WorldWideScience

Sample records for breaking resolution limits

  1. Breaking the temporal resolution limit by superoscillating optical beats

    CERN Document Server

    Eliezer, Yaniv; Lobachinsky, Lilya; Froim, Sahar; Bahabad, Alon

    2016-01-01

    Band-limited functions can oscillate locally at an arbitrarily fast rate through an interference phenomenon known as superoscillations. Using an optical pulse with a superoscillatory envelope we experimentally break the temporal Fourier-transform limit having a temporal feature which is approximately three times shorter than the duration of a transform-limited Gaussian pulse having a comparable bandwidth while maintaining $29.5\\%$ visibility. Numerical simulations demonstrate the ability of such signals to achieve temporal super-resolution.

  2. Liquid-Bridge Breaking Limits

    Science.gov (United States)

    Macner, Ashley; Steen, Paul

    2011-11-01

    Wet adhesion by liquid bridges in large arrays shows promise for use in lightweight, controllable on-demand devices. Applications include grab/release of wafer substrates, transport of micron-sized tiles for use in 3D printing and micro-dosing of personalized pharmaceutical drugs. By wetting and spreading, a drop can form a bridge and thereby ``grab'' a nearby solid substrate. By volume decrease or extension, the bridge can break. The breaking limit corresponds to bridge instability which can be predicted, knowing the static mechanical response of the bridge. Mechanical behaviors include force-volume (FV), pressure-volume (pV) and force-length (FL) responses. Instability crucially depends on the mode of failure - failure under constant-force or constant length are typical cases. We study single bridge equilibria for their breaking limits. FV diagrams for the pin-pin equal and pin-pin unequal radii boundary conditions for different bridge heights are measured in the laboratory. The FL response in the case of pin-pin equal radii is also measured. Results are compared to predictions of static theory. Static results are then used to compare to dynamical sequences where volume is driven quasistatically by syringe or an electro-osmotic pump. As the breaking limit is approached, the shape deformation accelerates leading to non-equilibrium shapes not captured by the static analysis.

  3. Limits to Drift Chamber Resolution

    CERN Document Server

    Riegler, Werner

    1998-01-01

    ATLAS (A Large Toroidal LHC Apparatus) will be a general-purpose experiment at the Large Hadron Collider that will be operational at CERN in the year 2004. The ATLAS muon spectrometer aims for a momentum resolution of 10% for a transverse momentum of pT=1TeV. The precision tracking devices in the muon system will be high pressure drift tubes (MDTs) with a single wire resolution of 1100 chambers covering an area of ≈ 2500m2. The high counting rates in the spectrometer as well as the aim for excellent spatial resolution and high efficiency put severe constraints on the MDT operating parameters. This work describes a detailed study of all the resolution limiting factors in the ATLAS environment. A ’full chain’ simulation of the MDT response to photons and charged particles as well as quantitative comparisons with measurements was performed. The good agreement between simulation and measurements resulted in a profound understanding of the drift chamber processes and the individual contributions to the spat...

  4. HIGH-RESOLUTION SEMI-DISCRETE CENTRAL SCHEME FOR DAM-BREAK PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-zhong; SHI Zhong-ke

    2005-01-01

    A numerical model for simulating the dam-break problems was presented. The model was based on a high-resolution semi-discrete central-upwind difference scheme. In order to reduce spurious oscillation, the uniformly non-oscillatory limiter was employed. A third-order total variation diminishing Runge-Kutta method is used for time integration. The main feature of the presented method is its simplicity. It requires no Riemann solvers, no flux splitting and no flux limiter. It is explicit and does not require dimensional splitting for two dimensions. The Simpson quadrature rule was employed to compute the source term. To verify the effectiveness and accuracy of the proposed method, the 1D dam-break, circular dam-break and partial dam-break problems were simulated. The results are shown to be in good agreement with analytical solution and numerical results obtained by other methods.

  5. Kindling molecules: a new way to `break' the Abbe limit

    Science.gov (United States)

    Haeberlé, Olivier

    2004-01-01

    Fluorescence microscopy is a key tool for biological investigations. However, compared to other techniques like electron microscopy, the achievable resolution is still limited. Tremendous efforts have been devoted to improve the resolution of far-field optical microscopy. Several techniques do exist; however their adoption by biologists has been slowed by several technical limitations. We propose a new method based on a recently discovered family of optically switchable fluorescent molecules. Kindling proteins open the way to very high resolution in far-field fluorescence 3-D microscopy with relatively simple techniques. To cite this article: O. Haeberlé, C. R. Physique 5 (2004).

  6. Breaking the cavity linewidth limit of resonant optical modulators

    CERN Document Server

    Sacher, Wesley D; Assefa, Solomon; Barwicz, Tymon; Pan, Huapu; Shank, Steven M; Vlasov, Yurii A; Poon, Joyce K S

    2012-01-01

    Microring optical modulators are being explored extensively for energy-efficient photonic communication networks in future high-performance computing systems and microprocessors, because they can significantly reduce the power consumption of optical transmitters via the resonant circulation of light. However, resonant modulators have traditionally suffered from a trade-off between their power consumption and maximum operation bit rate, which were thought to depend oppositely upon the cavity linewidth. Here, we break this linewidth limitation using a silicon microring. By controlling the rate at which light enters and exits the microring, we demonstrate modulation free of the parasitic cavity linewidth limitations at up to 40 GHz, more than 6x the cavity linewidth. The device operated at 28 Gb/s using single-ended drive signals less than 1.5 V. The results show that high-Q resonant modulators can be designed to be simultaneously low-power and high-speed, features which are mutually incompatible in typical reso...

  7. Influence of breaking waves on the oceanologic Lidar resolution

    Science.gov (United States)

    Luchinin, Alexander G.

    2014-10-01

    Influence of breaking waves and whitecaps on characteristics of echo signal of airborne bathymetric lidar is investigated at strong winds. The model of echo signal, considering following factors is advanced: finite height of waves, random refraction of light by sea surface, free from foam and breaking waves, diffuse scattering of light on both sites of a surface with whitecaps on crests of waves. The account of finite height of waves is represented especially important at strong winds as in these conditions influence of whitecaps can appear essential. The relations are received, allowing estimating average delay and broadening of the signal. It is shown that whitecaps weak influence on average characteristics at wind speeds to 20 m/s. This influence appears essential in that case when measurement of a delay and, accordingly, definition of depth of a bottom or reflecting object is made by times of the first arrival of a backscattering signal from water.

  8. Resolution limits for wave equation imaging

    KAUST Repository

    Huang, Yunsong

    2014-08-01

    Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary reflections, diffractions, and multiple reflections. They are applicable to images formed by reverse time migration (RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting multiples can provide some low- and intermediate-wavenumber components of the velocity model not available in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for comparable depths of the reflector and diffractor. The width of the diffraction-transmission wavepath is approximately λ at the diffractor location for the diffraction-transmission wavepath. © 2014 Elsevier B.V.

  9. Breaking Quantum and Thermal Limits on Precision Measurements

    Science.gov (United States)

    Thompson, James K.

    2016-05-01

    I will give an overview of our efforts to use correlations and entanglement between many atoms to overcome quantum and thermal limits on precision measurements. In the first portion of my talk, I will present a path toward a 10000 times reduced sensitivity to the thermal mirror motion that limits the linewidth of today's best lasers. By utilizing narrow atomic transitions, the laser's phase information is primarily stored in the atomic gain medium rather than in the vibration-sensitive cavity field. To this end, I will present the first observation of lasing based on the mHz linewidth optical-clock transition in a laser-cooled ensemble of strontium atoms. In the second portion of my talk, I will describe how we use collective measurements to surpass the standard quantum limit on phase estimation 1 /√{ N} for N unentangled atoms. We achieve a directly observed reduction in phase variance relative to the standard quantum limit of as much as 17.7(6) dB. Supported by DARPA QuASAR, NIST, ARO, and NSF PFC. This material is based upon work supported by the National Science Foundation under Grant Number 1125844 Physics Frontier Center.

  10. Resolution, coverage, and geometry beyond traditional limits

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Shuki; Ferber, Ralf

    1998-12-31

    The presentation relates to the optimization of the image of seismic data and improved resolution and coverage of acquired data. Non traditional processing methods such as inversion to zero offset (IZO) are used. To realize the potential of saving acquisition cost by reducing in-fill and to plan resolution improvement by processing, geometry QC methods such as DMO Dip Coverage Spectrum (DDCS) and Bull`s Eyes Analysis are used. The DDCS is a 2-D spectrum whose entries consist of the DMO (Dip Move Out) coverage for a particular reflector specified by it`s true time dip and reflector normal strike. The Bull`s Eyes Analysis relies on real time processing of synthetic data generated with the real geometry. 4 refs., 6 figs.

  11. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  12. On the limit of energy resolution in radiation detectors

    International Nuclear Information System (INIS)

    The limit of energy resolution in various radiation detectors is reviewed from the theoretical view-point. Fano-factors in gaseous, liquid and solid detector media for ionization and for scintillation are discussed and the limit of energy resolution in micro-calorimeters operated at low temperature is also discussed. (author)

  13. Limit of Spectral Resolution in Terahertz Time-Domain Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Jingzhou Xu; Tao Yuan; Samuel Mickan; X.-C.Zhang

    2003-01-01

    The pulsed nature of terahertz time-domain spectroscopy (THz-TDS) sets a fundamental limit on its spectral resolution. The spectral resolution of THz-TDS can be improved by increasing the duration of the temporal measurement, but is limited by the dynamic range of the system in the time domain. This paper presents calculations and experimental results relating the temporal dynamic range of a THz-TDS system to its spectral resolution. We discuss three typical terahertz sources in terms of their dynamic range and hence achievable spectral resolution.

  14. New Limits on R-Parity Breakings in Supersymmetric Standard Models

    OpenAIRE

    Chang, Darwin; Keung, W. -Y.

    1996-01-01

    New limits on couplings $\\lambda^i_{jk}{''}$, which break both the baryon number and the $R$--parity, are derived by using a new mechanism that contributes to the neutron-anti-neutron oscillation. The constraints due to proton decay and its potential phenomenology are also reexamined.

  15. Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles.

    Science.gov (United States)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    2016-08-01

    The adaptive resolution scheme (AdResS) is a multiscale molecular dynamics simulation approach that can concurrently couple atomistic (AT) and coarse-grained (CG) resolution regions, i.e., the molecules can freely adapt their resolution according to their current position in the system. Coupling to supramolecular CG models, where several molecules are represented as a single CG bead, is challenging, but it provides higher computational gains and connection to the established MARTINI CG force field. Difficulties that arise from such coupling have been so far bypassed with bundled AT water models, where additional harmonic bonds between oxygen atoms within a given supramolecular water bundle are introduced. While these models simplify the supramolecular coupling, they also cause in certain situations spurious artifacts, such as partial unfolding of biomolecules. In this work, we present a new clustering algorithm SWINGER that can concurrently make, break, and remake water bundles and in conjunction with the AdResS permits the use of original AT water models. We apply our approach to simulate a hybrid SPC/MARTINI water system and show that the essential properties of water are correctly reproduced with respect to the standard monoscale simulations. The developed hybrid water model can be used in biomolecular simulations, where a significant speed up can be obtained without compromising the accuracy of the AT water model. PMID:27409519

  16. Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles.

    Science.gov (United States)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    2016-08-01

    The adaptive resolution scheme (AdResS) is a multiscale molecular dynamics simulation approach that can concurrently couple atomistic (AT) and coarse-grained (CG) resolution regions, i.e., the molecules can freely adapt their resolution according to their current position in the system. Coupling to supramolecular CG models, where several molecules are represented as a single CG bead, is challenging, but it provides higher computational gains and connection to the established MARTINI CG force field. Difficulties that arise from such coupling have been so far bypassed with bundled AT water models, where additional harmonic bonds between oxygen atoms within a given supramolecular water bundle are introduced. While these models simplify the supramolecular coupling, they also cause in certain situations spurious artifacts, such as partial unfolding of biomolecules. In this work, we present a new clustering algorithm SWINGER that can concurrently make, break, and remake water bundles and in conjunction with the AdResS permits the use of original AT water models. We apply our approach to simulate a hybrid SPC/MARTINI water system and show that the essential properties of water are correctly reproduced with respect to the standard monoscale simulations. The developed hybrid water model can be used in biomolecular simulations, where a significant speed up can be obtained without compromising the accuracy of the AT water model.

  17. A resolution of the inclusive flavor-breaking sum rule $\\tau$ $V_{us}$ puzzle

    CERN Document Server

    Maltman, K; Lewis, R; Wolfe, C E; Zanotti, J

    2015-01-01

    A combination of continuum and lattice methods is used to investigate systematic issues in the finite-energy-sum-rule determination of $V_{us}$ based on flavor-breaking combinations of hadronic $\\tau$ decay data. Results for $V_{us}$ obtained using assumptions for $D>4$ OPE contributions employed in previous conventional implementations of this approach are shown to display significant unphysical dependences on the choice of sum rule weight, $w$, and upper limit, $s_0$, of the relevant experimental spectral integrals. Continuum and lattice results suggest the necessity of a new implementation of the flavor-breaking sum rule approach, in which not only $\\vert V_{us}\\vert$, but also $D>4$ effective condensates are fit to data. Lattice results also provide a means of quantifying the truncation error for the slowly converging $D=2$ OPE series. The new implementation is shown to produce $\\vert V_{us}\\vert$ results free of unphysical $s_0$- and $w$-dependences and typically $\\sim 0.0020$ higher than the (unstable) ...

  18. The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    CERN Document Server

    Wang, Zengbo; Li, Lin; Liu, Zhu; Luk'yanchuk, Boris; Chen, Zaichun; Hong, Minghui

    2010-01-01

    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time.

  19. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  20. Physical limitations on spatial resolution in electrical capacitance tomography

    International Nuclear Information System (INIS)

    Electrical capacitance tomography (ECT) is an imaging technique providing the distribution of permittivity in a medium by means of electrodes. As for any imaging systems, the accessible spatial resolution is a key parameter. In this paper the physical limitations on the spatial resolution of ECT sensors are analysed in terms of the accuracy of an object’s position and of the ability to distinguish between two close objects for any sensor geometry. Cylindrical geometry sensors are particularly studied and the example of a square geometry sensor is used to show how to apply the calculations to any other geometries. In cylindrical geometries, it is shown that a 50% gap between electrodes is a good compromise and that increasing the number of electrodes improves the spatial resolution near the electrodes but decreases the spatial resolution in the centre. The best spatial resolution at the centre of the sensor is obtained with 3 or 4 electrodes. In the square geometry studied, it is shown that a better distribution of the spatial resolution is obtained when there are electrodes in the corners. (paper)

  1. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  2. Break It

    Institute of Scientific and Technical Information of China (English)

    MATTHEW PLOWRIGHT; GWYNN GUILFORD

    2008-01-01

    @@ Resolutions are not natural - otherwise you wouldn't have to "resolve" to execute them. This year, instead of planning how to commit to a slew of unattainable goals, why not prepare for breaking your resolutions the right way?

  3. Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic GW Approach

    Science.gov (United States)

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-01

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with Ne>3000 electrons.

  4. Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rainforest Drosophila

    DEFF Research Database (Denmark)

    van Heerwaarden, Belinda; Willi, Yvonne; Kristensen, Torsten N;

    2008-01-01

    According to neutral quantitative genetic theory, population bottlenecks are expected to decrease standing levels of additive genetic variance of quantitative traits. However, some empirical and theoretical results suggest that, if nonadditive genetic effects influence the trait, bottlenecks may...... actually increase additive genetic variance. This has been an important issue in conservation genetics where it has been suggested that small population size might actually experience an increase rather than a decrease in the rate of adaptation. Here we test if bottlenecks can break a selection limit...... effects were responsible for the divergence in desiccation resistance between the original control and a bottlenecked line exhibiting increased additive genetic variance for desiccation resistance. However, when bottlenecked lines were selected for increased desiccation resistance, there was only a small...

  5. Sensitivity of Savannah River Plant loss of coolant accident power limit to break size and location

    International Nuclear Information System (INIS)

    Savannah River Plant reactors are low-pressure, heavy-water reactors with six external process water loops that drive the coolant into an upper plenum and then downward through the assemblies. Assembly loss-of-coolant accident power limits are currently set in these reactors to prevent Ledinegg flow instability (FI) in any assembly flow channel. This might occur due to the power-flow mismatch during the first 2 s of the transient, i.e., the flow drops faster than the power. This study determined the sensitivity of the power limit to the postulated break area and location. The transient reactor analysis code (TRAC) was used to compute steady-state and transient system flows and pressures. The FLOWTRAN code, which employs one-dimensional hydraulics and two- or three-dimensional heat transfer, used the driving pressures generated by TRAC to compute assembly thermal-hydraulic conditions. The FLOWTRAN also iterates on assembly power to determine the minimum assembly power for which the onset of nucleate boiling (ONB) is predicted. Experimental data were then used to convert from ONB to FI. The ONB criterion was recently replaced with an onset-of-significant-voiding criterion since it is a more accurate predictor of flow instability

  6. Adaptive resolution simulation of supramolecular water : The concurrent making, breaking, and remaking of water bundles

    NARCIS (Netherlands)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    2016-01-01

    The adaptive resolution scheme (AdResS) is a multiscale molecular dynamics simulation approach that can concurrently couple atomistic (AT) and coarse-grained (CG) resolution regions, i.e., the molecules can freely adapt their resolution according to their current position in the system. Coupling to

  7. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  8. Leak-before-break diagrams using simple plastic limit load criteria for pipes with circumferential cracks

    International Nuclear Information System (INIS)

    Simple criteria for local and global instabilities were used to calculate leak-before-break-diagrams for load-controlled deformations. Relations between the tension and bending stresses in the uncracked pipe and the critical crack angle α/sub c/, below which complete fracture cannot occur, were developed for combined loading by internal pressure and external tension and bending. The different assumptions made for local and global instability lead to similar conclusions about the allowable crack length for leak-before-break behavior. It was not the intention of this paper to compare the conclusions with experimental results available

  9. Fundamental limitations in antenna resolution by maximum entropy methods

    Energy Technology Data Exchange (ETDEWEB)

    Bevensee, R.M.

    1984-08-01

    This paper summarizes work done during the past few years on antenna super-resolution of distant radiating sources, both incoherent with and without additive noise and coherent with and without additive noise.

  10. Breaking New Ground with High Resolution Turn-By-Turn BPMs at the ESRF

    CERN Document Server

    Farvacque, L; Scheidt, K

    2001-01-01

    This High-Resolution, Turn-by-Turn BPM system is a low-cost extension to the existing BPM system, based on the RF-multiplexing concept, used for slow Closed-Orbit measurements. With this extension Beam Position measurements in both planes, at all (224) BPMs in the 844 m ESRF Storage Ring, for up to 2048 Orbit Turns with 1 μm resolution are performed. The data acquisition is synchronised to a single, flat 1 μs, transverse deflection kick to the 1μs beamfill in the 2.8μs revolution period. The high quality of this synchronisation, together with the good reproducibility of the deflection kick and the overall stability of the Closed Orbit beam allows to repeat the kick and acquisition in many cycles. The subsequent averaging of the data obtained in these cycles yields the 1um resolution. The latter allows lattice measurements with high precision such as the localisation of very small focussing errors and modulation in Beta values and phase advances. It also finds an unique ...

  11. A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging

    Science.gov (United States)

    Ji, Zhong; Lou, Cunguang; Shi, Yujiao; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2015-10-01

    The spatial resolution of microwave imaging depends on the geometrical size of the detector. The existing techniques mainly focus on optimizing the antenna design to achieve high detection sensitivity. However, since the optimal antenna size is closely related to the wavelength to be measured, and the miniaturization of the geometrical size is challenging, this limits the spatial resolution of microwave imaging. In this letter, a microwave detection technique based on the electromagnetic-elastic resonance effect is proposed. The piezoelectric materials can produce mechanical responses under microwave excitation, and the amplitude of the microwave can be detected by measuring these responses. In contrast to conventional microwave detection method, the proposed method has distinct advantages in terms of high sensitivity and wide spectral response. Most importantly, it overcomes the limitation of detector size, thus, significantly improving the detection resolution. Therefore, the proposed method has potential for microwave imaging in biomedical applications.

  12. Impacts of elevation data spatial resolution on two-dimensional dam break flood simulation and consequence assessment

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAH

    2009-01-01

    States has many dams that are classified as high-hazard potential that need an emergency action plan (EAP). It has been found that the development of EAPs for all high-hazard dams is handicapped due to funding limitations. The majority of the cost associated with developing an EAP is determining the flooded area. The results of this study have shown that coarse resolution dam breach studies can be used to provide an acceptable estimate of the inundated area and economic impacts, with very little computational cost. Therefore, the solution to limited funding may be to perform coarse resolution dam breach studies on high-hazard potential dams and use the results to help prioritize the order in which detailed EAPs should be developed.

  13. Derivation of an Analytical Expression of the Gaussian Model Statistical Resolution Limit

    OpenAIRE

    Thamery, Messaoud; Boyer, Remy; Abed-Meraim, Karim

    2013-01-01

    Statistical Resolution Limit (SRL), defined as the minimal separation to solve two closely spaced signals, is one of the important tools to evaluate a given system performance. Based on S.TS Smith's formulation of the SRL, this paper provides a methodology to compute an approximate analytical expression of the resolution limit in the gaussian model case. As an application, we consider the particular case of two sources located in the near field and consider the resolution limit in terms of mi...

  14. Breaking The Millisecond Barrier On SpiNNaker: Implementing Asynchronous Event-Based Plastic Models With Microsecond Resolution

    Directory of Open Access Journals (Sweden)

    Xavier eLagorce

    2015-06-01

    Full Text Available Spike-based neuromorphic sensors such as retinas and cochleas, change the way in which the world is sampled. Instead of producing data sampled at a constant rate, these sensors output spikes that are asynchronous and event driven. The event-based nature of neuromorphic sensors implies a complete paradigm shift in current perception algorithms towards those that emphasize the importance of precise timing. The spikes produced by these sensors usually have a time resolution in the order of microseconds. This high temporal resolution is a crucial factor in learning tasks. It is also widely used in the field of biological neural networks. Sound localization for instance relies on detecting time lags between the two ears which, in the barn owl, reaches a temporal resolution of 5 microseconds. Current available neuromorphic computation platforms such as SpiNNaker often limit their users to a time resolution in the order of milliseconds that is not compatible with the asynchronous outputs of neuromorphic sensors. To overcome these limitations and allow for the exploration of new types of neuromorphic computing architectures, we introduce a novel software framework on the SpiNNaker platform. This framework allows for simulations of spiking networks and plasticity mechanisms using a completely asynchronous and event-based scheme running with a microsecond time resolution. Results on two example networks using this new implementation are presented.

  15. Localized breaking of flux surfaces and the equilibrium beta limit in the W7AS stellarator

    International Nuclear Information System (INIS)

    We report on PIES three-dimensional equilibrium calculations for W7AS plasmas which exhibit degraded confinement at high beta with no indication that the confinement degradation is being caused by instabilities. The equilibrium calculations exhibit stochastic field lines in the outer region of the plasma, with the flux surfaces appearing to break only locally in the neighborhood of the outer midplane and to remain intact elsewhere. This conclusion follows from plots of field line trajectories, which show smooth, confined curves punctuated by rapid, erratic radial excursions appearing each time the trajectories cross the outer midplane. This result conforms with intuition and with conventional wisdom, which suggest that the flux surfaces should break near the outer midplane due to the strong compression of the three-dimensional flux surfaces there by the Shafranov shift. The results also conform with a WKB calculation (which is justified by the large mode numbers of the magnetic islands involved). This emerging picture, and the associated long connection lengths of the magnetic field lines, may explain why the impact of the predicted stochastic region on the pressure profile in the experiments may be modest. Although the pressure profile is modified in that region, a substantial pressure profile may be supported there. (author)

  16. Resolution limits in holographic display with LED illumination

    Science.gov (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz

    2015-06-01

    In presented paper we study the influence of spatial and temporal coherence of light source on resolution and depth of focus of holographic reconstructions. Presented holographic display setup uses phase - only spatial light modulator and realizes complex coding shame which allows to reconstruct objects in volume centered around plane of the modulator. In simulations we implement partially coherent reconstructions of complex hologram theory. It allows to investigate quality of holographic reconstructions for various degree of illuminating light coherence. During experimental tests we validate simulation results. We show that the influence of spatial coherence effect of light source on resolution of reconstructed objects is stronger than that of temporal coherence. Moreover we prove that it is possible to obtain high quality holographic reconstructions for large size source and wide spectrum for objects having large depths.

  17. Ultimate quantum limit on resolution of two thermal point sources

    CERN Document Server

    Nair, Ranjith

    2016-01-01

    We obtain the fundamental quantum limit for resolving two thermal point sources using an imaging system with limited spatial bandwidth. Using the quantum Cram\\'er-Rao bound, we show that the standard Rayleigh limit is not fundamental and can be surpassed by concrete coherent measurement techniques. Our results are valid for all values of the source strength, all ranges of the electromagnetic spectrum, and for any imaging system with an inversion-symmetric point-spread function. Our findings have applications to many areas of metrology including microscopy, astronomy, and standoff target sensing.

  18. Resolution beyond classical limits with spatial frequency heterodyning

    Institute of Scientific and Technical Information of China (English)

    A. Mudassar; A. R. Harvey; A. H. Greenaway; J. D. C. Jones

    2006-01-01

    @@ A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated with a coherent beam and for measurements 2 and 3, the scene is projected with cosine and sine fringes, respectively. Due to spatial frequency heterodyning, upper and lower side band information falls in the pass band of the imager. These bands are separated and correct phases and positions are assigned to these bands in the spatial frequency domain. An extension of bandwidth is achieved in the frequency domain and the inverse frequency domain data then give a high resolution coherent image.

  19. The noise-limited-resolution for stimulated emission depletion microscopy of diffusing particles

    NARCIS (Netherlands)

    Lee, C. J.; Boller, K. J.

    2012-01-01

    With recent developments in microscopy, such as stimulated emission depletion (STED) microscopy, far-field imaging at resolutions better than the diffraction limit is now a commercially available technique. Here, we show that, in the special case of a diffusive regime, the noise-limited resolution o

  20. Breaking the energy-bandwidth limit of electro-optic modulators: theory and a device proposal

    CERN Document Server

    Lin, Hongtao; Liu, Jifeng; Zhang, Lin; Michel, Jurgen; Hu, Juejun

    2013-01-01

    In this paper, we quantitatively analyzed the trade-off between energy per bit for switching and modulation bandwidth of classical electro-optic modulators. A formally simple energy-bandwidth limit (Eq. 10) is derived for electro-optic modulators based on intra-cavity index modulation. To overcome this limit, we propose a dual cavity modulator device which uses a coupling modulation scheme operating at high bandwidth (> 200 GHz) not limited by cavity photon lifetime and simultaneously features an ultra-low switching energy of 0.26 aJ, representing over three orders of magnitude energy consumption reduction compared to state-of-the-art electro-optic modulators.

  1. The Effectiveness of Mid IR / Far IR Blind, Wide Area, Spectral Surveys in Breaking the Confusion Limit

    CERN Document Server

    Raymond, Gwenifer; Clements, Dave; Rykala, Adam; Pearson, Chris

    2010-01-01

    Source confusion defines a practical depth to which to take large-area extragalactic surveys. 3D imaging spectrometers with positional as well as spectral information, however, potentially provide a means by which to use line emission to break the traditional confusion limit. In this paper we present the results of our investigation into the effectiveness of mid/far infrared, wide-area spectroscopic surveys in breaking the confusion limit. We use SAFARI, a FIR imaging Fourier Transform Spectrometer concept for the proposed JAXA-led SPICA mission, as a test case. We generate artificial skies representative of 100 SAFARI footprints and use a fully-automated redshift determination method to retrieve redshifts for both spatially and spectrally confused sources for bright-end and burst mode galaxy evolution models. We find we are able to retrieve accurate redshifts for 38/54% of the brightest spectrally confused sources, with continuum fluxes as much as an order of magnitude below the 120 $\\mu$m photometric confus...

  2. Breaking the Customer Code : A model to Translate Customer Expectations into Specification Limits

    OpenAIRE

    Gregorio, Ruben

    2010-01-01

    Today, firms compete with services rather than goods. Large service organizations are beginning to use Six Sigma as continuous improvement tool. An important part of the Six Sigma methodology is the calculation of number of defects in the process, i.e. points outside the specification limits. Unlike goods quality, which can be measured objectively by number of defects, in service goods the setting up of specification limits is a complicated issue because it is marked by the use and expectatio...

  3. Impact of Q value and gain-limit to the resolution of inverse Q filtering

    International Nuclear Information System (INIS)

    The earth Q-filter, including the energy dissipation of high frequency wave components and the velocity dispersion, distorts seismic wavelets, reduces the seismic resolution, and causes difficulty to obtain high resolution seismic data. The process of inverse Q-filter attempts to remove the Q-effect to produce high-resolution seismic data, but the numerical instability of inverse Q-filter amplitude compensation reduces the signal-to-noise (S/N) ratio and limits its spatial resolution. In order to control the numerical instability, a large number of papers studying the gain-limit constrained inverse Q-filter amplitude compensation method. But, papers rarely discussing whether gain-limit constrained inverse Q-filter with the medium Q value can certainly improve the seismic data resolution or not, and what gain-limit and Q value should be used in inverse Q-filter in order to improve the resolution. In this paper, we focus on understanding the impact of Q value and gain-limit to seismic data resolution, and studying a novel method to optimize Q value within a certain gain-limit constrained inverse Q-filter amplitude compensation, by which we can achieve the optimum resolution seismic data. (paper)

  4. Mirror symmetry breaking with limited enantioselective autocatalysis and temperature gradients: a stability survey

    CERN Document Server

    Blanco, Celia; Crusats, Joaquim; El-Hachemi, Zoubir; Moyano, Albert; Hochberg, David; 10.1039/C2CP43488A

    2012-01-01

    We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the presence of a temperature gradient alone. This symmetry can be broken however when the auto-catalysis and limited enantioselective catalysis are each localized within the regions of low and high temperature, respectively. This scheme has been recently proposed as a plausible model for spontaneous emergence of chirality in abyssal hydrothermal vents. Regions in chemical parameter space are mapped out in which the racemic state is unstable and bifurcates to chiral solutions.

  5. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  6. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals

    International Nuclear Information System (INIS)

    The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and for the development of rheological models of coal to coke transformations. Here, we explore the relationship between the local structural, chemical composition, and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size, the bond-bending disorder of sp2 aromatic double bonds, and the defect density. This methodology allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modeling and optimization of coal utilization processes. (paper)

  7. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals

    Science.gov (United States)

    Collins, L.; Tselev, A.; Jesse, S.; Okatan, M. B.; Proksch, R.; Mathews, J. P.; Mitchell, G. D.; Rodriguez, B. J.; Kalinin, S. V.; Ivanov, I. N.

    2014-10-01

    The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and for the development of rheological models of coal to coke transformations. Here, we explore the relationship between the local structural, chemical composition, and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size, the bond-bending disorder of sp2 aromatic double bonds, and the defect density. This methodology allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modeling and optimization of coal utilization processes.

  8. Identification of limiting case between DBA and SBDBA (CL break area sensitivity): A new model for the boron injection system

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gonzalez, R., E-mail: r.gonzalez@ing.unipi.it [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, 56122 San Piero a Grado, Pisa (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, 56122 San Piero a Grado, Pisa (Italy); D’Auria, F., E-mail: f.dauria@ing.unipi.it [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, 56122 San Piero a Grado, Pisa (Italy); Mazzantini, O., E-mail: mazzantini@na-sa.com.ar [Nucleo-electrica Argentina Sociedad Anonima (NA-SA), Buenos Aires (Argentina)

    2014-08-15

    Atucha-2 is a Siemens-designed Pressurized Heavy Water Reactor (PHWR) reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarity (e.g. oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank. The boron clouds reconstruction is obtained using a Computational Fluid Dynamics (CFD) CFX code calculation. A complete Large Break Loss Of Coolant Accident (LBLOCA) calculation implies the application of the RELAP5-3D{sup ©} system code. Within the framework of the third Agreement “Nucleoelèctrica Argentina-Sociedad Anonima (NA-SA) – University of Pisa/GRNSPG” (Contract, 2009), a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions.

  9. Breaking the Loss Limitation of On-chip High-confinement Resonators

    CERN Document Server

    Ji, Xingchen; Roberts, Samantha P; Dutt, Avik; Cardenas, Jaime; Okawachi, Yoshitomo; Bryant, Alex; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    On-chip optical resonators have the promise of revolutionizing numerous fields including metrology and sensing; however, their optical losses have always lagged behind their larger discrete resonator counterparts based on crystalline materials and flowable glass. Silicon nitride (Si3N4) ring resonators open up capabilities for optical routing, frequency comb generation, optical clocks and high precision sensing on an integrated platform. However, simultaneously achieving high quality factor and high confinement in Si3N4 (critical for nonlinear processes for example) remains a challenge. Here, we show that addressing surface roughness enables us to overcome the loss limitations and achieve high-confinement, on-chip ring resonators with a quality factor (Q) of 37 million for a ring with 2.5 {\\mu}m width and 67 million for a ring with 10 {\\mu}m width. We show a clear systematic path for achieving these high quality factors. Furthermore, we extract the loss limited by the material absorption in our films to be 0....

  10. Far-field fluorescence microscopy beyond the diffraction limit: Fluorescence imaging with ultrahigh resolution

    OpenAIRE

    Rice, James H.

    2007-01-01

    Fluorescence microscopy is an important and extensively utilised tool for imaging biological systems. However, the image resolution that can be obtained has a limit as defined through the laws of diffraction. Demand for improved resolution has stimulated research into developing methods to image beyond the diffraction limit based on far-field fluorescence microscopy techniques. Rapid progress is being made in this area of science with methods emerging that enable fluorescence imaging in the f...

  11. Resolution limits of extrinsic Fabry-Perot interferometric displacement sensors utilizing wavelength scanning interrogation.

    Science.gov (United States)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-08-10

    The factors limiting the resolution of displacement sensors based on the extrinsic Fabry-Perot interferometer were studied. An analytical model giving the dependency of extrinsic Fabry-Perot interferometric (EFPI) resolution on the parameters of an optical setup and a sensor interrogator was developed. The proposed model enables one to either estimate the limit of possible resolution achievable with a given setup, or derive the requirements for optical elements and/or a sensor interrogator necessary for attaining the desired sensor resolution. An experiment supporting the analytical derivations was performed, demonstrating a large dynamic measurement range (with cavity length from tens of microns to 5 mm), a high baseline resolution (from 14 pm), and good agreement with the model.

  12. Time resolution limits of the MWPCs for the LHCb muon system

    CERN Document Server

    Gruber, L; Schmidt, B

    2011-01-01

    Detailed simulations of the timing properties of the Multi-Wire-Proportional-Chambers of the LHCb muon system are compared with actual measurements. The simulated time resolution is in good agreement with the measurement which allows to study the resolution limiting parameters like diffusion, charge deposit fluctuations, cluster position fluctuations, electronics noise, track position and wire spacing to show how they affect the performance of the system. Methods to improve the time resolution of the muon chambers are discussed. (C) 2010 Elsevier B.V. All rights reserved.

  13. On the limiting resolution of silicon detectors for short-range particles

    International Nuclear Information System (INIS)

    The transition to planar tecnology has lead to substantial improvement of energy resolution of Si detectors of strongly ionizing nuclear radiations. For 5 MeV α-particles the resolution (δα) is equal 9.2 keV. The application of the method of local diffusion permitted to attain δα=8.1-8.4 keV. The comparison of the new resolution level with the theoretical limit is carried out. It is shown that the combination of partial contributions of fluctuations caused by fundamental mechanisms practically determined δα of obtained detectors

  14. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    Science.gov (United States)

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered. PMID:27369139

  15. Identification of limiting case between DBA and SBDBA (CL break area sensitivity): A new model for the boron injection system

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gonzalez, R.; Petruzzi, A.; D' Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, Via Livornese 1291-56122, San Piero a Grado - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Sociedad Anonima (NA-SA), Buenos Aires (Argentina)

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D{sup C} system code. Within the framework of the third Agreement 'NA-SA - Univ. of Pisa' a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions. (authors)

  16. Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs

    CERN Document Server

    Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra

    2015-01-01

    Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.

