WorldWideScience

Sample records for breakdown spectroscopy libs

  1. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  2. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  3. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    Science.gov (United States)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  4. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.

  5. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Multari, Rosalie A; Cremers, David A; Dupre, Jo Anne M; Gustafson, John E

    2013-09-11

    The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica , on foods and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.

  6. Laser induced spectroscopy breakdown (LIBS) application to heavy metal detection in soils; Applicazioni della tecnica Laser induced breakdown spectroscopy (LIBS) alla determinazione dei metalli pesanti nei suoli

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Fantoni, R.; Palucci, A.; Ribezzo, S.; Colao, F. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Capitelli, F. [Bari, Univ., Bari (Italy). Dipt. di Biologia e Chimica Agroforestale ed Ambientale

    2000-07-01

    LIBS (Laser induced breakdown spectroscopy) is a new spectroscopic technique suitable to the use in the analysis of samples of environmental interest, such as soils and rocks, and of industrial interest, such as alloys. Results dealing with the application of the technique to heterogeneous soil samples certified by Ispra Joint Research Centre in the contest of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) with an agronomical interest are presented in this report. In the LIBS technique, a high power laser beam is focused onto the sample in order to generate a small volume of plasma at its surface. Emissions from single atomic species are collected by a lens system coupled to an optical fiber bundle, dispersed on a monochromator and analyzed by an iCCD. the identification and the assignment of emission lines relevant to single atomic species allows to determine the sample elemental composition and, after calibration against reference samples, to perform quantitative analysis for a large number of species. This technique requires no sample pre-treatment, a part from eventually compacting powders by mechanical press. This is a considerable advantage with respect to traditional spectroscopic techniques, such as the ICP (Inductively Coupled Plasma) which needs sample mineralization by acid attack. Measurements performed on soil samples by means of the LIBS technique at ENEA Frascati were compared with the results obtained by ICP, which is considered a traditional technique for this kind of analysis. Results showed a general overestimation of the LIBS values with respect to the ICP ones, probably due to differences in lytologic matrix between the analyzed samples and the standard. The phenomenon is usually referred to the matrix effect, which is held responsible for the deviation from linearity between single element concentration and its row intensity. The effect is due to local plasma density variations and limit the correlation between the plasma elemental composition

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  9. Application of laser induced breakdown spectroscopy (LIBS) instrumentation for international safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Lopez, Leon N [Los Alamos National Laboratory; Le, Loan A [Los Alamos National Laboratory; Veirs, D Kirk [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory

    2010-01-01

    Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced

  10. Preliminary study of laser-induced breakdown spectroscopy (LIBS) for a Venus mission

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Z. A. (Zane A.); Cremers, D. A. (David A.); Wiens, R. C. (Roger C.)

    2004-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has been proposed as a candidate analysis system for missions to Mars, asteroids, and recently Venus. This technique has several distinct advantages over other techniques which have been used on past missions (X-Ray fluorescence on Viking 1 and 2, 1976; APXS on Pathfiider, 1997; MER, 2004). Two of the more important advantages LIBS has over other techniques for a mission to Venus is rapid elemental analysis of both high and low Z value elements and stand-off analysis at distances of many meters. Rapid elemental analysis and stand-off analysis are very important to missions to Venus due to the harsh environment at the planet surface. From the Venera missions it is known that on the Venusian surface the pressures are approximately 9.1 MPa (90 atm) and the temperature is near 735 K. For these reasons, the Soviet Venera surface probes had operational lifetimes of less than 2 hours. Currently Venus is the target of one of four missions specifically mentioned for consideration for NASA's New Frontier Program with a launch date of 2010 or earlier. In light of this, it is beneficial to evaluate different analysis methods such as LIBS, which offer to greatly increase the scientific return from such a mission. Currently we have begun to evaluate LIBS detection in an environment with pressures and compositions which are similar to those found on Venus. Although the temperature of Venus ({approx} 735 K) has not been taken into account in these experiments, due to the high temperature of the plasma ({approx}8000 K) signifcant perturbations of excitation characteristics sufficient to affect LIBS analytical capability would not be expected. Previous work, however, has shown that the pressure of the surrounding atmosphere can have a strong effect on the detection of elements in soil. These studies have mainly concentrated on pressures at or below earth ambient pressure, but one study has shown successful results at elevated

  11. A Simple Laser Induced Breakdown Spectroscopy (LIBS) System for Use at Multiple Levels in the Undergraduate Chemistry Curriculum

    Science.gov (United States)

    Randall, David W.; Hayes, Ryan T.; Wong, Peter A.

    2013-01-01

    A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…

  12. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  13. Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Barefield, James E.; Judge, Elizabeth J.; Campbell, Keri R.; Colgan, James P.; Kilcrease, David P.; Johns, Heather M.; Wiens, Roger C.; McInroy, Rhonda E.; Martinez, Ronald K.; Clegg, Samuel M.

    2016-06-01

    Laser induced breakdown spectroscopy (LIBS) is a rapid atomic emission spectroscopy technique that can be configured for a variety of applications including space, forensics, and industry. LIBS can also be configured for stand-off distances or in-situ, under vacuum, high pressure, atmospheric or different gas environments, and with different resolving-power spectrometers. The detection of uranium in a complex geological matrix under different measurement schemes is explored in this paper. Although many investigations have been completed in an attempt to detect and quantify uranium in different matrices at in-situ and standoff distances, this work detects and quantifies uranium in a complex matrix under Martian and ambient air conditions. Investigation of uranium detection using a low resolving-power LIBS system at stand-off distances (1.6 m) is also reported. The results are compared to an in-situ LIBS system with medium resolving power and under ambient air conditions. Uranium has many thousands of emission lines in the 200-800 nm spectral region. In the presence of other matrix elements and at lower concentrations, the limit of detection of uranium is significantly reduced. The two measurement methods (low and high resolving-power spectrometers) are compared for limit of detection (LOD). Of the twenty-one potential diagnostic uranium emission lines, seven (409, 424, 434, 435, 436, 591, and 682 nm) have been used to determine the LOD for pitchblende in a dunite matrix using the ChemCam test bed LIBS system. The LOD values determined for uranium transitions in air are 409.013 nm (24,700 ppm), 424.167 nm (23,780 ppm), 434.169 nm (24,390 ppm), 435.574 nm (35,880 ppm), 436.205 nm (19,340 ppm), 591.539 nm (47,310 ppm), and 682.692 nm (18,580 ppm). The corresponding LOD values determined for uranium transitions in 7 Torr CO2 are 424.167 nm (25,760 ppm), 434.169 nm (40,800 ppm), 436.205 nm (32,050 ppm), 591.539 nm (15,340 ppm), and 682.692 nm (29,080 ppm). The LOD values

  14. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O

    2017-10-01

    The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R2) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis.

    Science.gov (United States)

    Ángel Aguirre, Miguel; Hidalgo, Montserrat; Canals, Antonio; Nóbrega, Joaquim A; Pereira-Filho, Edenir R

    2013-12-15

    This study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation. Some polymeric internal parts in contact with the inner pieces of the mobiles and covered with a special paint presented a strong emission signal for Cr. The white pieces presented mainly Al, Ba and Ti in their composition. Finally, this study developed a procedure for LIBS emission spectra using chemometric strategies and suitable information can be obtained for identification of manufacturer and counterfeit products. In addition, the results obtained can improve the classification for establishing recycling strategies of e-waste. © 2013 Elsevier B.V. All rights reserved.

  16. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    Science.gov (United States)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  17. Determination of the penetration hardness and analysis of stainless steel alloys by means of Laser Induced Breakdown Spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    mohamad Vahid Dastjerdi

    2017-11-01

    Full Text Available A significant feature of alloys is the surfaces hardness that is always accompanied by challenges when it’s measured by common mechanical techniques. In this investigation, we used Laser Induced Breakdown Spectroscopy (LIBS as a replacement method for common mechanical techniques to measure the surfaces hardness of different alloys. After recording the spectrum of alloy samples in order to identify the surface hardness of analyzed sample, K-Nearest Neighbors method (KNN was used and obtained results showed that the LIBS-KNN method can separate and identify the surfaces hardness of samples with precision of 93.3%. In addition, in order to identify the percentage of constituent elements of alloys and their hardness, calibration approach was investigated that showed there is an appropriate linear relation between recorded emission lines from the LIB spectra of sample alloys and the percentage of their constituent elements and also their Vickers hardness numbers. Therefore, According to exclusive advantages of LIBS technique i.e. high speed analysis, non-destructive analysis and being portable, some of available difficulties in conventional mechanical techniques can be removed.

  18. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust.

    Science.gov (United States)

    Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2012-11-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.

  19. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Multari, Rosalie A; Cremers, David A; Scott, Thomas; Kendrick, Peter

    2013-03-13

    In laser-induced breakdown spectroscopy (LIBS), a series of powerful laser pulses are directed at a surface to form microplasmas from which light is collected and spectrally analyzed to identify the surface material. In most cases, no sample preparation is needed, and results can be automated and made available within seconds to minutes. Advances in LIBS spectral data analysis using multivariate regression techniques have led to the ability to detect organic chemicals in complex matrices such as foods. Here, the use of LIBS to differentiate samples contaminated with aldrin, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, chlorpyrifos, and dieldrin in the complex matrices of tissue fats and rendering oils is described. The pesticide concentrations in the samples ranged from 0.005 to 0.1 μg/g. All samples were successfully differentiated from each other and from control samples. Sample concentrations could also be differentiated for all of the pesticides and the dioxin included in this study. The results presented here provide first proof-of-principle data for the ability to create LIBS-based instrumentation for the rapid analysis of pesticide and dioxin contamination in tissue fat and rendered oils.

  20. Comparative Study of Elemental Nutrients in Organic and Conventional Vegetables Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P

    2017-04-01

    In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

  1. Detection of calculus by laser-induced breakdown spectroscopy (LIBS) using an ultra-short pulse laser system (USPL)

    Science.gov (United States)

    Schelle, F.; Brede, O.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the detection of calculus by Laser Induced Breakdown Spectroscopy (LIBS). The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz at an average power of 5 W was used. Employing a focusing lense, intensities of the order of 1011 W/cm2 were reached on the tooth surface. These high intensities led to the generation of a plasma. The light emitted by the plasma was collimated into a fibre and then analyzed by an echelle spectroscope in the wavelength region from 220 nm - 900 nm. A total number of 15 freshly extracted teeth was used for this study. For each tooth the spectra of calculus and cementum were assessed separately. Comprising all single measurements median values were calculated for the whole spectrum, leading to two specific spectra, one for calculus and one for cementum. For further statistical analysis 28 areas of interest were defined as wavelength regions, in which the signal strength differed regarding the material. In 7 areas the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p Laser Induced Breakdown Spectroscopy is well suited as method for a reliable diagnostic of calculus. Further studies are necessary to verify that LIBS is a minimally invasive method allowing a safe application in laser-guided dentistry.

  2. Application of laser-induced breakdown spectroscopy (LIBS) as a tool to determine the origin of 'conflict minerals'

    Science.gov (United States)

    Hark, R. R.; Harmon, R. S.; Remus, J. J.; East, L. J.; Wise, M. A.; Tansi, B. M.; Shughrue, K. M.; Dunsin, K. S.; Liu, C.

    2012-04-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different places of origin for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e. geochemical fingerprint) of a mineral in real-time. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of the 'conflict minerals' columbite-tantalite ("coltan"). Following a successful pilot study of three columbite-tantalite suites from the United States and Canada, a more geographically diverse set of samples from 37 locations worldwide were analyzed using a commercial laboratory LIBS system and a subset of samples also analyzed using a prototype broadband field-portable system. The spectral range from 250-490 nm was chosen for the laboratory analysis to encompass many of the intense emission lines for the major elements (Ta, Nb, Fe, Mn) and the significant trace elements (e.g., W, Ti, Zr, Sn, U, Sb, Ca, Zn, Pb, Y, Mg, and Sc) known to commonly substitute in the columbite-tantalite solid solution series crystal structure and in the columbite group minerals. The field-portable instrument offered an increased spectral range (198-1005 nm), over which all elements have spectral emission lines, and higher resolution than the laboratory instrument. In both cases, the LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial Least Squares Discriminant Analysis (PLSDA) resulted in a correct place-level geographic classification at success rates between 90 and 100%. The possible role of rare-earth elements (REE's) as a factor contributing to the high levels of sample discrimination was explored. Given the fact that it can be deployed as a man-portable analytical technology, these results lend additional evidence that LIBS has the potential to be utilized in the field as a real-time tool to discriminate between columbite-tantalite ores of

  3. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Moncayo, S; Rosales, J D; Izquierdo-Hornillos, R; Anzano, J; Caceres, J O

    2016-09-01

    This work reports on a simple and fast classification procedure for the quality control of red wines with protected designation of origin (PDO) by means of Laser Induced Breakdown Spectroscopy (LIBS) technique combined with Neural Networks (NN) in order to increase the quality assurance and authenticity issues. A total of thirty-eight red wine samples from different PDO were analyzed to detect fake wines and to avoid unfair competition in the market. LIBS is well known for not requiring sample preparation, however, in order to increase its analytical performance a new sample preparation treatment by previous liquid-to-solid transformation of the wine using a dry collagen gel has been developed. The use of collagen pellets allowed achieving successful classification results, avoiding the limitations and difficulties of working with aqueous samples. The performance of the NN model was assessed by three validation procedures taking into account their sensitivity (internal validation), generalization ability and robustness (independent external validation). The results of the use of a spectroscopic technique coupled with a chemometric analysis (LIBS-NN) are discussed in terms of its potential use in the food industry, providing a methodology able to perform the quality control of alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Detection and quantification of a toxic salt substitute (LiCl) by using laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı

    2018-01-01

    The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R(2) and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R(2) of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R(2) of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.

  5. A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012

    Energy Technology Data Exchange (ETDEWEB)

    Radziemski, Leon, E-mail: ljrbwr@comcast.net [Tucson, AZ (United States); Cremers, David [Applied Research Associates Inc., Albuquerque, NM (United States)

    2013-09-01

    LIBS did not appear de novo in 1962, but was built upon accomplishments of the past. These started with very old concepts of indivisible units (atomos), chemical and physical experiments and theoretical advances that took place in the late 19th and early 20th centuries, the development of the laser, the discovery of gas breakdown, and the realization of the application to spectrochemistry. We sketch the historical developments and focus as well on the advances in LIBS methodology and instrumentation over the past 50 years, culminating with a synopsis of the LIBS 2012 Conference in Luxor, Egypt.

  6. STUDI PERBANDINGAN ANALISIS UNSUR PLUMBUM (PB DARI HASIL ELEKTROLISIS ANTARA METODE LASER- INDUCED BREAKDOWN SPECTROSCOPY (LIBS DENGAN METODE KONVENSIONAL

    Directory of Open Access Journals (Sweden)

    H. S. Suyanto

    2014-07-01

    Full Text Available Penelitian ini bertujuan menganalisis unsur Pb hasil proses elektrolisis dengan metode alternatif laser-induced breakdown spectroscopy (LIBS dan metode konvensional. Elektrolisis menggunakan tembaga (Cu sebagai katoda dan karbon sebagai anoda. Unsur Pb yang terdeposisi pada katoda diirradiasi laser Nd-YAG (model CFR 200, 1064nm dan emisinya (Pb I 405.7 nm ditangkap spektrometer HR 2500++ yang kemudian ditampilkan dalam intensitas fungsi panjang gelombang. Hasil penelitian menunjukkan bahwa energi laser, arus listrik dan waktu deposisi proses elektrolisis yang optimum untuk karakterisasi unsur Pb masing - masing adalah 100 mJ, 5,28 mA dan 15 menit. Aplikasi metode ini untuk analisis kuantitatif larutan Pb dengan membuat kurva kalibrasi dari kosentrasi 300 ppm sampai kosentrasi terendah yaitu 0,5 ppm, serta diperoleh deteksi limit sebesar 0,44 ppm. Sebagai perbandingan metode deteksi dengan LIBS ini telah dilakukan analisis dengan metode konvensional dengan menentukan selisih massa katoda sebelum dan sesudah elektrolisis dan diperoleh hasil yang sebanding.ABSTRACTThe aim of this research was to compare between a method of laser-induced breakdown spectroscopy (LIBS and the conventional one to analyse of Plumbum (Pb element resulted from electrolysis process. Electrolysis used copper (Cu and carbon (C as cathode and anode respectively. Plumbum element which was deposited on cathode was irradiated by Nd-YAG laser (model CFR 200, 1064nm and its emission intensity of neutral Pb I 405.7 nm in the plasma was captured by HR 2500++ spectrometer and displayed in a form of intensity as a function of wavelength. The experiment result showed that the optimum condition parameters of electrolysis: laser energy, electric current and electrolysis time duration were 100 mJ, 5.28 mA and 15 minutes respectively. An application of these conditions was done to make calibration curve of Pb element in liquid sample from 300 ppm to 0.5 ppm and resulted a limit of

  7. Laser-Induced Breakdown Spectroscopy (LIBS) Quality Control and Origin Identification of Handmade Manufactured Cigars.

    Science.gov (United States)

    Alvira, Fernando C; Bilmes, Gabriel M; Flores, Teresa; Ponce, Luis

    2015-10-01

    Tobacco is an agricultural product originating in America that is obtained by processing the leaves of various plants of the genus Nicotiana tabacum. It is the inedible product occupying the most plantings in the world, according to a recent report from the United Nations Food and Agriculture Organization. It is consumed in various ways, but the most popular form of consumption is, undoubtedly, by smoking cigarettes. A particular segment of the tobacco industry is the manufacturing of handmade cigars, which for some third-world countries is an important source of income. There are different qualities of cigars, and a major problem is the adulteration that occurs, for example, when authentic high-quality leaves are replaced by lower quality leaves. A factor that influences the quality of the cigars is the smoke combustion process, which depends on several factors, particularly the composition of the leaves. We present a simple and quick technique for the quality control and origin identification of handmade cigars that measures the Mg/Ca ratios in the tobacco leaves and wrappers of the cigars using laser-induced breakdown spectroscopy.

  8. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  9. Measurement of Cerium and Gadolinium in Solid Lithium Chloride-Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Williams, Ammon; Bryce, Keith; Phongikaroon, Supathorn

    2017-10-01

    Pyroprocessing of used nuclear fuel (UNF) has many advantages-including that it is proliferation resistant. However, as part of the process, special nuclear materials accumulate in the electrolyte salt and present material accountability and safeguards concerns. The main motivation of this work was to explore a laser-induced breakdown spectroscopy (LIBS) approach as an online monitoring technique to enhance the material accountability of special nuclear materials in pyroprocessing. In this work, a vacuum extraction method was used to draw the molten salt (CeCl3-GdCl3-LiCl-KCl) up into 4 mm diameter Pyrex tubes where it froze. The salt was then removed and the solid salt was measured using LIBS and inductively coupled plasma mass spectroscopy (ICP-MS). A total of 36 samples were made that varied the CeCl3 and GdCl3 (surrogates for uranium and plutonium, respectively) concentrations from 0.5 wt% to 5 wt%. From these samples, univariate calibration curves for Ce and Gd were generated using peak area and peak intensity methods. For Ce, the Ce 551.1 nm line using the peak area provided the best calibration curve with a limit of detection (LOD) of 0.099 wt% and a root mean squared error of cross-validation (RMSECV) of 0.197 wt%. For Gd, the best curve was generated using the peak intensities of the Gd 564.2 nm line resulting in a LOD of 0.027 wt% and a RMSECV of 0.295 wt%. The RMSECV for the univariate cases were determined using leave-one-out cross-validation. In addition to the univariate calibration curves, partial least squares (PLS) regression was done to develop a calibration model. The PLS models yielded similar results with RMSECV (determined using Venetian blind cross-validation with 17% left out per split) values of 0.30 wt% and 0.29 wt% for Ce and Gd, respectively. This work has shown that solid pyroprocessing salt can be qualitatively and quantitatively monitored using LIBS. This work has the potential of significantly enhancing the

  10. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    Science.gov (United States)

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  11. Homogeneity testing and quantitative analysis of manganese (Mn in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    V. K. Unnikrishnan

    2014-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×109 W/cm2. The spatially integrated plasma emission was collected and imaged on to the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.

