phonon coupling and the increase in NC (μ)

  11. Resonant and nonresonant breakup of the neutron-halo nuclei 11Be and 19C from a proton target

    International Nuclear Information System (INIS)

    The breakup of a halo nuclei from a stable nucleus is a sensitive tool of the reaction framework. In order to study the halo continuum, both resonant and nonresonant contributions should be taken into account. In addition a proper treatment of the few-body dynamics of the three-body problem should be accomplished in case only few degrees of freedom play a role in the reaction mechanism. Most recently, the Faddeev/AGS multiple scattering reaction formalism [1,2,3] has been applied to the study of reactions involving two-body halo nuclei [4,5,6]. These works have shown that a tighter control in the reaction theory is needed and that traditional reaction approaches may not be adequate to interpret and extract accurate and reliable structure information from the data. Our aim is to use the Faddeev/AGS scattering approach to analyse the experimental data, which unlike other approximate reaction methods provides a numerically exact solution of the underlying effective three-body Hamiltonian. We calculate inclusive breakup angular cross sections and energy spectrum observables for the scattering of one neutron-halo nuclei 11Be and 19C from a proton target at intermediate energies and compare with existing experimental data [7,8] respectively.(author)

  12. An investigation of the role of spectroscopic factors in the breakup reaction of 11Be

    CERN Document Server

    Canbula, Bora; Canbula, Deniz; Babacan, Halil

    2014-01-01

    The experimental elastic cross section data of the projectile 11Be on target 12C at 49.3 MeV/nucleon energy is analysed. The calculations for the elastic scattering is performed by the phenomenological optical model. The different optical potentials to include breakup effects into the calculations, which are neutron+12C, neutron+10Be and 10Be+12C are described with the aid of the global potentials for neutron interactions and fitted to experimental data for the core and target interaction. Also, the first analysis of the optical model for 10Be on target 12C at 39.1 MeV is done for building the interaction potential of the core and the target for 11Be. For investigating the effects of the spectroscopic factor obtained from the direct capture process using the nuclear level density are compared with the previous cross section and spectroscopic factor results. Obtained results for the elastic cross section are reproduced the experimental data very well, and shows the requirement of including spectroscopic proper...

  13. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    CERN Document Server

    Shuang-Qing, W; Shuang-Qing, Wu; Mu-Lin, Yan

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.

  14. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Institute of Scientific and Technical Information of China (English)

    吴双清; 闫沐霖

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.

  15. Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects

    Directory of Open Access Journals (Sweden)

    Kaladhar Kolla

    2016-01-01

    Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.

  16. Coupling of Aharonov-Bohm and Aharonov-Casher effects at different particle spins

    International Nuclear Information System (INIS)

    Coupling of Aharonov-Bohm and Aharonov-Casher topological effects is studied depending on the spin of moving particle and its orientation. Duality of wave functions occurs only at the absence of spin precession, that is, at a certain, maximal by the absolute value of its projection on the normal to the motion plane. Generalization for particles both with charge and anomalous magnetic moment is studied. 12 refs

  17. Effects of chiral restoration on the behaviour of the Polyakov loop at strong coupling

    OpenAIRE

    Fukushima, Kenji

    2002-01-01

    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature. For that purpose we analyse an effective model proposed by Gocksch and Ogilvie, which is constructed by the double expansion of strong coupling and large dimensionality. We make improvements in dealing with the model and then obtain plausible results for the behaviours of both the Polyakov loop and the chiral scalar condensate. The pseudo-critical temperature read from the Polyakov loop tur...

  18. Control of plasma properties in capacitively coupled oxygen discharges via the electrical asymmetry effect

    OpenAIRE

    Schüngel, E; Zhang, Q-Z; Iwashita, S; J. Schulze(Universität Bochum I. Institut für Experimentalphysik, Germany); Hou, L-J; Wang, Y-N; Czarnetzki, U

    2011-01-01

    Abstract By using a combined experimental, numerical and analytical approach, we investigate the control of plasma properties via the Electrical Asymmetry Effect (EAE) in a capacitively coupled oxygen discharge. In particular, we present the first experimental investigation of the EAE in electronegative discharges. A dual-frequency voltage source of 13.56 MHz and 27.12 MHz is applied to the powered electrode and the discharge symmetry is controlled by adjusting the phase angle ? between th...

  19. Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors

    OpenAIRE

    Fiori, Gianluca; Iannaccone, Giuseppe; Klimeck, Gerhard

    2007-01-01

    A coupled mode space approach within the nonequiibriurn Green's function formalism is presented, which allows to perform simulations of realistic carbon nanotube field-effect transistors (CNT-FETs) with no spatial symmetry. Computing :time is significantly reduced with respect to the real space ap)roach, since only few modes are needed in order to obtain accurate results. The advantage of the method increases with increasing nanotube diameter, and is a factor of 20 in computing time for a (25...

  20. The effects of marriage on couples' allocation of time between market and non-market hours

    OpenAIRE

    El Lahga, AbdelRahmen; Moreau, Nicolas

    2007-01-01

    We evaluate the effects of the transition from cohabitation to marriage on household domestic and market work hours using a sample of working couples. For this purpose we use the 21 first waves of the German Socio-Economic Panel (GSEOP). We adapt to system GMM estimation the estimator presented in Semykina and Wooldridge (2005) to account for selection bias in the presence of endogenous regressors. Our results indicate that marriage increases women's specialization in home-based activities an...