  17. Pushing the limit of the distributed Brillouin sensors for the sensing length and the spatial resolution

    Science.gov (United States)

    Bao, Xiaoyi; Liang, Hao; Dong, Yongkang; Li, Wenhai; Li, Yun; Chen, Liang

    2010-04-01

    Long distance sensing based on Brillouin scattering with centimeter spatial resolution, and yet high strain or temperature resolution requires the optimization of the optical and electronic system. In optical domain the limiting factors include gain saturation of the Stokes signal and pump depletion induced the Brillouin spectrum distortion, and thus a low gain is desired that requires low pump power, which sets a limit in the signal to noise ratio (SNR). The detection system must have high gain and narrow bandwidth to reduce electronic noise. The coded pulse offers the best solution as a low power solution of long distance sensing based on BOTDA to improve the signal to noise ratio (SNR), comparing two most common used formats: non-return-to-zero (NRZ) and return-to-zero (RZ), RZ coded pulses offer minimum distortion in the spatial resolution and the Brillouin spectrum, because the signal in RZ format returns to zero in very bit, while in NRZ coded pulse the signal returns to zero after continuous "1"s, which brings the higher gain and lower bandwidth comparing that in RZ coded pulse for BOTDA system. Hence NRZ coded pulse BOTDA would introduce spatial broadening and lower the spatial resolution. With minimum distortion of RZ signal we can use differential Brillouin gain to realize DPP-BOTDA technique for sub-meter spatial resolution. The minimum coded pulse width must be larger than the acoustic wave relaxation time to avoid the distorted Brillouin gain spectrum. Using LEAF fiber we achieved 50km sensing length and 50cm spatial resolution with the strain resolution of 8μɛ which is equivalent to 0.7MHz Brillouin frequency shift, this is the 1st sub-meter spatial resolution for 50km sensing length combined with high strain resolution.

  18. Quantifying high resolution transitional breaks in plant and mammal distributions at regional extent and their association with climate, topography and geology.

    Directory of Open Access Journals (Sweden)

    Giovanni Di Virgilio

    Full Text Available OBJECTIVES: We quantify spatial turnover in communities of 1939 plant and 59 mammal species at 2.5 km resolution across a topographically heterogeneous region in south-eastern Australia to identify distributional breaks and low turnover zones where multiple species distributions overlap. Environmental turnover is measured to determine how climate, topography and geology influence biotic turnover differently across a variety of biogeographic breaks and overlaps. We identify the genera driving turnover and confirm the versatility of this approach across spatial scales and locations. METHODS: Directional moving window analyses, rotated through 360°, were used to measure spatial turnover variation in different directions between gridded cells containing georeferenced plant and mammal occurrences and environmental variables. Generalised linear models were used to compare taxic turnover results with equivalent analyses for geology, regolith weathering, elevation, slope, solar radiation, annual precipitation and annual mean temperature, both uniformly across the entire study area and by stratifying it into zones of high and low turnover. Identified breaks and transitions were compared to a conservation bioregionalisation framework widely used in Australia. RESULTS/SIGNIFICANCE: Detailed delineations of plant and mammal turnover zones with gradational boundaries denoted subtle variation in species assemblages. Turnover patterns often diverged from bioregion boundaries, though plant turnover adhered most closely. A prominent break zone contained either comparable or greater numbers of unique genera than adjacent overlaps, but these were concentrated in a small subsection relatively under-protected by conservation reserves. The environmental correlates of biotic turnover varied for different turnover zones in different subsections of the study area. Topography and temperature showed much stronger relationships with plant turnover in a topographically

  19. Overcoming the resolution limit in retinal imaging using the scattering properties of the sclera (Conference Presentation)

    Science.gov (United States)

    Carpentras, Dino; Laforest, Timothé; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    In-vivo imaging of the eye's fundus is widely used to study eye's health. State of the art Adaptive Optics devices can resolve features up to a lateral resolution of 1.5 um. This resolution is still above what is needed to observe sub-cellular structures such as cone cells (1-1.25 um diameter). This limit in resolution is due to the small numerical aperture of the eye when the pupil is fully dilated (max 0.24). In our work, we overcome this limit using a non-standard illumination scheme. A laser beam is shined on the lateral choroid layer, whose scattered light is illuminating the eye's fundus. Thanks to a Spatial Light Modulator the scattered light from the choroid layer can be manipulated to produce a scanning focus spot on the fundus. The intensity of the reflected light from the fundus is collected from the pupil and used for reconstructing the image.

  20. Label-Free Nanoscopy with Contact Microlenses: Super-Resolution Mechanisms and Limitations

    CERN Document Server

    Astratov, Vasily N; Brettin, Aaron; Allen, Kenneth W; Maslov, Alexey V; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M

    2016-01-01

    Despite all the success with developing super-resolution imaging techniques, the Abbe limit poses a severe fundamental restriction on the resolution of far-field imaging systems based on diffraction of light. Imaging with contact microlenses, such as microspheres or microfibers, can increase the resolution by a factor of two beyond the Abbe limit. The theoretical mechanisms of these methods are debated in the literature. In this work, we focus on the recently expressed idea that optical coupling between closely spaced nanoscale objects can lead to the formation of the modes that drastically impact the imaging properties. These coupling effects emerge in nanoplasmonic or nanocavity clusters, photonic molecules, or various arrays under resonant excitation conditions. The coherent nature of imaging processes is key to understanding their physical mechanisms. We used a cluster of point dipoles, as a simple model system, to study and compare the consequences of coherent and incoherent imaging. Using finite differe...

  1. Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman

    NARCIS (Netherlands)

    Cleff, C.; Groß, P.; Fallnich, C.; Offerhaus, H. L.; Herek, J.; Kruse, K.; Beeker, W. P.; Lee, C. J.; Boller, K. J.

    2012-01-01

    We theoretically investigate ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We propose a scheme based on ground-state depopulation, which is achieved via a control laser light field incident prior to the CARS excitatio

  2. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) data vegetative index calculation processor user's manual

    Science.gov (United States)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.

  3. Community detection in weighted brain connectivity networks beyond the resolution limit

    CERN Document Server

    Nicolini, Carlo; Bifone, Angelo

    2016-01-01

    Graph theory provides a powerful framework to investigate brain functional connectivity networks and their modular organization. However, most graph-based methods suffer from a fundamental resolution limit that may have affected previous studies and prevented detection of modules, or communities, that are smaller than a specific scale. Surprise, a resolution-limit-free function rooted in discrete probability theory, has been recently introduced and applied to brain networks, revealing a wide size-distribution of functional modules, in contrast with many previous reports. However, the use of Surprise is limited to binary networks, while brain networks are intrinsically weighted, reflecting a continuous distribution of connectivity strengths between different brain regions. Here, we propose Asymptotical Surprise, a continuous version of Surprise, for the study of weighted brain connectivity networks, and validate this approach in synthetic networks endowed with a ground-truth modular structure. We compare Asymp...

  4. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared

    OpenAIRE

    Levenson, Erika

    2008-01-01

    Spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source in Berkeley, CA, USA, a third-generation synchrotron light source. This beamline couples the high-brightness synchrotron source to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests were performed in both the mid-IR and near-IR. The results are compared with a diffraction-limited spot size theory. At shorter near-IR wavelengths the experimental results begin to deviate from d...

  5. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution.

    Science.gov (United States)

    Schaberle, Fábio A; Rego Filho, Francisco de Assis M G; Reis, Luís A; Arnaut, Luis G

    2016-02-01

    Time-resolved photoacoustic calorimetry (PAC) gives access to lifetimes and energy fractions of reaction intermediates by deconvolution of the photoacoustic wave of a sample (E-wave) with that of the instrumental response (T-wave). The ability to discriminate between short lifetimes increases with transducer frequencies employed to detect the PAC waves. We investigate the lifetime resolution limits of PAC as a function of the transducer frequencies using the instrumental response obtained with the photoacoustic reference 2-hydroxybenzophenone in toluene or acetonitrile. The instrumental response was obtained for a set of transducers with central frequencies ranging from 0.5 MHz up to 225 MHz. The simulated dependence of the lifetime resolution with the transducer frequencies was anchored on experimental data obtained for the singlet state of naphthalene with a 2.25 MHz transducer. The shortest lifetime resolved with the 2.25 MHz transducer was 19 ns and our modelling of the transducer responses indicates that sub-nanosecond lifetimes of photoacoustic transients can be resolved with transducers of central frequencies above 100 MHz.

  6. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, A B; Vlasov, V V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation)

    2014-03-28

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)

  7. Some Fundamental Limits on SAW RFID Tag Information Capacity and Collision Resolution

    Science.gov (United States)

    Barton, Richard J.

    2013-01-01

    In this paper, we apply results from multi-user information theory to study the limits of information capacity and collision resolution for SAW RFID tags. In particular, we derive bounds on the achievable data rate per tag as a function of fundamental parameters such as tag time-bandwidth product, tag signal-to-noise ratio (SNR), and number of tags in the environment. We also discuss the implications of these bounds for tag waveform design and tag interrogation efficiency

  8. Plasma beta dependence of the ion-scale spectral break of solar wind turbulence: high-resolution 2D hybrid simulations

    CERN Document Server

    Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2016-01-01

    We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma beta, distributed over three orders of magnitude, from 0.01 to 10. In all the cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with $\\beta$ (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, $d_i$...

  9. Medium-resolution spectroscopy of FORJ0332-3557: Probing the interstellar medium and stellar populations of a lensed Lyman-break galaxy at z=3.77

    CERN Document Server

    Cabanac, Remi A; Lidman, Chris

    2008-01-01

    We recently reported the discovery of FORJ0332-3557, a lensed Lyman-break galaxy at z=3.77 in a remarkable example of strong galaxy-galaxy gravitational lensing. We present here a medium-resolution rest-frame UV spectrum of the source, which appears to be similar to the well-known Lyman-break galaxy MS1512-cB58 at z=2.73. The spectral energy distribution is consistent with a stellar population of less than 30 Ma, with an extinction of A(V)=0.5 mag and an extinction-corrected star formation rate SFR(UV) of 200-300 Msun/a. The Lyman-alpha line exhibits a damped profile in absorption produced by a column density of about N(HI) = (2.5+_1.0) 10^21 atoms/cm^2, superimposed on an emission line shifted both spatially (0.5 arcsec with respect to the UV continuum source) and in velocity space (+830 km/s with respect to the low-ionisation absorption lines from its interstellar medium), a clear signature of outflows with an expansion velocity of about 270 km/s. A strong emission line from HeII 164.04nm indicates the pres...

  10. Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution

    CERN Document Server

    Richner, Patrizia; Kress, Stephan J P; Schmid, Martin; Norris, David J; Poulikakos, Dimos

    2016-01-01

    The fabrication of functional metamaterials with extreme feature resolution finds a host of applications such as the broad area of surface/light interaction. Non-planar features of such structures can significantly enhance their performance and tunability, but their facile generation remains a challenge. Here, we show that carefully designed out-of-plane nanopillars made of metal-dielectric composites integrated in a metal-dielectric-nanocomposite configuration, can absorb broadband light very effectively. We further demonstrate that electrohydrodynamic printing in a rapid nanodripping mode, is able to generate precise out-of-plane forests of such composite nanopillars with deposition resolutions at the diffraction limit on flat and non-flat substrates. The nanocomposite nature of the printed material allows the fine-tuning of the overall visible light absorption from complete absorption to complete reflection by simply tuning the pillar height. Almost perfect absorption (~95%) over the entire visible spectru...

  11. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance

    CERN Document Server

    Gagunashvili, Nikolai

    2014-01-01

    A procedure based on a Mixture Density Model for correcting experimental data for distortions due to finite resolution and limited detector acceptance is presented. Addressing the case that the solution is known to be non-negative, in the approach presented here the true distribution is estimated by a weighted sum of probability density functions with positive weights and with the width of the densities acting as a regularisation parameter responsible for the smoothness of the result. To obtain better smoothing in less populated regions, the width parameter scales inversely proportional to the square root of estimated density. Furthermore, the non-negative garrotte method is used to find the most economic representation of the solution. Cross-validation is employed to determine the optimal values of the resolution and garrotte parameters. The proposed approach is directly applicable to multidimensional problems. Numerical examples in one and two dimensions are presented to illustrate the procedure.

  12. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance

    Science.gov (United States)

    Gagunashvili, N. D.

    2015-04-01

    A procedure based on a Mixture Density Model for correcting experimental data for distortions due to finite resolution and limited detector acceptance is presented. Addressing the case that the solution is known to be non-negative, in the approach presented here, the true distribution is estimated by a weighted sum of probability density functions with positive weights and with the width of the densities acting as a regularization parameter responsible for the smoothness of the result. To obtain better smoothing in less populated regions, the width parameter is chosen inversely proportional to the square root of the estimated density. Furthermore, the non-negative garrote method is used to find the most economic representation of the solution. Cross-validation is employed to determine the optimal values of the resolution and garrote parameters. The proposed approach is directly applicable to multidimensional problems. Numerical examples in one and two dimensions are presented to illustrate the procedure.

  13. Non-LTE, Relativistic Accretion Disk Fits to 3C~273 and the Origin of the Lyman Limit Spectral Break

    CERN Document Server

    Blaes, Omer M; Agol, E; Krolik, J H; Blaes, Omer; Hubeny, Ivan; Agol, Eric; Krolik, Julian H.

    2001-01-01

    We fit general relativistic, geometrically thin accretion disk models with non-LTE atmospheres to near simultaneous multiwavelength data of 3C~273, extending from the optical to the far ultraviolet. Our model fits show no flux discontinuity associated with a hydrogen Lyman edge, but they do exhibit a spectral break which qualitatively resembles that seen in the data. This break arises from relativistic smearing of Lyman emission edges which are produced locally at tens of gravitational radii in the disk. We discuss the possible effects of metal line blanketing on the model spectra, as well as the substantial Comptonization required to explain the observed soft X-ray excess. Our best fit accretion disk model underpredicts the near ultraviolet emission in this source, and also has an optical spectrum which is too red. We discuss some of the remaining physical uncertainties, and suggest in particular that an extension of our models to the slim disk regime and/or including nonzero magnetic torques across the inne...

  14. Local symmetry breaking of a thin crystal structure of β-Si3N4 as revealed by spherical aberration corrected high-resolution transmission electron microscopy images.

    Science.gov (United States)

    Kim, Hwang Su; Zhang, Zaoli; Kaiser, Ute

    2012-06-01

    This report is an extension of the study for structural imaging of 5-6 nm thick β-Si(3)N(4) [0001] crystal with a spherical aberration corrected transmission electron microscope by Zhang and Kaiser [2009. Structure imaging of β-Si(3)N(4) by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 109, 1114-1120]. In this work, a local symmetry breaking with an uneven resolution of dumbbells in the six-membered rings revealed in the reported images in the study of Zhang and Kaiser has been analyzed in detail. It is found that this local asymmetry in the image basically is not relevant to a slight mistilt of the specimen and/or a beam tilt (coma). Rather the certain variation of the tetrahedral bond length of Si-N(4) in the crystal structure is found to be responsible for the uneven resolution with a local structural variation from region to region. This characteristic of the variation is also supposed to give a distorted lattice of apparently 2°-2.5° deviations from the perfect hexagonal unit cell as observed in the reported image in the work of Zhang and Kaiser. It is discussed that this variation may prevail only in a thin specimen with a thickness ranging ~≤ 5-6 nm. At the same time, it is noted that the average of the bond length variation is close to the fixed length known in a bulk crystal of β-Si(3)N(4).

  15. Medium-resolution spectroscopy of FORJ0332-3557: probing the interstellar medium and stellar populations of a lensed Lyman-break galaxy at z = 3.77

    Science.gov (United States)

    Cabanac, Rémi A.; Valls-Gabaud, David; Lidman, Chris

    2008-06-01

    We recently reported the discovery of FORJ0332-3557, a lensed Lyman-break galaxy at z = 3.77 in a remarkable example of strong galaxy-galaxy gravitational lensing. We present here a medium-resolution rest-frame ultraviolet (UV) spectrum of the source, which appears to be similar to the well-known Lyman-break galaxy MS1512-cB58 at z = 2.73. The spectral energy distribution is consistent with a stellar population of less than 30Ma, with an extinction of Av = 0.5 mag and an extinction-corrected star formation rate SFRUV of 200-300h-170Msolara-1. The Lyα line exhibits a damped profile in absorption produced by a column density of about NHI = (2.5 +/- 1.0) × 1021cm-2, superimposed on an emission line shifted both spatially (0.5 arcsec with respect to the UV continuum source) and in velocity space (+830kms-1 with respect to the low-ionization absorption lines from its interstellar medium), a clear signature of outflows with an expansion velocity of about 270kms-1. A strong emission line from HeII λ164.04 nm indicates the presence of Wolf-Rayet stars and reinforces the interpretation of a very young starburst. The metallic lines indicate subsolar abundances of elements Si, Al and C in the ionized gas phase. Based on observations made at the ESO VLT under programmes 74.A-0536 and 78.A-0240. E-mail: remi.cabanac@ast.obs-mip.fr (RAC); david.valls-gabaud@obspm.fr (DV-G); clidman@eso.org (CL)

  16. Extending resolution of scanning optical microscopy beyond the Abbe limit through the assistance of InSb thin layers.

    Science.gov (United States)

    Ding, Chenliang; Wei, Jingsong; Li, Qisong; Liang, Xin; Wei, Tao

    2016-04-01

    The resolution of light imaging is required to extend beyond the Abbe limit to the subdiffraction, or even nanoscale. In this Letter, we propose to extend the resolution of scanning optical microscopy (SOM) beyond the Abbe limit as a kind of subdiffraction imaging technology through the assistance of InSb thin layers due to obvious nonlinear saturation absorption and reversible formation of an optical pinhole channel. The results show that the imaging resolution is greatly improved compared with the SOM itself. This work provides a way to improve the resolution of SOM without changing the SOM itself, but through the assistance of InSb thin layers. This is also a simple and practical way to extend the resolution of SOM beyond the Abbe limit.

  17. A high resolution IR/visible imaging system for the W7-X limiter

    Science.gov (United States)

    Wurden, G. A.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Dunn, J. P.; Gamradt, M.

    2016-11-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (˜1-4.5 MW/m2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO's can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  18. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    Science.gov (United States)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  19. Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products

    Directory of Open Access Journals (Sweden)

    Jinyoung Rhee

    2014-08-01

    Full Text Available The use of land surface temperature and vertical temperature profile data from Moderate Resolution Imaging Spectroradiometer (MODIS, to estimate high spatial resolution daily and monthly maximum and minimum 2 m above ground level (AGL air temperatures for regions with limited in situ data was investigated. A diurnal air temperature change model was proposed to consider the differences between the MODIS overpass times and the times of daily maximum and minimum temperatures, resulting in the improvements of the estimation in terms of error values, especially for minimum air temperature. Both land surface temperature and vertical temperature profile data produced relatively high coefficient of determination values and small Mean Absolute Error (MAE and Root Mean Square Error (RMSE values for air temperature estimation. The correction of the estimates using two gridded datasets, National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis and Climate Research Unit (CRU, was performed and the errors were reduced, especially for maximum air temperature. The correction of daily and monthly air temperature estimates using the NCEP/NCAR reanalysis data, however, still produced relatively large error values compared to existing studies, while the correction of monthly air temperature estimates using the CRU data significantly reduced the errors; the MAE values for estimating monthly maximum air temperature range between 1.73 °C and 1.86 °C. Uncorrected land surface temperature generally performed better for estimating monthly minimum air temperature and the MAE values range from 1.18 °C to 1.89 °C. The suggested methodology on a monthly time scale may be applied in many data sparse areas to be used for regional environmental and agricultural studies that require high spatial resolution air temperature data.

  20. Coexistence of Near-Field and Far-Field Sources: the Angular Resolution Limit

    International Nuclear Information System (INIS)

    Passive source localization is a well known inverse problem in which we convert the observed measurements into information about the direction of arrivals. In this paper we focus on the optimal resolution of such problem. More precisely, we propose in this contribution to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations. We base our analysis on the Smith's equation which involves the Cramér-Rao Bound (CRB). This equation provides the theoretical ARL which is independent of a specific estimator. Our methodology is the following: first, we derive a closed-form expression of the CRB for the considered problem. Using these expressions, we can rewrite the Smith's equation as a 4-th order polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the analytic ARL under or not the assumption of low noise variance. The obtained expression is compact and can provide useful qualitative informations on the behavior of the ARL

  1. Quantum limit for two-dimensional resolution of two incoherent optical point sources

    CERN Document Server

    Ang, Shan Zheng; Tsang, Mankei

    2016-01-01

    We obtain the multiple-parameter quantum Cram\\'er-Rao bound for estimating the Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well-below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method uses fiber coupling to attain the bound regardless of the distance between the two sources.

  2. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao, E-mail: qlyang@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  3. Breaking Bat

    Science.gov (United States)

    Aguilar, Isaac-Cesar; Kagan, David

    2013-01-01

    The sight of a broken bat in Major League Baseball can produce anything from a humorous dribbler in the infield to a frightening pointed projectile headed for the stands. Bats usually break at the weakest point, typically in the handle. Breaking happens because the wood gets bent beyond the breaking point due to the wave sent down the bat created…

  4. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    CERN Document Server

    Robertson, J Gordon

    2012-01-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably ...

  5. Novel techniques for detection and imaging of spin related phenomena: Towards sub-diffraction limited resolution

    Science.gov (United States)

    Wolfe, Christopher Stuart

    The idea that the spin degree of freedom of particles can be used to store and transport information has revolutionized the data storage industry and inspired a huge amount of research activity. Spin electronics, or spintronics, provides a plethora of potential improvements to conventional charge electronics that include increased functionality and energy efficiency. Scientists studying spintronics will need a multitude of characterization tools to sensitively detect spins in new materials and devices. There are already a handful of powerful techniques to image spin-related phenomena, but each has limitations. Magnetic resonance force microscopy, for example, offers sensitive detection of spin moments that are localized or nearly so but requires a high vacuum, cryogenic environment. Magnetometry based on nitrogen vacancy centers in diamond is a powerful approach, but requires the nitrogen vacancy center to be in very close contact to the spin system being studied to be able to measure the field generated by the system. Spin-polarized scanning tunneling microscopy provides perhaps the best demonstrated spatial resolution, but typically requires ultrahigh vacuum conditions and is limited to studying the surface of a sample. Traditional optical techniques such as Faraday or Kerr microscopy are limited in spatial resolution by the optical diffraction limit. In this dissertation I will present three new techniques we have developed to address some of these issues and to provide the community with new tools to help push forward spintronics and magnetism related research. I will start by presenting the first experimental demonstration of scanned spin-precession microscopy. This technique has the potential to turn any spin-sensitive detection technique into an imaging platform by providing the groundwork for incorporating a magnetic field gradient with that technique, akin to magnetic resonance imaging, and the mathematical tools to analyze the data and extract the local

  6. Foveal contour interactions and crowding effects at the resolution limit of the visual system.

    Science.gov (United States)

    Danilova, Marina V; Bondarko, Valeria M

    2007-11-27

    We describe several experiments on contour interactions and crowding effects at the resolution limit of the visual system. As test stimuli we used characters that are often employed in optometric practice for testing visual acuity: Landolt C's, Snellen E's, and rectangular gratings. We tested several hypotheses that have been put forward to explain contour interaction and crowding effects. In Experiment 1 and Experiment 2, Landolt C's were the test stimuli, and bars, or Landolt C's, or gratings served as distractors. In Experiment 1, we showed that neither scale invariance nor spatial frequency selectivity is a characteristic of foveal crowding effects. These results allowed us to conclude that mechanisms other than lateral masking contribute to observers' performance in 'crowded' tasks. R. F. Hess, S. C. Dakin, and N. Kappor (2000) suggested that the spatial frequency band most appropriate for target recognition is shifted by the surrounding bars to higher spatial frequencies that cannot be resolved by observers. Our Experiment 2 rejects this hypothesis as the experimental data do not follow theoretical predictions. In Experiment 3, we employed Snellen E's, both as test stimuli and as distractors. The masking functions were similar to those measured in Experiment 1 when the test Landolt C was surrounded by Landolt C's. In Experiment 4, we extended the range of test stimuli to rectangular gratings; same-frequency or high-frequency gratings were distractors. In this case, if the distracting gratings had random orientation from trial to trial, the critical spacing was twice larger than in the first three experiments. If the orientation of the distractors was fixed during the whole experiment, the critical spacing was similar to that measured in the first three experiments. We suggest that the visual system can use different mechanisms for the discrimination of different test stimuli in the presence of particular surround. Different receptive fields with different

  7. Comparison between subjective and quantitative methods for assessing the resolution limit of radiographic systems; Comparacao entre metodos subjetivos e quantitativos na medida da resolucao limite de sistemas radiograficos

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Matheus; Oliveira, Marcela de; Miranda, Jose R.A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu; Pina, Diana R., E-mail: matheus@ibb.unesp.br [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina. Dept. de Doencas Tropicais e Diagnostico por Imagem

    2012-07-01

    The aim of this study was to compare two ways of measuring the resolution limit of radiographic systems, one subjective and one quantitative. To this end, nine images were acquired with different radiographic techniques using a pattern of bars and aluminum plates. With these images were acquired modulation transfer function (MTF) through the edge image obtained by the aluminum plate - the MTF 10% was measured on all images - and the variation of these points, which was faced with the evaluation obtained by the resolution limit of the standard bar. Although we have observed a greater variation between measurements obtained using the bar-pattern, the simplicity of this measuring technique favors the common use of the same. We concluded that, to optimize the quality control of radiographic equipment, it is suggested to measure the MTF at least in periods of time while the annual pattern of bars to be used in shorter time periods to measure changes in resolution of the system. (author)

  8. Spontaneous Mirror Symmetry Breaking in the Limited Enantioselective Autocatalysis Model: Abyssal Hydrothermal Vents as Scenario for the Emergence of Chirality in Prebiotic Chemistry

    CERN Document Server

    Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904

    2013-01-01

    The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...

  9. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation.

    Science.gov (United States)

    Lawrence, Toby; Bebien, Magali; Liu, George Y; Nizet, Victor; Karin, Michael

    2005-04-28

    Inflammation and innate immunity involve signalling pathways leading to the production of inflammatory mediators. Usually such responses are self-limiting, but aberrant resolution of inflammation results in chronic diseases. Much attention has focused on pro-inflammatory signalling but little is known about the mechanisms that resolve inflammation. The IkappaB kinase (IKK) complex contains two catalytic subunits, IKKalpha and IKKbeta, and controls the activation of NF-kappaB transcription factors, which play a pivotal role in inflammation. Ample evidence indicates that IKKbeta mediates NF-kappaB activation in response to pro-inflammatory cytokines and microbial products. IKKalpha regulates an alternative pathway important for lymphoid organogenesis, but the role of IKKalpha in inflammation is unknown. Here we describe a new role for IKKalpha in the negative regulation of macrophage activation and inflammation. IKKalpha contributes to suppression of NF-kappaB activity by accelerating both the turnover of the NF-kappaB subunits RelA and c-Rel, and their removal from pro-inflammatory gene promoters. Inactivation of IKKalpha in mice enhances inflammation and bacterial clearance. Hence, the two IKK catalytic subunits have evolved opposing but complimentary roles needed for the intricate control of inflammation and innate immunity. PMID:15858576

  10. Focused Azimuthally E-Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2016-01-01

    An azimuthally E-polarized vector beam (AEVB) has a salient feature that it contains a magnetic-dominant region within which electric field has a null and longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify the field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beams longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are calculated at the lens's focal plane as a function of the lens's paraxial focal distance. Subsequently, we demonstrate, for the first time, that a very high resolution magnetic field at optical frequency with the total magnetic field FWHM of 0.23{\\lambda}(magnetic field spot size of 0.04{\\lambda}^2) can be achieved by placing a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging AEVB. The theory sh...

  11. Possibilities and limitations of high-resolution mass spectrometry in life sciences

    Science.gov (United States)

    Arlinghaus, Heinrich F.

    2008-12-01

    We have applied time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) to examine the immobilization process of PNA and its hybridization capability to unlabeled complementary DNA fragments, to characterize immobilized proteins, and to image intrinsic elements and molecules with subcellular spatial resolution in different types of frozen non-dehydrated biological samples. The possibilities and limitations of ToF-SIMS and laser-SNMS for imaging elements and molecules in biological samples are discussed. Furthermore possibilities for enhancing the detection sensitivity by using polyatomic and cluster primary ions and different laser post-ionization schemes, as well as ways of obtaining 3D molecular images from biological samples are described. The data shows that both ToF-SIMS and laser-SNMS are capable of imaging elements and molecules in complex biological samples and that they are very valuable tools in advancing applications in life sciences. It was found that cluster-ion bombardment is very useful for enhancing the molecular yield, while laser-SNMS resulted in much higher detection sensitivity for elements and specific molecules and is particularly well suited for imaging ultra-trace element concentrations in biological samples.

  12. Breaking the speed limit--comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta)

    Science.gov (United States)

    Castro-Santos, Theodore; Sanz-Ronda, Francisco Javier; Ruiz-Legazpi, Jorge

    2013-01-01

    Sprinting behavior of free-ranging fish has long been thought to exceed that of captive fish. Here we present data from wild-caught brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), volitionally entering and sprinting against high-velocity flows in an open-channel flume. Performance of the two species was nearly identical, with the species attaining absolute speeds > 25 body lengths·s−1. These speeds far exceed previously published observations for any salmonid species and contribute to the mounting evidence that commonly accepted estimates of swimming performance are low. Brook trout demonstrated two distinct modes in the relationship between swim speed and fatigue time, similar to the shift from prolonged to sprint mode described by other authors, but in this case occurring at speeds > 19 body lengths·s−1. This is the first demonstration of multiple modes of sprint swimming at such high swim speeds. Neither species optimized for distance maximization, however, indicating that physiological limits alone are poor predictors of swimming performance. By combining distributions of volitional swim speeds with endurance, we were able to account for >80% of the variation in distance traversed by both species.

  13. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  14. Super-resolution discrete-Fourier-transform spectroscopy using precisely periodic radiation beyond time window size limitation

    CERN Document Server

    Yasui, Takeshi; Hsieh, Yi-Da; Sakaguchi, Yoshiyuki; Hindle, Francis; Yokoyama, Shuko; Araki, Tsutomu; Hashimoto, Mamoru

    2014-01-01

    Fourier transform spectroscopy (FTS) has been widely used in a variety of fields in research, industry, and medicine due to its high signal-to-noise ratio, simultaneous acquisition of signals in a broad spectrum, and versatility for different radiation sources. Further improvement of the spectroscopic performance will widen its scope of applications. Here, we demonstrate improved spectral resolution by overcoming the time window limitation using discrete Fourier transform spectroscopy (dFTS) with precisely periodic pulsed terahertz (THz) radiation. Since infinitesimal resolution can be achieved at periodically discrete frequencies when the time window size is exactly matched to the repetition period T, a combination of THz-dFTS with a spectral interleaving technique achieves a spectral resolution only limited by the spectral interleaving interval. Linewidths narrower than 1/(50T) are fully resolved allowing the attribution of rotational-transition absorption lines of low-pressure molecular gases within a 1.25...

  15. First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Th., E-mail: schmidtt@fhi-berlin.mpg.de [Fritz Haber Institute of the Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, D-14195 Berlin (Germany); Sala, A.; Marchetto, H. [Fritz Haber Institute of the Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, D-14195 Berlin (Germany); Umbach, E. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Freund, H.-J. [Fritz Haber Institute of the Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, D-14195 Berlin (Germany)

    2013-03-15

    The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed. - Highlights: ► First successful double aberration correction in XPEEM. ► Improvement of resolution and transmission by aberration correction. ► Lateral resolution of 18 nm in energy filtered XPEEM is the best up to now reported value. ► First investigation of space charge effects in aberrations corrected PEEM.

  16. Potentials and Limits of Super-Resolution Algorithms and Signal Reconstruction from Sparse Data

    CERN Document Server

    Shabat, Gil

    2012-01-01

    A common distortion in videos is image instability in the form of chaotic (global and local displacements). Those instabilities can be used to enhance image resolution by using subpixel elastic registration. In this work, we investigate the performance of such methods over the ability to improve the resolution by accumulating several frames. The second part of this work deals with reconstruction of discrete signals from a subset of samples under different basis functions such as DFT, Haar, Walsh, Daubechies wavelets and CT (Radon) projections.

  17. CT energy weighting in the presence of scatter and limited energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201 (United States)

    2010-03-15

    Purpose: Energy-resolved CT has the potential to improve the contrast-to-noise ratio (CNR) through optimal weighting of photons detected in energy bins. In general, optimal weighting gives higher weight to the lower energy photons that contain the most contrast information. However, low-energy photons are generally most corrupted by scatter and spectrum tailing, an effect caused by the limited energy resolution of the detector. This article first quantifies the effects of spectrum tailing on energy-resolved data, which may also be beneficial for material decomposition applications. Subsequently, the combined effects of energy weighting, spectrum tailing, and scatter are investigated through simulations. Methods: The study first investigated the effects of spectrum tailing on the estimated attenuation coefficients of homogeneous slab objects. Next, the study compared the CNR and artifact performance of images simulated with varying levels of scatter and spectrum tailing effects, and reconstructed with energy integrating, photon-counting, and two optimal linear weighting methods: Projection-based and image-based weighting. Realistic detector energy-response functions were simulated based on a previously proposed model. The energy-response functions represent the probability that a photon incident on the detector at a particular energy will be detected at a different energy. Realistic scatter was simulated with Monte Carlo methods. Results: Spectrum tailing resulted in a negative shift in the estimated attenuation coefficient of slab objects compared to an ideal detector. The magnitude of the shift varied with material composition, increased with material thickness, and decreased with photon energy. Spectrum tailing caused cupping artifacts and CT number inaccuracies in images reconstructed with optimal energy weighting, and did not impact images reconstructed with photon counting weighting. Spectrum tailing did not significantly impact the CNR in reconstructed images

  18. A Well-Behaved TVD Limiter for High-Resolution Calculations of Unsteady Flow

    Science.gov (United States)

    Arora, Mohit; Roe, Philip L.

    1997-03-01

    A total variation diminishing (TVD) limiter is proposed that attempts to maximize performance given that the inherent limitation of TVD formulations is peak loss. For the scalar advection and Burger's equation, the present results are qualitatively superior to those using the harmonic and superbee limiters, balancing well the competing effects of skewing, smearing, and squaring. In the case of the Euler equations, the current results appear to significantly improve upon previous TVD results and are quite comparable with more elaborate algorithms.

  19. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: mrhowells@lbl.gov; Beetz, T. [Department of Physics, State University of New York, Stony Brook, NY 11794 (United States); Chapman, H.N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Cui, C. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Holton, J.M. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330 (United States); Jacobsen, C.J.; Kirz, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, State University of New York, Stony Brook, NY 11794 (United States); Lima, E. [Department of Physics, State University of New York, Stony Brook, NY 11794 (United States); Marchesini, S. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Miao, H.; Sayre, D. [Department of Physics, State University of New York, Stony Brook, NY 11794 (United States); Shapiro, D.A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Spence, J.C.H. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504 (United States); Starodub, D. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2009-03-15

    X-ray diffraction microscopy (XDM) is a new form of X-ray imaging that is being practiced at several third-generation synchrotron-radiation X-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nanometer resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available X-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called 'dose fractionation theorem' of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and 'Rose-criterion' image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  20. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    International Nuclear Information System (INIS)

    X-ray diffraction microscopy (XDM) is a new form of X-ray imaging that is being practiced at several third-generation synchrotron-radiation X-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nanometer resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available X-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called 'dose fractionation theorem' of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and 'Rose-criterion' image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  1. Clumpy galaxies seen in H-alpha: inflated observed clump properties due to limited spatial resolution and sensitivity

    CERN Document Server

    Tamburello, Valentina; Mayer, Lucio; Cava, Antonio; Dessauges-Zavadsky, Miroslava; Schaerer, Daniel

    2016-01-01

    High-resolution simulations of star-forming massive galactic discs have shown that clumps form with a characteristic baryonic mass in the range $10^7-10^8~M_{\\odot}$, with a small tail exceeding $10^9~M_{\\odot}$ produced by clump-clump mergers. This is in contrast with the observed kpc-size clumps with masses up to $10^{10}~M_{\\odot}$ in high-redshift star-forming galaxies. In this paper we show that the comparison between simulated and observed star-forming clumps is hindered by limited observational spatial resolution and sensitivity. We post-process high-resolution hydrodynamical simulations of clumpy discs using accurate radiative transfer to model the effect of ionizing radiation from young stars and to compute H$\\alpha$ emission maps. By comparing the intrinsic clump size and mass distributions with those inferred from convolving the H$\\alpha$ maps with different gaussian apertures, we mimick the typical resolution used in observations. We found that with 100 pc resolution, mock observations can recover...