  12. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  13. Study of Hydrogen and Oxygen and Its Reaction With Host Elements in Sandstone by Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Suyanto, Hery

    2017-05-01

    A study of hydrogen and oxygen and its reaction with host elements in a sandstone has been done by laser-induced breakdown spectroscopy (LIBS). The sandstone was irradiated by Nd-YAG laser (1064 nm, 7 ns) with varied energy of 60 mJ till 140 mJ in surrounding air gas pressure of 1 atm and produced plasma. The emission intensities of hydrogen H I 656.2 nm and oxygen O I 777.2 nm in the plasma were captured by HR 2500+ spectrometer and displayed in intensity as a function of wavelength. The data show that the emission intensities of hydrogen and oxygen increase with increasing laser energy at a gradient of 5.4 and 11.8 respectively every increasing laser energy of 20 mJ. To characterize the reaction process between hydrogen and oxygen with the host elements of the sandstone, a 0.2 ml demineralized water was dropped on the sandstone surface and was analyzed as a function of delay time reaction and temperature. The data show that the oxidation reaction between host elements and oxygen occurred after 25 minutes that the oxygen emission intensity increases and the hydrogen emission intensity decreases. Another data also show that the increasing temperature of sandstone until 80 C increased intermolecular bond between oxygen and host element and dehydrogenation took place after reaching this temperature

  14. Detection of explosives at trace levels by laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Lazic, V.; Palucci, A.; Jovicevic, S.; Carapanese, M.; Poggi, C.; Buono, E.

    2010-04-01

    In order to realize a compact instrument for detection of explosive at trace levels, LIBS was applied on residues from different explosives and potentially interfering materials. The residues were simply placed on aluminum support and the measurements were performed in air. Spectral line intensities from the characteristic atoms/molecules and their ratios, are strongly varying from one sampling point to another. The reasons for such variations were studied and explained, allowing establishing a suitable procedure for material recognition. Correct classification was always obtained for five types of explosives, while for TATP, nitroglycerine, DNT and EGDN this occurred only for very thin residues. In all the cases, the estimated detection threshold is between 0.1 ng and 1 ng.

  15. LIBSLog: Laser Induced Breakdown Spectroscopy (LIBS) based logging tool for exploration of boreholes

    Science.gov (United States)

    Zacny, K.; Chu, P.

    2012-12-01

    We present a novel downhole instrument, currently under development at Honeybee Robotics with SBIR funding from NASA. The device is designed to characterize elemental composition as a function of depth in terrestrial and non-terrestrial geological formations. The instrument consists of a miniaturized LIBS analyzer integrated in a 2" diameter drill string. While the drill provides subsurface access, the LIBS analyzer provides information on the elemental composition of the borehole wall. This instrument has a variety of space applications ranging from exploration of the Moon for which it was originally designed, to Mars and Europa. The system can also be deployed in a wireline configuration as a logging probe, called LIBSLog. The LIBSLog could be lowered into existing boreholes and scan the borehole wall with depth. Subsurface analysis is usually performed by sample acquisition through a drill or excavator, followed by sample preparation and subsequent sample presentation to an instrument or suite of instruments. An alternative approach consisting in bringing a miniaturized version of the instrument to the sample has many advantages over the traditional methodology, as it allows faster response, reduced probability of cross-contamination and a simplification in the sampling mechanisms. The results for lunar simulant NU-LHT-2M show a value for the concentration of iron ranging between 2.29% and 3.05% depending on the atomic line selected. The accepted value for the sample analyzed is 2.83%, showing the capability for the system in development to provide qualitative and semi-quantitative analysis in real-time.

  16. Laser-induced breakdown spectroscopy (LIBS) combined with hyperspectral imaging for the evaluation of printed circuit board composition.

    Science.gov (United States)

    Carvalho, Rodrigo R V; Coelho, Jomarc A O; Santos, Jozemir M; Aquino, Francisco W B; Carneiro, Renato L; Pereira-Filho, Edenir R

    2015-03-01

    In this study, laser-induced breakdown spectroscopy (LIBS) was combined with chemometric strategies (PCA, Principal Component Analysis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) to investigate the metal composition of a printed circuit board (PCB) sample from a mobile phone. Scanning electron microscopy-EDS was used for two main reasons: it was possible at the same time to visualize the sample surface, craters (made by the laser pulses) and also the chemical composition of the samples. A 30 mm×40 mm area of the mobile phone PCB sample, which was manufactured in 2011, was investigated. In this case, a matrix with 30 rows and 40 columns (1200 points) was analyzed, and 10 pulses were performed at each point. A total of 12,000 emission spectra were recorded in the wavelength range from 186 to 1040 nm. After an initial exploratory investigation using PCA, 18 emission lines were selected (representing the elements Al, Au, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sb, Si, Sn, Ti and Zn) and then normalized by the relative intensities, and a new PCA was calculated with the autoscaled data. For example, Au and Si were mainly observed in the superficial electrical contacts and in the bulk of the PCB, respectively. A second sample (a mouse PCB) was also analyzed and Pb (emission lines 357.273, 363.956, 368.346, 373.994 and 405.780 nm) was identified in the solders. In addition, this element was determined using FAAS (flame atomic absorption spectrometry) and the Pb concentration was around 25% (w/w). This study opens the possibility for improved recycling processes and the chemical investigation of solid samples measuring a few millimeters in dimension without sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  18. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  19. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue—A Possible Application for a Laser Surgery Feedback Control Mechanism

    Science.gov (United States)

    Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.

    2016-06-01

    Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.

  20. Laser Induced Breakdown Spectroscopy (LIBS) Applied to Reacting Gases for Mixture Ratio Measurement and Detection of Metallic Species

    National Research Council Canada - National Science Library

    Thomas, Matthew; Deaconu, Stelu; Lewis, James; Coy, Edward

    2007-01-01

    .... LIBS is being developed as diagnostic for near wall measurements in liquid rocket combustion chambers as part of an AFRL effort to experimentally determine relative concentrations of major combustion...

  1. Characterizing the economic value of an epithermal Au-Ag ore with Laser Induced Breakdown Spectroscopy (LIBS)

    NARCIS (Netherlands)

    Dalm, M.; Buxton, M.W.N.

    2016-01-01

    LIBS was applied to 19 Au-Ag ore samples to investigate if this technique can be used to distinguish between economic and sub-economic ore either by direct detection of these elements or by using other elements as indicators. However, the Au and Ag grades of the samples are below the detection limit

  2. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  3. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel.

    Science.gov (United States)

    Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo

    2017-08-01

    In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.

  4. Measurement of Rare Earth and Uranium Elements Using Laser-Induced Breakdown Spectroscopy (LIBS) in an Aerosol System for Nuclear Safeguards Applications

    Science.gov (United States)

    Williams, Ammon Ned

    The primary objective of this research is to develop an applied technology and provide an assessment for remotely measuring and analyzing the real time or near real time concentrations of used nuclear fuel (UNF) elements in electroreners (ER). Here, Laser-Induced Breakdown Spectroscopy (LIBS) in UNF pyroprocessing facilities was investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis; (ii) Direct detection of elements and impurities in the system with low limits of detection (LOD); and (iii) Little to no sample preparation is required. One important challenge to overcome is achieving reproducible spectral data over time while being able to accurately quantify fission products, rare earth elements, and actinides in the molten salt. Another important challenge is related to the accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment within an argon gas atmosphere. This dissertation aims to address these challenges and approaches in the following phases with their highlighted outcomes: 1. Aerosol-LIBS system design and aqueous testing: An aerosol-LIBS system was designed around a Collison nebulizer and tested using deionized water with Ce, Gd, and Nd concentrations from 100 ppm to 10,000 ppm. The average %RSD values between the sample repetitions were 4.4% and 3.8% for the Ce and Gd lines, respectively. The univariate calibration curve for Ce using the peak intensities of the Ce 418.660 nm line was recommended and had an R 2 value, LOD, and RMSECV of 0.994, 189 ppm, and 390 ppm, respectively. The recommended Gd calibration curve was

  5. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    Science.gov (United States)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  6. Spectral identifiers from roasting process of Arabica and Robusta green beans using Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Wirani, Ayu Puspa; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee (Coffea spp.) is one of the most widely consumed beverages in the world. World coffee consumption is around 70% comes from Arabica, 26% from Robusta , and the rest 4% from other varieties. Coffee beverages characteristics are related to chemical compositions of its roasted beans. Usually testing of coffee quality is subjectively tasted by an experienced coffee tester. An objective quantitative technique to analyze the chemical contents of coffee beans using LIBS will be reported in this paper. Optimum experimental conditions was using of 120 mJ of laser energy and delay time 1 μs. Elements contained in coffee beans are Ca, W, Sr, Mg, Na, H, K, O, Rb, and Be. The Calcium (Ca) is the main element in the coffee beans. Roasting process will cause the emission intensity of Ca decreased by 42.45%. In addition, discriminant analysis was used to distinguish the arabica and robusta variants, either in its green and roasted coffee beans. Observed identifier elements are Ca, W, Sr, and Mg. Overall chemical composition of roasted coffee beans are affected by many factors, such as the composition of the soil, the location, the weather in the neighborhood of its plantation, and the post-harvesting process of the green coffee beans (drying, storage, fermentation, and roasting methods used).

  7. Laser-Induced Breakdown Spectroscopy (LIBS) for spectral characterization of regular coffee beans and luwak coffee bean

    Science.gov (United States)

    Nufiqurakhmah, Nufiqurakhmah; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Luwak (civet) coffee refers to a type of coffee, where the cherries have been priorly digested and then defecated by a civet (Paradoxurus Hermaphroditus), a catlike animals typically habited in Indonesia. Luwak will only selectively select ripe cherries, and digesting them by enzymatic fermentation in its digestive system. The defecated beans is then removed and cleaned from the feces. It is regarded as the world's most expensive coffee, Traditionally the quality of the coffee is subjectively determined by a tester. This research is motivated by the needs to study and develop quantitative parameters in determining the quality of coffee bean, which are more objective to measure the quality of coffee products. LIBS technique was used to identify the elemental contents of coffee beans based on its spectral characteristics in the range 200-900 nm. Samples of green beans from variant of arabica and robusta, either regular and luwak, were collected from 5 plantations in East Java. From the recorded spectra, intensity ratio of nitrogen (N), hydrogen (H), and oxygen (O) as essential elements in coffee is applied. In general, values extracted from luwak coffee bean is higher with increases 0.03% - 79.93%. A Discriminant Function Analysis (DFA) also applied to identify marker elements that characterize the regular and luwak beans. Elements of Ca, W, Sr, Mg, and H are the ones used to differentiate the regular and luwak beans from arabica variant, while Ca and W are the ones used to differentiate the regular and luwak beans of robusta variant.

  8. Selective transfer of Li-Al-rich phyllosilicate to metamorphic veins (Western Alps): Laser Induced Breakdown Spectroscopy (LIBS) compositional profiles and microstructural characterization

    Science.gov (United States)

    Verlaguet, A.; Brunet, F.; Goffé, B.; Menut, D.; Findling, N.; Poinssot, C.; Huet, B.

    2016-11-01

    In convergent settings, fluid-rock interactions generally result in quartz and calcite preferential transfer to metamorphic veins in classical metamarls, while phyllosilicates tend to remain in the host-rock. However, the mechanisms responsible for such a selective mass transfer are poorly discussed in the literature. Here, we study Alpine metabauxites in which phyllosilicates (Li-Al-rich chlorite called cookeite, followed by pyrophyllite) were preferentially transferred to veins at blueschist peak P-T conditions, by a dissolution-diffusion-precipitation process without any fluid infiltration or associated reaction. Cookeite fibrous en-echelon veins formed by extensional shear, and part of them evolved towards thicker fluid-filled veins with euhedral cookeite crystallization. We performed chemical profiles across host-rocks between successive cookeite veins, using Laser Induced Breakdown Spectroscopy (LIBS), associated to a microstructural study. Flat LIBS Li profiles show that about half of the initial cookeite remains homogeneously distributed in host-rocks, which suggests a minimum diffusion distance of 2-4 cm for Li. The availability of an aqueous fluid during most of the metamorphic cycle is demonstrated here. A simple 1D reaction-diffusion model, assuming Li diffusion through a connected fluid-filled porosity network, is able to account for the observed lithium distribution assuming Li diffusion coefficients consistent with literature values in fluid-bearing systems. Chemical potential gradients that drove phyllosilicate transfer to veins can be either interfacial energy driven (i.e., Ostwald ripening), the anhedral phyllosilicate microsheets maintaining high supersaturation levels in the small host-rock pores compared to veins, or stress-induced: phyllosilicates present the highest solubility variations with pressure in the Vanoise bauxites (contrary to quartz-bearing rocks), which may account for their unusual selective transfer to veins. Therefore, mineral

  9. Laser Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    2010-03-31

    formalized relationships with principles in the 1st Responder community, forensic sciences community, political and with lobbying firms as well as...communis L. Ruta graveolens L. Scilla maritima L. Baker Senecio Vulgaris L. Solanum nigrum L. Spartium junceum L

  10. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ

  11. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS.

    Science.gov (United States)

    Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E

    2016-05-15

    Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Phuoc [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State; Mcintyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United State

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  13. Application of laser-induced breakdown spectroscopy in carbon ...

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time ... This work details the laboratory scale experiments to measure carbon contents in soil, aqueous, and air samples.

  14. Laser-induced breakdown spectroscopy and inductively coupled ...

    African Journals Online (AJOL)

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North ...

  15. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  16. Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Idris, Nasrullah; Ramli, Muliadi; Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Koo Hendrik

    2016-03-01

    This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma were detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.

  17. Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Jl. Syech Abdurrauf No. 3 Darussalam, 23111 Banda Aceh, Aceh (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Jl. Syech Abdurrauf No. 3 Darussalam, 23111 Banda Aceh, Aceh (Indonesia); Hedwig, Rinda; Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K. H. Syahdan, Jakarta 14810 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630, Jakarta (Indonesia)

    2016-03-11

    This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma were detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.

  18. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  19. Laser-Induced Breakdown Spectroscopy to high-resolution analysis of ion distribution in cement-bound solid; Laser-induzierte Breakdown Spektroskopie (LIBS) zur hochaufloesenden Analyse der Ionenverteilung in zementgebundenen Feststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Molkenthin, Andre

    2009-06-03

    The Laser-Induced Breakdown Spectroscopy allows imaging and quantitative analysis of the ion distribution of all relevant elements on the surface of mineral building materials. The measuring system has been characterised by investigations on specimens of hardened cement paste, mortar and concrete. Transport and accumulation processes are visualised. Besides, results are introduced for the peripheral zone close to the surface and the extraction is shown. (orig.) [German] Die Laser-induzierte Breakdown Spektroskopie ermoeglicht eine bildgebende und quantitative Analyse der Ionenverteilung aller massgeblichen Elemente auf mineralischen Baustoffoberflaechen. Das Messsystem wurde durch verfahrenspezifische Untersuchungen an Proben aus Zementstein, -moerteln und Betonen charakterisiert, Transport- und Anlagerungsprozesse wurden visuell dargestellt. Zudem werden Ergebnisse fuer den Ionenhaushalt in der ungestoerten oberflaechenahen Randzone sowie bei deren Auslaugung bzw. Anreicherung vorgestellt.

  20. IMPLEMENTACIÓN DE TÉCNICAS ESPECTROQUÍMICAS EN LA INVESTIGACIÓN ZOOARQUEOLÓGICA. CUANTIFICACIÓN DE ESTRONCIO UTILIZANDO LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS/ Implementation of spectrochemical techniques in zooarchaeological research...

    Directory of Open Access Journals (Sweden)

    Gabriela Srur

    2012-11-01

    Full Text Available Los estudios químicos sobre restos zooarqueológicos se vienen desarrollando con mayor intensidad en las últimas décadas, especialmente aquellos dedicados a la identificación de huellas químicas o diversos tipos de isótopos y sus relaciones. El objetivo de este trabajo es el de presentar dos procedimientos utilizados para la caracterización química de huesos en base a datos espectrométricos obtenidos mediante la técnica LIBS (Laser Induced Breakdown Spectroscopy. El primero denominado Adición Estándar, consiste en un procedimiento destructivo, con un grado de error estimable, mientras que el segundo, Reemplazo de la Matriz Ósea, constituye un método no invasivo y con un grado de error relativamente bajo. Con esto se espera lograr el desarrollo de un corpus metodológico y analítico que permita caracterizar de un modo eficiente y económico las huellas químicas de diverso material arqueofaunístico. En este sentido se intenta lograr una caracterización química de huesos arqueológicos con el fin de dar respuesta a cuestiones relacionadas tanto a la alimentación como a la movilidad de los animales en el pasado. Abstract Chemical studies on zooarchaeological remains have been most extensively developed in recent decades, especially those focused on the identification of chemical fingerprints or types of isotopes and their relationships. This paper aims at showing two procedures used for chemical characterization of bones on the basis of spectrometric data obtained by LIBS technique (Laser Induced Breakdown Spectroscopy. One called Standard Addition, a destructive procedure, with a high error degree; the other called Bone Matrix Replacement, a noninvasive method with a relatively low error degree. We expect to gather a methodological and analytical corpus to characterize, efficiently and inexpensively, the chemical fingerprints of diverse archaeofaunal material. Hence, we intend to achieve chemical characterization of

  1. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    Science.gov (United States)

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  2. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    Science.gov (United States)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  3. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    Science.gov (United States)

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications.

  4. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  5. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils

    Energy Technology Data Exchange (ETDEWEB)

    Srungaram, Pavan K.; Ayyalasomayajula, Krishna K.; Yu-Yueh, Fang; Singh, Jagdish P., E-mail: singh@icet.msstate.edu

    2013-09-01

    Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed. - Highlights: • We compared SIBS and LIBS for mercury (Hg) measurements in soil. • Hg 546.07 nm line was selected for both LIBS and SIBS measurements. • Limit of detection for Hg was found to be 20 ppm with SIBS and 483 ppm with LIBS.

  6. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  7. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  8. Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taschuk, M T; Kirkwood, S E; Tsui, Y Y; Fedosejevs, R [Department of Electical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6H 2V4 (Canada)

    2007-04-15

    An ongoing study of the scaling of Laser-Induced Breakdown Spectroscopy (LIBS) to microjoule pulse energies is being conducted to quantify the LIBS process. The use of microplasmas for LIBS requires good understanding of the emission scaling in order to maximize the sensitivity of the LIBS technique at low energies. The quantitative scaling of emission of Al, Cu and Si microplasmas from 100 {mu}J down to 100 nJ is presented. The scaling of line emission from major and minor constituents in Al 5052 alloy is investigated and evaluated for analytical LIBS. Ablated crater volume scaling and emission efficiency for Si microplasmas are investigated.

  9. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  10. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  11. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    Science.gov (United States)

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  12. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  13. Exploring the Effect of Sample Properties on Spark-Induced Breakdown Spectroscopy

    OpenAIRE

    Marino, Michael J; Dieffenbach, Payson; Krause, Liesl A; Diwakar, Prasoon; Hassanein, Ahmed

    2015-01-01

    Optical emission spectroscopy techniques such as laser-induced breakdown spectroscopy (LIBS) and spark-induced breakdown spectroscopy (SIBS) provide portable and robust methods for elemental detection in real-time. Laser-produced emissions are then used for quantitative and qualitative analysis of a sample material with applications in explosives detection. For both techniques, the main obstacles have always been signal intensity, accuracy, and sensitivity of detection. The main advantage of ...

  14. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    National Research Council Canada - National Science Library

    K. Rehan; I. Rehan; S. Sultana; M. Zubair Khan; Z. Farooq; A. Mateen; M. Humayun

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm) of a Nd:YAG pulsed laser...