  2. Toroid cavity detectors for high-resolution NMR spectroscopy and rotating frame imaging: capabilities and limitations.

    Science.gov (United States)

    Momot, K I; Binesh, N; Kohlmann, O; Johnson, C S

    2000-02-01

    The capabilities of toroid cavity detectors for simultaneous rotating frame imaging and NMR spectroscopy have been investigated by means of experiments and computer simulations. The following problems are described: (a) magnetic field inhomogeneity and subsequent loss of chemical shift resolution resulting from bulk magnetic susceptibility effects, (b) image distortions resulting from off-resonance excitation and saturation effects, and (c) distortion of lineshapes and images resulting from radiation damping. Also, special features of signal analysis including truncation effects and the propagation of noise are discussed. B(0) inhomogeneity resulting from susceptibility mismatch is a serious problem for applications requiring high spectral resolution. Image distortions resulting from off-resonance excitation are not serious within the rather narrow spectral range permitted by the RF pulse lengths required to read out the image. Incomplete relaxation effects are easily recognized and can be avoided. Also, radiation damping produces unexpectedly small effects because of self-cancellation of magnetization and short free induction decay times. The results are encouraging, but with present designs only modest spectral resolution can be achieved. PMID:10648153

  3. A well-behaved TVD limiter for high-resolution calculations of unsteady flow

    Energy Technology Data Exchange (ETDEWEB)

    Arora, M.; Roe, P.L. [Univ. of Michigan, Ann Arbor, MI (United States)

    1997-03-15

    A total variation diminishing (TVD) limiter is proposed that attempts to maximize performance given that the inherent limitation of TVD formulations is peak loss. For the scalar advection and Burger`s equation, the present results are qualitatively superior to those using the harmonic and superbee limiters, balancing well the competing effects of skewing, smearing, and squaring. In the case of the Euler equations, the current results appear to significantly improve upon previous TVD results and are quite comparable with more elaborate algorithms. 23 refs., 13 figs.

  4. The Break

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille

    2016-01-01

    storytelling to enact fruitful breakings of patterns unbecoming. The claim being, that the hamster wheel of Work-life anno 2016 needs reconfiguration and the simple yet fruitful manner by which this is done is through acknowledging the benefits of bodies, spaces and artifacts – and the benefits of actually...... taking a break, discontinuing for a moment in order to continue better, wiser and more at ease. Both within and as part of the daily routines, and – now and then – outside these routines in the majesty of nature with time to explore and redirect the course of life in companionships with fellow man...

  5. String breaking

    CERN Document Server

    Bali, G S; Lippert, T; Neff, H; Prkacin, Z; Schilling, K; Bali, Gunnar S; Dussel, Thomas; Lippert, Thomas; Neff, Hartmut; Prkacin, Zdravko; Schilling, Klaus

    2006-01-01

    We numerically investigate the transition of the static quark-antiquark string into a static-light meson-antimeson system. Improving noise reduction techniques, we are able to resolve the signature of string breaking dynamics for Nf=2 lattice QCD at zero temperature. We discuss the lattice techniques used and present results on energy levels and mixing angle of the static two-state system. We visualize the action density distribution in the region of string breaking as a function of the static colour source-antisource separation. The results can be related to properties of quarkonium systems.

  6. Supersymmetry breaking

    Indian Academy of Sciences (India)

    Emilian Dudas

    2009-01-01

    We review the various mechanisms of supersymmetry breaking and its trans-mission to the observable sector. We argue that hybrid models where gauge dominates over gravity mediation, but gravity provides the main contributions to the Higgs sector masses and the neutralino mass, are able to combine the advantages and reduce the disadvantages of the two transmission mechanisms.

  7. Limits on the spatial resolution of monolithic scintillators read out by APD arrays.

    Science.gov (United States)

    van der Laan, D J Jan; Maas, Marnix C; Bruyndonckx, Peter; Schaart, Dennis R

    2012-10-21

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the Cramér-Rao lower bound (CRLB) can for example be used to optimize the detector design and to test the performance of the method used to derive position information from the detector signals. Here, this approach is demonstrated for monolithic scintillator detectors for positron emission tomography. Two detector geometries are investigated: a 20 × 10 × 10 mm(3) and a 20 × 10 × 20 mm(3) monolithic LYSO:Ce(3+) crystal read out by one or two Hamamatsu S8550SPL avalanche photodiode (APD) arrays, respectively. The results indicate that in these detectors the CRLB is primarily determined by the APD excess noise factor and the number of scintillation photons detected. Furthermore, it is shown that the use of a k-nearest neighbor (k-NN) algorithm for position estimation allows the experimentally obtained spatial resolution to closely approach the CRLB. The approach outlined in this work can in principle be applied to any scintillation detector in which position information is encoded in the distribution of the scintillation light over multiple photosensor elements. PMID:23001515

  8. Limits on the spatial resolution of monolithic scintillators read out by APD arrays

    International Nuclear Information System (INIS)

    Cramér–Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the Cramér–Rao lower bound (CRLB) can for example be used to optimize the detector design and to test the performance of the method used to derive position information from the detector signals. Here, this approach is demonstrated for monolithic scintillator detectors for positron emission tomography. Two detector geometries are investigated: a 20 × 10 × 10 mm3 and a 20 × 10 × 20 mm3 monolithic LYSO:Ce3+ crystal read out by one or two Hamamatsu S8550SPL avalanche photodiode (APD) arrays, respectively. The results indicate that in these detectors the CRLB is primarily determined by the APD excess noise factor and the number of scintillation photons detected. Furthermore, it is shown that the use of a k-nearest neighbor (k-NN) algorithm for position estimation allows the experimentally obtained spatial resolution to closely approach the CRLB. The approach outlined in this work can in principle be applied to any scintillation detector in which position information is encoded in the distribution of the scintillation light over multiple photosensor elements. (paper)

  9. Building an atlas of gene expression driving kidney development: pushing the limits of resolution.

    Science.gov (United States)

    Potter, S Steven; Brunskill, Eric W

    2014-04-01

    Changing gene expression patterns is the essential driver of developmental processes. Growth factors, micro-RNAs, long intergenic noncoding RNAs, and epigenetic marks, such as DNA methylation and histone modifications, all work by impacting gene expression. The key features of developing cells, including their ability to communicate with others, are defined primarily by their gene-expression profiles. It is therefore clear that a gene-expression atlas of the developing kidney can provide a useful tool for the developmental nephrology research community. Toward this end, the GenitoUrinary Development Molecular Anatomy Project (GUDMAP) consortium has worked to create an atlas of the changing gene-expression patterns that drive kidney development. In this article, the global gene-expression profiling strategies of GUDMAP are reviewed. The initial work used laser-capture microdissection to purify multiple compartments of the developing kidney, including cap mesenchyme, renal vesicle, S-shaped bodies, proximal tubules, and more, which were then gene-expression profiled using microarrays. Resolution of the atlas was then improved by using transgenic mice with specific cell types labeled with green fluorescent protein (GFP), allowing their purification and profiling. In addition, RNA-Seq replaced microarrays. Currently, the atlas is being pushed to the single-cell resolution using microfluidic approaches that allow high-throughput RNA-Seq analysis of hundreds of individual cells. Results can identify novel types of cells and define interesting heterogeneities present within cell populations. PMID:23996451

  10. Resolution of the time dependent Pn equations by a Godunov type scheme having the diffusion limit

    International Nuclear Information System (INIS)

    We consider the Pn model to approximate the transport equation in one dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation. We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it gives the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical scheme proposed is an extension of the Godunov type scheme proposed by L. Gosse to solve the P1 model without absorption term. Moreover, it has the well-balanced property: it preserves the steady solutions of the system. (authors)

  11. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    CERN Document Server

    Howells, M R; Chapman, H N; Cui, C; Holton, J M; Jacobsen, C J; Lima, J K E; Marchesini, S; Miao, H; Sayre, D; Shapiro, D A; Spence, J C H

    2005-01-01

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth po...

  12. High resolution computed tomography of the middle ear. Its effectiveness, limits of diagnosis and clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Katsuhisa; Sakurai, Tokio; Saijo, Shigeru; Kobayashi, Toshimitsu (Iwaki Kyoritsu General Hospital, Fukushima (Japan))

    1983-11-01

    High resolution computed tomography was performed in 57 cases with various middle ear diseases (chronic otitis media, otitis media with effusion, acute otitis media and atelectasis). Although further improvement in detectability is necessary in order to discriminate each type of the soft tissue lesions, CT is the most useful method currently available in detecting the small structures and soft tissue lesions of the middle ear. In particular, the lesions at the tympanic isthmus and tympanic fold could very clearly be detected only by CT. In acute otitis media, lesions usually started in the attic and spread to the mastoid air cells. In otitis media with effusion, the soft tissue shadow was observed in the attic and mastoid air cell. CT is valuable in diagnosis, evaluation of the treatment and prognosis, and analysis of pathophysiology in the middle ear diseases.

  13. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter

    Science.gov (United States)

    Kuzmin, D.; Turek, S.

    2004-07-01

    A new approach to the derivation of local extremum diminishing finite element schemes is presented. The monotonicity of the Galerkin discretization is enforced by adding discrete diffusion so as to eliminate all negative off-diagonal matrix entries. The resulting low-order operator of upwind type acts as a preconditioner within an outer defect correction loop. A generalization of TVD concepts is employed to design solution-dependent antidiffusive fluxes which are inserted into the defect vector to preclude excessive smearing of solution profiles by numerical diffusion. Standard TVD limiters can be applied edge-by-edge using a special reconstruction of local three-point stencils. As a fully multidimensional alternative to this technique, a new limiting strategy is introduced. A node-oriented flux limiter is constructed so as to control the ratio of upstream and downstream edge contributions which are associated with the positive and negative off-diagonal coefficients of the high-order transport operator, respectively. The proposed algorithm can be readily incorporated into existing flow solvers as a 'black-box' postprocessing tool for the matrix assembly routine. Its performance is illustrated by a number of numerical examples for scalar convection problems and incompressible flows in two and three dimensions.

  14. Ultrasensitive Scanning Transmission X-ray Microscopy: Pushing the Limits of Time Resolution and Magnetic Sensitivity

    Science.gov (United States)

    Ohldag, Hendrik

    Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.

  15. Trade-off study for high resolution spectroscopy in the near infrared with ELT telescopes: seeing-limited vs. diffraction limited instruments

    CERN Document Server

    Sanna, N; Massi, F; Cresci, G; Origlia, L

    2014-01-01

    HIRES, a high resolution spectrometer, is one of the first five instruments foreseen in the ESO roadmap for the E-ELT. This spectrograph should ideally provide full spectral coverage from the UV limit to 2.5 microns, with a resolving power from R$\\sim$10,000 to R$\\sim$100,000. At visual/blue wavelengths, where the adaptive optics (AO) cannot provide an efficient light-concentration, HIRES will necessarily be a bulky, seeing-limited instrument. The fundamental question, which we address in this paper, is whether the same approach should be adopted in the near-infrared range, or HIRES should only be equipped with compact infrared module(s) with a much smaller aperture, taking advantage of an AO-correction. The main drawbacks of a seeing-limited instrument at all wavelengths are: \\textit{i)} Lower sensitivities at wavelengths dominated by thermal background (red part of the K-band). \\textit{ii)} Much higher volumes and costs for the IR spectrograph module(s). The main drawbacks of using smaller, AO-fed IR module...

  16. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    International Nuclear Information System (INIS)

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  17. DETERMINATION OF RESOLUTION LIMITS OF ELECTRICAL TOMOGRAPHY ON THE BLOCK MODEL IN A HOMOGENOUS ENVIRONMENT BY MEANS OF ELECTRICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Franjo Šumanovac

    2007-12-01

    Full Text Available The block model in a homogenous environment can generally serve for presentation of some geological models: changes of facies, changes of rock compactness-fragmentation, underground cavities, bauxite deposits, etc. Therefore, on the block model of increased resistivities in a homogenous environment of low resistivity, the potentials of the electrical tomography method were tested for the purpose of their detection. Regarding potentials of block detection, resolution methods depend on: depth of block location, ratio between block resistivity and the environment in which it is located as well as applied survey geometry, i.e. electrode array. Thus the analyses carried out for the most frequently used electrode arrays in the investigations are the following: the Wenner, Wenner-Schlumberger, dipole-dipole and pole-pole arrays. For each array, maximum depths at which a block can be detected relative to the ratio between block resistivity and parent rock environment were analyzed. The results are shown in the two-dimensional graphs, where the ratio between the block resistivity and the environment is shown on the X-axis, and the resolution depth on the Y-axis, after which the curves defining the resolution limits were drawn. These graphs have a practical use, since they enable a fast, simple determination of potentials of the method application on a specific geological model.

  18. Breaking Routines

    DEFF Research Database (Denmark)

    Kesting, Peter; Jørgensen, Frances

    On some level, innovation begins when the current way of doing things is questioned and alternatives are sought. In cognitive terms, this can be conceptualized as the point at which an agent breaks with existing routine and returns to planning and decision-making. Thus far, however, very little...... is known about this cognitive structure or the factors that trigger the search for alternatives. In cooperation with the Danish Research Centre for Magnetic Resonance, University of Copenhagen, Denmark, we are in the process of designing an experimental study designed to gain insights into the triggers...

  19. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  20. Limitations on the resolution and suitability of global gravity and magnetic models for geological interpretation: A user health warning!

    Science.gov (United States)

    Fairhead, J. D.; Somerton, I. W.

    2011-12-01

    magnetic data making gridding problematic. Instead of using minimum curvature as in WDMAM, the EMAG3 model uses the plate tectonic isochron model to directionally control grid interpolation in order to honour the strong 2D remanence (reversal magnetic field patterns) generated from Mesozoic to Recent sea floor spreading. For onshore areas many of the same problems encountered with the gravity field are present. Airborne magnetic coverage is near complete for Europe/Asia/Australia/North America but is poor in many parts of Africa, South America and Antarctica. In addition the models have upward continued the field to 4 or 5 km and many of the commercial surveys have been decimation. The talk will present many examples of these resolution limitations. For reliable geological interpretation one first needs to be sure of what the survey coverage is present and has it been decimated and/or, upward continued. Finally just because a global model is provided as a 1' (~2km) grid it does not imply that the wavelength resolution is everywhere down to 4km (twice grid cell spacing), e.g. satellite derived gravity data for the oceans has a resolution of only 15 to 20km.

  1. Pushing the limits of high-resolution functional MRI using a simple high-density multi-element coil design.

    Science.gov (United States)

    Petridou, N; Italiaander, M; van de Bank, B L; Siero, J C W; Luijten, P R; Klomp, D W J

    2013-01-01

    Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are

  2. Routinizing Breaking News

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    2011-01-01

    This chapter revisits seminal theoretical categorizations of news proposed three decades earlier by US sociologist Gaye Tuchman. By exploring the definition of ”breaking news” in the contemporary online newsrooms of three Danish news organisations, the author offers us a long overdue re......-theorization of journalistic practice in the online context and helpfully explores well-evidenced limitations to online news production, such as the relationship between original reporting and the use of ”shovelware.”...

  3. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    Science.gov (United States)

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-03-06

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  4. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV Technology for Weed Seedling Detection as Affected by Sensor Resolution

    Directory of Open Access Journals (Sweden)

    José M. Peña

    2015-03-01

    Full Text Available In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera, spatial (flight altitude and temporal (the date of the study resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2, when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%. At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  5. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    Science.gov (United States)

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  6. Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution

    CERN Document Server

    Valdano, Eugenio; Colizza, Vittoria

    2015-01-01

    The epidemic threshold of a spreading process indicates the condition for the occurrence of the wide spreading regime, thus representing a predictor of the network vulnerability to the epidemic. Such threshold depends on the natural history of the disease and on the pattern of contacts of the network with its time variation. Based on the theoretical framework introduced in (Valdano et al. PRX 2015) for a susceptible-infectious-susceptible model, we formulate here an infection propagator approach to compute the epidemic threshold accounting for more realistic effects regarding a varying force of infection per contact, the presence of immunity, and a limited time resolution of the temporal network. We apply the approach to two temporal network models and an empirical dataset of school contacts. We find that permanent or temporary immunity do not affect the estimation of the epidemic threshold through the infection propagator approach. Comparisons with numerical results show the good agreement of the analytical ...

  7. Search for Anomalous Production of Diphoton Events with Missing Transverse Energy at CDF and Limits on Gauge-Mediated Supersymmetry-Breaking Models

    CERN Document Server

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas-Maestro, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D V; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A S; Nigmanov, T; Nodulman, L; Norniella, O; Österberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R G C; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer--, O; Chilton; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Varganov, A; Vataga, E; Vejcik, S; Velev, G V; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2004-01-01

    We present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 $\\invpb$ of $\\ppbar$ collisions at $\\sqrt{s}=1.96$ TeV we observe no candidate events, with an expected standard model background of $0.27\\pm0.07({\\rm stat})\\pm0.10({\\rm syst})$ events. The results exclude a lightest chargino of mass less than 167 GeV/$c^2$, and lightest neutralino of mass less than 93 GeV/$c^2$ at 95% C.L. in a gauge--mediated supersymmetry-- breaking model with a light gravitino.

  8. Investigation of sea-level changes and shelf break prograding sequences during the Late Quaternary offshore of Kusadasi (West Anatolia) and surroundings by high resolution seismic methods

    Science.gov (United States)

    Gurcay, Savas; Cifci, Gunay; Dondurur, Derman; Okay, Seda; Atgin, Orhan; Ozel, Ozkan; Mert Kucuk, Hilmi

    2016-04-01

    High Resolution multi-channel seismic reflection and Chirp data were collected by K. Piri Reis, research vessel of Dokuz Eylül University, in the central Aegean coast of the West Anatolia by research cruises carried out in 2005 and 2008, respectively. Submarine stratigraphic and structural features of Sıǧacık Gulf, Kuşadası Gulf and surroundings were investigated under this survey. The data were processed and interpreted in SeisLab, D.E.U. Marine Sciences and Technology seismic laboratory. Thirteen distinct unconformities can be traced below the study area that separate thirteen progradational stacked paleo-delta sequences (Lob1-Lob13) on seismic profiles following and cutting each other. As a result of comparison with the oxygen isotopic stages (δ18), these deltas (Lob1-L13) were interpreted that they have been deposited during the sea-level lowstands within Pleistocene glacial stages. In the study area the basement surface which observed as the lowest unconformity surface of the seismic sections was called 'Acoustic Basement'. This basement which traced approximately all of the seismic sections has generally quite wavy surface and underlain the upper seismic units. It was observed that these seismic units which terminated their formation in Pleistocene (Lob1-Lob13) and Holocene period were cut and uplifted by acoustic basement, like an intrusion. These type deformations were interpreted as a result of magmatic intrusion into these upper seismic units occurred in Late Pleistocene and Holocene period. Tectonic and structural interpretation was carried out to constitute the submarine active tectonic map of the study area by correlated active faults identified on seismic sections. Submarine active tectonic map and, basement topography and sediment thickness map were correlated together to present the relationship between tectonic deformation and stratigraphy.

  9. From the channel model of an InSb-based superresolution optical disc system to impulse response and resolution limits.

    Science.gov (United States)

    Hepper, Dietmar

    2011-06-10

    The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model--from non-return-to-zero inverted input to disc readout signal--has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive. PMID:21673750

  10. Passive imaging through the turbulent atmosphere - Fundamental limits on the spatial frequency resolution of a rotational shearing interferometer

    Science.gov (United States)

    Burke, J. J.; Breckinridge, J. B.

    1978-01-01

    The signal-to-noise (S/N) ratio to be expected when a 180 deg rotationally shearing interferometer is used for image recovery at the diffraction limit of a large telescope is computed. The variance and covariance of the irradiance fluctuations at the detector array are shown to yield measures of the high-frequency spatial spectrum of the source. Four fundamental sources of noise are considered: temporal fluctuations of the source, space-time fluctuations of the atmosphere, shot noise in the detected photocurrents, and the effects of finite sampling. S/N is found to be directly proportional to the angular resolution of the telescope, the single-frame integration time, the square root of the number of frames, the cube of the operating wavelength, the quantum efficiency of the detector, and the average spectral irradiance from the source on the pupil. It is inversely proportional to the cube of the field angle subtended by the source (or part thereof) under study.

  11. Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution

    Science.gov (United States)

    Valdano, Eugenio; Poletto, Chiara; Colizza, Vittoria

    2015-12-01

    The epidemic threshold of a spreading process indicates the condition for the occurrence of the wide spreading regime, thus representing a predictor of the network vulnerability to the epidemic. Such threshold depends on the natural history of the disease and on the pattern of contacts of the network with its time variation. Based on the theoretical framework introduced in [E. Valdano, L. Ferreri, C. Poletto, V. Colizza, Phys. Rev. X 5, 21005 (2015)] for a susceptible-infectious-susceptible model, we formulate here an infection propagator approach to compute the epidemic threshold accounting for more realistic effects regarding a varying force of infection per contact, the presence of immunity, and a limited time resolution of the temporal network. We apply the approach to two temporal network models and an empirical dataset of school contacts. We find that permanent or temporary immunity do not affect the estimation of the epidemic threshold through the infection propagator approach. Comparisons with numerical results show the good agreement of the analytical predictions. Aggregating the temporal network rapidly deteriorates the predictions, except for slow diseases once the heterogeneity of the links is preserved. Weight-topology correlations are found to be the critical factor to be preserved to improve accuracy in the prediction.

  12. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    Science.gov (United States)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    Atmospheric aerosols serve as cloud condensation nuclei (CCN), altering cloud properties and ultimately affecting climate through their effect on the radiative balance. Aerosol CCN activity depends in part on aerosol composition and surfactant compounds are of particular interest because surfactants are enriched at the water/air interface, resulting in a radial concentration gradient within the aqueous droplet. Accurate treatment of the surfactant concentration gradient complicates the otherwise straightforward predictions of CCN activity for aerosols of known composition. To accurately evaluate predictions made by theory, laboratory studies investigating the relationship between critical supersaturation and dry diameter of particles that include surfactants require significant reduction in measurement uncertainty for both water-uptake and CCN measurements. Furthermore, uncertainties remain regarding kinetic limitations to surfactant partitioning that could result in deviation from predictions based on equilibrium thermodynamics. This study attempts to address some of these issues through high-resolution analysis of CCN activity of two-component mixed surfactant/non-surfactant aerosols at different internal mixing ratios performed with and without a water-uptake time delay to ascertain whether or not the observed effects are kinetically limited. We present new data for the aerosols consisting of 1) the ionic surfactant sodium dodecyl sulfate (SDS) with ammonium sulfate, 2) SDS with sodium chloride and 3) the strong non-ionic fluorosurfactant Zonyl with an organic proxy glucose. As a point of reference we also evaluated the mixture of ammonium sulfate with glucose. Aerosol activation diameters were determined using CCN analysis in conjunction with scanning mobility size classification and high sheath-to-aerosol flow ratios. This resulted in CCN-derived kappa values that could be determined within +/-5% relative error. To test whether dynamic surfactant partitioning

  13. A resolution of the puzzle of low V_us values from inclusive flavor-breaking sum rule analyses of hadronic tau decay

    CERN Document Server

    Hudspith, R J; Maltman, K; Wolfe, C E; Zanotti, J

    2015-01-01

    Continuum and lattice methods are used to investigate systematic issues in the sum rule determination of $V_{us}$ using inclusive hadronic $\\tau$ decay data. Results for $V_{us}$ employing assumptions for $D>4$ OPE contributions used in previous conventional implementations of this approach are shown to display unphysical dependence on the sum rule weight, $w$, and choice of upper limit, $s_0$, of the relevant experimental spectral integrals. Continuum and lattice results suggest a new implementation of the sum rule approach with not just $\\vert V_{us}\\vert$, but also $D>4$ effective condensates, fit to data. Lattice results are also shown to provide a quantitative assessment of truncation uncertainties for the slowly converging $D=2$ OPE series. The new sum rule implementation yields $\\vert V_{us}\\vert$ results free of unphysical $s_0$- and $w$-dependences and $\\sim 0.0020$ higher than that obtained using the conventional implementation. With preliminary new experimental results for the $K\\pi$ branching frac...

  14. Providing Stringent Star Formation Rate Limits of z ˜ 2 QSO Host Galaxies at High Angular Resolution

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Do, Tuan; Larkin, James E.; Armus, Lee; Gallagher, S. C.

    2016-04-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ˜ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ˜0.″2 (˜1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (zHα = 2.182) and SDSS J0925+0655 (zHα = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M⊙ yr-1 originating from a compact region that is kinematically offset by 290-350 km s-1. For SDSS J0925+0655 we infer a SFR of 29 M⊙ yr-1 distributed over three clumps that are spatially offset by ˜7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M⊙ yr-1 kpc-2. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M⊙ yr-1 kpc-2. These IFS observations indicate that while the central black hole is accreting mass at 10%-40% of the Eddington rate, if star formation is present in the host (1.4-20 kpc) it would have to occur diffusely with significant

  15. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    Science.gov (United States)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R.

    2016-03-01

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H2O)n (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculation MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%-65% saving of computational time. The methodology has a potential for application to molecular clusters containing ˜100 atoms.

  16. Self-Limited versus Delayed Resolution of Acute Inflammation: Temporal Regulation of Pro-Resolving Mediators and MicroRNA

    OpenAIRE

    Gabrielle Fredman; Yongsheng Li; Jesmond Dalli; Nan Chiang; Serhan, Charles N.

    2012-01-01

    Mechanisms underlying delays in resolution programs of inflammation are of interest for many diseases. Here, we addressed delayed resolution of inflammation and identified specific microRNA (miR)-metabolipidomic signatures. Delayed resolution initiated by high-dose challenges decreased miR-219-5p expression along with increased leukotriene B4 (5-fold) and decreased (~3-fold) specialized pro-resolving mediators, e.g. protectin D1. Resolvin (Rv)E1 and RvD1 (1 nM) reduced miR-219-5p in human mac...

  17. High resolution TVD schemes using flux limiters. [method of Total Variation Diminishing for rarefied gas dynamics calculations

    Science.gov (United States)

    Sweby, P. K.

    1985-01-01

    Roe (1981, 1985) has utilized flux limiters to obtain second order monotonicity preserving schemes. In the present paper, the foundation for flux limiters in the formulation of first order three-point schemes are discussed, and a systematic outline is provided of the method of using flux limiters to obtain second order accurate TVD schemes. Attention is given to Phi limiters, the Van Leer limiter, the Chakravarthy-Osher limiter, the linear advection equation and square wave data, the inviscid Burger's equation, and the extension of flux limiters to irregular grids, systems of equations, and implicit calculations.

  18. Position resolution limits in pure noble gaseous detectors for X-ray energies from 1 to 60 keV

    Directory of Open Access Journals (Sweden)

    C.D.R. Azevedo

    2015-02-01

    Full Text Available The calculated position resolutions for X-ray photons (1–60 keV in pure noble gases at atmospheric pressure are presented. In this work we show the influence of the atomic shells and the detector dimensions on the intrinsic position resolution of the used noble gas. The calculated results were obtained by using a new software tool, Degrad, and compared to the available experimental data.

  19. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  20. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    OpenAIRE

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D. A.; Spence, J. C. H.; Starodub, D.

    2005-01-01

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, a...

  1. Super-resolution photoacoustic imaging of single gold nanoparticles

    Science.gov (United States)

    Lee, Seunghyun; Kwon, Owoong; Jeon, Mansik; Song, Jaejung; Jo, Minguk; Kim, Sungjee; Son, Junwoo; Kim, Yunseok; Kim, Chulhong

    2016-03-01

    Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that can provide a strong optical absorption contrast using the photoacoustic (PA) effect, and breaks through the fundamental imaging depth limit of existing optical microscopy such as optical coherence tomography (OCT), confocal or two-photon microscopy. In PAI, a short-pulsed laser is illuminated to the tissue, and the PA waves are generated by thermoelastic expansion. Despite the high lateral resolution of optical-resolution photoacoustic microscopy (OR-PAM) thanks to the tight optical focus, the lateral resolution of OR-PAM is limited to the optical diffraction limit, which is approximately a half of the excitation wavelength. Here, we demonstrate a new super-resolution photoacoustic microscopy (SR-PAM) system by breaking the optical diffraction limit. The conventional microscopes with nanoscale resolutions such as a scanning electron microscope (SEM) and transmission electron microscope (TEM) are typically used to image the structures of nanomaterials, but these systems should work in a high vacuum environment and cannot provide the optical properties of the materials. Our newly developed SR-PAM system provides the optical properties with a nanoscale resolution in a normal atmosphere. We have photoacoustically imaged single gold nanoparticles with an average size of 80 nm in diameter and shown their PA expansion properties individually. The lateral resolution of this system was approximately 20 nm. Therefore, this tool will provide an unprecedented optical absorption property with an accurate nanoscale resolution and greatly impact on materials science and nanotechnology field.

  2. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study about the limits and a numerical study of non-binary and phase objects

    CERN Document Server

    Latychevskaia, Tatiana

    2015-01-01

    In coherent diffractive imaging (CDI) the resolution with which the reconstructed object can be obtained is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by post-extrapolation of coherent diffraction images, such as diffraction patterns or holograms. We proof that a diffraction pattern can unambiguously be extrapolated from just a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal, is linearly proportional to the oversampling ratio. While there could be in principle other methods to achieve extrapolation, we devote our discussion to employing phase retrieval methods and demonstrate their limits. We present two numerical studies; namely the extrapolation of diffraction patterns of non-binary and that of phase objects together with a discussion of the optimal extrapolation procedure.

  3. A Stylistic Analysis of Break,Break,Break

    Institute of Scientific and Technical Information of China (English)

    李瑶

    2015-01-01

    Break, Break, Break is a poem by Alfred Lord Tennyson, the Poet Laureate during the Queen Victoria's reign. This exquisite little poem is wel known for the poet's grief-stricken feelings and heart-broken emotions over the premature death of his best friend, Arthur Henry Halam. Most of the previous studies on this poem focus on the emotional level to consider it as an elegy, expressing sorrow and lamentation for the death of a particular person. However, in order to have a deep understanding in general, this paper analyzes the poem based on the stylistic theory, concerning on the lexical level and the semantic level. It aims at helping the readers to cultivate a sense of appropriateness, to sharpen the understanding and appreciation of literary works and to achieve adaptation in translation.

  4. Resolution of the time dependent P{sub n} equations by a Godunov type scheme having the diffusion limit; Resolution des equations P{sub n} instationnaires par un schema de type Godunov, ayant la limite diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Cargo, P.; Samba, G

    2007-07-01

    We consider the P{sub n} model to approximate the transport equation in one dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation. We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it gives the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical scheme proposed is an extension of the Godunov type scheme proposed by L. Gosse to solve the P{sub 1} model without absorption term. Moreover, it has the well-balanced property: it preserves the steady solutions of the system. (authors)

  5. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  6. Mississippian coral latitudinal diversity gradients (western interior United States): Testing the limits of high resolution diversity data

    Science.gov (United States)

    Webb, G.E.; Sando, W.J.; Raymond, A.

    1997-01-01

    Analysis of high resolution diversity data for Mississippian corals in the western interior United States yielded mild latitudinal diversity gradients despite the small geographic area covered by samples and a large influence on diversity patterns by geographic sampling intensity (sample bias). Three competing plate tectonic reconstructions were tested using the diversity patterns. Although none could be forcefully rejected, one reconstruction proved less consistent with diversity patterns than the other two and additional coral diversity data from farther north in Canada would better discriminate the two equivalent reconstructions. Despite the relatively high sampling intensity represented by the analyzed database, diversity patterns were greatly affected by sample abundance and distribution. Hence, some effort at recognizing and accounting for sample bias should be undertaken in any study of latitudinal diversity gradients. Small-scale geographic lumping of sample localities had only small effects on geographic diversity patterns. However, large-scale (e.g., regional) geographic lumping of diversity data may not yield latitudinally sensitive diversity patterns. Temporal changes in coral diversity in this region reflect changes in eustacy, local tectonism, and terrigenous sediment flux, far more than they do shifting latitude. Highest regional diversity occurred during the interval when the studied region occupied the highest latitude. Therefore, diversity data from different regions may not be comparable, in terms of latitudinal inference. Small-scale stratigraphic lumping of the data caused a nearly complete loss of the latitudinal diversity patterns apparent prior to lumping. Hence, the narrowest possible stratigraphic resolution should be maintained in analyzing latitudinal diversity gradients.

  7. Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M. [Centre National de Recherches Meteorologiques, Meteo-France, Toulouse Cedex 01 (France); Jones, R.G.; Hassell, D.C. [Hadley Centre for Climate Prediction and Research, Met Office, Devon (United Kingdom); Wild, M.; Vidale, P.L. [Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science, ETH, Zurich (Switzerland); Giorgi, F.; Kucharski, F. [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Christensen, J.H. [Danish Meteorological Institute, Copenhagen (Denmark); Rockel, B. [Institute of Coastal Research, GKSS Forschungszentrum Geesthacht GmbH, Geesthacht (Germany); Jacob, D. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Kjellstroem, E. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden); Castro, M. de. [Universidad de Castilla La Mancha, Dept. de Ciencias Ambientales, Toledo (Spain); Hurk, B. van den [KNMI, Postbus 201, AE De Bilt (Netherlands)

    2005-11-01

    Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071-2100 and the 1961-1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs - in particular in terms of precipitation - is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs. (orig.)

  8. Can AGN feedback break the self-similarity of galaxies, groups, and clusters?

    CERN Document Server

    Gaspari, M; Temi, P; Ettori, S

    2014-01-01

    It is commonly thought that AGN feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution 3D hydrodynamic simulations, we isolate the impact of AGN feedback on the $L_{\\rm x}-T_{\\rm x} $ relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within $R_{500}$, while the central cooling times are inversely proportional to the core density. Breaking self-similarity implies thus breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents the dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive ...

  9. Providing stringent star formation rate limits of z$\\sim$2 QSO host galaxies at high angular resolution

    CERN Document Server

    Vayner, Andrey; Do, Tuan; Larkin, James E; Armus, Lee; Gallagher, Sarah C

    2014-01-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect H$\\alpha$ and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line H$\\alpha$ is from star formation, we inf...

  10. Broadband Ultrahigh-Resolution Spectroscopy of Particle-Induced X Rays: Extending the Limits of Nondestructive Analysis

    Science.gov (United States)

    Palosaari, M. R. J.; Käyhkö, M.; Kinnunen, K. M.; Laitinen, M.; Julin, J.; Malm, J.; Sajavaara, T.; Doriese, W. B.; Fowler, J.; Reintsema, C.; Swetz, D.; Schmidt, D.; Ullom, J. N.; Maasilta, I. J.

    2016-08-01

    Nondestructive analysis (NDA) based on x-ray emission is widely used, for example, in the semiconductor and concrete industries. Here, we demonstrate significant quantitative and qualitative improvements in broadband x-ray NDA by combining particle-induced emission with detection based on superconducting microcalorimeter arrays. We show that the technique offers great promise in the elemental analysis of thin-film and bulk samples, especially in the difficult cases where tens of different elements with nearly overlapping emission lines have to be identified down to trace concentrations. We demonstrate the efficiency and resolving capabilities by spectroscopy of several complex multielement samples in the energy range 1-10 keV, some of which have a trace amount of impurities not detectable with standard silicon drift detectors. The ability to distinguish the chemical environment of an element is also demonstrated by measuring the intensity differences and chemical shifts of the characteristics x-ray peaks of titanium compounds. In particular, we report measurements of the K α /K β intensity ratio of thin films of TiN and measurements of Ti K α satellite peak intensities in various Ti thin-film compounds. We also assess the detection limits of the technique, comment on detection limits possible in the future, and discuss possible applications.

  11. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    Institute of Scientific and Technical Information of China (English)

    Chen Zhang; Shuang-Nan Zhang

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the difffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.

  12. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  13. Breaking stress of neutron star crust

    International Nuclear Information System (INIS)

    Complete text of publication follows. The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures), strain rates and composition of matter. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ∼1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter Γ<200 matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress. This work was partially supported by the Russian Foundation for Basic Research (grant 11-02-00253-a), by the State Program 'Leading Scientific Schools of Russian Federation' (grant NSh 3769.2010.2), by the President grant for young Russian scientists (MK-5857.2010.2), by United States DOE grant (DE-FG02-87ER40365) and by Shared University Research grants from IBM, Inc. to Indiana University.

  14. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thingna, Juzar [Institute of Physics, University of Augsburg, Universitätsstrasse 1 D-86135 Augsburg (Germany); Nanosystems Initiative Munich, Schellingrstrasse 4, D-80799 München (Germany); Zhou, Hangbo [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Wang, Jian-Sheng, E-mail: phywjs@nus.edu.sg [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore)

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  15. Break the ice

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Jacky:My sister is mad at me.She refuses(拒绝)to talk to me.What can I do to break the ice?Ella:You can buy her a little gift.Break的意思是"打破",ice是指"冰块"。冰是又冷又硬的东西,作为俗语break the ice是指"打破沉默(僵局)"。Jacky惹妹妹生气,妹妹不理他了,他能通过送小礼物break the ice吗?

  16. Testing cosmological supersymmetry breaking

    CERN Document Server

    Kabat, D; Kabat, Daniel; Rajaraman, Arvind

    2001-01-01

    Banks has proposed a relation between the scale of supersymmetry breaking and the cosmological constant in de Sitter space. His proposal has a natural extension to a general FRW cosmology, in which the supersymmetry breaking scale is related to the Hubble parameter. We study one consequence of such a relation, namely that coupling constants change as the universe evolves. We find that the most straightforward extension of Banks' proposal is disfavored by experimental bounds on variation of the fine structure constant.

  17. Self-Breaking Technicolor

    CERN Document Server

    Martin, S P

    1993-01-01

    We propose a scenario in which the electroweak symmetry is spontaneously broken by an $SU(4)$ technicolor gauge interaction which also manages to break itself completely. The technicolor gauge bosons and technifermions are not confined by the technicolor force, but get large masses. Starting with a single technidoublet, one emerges with a complete standard model family of technifermions after the symmetry breaking is complete. This suggests a broad new avenue for model building. A few variations on the theme are mentioned.

  18. U(1) mediation of flux supersymmetry breaking

    International Nuclear Information System (INIS)

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kaehler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  19. Exo-metabolome of Pseudovibrio sp. FO-BEG1 analyzed by ultra-high resolution mass spectrometry and the effect of phosphate limitation.

    Directory of Open Access Journals (Sweden)

    Stefano Romano

    Full Text Available Oceanic dissolved organic matter (DOM is an assemblage of reduced carbon compounds, which results from biotic and abiotic processes. The biotic processes consist in either release or uptake of specific molecules by marine organisms. Heterotrophic bacteria have been mostly considered to influence the DOM composition by preferential uptake of certain compounds. However, they also secrete a variety of molecules depending on physiological state, environmental and growth conditions, but so far the full set of compounds secreted by these bacteria has never been investigated. In this study, we analyzed the exo-metabolome, metabolites secreted into the environment, of the heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass spectrometry, comparing phosphate limited with phosphate surplus growth conditions. Bacteria belonging to the Pseudovibrio genus have been isolated worldwide, mainly from marine invertebrates and were described as metabolically versatile Alphaproteobacteria. We show that the exo-metabolome is unexpectedly large and diverse, consisting of hundreds of compounds that differ by their molecular formulae. It is characterized by a dynamic recycling of molecules, and it is drastically affected by the physiological state of the strain. Moreover, we show that phosphate limitation greatly influences both the amount and the composition of the secreted molecules. By assigning the detected masses to general chemical categories, we observed that under phosphate surplus conditions the secreted molecules were mainly peptides and highly unsaturated compounds. In contrast, under phosphate limitation the composition of the exo-metabolome changed during bacterial growth, showing an increase in highly unsaturated, phenolic, and polyphenolic compounds. Finally, we annotated the detected masses using multiple metabolite databases. These analyses suggested the presence of several masses analogue to masses of known bioactive

  20. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  1. CP breaking in lattice chiral gauge theories

    International Nuclear Information System (INIS)

    The CP symmetry is not manifestly implemented for the local and doubler-free Ginsparg-Wilson operator in lattice chiral gauge theory. We precisely identify where the effects of this CP breaking appear. We show that they appear in: (I) Overall constant phase of the fermion generating functional. (II) Overall constant coefficient of the fermion generating functional. (III) Fermion propagator appearing in external fermion lines and the propagator connected to Yukawa vertices. The first effect appears from the transformation of the path integral measure and it is absorbed into a suitable definition of the constant phase factor for each topological sector; in this sense there appears no 'CP anomaly'. The second constant arises from the explicit breaking in the action and it is absorbed by the suitable weights with which topological sectors are summed. The last one in the propagator is inherent to this formulation and cannot be avoided by a mere modification of the projection operator, for example, in the framework of the Ginsparg-Wilson operator. This breaking emerges as an (almost) contact term in the propagator when the Higgs field, which is treated perturbatively, has no vacuum expectation value. In the presence of the vacuum expectation value, however, a completely new situation arises and the breaking becomes intrinsically non-local, though this breaking may still be removed in a suitable continuum limit. This non-local CP breaking is expected to persist for a non-perturbative treatment of the Higgs coupling. (author)

  2. Breaking the Waves

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Kirketerp, Anne

    2006-01-01

    The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship...

  3. Model Breaking Points Conceptualized

    Science.gov (United States)

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  4. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation.

    Directory of Open Access Journals (Sweden)

    Christoph W Schinagl

    Full Text Available Fungal electron transport systems (ETS are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS-and in particular the alternative oxidase-in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state, direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat, and high-resolution respirometry (small sample volume and high measuring accuracy. This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (< 5% change in 20 minutes was only possible with glucose limited chemostat mycelium and a direct transfer of a broth sample into the respirometer. Steady state respiration was 29% below its maximum respiratory capacity. Additionally to a rotenone-sensitive complex I and most probably a functioning complex III, the ETS of P. ochrochloron also contained a cyanide-sensitive terminal oxidase (complex IV. Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV-independent of the rate of electron flux. This means that the onset of activity does not depend

  5. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation.

    Science.gov (United States)

    Schinagl, Christoph W; Vrabl, Pamela; Burgstaller, Wolfgang

    2016-01-01

    Fungal electron transport systems (ETS) are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS-and in particular the alternative oxidase-in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state), direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat), and high-resolution respirometry (small sample volume and high measuring accuracy). This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (cyanide-sensitive terminal oxidase (complex IV). Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV-independent of the rate of electron flux. This means that the onset of activity does not depend on a complete saturation or inhibition of the cytochrome pathway. PMID:26771937

  6. Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM

    Science.gov (United States)

    Timonen, Hilkka; Cubison, Mike; Aurela, Minna; Brus, David; Lihavainen, Heikki; Hillamo, Risto; Canagaratna, Manjula; Nekat, Bettina; Weller, Rolf; Worsnop, Douglas; Saarikoski, Sanna

    2016-07-01

    The applicability, methods and limitations of constrained peak fitting on mass spectra of low mass resolving power (m/Δm50 ˜ 500) recorded with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) are explored. Calibration measurements as well as ambient data are used to exemplify the methods that should be applied to maximise data quality and assess confidence in peak-fitting results. Sensitivity analyses and basic peak fit metrics such as normalised ion separation are employed to demonstrate which peak-fitting analyses commonly performed in high-resolution aerosol mass spectrometry are appropriate to perform on spectra of this resolving power. Information on aerosol sulfate, nitrate, sodium chloride, methanesulfonic acid as well as semi-volatile metal species retrieved from these methods is evaluated. The constants in a commonly used formula for the estimation of the mass concentration of hydrocarbon-like organic aerosol may be refined based on peak-fitting results. Finally, application of a recently published parameterisation for the estimation of carbon oxidation state to ToF-ACSM spectra is validated for a range of organic standards and its use demonstrated for ambient urban data.

  7. A case of mydriatic fixed pupil with diabetes mellitus, about limited resolution capacity of computed tomography and twin light reflex (Nozaki)

    International Nuclear Information System (INIS)

    A 56 year old house wife with a ten history of diabetes mellitus was admitted with visual impairment of both eyes. The pupil of the right eye larger than that of the lefteye, and did not react to light. Examination revealed diabetic retinopathy of both eyes with the right dilatedandfixed pupil and ocular movements were not abnormal except convergence. Computed Tomography did not show abnormal findings. It is necessary, however, to keep in mind that normal apperance of CT-scan does not always mean normal conditions, because of it's limited resolution capacity. From clinical signs and symptoms, the mydriatic fixed pupil might be diagnosed as diabetic origin. Thus, despite of outstanding technical advances such as a CT-scan, it should be emphasized that the most important diagnostic procedure is clinical signs, symptoms, accurate history, and clinical examinations. It seems to be a useful procedure that twin light reflex is applied to the fixed pupil with retina or optic nerve involvement as well as direct, consensual light reaction, and swing flashlight test. (author)

  8. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  9. Effective dissipation: breaking time-reversal symmetry

    CERN Document Server

    Brown, Aidan I

    2016-01-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.

  10. Breaking News as Radicalisation

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    The aim of the paper is to make explicit how the different categories are applied in the online newsroom and thus how new categories can be seen as positioning strategies in the form of radicalisations of already existing categories. Thus field theory provides us with tools to analyse how online...... journalists are using the categorisations to create hierarchies within the journalistic field in order to position themselves as specialists in what Tuchman has called developing news, aiming and striving for what today is know as breaking news and the “exclusive scoop,” as the trademark of online journalism...... provides us with the following two research questions: How does the category of breaking news fit into Tuchmans typology related to time, planning and technology? What types of stories are providing journalistic capital and how are online news stories categorised relatively within the journalistic field?...

  11. Experimental Study on Coal-Breaking Pressure for Compressed Air

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on lab model experiments and through the limit analysis, the theoretical formula of calculauoncoal-breaking pressure with compressed air was derived. The experimental result shows that blasting pressure mustexceed 84.0 MPa to break coal with compressive strength of 13.2 MPa. The research provides an important theoretical basis for the design of airshooting mining and industrial tests.

  12. Single sector supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Markus A.; Terning, John

    1999-03-18

    We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses.

  13. Predicting appointment breaking.

    Science.gov (United States)

    Bean, A G; Talaga, J

    1995-01-01

    The goal of physician referral services is to schedule appointments, but if too many patients fail to show up, the value of the service will be compromised. The authors found that appointment breaking can be predicted by the number of days to the scheduled appointment, the doctor's specialty, and the patient's age and gender. They also offer specific suggestions for modifying the marketing mix to reduce the incidence of no-shows. PMID:10142384

  14. Symmetry Breaking in Finite Volume

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan

    2000-01-01

    Spontaneous symmetry breaking is a cooperative phenomenon for systems with infinitely many degrees of freedom and it plays an essential role in quantum field theories. Lattice O(N) model is studied within the Hamiltonian approach using an adiabatic approximation. It is shown that the low-lying spectrum of the system in the broken phase can be understood by using the adiabatic, or Born-Oppenheimer approximation, which turns out to become an expansion in the inverse power of volume. In the infinite volume limit, the symmetry is broken while in the finite volume the slow rotation of the zero-momentum mode restores the symmetry and gives rise to the rotator spectrum, which has been observed in realistic Monte Carlo simulations.

  15. Breaking the Silence

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Many women who suffer from vaginitis have kept silent about their illness because they think it is shameful to have such a disease. The International Women’s Health Coalition (IWHC) has publicized the problem, referring to it as a "culture of silence"inherited from traditional thinking. The coalition has made attempts to improve women’s health conditions by changing people’s misconceptions about the disease. In 1997, under a grant from the American Ford Foundation, the Sichuan Provincial Women’s Federation carried out a study on women’s repro-ductive health, aimed at "breaking the silence."

  16. Symmetries and Symmetry Breaking

    CERN Document Server

    Van Oers, W T H

    2003-01-01

    In understanding the world of matter, the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interactions: the strong, the electromagnetic, the weak, and the gravitational interaction. In this paper comments are made regarding parity violation in hadronic systems, charge symmetry breaking in two nucleon and few nucleon systems, and time-reversal-invariance in hadronic systems.

  17. Breaking the silence

    DEFF Research Database (Denmark)

    Konradsen, Hanne; Kirkevold, Marit; McCallin, Antoinette;

    2012-01-01

    and individual interviews were analyzed using the grounded theory method. The findings revealed that the main concern of the patients was feeling isolated, which was resolved using a process of interactional integration. Interactional integration begins by breaking the silence to enable the progression from......Little is known about the psychosocial effects of facial disfigurement. We present the results of a qualitative study following 15 patients who had been surgically treated for head, neck, or eye cancer over the course of their first postoperative year. Taped nurse-patient conversations...

  18. On mean wind and turbulence profile measurements from ground-based wind lidars:limitations in time and space resolution with continuous wave and pulsed lidar systems

    OpenAIRE

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lid...

  19. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  20. Four Generations: SUSY and SUSY Breaking

    CERN Document Server

    Godbole, Rohini M; Wingerter, Akin

    2009-01-01

    We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. While lack of electroweak symmetry breaking rules out a large part of the parameter space, a small region exists, where the fourth generation stau is tachyonic. General gauge mediation with its broader set of boundary conditions is better suited to accommodate the fourth generation.

  1. A Fourth Chiral Generation And Susy Breaking

    CERN Document Server

    Wingerter, Akin

    2011-01-01

    We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV, i.e. the current experimental bounds and perturbative unification are mutually exclusive. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. Lack of electroweak symmetry breaking rules out a large part of the parameter space, and in the remaining part, the fourth generation stau is tachyonic.

  2. Break the Pattern!

    DEFF Research Database (Denmark)

    Hasse, Cathrine; Trentemøller, Stine

    Break the Pattern! A critical enquiry into three scientific workplace cultures: Hercules, Caretakers and Worker Bees is the third publication of the international three year long project "Understanding Puzzles in the Gendered European Map" (UPGEM). By contrasting empirical findings from academic...... workplaces in the five UPGEM-countries (Denmark, Estonia, Finland, Italy and Poland) we identify three clusters of cultural patterns in physics as culture. We call these Hercules, Caretakers and Worker Bees. We also consider the influence of national cultural historical processes on the scientific culture...... (physics in culture) and discuss how physics as and in culture influence the perception of science, of work and family life, of the interplay between religion and science as well as how physics as culture can either hinder or promote the career of female scientists....

  3. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain...... a better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model...... for a homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...

  4. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  5. Development of emulsion track expansion techniques for optical-microscopy-observation of low-velocity ion tracks with ranges beyond optical resolution limit

    Energy Technology Data Exchange (ETDEWEB)

    Naka, T. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Natsume, M. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)], E-mail: natsume@flab.phys.nagoya-u.ac.jp; Niwa, K.; Hoshino, K.; Nakamura, M.; Nakano, T.; Sato, O. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2007-11-01

    We succeeded to observe tracks of low-velocity Kr ions, having originally ranges below optical resolution, in a fine grain nuclear emulsion with an optical microscope after expanding the emulsion along the incident direction. This opens up the possibility of tracking low-velocity nuclear recoils from massive dark matter particles using optical microscope scanning systems.

  6. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NARCIS (Netherlands)

    Visser, Ruurd; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-01-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a

  7. Break location effects on PWR small break LOCA phenomena

    International Nuclear Information System (INIS)

    The report presents experimental results of a small lower plenum break test of SB-PV-01 conducted at the large-Scale Test Facility (LSTF) of the Rig-of-Safety Assessment (ROSA)-IV program. This test simulates a loss-of-coolant accident (LOCA) caused by instrument tubes break (break area corresponds to 0.5% of the cold leg flow area) in a Westinghouse-type pressurized water reactor (PWR) assuming both manual actuation for all of the high pressure injection (HPI) systems and failure of the auxiliary feedwater systems. The report clarifies long-term system responses, especially the core cooling conditions related to the primary mass inventory. Also it clarifies break location effects on small break LOCA phenomena by comparing other five similar LOCA tests with break locations at cold leg, hot leg, upper head, pressurizer top (TMI-type) and SG U-tubes. It is coucluded that the lower plenum break is the severest on core heatup due to the highest break flow rate and the least primary mass recovery after the ECCS among the six tests. (author)

  8. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?

    Science.gov (United States)

    Cramer, Bradley D.; Loydell, David K.; Samtleben, Christian; Munnecke, Axel; Kaljo, Dimitri; Mannik, Peep; Martma, Tonu; Jeppsson, Lennart; Kleffner, Mark A.; Barrick, James E.; Johnson, Craig A.; Emsbo, Poul; Joachimski, Michael M.; Bickert, Torsten; Saltzman, Matthew R.

    2010-01-01

    The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k.y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m.y.), and chronostratigraphic control better than ??1 m.y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (??13Ccarb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llando very through middle Wenlock (Telychian-Sheinwoodian, ~436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e.g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable. ?? 2010 Geological Society of America.

  9. Breaking Barriers in Polymer Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL; Duty, Chad E [ORNL; Post, Brian K [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Kunc, Vlastimil [ORNL; Peter, William H [ORNL; Blue, Craig A [ORNL

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  10. Entanglement–breaking indices

    Energy Technology Data Exchange (ETDEWEB)

    Lami, L. [Scuola Normale Superiore, I-56126 Pisa (Italy); Giovannetti, V. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa (Italy)

    2015-09-15

    We study a set of new functionals (called entanglement–breaking indices) which characterize how many local iterations of a given (local) quantum channel are needed in order to completely destroy the entanglement between the system of interest over which the transformation is defined and an external ancilla. The possibility of contrasting the noisy effects introduced by the channel iterations via the action of intermediate (filtering) transformations is analyzed. We provide some examples in which our functionals can be exactly calculated. The differences between unitary and non-unitary filtering operations are analyzed showing that, at least for systems of dimension d larger than or equal to 3, the non-unitary choice is preferable (the gap between the performances of the two cases being divergent in some cases). For d = 2 (qubit case), on the contrary, no evidences of the presence of such gap is revealed: we conjecture that for this special case unitary filtering transformations are optimal. The scenario in which more general filtering protocols are allowed is also discussed in some detail. The case of a depolarizing noise acting on a two–qubit system is exactly solved in a general case.

  11. Kinematic dynamo, supersymmetry breaking, and chaos

    Science.gov (United States)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  12. Cosmology of biased discrete symmetry breaking

    Science.gov (United States)

    Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.

  13. Active and break spells of the Indian summer monsoon

    Indian Academy of Sciences (India)

    M Rajeevan; Sulochana Gadgil; Jyoti Bhate

    2010-06-01

    In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951–2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than −1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall. We find that breaks tend to have a longer life-span than active spells. While, almost 80% of the active spells lasted 3–4 days, only 40% of the break spells were of such short duration. A small fraction (9%) of active spells and 32% of break spells lasted for a week or longer. While active events occurred almost every year, not a single break occurred in 26% of the years considered. On an average, there are 7 days of active and break events from July through August. There are no significant trends in either the days of active or break events. We have shown that there is a major difference between weak spells and long intense breaks. While weak spells are characterized by weak moist convective regimes, long intense break events have a heat trough type circulation which is similar to the circulation over the Indian subcontinent before the onset of the monsoon. The space-time evolution of the rainfall composite patterns suggests that the revival from breaks occurs primarily from northward propagations of the convective cloud zone. There are important differences between the spatial patterns of the active/break spells and those characteristic of interannual variation, particularly those associated with the link to ENSO. Hence, the

  14. Supersymmetry Breaking in Warped Geometry

    OpenAIRE

    Choi, Kiwoon; Kim, Do Young; Kim, Ian-Woo; Kobayashi, Tatsuo

    2003-01-01

    We examine the soft supersymmetry breaking parameters in supersymmetric theories on a slice of AdS_5 which generate the hierarchical Yukawa couplings by dynamically localizing the bulk matter fields in extra dimension. Such models can be regarded as the AdS dual of the recently studied 4-dimensional models which contain a supersymmetric CFT to generate the hierarchical Yukawa couplings. In such models, if supersymmetry breaking is mediated by the bulk radion superfield and/or some brane chira...

  15. Modeling of the eddy viscosity by breaking waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing, heat and gases exchange across air-sea interface. The energy loss from wave breaking and the bubble plume penetration depth are estimated. As a consequence, the vertical distribution of the turbulent kinetic energy (TKE), the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided. It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface. High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than υwl(=κu *wz), the value predicted for the wall layer scaling close to the surface, where u *w is the friction velocity in water, κ with 0.4 is the von Kármán constant, and z is the water depth, and the strength of the eddy viscosity depends both on wind speed and sea state, and decays rapidly through the depth. This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer, well above the classical values expected from the similarity theory. Deeper down, however, the effects of wave breaking on the vertical mixing become less important.

  16. The Beam Break-Up Numerical Simulator

    International Nuclear Information System (INIS)

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs

  17. The Beam Break-Up Numerical Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  18. Rapid Linguistic Ambiguity Resolution in Young Children with Autism Spectrum Disorder: Eye Tracking Evidence for the Limits of Weak Central Coherence.

    Science.gov (United States)

    Hahn, Noemi; Snedeker, Jesse; Rabagliati, Hugh

    2015-12-01

    Individuals with autism spectrum disorders (ASD) have often been reported to have difficulty integrating information into its broader context, which has motivated the Weak Central Coherence theory of ASD. In the linguistic domain, evidence for this difficulty comes from reports of impaired use of linguistic context to resolve ambiguous words. However, recent work has suggested that impaired use of linguistic context may not be characteristic of ASD, and is instead better explained by co-occurring language impairments. Here, we provide a strong test of these claims, using the visual world eye tracking paradigm to examine the online mechanisms by which children with autism resolve linguistic ambiguity. To address concerns about both language impairments and compensatory strategies, we used a sample whose verbal skills were strong and whose average age (7; 6) was lower than previous work on lexical ambiguity resolution in ASD. Participants (40 with autism and 40 controls) heard sentences with ambiguous words in contexts that either strongly supported one reading or were consistent with both (John fed/saw the bat). We measured activation of the unintended meaning through implicit semantic priming of an associate (looks to a depicted baseball glove). Contrary to the predictions of weak central coherence, children with ASD, like controls, quickly used context to resolve ambiguity, selecting appropriate meanings within a second. We discuss how these results constrain the generality of weak central coherence. PMID:25820816

  19. Rapid Linguistic Ambiguity Resolution in Young Children with Autism Spectrum Disorder: Eye Tracking Evidence for the Limits of Weak Central Coherence.

    Science.gov (United States)

    Hahn, Noemi; Snedeker, Jesse; Rabagliati, Hugh

    2015-12-01

    Individuals with autism spectrum disorders (ASD) have often been reported to have difficulty integrating information into its broader context, which has motivated the Weak Central Coherence theory of ASD. In the linguistic domain, evidence for this difficulty comes from reports of impaired use of linguistic context to resolve ambiguous words. However, recent work has suggested that impaired use of linguistic context may not be characteristic of ASD, and is instead better explained by co-occurring language impairments. Here, we provide a strong test of these claims, using the visual world eye tracking paradigm to examine the online mechanisms by which children with autism resolve linguistic ambiguity. To address concerns about both language impairments and compensatory strategies, we used a sample whose verbal skills were strong and whose average age (7; 6) was lower than previous work on lexical ambiguity resolution in ASD. Participants (40 with autism and 40 controls) heard sentences with ambiguous words in contexts that either strongly supported one reading or were consistent with both (John fed/saw the bat). We measured activation of the unintended meaning through implicit semantic priming of an associate (looks to a depicted baseball glove). Contrary to the predictions of weak central coherence, children with ASD, like controls, quickly used context to resolve ambiguity, selecting appropriate meanings within a second. We discuss how these results constrain the generality of weak central coherence.

  20. The resolution of aneuploid DNA stem lines by flow cytometry: limitations imposed by the coefficient of variation and the percentage of aneuploid nuclei.

    Science.gov (United States)

    Cusick, E L; Milton, J I; Ewen, S W

    1990-04-01

    Factors important in the resolution of cell sub-populations with differing DNA contents were investigated using an EPICS C flow cytometer. Software is available for the EPICS C which permits data from any two histograms to be superimposed or added together before display. Samples of fresh and archival thyroid tissue, stained with propidium iodide, were analysed on the flow cytometer and the peak channel number noted. The photomultiplier (PMT) voltage was increased and the sample analysed again producing a second histogram with a higher peak channel number. The two histograms were added together to simulate a cell suspension with two sub-populations with a different DNA content. By systematically altering the PMT voltage and the number of nuclei included in each analysis, it was possible to examine the importance of DNA index and the percentage of tumor cells with an aneuploid DNA content for both fresh and paraffin-embedded thyroid nuclei. The crucial importance of achieving a low coefficient of variation (CV) was demonstrated and consequently the reservations that pertain when archival material is studied, particularly in tumours where DNA aneuploidy is frequently expressed with a low DNA index.

  1. Experimental investigation of two oil dispersion pathways by breaking waves

    Science.gov (United States)

    Li, Cheng; Katz, Joseph

    2014-11-01

    This experimental study focuses on generation and size distribution of airborne and subsurface oil droplets as breaking surface waves interact with a crude oil slick (MC252 surrogate). Experiments in a specialized wave tank investigate the effects of wave height and wave properties (e.g. spilling vs. plunging), as well as drastically reducing the oil-water interfacial tension by orders of magnitude by introducing dispersant (Coexist 9500-A). This dispersant is applied at varying dispersant-to-oil ratios either by premixing or surface spraying, the latter consistent with typical application. The data include high-speed visualizations of processes affecting the entrainment of subsurface oil and bubbles as well as airborne aerosols. High-speed digital holographic cinematography is employed to track the droplet trajectories, and quantify the droplet size distributions above and below the surface. Introduction of dispersants drastically reduces the size of subsurface droplets to micron and even submicron levels. Ahead of the wave, the 25 μm (our present resolution limit) to 2 mm airborne droplet trajectories are aligned with the wave direction. Behind the wave, these droplets reverse their direction, presumably due to the airflow above the wave. Supported by Gulf of Mexico Research Initiative (GoMRI).

  2. High-resolution central difference scheme for the shallow water equations

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A two-dimensional nonoscillatory central difference scheme was extended to the shallow water equations. A high-resolution numerical method for solving the shallow water equations was presented. In order to prevent oscillation, the nonlinear limiter is employed to approximate the discrete slopes. The main advantage of the presented method is simplicity comparable with the upwind schemes. This method does not require Riemann solvers or some form of flux difference splitting methods. Furthermore, the discrete derivatives of flux can be approximated by the component-wise approach and thus the computation of Jacobian can be avoided. The method retains high resolution and high accuracy similar to the upwind results. It is applied to simulating several tests, including circular dam-break problem, shock focusing problem and partial dam-break problem. The results are in good agreement with the numerical results obtained by other methods. The simulated results also demonstrate that the presented method is stable and efficient.

  3. A Comparison of Measured and Predicted Wave-Impact Pressures from Breaking and Non-breaking Waves

    CERN Document Server

    Fullerton, Anne M; Brewton, Susan; Brucker, Kyle A; O'Shea, Thomas T; Dommermuth, Douglas G

    2014-01-01

    Impact loads from waves on vessels and coastal structures are complex and may involve wave breaking, which has made these loads difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and nonbreaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident nonbreaking and breaking waves on one face of a cube. This experimental effort was sponsored by the Office of Naval Research (ONR), under the Dynamics of Interacting Platforms Program, Program Manager Dr. Ron Joslin. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. Additionally, a limited number of runs were made at low forward speeds, ranging from about 0.5 to 2...

  4. Symmetry breaking in molecular ferroelectrics.

    Science.gov (United States)

    Shi, Ping-Ping; Tang, Yuan-Yuan; Li, Peng-Fei; Liao, Wei-Qiang; Wang, Zhong-Xia; Ye, Qiong; Xiong, Ren-Gen

    2016-07-11

    Ferroelectrics are inseparable from symmetry breaking. Accompanying the paraelectric-to-ferroelectric phase transition, the paraelectric phase adopting one of the 32 crystallographic point groups is broken into subgroups belonging to one of the 10 ferroelectric point groups, i.e. C1, C2, C1h, C2v, C4, C4v, C3, C3v, C6 and C6v. The symmetry breaking is captured by the order parameter known as spontaneous polarization, whose switching under an external electric field results in a typical ferroelectric hysteresis loop. In addition, the responses of spontaneous polarization to other external excitations are related to a number of physical effects such as second-harmonic generation, piezoelectricity, pyroelectricity and dielectric properties. Based on these, this review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferroelectrics. PMID:27051889

  5. Probabilistic Models for the Probability of Wave Breaking and Whitecap Coverage Based on Kinematic Breaking Criterion

    Institute of Scientific and Technical Information of China (English)

    郑桂珍; 徐德伦

    2004-01-01

    More and more researches show that neither the critical downward acceleration nor the critical slope of water waves is a universal constant. On the contrary, they vary with particular wave conditions. This fact renders the models either for the probability of wave breaking B or for the whitecap coverage W based on these criteria difficult to apply. In this paper and the one which follows we seek to develop models for the prediction of both B and W based on the kinematical criterion. First, several joint probabilistic distribution functions (PDFs) of wave characteristics are derived, based on which the breaking properties B and W are estimated. The estimation is made on the assumption that a wave breaks if the horizontal velocity of water particles at its crest exceeds the local wave celerity, and whitecapping occurs in regions of fluid where water particles travel faster than the waves. The consequent B and W depend on wave spectral moments of orders 0 to 4.Then the JONSWAP spectrum is used to represent the fetch-limited sea waves in deep water, so as to relate the probability of wave breaking and the whitecap coverage with wind parameters. To this end, the time-averaging technique proposed by Glazman (1986) is applied to the estimation of the spectral moments involved, and furthermore, the theoretical models are compared with available observations collected from published literature. From the comparison, the averaging time scale is determined. The final models show that the probability of wave breaking as well as the whitecap coverage depends on the dimensionless fetch. The agreement between these models and the database is reasonable.

  6. Eddy current imaging. Limits of the born approximation and advantages of an exact solution to the inverse problem; Imagerie par courants de Foucault. Limites de l`approximation de Born et interet d`une resolution exacte du probleme inverse

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, E.; Zorgati, R.

    1995-12-31

    Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an `optimization` type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append.

  7. Validation of a Poisson-distributed limiting dilution assay (LDA) for a rapid and accurate resolution of multiclonal infections in natural Trypanosoma cruzi populations.

    Science.gov (United States)

    Ramírez, Juan David; Herrera, Claudia; Bogotá, Yizeth; Duque, María Clara; Suárez-Rivillas, Alejandro; Guhl, Felipe

    2013-02-15

    Trypanosoma cruzi is the causative agent of American trypanosomiasis, a complex zoonotic disease that affects more than 10million people in the Americas. Strains of this parasite possess a significant amount of genetic variability and hence can be divided into at least six discrete typing units (DTUs). The life cycle of this protist suggests that multiclonal infections may emerge due to the likelihood of contact of triatomine insects with more than 100 mammal species. To date, there have been a few studies on but no consensus regarding standardised methodologies to identify multiclonal infections caused by this parasite. Hence, the aim of this study was to develop and validate a limiting dilution assay (LDA) to identify multiclonal infections in T. cruzi populations by comparing the feasibility and reliability of this method with the widely applied solid phase blood agar (SPBA) methodology. We cloned reference strains belonging to three independent genotypes (TcI, TcII, and TcIV) and mixed infections (TcI+TcII) using LDA and SPBA; the comparison was conducted by calculating the feasibility and reliability of the methods employed. Additionally, we implemented LDA in strains recently isolated from Homo sapiens, Rhodnius prolixus, Triatoma venosa, Panstrongylus geniculatus, Tamandua tetradactyla, Rattus rattus, Didelphis marsupialis and Dasypus novemcinctus, with the aim of resolving multiclonal infections using molecular characterization employing SL-IR (spliced leader intergenic region of mini-exon gene), the 24Sα rDNA gene and microsatellite loci. The results reported herein demonstrate that LDA is an optimal methodology to distinguish T. cruzi subpopulations based on microsatellite markers by showing the absence of multiple peaks within a single locus. Conversely, SPBA showed patterns of multiple peaks within a single locus suggesting multiclonal events. The biological consequences of these results and the debate between multiclonality and aneuploidy are

  8. Validation of a Poisson-distributed limiting dilution assay (LDA) for a rapid and accurate resolution of multiclonal infections in natural Trypanosoma cruzi populations.

    Science.gov (United States)

    Ramírez, Juan David; Herrera, Claudia; Bogotá, Yizeth; Duque, María Clara; Suárez-Rivillas, Alejandro; Guhl, Felipe

    2013-02-15

    Trypanosoma cruzi is the causative agent of American trypanosomiasis, a complex zoonotic disease that affects more than 10million people in the Americas. Strains of this parasite possess a significant amount of genetic variability and hence can be divided into at least six discrete typing units (DTUs). The life cycle of this protist suggests that multiclonal infections may emerge due to the likelihood of contact of triatomine insects with more than 100 mammal species. To date, there have been a few studies on but no consensus regarding standardised methodologies to identify multiclonal infections caused by this parasite. Hence, the aim of this study was to develop and validate a limiting dilution assay (LDA) to identify multiclonal infections in T. cruzi populations by comparing the feasibility and reliability of this method with the widely applied solid phase blood agar (SPBA) methodology. We cloned reference strains belonging to three independent genotypes (TcI, TcII, and TcIV) and mixed infections (TcI+TcII) using LDA and SPBA; the comparison was conducted by calculating the feasibility and reliability of the methods employed. Additionally, we implemented LDA in strains recently isolated from Homo sapiens, Rhodnius prolixus, Triatoma venosa, Panstrongylus geniculatus, Tamandua tetradactyla, Rattus rattus, Didelphis marsupialis and Dasypus novemcinctus, with the aim of resolving multiclonal infections using molecular characterization employing SL-IR (spliced leader intergenic region of mini-exon gene), the 24Sα rDNA gene and microsatellite loci. The results reported herein demonstrate that LDA is an optimal methodology to distinguish T. cruzi subpopulations based on microsatellite markers by showing the absence of multiple peaks within a single locus. Conversely, SPBA showed patterns of multiple peaks within a single locus suggesting multiclonal events. The biological consequences of these results and the debate between multiclonality and aneuploidy are

  9. Give me a better break: Choosing workday break activities to maximize resource recovery.

    Science.gov (United States)

    Hunter, Emily M; Wu, Cindy

    2016-02-01

    Surprisingly little research investigates employee breaks at work, and even less research provides prescriptive suggestions for better workday breaks in terms of when, where, and how break activities are most beneficial. Based on the effort-recovery model and using experience sampling methodology, we examined the characteristics of employee workday breaks with 95 employees across 5 workdays. In addition, we examined resources as a mediator between break characteristics and well-being. Multilevel analysis results indicated that activities that were preferred and earlier in the work shift related to more resource recovery following the break. We also found that resources mediated the influence of preferred break activities and time of break on health symptoms and that resource recovery benefited person-level outcomes of emotional exhaustion, job satisfaction, and organizational citizenship behavior. Finally, break length interacted with the number of breaks per day such that longer breaks and frequent short breaks were associated with more resources than infrequent short breaks. PMID:26375961

  10. Cosmic acceleration from Abelian symmetry breaking

    International Nuclear Information System (INIS)

    We discuss a consistent theory for a self-interacting vector field, breaking an Abelian symmetry in such a way to obtain an interesting behavior for its longitudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal mode is controlled by Galileon interactions. The full theory away from the decoupling limit does not propagate ghost modes, and can be investigated in regimes where non-linearities become important. When coupled to gravity, this theory provides a candidate for dark energy, since it admits de Sitter cosmological solutions characterized by a technically natural value for the Hubble parameter. We also consider the homogeneous evolution when, besides the vector, additional matter in the form of perfect fluids is included. We find that the vector can have an important role in characterizing the universe expansion

  11. An Analysis of Break,Break,Break Based on the Stylistic Theory

    Institute of Scientific and Technical Information of China (English)

    李瑶

    2014-01-01

    Break,Break,Break is a poem by Alfred Lord Tennyson, the Poet Laureate during the Queen Victoria's reign. This exquisite little poem is wel known for the poet’s grief-stricken feelings and heart-broken emotions over the premature death of his best friend, Arthur Henry Hal am. Most of the previous studies on this poem focus on the emotional level to consider it as an elegy, expressing sorrow and lamentation for the death of a particular person. However, in order to have a deep understanding in general, this paper analyzes the poem based on the stylistic theory, concerning on the phonological level and the grammatical level. It aims at helping the readers to cultivate a sense of appropriateness, to sharpen the understanding and appreciation of literary works and to achieve adaptation in translation.