  15. Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Hussain, T; Gondal, M A

    2008-06-01

    Laser Induced Breakdown Spectroscopy (LIBS) System was developed locally for determination of toxic metals in liquid samples and the system was tested for analysis of waste water collected from dairy products processing plant. The plasma was generated by focusing a pulsed Nd: YAG laser at 1064 nm on waste water samples. Optimal experimental conditions were evaluated for improving the sensitivity of our LIBS system through parametric dependence investigations. The Laser-Induced Breakdown Spectroscopy (LIBS) results were then compared with the results obtained using standard analytical technique such as Inductively Coupled Plasma Emission Spectroscopy (ICP). The evaluation of the potential and capabilities of LIBS as a rapid tool for liquid sample analysis are discussed in brief.

  16. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  17. Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.

  18. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Russell S., E-mail: Russell.S.Harmon@usace.army.mil [USACE-ERDC International Research Office, 86-88 Blenheim Crescent, Ruislip HA4 7HB (United Kingdom); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 70-108B, Berkeley, CA 94720 (United States); Hark, Richard R., E-mail: hark@juniata.edu [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States)

    2013-09-01

    Applications of laser-induced breakdown spectroscopy (LIBS) have been growing rapidly and continue to be extended to a broad range of materials. This paper reviews recent application of LIBS for the analysis of geological and environmental materials, here termed ''GEOLIBS''. Following a summary of fundamentals of the LIBS analytical technique and its potential for chemical analysis in real time, the history of the application of LIBS to the analysis of natural fluids, minerals, rocks, soils, sediments, and other natural materials is described. - Highlights: • LIBS can be used to analyze geological and environmental samples. • Analysis of minerals, rocks, natural fluids, soils, and sediments are described. • Quantitative and qualitative aspects of the LIBS technique are discussed. • Laboratory, field portable and stand-off approaches are reviewed. • A total of 216 references to recent literature are included.

  19. Laser-induced breakdown spectroscopy for the study of the pattern of silicon deposition in leaves of saccharum species

    NARCIS (Netherlands)

    Tripathi, D.K.; Kumar, R.; Chauhan, D.K.; Rai, A.K.; Bicanic, D.D.

    2011-01-01

    The spatial distribution pattern of silicon in the leaves of three species of Saccharum has been demonstrated by means of laser induced breakdown spectroscopy (LIBS). The in-situ point detection capability of LIBS was used to determine different elements in leaf samples. The concentrations of

  20. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Bousquet, Bruno [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Baudelet, Matthieu, E-mail: baudelet@creol.ucf.edu [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Richardson, Martin [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2012-07-15

    This study shows a 23-fold improvement of the sensitivity in the determination of copper in soil samples when using Microwave-Assisted Laser-Induced Breakdown Spectroscopy (MA-LIBS) compared with our conventional LIBS. This comparison between MA-LIBS and LIBS was performed with identical ablation conditions and detection geometry. The signal enhancement obtained with MA-LIBS allowed for the detection of spectral lines related to concentration values as low as 30 mg kg{sup -1} for copper and 23.3 mg kg{sup -1} for silver, which were not detected by LIBS. - Highlights: Black-Right-Pointing-Pointer Application of Microwave-assisted LIBS for the analysis of soil samples. Black-Right-Pointing-Pointer Quantitation of the sensitivity improvement by MA-LIBS over LIBS for copper in soil. Black-Right-Pointing-Pointer Extension of the range of the calibration by MA-LIBS over LIBS for copper in soil.

  1. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  2. Analysis of fresco by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneve, L., E-mail: luisa.caneve@enea.i [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Diamanti, A. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Grimaldi, F. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Palleschi, G. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Spizzichino, V. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Valentini, F. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2010-08-15

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  3. Analysis of fresco by laser induced breakdown spectroscopy

    Science.gov (United States)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  4. Detection of lead in paint samples synthesized locally using-laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, Mohammed A; Nasr, Mohamed M; Ahmed, Mubarak M; Yamani, Zain H; Alsalhi, M S

    2011-01-01

    A laser-induced breakdown spectroscopy (LIBS) setup was developed to detect lead and other toxic contaminants such as chromium in paint emulsion samples manufactured in Saudi Arabia. The lead concentration detected in these samples was in the 327.2-755.3 ppm range, which is much higher than the safe permissible limit set by Saudi regulatory agencies. Similarly, chromium concentration (98.1-149.5 ppm) was found in high concentrations as well. The results obtained with our LIBS setup are comparable with the sample analysis utilizing a standard technique such as ICP, and our LIBS results are comparable to ICP with in an accuracy limit of 2-4 %.

  5. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  6. Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification

    Energy Technology Data Exchange (ETDEWEB)

    Yueh Fangyu [Institute for Clean Energy Technology, Mississippi State University, Starkville, MS 39759 (United States); Zheng Hongbo [Department of Applied Physics, Nanjing University of Technology, Nanjing, Jiangsu, 210009 (China); Singh, Jagdish P., E-mail: singh@icet.msstate.ed [Institute for Clean Energy Technology, Mississippi State University, Starkville, MS 39759 (United States); Burgess, Shane [College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States)

    2009-10-15

    Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce immediate information about the elemental contents of tissue samples. We have previously shown that LIBS may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing techniques were used to study if the information contained in these LIBS spectra is able to differentiate between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear distinguishing between each of the known tissue types with only 21 selected analyte lines from each observed LIBS spectrum. We found that in order to produce an analytical model to work well with new sample we need to have representative training data to cover a wide range of spectral variation due to experimental or environmental changes.

  7. Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification

    Science.gov (United States)

    Yueh, Fang-Yu; Zheng, Hongbo; Singh, Jagdish P.; Burgess, Shane

    2009-10-01

    Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce immediate information about the elemental contents of tissue samples. We have previously shown that LIBS may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing techniques were used to study if the information contained in these LIBS spectra is able to differentiate between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear distinguishing between each of the known tissue types with only 21 selected analyte lines from each observed LIBS spectrum. We found that in order to produce an analytical model to work well with new sample we need to have representative training data to cover a wide range of spectral variation due to experimental or environmental changes.

  8. Laser-induced breakdown spectroscopy thickness measurements of films thinner than ablation rate

    Science.gov (United States)

    Nishijima, D.; Doerner, R. P.; Hollmann, E. M.; Miyamoto, M.

    2017-10-01

    A new laser-induced breakdown spectroscopy (LIBS) technique is proposed to measure the thickness of films thinner than the ablation rate. The film thickness dependence of the signal intensity is used as a calibration curve. It is demonstrated that calibration curves are successfully made for thin W films and (Fe, Cr, Ni) mixed-material films produced in a magnetron sputtering device.

  9. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René

    and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate......Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...

  10. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  11. Geographical analysis of 'conflict minerals' utilizing laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hark, Richard R., E-mail: hark@juniata.edu [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Remus, Jeremiah J. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); East, Lucille J. [Applied Spectra, Inc., Fremont, CA 94538 (United States); Harmon, Russell S. [Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 (United States); Wise, Michael A. [Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20013 (United States); Tansi, Benjamin M.; Shughrue, Katrina M. [Department of Chemistry, Juniata College, Huntingdon, PA 16652 (United States); Dunsin, Kehinde S. [Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699 (United States); Liu, Chunyi [Applied Spectra, Inc., Fremont, CA 94538 (United States)

    2012-08-15

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of 'conflict minerals' such as columbite-tantalite ('coltan'). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance. - Highlights: Black-Right-Pointing-Pointer Analysis of columbite-tantalite using laser-induced breakdown spectroscopy (LIBS) Black-Right-Pointing-Pointer Chemometric analysis (PLSDA) affords 90-100% correct sample classification. Black-Right-Pointing-Pointer Possible role of rare-earth elements in the high level of sample discrimination.

  12. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Porizka, P.; Prochazka, D. [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Pilat, Z. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic); Krajcarova, L. [Department of Chemistry, Faculty of Sciences, Masaryk University, Kotlarska 2, Brno 611 37 (Czech Republic); Kaiser, J., E-mail: kaiser@fme.vutbr.cz [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Malina, R.; Novotny, J. [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno (Czech Republic); Zemanek, P.; Jezek, J.; Sery, M.; Bernatova, S.; Krzyzanek, V.; Dobranska, K. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic); Novotny, K. [Department of Chemistry, Faculty of Sciences, Masaryk University, Kotlarska 2, Brno 611 37 (Czech Republic); Trtilek, M. [Photon Systems Instruments, Drasov 470, 664 24 Drasov (Czech Republic); Samek, O. [Institute of Scientific Instruments of the ASCR v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 147, Brno 61669 (Czech Republic)

    2012-08-15

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters. - Highlights: Black-Right-Pointing-Pointer We realized laser-induced breakdown spectroscopy (LIBS) analysis of algal biomass. Black-Right-Pointing-Pointer We used water jet setup, bulk liquid arrangement and algal biofilms. Black-Right-Pointing-Pointer LIBS analysis of macro- and micro-element concentrations in algae was shown. Black-Right-Pointing-Pointer LIBS can be of assistance in research of sustainable biofuel generation. Black-Right-Pointing-Pointer LIBS can be used in research of algal food applications and bioremediation.

  13. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  14. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  15. Analysis of bakery products by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  17. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  18. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Spizzichino, Valeria, E-mail: valeria.spizzichino@enea.it; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems. - Highlights: • Applications of LIBS to archeometry are reviewed. • Complementary among LIBS, LIF, Raman and multivariate analysis is highlighted. • Three major areas of successful LIBS application in archeometry are identified. • Significant results have been presented for several different materials.

  19. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    for becoming an alternative method for soil analysis since it is faster and cheaper than conventional methods. Laser-induced breakdown spectroscopy (LIBS) is another cost-effective technique with potential for rapid analysis of elements present in the soil. In this study, the feasibility of using LIBS......, the country-scale calibration data set was spiked with 14 representative samples from the fields and validated with the 54 field samples. Generated country-scale LIBS models exhibited similar and not significantly different (p > 0.05) results to viseNIRS for all soil properties except a significantly higher...... country-scale models. Lower prediction errors for most properties were obtained using LIBS, rendering it an equally good or even a more accurate technique for soil properties determination than the well-established viseNIRS method....

  20. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  1. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  2. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  3. Laser-induced breakdown spectroscopy of dental lesions: diagnostic and therapeutic monitoring tool

    Science.gov (United States)

    Borisova, Ekaterina; Uzunov, Tzonko; Penev, Dimitar; Genova, Tsanislava; Avramov, Latchezar

    2016-01-01

    The carious decay develops a tiny area of demineralization on the enamel, which could be detected by element analytic techniques such as laser-induced breakdown spectroscopy (LIBS). That demineralization can quickly turn into a large lesion inside the tooth, it is often discovered too late to prevent the kind of decay that leads to cavities. The same optical LIBS detection approach could be used for monitoring of the caries removal using laser ablation or drilling techniques. For LIBS measurements we applied LIBS 2500Plus (Ocean Optics Inc., Dunedin, USA) system, which consists of seven spectrometric channels, covering spectral region from 200 to 980 nm, which optical resolution 0,05 nm, the spectrometers are connected with sample fiber bundle for 7-channels spectral system to the chamber for solid and liquid samples, Q-switched Nd:YAG laser, at 1 064 nm, with energy per pulse - 40 mJ, which is applied to induce plasma in the samples. LIBS spectra were obtained after single shot of the laser in the region of pathology. Samples investigated by LIBS are extracted teeth from patients, with periodontal problems on different stage of carious lesions, and their LIBS spectra are compared with the LIBS signals obtained from normal enamel and dentine tissues to receive complete picture of the carious lesion development. The major line of our investigations is related to the development of a methodology for real-time optical feedback control during selective ablation of tooth tissues using LIBS. Tooth structures, with and without pathological changes, are compared and their LIBS element analysis is used to differentiate major changes, which occur during tooth carious process and growth.

  4. Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy

    Science.gov (United States)

    Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.; McIntyre, Dustin L.; Singh, Jagdish P.

    2017-11-01

    In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny-Turner spectrometer within the wavelength range of 375-515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 and 156 ppm, respectively.

  5. Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy

    Science.gov (United States)

    Castillejo, M.; Martín, M.; Silva, D.; Stratoudaki, T.; Anglos, D.; Burgio, L.; Clark, R. J. H.

    2000-09-01

    Two laser-based analytical techniques, Laser Induced Breakdown Spectroscopy (LIBS) and Raman microscopy, have been used for the identification of pigments on a polychrome from the Rococo period. Detailed spectral data are presented from analyses performed on a fragment of a gilded altarpiece from the church of Escatrón, Zaragoza, Spain. LIBS measurements yielded elemental analytical data which suggest the presence of certain pigments and, in addition, provide information on the stratigraphy of the paint layers. Identification of most pigments and of the materials used in the preparation layer was performed by Raman microscopy.

  6. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  7. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.

    2008-05-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  8. Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven; Diedrich, Jonathan; Palchaudhuri, Sunil

    2007-06-01

    Three strains of Escherichia coli, one strain of black mold and one strain of Candida albicans yeast have been analyzed by laser-induced breakdown spectroscopy (LIBS) using nanosecond laser pulses. All microorganisms were analyzed while still alive and with no sample preparation. Nineteen atomic and ionic emission lines have been identified in the spectrum, which is dominated by calcium, magnesium and sodium. A discriminant function analysis (DFA) has been used to discriminate between the bio-types and E. coli strains. This is the first demonstration of the ability of the LIBS technique to differentiate between different strains of a single species.

  9. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    Science.gov (United States)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-06-01

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  10. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  11. [Study on Soil Elements Detection with Laser-Induced Breakdown Spectroscopy: A Review].

    Science.gov (United States)

    Yu, Ke-qiang; Zhao, Yan-ru; Liu, Fei; Peng, Ji-yu; He, Yong

    2016-03-01

    Laser-induced breakdown spectroscopy (LIBS), as a kind of atomic emission spectroscopy, has been considered to be a future new tool for chemical analysis due to its unique features, such as no need of sample preparation, stand-off or remote analysis. What's more it can achieve fast and multi-element analysis. Therefore, LIBS technology is regarded as a future "SurperStar" in the field of chemical analysis and green analytical techniques. At present, rapid and accurate detection and prevention of soil contamination (mainly in pollutants of heavy metals and organic matter) is deemed to be a concerned and serious central issue in modern agriculture and agricultural sustainable development. In this paper, the reseach achievements and trends of soil elements detection based on LIBS technology were being reviewed. The structural composition and foundmental of LIBS system is first briefly introduced. And the paper offers a review of on LIBS applications and fruits including the detection and analysis of major element, nutrient element and heavy metal element. Simultaneously, some studies on soil related metials and fields are briefly stated. The research tendency and developing prospects of LIBS in soil detection are presented at last.

  12. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  13. Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Lasheras, R.J.; Bello-Gálvez, C.; Anzano, J.M., E-mail: janzano@unizar.es

    2013-04-01

    Laser-induced breakdown spectroscopy (LIBS) is demonstrated as a quantitative technique for geochemical analysis. This study demonstrates the applicability of LIBS to multielemental analysis of minerals using argon as an internal standard. Laser-induced breakdown spectroscopy has been applied to measure elements in oxide form. In the present study, the contents of several oxides, such as Fe{sub 2}O{sub 3}, CaO and MgO, in geological samples from the Tierga Mine (Zaragoza, Spain) were analyzed by LIBS. An argon environment was used to eliminate interference from air at atmospheric pressure. Furthermore, argon was used as an internal standard. The result was enhanced signal and enhanced linearity of the calibration curves. The Fe{sub 2}O{sub 3}, CaO and MgO concentrations determined by LIBS were compared with the results obtained using another analytical technique, inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations found using LIBS were in good agreement with the values obtained by ICP-OES. - Highlights: ► Multi-elemental quantitative analysis of oxide material using LIBS was developed. ► A buffer gas was used to minimize the matrix effect and as an internal standard. ► The LIBS results were compared with ICP, successfully.

  14. Determining spatial sodium distribution in fresh and aged bread using laser-induced breakdown spectroscopy

    NARCIS (Netherlands)

    Scholtes-Timmerman, M.; Heddes, C.; Noort, M.W.J.; Veen, S. van

    2013-01-01

    A fast and easy-to-use method using laser-induced breakdown spectroscopy (LIBS) was set up to determine Na (sodium) distribution in baked bread. Standard bread was made using a standard recipe and the amount of salt added was 0, 0.5, 1, 2, 4, 10, 15 and 20g corresponding to 0, 0.25, 0.5, 1.0, 2.0,

  15. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  16. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    Science.gov (United States)

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, V.; Černohorský, T.; Zvolská, M.

    2013-10-01

    The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements.

  17. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, S. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)], E-mail: sgaspard@iqfr.csic.es; Oujja, M.; Rebollar, E. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain); Abrusci, C.; Catalina, F. [Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Castillejo, M. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-12-15

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  18. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvíl, T., E-mail: kratochviltomm@seznam.cz [University of Pardubice, Institute of Environmental and Chemical Engineering, Studentska 573, 532 10 Pardubice (Czech Republic); Pouzar, M. [University of Pardubice, Institute of Environmental and Chemical Engineering, Studentska 573, 532 10 Pardubice (Czech Republic); Novotný, K. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Havránek, V. [Nuclear Physics Institute of the ASCR, v.v.i., Řež, 250 68 (Czech Republic); Černohorský, T.; Zvolská, M. [University of Pardubice, Institute of Environmental and Chemical Engineering, Studentska 573, 532 10 Pardubice (Czech Republic)

    2013-10-01

    The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements. - Highlights: • The influence of atmosphere and gate width in LIBS analysis of F is investigated. • A sensitivity of LIBS measurement is affected by the atmosphere and the gate width. • A collinear arrangement is more suitable for the measurement of sample on the tape. • The LIBS analysis provides an advantage in analysis of total fluorine content. • The proposed method is useful for the quantitative LIBS analysis of F in GIC.

  19. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Khalil, Ahmed Asaad I; Gondal, Mohammed A; Shemis, Mohamed; Khan, Irfan S

    2015-03-10

    The UV single-pulsed (SP) laser-induced breakdown spectroscopy (LIBS) system was developed to detect the carcinogenic metals in human kidney stones extracted through the surgical operation. A neodymium yttrium aluminium garnet laser operating at 266 nm wavelength and 20 Hz repetition rate along with a spectrometer interfaced with an intensified CCD (ICCD) was applied for spectral analysis of kidney stones. The ICCD camera shutter was synchronized with the laser-trigger pulse and the effect of laser energy and delay time on LIBS signal intensity was investigated. The experimental parameters were optimized to obtain the LIBS plasma in local thermodynamic equilibrium. Laser energy was varied from 25 to 50 mJ in order to enhance the LIBS signal intensity and attain the best signal to noise ratio. The parametric dependence studies were important to improve the limit of detection of trace amounts of toxic elements present inside stones. The carcinogenic metals detected in kidney stones were chromium, cadmium, lead, zinc, phosphate, and vanadium. The results achieved from LIBS system were also compared with the inductively coupled plasma-mass spectrometry analysis and the concentration detected with both techniques was in very good agreement. The plasma parameters (electron temperature and density) for SP-LIBS system were also studied and their dependence on incident laser energy and delay time was investigated as well.

  20. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    Science.gov (United States)

    Pořízka, P.; Demidov, A.; Kaiser, J.; Keivanian, J.; Gornushkin, I.; Panne, U.; Riedel, J.

    2014-11-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis.

  1. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  2. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  3. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Haddad, J. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Villot-Kadri, M.; Ismaël, A.; Gallou, G. [IVEA Solution, Centre Scientifique d' Orsay, Bât 503, 91400 Orsay (France); Michel, K.; Bruyère, D.; Laperche, V. [BRGM, Service Métrologie, Monitoring et Analyse, 3 avenue Claude Guillemin, B.P 36009, 45060 Orléans Cedex (France); Canioni, L. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Bousquet, B., E-mail: bruno.bousquet@u-bordeaux1.fr [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France)

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced.