  12. Inflationary implications of supersymmetry breaking

    NARCIS (Netherlands)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne

    2013-01-01

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll paramet

  13. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  14. How do accretion discs break?

    Science.gov (United States)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  15. Sediment transport under breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan

    2000-01-01

    generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...

  16. Small Break Air Ingress Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Soo Kim

    2011-09-01

    The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

  17. Code breaking in the pacific

    CERN Document Server

    Donovan, Peter

    2014-01-01

    Covers the historical context and the evolution of the technically complex Allied Signals Intelligence (Sigint) activity against Japan from 1920 to 1945 Describes, explains and analyzes the code breaking techniques developed during the war in the Pacific Exposes the blunders (in code construction and use) made by the Japanese Navy that led to significant US Naval victories

  18. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  19. Physical Activity Breaks and Facilities in US Secondary Schools

    Science.gov (United States)

    Hood, Nancy E.; Colabianchi, Natalie; Terry-McElrath, Yvonne M.; O'Malley, Patrick M.; Johnston, Lloyd D.

    2014-01-01

    Background: Research on physical activity breaks and facilities (indoor and outdoor) in secondary schools is relatively limited. Methods: School administrators and students in nationally representative samples of 8th (middle school) and 10th/12th grade (high school) students were surveyed annually from 2008-2009 to 2011-2012. School administrators…

  20. Checkpoint adaptation and recovery: back with Polo after the break

    NARCIS (Netherlands)

    Vugt, M.A.T.M. van; Medema, R.H.

    2004-01-01

    S. cerevisiae cells that are unable to repair a double strand break ultimately escape the DNA damage checkpoint arrest and enter mitosis. This process called 'adaptation' depends on functional Cdc5, a Polo-like kinase, and was long thought to be limited to single-cell organisms. However, the recent

  1. Checkpoint adaptation and recovery : back with Polo after the break

    NARCIS (Netherlands)

    van Vugt, Marcel A T M; Medema, René H

    2004-01-01

    S. cerevisiae cells that are unable to repair a double strand break ultimately escape the DNA damage checkpoint arrest and enter mitosis. This process called 'adaptation' depends on functional Cdc5, a Polo-like kinase, and was long thought to be limited to single-cell organisms. However, the recent

  2. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  3. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization; Limitacoes da resolucao espacial intrinseca devido as diferencas entre a posicao da emissao do positron e a deteccao da localizacao de aniquilacao

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Pedro; Malano, Francisco; Valente, Mauro, E-mail: valente@famaf.unc.edu.ar [Universidad Nacional de Cordoba, Cordoba (Argentina). Fac. de Matematica, Astronomia y Fisica (FaMAF)

    2012-07-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  4. Quantum phase transitions about parity breaking in matrix product systems

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing-Min

    2011-01-01

    According to our scheme to construct quantum phase transitions (QPTs) in spin chain systems with matrix product ground states, we first successfully combine matrix product state (MPS) QPTs with spontaneous symmetry breaking. For a concrete model, we take into account a kind of MPS QPTs accompanied by spontaneous parity breaking, though for either side of the critical point the GS is typically unique, and show that the kind of MPS QPTs occur only in the thermodynamic limit and are accompanied by the appearance of singularities, diverging correlation length, vanishing energy gap and the entanglement entropy of a half-infinite chain not only staying finite but also whose first derivative discontinuous.

  5. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  6. Renormalizable theories with symmetry breaking

    CERN Document Server

    Becchi, Carlo M

    2016-01-01

    The description of symmetry breaking proposed by K. Symanzik within the framework of renormalizable theories is generalized from the geometrical point of view. For an arbitrary compact Lie group, a soft breaking of arbitrary covariance, and an arbitrary field multiplet, the expected integrated Ward identities are shown to hold to all orders of renormalized perturbation theory provided the Lagrangian is suitably chosen. The corresponding local Ward identity which provides the Lagrangian version of current algebra through the coupling to an external, classical, Yang-Mills field, is then proved to hold up to the classical Adler-Bardeen anomaly whose general form is written down. The BPHZ renormalization scheme is used throughout in such a way that the algebraic structure analyzed in the present context may serve as an introduction to the study of fully quantized gauge theories.

  7. Breaking GSM with rainbow Tables

    CERN Document Server

    Meyer, Steven

    2011-01-01

    Since 1998 the GSM security has been academically broken but no real attack has ever been done until in 2008 when two engineers of Pico Computing (FPGA manufacture) revealed that they could break the GSM encryption in 30 seconds with 200'000$ hardware and precomputed rainbow tables. Since then the hardware was either available for rich people only or was confiscated by government agencies. So Chris Paget and Karsten Nohl decided to react and do the same thing but in a distributed open source form (on torrent). This way everybody could "enjoy" breaking GSM security and operators will be forced to upgrade the GSM protocol that is being used by more than 4 billion users and that is more than 20 years old.

  8. Breaking through the tranfer tunnel

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  9. 16th Edition Breaks New Ground

    Institute of Scientific and Technical Information of China (English)

    Zhao Fei

    2010-01-01

    @@ Breaking new ground,Intertextile Shanghai Apparel Fabrics,successfully closed its doors on October 22nd,2010at the Shanghai New International Exhibition Centre,attracting a record breaking,more than 57,000 buyers.

  10. Spontaneous Breaking of the Quantum Superposition

    OpenAIRE

    Pankovic, Vladan; Predojevic, Milan

    2007-01-01

    In this work spontaneous (non-dynamical) breaking (effective hiding) of the unitary quantum mechanical dynamical symmetry (superposition) is considered. It represents an especial but very interesting case of the general formalism of the spontaneous symmetry breaking (effective hiding). Conceptual analogies with spontaneous breaking of the gauge symmetry in Weinberg-Sallam's electro-weak interaction are pointed out. Also, consequences of the spontaneous superposition breaking in the measuremen...

  11. Non-minimal scalar multiplets, supersymmetry breaking and dualities

    CERN Document Server

    Farakos, Fotis; Kočí, Pavel; von Unge, Rikard

    2015-01-01

    We study supersymmetry breaking in theories with non-minimal multiplets (such as the complex linear or CNM multiplets), by using superspace higher derivative terms which give rise to new supersymmetry breaking vacuum solutions on top of the standard supersymmetric vacuum. We illustrate the decoupling of the additional massive sectors inside the complex linear and the CNM multiplets and show that only the Goldstino sector is left in the low energy limit. We also discuss the duality between non-minimal scalar multiplets and chiral multiplets in the presence of superspace higher derivatives. From the superspace Noether procedure we calculate the supercurrents, and we show that in the supersymmetry breaking vacuum the chiral superfield X which enters the Ferrara-Zumino supercurrent conservation equation does indeed flow in the IR to the chiral constrained Goldstino superfield. We also provide a universal description of the Goldstino sector in terms of the Samuel-Wess superfield.

  12. Massive photons from Super and Lorentz symmetry breaking

    CERN Document Server

    Bonetti, Luca; Helayël-Neto, José A; Spallicci, Alessandro D A M

    2016-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to {observable} imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive and gauge invariant Carroll-Field-Jackiw photon term in the Lagrangian and show that the mass is proportional to the breaking vector. The latter is estimated by ground measurements and leads to a photon mass upper limit of $10^{-19}$ eV or $2 \\times 10^{-55}$ kg and thereby to a potentially measurable delay at low radio frequencies.

  13. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  14. Microsphere Super-resolution Imaging

    OpenAIRE

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) sampl...

  15. BREAKING WAVE FORCES ON VERTICAL CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The breaking wave forces on vertical cylinders in shallow waters were studied by means of experimental methods. The results indicate that the breaking wave pressure is distributed exponentially with respect to water depth. An experimental formula was given using the test data. Compared with test data, the calculated breaking wave forces are in good agreement with the test data.

  16. Electroweak symmetry breaking at photon colliders

    International Nuclear Information System (INIS)

    The electroweak-symmetry-breaking sector of the standard model can be weakly-coupled or can be strongly-coupled, which is characterized by some kinds of strong interaction among the Goldstone bosons of the electroweak-symmetry-breaking sector. In this paper, we summarize an investigation of probing the strong electroweak-symmetry-breaking effects at photon colliders. ((orig.))

  17. Hadron physics and dynamical chiral symmetry breaking

    CERN Document Server

    Chang, Lei; Wilson, David J

    2012-01-01

    Physics is an experimental science; and a constructive feedback between theory and extant and forthcoming experiments is necessary if an understanding of nonperturbative QCD is to be achieved. The Dyson-Schwinger equations connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the empirical content of strong QCD. We illustrate these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the self-limiting magnitudes of such moments and pion-loop contributions to the gap equation; deep inelastic scattering; the spectra of mesons and baryons; the critical role played by hadron-hadron interactions in producing these spectra; and nucleon elastic and transition form factors.

  18. 'Tuning' for high resolution

    International Nuclear Information System (INIS)

    A review is given of some 'tuning' methods where the goal is to optimise energy resolution of particle spectra in two-body reactions. With a system consisting of an accelerator, beam analyser, beam transport system and magnetic spectrograph, its potential for high resolution, its limitations and the possibilities of optimising the resolution are investigated. The physics of matching to the spectrograph is considered, adjustments and diagnostics with the spectrograph at 00 are discussed and some on-line tuning methods are examined. (U.K.)

  19. Surface tension effects in wave breaking

    Science.gov (United States)

    Deike, Luc; Melville, W. K.; Popinet, Stephane

    2014-11-01

    We present a numerical study of wave breaking by solving the full Navier-Stokes equations for two-phase air-water flows using the solver Gerris. We describe a parametric study of the influence of capillary effects on wave breaking using two-dimensional simulations. The onset of wave breaking as a function of the Bond number, Bo, and the initial wave steepness S is determined and a phase diagram in terms of (S,Bo) is presented that distinguishes between non-breaking gravity waves, parasitic capillaries on a gravity wave, spilling breakers and plunging breakers. The wave energy dissipation is computed for each wave regime and is found to be in good agreement with experimental results for breaking waves. Moreover, the enhanced dissipation just by parasitic capillaries is comparable to the dissipation due to breaking. Extending the simulations to three dimensions permits studies of the generation and statistics of bubbles and spray during breaking.

  20. Directional excitation without breaking reciprocity

    Science.gov (United States)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  1. History of electroweak symmetry breaking

    CERN Document Server

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  2. Leaders break ground for INFINITY

    Science.gov (United States)

    2008-01-01

    Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.

  3. Spontaneous Breaking of Flavor Symmetry

    CERN Document Server

    Törnqvist, N A

    1996-01-01

    It is shown that part of the quark masses of the standard model can be generated spontaneously within the strong interactions of QCD. After the breaking of U(Nf) x U(Nf) symmetry by the vacuum, also the resulting flavor symmetric, degenerate meson mass spectrum is shown to be unstable with respect to quantum loops, for rather general models. For a C-degenerate meson spectrum the stable mass spectrum obeys the Okubo-Zweig-Iizuka rule and the approximateequal spacing rule.

  4. Lateral and axial resolutions of an angle-deviation microscope for different numerical apertures: experimental results

    Science.gov (United States)

    Chiu, Ming-Hung; Lai, Chin-Fa; Tan, Chen-Tai; Lin, Yi-Zhi

    2011-03-01

    This paper presents a study of the lateral and axial resolutions of a transmission laser-scanning angle-deviation microscope (TADM) with different numerical aperture (NA) values. The TADM is based on geometric optics and surface plasmon resonance principles. The surface height is proportional to the phase difference between two marginal rays of the test beam, which is passed through the test medium. We used common-path heterodyne interferometry to measure the phase difference in real time, and used a personal computer to calculate and plot the surface profile. The experimental results showed that the best lateral and axial resolutions for NA = 0.41 were 0.5 μm and 3 nm, respectively, and the lateral resolution breaks through the diffraction limits.

  5. Improvement spatial resolution of frequency modulated continuous wave laser ranging system by splicing equal optical frequency interval sampled signal

    Science.gov (United States)

    Shi, Guang; Zhang, Fumin; Qu, Xinghua

    2015-02-01

    A dual interferometry FMCW laser ranging system is presented. The auxiliary interferometer for generating the clock pulses at equally spaced optical frequencies is incorporated into the main interferometer to simplify the system configuration and to compensate the tuning linearity of the laser source. The need of widely tunable laser limits the practical application of the FMCW laser ranging for precision industrial measurement. Splicing sampled signal method is proposed to break though the tuning range of the laser source limitation against the special resolution. In the experiments, 50 μm range resolution at 8.7 m is demonstrated, and this resolution is maintained over the entire measuring range. The measuring range depending on the power and coherence length of the source can reach more than 20 m. The system structure is simple, and the requirement on the tuning range of laser source is reduced in this system.

  6. Boundary breaking for interdisciplinary learning

    Directory of Open Access Journals (Sweden)

    Adi Kidron

    2015-10-01

    Full Text Available The purpose of this work is to contribute to the body of knowledge on processesby which students develop interdisciplinary understanding of contents, as well as to suggest technology-enhanced means for supporting them in these processes in the context of higher education. In doing so, we suggest a rethinking of three traditional practices that tend to characterise typical higher education instruction: (1 compartmentalisation of disciplines; (2 traditional pedagogy; and (3 traditional hierarchies based on levels of expertise. Our high-level conjecture was that meaningful dialogue with peers and experts supports both the deepening of ideas in one knowledge domain and the formation of connections between ideas from several domains, both of which are required for the development of interdisciplinary understanding. We developed the Boundary Breaking for Interdisciplinary Learning (BBIL model, which harnesses technology to break boundaries between disciplines, learners and organisational levels of hierarchy. Findings indicate that 36 undergraduate students who participated in an interdisciplinary online course that implemented the BBIL model have significantly improved their interdisciplinary understanding of the course contents. This study illustrates how innovative use of available, free and low-cost technology can produce a ‘positive disruption’ in higher education instruction.

  7. How often precipitation records break?

    Science.gov (United States)

    Papalexiou, Simon Michael; Oikonomou, Maria; Floutsakou, Athina; Bessas, Nikolaos; Mamassis, Nikos

    2016-04-01

    How often precipitation records break? Are there any factors that determine the average time needed for the next maximum to occur? In order to investigate these simple questions we use several hundreds of daily precipitation records (more than 100 years long each) and we study the time intervals between each successive maximum precipitation value. We investigate if the record breaking time interval is related (a) to the autocorrelation structure, (b) to probability dry, and (c) to the tail of the marginal distribution. For the last, we first, evaluate which type of tail is better fitted by choosing among three general types of tails corresponding to the distributions Pareto, Lognormal and Weibull; and second, we assess the heaviness of the tail based on the estimated shape parameter. The performance of each tail is evaluated in terms of return period values, i.e., we compare the empirical return periods of precipitation values above a threshold with the predicted ones by each of the three types of fitted tails.

  8. Improved single sector supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Markus A.; Terning, John

    1998-12-09

    Building on recent work by N. Arkani-Hamed and the present authors, we construct realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single strongly-coupled sector. The most important improvement compared to earlier models is that the second-generation composite states correspond to dimension-2 ''meson'' operators in the ultraviolet. This leads to a higher scale for flavor physics, and gives a completely natural suppression of flavor-changing neutral currents. We also construct models in which the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. These models provide an interesting and viable alternative to gravity- and gauge-mediated models. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation squark and slepton masses. We also analyze large classes of models that give rise to both compositeness and supersymmetry breaking, based on gauge theories with confining, fixed-point, or free-magnetic dynamics.

  9. Strictly Anomaly Mediated Supersymmetry Breaking

    CERN Document Server

    Hindmarsh, Mark

    2012-01-01

    We consider an MSSM extension with anomaly mediation as the source of supersymmetry-breaking, and a U(1) symmetry which solves the tachyonic slepton problem, and introduces both the see-saw mechanism for neutrino masses, and the Higgs mu-term. We compare its spectra with those from so-called minimal anomaly mediated supersymmetry breaking. We find a Standard Model-like Higgs of mass 124 GeV with a gravitino mass of 120 TeV and tan(beta)=17, while a contribution to the muon anomalous magnetic moment within 2 sigma of the discrepancy between Standard Model theory and experiment favours a slightly lower gravitino mass of around 80 TeV. The model naturally produces a period of hybrid inflation, with exit to a false vacuum characterised by large Higgs vevs, the true ground state being achieved after a period of thermal inflation. The scalar spectral index is reduced to approximately 0.975, and the correct abundance of dark matter can be produced by decays of thermally-produced gravitinos, provided the gravitino ma...

  10. Introduction to Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  11. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  12. Chiral symmetry breaking in QCD Lite

    CERN Document Server

    Engel, Georg P; Lottini, Stefano; Sommer, Rainer

    2014-01-01

    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensat...

  13. On string models with Scherk-Schwarz supersymmetry breaking

    Science.gov (United States)

    Scrucca, Claudio A.; Serone, Marco

    2001-10-01

    We construct a general class of chiral four-dimensional string models with Scherk-Schwarz supersymmetry breaking, involving freely acting orbifolds. The basic ingredient is to combine an ordinary supersymmetry-preserving Bbb ZN projection with a supersymmetry-breaking projection Bbb ZM' acting freely on a subspace of the internal manifold. A crucial condition is that any generator of the full orbifold group Bbb ZN × Bbb ZM' must either preserve some supersymmetry or act freely in order to become irrelevant in some large volume limit. Tachyons are found to be absent or limited to a given region of the tree-level moduli space. We find several new models with orthogonal supersymmetries preserved at distinct fixed-points. Particular attention is devoted to an interesting Bbb Z3 × Bbb Z3' heterotic example.

  14. Experimental demonstration of decoherence-induced spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    We experimentally investigate the variations of exchange-symmetry properties of the four Bell states in an exchange-symmetric pure dephasing process with a two-photon system generated from spontaneous parametric down-conversion (SPDC). Experiment results show that under such an exchange-symmetric local-noise Hamiltonian, the exchange-symmetry property remains unchanged for two of the three symmetric Bell states, i.e., the states |Φ>±=(1/√(2))(|00>±|11>). For the antisymmetric Bell state |Ψ>-=(1/√(2))(|01>-|10>), the exchange-symmetry property increases and achieves a maximum value of 0.5 at the asymptotic limit. However, for the third exchange-symmetric Bell state |Ψ>+=(1/√(2))(|01>+|10>), the exchange-symmetry property breaks, surviving with a probability of 0.5 at the asymptotic limit, which provides some evidence supporting such decoherence-induced spontaneous-symmetry-breaking phenomena.

  15. Breaking the cycle of abuse.

    Science.gov (United States)

    Egeland, B; Jacobvitz, D; Sroufe, L A

    1988-08-01

    The aim of this study was to identify variables that distinguish mothers who broke the cycle of abuse from mothers who were abused as children and who also abused their own children. Based on maternal interviews and questionnaires completed over a 64-month period, measures of mothers' past and current relationship experiences, stressful life events, and personality characteristics were obtained. Abused mothers who were able to break the abusive cycle were significantly more likely to have received emotional support from a nonabusive adult during childhood, participated in therapy during any period of their lives, and to have had a nonabusive and more stable, emotionally supportive, and satisfying relationship with a mate. Abused mothers who reenacted their maltreatment with their own children experienced significantly more life stress and were more anxious, dependent, immature, and depressed. PMID:3168615

  16. Z'-mediated supersymmetry breaking.

    Science.gov (United States)

    Langacker, Paul; Paz, Gil; Wang, Lian-Tao; Yavin, Itay

    2008-02-01

    We consider a class of models in which supersymmetry breaking is communicated dominantly via a U1' gauge interaction, which also helps solve the mu problem. Such models can emerge naturally in top-down constructions and are a version of split supersymmetry. The spectrum contains heavy sfermions, Higgsinos, exotics, and Z' approximately 10-100 TeV, light gauginos approximately 100-1000 GeV, a light Higgs boson approximately 140 GeV, and a light singlino. A specific set of U1' charges and exotics is analyzed, and we present five benchmark models. The implications for the gluino lifetime, cold dark matter, and the gravitino and neutrino masses are discussed. PMID:18352261

  17. Dynamical centrosymmetry breaking in graphene

    CERN Document Server

    Carvalho, David N; Biancalana, Fabio

    2016-01-01

    We discover an unusual phenomenon that occurs when a graphene monolayer is illuminated by a short and intense pulse at normal incidence. Due to the pulse-induced oscillations of the Dirac cones, a dynamical breaking of the layer's centrosymmetry takes place, leading to the generation of second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. Our results open new windows in the understanding of nonlinear light-matter interactions in a wide variety of new 2D materials with a gapped or ungapped Dirac-like dispersion.

  18. Supersymmetry-breaking nonlinear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Takumi, E-mail: imai@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Izawa, K.-I. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo (WPI), Kashiwa 277-8583 (Japan); Nakai, Yuichiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2012-10-22

    We consider a novel class of constraints on chiral superfields to obtain supersymmetric nonlinear sigma models in four spacetime dimensions, which strictly combine the internal symmetry breaking with spontaneous supersymmetry breaking. The resultant massless modes can be exclusively Nambu-Goldstone bosons without their complex partners and the goldstino that is charged under the internal symmetry. The massive modes show a peculiar relation among their masses and the scales of symmetry breakings.

  19. Mutual information and spontaneous symmetry breaking

    OpenAIRE

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2015-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g. at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and t...

  20. Cosmological Gravitino Production in Gauge Mediated Supersymmetry Breaking Models

    OpenAIRE

    Choi, Kiwoon; Hwang, Kyuwan; Kim, Hang Bae; Lee, Taekoon

    1999-01-01

    We study the cosmological gravitino production in gauge mediated supersymmetry breaking models, while properly taking into account the existence of the messenger mass scale. It is found that for sizable parameter range of the model the messenger sector contribution leads to more stringent upper bound on the reheat temperature obtained from the condition that the universe should not be overclosed by relic gravitinos. However it turns out that in the limit of relatively low messenger scale and ...

  1. 超分辨显微,至极至美:2014年诺贝尔化学奖述评%Beyond the limit:super-resolution microscopy earned the Nobel Prize in Chemistry 2014

    Institute of Scientific and Technical Information of China (English)

    李明

    2014-01-01

    Three physicists, Eric Betzig, Stefan Hell and William E. Moerner were award-ed the Nobel Prize in Chemistry 2014 for developing super-resolution optical microscopy. They pushed the techniques of their time to extremes to image single molecules, discovered the on/off switching behaviors of fluorescent molecules, and applied the well-known stimulated emission phe-nomenon to bypass a presumed scientific limitation stipulating that an optical microscope can nev-er yield a resolution better than 200 nm. The new techniques will lead to a revolution in life sci-ence. Using them, scientists can now monitor the interplay between individual molecules inside cells and track cell division at the nano-level, to name but a few.%三个物理学家,因为对生命科学的贡献,赢得2014年的诺贝尔化学奖。他们做了什么重大贡献?恩斯特·阿贝为常规光学显微镜的分辨率设定了一个限制——半波长极限。贝齐格、赫尔和莫纳将已知的技术推至极限,最早探测到凝聚态体系中的单个荧光分子,利用荧光分子的开关效应,加上物理教科书上的受激辐射原理和数据分析中常用的拟合定位方法,绕开了这个似乎不能突破的极限。他们将光学显微技术带入到纳米尺度,引发了常温下活体生物学研究的又一场革命。他们对科学的追求堪称至极至美。这样的典范将来还会有,尤其是在物理学与生命科学的交叉领域。

  2. Time amplifying techniques towards atomic time resolution

    Institute of Scientific and Technical Information of China (English)

    LI JingZhen

    2009-01-01

    High speed imaging technology has opened applications in many fields,such as collision,detonating,high voltage discharge,disintegration and transfer of phonon and exciton in solid,photosynthesis primitive reaction,and electron dynamics inside atom shell.In principle,all of the transient processes need to be explained theoretically and,st the same time,the time amplifying technique is required for observations of these processes.The present review concerns the atomic time amplifying mechanism of optical information and the extremely-high speed imaging methods,which are expressed in terms of the short time amplifying techniques.It is well-known that for extremely-high speed imaging with the converter tube,the temporal resolution is in the order of sub-picosecond of the streak imaging,and the imaging frequency is 6×10~8-5×10~9 fps(frame per second)of the frame imaging.On the other hand,for the tubeless extremely-high speed imaging,the imaging frequency is 10~7-10~(14) fps,and its mechanism of forming high speed and framing could involve a lot of factors of the light under investigation,for instance,light speed,light parallelism,the parameters of light wave such as amplitude,phase,polarization and wavelength,and even quantum properties of photon.In the cascaded system of electromagnetic wave and particle wave,it is possible to simultaneously realize extremely-high resolution in time and space,which is higher than a kite resolution.Then it would be possible to break the limit of the Heisenberg uncertainty relation of the optical frequency band.

  3. Time amplifying techniques towards atomic time resolution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High speed imaging technology has opened applications in many fields,such as collision,detonating, high voltage discharge,disintegration and transfer of phonon and exciton in solid,photosynthesis primitive reaction,and electron dynamics inside atom shell.In principle,all of the transient processes need to be explained theoretically and,at the same time,the time amplifying technique is required for observations of these processes.The present review concerns the atomic time amplifying mechanism of optical information and the extremely-high speed imaging methods,which are expressed in terms of the short time amplifying techniques.It is well-known that for extremely-high speed imaging with the converter tube,the temporal resolution is in the order of sub-picosecond of the streak imaging,and the imaging frequency is 6×10 8 ―5×10 9 fps(frame per second)of the frame imaging.On the other hand,for the tubeless extremely-high speed imaging,the imaging frequency is 10 7 ―10 14 fps,and its mechanism of forming high speed and framing could involve a lot of factors of the light under investigation,for instance,light speed,light parallelism,the parameters of light wave such as amplitude,phase,polari- zation and wavelength,and even quantum properties of photon.In the cascaded system of electro- magnetic wave and particle wave,it is possible to simultaneously realize extremely-high resolution in time and space,which is higher than a kite resolution.Then it would be possible to break the limit of the Heisenberg uncertainty relation of the optical frequency band.

  4. Resolution propositions; Proposition de resolution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    To put a resolution to the meeting in relation with the use of weapons made of depleted uranium is the purpose of this text. The situation of the use of depleted uranium by France during the Gulf war and other recent conflicts will be established. This resolution will give the most strict recommendations face to the eventual sanitary and environmental risks in the use of these kind of weapons. (N.C.)

  5. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  6. Lorentz Symmetry Breaking and its consequences on Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Soares, T.; Sales, J.A. de; Otoya, V.J. Vasques [Instituto Federal de Educacao, Ciencia e Tecnologia do Sudeste de Minas Gerais (IF Sudeste MG), MG (Brazil)

    2011-07-01

    Full text: In this work, we study the effects of Lorentz Symmetry Breaking on thermodynamics properties of ideal gases. We start from a dispersion relation obtained from the Carroll-Field-Jackiw model to Electrodynamics with Lorentz and CPT violation term. With this, we compute the thermodynamics quantities for a Boltzmann, Bose-Einstein and Fermi-Dirac distributions. Two regimes are analyzed: the non-relativistic and the relativistic one. In the first case we show that the topological mass induced by the Chern-Simons term behaves as a chemical potential. For the Bose-Einstein condensates with these Lorentz breaking, the critical values as particle number, and temperature, are modified. These results are the same that were obtained by Colladay et al, whose perform the non-relativistic limit directly in the Hamiltonian for a Lorentz symmetry violating theory and used this to study the Bose-Einstein condensate to obtain a bound for the background field which perform the breaking. The original contribution of these work is in the relativistic regime, where we show that a new phase transition for a Bose -Einstein gas, can be induced by the Lorentz Symmetry Breaking parameters. Some applications in cosmology and astrophysics are commented. (author)

  7. Simulation of strand break induction by DNA incorporated 125I

    International Nuclear Information System (INIS)

    Monte Carlo calculation of 125I Auger cascades has provided electron spectra for individual decays with kinetic energies determined by Dirac-Fock methods. For these Auger electrons, track structures in liquid water have been generated and superimposed on a straight DNA plasmid model with atomic coordinates taken from X ray diffraction studies. Due to its high geometrical resolution, this DNA model makes it possible to localize the energy deposition or/and radical production events relative to the submolecular units of the DNA strands (base, sugar, phosphate). Furthermore, it is possible to distinguish between events inside (direct) and outside (indirect, radical production) of the atomic volumes of the DNA. On the basis of different assumptions for the effectiveness of strand break induction by direct hits and by OH· and H· radicals, the yields for single- and double strand breaks, as well as the strand break distribution as a function of the distance from the decay site, has been evaluated and compared with experimental and theoretical results from the literature

  8. Simulation of breaking gravity waves during the south foehn of 7 - 13 January 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, H.; Doernbrack, A.

    1998-07-01

    A high-resolution mesoscale model with horizontal mesh size of 6 km is applied to simulate upper-level wave breaking above the Alps during a south foehn event in January 1996. The model reproduces the key synoptic and mesoscale features of cross-alpine airflow during foehn. High-resolution radiosonde ascents at Munich and Innsbruck are used to evaluate the quality of the model simulations. The simulations predict breaking gravity waves above the jet stream in a layer between 10 and 15 km altitude where the shear is maximum. In part of the foehn period a critical level is present at about 200 hPa that results in wave steepening below and no wave activity aloft. Regions where aircraft report clear-air turbulence encounters agree reasonably with the simulated locations of gravity wave breaking. (orig.)

  9. On breaks of the Indian monsoon

    Indian Academy of Sciences (India)

    Sulochana Gadgil; P V Joseph

    2003-12-01

    For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of `break monsoon' is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture.Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient −0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47).Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998). Further

  10. DNA Replication Reaches the Breaking Point

    OpenAIRE

    Petrini, John H.J.

    2009-01-01

    DNA strand breaks that result in stalled or damaged replication forks can be detrimental to the DNA replication process. In this issue, Doksani et al. (2009) examine the impact of a single double-stranded DNA break on replication in the budding yeast, Saccharomyces cerevisiae.

  11. Four Top Production and Electroweak Symmetry Breaking

    OpenAIRE

    Cheung, Kingman

    1995-01-01

    With the recent discovery of a heavy top quark $(m_t \\approx 175 - 200$ GeV), the top quark opens an window to electroweak symmetry breaking. We propose the study of four-top, $t\\bar t t\\bar t$, production at hadronic supercolliders as a probe to electroweak symmetry breaking.

  12. Anatomy of String Breaking in QCD

    CERN Document Server

    Prkacin, Z; Dussel, T; Lippert, T; Neff, H; Schilling, K; Prkacin, Zdravko; Bali, Gunnar S; Dussel, Thomas; Lippert, Thomas; Neff, Hartmut; Schilling, Klaus

    2005-01-01

    We investigate the string breaking mechanism in n_f=2 QCD. We discuss the lattice techniques used and present results on energy levels and mixing angle of the static BBbar|QbarQ two-state system. The string breaking is visualized, by means of an animation of the action density distribution as a function of the static colour source-antisource separation.

  13. Electroweak Symmetry Breaking and the Higgs Boson

    CERN Document Server

    Pich, Antonio

    2015-01-01

    The first LHC run has confirmed the Standard Model as the correct theory at the electroweak scale, and the existence of a Higgs-like particle associated with the spontaneous breaking of the electroweak gauge symmetry. These lectures overview the present knowledge on the Higgs boson and discuss alternative scenarios of electroweak symmetry breaking which are already being constrained by the experimental data.

  14. Charge-symmetry-breaking nucleon form factors

    CERN Document Server

    Kubis, Bastian

    2009-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.

  15. Unary resolution

    DEFF Research Database (Denmark)

    Aubert, Clément; Bagnol, Marc; Seiller, Thomas

    2016-01-01

    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. This construction stems from an interactive interpretation...

  16. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Science.gov (United States)

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-03-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and reconstruct images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  17. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  18. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  19. Automatic Prosodic Break Detection and Feature Analysis

    Institute of Scientific and Technical Information of China (English)

    Chong-Jia Ni; Ai-Ying Zhang; Wen-Ju Liu; Bo Xu

    2012-01-01

    Automatic prosodic break detection and annotation are important for both speech understanding and natural speech synthesis.In this paper,we discuss automatic prosodic break detection and feature analysis.The contributions of the paper are two aspects.One is that we use classifier combination method to detect Mandarin and English prosodic break using acoustic,lexical and syntactic evidence.Our proposed method achieves better performance on both the Mandarin prosodic annotation corpus — Annotated Speech Corpus of Chinese Discourse and the English prosodic annotation corpus —Boston University Radio News Corpus when compared with the baseline system and other researches' experimental results.The other is the feature analysis for prosodic break detection.The functions of different features,such as duration,pitch,energy,and intensity,are analyzed and compared in Mandarin and English prosodic break detection.Based on the feature analysis,we also verify some linguistic conclusions.

  20. A laboratory study of breaking waves

    Directory of Open Access Journals (Sweden)

    Jaros³aw Têgowski

    2004-09-01

    Full Text Available This paper deals with some aspects of the wave-breaking phenomenon. The objectives were to study wave-breaking criteria, and the probability of whitecap coverage under fully controlled wave conditions. An additional task was to in vestigate the characteristic spectral features of the noise produced by breaking waves and the acoustic energy generated during wave breaking events. A controlled experiment was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway. Waves were generated by a computer-controlled multi-flap wave maker, which reproduced a realistic pattern of the sea surface for the prescribed spectra. Using wave staff recordings and photographic techniques, correlations between the breaking parameters and the radiated acoustic emissions were established.

  1. Supersymmetry Breaking by Higher Dimension Operators

    CERN Document Server

    Farakos, Fotis; Kehagias, Alex; Porrati, Massimo

    2014-01-01

    We discuss a supersymmetry breaking mechanism for N = 1 theories triggered by higher dimensional op- erators. We consider such operators for real linear and chiral spinor superfields that break superymmetry and reduce to the Volkov-Akulov action. We also consider supersymmetry breaking induced by a higher dimensional operator of a nonminimal scalar (complex linear) multiplet. The latter differs from the stan- dard chiral multiplet in its auxiliary sector, which contains, in addition to the complex scalar auxiliary of a chiral superfield, a complex vector and two spinors auxiliaries. By adding an appropriate higher di- mension operator, the scalar auxiliary may acquire a nonzero vev triggering spontaneous supersymmetry breaking. We find that the spectrum of the theory in the supersymmetry breaking vacuum consists of a free chiral multiplet and a constraint chiral superfield describing the goldstino. Interestingly, the latter turns out to be one of the auxiliary fermions, which becomes dynamical in the supersym...

  2. Research progress on dam-break floods

    KAUST Repository

    Wu, Jiansong

    2011-08-01

    Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors\\' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.

  3. Breaking temporal symmetries for emission and absorption

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-01-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff’s law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  4. Generalized geometry and partial supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Triendl, Hagen Mathias

    2010-08-15

    This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)

  5. Breaking temporal symmetries for emission and absorption.

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C; Alu, Andrea

    2016-03-29

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω, θ)=a(ω, θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  6. Breaking temporal symmetries for emission and absorption

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  7. Symmetry-breaking instability in a prototypical driven granular gas.

    Science.gov (United States)

    Khain, Evgeniy; Meerson, Baruch

    2002-08-01

    Symmetry-breaking instability of a laterally uniform granular cluster (strip state) in a prototypical driven granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding inelastically with each other and driven, at zero gravity, by a "thermal" wall. The limit of nearly elastic particle collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is employed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of the box. Marginal stability analysis predicts a spontaneous symmetry-breaking instability of the strip state, similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In this regime, the density perturbation is exponentially localized at the elastic wall opposite the thermal wall. The short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute limit. The physics of the symmetry-breaking instability is discussed.

  8. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  9. Hydraulic Response of Caisson Breakwaters in Multidirectional Breaking and Non-Breaking Waves

    DEFF Research Database (Denmark)

    Grønbech, J.; Kofoed, Jens Peter; Hald, Tue;

    1998-01-01

    induced loading and overtopping on caisson breakwaters situated in breaking seas. Regarding the wave forces only minor differences between breaking and non breaking waves in deep water were observed, and it was found that the prediction formula of Goda also seems to apply well for multidirectionally...... breaking waves at deep water. The study on wave overtopping showed that the 3D wave overtopping formula suggested by Franco et al., 1995b, predicts the wave overtopping reasonable well for both non breaking and breaking waves at deep water.......The present paper concerns the results and findings of a physical study on wave impacts on vertical caisson breakwaters situated in irregular, multidirectional breaking seas. The study has taken place as part of the framework programme "Dynamic of Structures" financially supported by the Danish...

  10. Science Illiteracy: Breaking the Cycle

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    2003-12-01

    At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.

  11. Dynamic GMM Estimation With Structural Breaks. An Application to Global Warming and its Causes.

    OpenAIRE

    Travaglini, Guido

    2008-01-01

    In this paper I propose a nonstandard t-test statistic for detecting level and trend breaks of I(0) series. Theoretical and limit-distribution critical values obtained from Montecarlo experimentation are supplied. The null hypothesis of anthropogenic versus natural causes of global warming is then tested for the period 1850-2006 by means of a dynamic GMM model which incorporates the null of breaks of anthropogenic origin. World average temperatures are found to be tapering off since a few...

  12. SUSY breaking after inflation in supergravity with inflaton in a massive vector multiplet

    CERN Document Server

    Aldabergenov, Yermek

    2016-01-01

    We propose a limited class of models, describing interacting chiral multiplets with a non-minimal coupling to a vector multiplet, in curved superspace of $N=1$ supergravity. Those models are suitable for the inflationary model building in supergravity with inflaton assigned to a massive vector multiplet and spontaneous SUSY breaking in Minkowski vacuum after inflation, for any values of the inflationary parameters $n_s$ and $r$, and any scale of SUSY breaking.

  13. A Sub Pixel Resolution Method

    CERN Document Server

    Khademi, Siamak; Abbasi, Zahra

    2012-01-01

    One of the main limitations for the resolution of optical instruments is the size of the sensor's pixels. In this paper we introduce a new sub pixel resolution algorithm to enhance the resolution of images. This method is based on the analysis of multi-images which are fast recorded during the fine relative motion of image and pixel arrays of CCDs. It is shown that by applying this method for a sample noise free image one will enhance the resolution with order of error.

  14. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  15. Dirac Neutrino Masses from Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the standard model with a generalized supersymmetry breaking sector. If the superpotential neutrino Yukawa terms are forbidden by the gauge symmetry [such as a U(1)'], sub-eV scale effective Dirac mass terms can arise at tree level from hard supersymmetry breaking Yukawa couplings, or at one loop due to nonanalytic soft supersymmetry breaking trilinear scalar couplings. The radiative neutrino magnetic and electric dipole moments vanish at one-loop order

  16. Search for primordial symmetry breakings in CMB

    Science.gov (United States)

    Shiraishi, Maresuke

    2016-06-01

    There are possibilities to violate symmetries (e.g. parity and rotational invariance) in the primordial cosmological fluctuations. Such symmetry breakings can imprint very rich signatures in late-time phenomena, which may be possible to observe. Especially, Cosmic Microwave Background (CMB) will change its face drastically, corresponding to the symmetry-breaking types, since the harmonic-space representation is very sensitive to the statistical, spin and angular dependences of cosmological perturbations. Here, we discuss (1) general responses of CMB to the symmetry breakings, (2) some theoretical models creating interesting CMB signatures, and (3) aspects of the estimation from observational data.

  17. Breaking Free with Wireless Networks.

    Science.gov (United States)

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  18. Formation of radiation-induced DNA breaks: the ratio of double-strand breaks to single-strand breaks

    International Nuclear Information System (INIS)

    Ionizing radiation causes the formation of strand breaks in cellular DNA, as well as other types of lesions in the chromatin of cells. Some of the earliest investigations of the molecular basis of radiation-induced damage and the implications of enzymatic repair were done by Dr. H. S. Kaplan. Because it is difficult to assay for DNA lesions in the large mammalian genome, the authors have developed a method of assaying for DNA double-strand breaks in the supercoiled nucleosome-complexed Simian virus 40 (SV40) genome, irradiated intracellularly. In this communication they present their measurements of the DNA double-strand breaks (DSBs) to single-strand breaks (SSBs) ratio obtained from the intracellularly irradiated SV40 genome. After cobalt gamma ray and X ray irradiations, this ratio is about 1/10. Their methods and results are compared with pertinent data in the literature. If the DSBs/SSBs ratio of 1/10 for cellular chromatin is correct, a substantial number of DNA double-strand breaks are formed in a mammalian cell after moderate doses (1 Gy) of radiation. The implications of different types of DNA double-strand breaks are discussed

  19. Unconventional supersymmetry and its breaking

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)

    2014-07-30

    We present a gauge theory for a superalgebra that includes an internal gauge (G) and local Lorentz (so(1,D−1)) algebras. These two symmetries are connected by fermionic supercharges. The field content of the system includes a (non-)abelian gauge potential A, a spin-1/2 Dirac spinor ψ, the Lorentz connection ω{sup ab}, and the vielbein e{sub μ}{sup a}. The connection one-form A is in the adjoint representation of G, while ψ is in the fundamental. In contrast to standard supersymmetry and supergravity, the metric is not a fundamental field and is in the center of the superalgebra: it is not only invariant under the internal gauge group, G, and under Lorentz transformations, SO(1,D−1), but is also invariant under supersymmetry. The distinctive features of this theory that mark the difference with standard supersymmetries are: i) the number of fermionic and bosonic states is not necessarily the same; ii) there are no superpartners with equal mass; iii) although this supersymmetry originates in a local gauge theory and gravity is included, there is no gravitino; iv) fermions acquire mass from their coupling to the background or from higher order self-couplings, while bosons remain massless. In odd dimensions, the Chern–Simons (CS) form provides an action that is (quasi-)invariant under the entire superalgebra. In even dimensions, the Yang–Mills (YM) form is the only natural option and the symmetry breaks down to G⊗SO(1,D−1). In four dimensions, the construction follows the Townsend–Mac Dowell–Mansouri approach, starting with an osp(4|2)∼usp(2,2|1) connection. Due to the absence of osp(4|2)-invariant traces in four dimensions, the resulting Lagrangian is only invariant under u(1)⊕so(3,1), which includes a Nambu–Jona-Lasinio (NJL) term. In this case, the Lagrangian depends on a single dimensionful parameter that fixes Newton's constant, the cosmological constant and the NJL coupling.

  20. 10 microsecond time resolution studies of Cygnus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Wen, H.C.

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M{sub {circle_dot}} black hole.

  1. Ground-Breaking Geologic Processes in the Solar System

    Science.gov (United States)

    McEwen, A. S.

    2015-12-01

    NASA mission proposals of today must promise "ground-breaking" new results. "Ground-breaking" is a buzzword, but sounds good to a geologist who likes to study active processes. Great progress in understanding active processes on the Moon and Mars has resulted from very-high-resolution (sub-meter scale) repeat imaging (monitoring) by LROC and HiRISE. Such changes include new impact craters and mass wasting on both the Moon and Mars. One martian surprise was not just finding that the gullies or ravines are forming today, but that they are forming in times and places with CO2 frost on the ground. The geomorphology of these gullies is a perfect match for water-carved gullies on Earth, but the CO2 buffers the ground and air temperatures to near 150 K, far too cold for liquid water to play a role. Snapshot geomorphology, even at very high resolution, does not enable a unique interpretation of geologic processes. Repeat imaging led to discovery of the martian Recurring Slope Lineae (RSL), which form at the warmest times and places and may be seeps of salty water. A source of water in a non-polar location is needed to support a future human presence on Mars, but Planetary Protection will be a challenge (or impossible). Jupiter's moon Io is the ideal natural laboratory to understand groundbreaking volcanism and tectonism. Very large-scale energetic processes that have shaped the planets are active today on Jupiter's moon Io, so this is the best place to study these processes. Is there active venting on Europa? We don't know (yet) because we haven't looked with the proper combination of resolution (<20 km), phase angle, and coverage. Understanding active geologic and atmospheric processes and how they affect spectral signatures will determine the interpretability of exoplanet spectra and inform the search for ET life. However, the most amazing planetary habitability experiment in this arm of the galaxy is Earth.

  2. Dirac Neutrino Masses from Generalized Supersymmetry Breaking

    CERN Document Server

    Demir, Durmus A; Langacker, Paul

    2007-01-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)'), effective Dirac mass terms involving the "wrong Higgs" field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or "nonholomorphic" soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order.

  3. Spontaneous chiral symmetry breaking in metamaterials

    Science.gov (United States)

    Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.

    2014-07-01

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  4. Detecting Structural Breaks using Hidden Markov Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to anoth...... in the monetary policy of United States, the dierent functional form being variants of the Taylor (1993) rule.......Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...

  5. Dirac Neutrino Masses from Generalized Supersymmetry Breaking

    OpenAIRE

    Demir, Durmus A.; Everett, Lisa L.; Langacker, Paul

    2007-01-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)'), effective Dirac mass terms involving the "wrong Higgs" field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonana...

  6. Grand unification with large supersymmetry breaking

    International Nuclear Information System (INIS)

    General criteria are given for the magnitudes of mass splittings between supersymmetric partners compatible with the desired hierarchy of mass scales in GUTs. These splittings arise naturally when masses are generated radiatively from a Higgs sector breaking supersymmetry through the O'Raifeartaigh mechanism (Nucl. Phys; B96:331 (1975)). Explicit GUTs are constructed in which the supersymmetry breaking scale may easily be as large as the Planck mass. (author)

  7. Yet another symmetry breaking to be discovered

    Science.gov (United States)

    Yoshimura, M.

    2016-07-01

    The discovery of spontaneous symmetry breaking in particle physics was the greatest contribution in Nambu's achievements. There is another class of symmetries that exist in low-energy nature, yet is doomed to be broken at high energy, due to a lack of protection of the gauge symmetry. I shall review our approach to searching for this class of symmetry breaking, the lepton number violation linked to the generation of the matter-antimatter asymmetry in our universe.

  8. Behavior of thermal breaks under seismic loads

    OpenAIRE

    Nguyen, Thi Thanh Huyen

    2012-01-01

    Nowadays sustainable constructions imply an objective of energetic performances by reducing the level of thermal conduction. The thermal-break elements, an innovative technological element is under study in several countries in Europe. If the thermal benefits have already been proved, the mechanical effects of such a wall-slab connection in a building for the seismic risk have not been assessed. To evaluate the building seismic vulnerability modifications due to these thermal breaks, experime...

  9. Breaking antidunes: Cyclic behavior due to hysteresis

    DEFF Research Database (Denmark)

    Deigaard, Rolf

    2006-01-01

    The cyclic behavior of breaking antidunes (growth, breaking of surface wave, obliteration) is investigated by use of a numerical model. The model includes the transition between supercritical and transcritical flow. As the antidune grows the flow becomes transcritical and a hydraulic jump is form...... upstream of the antidune crest. The relation between growth of the antidune and supercritical flow and between decay and transcritical flow is shown, and the significance of hysteresis in the flow conditions is investigated....

  10. Chimera Death: Symmetry Breaking in Dynamical Networks

    OpenAIRE

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2014-01-01

    For a network of generic oscillators with nonlocal topology and symmetry-breaking coupling we establish novel partially coherent inhomogeneous spatial patterns, which combine the features of chimera states (coexisting incongruous coherent and incoherent domains) and oscillation death (oscillation suppression), which we call chimera death. We show that due to the interplay of nonlocality and breaking of rotational symmetry by the coupling two distinct scenarios from oscillatory behavior to a s...

  11. A random fuse model for breaking processes

    OpenAIRE

    de Arcangelis, L.; Redner, S.; Herrmann, H. J.

    1985-01-01

    We introduce and study a simple idealized model to describe breaking processes by analysing the current-carrying properties of a random network consisting of insulators and fuses. By increasing the value of the external voltage applied across the network, a sequence of fuses will « burn out » and change irreversible into insultating bonds. This process terminates when a conducting path no longer exists in the network. We monitor several basic quantities during this breaking process, such as t...

  12. Relativistic theory of string breaking in QCD

    CERN Document Server

    Simonov, Yu A

    2011-01-01

    The QCD string breaking due to quark pair creation in the vacuum confining field, possibly accompanied by vector, scalar or Nambu-Goldstone bosons, is studied nonperturbatively. The scalar light pair creation vertex occurs due to chiral symmetry breaking and has a confining form, which is computed explicitly together with subleading vector contributions. Dependence on light quark mass and flavor is specifically studied. The dominant scalar term is in good agreement with the $^3P_0$ model and experimental data.

  13. Breaking of waves in deep water

    Science.gov (United States)

    Ruiz-Chavarria, Gerardo

    2013-11-01

    The breaking of waves is a nonlinear phenomenon during which a fraction of the energy is dissipated. In the previous stage the wave undergoes a growth of its amplitude and the wave pattern is modified in the sense that the crests become more pronounced than the troughs. The breaking has been extensively studied in the case of waves approaching the shore. However, the wave breaking in deep water remains an open problem in fluid dynamics. In this work we study the wave breaking due to focusing of an initially parabolic wave front. To this end the evolution of wave is numerically investigated using a meshless code (Smoothed Particle Hydrodynamics). We present some results about the evolution of waves excited by a parabolic wave maker, among others, the growth induced by the focusing, the behavior around the Huygens' cusp and the process of wave breaking. Then, we compare the numerical results with the criteria given in the literature about the onset of breaking and we discuss how the energy dissipates, for example by the rise of short waves. In addition we compare the numerical results with data obtained in two different experiments made by our team. Author acknowledges DGAPA-UNAM by support under project IN116312, ``Vorticidad y ondas no lineales en fluidos.''

  14. Tailings dam-break flow - Analysis of sediment transport

    Science.gov (United States)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  15. Comparison of methods for extrapolating breaking creep results

    International Nuclear Information System (INIS)

    Among all the methods of extrapolation, the following have been selected: - parametric methods (Larson-Miller, Dorn, Manson-Haferd); - digital and parametric method (minimum commitment); - digital method (finite differences); - descriptive method (Givar). The Larson-Miller, Dorn and Manson-Haferd methods are commonly used for analyzing the breaking creep results of materials for which the master curves can be described simply. The other methods have been developed in order to analyze the breaking creep results of materials where the structural changes over time modify the creep behaviour. In each case the assessment of the parameters is achieved by the least squares method. These methods were compared with each other on two steels, namely: Z6 CND 17-12 (316) and Z4 CND 35-20 (800 alloy). The various analyses performed show that (a) the predictions made as from the different methods are in good agreement between each other when there is a sufficient number of experimental values and (b) the predictions of the breaking times in the case of the 800 alloy differ from one method to the next. This result is due to the limited sampling data and to the complex behaviour of this alloy, the properties of which change with ageing

  16. The quest for ultimate super resolution

    Science.gov (United States)

    Hemmer, Philip; Ben-Benjamin, Jonathan Samuel

    2016-09-01

    With the wealth of super-resolution techniques available in the literature it is useful to provide a succinct review of the general concepts involved in the different schemes. In this paper we group super-resolution schemes into several broad categories to simplify comparison, and to elucidate the factors limiting their respective resolutions.

  17. Breaking object correspondence across saccadic eye movements deteriorates object recognition

    Directory of Open Access Journals (Sweden)

    Christian H. Poth

    2015-12-01

    Full Text Available Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the corresponding presaccadic object. The presaccadic object representation is then lost. In contrast, the presaccadic object is conserved when object correspondence is broken. This helps transsaccadic memory but it may impose attentional costs on object recognition. Therefore, we investigated how breaking object correspondence across the saccade affects postsaccadic object recognition. In Experiment 1, object correspondence was broken by a brief postsaccadic blank screen. Observers made a saccade to a peripheral object which was displaced during the saccade. This object reappeared either immediately after the saccade or after the blank screen. Within the postsaccadic object, a letter was briefly presented (terminated by a mask. Observers reported displacement direction and letter identity in different blocks. Breaking object correspondence by blanking improved displacement identification but deteriorated postsaccadic letter recognition. In Experiment 2, object correspondence was broken by changing the object’s contrast-polarity. There were no object displacements and observers only reported letter identity. Again, breaking object correspondence deteriorated postsaccadic letter recognition. These findings identify transsaccadic object correspondence as a key determinant of object recognition across the saccade. This is in line with the recent hypothesis that breaking object correspondence results in separate representations of presaccadic and postsaccadic objects which then compete for limited attentional processing resources (Schneider, 2013. Postsaccadic

  18. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  19. Improving Oral English in Break Time in Junior High School

    Institute of Scientific and Technical Information of China (English)

    吴小丹

    2013-01-01

      Teachers have been paying more attention to oral English teaching in junior high school than ever before. Generally, teachers focus on teaching oral English in class, where they give preeminence to creating an environment in the classroom which approximates to the“real-life”communicative use of language (Yang Chaochun&Cheng Lian 2005). However, there are some limits teaching oral English in class. This essay puts forwards to provide input during the break time for students to acquire oral English unconsciously in junior high school to make up for the insufficiency.

  20. Tranverse beam break up in a periodic linac

    International Nuclear Information System (INIS)

    The problem of cumulative beam break up in a periodic linac for a general impedance is discussed, with the effects of acceleration included. The transverse equations of motion for a set of identical point like bunches moving along the length of the linac are cast into a simple form using a smooth approximation. This results in a working formula that is used to analyze beam breakup. Explicit expressions for the transverse motion in the case of a single resonance impedance are found using saddle point integration. This is done first with no external focusing, and again in the strong focusing limit

  1. Minimal but non-minimal inflation and electroweak symmetry breaking

    CERN Document Server

    Marzola, Luca

    2016-01-01

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the r\\^ole of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio $r \\approx 10^{-3}$, typical of Higgs-inflation models, but in contrast yields a scalar spectral index $n_s \\simeq 0.97$ which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  2. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  3. Modelling oil price volatility with structural breaks

    International Nuclear Information System (INIS)

    In this paper, we provide two main innovations: (i) we analyze oil prices of two prominent markets namely West Texas Intermediate (WTI) and Brent using the two recently developed tests by Narayan and Popp (2010) and Liu and Narayan, 2010 both of which allow for two structural breaks in the data series; and (ii) the latter method is modified to include both symmetric and asymmetric volatility models. We identify two structural breaks that occur in 1990 and 2008 which coincidentally correspond to the Iraqi/Kuwait conflict and the global financial crisis, respectively. We find evidence of persistence and leverage effects in the oil price volatility. While further extensions can be pursued, the consideration of asymmetric effects as well as structural breaks should not be jettisoned when modelling oil price volatility. - Highlights: ► We analyze oil price volatility using NP (2010) and LN (2010) tests. ► We modify the LN (2010) to account for leverage effects in oil price. ► We find two structural breaks that reflect major global crisis in the oil market. ► We find evidence of persistence and leverage effects in oil price volatility. ► Leverage effects and structural breaks are fundamental in oil price modelling.

  4. A break in the obesity epidemic?

    DEFF Research Database (Denmark)

    Visscher, T L S; Heitmann, B L; Rissanen, A;

    2015-01-01

    Recent epidemiologic papers are presenting prevalence data suggesting breaks and decreases in obesity rates. However, before concluding that the obesity epidemic is not increasing anymore, the validity of the presented data should be discussed more thoroughly. We had a closer look into the litera......Recent epidemiologic papers are presenting prevalence data suggesting breaks and decreases in obesity rates. However, before concluding that the obesity epidemic is not increasing anymore, the validity of the presented data should be discussed more thoroughly. We had a closer look...... into the literature presented in recent reviews to address the major potential biases and distortions, and to develop insights about how to interpret the presented suggestions for a potential break in the obesity epidemic. Decreasing participation rates, the use of reported rather than measured data and small sample...... sizes, or lack of representativeness, did not seem to explain presented breaks in the obesity epidemic. Further, available evidence does not suggest that stabilization of obesity rates is seen in higher socioeconomic groups only, or that urbanization could explain a potential break in the obesity...

  5. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  6. Enhanced breaking of heavy quark spin symmetry

    CERN Document Server

    Guo, Feng-Kun; Shen, Cheng-Ping

    2014-01-01

    Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of $O({\\Lambda_{\\rm QCD}/m_Q})$, with $\\Lambda_{\\rm QCD}$ the scale of QCD and $m_Q$ the heavy quark mass. In this paper, we propose a new mechanism to enhance the spin symmetry breaking. Taking the decays of the $\\Upsilon(10860)$ into the $\\chi_{bJ}\\omega\\, (J=0,1,2)$ as an example, we show that a small $S$- and $D$-wave mixing can induce a significant breaking of the spin symmetry relations for the ratios of the branching fractions of these decays, owing to an enhancement of the decays of the $D$-wave component due to nearby coupled channels.

  7. Supersymmetry breaking induced by radiative corrections

    CERN Document Server

    Bajc, Borut; Mede, Timon

    2012-01-01

    We show that simultaneous gauge and supersymmetry breaking can be induced by radiative corrections, a la Coleman-Weinberg. A local supersymmetry-breaking minimum is induced in the effective potential of a gauge non-singlet field, in a region where the tree-level potential is almost flat. Supersymmetry breaking is then transmitted to the MSSM through gauge and chiral messenger loops, thus avoiding the suppression of gaugino masses characteristic of direct gauge mediation models. The use of a single field ensures that no dangerous tachyonic scalar masses are generated at the one-loop level. We illustrate this mechanism with an explicit example based on an SU(5) model with a single adjoint. An interesting feature of the scenario is that the GUT scale is increased with respect to standard unification, thus allowing for a larger colour Higgs triplet mass, as preferred by the experimental lower bound on the proton lifetime.

  8. Multiscale Simulation of Breaking Wave Impacts

    DEFF Research Database (Denmark)

    Lindberg, Ole

    errors in the fluid volume. The dam break test case shows that the incompressible and inviscid ALE-WLS model can calculate nonlinear fluid motion, fluid structure impacts and overturning waves. The propagation speed of the wetting front and impact pressures are compared to experiments and the results......The purpose of this project is to make an accurate, robust, geometric flexible and efficient model for calculation of forces on structures from nonlinear ocean waves and breaking wave impacts. Accurate prediction of the extreme forces on wind turbine foundations, breakwaters and tidal or wave power......-distance based adaptivity method and redistributed via a point position filtering method. The incompressible and inviscid ALE-WLS model is applied to the following standard validation test cases: deforming elliptical drop, small amplitude standing waves and the dam break problem. The deforming elliptical drop...

  9. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  10. Break-glass handling exceptional situations in access control

    CERN Document Server

    Petritsch, Helmut

    2014-01-01

    Helmut Petritsch describes the first holistic approach to Break-Glass which covers the whole life-cycle: from access control modeling (pre-access), to logging the security-relevant system state during Break-Glass accesses (at-access), and the automated analysis of Break-Glass accesses (post-access). Break-Glass allows users to override security restrictions in exceptional situations. While several Break-Glass models specific to given access control models have already been discussed in research (e.g., extending RBAC with Break-Glass), the author introduces a generic Break-Glass model. The pres

  11. Generalized Resolution and NC—Resolution

    Institute of Scientific and Technical Information of China (English)

    刘叙华; 孙吉贵

    1994-01-01

    The relation between generalized resolution and NC-resolution is discussed.The proof of the completeness of NC linear resolution is then given.The incompleteness of NC lock resolution is also presented,thus the conclusion in [3] of “a simple completeness-preserving restriction” is shown to be wrong.

  12. Breaking bad news in cancer patients

    Directory of Open Access Journals (Sweden)

    Apostolos Konstantis

    2015-01-01

    Full Text Available Objective: In a regional hospital, many patients are newly diagnosed with cancer. Breaking the bad news in these patients and their relatives is a tough task. Many doctors are not experienced in talking to patients about death or death-related diseases. In recent years, there have been great efforts to change the current situation. The aim of this study was to investigate the experience and education of medical personnel in breaking bad news in a secondary hospital. Materials and Methods: 59 doctors from General Hospital of Komotini, Greece were included in the study. All the doctors were in clinical specialties that treated cancer patients. A brief questionnaire was developed based on current guidelines such as Baile/SPIKES framework and the ABCDE mnemonic. Results: Residents are involved in delivering bad news less frequently than specialists. Only 21 doctors (35.59% had specific training on breaking bad news. 20 doctors (33.90% were aware of the available techniques and protocols on breaking bad news. 47 doctors (79.66% had a consistent plan for breaking bad news. 57 (96.61% delivered bad news in a quiet place, 53 (89.83% ensured no interruptions and enough time, 53 (89.83% used simple words and 54 (91.53% checked for understanding and did not rush through the news. 46 doctors (77.97% allowed relatives to determine patient′s knowledge about the disease. Conclusions: There were low rates of specific training in breaking bad news. However, the selected location, the physician′s speech and their plan were according to current guidelines.

  13. Gauge - Mediated Supersymmetry Breaking in String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Duiliu-Emanuel; /Rutgers U., Piscataway; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-01-04

    We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem.

  14. R-Parity Breaking in Minimal Supergravity

    CERN Document Server

    Díaz, M A

    1997-01-01

    We consider the Minimal Supergravity Model with universality of scalar and gaugino masses plus an extra bilinear term in the superpotential which breaks R-Parity and lepton number. We explicitly check the consistency of this model with the radiative breaking of the electroweak symmetry. A neutrino mass is radiatively induced, and large Higgs-Lepton mixings are compatible with its experimental bound. We also study briefly the lightest Higgs mass. This one-parameter extension of SUGRA-MSSM is the simplest way of introducing R-parity violation.

  15. Polarimetric contrast microscopy by orthogonality breaking

    International Nuclear Information System (INIS)

    We report the design and first implementation of an active polarimetric imaging system based on the recently introduced concept of polarimetric sensing by orthogonality breaking, which involves a specific crossed-polarization dual-frequency illumination. We describe the laser source architecture and microscope set-up devoted to visible imaging at 488 nm, as well as the specific homodyne detection chain required for orthogonality breaking measurements. The first polarimetric images obtained with this non-conventional approach are presented. The polarimetric contrasts observed validate the polarimetric sensitivity of the technique. (fast track communication)

  16. Report of Break Out Group 1

    DEFF Research Database (Denmark)

    Alward, Randy; Carley, Kathleen M.; Madsen, Fredrik Huitfeldt;

    2006-01-01

    , action" (OODA) loop. The break out group discussed vulnerability presentation needs common across various application domains, particularly in support of network discovery and network analysis tasks in those domains. Finally, the break out group wished to determine whether there is a means...... of characterizing a vulnerability. This would take into account the potential for the vulnerability to be exploited as well as the potential impact on the operations supported by the network, and on the network structure itself, of a successful exploit of that vulnerability....

  17. Chiral Symmetry Breaking from Center Vortices

    CERN Document Server

    Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M

    2014-01-01

    We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.

  18. Tidally-driven exchange at the European shelf break

    Science.gov (United States)

    Spingys, Carl; Williams, Ric; Hopkins, Jo; Green, Mattias; Sharples, Jonathan

    2015-04-01

    The exchange across the shelf break is restricted as the topographic slope limits the geostrophic flow to following isobaths, meaning the exchange between the open ocean and shelf seas is dependent on processes that break the assumptions in geostrophy, by for by not being in steady state. Using the thickness-weighted volume transport, usually invoked in the open ocean, we show that the covariance of thickness and velocity can drive a volume transport across the shelf break, usually referred to as the bolus transport. We propose that the internal tide drives a covariance resulting in a transport of both volume and tracers, analogous to the Stokes Drift. Whilst these transports are smaller than the mean velocity they can make a substantial contribution to the cross shelf component. Support for the theoretical framework is provided by a series of near shelf break moorings in the Celtic Sea and Malin Shelf deployed in the summers of 2012 and 2013 respectively, under the FASTNEt project. The thickness-weighted volume transports have been calculated for each of the moorings, including the bolus transport. The strength of this transport is strongly dependant on the strength of the internal tide, with the highly energetic Celtic Sea showing an on shelf bottom layer transport velocity of order 1 cm s-1, whereas the less energetic Malin Shelf shows a bottom layer transport velocity of order 0.01 - 0.1 cm s-1. These are comparable to the bolus velocities predicted by simple two layer linear internal wave theory. The mooring bolus transport also shows an M4 period, equivalent to the product of two M2 periods, reinforcing that the bolus transport is tidally-driven. These bottom layer transports can make a significant contribution to the lateral supply of nutrients required to support the enhanced productivity in shelf seas. Integrating the bottom layer transports from the moorings to the whole of the Celtic Sea shelf break gives a total volume transport of approximately 1 Sv or

  19. Low Power Compact Radio Galaxies at High Angular Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  20. Numerical Study on Breaking Criteria for Solitary Waves

    Institute of Scientific and Technical Information of China (English)

    Chung-ren CHOU; Ruey-syan SHIH; John Z. YIM

    2003-01-01

    Studies of the breaking criteria for solitary waves on a slope are presented in this paper. The boundary element method is used to model the processes of shoaling and breaking of solitary waves on various slopes. Empirical formulae that can be used to characterize the breaking of solitary waves are presented. These include the breaking index, the wave height, the water depth, and the maximum particle velocity at the point of breaking. Comparisons with the results of other researches are given.

  1. Exchange across the shelf break at high southern latitudes

    Directory of Open Access Journals (Sweden)

    J. M. Klinck

    2010-01-01

    Full Text Available Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW; export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius deformation (a few km is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km in order to represent orographically controlled winds (coastal jets and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf water

  2. Symmetry-Break in Voronoi Tessellations

    Directory of Open Access Journals (Sweden)

    Valerio Lucarini

    2009-08-01

    Full Text Available We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC, body-centred cubic (BCC, and face-centred cubic (FCC crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5, memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity

  3. The Solar System is According to General Relativity: The Sun's Space Breaking Meets the Asteroid Strip

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2010-04-01

    Full Text Available This study deals with the exact solution of Einstein's field equations for a sphere of incompressible liquid without the additional limitation initially introduced in 1916 by Schwarzschild, by which the space-time metric must have no singularities. The obtained exact solution is then applied to the Universe, the Sun, and the planets, by the assumption that these objects can be approximated as spheres of incompressible liquid. It is shown that gravitational collapse of such a sphere is permitted for an object whose characteristics (mass, density, and size are close to the Universe. Meanwhile, there is a spatial break associated with any of the mentioned stellar objects: the~break is determined as the approaching to infinity of one of the spatial components of the metric tensor. In particular, the break of the Sun's space meets the Asteroid strip, while Jupiter's space break meets the Asteroid strip from the outer side. Also, the space breaks of Mercury, Venus, Earth, and Mars are located inside the Asteroid strip (inside the Sun's space break.

  4. The Solar System According to General Relativity: The Sun's Space Breaking Meets the Asteroid Strip

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2010-04-01

    Full Text Available This study deals with the exact solution of Einstein’s field equations for a sphere of incompressible liquid without the additional limitation initially introduced in 1916 by Schwarzschild, by which the space-time metric must have no singularities. The ob- tained exact solution is then applied to the Universe, the Sun, and the planets, by the assumption that these objects can be approximated as spheres of incompressible liq- uid. It is shown that gravitational collapse of such a sphere is permitted for an object whose characteristics (mass, density, and size are close to the Universe. Meanwhile, there is a spatial break associated with any of the mentioned stellar objects: the break is determined as the approaching to infinity of one of the spatial components of the metric tensor. In particular, the break of the Sun’s space meets the Asteroid strip, while Jupiter’s space break meets the Asteroid strip from the outer side. Also, the space breaks of Mercury, Venus, Earth, and Mars are located inside the Asteroid strip (inside the Sun’s space break.

  5. Record-Breaking Eclipsing Binary

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  6. RecA bundles mediate homology pairing between distant sisters during DNA break repair

    OpenAIRE

    Lesterlin, Christian; Ball, Graeme; Schermelleh, Lothar; Sherratt, David J.

    2013-01-01

    DNA double-strand break (DSB) repair by homologous recombination (HR) has evolved to maintain genetic integrity in all organisms 1 . Although many reactions that occur during HR are known 1-3 , it is unclear where, when and how they occur in cells is lacking. Here, by using conventional and super-resolution microscopy we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether HR can occur efficiently between distant sister loci that have segregate...

  7. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  8. Symmetry Breaking for Black-Scholes Equations

    Science.gov (United States)

    Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng

    2007-06-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  9. Symmetry Breaking for Black-Scholes Equations

    International Nuclear Information System (INIS)

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  10. Viable Gravity-Mediated Supersymmetry Breaking

    CERN Document Server

    Kribs, Graham D; Roy, Tuhin S

    2010-01-01

    We present a complete, viable model of gravity-mediated supersymmetry breaking that is safe from all flavor constraints. The central new idea is to employ a supersymmetry breaking sector without singlets, but with D-terms comparable to F-terms, causing supersymmetry breaking to be dominantly communicated through U(1)_R-symmetric operators. We construct a visible sector that is an extension of the MSSM where an \\emph{accidental} U(1)_R symmetry emerges naturally. Gauginos acquire Dirac masses from gravity-mediated D-terms, and tiny Majorana masses from anomaly-mediated contributions. Contributions to soft breaking scalar (mass)^2 arise from flavor-arbitrary gravity-induced F-terms plus one-loop finite flavor-blind contributions from Dirac gaugino masses. Renormalization group evolution of the gluino causes it to naturally increase nearly an order of magnitude larger than the squark masses. This hierarchy, combined with an accidentially U(1)_R-symmetric visible sector, nearly eliminates all flavor violation con...

  11. Where large deep-ocean waves break

    NARCIS (Netherlands)

    van Haren, H.; Climatoribus, A.; Gostiaux, L.

    2015-01-01

    Underwater topography like seamounts causes the breaking of large “internal waves” with associated turbulent mixing strongly affecting the redistribution of sediment. Here ocean turbulence is characterized and quantified in the lowest 100?m of the water column at three nearby sites above the slope o

  12. Lifshitz-sector mediated SUSY breaking

    International Nuclear Information System (INIS)

    We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by ΛHL2/MP2, the ratio of the Hořava-Lifshitz cross-over scale ΛHL to the Planck scale MP. This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields

  13. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E0 + E1l + E2l2, the distribution functions are obtained as exp(αl + βl2). There are two components, the one proportional to exp(βl2), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  14. Density Functional Simulation of a Breaking Nanowire

    DEFF Research Database (Denmark)

    Nakamura, A.; Brandbyge, Mads; Hansen, Lars Bruno;

    1999-01-01

    We study the deformation and breaking of an atomic-sized sodium wire using density functional simulations. The wire deforms through sudden atomic rearrangements and smoother atomic displacements. The conductance of the wire exhibits plateaus at integer values in units of 2e(2)/h corresponding...

  15. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  16. Physical implications of dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Some model-independent physical implications of a class of hypercolorbased theories of dynamical symmetry-breaking are described and discussed. The role which e+e- colliders can play, in distinguishing between such theories and the canonical methodology, is underlined

  17. Achromatic Breaks for Swift GRBs: Any Evidence?

    OpenAIRE

    S. Covino(INAF - Oss. Astronomico di Brera); Malesani, D.; Tagliaferri, G.; Vergani, S.D.; Chincarini, G.; Kann, D. A.; A. Moretti(Fermilab, Batavia, IL, USA); Stella, L.

    2006-01-01

    The availability of multi-wavelength high-quality data of gamma-ray burst afterglows in the Swift era, contrary to the expectations, did not allow us to fully confirm yet one of the most fundamental features of the standard afterglow picture: the presence of an achromatic break in the decaying light curve. We briefly review the most interesting cases identified so far.

  18. Supersymmetry Breaking and the Cosmological Constant

    CERN Document Server

    Banks, T

    2014-01-01

    I review three attempts to explain the small value of the cosmological constant, and their connection to SUSY breaking. They are The String Landscape, Supersymmetric Large Extra Dimensions (SLED), and the Holographic Space-time Formalism invented by Fischler and myself.