  4. The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Coons, R. W.; Harilal, S. S.; Hassan, S. M.; Hassanein, A.

    2012-06-01

    Dual-pulse laser-induced breakdown spectroscopy (LIBS) provides improved sensitivity compared to conventional single-pulse LIBS. We used a combination of Nd: yttrium aluminum garnet (YAG) and CO2 lasers to improve the sensitivity of LIBS. Significant emission intensity enhancement is noticed for both excited neutral lines and ionic lines for dual-pulse LIBS compared to single-pulse LIBS. However, the enhancement factor is found to be dependend on the energy levels of the lines, and resonance lines provided maximum enhancement. Our results indicate that IR reheating will cause significant improvement in sensitivity, regardless of the conditions, even with an unfocused reheating beam. The improved sensitivity with a YAG-CO2 laser combination is caused by the effective reheating of the pre-plume with a longer wavelength laser is due to efficient inverse Bremsstrahlung absorption. The role of the spot sizes, inter-pulse delay times, energies of the preheating and reheating pulses on the LIBS sensitivity improvements are discussed.

  5. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil

    Science.gov (United States)

    Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong

    2016-06-01

    The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil.

  6. Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement

    Science.gov (United States)

    Shao, Junfeng; Wang, Tingfeng; Guo, Jin; Chen, Anmin; Jin, Mingxing

    2017-02-01

    In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.

  7. Rapid elemental analysis and provenance study of Blumea balsamifera DC using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang

    2014-12-31

    Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera.

  8. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  9. Detection of Elemental Composition of Lubricating Grease Using Laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Cherry Dhiman

    2014-12-01

    Full Text Available The elemental composition of lubricating soft grease used in rail engines are studied using laser induced breakdown spectroscopy (LIBS technique. LIBS spectra of fresh, partially used and fully used grease samples are recorded using time-gated ICCD spectrometer for verification of compositional degradation of the used grease. LIBS spectra of grease samples are analyzed by comparing with emission spectra of elements published by NIST standard database. Many spectral lines of impurity elements like Fe, Cu, Ba, Mg, Mn, Ni, S, Zn, Si, Pb, Ti, Ca and Al present in the grease in ppm or ppb level in trace level concentrations are observed in excess in the used grease mainly due to wear and tear. On the other hand in fresh grease, spectral lines of Ca, Al and Na are observed predominantly.

  10. Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sturm, Volker; Meinhardt, Christoph; Fleige, Rüdiger; Fricke-Begemann, Cord; Eisbach, Jens

    2017-10-01

    Laser-induced breakdown spectroscopy (LIBS) is applied for the elemental analysis of steel blooms in a rolling mill. The 2-3 tons steel blooms with superficial scale are transported in a sequence on a roller table to successive processing steps. Laser ablation of the scale and the analysis of the subsurface bulk steel is carried out using the same laser in steel during routine production. The comparison of the measured with the nominal compositions, results in root mean square errors of prediction in the range of 0.01-0.2 m.-%. The rolling sequence is clearly reflected by the LIBS measurement of the individual blooms demonstrating the feasibility for material identification. Identification rates are estimated from computer simulations by permutation of the LIBS measured values and the reference values from the rolling sequence.

  11. Rapid Elemental Analysis and Provenance Study of Blumea balsamifera DC Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiaona Liu

    2014-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA and partial least squares discriminant analysis (PLS-DA were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera.

  12. In situ Analysis of Fireworks Using Laser-Induced Breakdown Spectroscopy and Chemometrics

    Science.gov (United States)

    Awasthi, S.; Kumar, R.; Rai, A. K.

    2017-11-01

    Different types of fireworks are analyzed using the laser-induced breakdown spectroscopy (LIBS) technique. The system employed for spectral acquisition consists of a Nd:YAG laser (532 nm, FWHM = 4 ns) and an Andor Mechelle ME 5000 echelle spectrometer. The presence of Ba, Ca, Mg, Fe, Na, Sr, Si, and Al is identified in the LIBS spectra of different fireworks. These elements can mix easily into the surroundings and thus pollute the environment. In combination with LIBS, multivariate statistical methods, such as principal component analysis and partial least square discriminant analysis, are employed for qualitative classification, regression, and prediction purposes. These methods show good applicability for the classification and prediction of a large data set.

  13. Discrimination of human bodies from bones and teeth remains by Laser Induced Breakdown Spectroscopy and Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J.O., E-mail: jcaceres@ucm.es

    2014-11-01

    A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology. - Highlights: • Classification and discrimination of human remains have been studied. • Remains were analyzed by Laser Induced Breakdown Spectroscopy (LIBS). • Neural Networks models (NN) were used. • Individuals were classified with spectral correlation higher than 95 %. • LIBS-NN showed the potential for rapid and cost-effective analysis.

  14. Effect of Atmospheric Conditions on LIBS Spectra

    OpenAIRE

    Effenberger, Andrew J.; Scott, Jill R.

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  15. Effect of atmospheric conditions on LIBS spectra.

    Science.gov (United States)

    Effenberger, Andrew J; Scott, Jill R

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  16. Effect of Atmospheric Conditions on LIBS Spectra

    Directory of Open Access Journals (Sweden)

    Andrew J. Effenberger

    2010-05-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  17. Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee

    Science.gov (United States)

    Silva, Tiago Varão; Hubinger, Silviane Zanni; Gomes Neto, José Anchieta; Milori, Débora Marcondes Bastos Pereira; Ferreira, Ednaldo José; Ferreira, Edilene Cristina

    2017-09-01

    Coffee is an important commodity and a very popular beverage around the world. Its economic value as well as beverage quality are strongly dependent of the quality of beans. The presence of defective beans in coffee blends has caused a negative impact on the beverage Global Quality (GQ) assessed by cupping tests. The main defective beans observed in the productive chain has been those Blacks, Greens and Sours (BGS). Chemical composition of BGS has a damaging impact on beverage GQ. That is why analytical tools are needed for monitoring and controlling the GQ in coffee agro-industry. Near Infrared Spectroscopy (NIRS) has been successfully applied for assessment of coffee quality. Another potential technique for direct, clean and fast measurement of coffee GQ is Laser Induced Breakdown Spectroscopy (LIBS). Elements and diatomic molecules commonly present in organic compounds (structure) can be assessed by using LIBS. In this article is reported an evaluation of LIBS for the main interferents of GQ (BGS defects). Results confirm the great potential of LIBS for discriminating good beans from those with BGS defects by using emission lines of C, CN, C2 and N. Most importantly, some emission lines presented strong linear correlation (r > 0.9) with NIRS absorption bands assigned to proteins, lipids, sugar and carboxylic acids, suggesting LIBS potential to estimate these compounds in unroasted and ground coffee samples.

  18. Laser-Induced Breakdown Spectroscopy for the Rapid Characterization of Lead-Free Gunshot Residues.

    Science.gov (United States)

    Fambro, Lashaundra A; Vandenbos, Deidre D; Rosenberg, Matthew B; Dockery, Christopher R

    2017-04-01

    This study investigated the use of laser-induced breakdown spectroscopy (LIBS) and scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) as means of characterizing gunshot residue (GSR) originating from commercially available lead-free rounds. Data from two experiments are presented in this work. One experiment focused on identifying prominent analytical markers present in lead-free GSR by LIBS while the other applied SEM-EDX to determine the degree of evidence preservation after LIBS analysis. Samples of GSR were collected via tape-lift method from the hands of volunteer shooters and instrumental analyses were conducted in triplicate. As a result, the lead-free ammunition analyzed in this work generated GSRs comprising primarily Ba, Al, Si, and/or K. Trace amounts of Ti, Fe, and S were also apparent in some compositions. Through SEM-EDX analysis, a spheroidal geometry consistent with traditional lead-containing GSR was observed. Additionally, it was determined that evidence is preserved after LIBS analysis which supports the implementation of LIBS as a rapid preliminary screening method followed by confirmatory testing via SEM-EDX on the preserved evidence.

  19. Selective Surface Sintering Using a Laser-Induced Breakdown Spectroscopy System

    Directory of Open Access Journals (Sweden)

    H. Jull

    2017-01-01

    Full Text Available Titanium metal injection molding allows creation of complex metal parts that are lightweight and biocompatible with reduced cost in comparison with machining titanium. Laser-induced breakdown spectroscopy (LIBS can be used to create plasma on the surface of a sample to analyze its elemental composition. Repetitive ablation on the same site has been shown to create differences from the original sample. This study investigates the potential of LIBS for selective surface sintering of injection-molded titanium metal. The temperature created throughout the LIBS process on the surface of the injection-molded titanium is high enough to fuse together the titanium particles. Using the ratio of the Ti II 282.81 nm and the C I 247.86 nm lines, the effectiveness of repetitive plasma formation to produce sintering can be monitored during the process. Energy-dispersive X-ray spectroscopy on the ablation craters confirms sintering through the reduction in carbon from 20.29 Wt.% to 2.13 Wt.%. Scanning electron microscope images confirm sintering. A conventional LIBS system, with a fixed distance, investigated laser parameters on injection-molded and injection-sintered titanium. To prove the feasibility of using this technique on a production line, a second LIBS system, with an autofocus and 3-axis translation stage, successfully sintered a sample with a nonplanar surface.

  20. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis

    Directory of Open Access Journals (Sweden)

    A. Ali

    2016-01-01

    Full Text Available A responsive laser induced breakdown spectroscopic system was developed and improved for utilizing it as a sensor for the classification of quartz samples on the basis of trace elements present in the acquired samples. Laser induced breakdown spectroscopy (LIBS in conjunction with discriminant function analysis (DFA was applied for the classification of five different types of quartz samples. The quartz plasmas were produced at ambient pressure using Nd:YAG laser at fundamental harmonic mode (1064 nm. We optimized the detection system by finding the suitable delay time of the laser excitation. This is the first study, where the developed technique (LIBS+DFA was successfully employed to probe and confirm the elemental composition of quartz samples.

  1. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    Science.gov (United States)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  2. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); São Paulo State University—UNESP, Analytical Chemistry Department, P.O. Box 355, 14801-970 Rua Prof. Francisco Degni, 55, CEP 14800-900 Araraquara, SP (Brazil); Ferreira, Ednaldo José, E-mail: ednaldo.ferreira@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Villas-Boas, Paulino Ribeiro, E-mail: paulino.villas-boas@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari 70126 (Italy); Carvalho, Camila Miranda, E-mail: camilamc@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Martin-Neto, Ladislau, E-mail: ladislau.martin@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); and others

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. - Highlights: • Humification degree of soil organic matter (HD) • Importance of soil organic matter HD in keeping carbon in soil • Laser induced fluorescence spectroscopy (LIFS) for HD estimation (reference method) • New LIBS application to predict HD.

  3. Dual pulse laser induced breakdown spectroscopy on Cu concentration in CuSO4 solution with liquid jet

    Science.gov (United States)

    Zhang, Yawei; Gao, Xun; Zhu, Hongbo; Han, Jinliang

    2017-10-01

    Laser induced breakdown spectroscopy (LIBS) is a promising technique, analyzing spectrum of plasma, to detect elements of solid, liquid or gaseous samples. It has many advantages, including in-situ and online detection, remote analysis, non-preparation of samples, and simultaneously multi-elements detection. Aiming at detecting detrimental elements in the polluted river and water, in this paper, collinear dual-pulse (DP) Laser-induced breakdown spectroscopy (LIBS) with liquid jet was employed to analyze emission spectrum of Cu element in the CuSO4 solution. We investigated the effect of laser pulse energies ratio and time delay between two lasers on signal intensity, which were simply given by theoretical model in laser-induced plasma for explaining various behaviors of emission spectrum. It was inferred that the maximum signal enhancement of DP-LIBS experiment was roughly 4.5 times greater than that of SP case. The limit of detection (LOD) of Cu using DP-LIBS was approximately 15 times lower than that of SP-LIBS. Results of this research indicate that collinear DP-LIBS is an effective approach to improve the plasma emission intensity and reduce the value of LOD, the application of which can be considered into the environmental problem of the water pollution.

  4. Laser induced breakdown spectroscopy for the analysis of archaeological dyes from Licata (Sicily)

    Science.gov (United States)

    Ponterio, R.; Trusso, S.; Vasi, C.; La Torre, G. F.; Toscano Raffa, A.

    The materials used in the decoration of ancient roman building have been the object of investigation by means of non-destructive and micro-destructive techniques. A number of spectroscopic analysis, laser-induced breakdown spectroscopy (LIBS), micro-Raman, and micro-Fourier transform infrared spectroscopy, on three fragments of architectural decorative painted elements 6rom an excavation near Licata (Sicily), have been performed with the aim to identify the pigments composition and their interaction with the matrixE The fragments have been dated by the archaeologists to late III B.C and the end of I B.C (such an attribution agrees well with historical information about the site) and showed four different coloration: red, yellow, light blue, and black. LIBS, emerged only in the last years as a very promising tool for the analysis and the characterization of elemental composition of a large variety of objects in the field of cultural heritage. The technique is based on the spectroscopic detection and identification of the light emission from excited atomic species in the plasma produced by a high energy laser pulse focused onto the surface of the sample. Although LIBS can give information about the pigments' atomic composition, structural ones have been gained with micro-Raman spectroscopy. Thus, the combined LIBS and micro-Raman measurements allowed the pigments' identification for all of the four colorations.

  5. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Vass, Arpad Alexander [ORNL; Martin, Rodger Carl [ORNL; Grissino-Mayer, Henri [ORNL

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  6. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    Energy Technology Data Exchange (ETDEWEB)

    Palomar, T. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Oujja, M., E-mail: m.oujja@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain); García-Heras, M.; Villegas, M.A. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-09-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers.

  7. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Science.gov (United States)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A.; Belasri, A.

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C CF-LIBS calculated by CF-LIBS and the certified concentrations C certified were very close.

  8. Geographical analysis of ``conflict minerals'' utilizing laser-induced breakdown spectroscopy

    Science.gov (United States)

    Hark, Richard R.; Remus, Jeremiah J.; East, Lucille J.; Harmon, Russell S.; Wise, Michael A.; Tansi, Benjamin M.; Shughrue, Katrina M.; Dunsin, Kehinde S.; Liu, Chunyi

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of "conflict minerals" such as columbite-tantalite ("coltan"). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance.

  9. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy

    Directory of Open Access Journals (Sweden)

    Shikha Awasthi

    2017-06-01

    Full Text Available Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and minor elements present in any type of samples under optimal analysis conditions. Chemometric techniques are very effective and reliable tools for quantification of multiple components in complex matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS in combination with multivariate analysis was investigated for the analysis of environmental reference materials (RMs. In the present work, different (Certified/Standard Reference Materials of soil and plant origin were analyzed using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square Discriminant Analysis were employed for quantitative analysis of the constituent elements using the LIBS spectral data. Calibration models were used to predict the concentrations of the different elements of test samples and subsequently, the concentrations were compared with certified concentrations to check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron Activation Analysis (INAA using high flux reactor neutrons and high resolution gamma-ray spectrometry was also used for intercomparison of results of two RMs by LIBS.

  10. Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Nasr, M.M. [Natural Science Departments, Riyadh College of Dentistry and Pharmacy, P.O. Box 321815, Riyadh 11343 (Saudi Arabia); Gondal, B. [Plastic and Reconstructive Aesthetic Surgery, Whitfield Hospital, Waterford (Ireland)

    2010-03-15

    Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method.

  11. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz; Belasri, A. [Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, LPPMCA (Algeria)

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  12. Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Gondal, M A; Seddigi, Z S; Nasr, M M; Gondal, B

    2010-03-15

    Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method. (c) 2009 Elsevier B.V. All rights reserved.

  13. Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing

    Science.gov (United States)

    Demidov, A.; Eschlböck-Fuchs, S.; Kazakov, A. Ya.; Gornushkin, I. B.; Kolmhofer, P. J.; Pedarnig, J. D.; Huber, N.; Heitz, J.; Schmid, T.; Rössler, R.; Panne, U.

    2016-11-01

    The improved Monte-Carlo (MC) method for standard-less analysis in laser induced breakdown spectroscopy (LIBS) is presented. Concentrations in MC LIBS are found by fitting model-generated synthetic spectra to experimental spectra. The current version of MC LIBS is based on the graphic processing unit (GPU) computation and reduces the analysis time down to several seconds per spectrum/sample. The previous version of MC LIBS which was based on the central processing unit (CPU) computation requested unacceptably long analysis times of 10's minutes per spectrum/sample. The reduction of the computational time is achieved through the massively parallel computing on the GPU which embeds thousands of co-processors. It is shown that the number of iterations on the GPU exceeds that on the CPU by a factor > 1000 for the 5-dimentional parameter space and yet requires > 10-fold shorter computational time. The improved GPU-MC LIBS outperforms the CPU-MS LIBS in terms of accuracy, precision, and analysis time. The performance is tested on LIBS-spectra obtained from pelletized powders of metal oxides consisting of CaO, Fe2O3, MgO, and TiO2 that simulated by-products of steel industry, steel slags. It is demonstrated that GPU-based MC LIBS is capable of rapid multi-element analysis with relative error between 1 and 10's percent that is sufficient for industrial applications (e.g. steel slag analysis). The results of the improved GPU-based MC LIBS are positively compared to that of the CPU-based MC LIBS as well as to the results of the standard calibration-free (CF) LIBS based on the Boltzmann plot method.

  14. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  15. Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl

    2017-09-01

    Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.

  16. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, C. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany); Hermann, J., E-mail: Hermann@lp3.univ-mrs.fr [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Mercadier, L. [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Loewenthal, L. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany); Axente, E.; Luculescu, C.R. [Laser–Surface–Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Sarnet, T.; Sentis, M. [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Viöl, W. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany)

    2014-11-01

    We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO{sub 2}. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 10{sup 17} cm{sup −3}. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques. - Highlights: • Plasma modeling including the calculation of the plasma pressure • Calibration-free LIBS based on accurate modeling of the plasma emission spectrum • Quantitative LIBS analysis of multicomponent optical glasses including oxygen • Good measurement accuracy obtained only for small delays between laser pulse and detector gate.

  17. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  18. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  19. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  20. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy.

    Science.gov (United States)

    Kaiser, J; Samek, O; Reale, L; Liska, M; Malina, R; Ritucci, A; Poma, A; Tucci, A; Flora, F; Lai, A; Mancini, L; Tromba, G; Zanini, F; Faenov, A; Pikuz, T; Cinque, G

    2007-02-01

    This article reports on the utilization of X-ray microradiography and laser induced breakdown spectroscopy (LIBS) techniques for investigation of the metal accumulation in different part of leaf samples. The potential of the LIBS-analysis for finding the proper plant species for phytoremediation is compared with the results of microradiography measurements at the HERCULES source at ENEA, Rome (Italy) and X-ray microradiography experiments at the ELETTRA Synchrotron, Trieste (Italy).

  1. Man-portable LIBS for landmine detection

    Science.gov (United States)

    Harmon, Russell S.; De Lucia, Frank C.; LaPointe, Aaron; Miziolek, Andrzej W.

    2006-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an emerging, minimally-destructive sensor technology for in-situ, real-time chemical species identification and analysis. The Army Research Laboratory has been engaged in LIBS analysis for over a decade and recently has been investigating the potential to apply broadband LIBS analysis to specific military problems, one of which is as a handheld, confirmatory sensor for landmine detection. Laboratory tests with a prototype man-portable LIBS system demonstrate a high degree of success in identifying landmine casings.

  2. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  3. Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results

    Directory of Open Access Journals (Sweden)

    Alessandro De Giacomo

    2010-08-01

    Full Text Available Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS, namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  4. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results.

    Science.gov (United States)

    Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.

  5. Fusion related research with laser-induced-breakdown-spectroscopy on metallic samples at the ENEA-Frascati laboratory.

    Science.gov (United States)

    Almaviva, S.; Caneve, L.; Colao, F.; Maddaluno, G.