  19. On limit and limit setting.

    Science.gov (United States)

    Gorney, J E

    1994-01-01

    This article investigates the role of limit and limit setting within the psychoanalytic situation. Limit is understood to be a boundary between self and others, established as an interactional dimension of experience. Disorders of limit are here understood within the context of Winnicott's conception of the "anti-social tendency." Limit setting is proposed as a necessary and authentic response to the patient's acting out via holding and empathic responsiveness, viewed here as a form of boundary delineation. It is proposed that the patient attempts to repair his or her boundary problem through a seeking of secure limits within the analyst. The setting of secure and appropriate limits must arise from a working through of the analyst's own countertransference response to the patient. It is critical that this response be evoked by, and arise from, the immediate therapeutic interaction so that the patient can experience limit setting as simultaneously personal and authentic. PMID:7972580

  20. Super-resolution technique for CW lidar using Fourier transform reordering and Richardson-Lucy deconvolution.

    Science.gov (United States)

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-12-15

    An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose. PMID:25503046

  1. Nuclear Physics Around the Unitarity Limit

    CERN Document Server

    König, Sebastian; Hammer, H -W; van Kolck, U

    2016-01-01

    We argue that many features of the structure of nuclei can be understood in the unitarity limit, where the two-nucleon S-waves have bound states at zero energy. In this limit, the only dimensionful parameter, related to the breaking of scale invariance to a discrete scaling symmetry, is set by the triton binding energy. For A <= 4 nucleons, we demonstrate that the spectrum can be obtained as a controlled perturbative expansion around the unitarity limit.

  2. Neutrino masses from SUSY breaking in radiative seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Antonio J.R. [University of Lisbon, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal)

    2015-03-01

    Radiatively generated neutrino masses (m{sub ν}) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY{sub EWSB} contributions), and which are manifest from left angle F{sub H}{sup †} right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum {sub H} left angle H{sup †} x {sub H} H right angle ≠ 0, radiatively generated m{sub ν} can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY{sub EWS} contributions). We point out that recent literature overlooks pure-SUSY{sub EWSB} contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY{sub EWS}. We show that there exist realistic radiative seesaw models in which the leading order contribution to m{sub ν} is proportional to SUSY{sub EWS}. To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m{sub soft}/M{sup 3} or m{sub soft}{sup 2}/M{sup 3}. We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m{sub ν} can be quite small without conflicting with lower limits on the mass of new particles. (orig.)

  3. Quench limits

    International Nuclear Information System (INIS)

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  4. The phantom menace. Determination of the true Method Detection Limit (MDL) for background levels of PCDDs, PCDFs, and cPCBs in human serum by high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.; Welch, S.; DiPietro, E.; Cash, T.; McClure, C.; Needham, L.; Patterson, D. [CDC/ATSDR, Atlanta, GA (United States)

    2004-09-15

    The recent worldwide decline in background serum levels of polychlorinated dibenzo-p-dioxins, furans, and coplanar biphenyls (PCDDs/PCDFs/cPCBs) is unquestionably an important finding. However, as serum levels continue to diminish, our analytical methods for measuring these toxicants will continue to be ''pushed to their limit''. In a previous article, we investigated some of the variables that influence the quantification of ''ultra-trace'' (fg/g) concentrations of PCDDs/PCDFs and cPCBs in human serum. In this report, we continue to explore parameters that can affect the determination of the ''true'' detection limit of our method (MDL), using both analytical standards and matrix-based samples.

  5. Radiation-induced DNA strand breaks and the relationship between strand breaks and fecundity in mosquitofish

    International Nuclear Information System (INIS)

    Mosquitofish (Gambusia affines) were collected from a small pond on the US DOE reservation that is contaminated with 137Cs, 90Sr and other radionuclides. Fish from non-contaminated populations were also collected. DNA was isolated from both the liver and the blood and examined for DNA single- and double-strand breaks by gel electrophoresis. In general, both single- and double-strand DNA breaks were more prevalent in fish from radionuclide-contaminated sites than from uncontaminated sites. In addition, there were more double-strand than single-strand breaks in DNA from contaminated fish, and more strand breaks in blood cell than in liver DNA. Also, fecundity and number of malformed embryos were determined in fish from all sites. It was found that, for fish from the contaminated site, the number of DNA strand breaks was negatively correlated with fecundity, and that females with malformed embryos in their broods had more DNA strand breaks than did females with no malformed embryos. These findings have implications for both ecological risk assessment and evolutionary ecology

  6. Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements

    Science.gov (United States)

    Efon, E.; Lenouo, A.; Monkam, D.; Manatsa, D.

    2016-07-01

    High resolution of daily rainfall dataset from the Tropical Rainfall Measuring Mission (TRMM) was used to identify active and break cloud formation periods. The clouds were characterized based on CloudSat-CALIPSO satellite images over West Africa during the summer monsoon during the period 2006-2010. The active and break periods are defined as the periods during the peak monsoon months of June to August when the normalized anomaly of rainfall over the monsoon core zone is greater than 0.9 or less than -0.9 respectively, provided the criteria is satisfied for at least three consecutive days. It is found that about 90% of the break period and 66.7% of the active spells lasted 3-4 days. Active spells lasting duration of about a week were observed while no break spell had such a long span. Cloud macrophysical (cloud base height (CBH), cloud top height (CTH) and cloud geometric depth (∆H), microphysical (cloud liquid water content, (LWC), liquid number concentration (LNC), liquid effective radius, ice water content (IWC), ice number concentration (INC) and ice effective radius) and radiative (heating rate properties) over South Central West Africa (5-15°N; 15°W-10°E) during the active and break spells were also analyzed. High-level clouds are more predominant during the break periods compared to the active periods. Active spells have lower INC compared to the break spells. Liquid water clouds are observed to have more radiative forcing during the active than break periods while ice phase clouds bring more cooling effect during the break spells compared to the active spells.

  7. Creating directed double-strand breaks with the Ref protein: a novel RecA-dependent nuclease from bacteriophage P1.

    Science.gov (United States)

    Gruenig, Marielle C; Lu, Duo; Won, Sang Joon; Dulberger, Charles L; Manlick, Angela J; Keck, James L; Cox, Michael M

    2011-03-11

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 Å resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded β-hairpin that is sandwiched between several α-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  8. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    Energy Technology Data Exchange (ETDEWEB)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon; Dulberger, Charles L.; Manlick, Angela J.; Keck, James L.; Cox, Michael M. (UW)

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  9. Dose limits

    International Nuclear Information System (INIS)

    The dose limit is defined to be the level of harmfulness which must not be exceeded, so that an activity can be exercised in a regular manner without running a risk unacceptable to man and the society. The paper examines the effects of radiation categorised into stochastic and non-stochastic. Dose limits for workers and the public are discussed

  10. Limited Neutrality

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul

    2006-01-01

    Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."......Article Concerning the prospect of a kind of limited neutrality in place of the standard liberal egalitarian "neutrality of justification."...

  11. Pulsar Emission above the Spectral Break - A Stacked Approach

    CERN Document Server

    McCann, Andrew

    2015-01-01

    NASA's Fermi space telescope has provided us with a bountiful new population of gamma-ray sources following its discovery of 150 new gamma-ray pulsars. One common feature exhibited by all of these pulsars is the form of their spectral energy distribution, which can be described by a power law followed by a spectral break occurring between $\\sim$1 and $\\sim$8 GeV. The common wisdom is that the break is followed by an exponential cut-off driven by radiation/reaction-limited curvature emission. The discovery of pulsed gamma rays from the Crab pulsar, the only pulsar so far detected at very high energies (E$>$100GeV), contradicts this "cutoff" picture. Here we present a new stacked analysis with an average of 4.2 years of data on 115 pulsars published in the 2nd LAT catalog of pulsars. This analysis is sensitive to low-level $\\sim$100 GeV emission which cannot be resolved in individual pulsars but can be detected from an ensemble.

  12. Quantum phase transitions with parity-symmetry breaking and hysteresis

    Science.gov (United States)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  13. PIRT for large break LOCA mass and energy release calculations

    International Nuclear Information System (INIS)

    Pipe ruptures in the primary reactor coolant system are postulated as part of the design basis for containment integrity and equipment qualification validation for Nuclear Power Plants. The mass and energy (M and E) released from a postulated large break LOCA is the primary forcing function used as input for determining the containment response to a LOCA. The current Westinghouse LOCA M and E release calculation methodology was developed in the 1970's, when computing power was limited. The method is somewhat deterministic and includes several simplified, conservative modeling assumptions. Westinghouse is developing a mechanistic LOCA M and E release accident analysis calculation to more realistically, yet conservatively, model the containment response. A good definition of the key LOCA phenomena is needed as part of this development process. The purpose of this document is to discuss the development of the Phenomena Identification and Ranking Table (PIRT) for large break LOCA M and E release calculations. This paper lists the high ranked phenomena from the PIRT, along with the Transient Phase, and Projected Source of Validating Data. This table is the expert opinion of the selected team and is based upon and is an extension of NRC large LOCA PIRT, which was developed as part of the best estimate (BE) LOCA program for ECCS design basis analysis, the Westinghouse large LOCA PIRT developed for the WCOBRA-TRAC BE LOCA model development program, and the Westinghouse large LOCA PIRT, which was developed to address new components as part of the plant development programs

  14. Breaking seed dormancy of three orthodox Mediterranean Rosaceae species.

    Science.gov (United States)

    Iakovoglou, Valasia; Radoglou, Kalliopi

    2015-03-01

    Biodiversity levels could be enhanced when regenerating a site by seed-derived seedlings. However, seed dormancy poses limitations for many species. As a result, nurseries either produce seedlings from species where dormancy is not an obstacle, or they propagate through cuttings with the risk of decreasing the genetic diversity within and among species at the regenerated sites. In the present study, breaking of seed dormancy was investigated in valuable Mediterranean species of Prunus avium, Prunus spinosa and Rosa canina Specifically, in order to break dormancy, seeds of those species were warm-, cold-stratified and chemically treated. Based on the results, maximum germination for P. avium was 12% when seeds were warm stratified for four weeks altered with eight weeks of cold stratification. For P. spinosa, maximum percent germination was 26% when seeds were warm stratified for two weeks and continuously altered for eight weeks of cold stratification. Finally, for R. canina maximum percent germination was 40% under four weeks of warm stratification altered with twenty weeks of cold stratification, when seeds were pretreated with H2SO4 for 15 min. A maximum of twelve weeks of cold stratification for P. avium, P. spinosa and 20 weeks for R. canina provided almost zero percent germination. The results indicated that all three species experienced intense dormancy levels suggesting that those species need to be treated properly prior to sowing. Nonetheless, additional experiments are needed to achieve greater germination percentage of highly valuable species in orderto encourage seed derived seedling production. PMID:25895254

  15. Cosmological signature change in Cartan Gravity with dynamical symmetry breaking

    CERN Document Server

    Magueijo, Joao; Westman, Hans; Zlosnik, T G

    2013-01-01

    We investigate the possibility for classical metric signature change in a straightforward generalization of the first order formulation of gravity, dubbed "Cartan gravity". The mathematical structure of this theory mimics the electroweak theory in that the basic ingredients are an $SO(1,4)$ Yang-Mills gauge field $A^{ab}_{\\phantom{ab}\\mu}$ and a symmetry breaking Higgs field $V^{a}$, with no metric or affine structure of spacetime presupposed. However, these structures can be recovered, with the predictions of General Relativity exactly reproduced, whenever the Higgs field breaking the symmetry to $SO(1,3)$ is forced to have a constant (positive) norm $V^aV_a$. This restriction is usually imposed "by hand", but in analogy with the electroweak theory we promote the gravitational Higgs field $V^a$ to a genuine dynamical field, subject to non-trivial equations of motion. Even though we limit ourselves to actions polynomial in these variables, we discover a rich phenomenology. Most notably we derive classical cos...

  16. Parity-time symmetry breaking in magnetic systems

    Science.gov (United States)

    Galda, Alexey; Vinokur, Valerii M.

    2016-07-01

    The understanding of out-of-equilibrium physics, especially dynamic instabilities and dynamic phase transitions, is one of the major challenges of contemporary science, spanning the broadest wealth of research areas that range from quantum optics to living organisms. Focusing on nonequilibrium dynamics of an open dissipative spin system, we introduce a non-Hermitian Hamiltonian approach, in which non-Hermiticity reflects dissipation and deviation from equilibrium. The imaginary part of the proposed spin Hamiltonian describes the effects of Gilbert damping and applied Slonczewski spin-transfer torque. In the classical limit, our approach reproduces Landau-Lifshitz-Gilbert-Slonczewski dynamics of a large macrospin. We reveal the spin-transfer torque-driven parity-time symmetry-breaking phase transition corresponding to a transition from precessional to exponentially damped spin dynamics. Micromagnetic simulations for nanoscale ferromagnetic disks demonstrate the predicted effect. Our findings can pave the way to a general quantitative description of out-of-equilibrium phase transitions driven by spontaneous parity-time symmetry breaking.

  17. Symmetry break in ferromagnetic electrocrystallization: the interplay between dipolar interactions and Laplacian growth

    Science.gov (United States)

    Alves, S. G.; Braga, F. L.; Martins, M. L.

    2007-10-01

    Electrochemical ferromagnetic deposits grown under a planar magnetic field exhibit a striking morphological symmetry breaking. The present paper demonstrate through two-dimensional off-lattice simulations of an extended diffusion-limited aggregation (DLA) model that the competition between magnetic dipolar interactions and electric forces can impose locally the experimentally observed angle selection in a two-dimensional extended DLA model. The long-range correlations in the orientation of dipoles interacting with the applied and dipolar fields preserve this order over a macroscopic scale. Hence, the magnetic dipolar interactions alone cannot impose the field-induced symmetry breaking observed in ferromagnetic electrochemical deposition (ECD).

  18. Supersymmetry breaking on the lattice: the N=1 Wess-Zumino model

    CERN Document Server

    Baumgartner, David; Wenger, Urs

    2011-01-01

    We discuss spontaneous supersymmetry breaking in the N=1 Wess-Zumino model in two dimensions on the lattice using Wilson fermions and the fermion loop formulation. In that formulation the fermion sign problem related to the vanishing of the Witten index can be circumvented and the model can be simulated very efficiently using the recently introduced open fermion string algorithm. We present first results for the supersymmetry breaking phase transition and sketch the preliminary determination of a renormalised critical coupling in the continuum limit.

  19. Free-surface Flow After a Dam break: A Comparative Study.

    OpenAIRE

    Colicchio, Giuseppina; Colagrossi, Andrea; Greco, Marilena; Landrini, Maurizio

    2001-01-01

    The water flow after the sudden break of a dam is schematically represented as an initially rectangular column of luid supported by a horizontal bottom, limited by a wall on one side and free to evolve on the other one. The flow is characterized by the development of a toungue of liquid quickly spreading along the horizontal boundary without any sign of free-surface breaking. This problem has been widely investigated numerically because, besides its practical meaning, it is a clean test case ...

  20. Multicritical Symmetry Breaking and Naturalness of Slow Nambu-Goldstone Bosons

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2013-01-01

    We investigate spontaneous global symmetry breaking in the absence of Lorentz invariance, and study technical Naturalness of Nambu-Goldstone (NG) modes whose dispersion relation exhibits a hierarchy of multicritical phenomena with Lifshitz scaling and dynamical exponents $z>1$. For example, we find NG modes with a technically natural quadratic dispersion relation which do not break time reversal symmetry and are associated with a single broken symmetry generator, not a pair. The mechanism is protected by an enhanced `polynomial shift' symmetry in the free-field limit.

  1. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    Science.gov (United States)

    Koliesnik, M. V.; Krivenko-Emetov, Ya D.; Magner, A. G.; Arita, K.; Brack, M.

    2015-11-01

    We have derived an analytical trace formula for the level density of the Hénon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semiclassical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  2. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    CERN Document Server

    Koliesnik, M V; Magner, A G; Arita, K; Brack, M

    2014-01-01

    We have derived an analytical trace formula for the level density of the H\\'enon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semi- classical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  3. Fractional Branes and Dynamical Supersymmetry Breaking

    CERN Document Server

    Franco, S; Saad, F; Uranga, Angel M; Franco, Sebastian; Hanany, Amihay; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We study the dynamics of fractional branes at toric singularities, including cones over del Pezzo surfaces and the recently constructed Y^{p,q} theories. We find that generically the field theories on such fractional branes show dynamical supersymmetry breaking, due to the appearance of non-perturbative superpotentials. In special cases, one recovers the known cases of supersymmetric infrared behaviors, associated to SYM confinement (mapped to complex deformations of the dual geometries, in the gauge/string correspondence sense) or N=2 fractional branes. In the supersymmetry breaking cases, when the dynamics of closed string moduli at the singularity is included, the theories show a runaway behavior (involving moduli such as FI terms or equivalently dibaryonic operators), rather than stable non-supersymmetric minima. We comment on the implications of this gauge theory behavior for the infrared smoothing of the dual warped throat solutions with 3-form fluxes, describing duality cascades ending in such field th...

  4. The Radiative Z2 Breaking Twin Higgs

    CERN Document Server

    Yu, Jiang-Hao

    2016-01-01

    In twin Higgs model, the Higgs boson mass is protected by a $Z_2$ symmetry. The $Z_2$ symmetry needs to be broken either explicitly or spontaneously to obtain misalignment between electroweak and new physics vacua. We propose a novel $Z_2$ breaking mechanism, in which the $Z_2$ is spontaneously broken by radiative corrections to the Higgs potential. Two twin Higgses with different vacua are needed, and vacuum misalignment is realized by opposite but comparable contributions from gauge and Yukawa interactions to the potential. Due to fully radiative symmetry breaking, the Higgs sector is completely determined by twin Higgs vacuum, Yukawa and gauge couplings. There are eight pseudo-Goldstone bosons: the Higgs boson, inert doublet Higgs, and three twin scalars. We show the 125 GeV Higgs mass and constraints from Higgs coupling measurements could be satisfied.

  5. Mechanics of breaking coal by water jet

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z.; Xi, B.; Zhao, Y.; Zhao, L. [Taiyuan University of Technology, Taiyuan (China)

    2008-09-15

    It is presumed that the elastic modulus and compressive strength of inhomogeneous rock conform to the Weibull distribution. The methods of breaking inhomogeneous rock by water jet and the threshold pressure of the water jet were deduced using percolation theory. Continuous drilling in the inhomogeneous coal by water jet was numerically simulated by the finite element method and an experiment of breaking coal by water jet was carried out. The study indicated that under the pressure of water jets, the low strength cells in inhomogeneous rock are first destroyed and a crack is created. The effect of a water wedge occurring by the water jet entering the crack space produces a tensile stress concentration at the tip of a crack, so cracks expand rapidly and converge gradually. Eventually the rock is fragmented and a cracked pit forms. The length of a crack in coal caused by a water jet at 60 MPa is over 0.5 m. 8 refs., 6 figs.

  6. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  7. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs

  8. Symmetry breaking in non conservative systems

    CERN Document Server

    Martínez-Pérez, N E

    2016-01-01

    We apply Noether's theorem to show how the invariances of conservative systems are broken for nonconservative systems, in the variational formulation of Galley. This formulation considers a conservative action, extended by the inclusion of a time reversed sector and a nonconservative generalized potential. We assume that this potential is invariant under the symmetries of the initial conservative system. The breaking occurs because the time reversed sector requires inverse symmetry transformations, under which the nonconservative potential is not invariant. The resulting violation of the conservation laws is consistent with the equations of motion. We generalize this formulation for fermionic and sypersymmetric systems. In the case of a supersymmetric oscillator, the effect of damping is that the bosonic and fermionic components become different frequencies. Considering that initially the nonconservative action is invariant under supersymmetry, and that the breaking is associated to an instability, this resul...

  9. Nuclear break-up of 11Be

    CERN Document Server

    Lima, V; Lacroix, D; Blumenfeld, Y; Bourgeois, C; Chabot, M; Chomaz, Ph; Désesquelles, P; Duflot, V; Duprat, J; Fallot, M; Frascaria, N; Grévy, S; Guillemaud-Müller, D; Roussel-Chomaz, P; Savajols, H; Sorlin, O

    2007-01-01

    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied.

  10. Isospin breaking in octet baryon mass splittings

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics

    2012-06-15

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.

  11. Isospin breaking in octet baryon mass splittings

    International Nuclear Information System (INIS)

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.

  12. Collective neutrino oscillations and spontaneous symmetry breaking

    Science.gov (United States)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  13. Collective neutrino oscillations and spontaneous symmetry breaking

    CERN Document Server

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  14. Spontaneous symmetry breaking in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Helesfai, G [Institute for Theoretical Physics, Eoetvoes University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)], E-mail: heles@manna.elte.hu

    2008-12-07

    In this paper we investigate the question of how spontaneous symmetry breaking works in the framework of loop quantum gravity and compare it to the results obtained in the case of the Proca field, where we were able to quantize the theory in loop quantum gravity without introducing a Higgs field. We obtained that the Hamiltonian of the two systems is very similar, the only difference is an extra scalar field in the case of spontaneous symmetry breaking. This field can be identified as the field that carries the mass of the vector field. In the quantum regime this becomes a well-defined operator, which turns out to be a self-adjoint operator with continuous spectrum. To calculate the spectrum we used a new representation in the case of scalar fields, which in addition enabled us to rewrite the constraint equations to a finite system of linear partial differential equations. This made it possible to solve part of the constraints explicitly.

  15. Large eddy simulation of breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Deigaard, Rolf

    2001-01-01

    the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved......A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence...... is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations...

  16. Boost Breaking in the EFT of Inflation

    CERN Document Server

    Delacretaz, Luca V; Senatore, Leonardo

    2015-01-01

    If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. In this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to $\\sqrt{2}H$ in the vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.

  17. Music and Video Gaming during Breaks

    OpenAIRE

    Liu, Shuyan; Schad, Daniel J.; Kuschpel, Maxim S.; Michael A Rapp; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adult...

  18. Wave breaking in tapered holey fibers

    Institute of Scientific and Technical Information of China (English)

    Shuguang Li; Lei Zhang; Bo Fu; Yi Zheng; Ying Han; Xingtao Zhao

    2011-01-01

    We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs). The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively. The central wavelength, located in the normal dispersion regime, is 800 nm. The nonlinear coefficient of the THFs increases from the initial 0.095 m-1· W-1 to the final 0.349 m-l·W-1. Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum. With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens. A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super fiat spectra at short lengths.%@@ We numerically study the propagation of 1-ps laser pulse in three tapered holey fibers (THFs).The curvature indices of the concave, linear, and convex tapers are 2.0, 1.0, and 0.5, respectively.The central wavelength, located in the normal dispersion regime, is 800 nm.The nonlinear coefficient of the THFs increases from the initial 0.095 m-1.W-1 to the final 0.349 m-1.W-1.Wave breaking accompanied by oscillatory structures occurs near pulse edges, and sidelobes appear in the pulse spectrum.With the increase in propagation distance z, the pulse shape becomes broader and the pulse spectrum flattens.A concave THF is advantageous to the generation of wave breaking and enables easier achievement of super flat spectra at short lengths.

  19. Soft branes in supersymmetry-breaking backgrounds

    OpenAIRE

    McGuirk, Paul; Shiu, Gary; Ye, Fang

    2012-01-01

    We revisit the analysis of effective field theories resulting from non-supersymmetric perturbations to supersymmetric flux compactifications of the type-IIB superstring with an eye towards those resulting from the backreaction of a small number of anti-D3-branes. Independently of the background, we show that the low-energy Lagrangian describing the fluctuations of a stack of probe D3-branes exhibits soft supersymmetry breaking, despite perturbations to marginal operators that were not fully c...

  20. Breaking democracy with non renormalizable mass terms

    CERN Document Server

    Silva-Marcos, Joaquim I

    2001-01-01

    The exact democratic structure for the quark mass matrix, resulting from the action of the family symmetry group $A_{3L}\\times A_{3R}$, is broken by the vacuum expectation values of heavy singlet fields appearing in non renormalizable dimension 6 operators. Within this specific context of breaking of the family symmetry we formulate a very simple ansatz which leads to correct quark masses and mixings.

  1. Flavour Violation in Anomaly Mediated Supersymmetry Breaking

    OpenAIRE

    Allanach, B. C.; Hiller, G; Jones, D. R. T.; Slavich, P.(LPTHE, UPMC Univ. Paris 06, Sorbonne Universités, 4 Place Jussieu, 75252, Paris, France)

    2009-01-01

    32 pages, 8 figures International audience We study squark flavour violation in the anomaly mediated supersymmetry broken (AMSB) minimal supersymmetric standard model. Analytical expressions for the three-generational squark mass matrices are derived. We show that the anomaly-induced soft breaking terms have a decreasing amount of squark flavour violation when running from the GUT to the weak scale. Taking into account inter-generational squark mixing, we work out non-trivial constraint...

  2. Electroweak Symmetry Breaking Beyond the Standard Model

    OpenAIRE

    Bhattacharyya, Gautam

    2012-01-01

    In this talk, I shall address two key issues related to electroweak symmetry breaking. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, I shall first review the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios. I shall then compare and contrast the little Higgs, composite Higgs and the Higgsless models. Finally, I shall summariz...

  3. How does DNA break during chromosomal translocations?

    OpenAIRE

    Nambiar, Mridula; Raghavan, Sathees C.

    2011-01-01

    Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal t...

  4. Supersymmetry breaking made easy, viable, and generic

    CERN Document Server

    Murayama, Hitoshi

    2007-01-01

    The kind of supersymmetry that can be discovered at the LHC must be very much flavor-blind, which used to require very special intelligently designed models of supersymmetry breaking. This led to the pessimism for some in the community that it is not likely for the LHC to discover supersymmetry. I point out that this is not so, because a garden-variety supersymmetric theories actually can do this job.

  5. Monitoring ice break-up on the Mackenzie River using MODIS data

    Directory of Open Access Journals (Sweden)

    P. Muhammad

    2015-05-01

    Full Text Available This study involves the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS Level 3 500 m snow products (MOD/MYD10A1, complemented with 250 m Level 1B data (MOD/MYD02QKM, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013 show that first day ice-off dates are observed between days of year (DOY 115–125 and end DOY 145–155, resulting in average melt durations of about 30–40 days. Floating ice transported northbound could therefore generate multiple periods of ice-on and ice-off observations at the same geographic location. During the ice break-up period, ice melt was initiated by in situ (thermodynamic melt over the drainage basin especially between 61–61.8° N (75–300 km. However, ice break-up process north of 61.8° N was more dynamically driven. Furthermore, years with earlier initiation of the ice break-up period correlated with above normal air temperatures and precipitation, whereas later ice break-up period was correlated with below normal precipitation and air temperatures. MODIS observations revealed that ice runs were largely influenced by channel morphology (islands and bars, confluences and channel constriction. It is concluded that the numerous MODIS daily overpasses possible with the Terra and Aqua polar orbiting satellites, provide a powerful means for monitoring ice break-up processes at multiple geographical locations simultaneously along the Mackenzie River.

  6. Dormancy Breaking in Ormosia arborea Seeds

    Directory of Open Access Journals (Sweden)

    Edilma Pereira Gonçalves

    2011-01-01

    Full Text Available Ormosia arborea is a tree species planted in urban areas and used to restore degraded areas. Its seeds are dormant and propagation is difficult. This study compares different dormancy breaking methods and physiological seed quality and seedling production. The seeds were germinated in sand in the laboratory of the Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil. The following dormancy breaking treatments were applied: control (intact seeds, 100°C water immersion; boiling water immersion followed by 24 hours of soaking; scarification with number 100 and number 50 sandpaper opposite from root emergence; sulfuric acid immersion for 1 hour, 50, 45, and 30 minutes. Seed immersion in 100°C and boiling water did not break the dormancy. The study species showed a greater vigor of seedling when its seeds were submitted to treatments associated with tegument rupturing by sandpaper or sulfuric acid. On the other hand, seed scarification with sulfuric acid for 1 hour, 50, 45, and 30 minutes or sandpaper favored seed germination and vigor.

  7. Piecewise-smooth circle homeomorphisms with several break points

    International Nuclear Information System (INIS)

    We prove that the invariant probability measure of an ergodic piecewise-smooth circle homeomorphism with several break points and the product of the jumps at break points non-trivial is singular with respect to Lebesgue measure.

  8. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  9. Healthy breaks: tasty tips for the under fives

    OpenAIRE

    Public Health Agency

    2014-01-01

    Today the Public Health Agency is launching a new resource pack designed to assist nursery schools and playgroups deliver a healthy breaks scheme.All nursery schools and playgroups in Northern Ireland will receive the pack - 'Healthy breaks for pre-school children' - which includes a poster and information leaflets for parents explaining why a healthy break is so important for pre-school children and some tips and ideas for healthy nutritious breaks.Judith Hanvey, Regional Food in Schools Co-...

  10. FINITE-VOLUME TVD ALGORITHM FOR DAM-BREAK FLOWS IN OPEN CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Wang Jia-song; He You-sheng

    2003-01-01

    A finite-volume Total Variation Diminishing (TVD) scheme is presented for modeling dam-break flows in open channels.This method is used for solving the 2D shallow water equations on arbitrary quadrilateral meshes, based upon a second-order hybrid TVD scheme with an optimum-selected limiter in the space discretization and a two-step Runge-Kutta approach in the time discretization.Verification for a circular dam-break problem is carried out by comparing the present results with others and very good agreement is shown.The present algorithm is then used to predict dam-break flow characteristics in open channels such as in furcated channels.More complicated unsteady flow characteristics in these furcated channels than in the regular channels studied previously can observed in this work.

  11. A study of symmetry breaking in a relativistic Bose gas using the contraction algorithm

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo; Ridgway, Gregory W; Warrington, Neill C

    2016-01-01

    A relativistic Bose gas at finite density suffers from a sign problem that makes direct numerical simulations not feasible. One possible solution to the sign problem is to re-express the path integral in terms of Lefschetz thimbles. Using this approach we study the relativistic Bose gas both in the symmetric phase (low-density) and the spontaneously broken phase (high-density). In the high-density phase we break explicitly the symmetry and determine the dependence of the order parameter on the breaking. We study the relative contributions of the dominant and sub-dominant thimbles in this phase. We find that the sub-dominant thimble only contributes substantially when the explicit symmetry breaking is small, a regime that is dominated by finite volume effects. In the regime relevant for the thermodynamic limit, this contribution is negligible.

  12. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  13. PT-symmetry breaking with divergent potentials: lattice and continuum cases

    CERN Document Server

    Joglekar, Yogesh N; Saxena, Avadh

    2014-01-01

    We investigate the parity- and time-reversal ($\\mathcal{PT}$)-symmetry breaking in lattice models in the presence of long-ranged, non-hermitian, $\\mathcal{PT}$-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile $\\mathcal{PT}$ threshold for an open finite lattice, we show that continuum loss-gain potentials $V_\\alpha(x)\\propto i |x|^\\alpha \\mathrm{sign}(x)$ have a positive $\\mathcal{PT}$-breaking threshold for $\\alpha>-2$, and a zero threshold for $\\alpha\\leq -2$. When $\\alpha<0$ localized states with complex (conjugate) energies in the continuum energy-band occur at higher loss-gain strengths. We investigate the signatures of $\\mathcal{PT}$-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time-scale in the $\\mathcal{PT}$-symmetry broken region.

  14. Establishment of experimental database on dam-breaking problem for validating interface tracking methods

    International Nuclear Information System (INIS)

    In the nuclear engineering fields, a free surface plays an important role, for example, the cover-gas entrainment phenomenon in the FBR core design. There are various numerical techniques of computational fluid dynamics for multiphase flows based on the one-field model, such as a front tracking method, an interface capturing method and so on. A dam breaking problem is often chosen to validate these numerical techniques. As for the validation test, a few experiments of the dam-breaking problem were performed. However, those experimentations were performed for the limited conditions regarding the test section size and the boundary conditions. The dam-breaking experiments in order to establish an experimental database for validating the interface tracking method have been carried out by using a high-speed video camera. Then, some numerical simulations based on the MARS (Multi-interfaces Advection and Reconstruction Solver)(Kunugi, 2001) were performed and its results were compared to this experimental database. (author)

  15. Phenomenological approach to symmetry breaking pattern of democratic mass matrix

    CERN Document Server

    Harada, J

    2002-01-01

    We investigate the symmetry breaking pattern of the democratic mass matrix model, which leads to the small flavor mixing in quark sector and bi-large mixing in lepton sector. We present the symmetry breaking matrices in quark sector which are determined by alternative ways instead of conventional ansatz. These matrices might be useful for understanding the origin of democratic symmetry and its breaking.

  16. A strict QCD inequality and mechanisms for chiral symmetry breaking

    International Nuclear Information System (INIS)

    A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)

  17. 24 CFR 982.315 - Family break-up.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Family break-up. 982.315 Section... SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Leasing a Unit § 982.315 Family break-up... assistance in the program if the family breaks up. The PHA administrative plan must state PHA policies on...

  18. 75 FR 80073 - Reasonable Break Time for Nursing Mothers

    Science.gov (United States)

    2010-12-21

    ... Hour Division RIN 1235-ZA00 Reasonable Break Time for Nursing Mothers AGENCY: Wage and Hour Division... Standards Act (FLSA) that requires employers to provide reasonable break time and a place for nursing... considers how best to help employers and employees understand the requirements of the break time for...

  19. Limiting Skepticism

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Symons, John

    2011-01-01

    Skeptics argue that the acquisition of knowledge is impossible given the standing possibility of error. We present the limiting convergence strategy for responding to skepticism and discuss the relationship between conceivable error and an agent’s knowledge in the limit. We argue that the skeptic...... must demonstrate that agents are operating with a bad method or are in an epistemically cursed world. Such demonstration involves a significant step beyond conceivability and commits the skeptic to potentially convergent inquiry...

  20. Boundary and analytic attitude: reflections on a summer holiday break.

    Science.gov (United States)

    Wright, Susanna

    2016-06-01

    The effect of a boundary in analytic work at the summer holiday break is discussed in relation to archetypal experiences of exclusion, loss and limitation. Some attempts by patients to mitigate an analyst's act of separation are reviewed as enactments, and in particular the meanings of a gift made by one patient. Analytic attitude towards enactment from within different schools of practice is sketched, with reference to the effect on the analyst of departing from the received practice of their own allegiance. A theory is adumbrated that the discomfort of 'contravening the rules' has a useful effect in sparking the analyst into consciousness, with greater attention to salient features in an individual case. Interpretation as an enactment is briefly considered, along with the possible effects of containing the discomfort of a patient's enactment in contrast to confronting it with interpretation. PMID:27192364

  1. Search for R-Parity Breaking Sneutrino Exchange at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We report on a search for R--parity breaking effects due to supersymmetric tau--sneutrino exchange in the reactions e+e- to e+e- and e+e- to mu+mu- at centre--of--mass energies from 91~{\\GeV} to 172~{\\GeV}, using the L3 detector at LEP. No evidence for deviations from the Standard Model expectations of the measured cross sections and forward--backward asymmetries for these reactions is found. Upper limits for the couplings $\\lambda_{131}$ and $\\lambda_{232}$ for sneutrino masses up to $m_{\\SNT} \\leq 190~\\GeV$ are determined from an analysis of the expected effects due to tau sneutrino exchange.

  2. Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity

    CERN Document Server

    Bonanno, Alfio

    2012-01-01

    The scaling properties of quantum gravity are discussed by employing a class of proper-time regulators in the functional flow equation for the conformal factor within the formalism of the background field method. Renormalization group trajectories obtained by projecting the flow on a flat topology are more stable than those obtained from a projection on a spherical topology. In the latter case the ultraviolet flow can be characterized by a Hopf bifurcation with an ultraviolet attractive limiting cycle. Although the possibility of determining the infrared flow for an extended theory space can be severely hampered due to the conformal factor instability, we present a robust numerical approach to study the flow structure around the non-gaussian fixed point as an inverse-problem strategy. In particular it is shown the possibility of having a spontaneous breaking of the diffeomorphism invariance can be realized with non-local functionals of the volume operator.

  3. Micropropulsion and microrheology in complex fluids via symmetry breaking

    CERN Document Server

    Pak, On Shun; Brandt, Luca; Lauga, Eric; 10.1063/1.4758811

    2013-01-01

    Many biological fluids have polymeric microstructures and display non-Newtonian rheology. We take advantage of such nonlinear fluid behavior and combine it with geometrical symmetry-breaking to design a novel small-scale propeller able to move only in complex fluids. Its propulsion characteristics are explored numerically in an Oldroyd-B fluid for finite Deborah numbers while the small Deborah number limit is investigated analytically using a second-order fluid model. We then derive expressions relating the propulsion speed to the rheological properties of the complex fluid, allowing thus to infer the normal stress coefficients in the fluid from the locomotion of the propeller. Our simple mechanism can therefore be used either as a non-Newtonian micro-propeller or as a micro-rheometer.

  4. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  5. Crucial role of neutrinos in the electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Adam [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00 Prague 2 (Czech Republic)

    2013-12-30

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  6. Domain Walls and Vortices in Chiral Symmetry Breaking

    CERN Document Server

    Eto, Minoru; Nitta, Muneto

    2013-01-01

    We study domain walls and vortices in chiral symmetry breaking in QCD with N flavors in the chiral limit. If the axial anomaly was absent, there exist stable Abelian axial vortices winding around the spontaneously broken U(1)_A symmetry and non-Abelian axial vortices winding around both the U(1)_A and non-Abelian SU(N) chiral symmetries. In the presence of the axial anomaly term, metastable domain walls are present and Abelian axial vortices must be attached by N domain walls, forming domain wall junctions. We show that a domain wall junction decays into N non-Abelian vortices attached by domain walls, implying its metastability. We also show that domain walls decay through the quantum tunneling by creating a hole bounded by a closed non-Abelian vortex.

  7. Resolution in Electromagnetic Prospecting

    Science.gov (United States)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.

    2014-12-01

    Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. The evolution of the break preclusion concept for nuclear power plants in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    1997-04-01

    In the updating of the Guidelines for PWR`s of the {open_quotes}Reaktor-Sicherheitskommission{close_quotes} (RSK) in 1981 the requirements on the design have been changed with respect to the postulated leaks and breaks in the primary pressure boundary. The major change was a revision in the requirements for pipe whip protection. As a logical consequence of the {open_quotes}concept of basic safety{close_quotes} a guillotine type break or any other break type resulting in a large opening is not postulated any longer for the calculation of reaction and jet forces. As an upper limit for a leak an area of 0, 1 A (A = open cross section of the pipe) is postulated. This decision was based on a general assessment of the present PWR system design in Germany. Since then a number of piping systems have been requalified in the older nuclear power plants to comply with the break preclusion concept. Also a number of extensions of the concept have been developed to cover also leak-assumptions for branch pipes. Furthermore due considerations have been given to other aspects which could contribute to a leak development in the primary circuit, like vessel penetrations, manhole covers, flanges, etc. Now the break preclusion concept originally applied to the main piping has been developed into an integrated concept for the whole pressure boundary within the containment and will be applied also in the periodic safety review of present nuclear power plants.

  9. MODELING DAM-BREAK FLOOD OVER NATURAL RIVERS USING DISCONTINUOUS GALERKIN METHOD

    Institute of Scientific and Technical Information of China (English)

    LAI Wencong; KHAN Abdul A.

    2012-01-01

    A well-balanced numerical model is presented for two-dimensional,depth-averaged,shallow water flows based on the Discontinuous Galerkin (DG) method.The model is applied to simulate dam-brcak flood in natural rivers with wet/dry bed and complex topography.To eliminate numerical imbalance,the pressure force and bed slope terms are combined in the shallow water flow equations.For partially wet/dry elements,a treatment of the source term that preserves the well-balanced property is presented.A treatment for modeling flow over initially dry bed is presented.Numerical results show that the time step used is related to the dry bed criterion.The intercell numerical flux in the DG method is computed by the Harten-Lax-van Contact (HLLC) approximate Riemann solver.A two-dimensional slope limiting procedure is employed to prevent spurious oscillation.The robustness and accuracy of the model are demonstrated through several test cases,including dam-break flow in a channel with three bumps,laboratory dam-break tests over a triangular bump and an L-shape bend,dam-break flood in the Paute River,and the Malpasset dam-break case.Numerical results show that the model is robust and accurate to simulate dam-break flood over natural rivers with complex geometry and wet/dry beds.

  10. Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality.

    Science.gov (United States)

    Dallas, V; Alexakis, A

    2013-12-01

    We investigate the evolution and stability of a decaying magnetohydrodynamic Taylor-Green flow, using pseudospectral simulations with resolutions up to 2048(3). The chosen flow has been shown to result in a steep total energy spectrum with power law behavior k(-2). We study the symmetry breaking of this flow by exciting perturbations of different amplitudes. It is shown that for any finite amplitude perturbation there is a high enough Reynolds number for which the perturbation will grow enough at the peak of dissipation rate resulting in a nonlinear feedback into the flow and subsequently break the Taylor-Green symmetries. In particular, we show that symmetry breaking at large scales occurs if the amplitude of the perturbation is σ(crit)∼Re(-1) and at small scales occurs if σ(crit)∼Re(-3/2). This symmetry breaking modifies the scaling laws of the energy spectra at the peak of dissipation rate away from the k(-2) scaling and towards the classical k(-5/3) and k(-3/2) power laws.

  11. Sparticle spectrum and constraints in anomaly mediated supersymmetry breaking models

    CERN Document Server

    Huitu, K; Pandita, P N

    2002-01-01

    We study in detail the particle spectrum in anomaly mediated supersymmetry breaking models in which supersymmetry breaking terms are induced by super-Weyl anomaly. We investigate the minimal anomaly mediated supersymmetry breaking models, gaugino assisted supersymmetry breaking models, as well as models with additional residual non-decoupling D-term contributions due to an extra U(1) gauge symmetry at high energy scale. We derive sum rules for the sparticle masses in these models which can help in differentiating between them. We also obtain the sparticle spectrum numerically, and compare and contrast the results so obtained for the different types of anomaly mediated supersymmetry breaking models.

  12. Fuel breaks affect nonnative species abundance in Californian plant communities

    Science.gov (United States)

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  13. LARGE EDDY SIMLIATION WAVE BREAKING OVER MUDDY SEABED

    Institute of Scientific and Technical Information of China (English)

    HU Yi; NIU Xiao-jing; YU Xi-ping

    2012-01-01

    The Large Eddy Simulation (LES) of the wave breaking over a muddy seabed is carried out with a Coupled Level Set and Volume Of Fluid (CLSVOF) method to capture the interfaces.The effects of the mud on the wave breaking are studied.The existence of a mud layer beneath an otherwise rigid bottom is found to have a similar effect as an increase of the water depth.As compared with the case of a simple rigid bottom,the inception of the wave breaking is evidently delayed and the breaking intensity is mnch reduced.The dissipation of the wave energy is shown to have very different rates before,during and after the breaking.Before and after the breaking,the mud plays an important role.During the breaking,however,the turbulence as well as the entrainment of the air also dissipate a large amount of energy.

  14. On inflation, cosmological constant, and SUSY breaking

    CERN Document Server

    Linde, Andrei

    2016-01-01

    We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer $S$ and the inflaton $\\Phi$, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields $S$ and $\\Phi$ a small term depending on a nilpotent chiral superfield $P$ one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.

  15. Insight into Phenomena of Symmetry Breaking Bifurcation

    Institute of Scientific and Technical Information of China (English)

    FANG Tong; ZHANG Ying

    2008-01-01

    @@ We show that symmetry-breaking (SB) bifurcation is just a transition of different forms of symmetry, while still preserving system's symmetry. SB bifurcation always associates with a periodic saddle-node bifurcation, identifiable by a zero maximum of the top Lyapunov exponent of the system. In addition, we show a significant phase portrait of a newly born periodic saddle and its stable and unstable invariant manifolds, together with their neighbouring flow pattern of Poincaré mapping points just after the periodic saddle-node bifurcation, thus gaining an insight into the mechanism of SB bifurcation.

  16. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  17. Breaking of Cooper pairs in 108Pd

    Science.gov (United States)

    Rahmatinejad, A.; Kakavand, T.; Razavi, R.

    2016-04-01

    In this paper, breaking of Cooper pairs in 108Pd is investigated within the canonical ensemble framework and the BCS model. Our results show an evidence of two phase transitions, which are related to neutron and proton systems. Also, with consideration of pairing interaction, the role of neutron and proton systems in entropy, spin cutoff parameter and as a result in the moment of inertia are investigated. The results show minor role for the proton system at low temperatures and approximately equal roles for both neutron and proton systems after the critical temperature. Good agreement was observed between obtained results and the experimental data.

  18. NASA Shared Services Center breaks ground

    Science.gov (United States)

    2006-01-01

    NASA officials and elected leaders were on hand for the groundbreaking ceremony of the NASA Shared Services Center Feb. 24, 2006, on the grounds of Stennis Space Center. The NSSC provides agency centralized administrative processing, human resources, procurement and financial services. From left, Louisiana Economic Development Secretary Mike Olivier, Stennis Space Center Director Rick Gilbrech, Computer Sciences Corp. President Michael Laphen, NASA Deputy Administrator Shana Dale, Rep. Gene Taylor, Sen. Trent Lott, Mississippi Gov. Haley Barbour, NASA Administrator Mike Griffin and Shared Services Center Executive Director Arbuthnot use golden shovels to break ground at the site.

  19. De Sitter uplift with Dynamical Susy Breaking

    Science.gov (United States)

    Retolaza, Ander; Uranga, Angel

    2016-04-01

    We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family SU(5) DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.

  20. De Sitter Uplift with Dynamical Susy Breaking

    CERN Document Server

    Retolaza, Ander

    2015-01-01

    We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family $SU(5)$ DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.

  1. Percolation picture of nucleus break-up

    International Nuclear Information System (INIS)

    The production of nuclear fragments in multifragmentation and spallation reactions is viewed as a percolation phenomenon. A model of nuclear percolation is proposed. The criteria for linkage of nucleons to a cluster are defined in real and momentum spaces. In addition, ''compactness'' conditions are imposed to the clusters in both spaces. This model behaves in many respects as a two-dimensional site percolation model, exhibiting a rather well defined percolation threshold at psub(c) approximately 0.6. The concentration p is related to the number of fast particles leaving the nuclear volume. We discuss possible experimental signatures of this new break-up mechanism

  2. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  3. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2012-10-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011.

  4. Break WEP Faster with Statistical Analysis

    OpenAIRE

    Chaabouni, Rafik

    2006-01-01

    The Wired Equivalent Protocol is nowadays considered as unsafe. However the only academic research that tries to break WEP has been done by Fluhrer, Mantin and Shamir, who have published a report on a specific attack. Nevertheless, an unknown person under the pseudonym Korek has published 17 attacks, which are now used by both AirCrack and WepLab. For a network with average load traffic, the FMS attack would need roughfly 40 days in order to find the key (4 millions packets needed), whereas K...

  5. Extraordinary transmission caused by symmetry breaking

    CERN Document Server

    Hu, Dan; Liu, Ming; Zhang, Yan

    2011-01-01

    The terahertz transmission properties of H-shaped annular apertures arrays (AAAs) are investigated experimentally and numerically. It is found the only odd order resonances mode are observed in the symmetrical structures but both odd and even order resonances can be shown in the asymmetrical structures. Breaking the symmetry in H- shaped AAAs by gradual displacing from H-shaped to U-shaped AAAs allows an intensity modulation depth of 99% of the second order resonance. Simulation results verify the experimental conclusion well. This result provides a tremendous opportunities for terahertz wavelength tunable filters, sensing, and near-field imaging.

  6. Rotation Breaking Induced by ELMs on EAST

    DEFF Research Database (Denmark)

    Xiong, H.; Xu, G.; Sun, Y.;

    Spontaneous rotation has been observed in LHCD H-mode plasmas with type III ELMs (edge localized modes) on EAST, and it revealed that type III ELMs can induce the loss of both core and edge toroidal rotation. Here we work on the breaking mechanism during the ELMs. Several large tokamaks have...... of magnetic surface, thus generate NTV (neoclassical toroidal viscosity) torque that affects toroidal rotation. We adopt 1cm maximum edge magnetic surface displacement from experimental observation, and our calculation shows that the edge torque is about 0.35 N/m2, and the core very small. The expected...

  7. Postmodernism and Consumer Psychology: Transformation or Break?

    Directory of Open Access Journals (Sweden)

    Manel Hamouda

    2012-01-01

    Full Text Available The research’s aim is to identify the postmodern consumer characteristics. Studied through its main conditions (Hyperreality, Fragmentation, Decentered subject, Reversal of production and consumption and Paradoxical juxtaposition of opposites, postmodernism seems to affect some psychological traits of the consumer (Materialism, social desirability, locus of control and social identity. We tried to generate a number of assumptions. The check of these assumptions could answer us whether these psychological characteristics have been radically influenced by postmodernism and in this case, the consumer would have undergone a break or the effect is partial and it is only a simple transformation within the consumer.

  8. Spontaneous symmetry breaking in a classical particle

    CERN Document Server

    Sánchez, L A; Sanchez, Luis Alberto; Mahecha, Jorge

    2003-01-01

    Due to the fact that only matter fields have phase, frequently is believed that the gauge principle can induce gauge fields only in quantum systems. But this is not necessary. This paper, of pedagogical scope, presents a classical system constituted by a particle in a classical potential, which is used as a model to illustrate the gauge principle and the spontaneous symmetry breaking. Those concepts appear in the study of second order phase transitions. Ferroelectricity, ferromagnetism, superconductivity, plasmons in a free electron gas, and the mass of vector bosons in the gauge field Yang-Mills theories, are some of the phenomena in which these transitions occur.

  9. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  10. New Mechanisms For Transmission Of Supersymmetry Breaking

    CERN Document Server

    Ng, S P

    2004-01-01

    We considered new mechanisms for transmission of supersymmetry breaking and their phenomenological consequences. Specifically, we investigated the scalar mass corrections via five-dimensional supergravity loops and explored the possibility that supersymmetry is an accidental symmetry of Nature. We find that both these lead to phenomenologically viable scenarios. In the former, the negative slepton mass-squared masses arising from minimal anomaly mediation is cured. In the latter, which constitutes a paradigm shift, we find a more natural framework for low-energy supersymmetry than the conventional picture.

  11. Neutrinoless double $\\beta$ decay in Supersymmetry with bilinear R-parity breaking

    CERN Document Server

    Hirsch, M

    1999-01-01

    We reanalyze the contributions to neutrinoless double beta ($\\znbb$) decay from supersymmetry with explicit breaking of R-parity. Although we keep both bilinear and trilinear terms, our emphasis is put on bilinear R-parity breaking terms, because these mimic more closely the models where the breaking of R-parity is spontaneous. Comparing the relevant Feynman diagrams we conclude that the usual mass mechanism of double beta decay is the dominant one. From the non-observation of $\\znbb$ decay we set limits on the bilinear R-parity breaking parameters of typically a (few) 100 $keV$. Despite such stringent bounds, we stress that the magnitude of R-parity violating phenomena that can be expected at accelerator experiments can be very large, since they involve mainly the third generation, while $\\znbb$ decay constrains only the first generation couplings. We find that even in the limit when neutrinos are massless at tree-level, $\\znbb$ decay gives useful constraints on bilinear parameters through the finite neutral...

  12. Stable clustering and the resolution of dissipationless cosmological N-body simulations

    CERN Document Server

    Benhaiem, David; Labini, Francesco Sylos

    2016-01-01

    The determination of the resolution of cosmological N-body simulations, i.e., the range of scales in which quantities measured in them represent accurately the continuum limit, is an important open question. We address it here using scale-free models, for which self-similarity provides a powerful tool to control resolution. Such models also provide a robust testing ground for the so-called stable clustering approximation, which gives simple predictions for them. Studying large N-body simulations of such models with different force smoothing, we find that these two issues are in fact very closely related: our conclusion is that resolution in the non-linear regime extends, in practice, down to the scale at which stable clustering breaks down. Physically the association of the two scales is in fact simple to understand: stable clustering fails to be a good approximation when there are strong interactions of structures (in particular merging) and it is precisely such non-linear processes which are sensitive to fl...

  13. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry

    Science.gov (United States)

    Lehmann, Peter; Tereschenko, Stanislav; Xie, Weichang

    2016-06-01

    We discuss the height and lateral resolution that can be achieved in vertical scanning white-light interferometry (SWLI). With respect to interferometric height resolution, phase-shifting interferometry (PSI) is assumed to provide the highest accuracy. However, if the noise dependence of SWLI phase evaluation and PSI algorithms is considered, SWLI measurements can be shown to be more precise. With respect to lateral resolution, the determination of the coherence peak position of SWLI signals seems to lead to better results compared to phase based-interferometric measurements. This can be attributed to the well-known batwing effect. Since batwing is a nonlinear effect applying nonlinear filters, e.g. a median filter, it reduces them significantly. If filtering is applied prior to the fringe order determination and phase evaluation, the number of artefacts known as ghost steps can be eliminated without changing the modulus of the phase. Finally, we discuss the dependence of measured height values on surface slope. We show that in interference microscopy there are additional limitations which are more rigid compared to the maximum surface slope angle resulting from the numerical aperture of the objective lens. As a consequence, the measurement precision breaks down at slope changes of steeper flanks even if the modulation depth of the interference signals is still good enough for signal analysis.

  14. Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Wigard P. Kloosterman

    2012-06-01

    Full Text Available Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.

  15. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  16. Hyperscaling violation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: pelander@purdue.edu [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lawrance, Robert; Piai, Maurizio [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2015-08-15

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV.

  17. Hyperscaling violation and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV

  18. On chiral symmetry breaking, topology and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward

    2014-08-15

    We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.

  19. Chip breaking system for automated machine tool

    Science.gov (United States)

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  20. Retinal breaks due to intravitreal ocriplasmin

    Directory of Open Access Journals (Sweden)

    Silva RA

    2014-08-01

    Full Text Available Ruwan A Silva, Darius M Moshfeghi, Theodore Leng Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, USA Abstract: Ocriplasmin represents a new treatment option for numerous vitreoretinopathies involving an abnormal vitreomacular interface. While the drug may circumvent the traditional risks of surgical treatment, pharmacologic vitreolysis is not devoid of risk itself. This report presents two cases, one of vitreomacular traction syndrome and the other of a full-thickness macular hole, both of which were treated with an intravitreal injection of ocriplasmin. Notably, in both cases, vitreomacular traction of the macula appears to have been alleviated; however, failure to completely relieve vitreoretinal traction from the peripheral retina generated retinal breaks with one patient eventually developing a macula-involving retinal detachment. Thus, even in instances of ‘successful’ pharmacologic treatment of vitreomacular traction, continued follow-up evaluation is essential. Keywords: posterior vitreous detachment, retinal detachment, vitreomacular traction, ocriplasmin, retinal break, macular hole, laser retinopexy

  1. Spitzer View of Lyman Break Galaxies

    CERN Document Server

    Magdis, Georgios E

    2007-01-01

    Using a combination of deep MID-IR observations obtained by IRAC, MIPS and IRS on board Spitzer we investigate the MID-IR properties of Lyman Break Galaxies (LBGs) at z~3, establish a better understanding of their nature and attempt a complete characterisation of the population. With deep mid-infrared and optical observations of ~1000 LBGs covered by IRAC/MIPS and from the ground respectively, we extend the spectral energy distributions (SEDs) of the LBGs to mid-infrared. Spitzer data reveal for the first time that the mid-infrared properties of the population are inhomogeneous ranging from those with marginal IRAC detections to those with bright rest-frame near-infrared colors and those detected at 24mu MIPS band revealing the newly discovered population of the Infrared Luminous Lyman Break Galaxies (ILLBGs). To investigate this diversity, we examine the photometric properties of the population and we use stellar population synthesis models to probe the stellar content of these galaxies. We find that a fract...

  2. Resolution of Reflection Seismic Data Revisited

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Mosegaard, Klaus; Zunino, Andrea

    wavelength of the wavelet within the thin layer. Using a simple thin-layer parameterization Widess (1973) demonstrated that thin layers with thickness less that around λb/8 cannot be resolved from seismic data independent of the noise level. This has results since been widely adopted as a commonly accepted...... lower vertical resolution of reflection seismic data. In the following we will revisit think layer model and demonstrate that there is in practice no limit to the vertical resolution using the parameterization of Widess (1973), and that the vertical resolution is limited by the noise in the data...

  3. On Setting Limits for Supersymmetry

    Science.gov (United States)

    Simeon, Paul; Toback, David

    2004-10-01

    When searching for new particles two separate production mechanisms from the same theory may produce the same final state. For example, in gauge mediated supersymmetry breaking with \\chi^0_1arrow γ tildeG at least two production mechanisms, \\chi^0_1\\chi^±1 and \\chi^0_2\\chi^±_1, can cascade to produce events with two photons and missing transverse energy. If there is no discovery one wants to set the best possible limits. While it seems obvious that the goal is to find the lowest possible cross section limit, one should be careful and focus on excluding the largest amount of parameter space for a theory. We show that the combined cross section limit from both (or all) production mechanisms that produce the same final state is the most sensitive way to attempt to exclude a theory.

  4. Can quantum coherent solar cells break detailed balance?

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-07-21

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  5. Can quantum coherent solar cells break detailed balance?

    International Nuclear Information System (INIS)

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells

  6. Fermion condensates and Lorentz symmetry breaking in strongly-coupled large N gauge theories

    CERN Document Server

    Tomboulis, E T

    2012-01-01

    The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years. Spontaneous LSB, in particular, offers the attractive prospect of the graviton as a Nambu-Golstone boson. Here we consider the question of spontaneous LSB in lattice gauge theories via formation of fermion condensates in the strong coupling and large N limits. We employ naive massless fermions in a fermionic hopping expansion in the presence of sources coupled to various condensate operators of interest. The expansion is resumed in the large N limit in two equivalent ways: (i) direct resummation of all leading N graphs; and (ii) construction of the corresponding large N effective action for composite operators. When sources are turned off a variety of fermionic condensates is found to persist. These include the chiral symmetry breaking condensates, thus recovering previous results; but also some LSB condensates, in particular, axial vector and rank-2 tensor condensates. Furthermore, in the presence of inte...

  7. Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?

    CERN Document Server

    Tomboulis, E T

    2010-01-01

    The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We apply techniques that have previously been used to correctly predict the formation of chiral symmetry breaking condensates in this limit. Generalizing such methods to other composite operators we find that certain LSB condensates can indeed form. In addition, the interesting possibility arises of condensates that 'lock' internal with external symmetries.

  8. A Compact Starburst Core in the Dusty Lyman Break Galaxy Westphal-MD11

    CERN Document Server

    Baker, A J; Lehnert, M D; Lutz, D; Tacconi, L J; Baker, Andrew J.; Tacconi, Linda J.; Genzel, Reinhard; Lutz, Dieter

    2004-01-01

    Using the IRAM Plateau de Bure Interferometer, we have searched for CO(3-2) emission from the dusty Lyman break galaxy Westphal-MD11 at z = 2.98. Our sensitive upper limit is surprisingly low relative to the system's 850 um flux density and implies a far-IR/CO luminosity ratio as elevated as those seen in local ultraluminous mergers. We conclude that the observed dust emission must originate in a compact structure radiating near its blackbody limit and that a relatively modest molecular gas reservoir must be fuelling an intense nuclear starburst (and/or deeply buried active nucleus) that may have been triggered by a major merger. In this regard, Westphal-MD11 contrasts strikingly with the lensed Lyman break galaxy MS1512-cB58, which is being observed apparently midway through an extended episode of more quiescent disk star formation.

  9. Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma

    CERN Document Server

    Mukherjee, Arghya

    2016-01-01

    The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...

  10. Patterns of chiral symmetry breaking and a candidate for a C-theorem in four dimensions

    CERN Document Server

    Levinsen, J

    2002-01-01

    We test a candidate for a four-dimensional C-function. This is done by considering all asymptotically free, vectorlike gauge theories with N_f flavors and fermions in arbitrary representations of any simple Lie group. Assuming spontaneous breaking of chiral symmetry in the infrared limit and that the value of the C-function in this limit is determined by the number of Goldstone bosons, we find that only in the case of a theory with two colors and fermions in one single pseudo-real representation of SU(2) the C-theorem seems to be violated. Conversely, this might also be a sign of new constraints, restricting the number of flavors consistent with spontaneous chiral symmetry breaking. For all other groups and representations we find that this candidate C-function decreases along the renormalization group flow.

  11. Statistical model on the surface elevation of waves with breaking

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.

  12. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo M.

    2015-12-11

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  13. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  14. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  15. Gravitino condensation, supersymmetry breaking and inflation

    CERN Document Server

    Houston, N

    2015-01-01

    Motivated by dualistic considerations of the reality of quark condensation in quantum chromodynamics, and the connections of supergravity to the exotic physics of string and M-theory, in this thesis we investigate the dynamical breaking of local supersymmetry via gravitino condensation. We firstly demonstrate non-perturbative gravitino mass generation via this mechanism in flat spacetime, and from this derive the condensate mode wavefunction renormalisation. By then calculating the full canonically normalised one-loop effective potential for the condensate mode about a de Sitter background, we demonstrate that, contrary to claims in the literature, this process may both occur and function in a phenomenologically viable manner. In particular, we find that outside of certain unfortunate gauge choices, the stability of the condensate is intimately tied via gravitational degrees of freedom to the sign of the tree-level cosmological constant. Furthermore, we find that the energy density liberated may provide the n...

  16. Thick brane solitons breaking $Z_2$ symmetry

    CERN Document Server

    Peyravi, Marzieh; Lobo, Francisco S N

    2015-01-01

    New soliton solutions for thick branes in 4 + 1 dimensions are considered in this article. In particular, brane models based on the sine-Gordon (SG), $\\varphi^{4}$ and $\\varphi^{6}$ scalar fields are investigated; in some cases $Z_{2}$ symmetry is broken. Besides, these soliton solutions are responsible for supporting and stabilizing the thick branes. In these models, the origin of the symmetry breaking resides in the fact that the modified scalar field potential may have non-degenerate vacuua and these non-degenerate vacuua determine the cosmological constant on both sides of the brane. At last, in order to explore the particle motion in the neighborhood of the brane, the geodesic equations along the fifth dimension are studied.

  17. Supersymmetry Breaking, Gauge Mediation, and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., New Brunswick, NJ (United States)

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  18. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  19. Medium effect on charge symmetry breaking

    International Nuclear Information System (INIS)

    We examine the nuclear medium effect on charge symmetry breaking (CSB) caused by isospin mixing of two neutral vector mesons interacting with nucleons in the nuclear medium. Isospin mixing is assumed to occur through the transition between isoscalar and isovector mesons. We use a quantum hadrodynamic nuclear model in the mean-field approximation for the meson fields involved. We find that (i) charge symmetry is gradually restored in nuclear matter in β equilibrium as the nucleon density increases; (ii) when the system departs from β equilibrium, CSB is much enhanced because the isospin mixing depends strongly on the nucleon isovector density; (iii) this leads to the symmetry energy coefficient of 32MeV, of which more than 50 percent arises from the mesonic mean fields; (iv) the Nolen-Schiffer anomaly regarding the masses of neighboring mirror nuclei can be resolved by considering these aspects of CSB in nuclear medium. copyright 1997 The American Physical Society

  20. Supersymmetry Breaking, Gauge Mediation, and the LHC

    International Nuclear Information System (INIS)

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  1. Symmetry Breaking And The Nilpotent Dirac Equation

    Science.gov (United States)

    Rowlands, Peter

    2004-08-01

    A multivariate 4-vector representation for space-time and a quaternion representation for mass and the electric, strong and weak charges leads to a nilpotent form of the Dirac equation, which packages the entire physical information available about a fermion state. The nilpotent state vector breaks the symmetry between the strong, electric and weak interactions, by associating their respective charges with vector, scalar and pseudoscalar operators, leading directly to the SU(3) × SU(2)L × U(1) symmetry, and to particle structures and mass-generating states. In addition, the nilpotent Dirac equation has just three solutions for spherically-symmetric distance-dependent potentials, and these correspond once again to those that would be expected for the three interactions: linear for the strong interaction; inverse linear for the electromagnetic; and a harmonic oscillator-type solution, which can be equated with the dipolar annihilation and creation mechanisms of the weak interaction.

  2. Dirac Gauginos in Low Scale Supersymmetry Breaking

    CERN Document Server

    Goodsell, Mark D

    2014-01-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy -- with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  3. Dirac gauginos in low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark D., E-mail: mark.goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Tziveloglou, Pantelis, E-mail: pantelis.tziveloglou@vub.ac.be [Theoretische Natuurkunde and IIHE, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium)

    2014-12-15

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  4. Generic Rigidity for Circle Diffeomorphisms with Breaks

    Science.gov (United States)

    Kocić, Saša

    2016-06-01

    We prove that {C^r}-smooth ({r > 2}) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not {C^{1+\\varepsilon}}-rigid, for any {\\varepsilon > 0}. This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002-2028, 2014), that such maps are generically {C^1}-rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333-361, 1984) that {C^r}-smooth circle diffeomorphisms are generically {C^{r-1-κ}}-rigid, for any {κ > 0}.

  5. Information Content of Spontaneous Symmetry Breaking

    CERN Document Server

    Gleiser, Marcelo

    2012-01-01

    We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially-extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry-breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially-localized, long-lived structures known as oscillons emerge in synchrony and remain until the field reaches equilibrium again. We show that the RCE correlates with the number-density of oscillons, thus offering a quantitative measure of the emergence of nonperturbative spatiotemporal patterns that can be generalized to a variety of physical systems.

  6. Breaking a Dark Degeneracy with Gravitational Waves

    CERN Document Server

    Lombriser, Lucas

    2015-01-01

    We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self acceleration of the model implies a present cosmological tensor mode propagation at 5% less efficient than in general relativity. These discrepancies will be testable with future measurements of gravitational waves emitted by events at cosmological distances. Hence, they can be used to break the dark degeneracy in our current observations between two fundamentally different explanations of cosmic acceleration - a cosmological constant and a scalar-tensor modification of gravity.

  7. Black Holes and Abelian Symmetry Breaking

    CERN Document Server

    Chagoya, Javier; Tasinato, Gianmassimo

    2016-01-01

    Black hole configurations offer insights on the non-linear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarization, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solu...

  8. Applicability of the leak before break concept

    International Nuclear Information System (INIS)

    Within the framework of the IAEA Extrabudgetary Programme on the Safety of WWER-440 Model 230 NPPs, a list of safety issues requiring broad studies of general interest have been agreed upon by an Advisory Group which met in Vienna in September 1990. The information on the status of the issues, and on amount of work already completed and under way in various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Applicability of the Leak Before Break Concept'' presents a comprehensive survey of technical information available in the field and identifies those which require further investigation. 50 refs, 15 figs, 2 tabs

  9. Self-breaking retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Scherubel, G.A.

    1979-02-20

    A subterranean formation is acidized with an acid-in-oil emulsion consisting of an aqueous acidizing solution, an oil, an alkyl C/sub 8/ to C/sub 18/ primary fatty amine, and at least one diethanolamide of at least one C/sub 8/ to C/sub 18/ fatty acid. The present invention is an improved acid-in-oil acidizing emulsion, and acidizing method such as an emulsion, the emulsion being of the type containing an effective amount of at least one C/sub 8/ to C/sub 18/ primary amine as a cationic surfactant to increase the normal reaction. The diethanolamine is a nonionic surfactant which causes the emulsion to break as the acidizing capacity of the emulsion becomes substantially depleted, i.e., spent, on the formation. 41 claims.

  10. Time-symmetry breaking in turbulence

    CERN Document Server

    Jucha, Jennifer; Pumir, Alain; Bodenschatz, Eberhard

    2014-01-01

    In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry. We show here that this irreversibility can be quantified by following the relative motion of several Lagrangian tracers. We find by analytical calculation, numerical analysis and experimental observation that the existence of the energy flux implies that, at short times, two particles separate temporally slower forwards than backwards, and the difference between forward and backward dispersion grows as $t^3$. We also find the geometric deformation of material volumes, surrogated by four points spanning an initially regular tetrahedron, to show sensitivity to the time-reversal with an effect growing linearly in $t$. We associate this with the structure of the strain rate in the flow.

  11. Unit roots, nonlinearities and structural breaks

    DEFF Research Database (Denmark)

    Haldrup, Niels; Kruse, Robinson; Teräsvirta, Timo;

    One of the most influential research fields in econometrics over the past decades concerns unit root testing in economic time series. In macro-economics much of the interest in the area originate from the fact that when unit roots are present, then shocks to the time series processes have a...... persistent effect with resulting policy implications. From a statistical perspective on the other hand, the presence of unit roots has dramatic implications for econometric model building, estimation, and inference in order to avoid the so-called spurious regression problem. The present paper provides a...... selective review of contributions to the field of unit root testing over the past three decades. We discuss the nature of stochastic and deterministic trend processes, including break processes, that are likely to affect unit root inference. A range of the most popular unit root tests are presented and...

  12. Higgsless approach to electroweak symmetry breaking

    CERN Document Server

    Grojean, Christophe

    2007-01-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.

  13. Sandwich-type gated mechanical break junctions

    International Nuclear Information System (INIS)

    We introduce a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport. In contrast to previous gated mechanical break junctions with suspended source-drain electrodes, the devices presented here prevent an electromechanical tuning of the electrode gap by the gate. This significant improvement originates from a direct deposition of the source and the drain electrodes on the gate dielectric. The plasma-enhanced native oxide on the aluminum gate electrode enables measurements at gate voltages up to 1.8 V at cryogenic temperatures. Throughout the bending-controlled tuning of the source-drain distance, the electrical continuity of the gate electrode is maintained. A nanoscale island in the Coulomb blockade regime serves as a first experimental test system for the devices, in which the mechanical and electrical control of charge transport is demonstrated.

  14. Index Conditions of Resolution

    Institute of Scientific and Technical Information of China (English)

    Xiao-Chun Cheng

    2005-01-01

    In this paper, the following results are proved: (1) Using both deletion strategy and lock strategy, resolution is complete for a clause set where literals with the same predicate or proposition symbol have the same index. (2) Using deletion strategy, both positive unit lock resolution and input lock resolution are complete for a Horn set where the indexes of positive literals are greater than those of negative literals. (3) Using deletion strategy, input half-lock resolution is complete for a Horn set.

  15. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite and ...

  16. Dynamical Breaking of Generalized Yang-Mills Theory

    Institute of Scientific and Technical Information of China (English)

    WANGDian-Fu; SONGHe-Shan

    2004-01-01

    The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  17. Dynamical Breaking of Generalized Yang-Mills Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shah

    2004-01-01

    The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  18. Three-Dimensional Simulations of Deep-Water Breaking Waves

    CERN Document Server

    Brucker, Kyle A; Dommermuth, Douglas G; Adams, Paul

    2014-01-01

    The formulation of a canonical deep-water breaking wave problem is introduced, and the results of a set of three-dimensional numerical simulations for deep-water breaking waves are presented. In this paper fully nonlinear progressive waves are generated by applying a normal stress to the free surface. Precise control of the forcing allows for a systematic study of four types of deep-water breaking waves, characterized herein as weak plunging, plunging, strong plunging, and very strong plunging.

  19. Supersymmetric Unification with Radiative Breaking of R-parity

    CERN Document Server

    Romão, J C; Valle, José W F

    1997-01-01

    We show how R-parity can break spontaneously as a result of radiative corrections in unified N=1 supergravity models. We illustrate this with a concrete rank-four unified model, where the spontaneous breaking of R-parity is accompanied by the existence of a physical majoron. We determine the resulting supersymmetric particle mass spectrum and show that R-parity-breaking signals may be detectable at LEP200.

  20. Distributed Decision Making in Combined Vehicle Routing and Break Scheduling

    OpenAIRE

    Meyer, Christoph Manuel; Kopfer, Herbert; Kok, Adrianus Leendert; Schutten, Marco

    2009-01-01

    The problem of combined vehicle routing and break scheduling comprises three subproblems: clustering of customer requests, routing of vehicles, and break scheduling. In practice, these subproblems are usually solved in the interaction between planners and drivers. We consider the case that the planner performs the clustering and the drivers perform the routing and break scheduling. To analyze this problem, we embed it into the framework of distributed decision making proposed by Schneeweiss (...