    2016-04-01

    The study of plasma-wall interactions is of paramount importance for continuous and fault free operations in thermonuclear fusion research to monitor the damages of plasma facing components (PFCs), plasma pollution from impurities and wall retention of hydrogen isotopes, like tritium. These needs make laser-induced-breakdown-spectroscopy (LIBS) a suitable candidate for a real time monitoring of PFCs in the current and next generation fusion devices, like ITER. It is also worthwhile for the quantitative analysis of surfaces, with micro-destructivity of the sample and depth profiling capabilities with sub-micrometric sensitivity. In this paper LIBS spectroscopy is exploited as a valid diagnostic tool for PFCs at the ENEA Research Center in Frascati (Italy) and at the Institute of Plasma Physics and Laser Microfusion (IPPLM) of Warsaw (Poland). The activities have been focused on LIBS characterization of samples simulating PFCs surfaces eroded/redeposited or contaminated from nuclear fuel after or during the normal operation of the reactor.

  6. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon

    Science.gov (United States)

    Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C. R.; Sarnet, T.; Sentis, M.; Viöl, W.

    2014-11-01

    We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO2. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 1017 cm- 3. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques.

  7. Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects

    Energy Technology Data Exchange (ETDEWEB)

    Salle, B. [Noveltis, Parc Technologique du Canal, 2 avenue de l' Europe, 31520 Ramonville Saint Agne (France)], E-mail: beatrice.salle@voila.fr; Mauchien, P. [CEA Saclay, DEN/DPC/SCP, Bat.467, 91191 Gif sur Yvette Cedex (France); Maurice, S. [Observatoire Midi-Pyrenees, Centre d' Etude Spatiale des Rayonnements, 9 avenue du Colonel Roche, BP 4346, 31028 Toulouse Cedex 04 (France)

    2007-08-15

    A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS

  8. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vila, A. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Rebollar, E. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Garcia, J.F. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Castillejo, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)]. E-mail: marta.castillejo@iqfr.csic.es

    2005-08-31

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  9. Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy

    Science.gov (United States)

    Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.

    2017-06-01

    Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.

  10. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally......On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific...

  11. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Ding, Hongbin, E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Hu, Jiansheng; Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2014-09-15

    Lithium conditioning can significantly improve the plasma confinement of EAST tokamak by reducing the amount of hydrogen and impurities recycled from the wall, but the details of this mechanism and approaches that reduce the concentrations of hydrogen and impurities recycle still remain unclear. In this paper, we studied lithiated tungsten via a cascaded-arc plasma simulator. An in situ laser-induced breakdown spectroscopy (LIBS) diagnostic system has been developed to chemically image the three-dimensional distribution of lithium and impurities on the surface of lithiated tungsten co-deposition layer for the first time. The results indicate that lithium has a strong ability to draw hydrogen and oxygen. The impurity components from the co-deposition processes present more intensity on the surface of co-deposition layer. This work improves the understanding of lithiated tungsten mechanism and is useful for using LIBS as a wall-diagnostic technique for EAST.

  12. Determination of Different Metals in Steel Waste Samples Using laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. H. Bakry

    2007-12-01

    Full Text Available Elemental analysis of waste samples collected from steel products manufacturing plant (SPS located at industrial city of Jeddah, Saudi-Arabia has been carried out using Laser Induced Breakdown Spectroscopy (LIBS. The 1064 nm laser radiations from a Nd:YAG laser at an irradiance of 7.6  1010 W cm –2 were used. Atomic emission spectra of the elements present in the waste samples were recorded in the 200 – 620 nm region. Elements such as Fe, W, Ti, Al, Mg, Ca, S, Mn, and Na were detected in these samples. Quantitative determination of the elemental concentration was obtained for these metals against certified standard samples. Parametric dependences of LIBS signal intensity on incident laser energy and time delay between the laser pulse and data acquisition system were also carried out.

  13. Analysis of Manganese in Soil Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Yongcheng, J.; Jiang, H.; Benchi, J.; Dong, L.

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure spectral characteristics and to perform quantitative analysis of the concentration of manganese in soil, an issue of great concern for precision agriculture. For the analysis, soil samples were compressed into pellets and a pulsed Nd:YAG laser was employed to produce the plasma in air at atmospheric pressure. Using this approach, we analyzed the time evolution of spectral characteristics and their dependence on the laser pulse energy. A calibration curve was constructed using reference sandy soil samples collected from a farm. An internal standard curve was used to improve the accuracy of the LIBS metrology for soil analyses. The results of this analysis demonstrated the usefulness of this method for analyzing the concentration of manganese in soil.

  14. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  15. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  16. Analysis of Trace Elements in Leaves Using Laser-Induced Breakdown Spectroscopy

    OpenAIRE

    ZHANG, XU; Yao, Mingyin; Liu, Muhua; Lei, Zejian

    2011-01-01

    Part 1: GIS, GPS, RS and Precision Farming; International audience; Laser-Induced Breakdown Spectroscopy (LIBS) is a new way to analyze the plant ecology. The experimental used a Q-switched Nd:YAG laser to be the laser source and equipped with an eight-channel model spectrometer which’s wavelength range between 200 and 1100 nm. Studying the spectrum of the air-drying leaves and the nature leaves and detected the elements which contain Fe, Ca, Na, Mg, K, Cu, Al and Mn. Displaying the list whic...

  17. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally...

  18. Quantification of water content by laser induced breakdown spectroscopy on Mars

    Science.gov (United States)

    Rapin, W.; Meslin, P.-Y.; Maurice, S.; Wiens, R. C.; Laporte, D.; Chauviré, B.; Gasnault, O.; Schröder, S.; Beck, P.; Bender, S.; Beyssac, O.; Cousin, A.; Dehouck, E.; Drouet, C.; Forni, O.; Nachon, M.; Melikechi, N.; Rondeau, B.; Mangold, N.; Thomas, N. H.

    2017-04-01

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify a normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Moreover, the calibration curve obtained is relatively independent of the samples types.

  19. Detection and Classification of Live and Dead Escherichia coli by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Sivakumar, P.; Fernández-Bravo, A.; Taleh, L.; Biddle, J.F.

    2015-01-01

    Abstract A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity. Key Words: E. coli—Trace elements—Live and dead cells—Laser-induced breakdown spectroscopy—Atomic force microscopy. Astrobiology 15, 144–153. PMID:25683088

  20. Evaluation of the Nutritional Changes Caused by Huanglongbing (HLB) to Citrus Plants Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Ranulfi, Anielle Coelho; Romano, Renan Arnon; Bebeachibuli Magalhães, Aida; Ferreira, Ednaldo José; Ribeiro Villas-Boas, Paulino; Marcondes Bastos Pereira Milori, Débora

    2017-07-01

    Huanglongbing (HLB) is the most recent and destructive bacterial disease of citrus and has no cure yet. A promising alternative to conventional methods is to use laser-induced breakdown spectroscopy (LIBS), a multi-elemental analytical technique, to identify the nutritional changes provoked by the disease to the citrus leaves and associate the mineral composition profile with its health status. The leaves were collected from adult citrus trees and identified by visual inspection as healthy, HLB-symptomatic, and HLB-asymptomatic. Laser-induced breakdown spectroscopy measurements were done in fresh leaves without sample preparation. Nutritional variations were evaluated using statistical tools, such as Student's t-test and analysis of variance applied to LIBS spectra, and the largest were found for Ca, Mg, and K. Considering the nutritional profile changes, a classifier induced by classification via regression combined with partial least squares regression was built resulting in an accuracy of 73% for distinguishing the three categories of leaves.

  1. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    Science.gov (United States)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  2. Determination of carcinogenic fluorine in cigarettes using pulsed UV laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, Mohammed A; Habibullah, Yusuf B; Oloore, Luqman E; Iqbal, Mohammed A

    2015-06-10

    A spectrometer based on pulsed UV laser-induced breakdown spectroscopy (LIBS) and a highly sensitive intensified charged coupled device camera was developed to determine the carcinogenic substances like fluorine in various brands of cigarettes available commercially. In order to achieve the high sensitivity required for the determination of trace amounts of fluoride in cigarettes and eventually the best limit of detection, the experimental parameters (influence of incident laser energy on LIBS signal intensity and time response of plasma emission) were optimized. In addition, the plasma parameters like electron temperature and electron density were evaluated using Boltzman's plot for cigarette tobacco for the first time. To the best of our knowledge, LIBS has never been applied to determine the fluorine concentration in cigarettes. Along with the detection of fluorine, other trace metals like Ba, Ca, Ni, Cu, and Na were also detected in cigarettes. For determination of the concentration of fluorine, calibration curve was drawn by preparing standard samples in various fluoride concentrations in tobacco matrix. The concentration of fluorine in different cigarette tobacco samples was 234, 317, 341, and 360 ppm respectively, which is considered to be much higher than the safe permissible limits. The limit of detection of our LIBS spectrometer was 14 ppm for fluorine.

  3. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  4. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott; Morris, Richard V.; Ehlmann, Bethany; Dyar, M. Darby

    2017-03-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the laser-induced breakdown spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element's emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple "sub-model" method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then "blending" these "sub-models" into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares (PLS) regression, is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  5. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management.

    Science.gov (United States)

    Gondal, Mohammed A; Siddiqui, Mohammad N

    2007-11-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied for the identification of various kinds of plastics for management and recycling of plastic waste. In order to fingerprint these plastics, a laser-produced plasma emission was recorded for spectral analysis of various kinds of plastics. The plasma was generated by focusing a Nd:YAG laser radiation at wavelength = 1064 nm having laser energy = 40 mJ. The 6 main family of plastics tested are: Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Polypropylenes (PP), Polystyrene (PS), Polyethylene Terephthalate (PET) and Polyvinyl chloride (PVC). The capability of this technique is demonstrated by the analysis of the major constituents carbon and hydrogen present in polymer matrices. The LIBS signal intensity measured for carbon and hydrogen was detrimental for the fingerprinting of various kinds of plastics. The C/H line intensity ratio was 1.68, 1.51, 1.42, 1.16, 1.01 and 0.91 for HDPE, LDPE, PS, PP, PET and PVC respectively. The detection limits of carbon and hydrogen were found to be approximately 6 micro g/g by applying 20 laser shots. The unique features of LIBS are: it is a simple, rapid, remote, real-time analysis without sampling requirements. The study demonstrated that LIBS could be applied as a best tool for sorting out different kinds plastics on a fast scale for waste management. The health hazards of different kinds of plastics are also described.

  6. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    Science.gov (United States)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  7. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  8. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls.

    Science.gov (United States)

    Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno

    2017-01-01

    Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.

  9. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution

    Science.gov (United States)

    Ahamer, Christoph M.; Riepl, Kevin M.; Huber, Norbert; Pedarnig, Johannes D.

    2017-10-01

    We investigate femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the spectrochemical imaging of thin films with high spatial resolution. Chemical images are obtained by recording LIBS spectra at each site of 2D raster-scans across the samples employing one fs-laser pulse per site. The diffraction images of the Echelle spectrometer are binned to reduce the read-out time of the intensified CCD detector and to increase the stability of the emission signals against peak drifts in the echellograms. For copper thin films on glass the intensities of Cu I emission lines and the size of ablation craters vary non-monotonously with the film thickness hCu = 5-500 nm. The emission efficiency, defined as the Cu I line intensity per ablated volume, strongly decreases for films thicker than the optical penetration depth. The Na I line intensity from glass increases exponentially with decreasing Cu film thickness. For yttrium barium copper oxide (YBCO) thin films on MgO various atomic and molecular emission lines of the laser-induced plasma are measured (film thickness hYBCO = 200-1000 nm). The obtained element (Y, Ba, Cu, Mg) and molecular (Y-O) fs-LIBS images match the structure of the micro-patterned YBCO films very well. The achieved lateral resolution δr = 6 μm is among the best values reported for spectrochemical LIBS imaging.

  10. Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin

    2017-10-01

    Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.

  11. Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy

    Science.gov (United States)

    Díaz Pace, D. M.; Miguel, R. E.; Di Rocco, H. O.; Anabitarte García, F.; Pardini, L.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.

    2017-05-01

    Laser-induced breakdown spectroscopy (LIBS) was applied for quantitative analysis of the elemental composition of waste molding and core sands produced from industry as part of the casting process. To perform the analysis, waste foundry sands (WFS) were collected from metalcasting foundries and prepared in the form of solid pellets with the addition of polyvinyl alcohol as binder. The measurements were carried out using the Mobile double pulse instrument for LIBS analysis (Modì). The spectral analysis was carried out with the calibration-free approach (CF-LIBS). Metal elements commonly found in WFS including Al, Ba, Fe, Li, Mg, Mn, Pb, Ti, Zr, and Zn, were detected and quantified. The metal concentrations for WFS were compared with virgin sand to assess the influence of the casting material as well as the binders used in the foundries to reclaim the sands. The results demonstrated the feasibility of LIBS method as an alternative or complementary technique for the chemical characterization of WFS.

  12. Quantification of calcium using localized normalization on laser-induced breakdown spectroscopy data

    Science.gov (United States)

    Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Aziz, Safwan; Ali, Jalil; Wahab, Zaidan Abdul; Abbas, Zulkifly

    2017-03-01

    This paper focuses on localized normalization for improved calibration curves in laser-induced breakdown spectroscopy (LIBS) measurements. The calibration curves have been obtained using five samples consisting of different concentrations of calcium (Ca) in potassium bromide (KBr) matrix. The work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system with fundamental wavelength and laser energy of 650 mJ. Optimization of gate delay can be obtained from signal-to-background ratio (SBR) of Ca II 315.9 and 317.9 nm. The optimum conditions are determined in which having high spectral intensity and SBR. The highest spectral lines of ionic and emission lines of Ca at gate delay of 0.83 µs. From SBR, the optimized gate delay is at 5.42 µs for both Ca II spectral lines. Calibration curves consist of three parts; original intensity from LIBS experimentation, normalization and localized normalization of the spectral line intensity. The R2 values of the calibration curves plotted using locally normalized intensities of Ca I 610.3, 612.2 and 616.2 nm spectral lines are 0.96329, 0.97042, and 0.96131, respectively. The enhancement from calibration curves using the regression coefficient allows more accurate analysis in LIBS. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.

  13. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils

    Science.gov (United States)

    Santos, Dario, Jr.; Nunes, Lidiane C.; Trevizan, Lilian C.; Godoi, Quienly; Leme, Flavio O.; Braga, Jez Willian B.; Krug, Francisco José

    2009-10-01

    Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (LIBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, λ = 1064 nm) and the emission signals were collimated by lenses into an optical fiber coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils.

  14. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M. [Research Department, LDS, 11 Granit St., Petach Tikva 49002 (Israel)], E-mail: michaelg@laserdetect.com; Dvir, E.; Modiano, H.; Schone, U. [Research Department, LDS, 11 Granit St., Petach Tikva 49002 (Israel)

    2008-10-15

    Presently, online coal ash content monitoring is performed by PGNAA (Prompt Gamma Neutron Activation Analyses) machines. Laser Detect Systems has developed an online mineral analysis system using Laser Induced Breakdown Spectroscopy (LIBS). The main advantages of the system are that it is without a radioactive source, compact (1.5 m x 0.8 m x 1.3 m), comparatively light (250 kg) and easy to install. The main disadvantage is that a LIBS system analyzes surface chemistry of the mineral exclusively and not the volume. To prove the LIBS machine analytical ability for coal ash content evaluation, a trial was arranged at Optimum Colliery (South Africa). The LIBS machine was installed in line with a PGNAA machine and laboratory data served as a referee in the final assessment for analytical accuracy. The trial was carried out over a four month period. This paper presents the successful trial results achieved for accurate (at least +/- 0.5% mean absolute error) online coal ash content monitoring.

  15. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil

    2009-05-01

    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation

  16. An investigation of Laser Induced Breakdown Spectroscopy for use as a control in the laser removal of rock from fossils found at the Malapa hominin site, South Africa

    CSIR Research Space (South Africa)

    Roberts, DE

    2012-07-01

    Full Text Available Laser Induced Breakdown Spectroscopy (LIBS) was used to study the spectra from fossils and surrounding rock recovered from the Cradle of Mankind site at Malapa, South Africa. The objective was to find a suitable spectral line(s), specific to fossils...

  17. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-05

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  18. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  19. Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence.

    Science.gov (United States)

    Li, Changmao; Hao, Zhongqi; Zou, Zhimin; Zhou, Ran; Li, Jiaming; Guo, Lianbo; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2016-04-18

    Boron (B) is widely applied in microalloying of metals. As a typical light element, however, determination of boron in alloys with complex matrix spectra is still a challenge for laser-induced breakdown spectroscopy (LIBS) due to its weak line intensities in the UV-visible-NIR range and strong spectral interference from the matrix spectra. In this study, a wavelength-tunable laser was used to enhance the intensities of boron lines selectively. The intensities of B I 208.96 nm from boron plasmas were enhanced approximately 3 and 5.8 times while the wavelength-tunable laser was tuned to 249.68 and 249.77 nm, respectively. Utilizing the selective enhancement effect, accurate determinations of trace boron in nickel-based superalloys and steels were achieved by laser-induced breakdown spectroscopy assisted by laser-induced fluorescence (LIBS-LIF), with limits of detection (LoDs) of 0.9 and 0.5 ppm, respectively. The results demonstrated that LIBS-LIF can hopefully be used in boron determinations and has great potential for improving the ability of LIBS to determine light elements in alloys with a complex matrix.

  20. Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Cahoon, Erica M; Almirall, Jose R

    2012-03-06

    Laser induced breakdown spectroscopy (LIBS) is shown to be capable of low volume (90 pL) quantitative elemental analysis of picogram amounts of dissolved metals in solutions. Single-pulse and collinear double-pulse LIBS were investigated using a 532 nm dual head laser coupled to a spectrometer with an intensified charge coupled device (CCD) detector. Aerosols were produced using a micronebulizer, conditioned inside a concentric spray chamber, and released through an injector tube with a diameter of 1 mm such that a LIBS plasma could be formed ~2 mm from the exit of the tube. The emissions from both the aerosols and a single microdrop were then collected with a broadband high resolution spectrometer. Multielement calibration solutions were prepared, and continuing calibration verification (CCV) standards were analyzed for both aerosol and microdrop systems to calculate the precision, accuracy, and limits of detection for each system. The calibration curves produced correlation coefficients with R(2) values > 0.99 for both systems. The precision, accuracy, and limit of detection (LOD) determined for aerosol LIBS were averaged and determined for the emission lines of Sr II (421.55 nm), Mg II (279.80 nm), Ba II (493.41 nm), and Ca II (396.84 nm) to be ~3.8% RSD, 3.1% bias, 0.7 μg/mL, respectively. A microdrop dispenser was used to deliver single drops containing 90 pL into the space where a LIBS plasma was generated with a focused laser pulse. In the single drop microdrop LIBS experiment, the analysis of a single drop, containing a total mass of 45 pg, resulted in a precision of 13% RSD and a bias of 1% for the Al I (394.40 nm) emission line. The absolute limits of detection of single drop microdrop LIBS for the emission lines Al I (394.40 nm) and Sr II (421.5 nm) were approximately 1 pg, and Ba II (493.41 nm) produced an absolute detection limit of approximately 3 pg. Overall, the precision, accuracy, and absolute LOD determined for single microdrop LIBS resulted in

  1. Laser-induced breakdown spectroscopy: Extending its application to soil pH measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Gomes Neto, José A. [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Milori, Débora M.B.P.; Ferreira, Ednaldo José [Embrapa Agricultural Instrumentation, Rua XV de Novembro 1452, CEP 13560-970, São Carlos, SP (Brazil); Anzano, Jesús Manuel [Laser Laboratory & Environment, Faculty of Sciences, University of Zaragoza, C/. Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2015-08-01

    Acid–base equilibria are involved in almost all the processes that occur in soil. The bioavailability of nutrients for plants, for instance, depends on the solubilization of mineral nutrients in the soil solution, which is a pH-dependent process. The determination of pH in soil solutions is usually carried out by potentiometry using a glass membrane electrode, after extracting some of the soil components with water or CaCl{sub 2} solution. The present work describes a simple method for determining the pH of soil, using laser-induced breakdown spectroscopy (LIBS). Sixty samples presenting different textural composition and pH (previously determined by potentiometry) were employed. The samples were divided into a calibration set with fifty samples and a validation set with ten samples. LIBS spectra were recorded for each pelleted sample using laser pulse energy of 115 mJ. The intensities of thirty-two emission lines for Al, Ca, H, and O were used to fit a partial least squares (PLS) model. The model was validated by prediction of the pH of the validation set samples, which showed good agreement with the reference values. The prediction mean absolute error was 0.3 pH units and the root mean square error of the prediction was 0.4. These results highlight the potential of LIBS for use in other applications beyond elemental composition determinations. For soil analysis, the proposed method offers the possibility of determining pH, in addition to nutrients and contaminants, using a single LIBS measurement. - Highlights: • Physical, chemical, and biological properties of soil are influenced by pH. • The pH of mineral soils is normally determined in slurries of water and soil sample by potentiometric measurements. • The association of LIBS elemental emissions with multivariate strategies of analysis has become LIBS a powerful technique. • LIBS was unprecedentedly applied for direct pH determination in different kinds of soil sample. • The clean and fast proposed

  2. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds.

    Science.gov (United States)

    Singh, Jyotsana; Kumar, Rohit; Awasthi, Shikha; Singh, Vinti; Rai, A K

    2017-04-15

    Laser-induced breakdown spectroscopy (LIBS) was investigated to estimate the viability as a simple and rapid method for analysis of nutrient elements in seed kernels of cucurbits. LIBS spectra were recorded in the range of 200-975nm by using Q-switched Nd:YAG laser at 532nm (4ns, 10Hz) attached to echelle spectrometer with intensified charged coupled device (ICCD). The spectral analysis revealed the presence of several elements like C, O, N, Mg, Ca, Na and K in seeds. The quantification of elements (Mg, Ca, Na and K) through LIBS was done using calibration curve method in which all calibration curve shows good linearity (r>0.95). The result obtained through LIBS was in reasonable agreement with that obtained through atomic absorption spectroscopy (AAS). Principal Component Analysis (PCA) was also applied to the LIBS data for rapid categorization of seed samples belonging to same species although samples have similar nutrient elements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  4. Nondestructive Determination of Cu Residue in Orange Peel by Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Hu, Huiqin; Huang, Lin; Liu, Muhua; Chen, Tianbing; Yang, Ping; Yao, Mingyin

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) is an emerging tool with rapid, nondestructive, green characteristics in qualitative or quantitative analyses of composition in materials. But LIBS has its shortcomings in detect limit and sensitivity. In this work, heavy metal Cu in Gannan Navel Orange, which is one of famous fruits from Jiangxi of China, was analyzed. In view of LIBS's limit, it is difficult to determinate heavy metals in natural fruits. In this work, nine orange samples were pretreated in 50-500 μg/mL Cu solution, respectively. Another one orange sample was chosen as a control group without any pollution treatment. Previous researchers observed that the content of heavy metals is much higher in peel than in pulp. So, the content in pulp can be reflected by detecting peel. The real concentrations of Cu in peels were acquired by atomic absorption spectrophotometer (AAS). A calibration model of Cu I 324.7 and Cu I 327.4 was constructed between LIBS intensity and AAS concentration by six samples. The correlation coefficient of the two models is also 0.95. All of the samples were used to verify the accuracy of the model. The results show that the relative error (RE) between predicted and real concentration is less than 6.5%, and Cu I 324.7 line has smaller RE than Cu I 327.4. The analysis demonstrated that different characteristic lines decided different accuracy. The results prove the feasibility of detecting heavy metals in fruits by LIBS. But the results are limited in treated samples. The next work will focus on direct analysis of heavy metals in natural fruits without any pretreatment. This work is helpful to explore the distribution of heavy metals between pulp and peel. supported by National Natural Science Foundation of China (No. 31460419) and Major Project of Science and Technology of Jiangxi, China (No. 20143ACB21013)

  5. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  6. Simultaneous analysis of Cr and Pb in contaminated pork by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Yao, Mingyin; Rao, Gangfu; Huang, Lin; Liu, Muhua; Yang, Hui; Chen, Jinyin; Chen, Tianbing

    2017-10-10

    Laser-induced breakdown spectroscopy (LIBS) as a rapid and green method was used to detect heavy metals Cr and Pb in pork contaminated in the lab. The laser-induced plasma was generated by a Q-switched Nd:YAG laser, and the LIBS signal was collected by a spectrometer with a charge-coupled device detector. The traditional calibration curves (CC) and multivariate partial least squares (PLS) algorithm were applied and compared to validate the accuracy in predicting the content of heavy metals in samples. The results demonstrated that the correlation coefficient of CC is poor by the classical univariate calibration method, so the univariate calibration analysis cannot effectively serve the quantitative purpose in analyzing heavy metals' residue in pork with a complex matrix. The analysis accuracy was improved effectively by the PLS method, and the correlation coefficient is 0.9894 for Cr and 0.9908 for Pb. The concentration of Cr and Pb in samples from a prediction set was obtained using the PLS calibration method, and the average relative errors for the 21 samples in the prediction set are lower than 6.53% and 7.82% for Cr and Pb, respectively. The investigated results display that the matrix effect would be reduced effectively during the quantitative analysis of pork by a LIBS-combined PLS model, and the predictive accuracy would be improved greatly compared to traditional univariate analysis.

  7. Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Teran-Hinojosa, E; Sobral, H; Sánchez-Pérez, C; Pérez-García, A; Alemán-García, N; Hernández-Ruiz, J

    2017-08-01

    Hepatic cirrhosis is a major cause of morbidity and mortality worldwide due to hepatitis C, alcoholism and fatty liver disease associated with obesity. Assessment of hepatic fibrosis relies in qualitative histological evaluation of biopsy samples. This method is time-consuming and depends on the histopathologists' interpretation. In the last decades, non-invasive techniques were developed to detect and monitor hepatic fibrosis. Laser-induced breakdown spectroscopy (LIBS) is a good candidate for a real-time, independent and fast technique to diagnose hepatic fibrosis. In this work LIBS was employed to characterize rat liver tissues with different stages of fibrosis. Depth profiling measurements were carried out by using a nanosecond Nd:YAG laser operated at the fundamental wavelength and an echelle spectrometer coupled with an ICCD camera. Due to the soft nature of the samples, plasma conditions largely change between consecutives shots. Thus, a theoretically supported procedure to correct the spectral line intensities was implemented. This procedure allows the reduction of the intensities' dispersion from 67% to 12%. After the correction, the LIBS signal shows an enhancement in calcium intensity by a factor of three as the fibrosis progressed. Calcium is known to increase crosslinking of extracellular matrix proteins in the fibrous septa. Therefore, our result singles it out as a key participant in the hepatic fibrosis.

  8. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements

    Science.gov (United States)

    Cerrato, R.; Casal, A.; Mateo, M. P.; Nicolas, G.

    2017-04-01

    The dealloying phenomenon, also called demetalification, is a; consequence of a corrosion problem found in binary alloys where an enrichment of one of the two main elements of the alloy is produced at the expense of the leaching of the other element. In the present work, the ability of laser induced breakdown spectroscopy (LIBS) for the detection and characterization of dealloying films formed on metal has been tested. For this purpose, specific areas of brass specimens have been subjected to a chemical attack of the surface in order to produce a selective leaching of zinc or dezincification. For the lateral and in-depth characterization of the dealloyed areas by LIBS, depth profiles, 2D and 3D maps have been generated from the treated samples and from a reference non-treated sample. The differences in the maps and depth profiles between the corroded and non-corroded regions have allowed to reveal the localization and extension of the dealloying process along the brass sample surface and to estimate the thickness of the dezincification layers, demonstrating the capability of LIBS technique for the characterization of dealloying phenomena.

  9. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed

    2012-09-01

    Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.

  10. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rapin, W.; Bousquet, B.; Lasue, J.; Meslin, P.-Y.; Lacour, J.-L.; Fabre, C.; Wiens, R. C.; Frydenvang, J.; Dehouck, E.; Maurice, S.; Gasnault, O.; Forni, O.; Cousin, A.

    2017-11-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target roughness. Here, we present a series of laboratory experiments that reproduce the effect observed on Mars and explore possible causes. We show that the hydrogen peak intensity increases significantly with increasing exposure of the target surface to the LIBS plasma, and that these variations are specific to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally, this effect should be taken into account for the quantification of hydrogen in any LIBS applications where the roughness of the target is significant.

  11. Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Aglio, M., E-mail: marcella.dellaglio@ba.imip.cnr.it [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); De Giacomo, A. [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari (Italy); Gaudiuso, R.; De Pascale, O. [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Longo, S. [Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari (Italy); INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Firenze (Italy)

    2014-11-01

    This paper presents an evaluation of Laser Induced Breakdown Spectroscopy (LIBS) as a technique for gathering data relevant to Solar System geophysics. Two test cases were demonstrated: elemental analysis of chondrules in a chondrite meteorite, and space- resolved analysis of the interface between kamacite and taenite crystals in an octahedrite iron meteorite. In particular most major and minor elements (Fe, Mg, Si, Ti, Al, Cr, Mn, Ca, Fe, Ni, Co) in Sahara 98222 (chondrite) and its chondrules, as well as the profile of Ni content in Toluca (iron meteorite), were determined with the Calibration Free (CF) method. A special attention was devoted to exploring the possibilities offered by variants of the basic technique, such as the use of Fe I Boltzmann distribution as an intensity calibration method of the spectroscopic system, and the use of spatially resolved analysis. - Highlights: • LIBS of meteorites can supply data relevant to the early evolution of solar system. • CF-LIBS was applied to two different test cases. • Chemical identification of chondrules embedded in a chondrite meteorite • Experimental and theoretical profiles of Ni content in an iron meteorite.

  12. Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    He, Li'ao; Wang, Qianqian; Zhao, Yu; Liu, Li; Peng, Zhong

    2016-06-01

    Supervised learning methods (eg. PLS-DA, SVM, etc.) have been widely used with laser-induced breakdown spectroscopy (LIBS) to classify materials; however, it may induce a low correct classification rate if a test sample type is not included in the training dataset. Unsupervised cluster analysis methods (hierarchical clustering analysis, K-means clustering analysis, and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper. The results of hierarchical clustering analysis using four different similarity measuring methods (single linkage, complete linkage, unweighted pair-group average, and weighted pair-group average) are compared. In K-means clustering analysis, four kinds of choosing initial centers methods are applied in our case and their results are compared. The classification results of hierarchical clustering analysis, K-means clustering analysis, and ISODATA are analyzed. The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS. supported by Beijing Natural Science Foundation of China (No. 4132063)

  13. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Science.gov (United States)

    Pardini, L.; El Hassan, A.; Ferretti, M.; Foresta, A.; Legnaioli, S.; Lorenzetti, G.; Nebbia, E.; Catalli, F.; Harith, M. A.; Diaz Pace, D.; Anabitarte Garcia, F.; Scuotto, M.; Palleschi, V.

    2012-08-01

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin).

  14. Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Reyhani, A. [Phys. Dept., Faculty of Science, Imam Khomeini International University, Qazvin, 34149-16818 (Iran, Islamic Republic of); Mortazavi, S.Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, P., E-mail: parvin@aut.ac.ir [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mahmoudi, Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2012-08-15

    Methane decomposition is investigated during Pd-assisted laser induced plasma in the controlled chamber at various pressures using Q-switched Nd:YAG laser. Real time LIBS monitoring is applied to reveal the involved mechanisms during methane decomposition by inspecting the plasma parameters at mano-metric pressures of 1 to 10 mbar. The dependence of electron density and plasma temperature with pressure is also studied. It is shown that the plasma recreates higher hydrocarbons during the decomposition of methane. In addition, Fourier transform infrared spectroscopy, gas chromatography, scanning electron microscopy and transmission electron microscopy are applied to support the findings. - Highlights: Black-Right-Pointing-Pointer Simultaneous laser induced breakdown spectroscopy Black-Right-Pointing-Pointer Pd-assisted methane decomposition Black-Right-Pointing-Pointer Nanosecond pulsed laser decomposition of methane Black-Right-Pointing-Pointer Generation of higher hydrocarbon Black-Right-Pointing-Pointer Dependence of electron density and temperature of induced plasma with pressure.

  15. Application of Laser Induced Breakdown Spectroscopy in Early Detection of Red Palm Weevil: (Rhynchophorus ferrugineus) Infestation in Date Palm

    Science.gov (United States)

    A. Farooq, W.; G. Rasool, K.; Walid, Tawfik; S. Aldawood, A.

    2015-11-01

    The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.

  16. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth

    Directory of Open Access Journals (Sweden)

    Beddows David CS

    2001-12-01

    Full Text Available Abstract Background Laser Induced Breakdown Spectroscopy (LIBS can be used to measure trace element concentrations in solids, liquids and gases, with spatial resolution and absolute quantifaction being feasible, down to parts-per-million concentration levels. Some applications of LIBS do not necessarily require exact, quantitative measurements. These include applications in dentistry, which are of a more "identify-and-sort" nature – e.g. identification of teeth affected by caries. Methods A one-fibre light delivery / collection assembly for LIBS analysis was used, which in principle lends itself for routine in vitro / in vivo applications in a dental practice. A number of evaluation algorithms for LIBS data can be used to assess the similarity of a spectrum, measured at specific sample locations, with a training set of reference spectra. Here, the description has been restricted to one pattern recognition algorithm, namely the so-called Mahalanobis Distance method. Results The plasma created when the laser pulse ablates the sample (in vitro / in vivo, was spectrally analysed. We demonstrated that, using the Mahalanobis Distance pattern recognition algorithm, we could unambiguously determine the identity of an "unknown" tooth sample in real time. Based on single spectra obtained from the sample, the transition from caries-affected to healthy tooth material could be distinguished, with high spatial resolution. Conclusions The combination of LIBS and pattern recognition algorithms provides a potentially useful tool for dentists for fast material identification problems, such as for example the precise control of the laser drilling / cleaning process.

  17. ,* Copper transport and accumulation in spruce stems (picea abies(L.) Karsten) revelaed by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krajcarova, Dr. Lucie [Czech Technical University; Novotny, Dr. Karel [Mendel University of Brno; Babula, Dr. Petr [Czech Technical University; Pravaznik, Dr Ivo [Czech Technical University; Kucerova, Dr. Petra [Czech Technical University; Vojtech, Dr. Adam [Czech Technical University; Martin, Madhavi Z [ORNL; Kizek, Dr. Rene [Czech Technical University; Kaiser, Jozef [ORNL

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) in double pulse configuration (DP LIBS) was used for scanning elemental spatial distribution in annual terminal stems of spruce (Picea abies (L.) Karsten). Cross sections of stems cultivated in Cu2+ solution of different concentrations were prepared and analyzed by DP LIBS. Raster scanning with 150 m spatial resolution was set and 2D (2-dimentional) maps of Cu and Ca distribution were created on the basis of the data obtained. Stem parts originating in the vicinity of the implementation of the cross sections were mineralized and subsequently Cu and Ca contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results provide quantitative information about overall concentration of the elements in places, where LIBS measurements were performed. The fluorescence pictures were created to compare LIBS distribution maps and the fluorescence intensity (or the increase in autofluorescence) was used for the comparison of ICP-MS quantitative results. Results from these three methods can be utilized for quantitative measurements of copper ions transport in different plant compartments in dependence on the concentration of cultivation medium and/or the time of cultivation.

  18. Optimal emission enhancement in orthogonal double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanginés, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (CCADET-UNAM), Apartado Postal 70-186, México, DF 04510 (Mexico); Cátedra CONACyT, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, BC 22800 (Mexico); Contreras, V. [Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sobral, H., E-mail: martin.sobral@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (CCADET-UNAM), Apartado Postal 70-186, México, DF 04510 (Mexico); Robledo-Martinez, A. [Universidad Autónoma Metropolitana-Unidad Azcapotzalco, Av. San Pablo 180, Azcapotzalco, México, DF 02200 (Mexico)

    2015-08-01

    Orthogonal double-pulse (DP) laser-induced breakdown spectroscopy (LIBS) was performed using reheating and pre-ablative configurations. The ablation pulse power density was varied by two orders of magnitude and the DP experiments were carried out for a wide range of interpulse delays. For both DP-LIBS schemes, the signal enhancement was evaluated with respect to the corresponding single-pulse (SP) LIBS as a function of the interpulse delay. The reheating scheme shows a sharp maximum signal enhancement of up to 200-fold for low ablative power densities (0.4 GW cm{sup −2}); however, for power densities larger than 10 GW cm{sup −2} this configuration did not improve the SP outcome. On the other hand, a more uniform signal enhancement of about 4–6 was obtained for the pre-ablative scheme nearly independently of the used ablative power density. In terms of the signal-to-noise ratio (SNR) the pre-ablative scheme shows a monotonic increment with the ablative power density. Whereas the reheating configuration reaches a maximum at 2.2 GW cm{sup −2}, its enhancement effect collapses markedly for fluencies above 10 GW cm{sup −2}. - Highlights: • Comparison of reheating and pre-ablative double-pulse LIBS was done using a wide range of ablation power densities. • Experimental parameters that could achieve optimal signal-to-noise ratio were investigated. • A reheating scheme is better for low-ablation power densities. • A pre-ablative configuration is better for high-ablation power densities.

  19. Detection of tire tread particles using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, David, E-mail: prochazka.d@fme.vutbr.cz [Brno University of Technology, Institute of Physical Engineering, Technická 2, 616 00 Brno (Czech Republic); Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Bilík, Martin [Brno University of Technology, Institute of Forensic Engineering, Údolní 244/53, 602 00 Brno (Czech Republic); Prochazková, Petra [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Klus, Jakub; Pořízka, Pavel; Novotný, Jan [Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Novotný, Karel [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Brno University of Technology, Central European Institute of Technology, Technická 3058/10, CZ-616 00 Brno (Czech Republic); Ticová, Barbora [Masaryk University, Faculty of Science, Department of Chemistry, Kamenice 735/5, 625 00 Brno (Czech Republic); Bradáč, Albert; Semela, Marek [Brno University of Technology, Institute of Forensic Engineering, Údolní 244/53, 602 00 Brno (Czech Republic); and others

    2015-06-01

    The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detection of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible to exploit detection of tire tread particles for identification of optically imperceptible braking tracks at locations of road accidents. The paper describes the general composition of tire treads and selection of an element suitable for detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences with lines of elements that might be present together with the detected particles, and optimization of measurement parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An adhesive tape was used as a sample carrier. The most suitable adhesive tape was selected from 5 commonly available tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different area content of tire tread particles, were prepared for the selected tire. A calibration line was created on the basis of the aforementioned calibration standards. The linear section of this line was used for determination of the detection limit value applicable to the selected tire. Considering the insignificant influence of matrix of various types of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a specific tire. - Highlights: • LIBS experimental measurement parameters for tire tread particles were optimize. • Calibration curve was prepared. • Limit of detection was determined.

  20. New ways for the quantification by the laser-induced plasma spectroscopy; Neue Wege zur Quantifizierung mit der laserinduzierten Plasmaspektroskopie (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Maike

    2010-04-27

    Laser Induced Breakdown Spectroscopy (LIBS) is capable of a fast and multielement analysis of various samples types and matrices which makes the method particularly attractive for industrial process analysis. However, for LIBS to become well accepted as an analytical method some issues in calibration and understanding of the underlying transient plasma processes have to be solved. The objective of this work was to identify influential instrumental parameters and plasma conditions in order to improve the overall quantitative performance of LIBS. As the spectral sensitivity and signal-to-noise ratio of the detector represents a decisive element for the application of LIBS in an industrial environment, two detectors, an ICCD and CCD camera, were compared. In combination with a high-resolution echelle spectrograph, the superior or at least equivalent efficiency of the non-intensified CCD was experimentally demonstrated and supported by corresponding plasma simulations. Further investigations of the plasma expansion under different atmospheric conditions revealed that the geometry of observing the expanding plasma influences the sensitivity and reproducibility of the measurements considerably. The diagnostics of self-absorbed spectral lines and their use for calibration purposes were studied with a mirror-based duplication method and a statistical line shape analysis employing linear correlation. The linear correlation approach displayed good performance for identifying the on-set of self absorption in comparison to the duplication method. As matrixmatched reference materials are essential to validate laser ablation methods, two novel preparations of individual calibration standards based on a copper-and polyacrylamide matrix were tested for their applicability to LIBS. (orig.)

  1. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  2. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  3. Determination of toxic and essential metals in rock and sea salts using pulsed nanosecond laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rehan, I; Khan, M Zubair; Rehan, K; Mateen, A; Aamar Farooque, M; Sultana, S; Farooq, Z

    2018-01-10

    A spectrometer based on pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) was employed for the quantitative determination of heavy and essential metals in salts from various sources available in Pakistan. Six salt samples were collected from sea salt and rock salt. Toxic metals (Cu, Cd, and Ni) and other microessentials (Fe, Ca, Co, Mg, Mn, S, and Zn) were investigated from the recorded spectra. The detection system was calibrated using a parametric dependence study. The quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium and optically thin plasma. The results by the LIBS technique were in agreement with the outcomes of the same samples studied using a more standard approach like inductively coupled plasma-atomic emission spectroscopy (ICP-AES). When the concentrations of heavy and essential metals were calculated using a calibration-free LIBS method that does not need a standard salt specimen and dilution, both LIBS and ICP-AES were also in good agreement. The limit of detection of the experimental set up was determined for the observed heavy metals in the studied samples.

  4. Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Díaz, Daniel; Hahn, David W.; Molina, Alejandro

    2017-10-01

    The performance of laser-induced breakdown spectroscopy (LIBS) to identify and quantify gold and silver in ore samples was evaluated. Ores from a gold-producing mine and samples artificially doped with Au and Ag solutions to previously defined concentrations (surrogates) were prepared as 50-mm pellets prior to LIBS analysis. Silver detection and intensity measurement was straightforward for concentrations from 0.4 to 43 μg/g and from 1.1 to 375 μg/g in ore and surrogate samples, respectively. Au emission lines were not found after ensemble average or accumulation of 100-single shot LIBS spectra of ore samples containing up to 9.5 μg/g Au. However, the Au signal was present in the spectra of surrogate samples, for which a detection limit of about 0.8 μg/g was determined. When the number of sampling shots in ore samples increased, various single shot spectra registered Au emission lines. The number of spectra containing Au emission lines increased with the number of single shots. Those results, as well as scanning electron microscopy analysis of ore samples, suggest that the discrete analyte distribution as well as the inherent discrete characteristics associated to LIBS made the presence of gold in the LIBS spark an unlikely occurrence. The particle sampling rates (the percentage of laser pulses expected to sample at least one particle) were estimated for gold concentrations of 1.1 and 10.0 μg/g as 0.04% and 0.32%, respectively. A Monte Carlo simulation indicated that > 100 gold-containing particles should be sampled to accurately represent the discrete character of gold in the ore. Sampling 100 such particles requires > 105 laser pulses over a single pellet. Despite the fact that this rather large number of shots makes difficult to conduct conditional analysis on pellets, for some samples that withstood 5000 shots, gold quantification in ores was successfully achieved at concentrations as low as 1 μg/g. Results are encouraging and illustrate the applicability

  5. Spectrochemical analysis of Cs in water and soil using low pressure laser induced breakdown spectroscopy

    Science.gov (United States)

    Ramli, Muliadi; Khumaeni, Ali; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2017-06-01

    An experimental study has been conducted for the practical and in situ application of laser-induced breakdown spectroscopy (LIBS) for the detection of Cs pollutant in water and soil in the nearby area of Fukushima Nuclear Power Station. The spectrochemical measurements were carried out by means of 355 nm Nd-YAG laser with N2 and He ambient gases at atmospheric and low pressures. The soil samples were prepared by pelletizing the mixtures of 80% soil and 20% KBr while the aqueous samples were prepared as thin films electro deposited on indium tin oxide (ITO) glass. The resulted emission spectra using 0.5 kPa N2 ambient gas shows the minimum detectable Cs concentration of 0.2 ppm and 0.3 ppm in the water and soil samples, respectively. The result of this experiment has thus demonstrated the viability of the LIBS equipment employed here as a more practical, in-situ and even mobile alternative to the standard use of gamma-ray spectroscopy using germanium detector.

  6. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    Science.gov (United States)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  7. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  8. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  9. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  10. Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces

    Science.gov (United States)

    Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.

    1993-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have

  11. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  12. Influence of Lead on the Interpretation of Bone Samples with Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Abdolhamed Shahedi

    2016-01-01

    Full Text Available This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS. The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.

  13. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  14. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferretti, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Console, E.; Palaia, P.

    2007-12-01

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  15. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Via Salaria, km 29.300, c.p.10, 00016 Monterotondo St. - Roma (Italy); Cristoforetti, G.; Legnaioli, S. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Palleschi, V. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Salvetti, A.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Console, E. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)], E-mail: elena@teacz.191.it; Palaia, P. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)

    2007-12-15

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  16. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  17. Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy?

    Science.gov (United States)

    Harmon, Russell S; Shughrue, Katrina M; Remus, Jeremiah J; Wise, Michael A; East, Lucille J; Hark, Richard R

    2011-07-01

    Conflict minerals is a term applied to ores mined in conditions of armed conflict and human rights abuse. Niobium and tantalum are two rare metals whose primary natural occurrence is in the complex oxide minerals columbite and tantalite, the ore of which is commonly referred to as coltan. The illicit export of coltan ore from the Democratic Republic of the Congo is thought to be responsible for financing the ongoing civil conflicts in this region. Determining the chemical composition of an ore is one of the means of ascertaining its provenance. Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e., "chemical fingerprint") of any material in real time. To test this idea for columbite-tantalite, three sample sets were analyzed. Partial least squares discriminant analysis (PLSDA) allows correct sample-level geographic discrimination at a success rate exceeding 90%.

  18. Use of Laser-Induced Breakdown Spectroscopy for the Detection of Glycemic Elements in Indian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Rai

    2013-01-01

    Full Text Available The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed.

  19. Elemental composition of Arctic soils and aerosols in Ny-Ålesund measured using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Kim, Gibaek; Yoon, Young-Jun; Kim, Hyun-A.; Cho, Hee-joo; Park, Kihong

    2017-08-01

    Two laser-induced breakdown spectroscopy (LIBS) systems (soil LIBS and aerosol LIBS) were used to determine the elemental composition of soils and ambient aerosols less than 2.5 μm in Ny-Ålesund, Svalbard (the world's most northerly human settlement). For soil LIBS measurements, matrix effects such as moisture content, soil grain size, and surrounding gas on the LIBS response were minimized. When Ar gas was supplied onto the soil sample surfaces, a significant enhancement in LIBS emission lines was observed. Arctic soil samples were collected at 10 locations, and various elements (Al, Ba, C, Ca, Cu, Fe, H, K, Mg, Mn, N, Na, O, Pb, and Si) were detected in soils. The elemental distribution in arctic soils was clearly distinguishable from those in urban and abandoned mining soils in Korea. Moreover, the concentrations of most of anthropogenic metals were fairly low, and localized sources in extremely close proximity affected the elevated level of Cu in the soil samples derived from Ny-Ålesund. The number of elements detected in aerosols (C, Ca, H, K, Mg, Na, and O) was lower than those determined in soils. The elements in aerosols can mainly originate from minerals and sea salts. The elemental distribution in aerosols was also clearly distinguishable from that in soils, suggesting that the resuspension of local soil particles by wind erosion into aerosols was minimal. The daily variation of particle number concentration (RSD = 71%) and the elements in aerosols (RSD = 25%) varied substantially, possibly due to fluctuating air masses and meteorological conditions.

  20. Discrimination of human bodies from bones and teeth remains by Laser Induced Breakdown Spectroscopy and Neural Networks

    Science.gov (United States)

    Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J. O.

    2014-11-01

    A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology.

  1. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST

    Science.gov (United States)

    Hu, Zhenhua; Li, Cong; Xiao, Qingmei; Liu, Ping; Fang, Ding; Mao, Hongmin; Wu, Jing; Zhao, Dongye; Ding, Hongbin; Luo, Guang-Nan; EAST Team

    2017-02-01

    Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).

  2. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J.J., E-mail: laserna@uma.es

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed. - Highlights: • Explosive remnants left behind by fingerprints have been detected from afar. • Operating in scanning mode, LIBS boasts high ability to locate traces over a surface. • Effectiveness in trace detection plainly depends on the scanning spatial resolution. • The detection capability of LIBS shrinks as the fingerprints deteriorate over time.

  3. Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples

    Science.gov (United States)

    Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Sorrentino, F.; Palleschi, V.

    2017-08-01

    Every year throughout the world > 50 million vehicles reach the end of their life, producing millions of tons of automotive waste. The current strategies for the separation of the non-ferrous waste fraction, contain mainly aluminum, magnesium, zinc and copper alloys, involve high investment and operational costs, and pose environmental concerns. The European project SHREDDERSORT, in which our research group was actively involved, aimed to overcome this issue by developing a new dry sorting technology for the shredding of non-ferrous automotive wastes. This work represents one step of the complex SHREDDERSORT project, dedicated to the development of a strategy based on Laser Induced Breakdown Spectroscopy (LIBS) for the sorting of light alloys. LIBS was here applied in laboratory for the analysis of stationary aluminum shredder samples. To process the LIBS spectra a methodological approach based on artificial neural networks was used. Although separation could in principle be based on simple emission line ratios, the neural networks approach enables more reproducible results, which can accommodate the unavoidable signal variations due to the low intrinsic reproducibility of the LIBS systems. The neural network separated samples into different clusters and estimates their elemental concentrations.

  4. Laser-induced breakdown spectroscopy study of silversmith pieces: the case of a Spanish canopy of the nineteenth century

    Science.gov (United States)

    Gómez-Morón, M. A.; Ortiz, P.; Ortiz, R.; Martín, J. M.; Mateo, M. P.; Nicolás, G.

    2016-05-01

    Canopies of needlework velvet or silversmith pieces placed on twelve or more battens are widely employed in Spanish catholic ceremonies to cover the image of the virgin. In this paper, we focus our interest on those pieces made of silver. These silver crafts suffered a revolution in the nineteenth century with the development of an electrolyte system that can be applied over carved metal pieces, in order to obtain a silver layer by electrodeposition similar in appearance to the original sterling silver and cheaper. The aim of this research was the application of laser-induced breakdown spectroscopy (LIBS) to the study of a canopy of the nineteenth century in order to assess the techniques used for its manufacturing and the identification of replacement and restoration of original pieces. The LIBS depth profiles show the presence of a micron silver layer over an alloy of copper and zinc in most of the surfaces. Corrosion products, alloy missing, and the restoration with copper layers were detected. These results are consistent with those obtained by scanning electron microscopy with energy-dispersive of X-ray with the advantage that LIBS is a methodology that allows analysing metal pieces without sampling or preparation. In summary, LIBS is a technique that allows the study of silversmith pieces with electrochemical preparation according to the Ruolz technique, and it is also possible to detect subsequent restoration or corrosion zones.

  5. A novel baseline correction method using convex optimization framework in laser-induced breakdown spectroscopy quantitative analysis

    Science.gov (United States)

    Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun

    2017-12-01

    For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.

  6. Laser-induced breakdown spectroscopy for the quantitative analysis of metals in sediments using natural zeolite matrix

    Science.gov (United States)

    Austria, E. S.; Fuentes, E. M.; Nuesca, G. M.; Lamorena, R. B.

    2017-10-01

    The dependence of laser-induced breakdown spectroscopy (LIBS) to the matrix of the sample remains an important consideration in performing quantitative analysis. In this study, a new matrix was introduced in the preparation of solid powder calibration curves. Heat-treated natural zeolite and KBr were mixed separately into high purity metal powders to generate calibration curves using a univariate approach. A LIBS technique was used in the detection and quantitative analysis of Cr, Cu and Pb in river sediment samples. The relative percent difference (RPD) was calculated to describe the variability measurements made using ICP/OES and LIBS as well as to evaluate the accuracy of the method. Calculated limits of detection in the matrices prepared were comparable with literature values and ranged from 0.41 to 6.1 ppm. The resulting metal concentrations indicate that the natural zeolite matrix were closer to the reference values compared to the KBr matrix. By employing principal component analysis (PCA), heat treated zeolite was shown as a potential diluent or binder for generating calibration curves and could provide matrix-matched standards in identification of target metals from unknown sediment samples. The natural zeolite appeared to closely simulate the ablation behavior and property of the samples, and it is found to be a potential suitable matrix for the quantitative LIBS analysis of sediments.

  7. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy.

    Science.gov (United States)

    Mehder, A O; Gondal, Mohammed A; Dastageer, Mohamed A; Habibullah, Yusuf B; Iqbal, Mohammed A; Oloore, Luqman E; Gondal, Bilal

    2016-01-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.

  8. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mahwish Bukhari

    2012-01-01

    Full Text Available This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS. A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy, 4.5 μs (delay time, 70 mm (lens to sample surface distance, and 7 mm (light collection system to sample surface distance. Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium.

  9. Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Shuzo, E-mail: eto@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Tanaka, Masayoshi Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2014-11-01

    The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm{sup 2} within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously. - Highlights: • We estimated the carbonation depth and the apparent diffusion coefficient of chlorine sodium in the reinforced concrete with cracking damage by LIBS. • Two-dimensional profile measurement of the emission intensity in each element was performed to visualize the chloride penetration and the carbonation in the reinforced concrete. • Apparent diffusion coefficient of chlorine and sodium can be estimated using the Fick

  10. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Determination of the postmortem interval by Laser Induced Breakdown Spectroscopy using swine skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Roldan, A.; Manzoor, S.; Moncayo, S.; Navarro-Villoslada, F.; Izquierdo-Hornillos, R.C.; Caceres, J.O., E-mail: jcaceres@quim.ucm.es

    2013-10-01

    Skin and muscle samples are useful to discriminate individuals as well as their postmortem interval (PMI) in crime scenes and natural or caused disasters. In this study, a simple and fast method based on Laser Induced Breakdown Spectroscopy (LIBS) has been developed to estimate PMI using swine skeletal muscle samples. Environmental conditions (moisture, temperature, fauna, etc.) having strong influence on the PMI determination were considered. Time-dependent changes in the emission intensity ratio for Mg, Na, Hα and K were observed, as a result of the variations in their concentration due to chemical reactions in tissues and were correlated with PMI. This relationship, which has not been reported previously in the forensic literature, offers a simple and potentially valuable means of estimating the PMI. - Highlights: • LIBS has been applied for Postmortem Interval estimation. • Environmental and sample storage conditions have been considered. • Significant correlation of elemental emission intensity with PMI has been observed. • Pig skeletal muscle samples have been used.

  12. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Moncayo, S.; Trichard, F.; Busser, B.; Sabatier-Vincent, M.; Pelascini, F.; Pinel, N.; Templier, I.; Charles, J.; Sancey, L.; Motto-Ros, V.

    2017-07-01

    Chemical elements play central roles for physiological homeostasis in human cells, and their dysregulation might lead to a certain number of pathologies. Novel imaging techniques that improve the work of pathologists for tissue analysis and diagnostics are continuously sought. We report the use of Laser-Induced Breakdown Spectroscopy (LIBS) to perform multi-elemental images of human paraffin-embedded skin samples on the entire biopsy scale in a complementary and compatible way with microscope histopathological examination. A specific instrumental configuration is proposed in order to detect most of the elements of medical interest (i.e. P, Al, Mg, Na, Zn, Si, Fe, and Cu). As an example of medical application, we selected and analysed skin biopsies, including healthy skin tissue, cutaneous metastasis of melanoma, Merkel-cell carcinoma and squamous cell carcinoma. Clear distinctions in the distribution of chemical elements are observed from the different samples investigated. This study demonstrates the high complementarity of LIBS elemental imaging with conventional histopathology, opening new opportunities for any medical application involving metals.

  13. Evaluation of femtosecond laser-induced breakdown spectroscopy for analysis of animal tissues.

    Science.gov (United States)

    Santos, Dário; Samad, Ricardo Elgul; Trevizan, Lílian Cristina; de Freitas, Anderson Zanardi; Vieira, Nilson Dias; Krug, Francisco José

    2008-10-01

    The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 nm and producing a train of 840 microJ and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.

  14. Spectrochemical Analysis of Soil around Leather Tanning Industry Using Laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmad Khan

    2013-01-01

    Full Text Available We report the use of laser induced breakdown spectroscopy (LIBS to determine the chromium contamination of soil due to effluents from leather tanning industry in Kasur District of Punjab (+31∘6′23.21″, +74∘27′16.29″ in Pakistan. Calibration curves were constructed by indigenously prepared standard sample and fitting of curves by linear regression. The limit of detection (LOD was found to be 23.71 mg kg−1. It has been found that the concentration of chromium in the soil is up to 839 mg kg−1 in vicinity of effluent drain and 1829 mg kg−1 in the area of old stagnant pool, which is much higher than the safe limits. Qualitative detection of other elements like Na, Cl, Fe, P, and Si was done from LIBS spectra. The leaching of soil contaminants due to seepage of industrial effluents from deteriorating brick lined drains in horizontal direction has also been observed.

  15. Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca granosa

    Directory of Open Access Journals (Sweden)

    Guoli Ji

    2017-11-01

    Full Text Available Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn, cadmium (Cd, and lead (Pb were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA, then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA. As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA, support vector machine (SVM, and random forest (RF, among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments.

  16. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-03-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.

  17. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    Science.gov (United States)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  18. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  19. Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers.

    Science.gov (United States)

    Nicolodelli, Gustavo; Senesi, Giorgio Saverio; de Oliveira Perazzoli, Ivan Luiz; Marangoni, Bruno Spolon; De Melo Benites, Vinícius; Milori, Débora Marcondes Bastos Pereira

    2016-09-15

    Organic fertilizers are obtained from waste of plant or animal origin. One of the advantages of organic fertilizers is that, from the composting, it recycles waste-organic of urban and agriculture origin, whose disposal would cause environmental impacts. Fast and accurate analysis of both major and minor/trace elements contained in organic mineral and inorganic fertilizers of new generation have promoted the application of modern analytical techniques. In particular, laser induced breakdown spectroscopy (LIBS) is showing to be a very promising, quick and practical technique to detect and measure contaminants and nutrients in fertilizers. Although, this technique presents some limitations, such as a low sensitivity, if compared to other spectroscopic techniques, the use of double pulse (DP) LIBS is an alternative to the conventional LIBS in single pulse (SP). The macronutrients (Ca, Mg, K, P), micronutrients (Cu, Fe, Na, Mn, Zn) and contaminant (Cr) in fertilizer using LIBS in SP and DP configurations were evaluated. A comparative study for both configurations was performed using optimized key parameters for improving LIBS performance. The limit of detection (LOD) values obtained by DP LIBS increased up to seven times as compared to SP LIBS. In general, the marked improvement obtained when using DP system in the simultaneous LIBS quantitative determination for fertilizers analysis could be ascribed to the larger ablated mass of the sample. The results presented in this study show the promising potential of the DP LIBS technique for a qualitative analysis in fertilizers, without requiring sample preparation with chemical reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Corrections for variable plasma parameters in laser induced breakdown spectroscopy: Application on archeological samples

    Science.gov (United States)

    Lazic, V.; Trujillo-Vazquez, A.; Sobral, H.; Márquez, C.; Palucci, A.; Ciaffi, M.; Pistilli, M.

    2016-08-01

    The final scope of this work was to determine the elemental composition of different types of decorative layers present on ancient ceramic fragments through depth profiling by laser induced breakdown spectroscopy (LIBS). The measurements were performed by a stand-off LIBS system at distance of 10.5 m, by employing ns laser pulses at 1064 nm and an Echelle spectrometer. The detected plume intensity strongly differs from one sample/coating to another and changes importantly also in repeated measurements on the almost homogeneous bulk materials. Furthermore, the plasma intensity and its parameters widely change during the depth profiling, as evident from the ratio of here monitored Fe I and Fe II spectral lines. Averaging the line intensities over six repeated measurements, also on the bulk material and for a selected consecutive shot number, produces the errors up to 60% around the mean value and this makes impossible to compare composition of the ceramic body with its decorative layers. To overcome this problem, we developed a theoretically supported procedure for the spectral line corrections in presence of variable plasma parameters, which considers the relative changes among a sufficiently large data set. This method allowed improving the measurement precision up to five times, obtaining a flat response during the depth profiling, and measuring composition of the surface layers. The correction factors are specific for one analytical line of the considered element. The proposed procedure could be universally applied for increasing the LIBS precision in repeated samplings or during the depth profiling, without time consuming calculations of the plasma temperature and the electron density, which also suffer from large measurement errors.

  1. Effect of particle size on laser-induced breakdown spectroscopy analysis of alumina suspension in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rosado, Jose Carlos [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France); National University of Engineering, Faculty of Science, P.O. Box 31-139, Av. Tupac Amaru 210, Lima (Peru); L' hermite, Daniel, E-mail: daniel.lhermite@cea.fr [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Levi, Yves [Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France)

    2012-08-15

    The analysis by Laser Induced Breakdown Spectroscopy (LIBS) was proposed for the detection and the quantification of different elements in water even when the analyte is composed of particles in suspension. We have studied the effect of particle size on the LIBS signal during liquid analysis. In our study we used different particle sizes (from 2 {mu}m to 90 {mu}m) of Al{sub 2}O{sub 3} in suspension in water. The results were compared to the signal obtained in the case of dissolved aluminum. In the case of particles, a linear correlation between the LIBS signal versus concentration was found but a significant decrease in the slope of the calibration curve was found when the particle size increased. Several hypotheses have been tested and only a partial ablation of the particles might explain this decrease in signal intensity. This effect probably does not occur at smaller particle size. We estimated 860 nm/pulse as ablated thickness from the top of the particle. A statistical analysis over all data obtained allowed us to calculate 100 {mu}m as ablated water column depth. - Highlights: Black-Right-Pointing-Pointer We have identified a decrease of calibration curve when particle size increases. Black-Right-Pointing-Pointer Partial particle ablation has been identified as the origin of this effect. Black-Right-Pointing-Pointer The ablation rate on Al{sub 2}O{sub 3} particles in suspension in water has been estimated. Black-Right-Pointing-Pointer We can determine the deepness of the interaction volume into the liquid.

  2. Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints

    Science.gov (United States)

    Almaviva, S.; Palucci, A.; Lazic, V.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; De Dominicis, L.

    2016-04-01

    We report the results of the application of Laser-Induced Breakdown Spectroscopy (LIBS) for the detection of some common military explosives and theirs precursors deposited on white varnished car's external and black car's internal or external plastic. The residues were deposited by an artificial silicon finger, to simulate material manipulation by terrorists when preparing a car bomb, leaving traces of explosives on the parts of a car. LIBS spectra were acquired by using a first prototype laboratory stand-off device, developed in the framework of the EU FP7 313077 project EDEN (End-user driven DEmo for CBRNe). The system operates at working distances 8-30 m and collects the LIBS in the spectral range 240-840 nm. In this configuration, the target was moved precisely in X-Y direction to simulate the scanning system, to be implemented successively. The system is equipped with two colour cameras, one for wide scene view and another for imaging with a very high magnification, capable to discern fingerprints on a target. The spectral features of each examined substance were identified and compared to those belonging to the substrate and the surrounding air, and those belonging to possible common interferents. These spectral differences are discussed and interpreted. The obtained results show that the detection and discrimination of nitro-based compounds like RDX, PETN, ammonium nitrate (AN), and urea nitrate (UN) from organic interfering substances like diesel, greasy lubricants, greasy adhesives or oils in fingerprint concentration, at stand-off distance of some meters or tenths of meters is feasible.

  3. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Science.gov (United States)

    de Souza, Paulino Florêncio; Santos, Dário, Júnior; de Carvalho, Gabriel Gustinelli Arantes; Nunes, Lidiane Cristina; da Silva Gomes, Marcos; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg- 1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm- 2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves).

  4. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  5. Deep-Sea Laser-Induced Breakdown Spectroscopy and its Application to Hydrothermal Mineral Surveys in the Okinawa Trough

    Science.gov (United States)

    Thornton, B.; Takahashi, T.; Sato, T.; Sakka, T.; Ohki, T.; Ohki, K.

    2016-02-01

    Laser-induced breakdown spectroscopy (LIBS) is a form of atomic emission spectroscopy that uses a focused laser-pulse to create a plasma of excited material that can be used to determine the multi-elemental composition of targets in situ. In this work, the authors describe the development of a 3000m depth rated LIBS instrument and its deployments from a remotely operated vehicle (ROV) at depths of more than 1000m. Exemplary measurements of the multi-element composition of both seawater and mineral deposits made at an active hydrothermal vent field in the Okinawa trough will be presented and methods developed to process the measurements made by the instrument will be discussed. This is the first application of LIBS to oceanographic studies and the technique is currently one of the few methods available to perform in situ multi-element analysis underwater at oceanic pressures. Through integration with platforms such as underwater vehicles, drilling systems and subsea observatories, it is hoped that this technology can contribute to more efficient scientific surveys of the deep-sea environment.

  6. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, B. [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Universite Bordeaux 1, 351 cours de la Liberation, 33405 Talence Cedex (France)], E-mail: bruno.bousquet@u-bordeaux1.fr; Travaille, G.; Ismael, A.; Canioni, L. [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Universite Bordeaux 1, 351 cours de la Liberation, 33405 Talence Cedex (France); Michel-Le Pierres, K.; Brasseur, E.; Roy, S. [BRGM. Service MMA. 3 av. Claude Guillemin. 45060 Orleans (France); Le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M. [Laboratoire de Chimie Analytique BioInorganique et Environnement (LCABIE), Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux (IPREM) UMR CNRS 5254, Technopole Helioparc, 2 av. Pierre Angot 64053 Pau Cedex 9 (France); Boriachon, T.; Wazen, P.; Diard, A. [QUANTEL, 2 bis Avenue du Pacifique, 91941 Les Ulis, Cedex (France); Belbeze, S. [ANTEA, 3, avenue Claude Guillemin, B.P. 66119, 45061 Orleans Cedex 2 (France)

    2008-10-15

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.

  7. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  8. Measure the spatial distribution of corneal elasticity by combining femtosecond laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope

    Science.gov (United States)

    Sun, Hui; Li, Xin; Hu, Mingyong

    2017-08-01

    The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.

  9. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  10. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  11. Calibration-free laser-induced breakdown spectroscopy for ...

    Indian Academy of Sciences (India)

    LIBS) for quantitative analysis of materials, illustrated by CF-LIBS applied to a brass ... Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104, India; Laser and Plasma Technology Division, Bhabha Atomic Research ...

  12. Laser-induced breakdown spectroscopy: A versatile tool for ...

    Indian Academy of Sciences (India)

    - ment time. But the main advantage of LIBS over other analytical methods is that nearly every element in the periodic table can be detected simultaneously with this method, with varying detection limits [10]. This makes LIBS suitable for rapid.

  13. Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P.; Wu, D.; Sun, L.Y.; Zhao, D.Y.; Hai, R.; Li, C. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Ding, H., E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Hu, Z.H.; Wang, L.; Hu, J.S.; Chen, J.L.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2017-05-15

    Highlights: • LIBS was applied to EAST for monitoring the cleaning performance of the first wall using He-ICRF cleaning. • The cleaning performance is effective under helium ambient gas and some measurements have been obtained. • The results also indicate that the influence of magnetic field on LIBS signal is much stronger in helium ambient gas. • The effect of delay time and laser fluence on the LIBS signal has been investigated. - Abstract: In this paper, laser-induced breakdown spectroscopy (LIBS) under magnetic field condition has been studied in laboratory and EAST tokamak. The experimental results reveal that in helium ambient gas, the magnetic field significantly enhances the LIBS signal intensity (∼3 times). The effect of time delay and laser fluence on the intensity of LIBS has been investigated for optimizing the signal to background ratio (S/B). The developed LIBS approach has been applied to monitor the cleaning performance of the first wall in the fusion device of EAST using the ion cyclotron range of frequency (ICRF). The experimental results demonstrate that the cleaning performance for Li/D co-deposition layer is effective under helium ambient gas. The removing rate of Li on the surface of W tile is faster than that on Mo tile in He-ICRF cleaning and the D/(D + H) ratio on Mo tile is higher by ∼1.2 times than that on W tile. This work would indicate the feasibility of using LIBS to monitor the wall cleaning processes in EAST tokamak.

  14. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  15. Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis

    Science.gov (United States)

    Colao, F.; Fantoni, R.; Ortiz, P.; Vazquez, M. A.; Martin, J. M.; Ortiz, R.; Idris, N.

    2010-08-01

    To characterize historical building materials according to the geographic origin of the quarries from which they have been mined, the relative content of major and trace elements were determined by means of Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) techniques. 48 different specimens were studied and the entire samples' set was divided in two different groups: the first, used as reference set, was composed by samples mined from eight different quarries located in Seville province; the second group was composed by specimens of unknown provenance collected in several historical buildings and churches in the city of Seville. Data reduction and analysis on laser induced breakdown spectroscopy and X-ray fluorescence measurements was performed using multivariate statistical approach, namely the Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). A clear separation among reference sample materials mined from different quarries was observed in Principal Components (PC) score plots, then a supervised soft independent modeling of class analogy classification was trained and run, aiming to assess the provenance of unknown samples according to their elemental content. The obtained results were compared with the provenance assignments made on the basis of petrographical description. This work gives experimental evidence that laser induced breakdown spectroscopy measurements on a relatively small set of elements is a fast and effective method for the purpose of origin identification.

  16. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    Science.gov (United States)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  17. Automated Measurement of Magnesium/Calcium Ratios in Gastropod Shells Using Laser-Induced Breakdown Spectroscopy for Paleoclimatic Applications.

    Science.gov (United States)

    Cobo, Adolfo; García-Escárzaga, Asier; Gutiérrez-Zugasti, Igor; Setién, Jesús; González-Morales, Manuel R; López-Higuera, José Miguel

    2017-04-01

    The chemical composition of mollusk shells offers information about environmental conditions present during the lifespan of the organism. Shells found in geological deposits and in many archeological sites can help to reconstruct past climatic conditions. For example, a correlation has been found between seawater temperature and the amount of some substituent elements (e.g., magnesium, strontium) in the biogenerated calcium carbonate matrix of the shell, although it is very species-specific. Here we propose the use laser-induced breakdown spectroscopy (LIBS) to estimate Mg/Ca ratios in modern specimens of the common limpet Patella vulgata. An automated setup was used to obtain a sequence of Mg/Ca ratios across a sampling path that could be compared with the seawater temperatures recorded during the organism's lifespan. Results using four shells collected in different months of the year showed a direct relationship between the Mg/Ca ratios and the seawater temperature, although the sequences also revealed small-scale (short-term) variability and an irregular growth rate. Nevertheless, it was possible to infer the season of capture and the minimum and maximum seawater temperatures from the LIBS sequences. This fact, along with the reduction in sampling and measurement time compared with other spectrometric techniques (such as inductively coupled plasma mass spectrometry [ICP-MS]), makes LIBS useful in paleoclimatic studies.

  18. Evaluation of laser-induced thin-layer removal by using shadowgraphy and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rabasović, M. S.; Šević, D.; Lukač, N.; Jezeršek, M.; Možina, J.; Gregorčič, P.

    2016-03-01

    Shadow photography and laser-induced breakdown spectroscopy (LIBS) are studied as methods for monitoring the selective removal of thin (i.e., under 100 μm) layers by laser ablation. We used a laser pulse of 5 ns and 16 mJ at 1064 nm to ablate an 18-μm-thin copper layer from the fiberglass substrate. On the basis of shadowgraphs of the laser-induced shock waves, we measured the optodynamic energy-conversion efficiency, defined as the ratio between the mechanical energy of the shock wave and the excitation-pulse energy. Our results show that this efficiency is significantly higher for the laser pulse-copper interaction than for the interaction between the excitation pulse and the substrate. LIBS was simultaneously employed in our experimental setup. The optical emission from the plasma plume was collected by using a spectrograph and recorded with a streak camera. We show that advancing of laser ablation through the copper layer and reaching of the substrate can be estimated by tracking the spectral region between 370 and 500 nm. Therefore, the presented results confirm that LIBS method enables an on-line monitoring needed for selective removal of thin layers by laser.

  19. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  20. Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rehse, Steven J. [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)], E-mail: rehse@wayne.edu; Diedrich, Jonathan [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)], E-mail: jon.diedrich@gd-ais.com; Palchaudhuri, Sunil [Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201 (United States)], E-mail: spalchau@med.wayne.edu

    2007-10-15

    Pseudomonas aeruginosa bacteria colonies have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. LIBS spectra were obtained after transferring the bacteria from a nutrient-rich culture medium to a nutrient-free agar plate for laser ablation. To study the dependence of the LIBS spectrum on growth and environmental conditions, colonies were cultured on three different nutrient media: a trypticase soy agar (TSA) plate, a blood agar plate, and a medium chosen deliberately to induce bacteria membrane changes, a MacConkey agar plate containing bile salts. Nineteen atomic and ionic emission lines in the LIBS spectrum, which was dominated by inorganic elements such as calcium, magnesium and sodium, were used to identify and classify the bacteria. A discriminant function analysis was used to discriminate between the P. aeruginosa bacteria and two strains of E. coli: a non-pathogenic environmental strain and the pathogenic strain enterohemorrhagic E. coli 0157:H7 (EHEC). Nearly identical spectra were obtained from P. aeruginosa grown on the TSA plate and the blood agar plate, while the bacteria grown on the MacConkey plate exhibited easily distinguishable differences from the other two. All P. aeruginosa samples, independent of initial growth conditions, were readily discriminated from the two E. coli strains.

  1. Laser-induced breakdown spectroscopy and inductively coupled plasma-mass spectrometry for determination of Cr in soils from Brits District, South Africa

    Directory of Open Access Journals (Sweden)

    A. A. Ambushe

    2015-10-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North West Province, South Africa. A Q-switched neodymium-yttrium aluminium garnet (Nd-YAG laser (10 Hz, λ = 1064 nm was employed for generation of a laser-induced plasma on the surface of the soil sample. The atomic emission lines were recorded using an Andor Shamrock SR-303i spectrometer, fitted with an intensified charge-coupled device (ICCD camera. Detailed investigation of experimental parameters such as gate delay time, gate width and laser pulse energy was conducted. Soil samples were dried, finely ground, sieved and thereafter pelletized before LIBS analysis. Calibration curve for the quantification of Cr was constructed using certified reference materials of soils and sediments. The concentrations of Cr in soil samples varied from 111 to 3180 mg/kg. In order to test the validity of the LIBS results, inductively coupled plasma-mass spectrometry (ICP-MS was also employed for determination of Cr. The results obtained using LIBS were found to be in good agreement with those of ICP-MS.DOI: http://dx.doi.org/10.4314/bcse.v29i3.3

  2. Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens.

    Science.gov (United States)

    Chen, Chenghan; Niu, Guanghui; Shi, Qi; Lin, Qingyu; Duan, Yixiang

    2015-10-01

    In the present work, laser-induced breakdown spectroscopy (LIBS) was applied to detect concentrations of chromium and nickel in aqueous solution in the form of matrix conversion using plant fiber spunlaced nonwovens as a solid-phase support, which can effectively avoid the inherent difficulties such as splashing, a quenching effect, and a shorter plasma lifetime during the liquid LIBS analysis. Drops of the sample solution were transferred to the plant fiber spunlaced nonwovens surface and uniformly diffused from the center to the whole area of the substrate. Owing to good hydrophilicity, the plant fiber spunlaced nonwovens can hold more of the liquid sample, and the surface of this material never wrinkles after being dried in a drying oven, which can effectively reduce the deviation during the LIBS analysis. In addition, the plant fiber spunlaced nonwovens used in the present work are relatively convenient and low cost. Also, the procedure of analysis was simple and fast, which are the unique features of LIBS technology. Therefore, this method has potential applications for practical and in situ analyses. To achieve sensitive elemental detection, the optimal delay time in this experiment was investigated. Under the optimized condition, the limits of detection for Cr and Ni are 0.7 and 5.7  μg·mL(-1), respectively. The results obtained in the present study show that the matrix conversion method is a feasible option for analyzing heavy metals in aqueous solutions by LIBS technology.

  3. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diwakar, P.K., E-mail: pdiwakar@purdue.edu; Harilal, S.S.; Freeman, J.R.; Hassanein, A.

    2013-09-01

    Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm. - Highlights: • Role of pre-pulse wavelength and inter-pulse delay on LIBS sensitivity was studied. • For NIR:NIR combination, dual peaks in signal enhancement were observed. • UV:NIR combination resulted in maximum absolute signal intensity. • Persistence of neutral species was increased for double pulse.

  4. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Zane A.; Cremers, David A. E-mail: cremers_david@lanl.gov; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M

    2004-07-30

    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes ({approx}2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified.

  5. Using laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope to measure the spatial distribution of corneal elasticity

    Science.gov (United States)

    Sun, Hui; Li, Xin; Fan, Zhongwei; Kurtz, Ron; Juhasz, Tibor

    2017-02-01

    Corneal biomechanics plays an important role in determining the eye's structural integrity, optical power and the overall quality of vision. It also plays an increasingly recognized role in corneal transplant and refractive surgery, affecting the predictability, quality and stability of final visual outcome [1]. A critical limitation to increasing our understanding of how corneal biomechanics controls corneal stability and refraction is the lack of non-invasive technologies that microscopically measure local biomechanical properties, such as corneal elasticity within the 3D space. Bubble based acoustic radiation force elastic microscopy (ARFEM) introduce the opportunity to measure the inhomogeneous elastic properties of the cornea by the movement of a micron size cavitation bubble generated by a low energy femtosecond laser pulse [2, 3]. Laser induced breakdown spectroscopy (LIBS) also known as laser induced plasma spectroscopy (LIPS) or laser spark spectrometry (LSS) is an atomic emission spectroscopy [4]. The LIBS principle of operation is quite simple, although the physical processes involved in the laser matter interaction are complex and still not completely understood. In one sentence for description, the laser pulses are focused down to a target so as to generate plasma that vaporizes a small amount of material which the emitted spectrum is measured to analysis the elements of the target.

  6. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements.

    Science.gov (United States)

    Syta, Olga; Wagner, Barbara; Bulska, Ewa; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Gonzalez, Jhanis; Russo, Richard

    2018-03-01

    Multilayered fragments of murals were used to evaluate the usefulness of two laser-based instrumental methods: laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) for elemental imaging of unique historic samples. Simultaneous LA/LIBS measurements with the use of 266nm Nd:YAG laser were performed on cross-sections of mediaeval Nubian objects with specific blue painting layers including either Egyptian blue (CaCuSi4O10) or lapis lazuli (Na8-10Al6Si6O24S2-4). A combined use of both laser-based methods allowed for clear distinguishing of blue pigments based on visual imaging of a chemical composition of heterogeneous archaeological inorganic samples. The identification of the pigments was confirmed with Raman spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase

    Science.gov (United States)

    Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.; Colgan, James P.; Kilcrease, David P.; Czerwinski, Ken R.; Clegg, Samuel M.

    2017-07-01

    The analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study: binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O2 and (U,Zr)O2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O2 for 25 Zr lines. The effect of multiple elements in the plasma and the impact on the LOD is discussed.

  8. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods

    Science.gov (United States)

    Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun

    2018-01-01

    Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.

  9. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    Science.gov (United States)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  10. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z., E-mail: martinm1@ornl.gov [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Allman, Steve [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brice, Deanne J. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Martin, Rodger C. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Andre, Nicolas O. [Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-08-15

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO{sub 3} (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples. - Highlights: Black-Right-Pointing-Pointer Did the detection of strontium, cerium, and cesium in CaCO{sub 3} and graphite matrices. Black-Right-Pointing-Pointer The detection of these elements was performed in a systematic manner. Black-Right-Pointing-Pointer Univariate calibration curves were used to determine strontium detection. Black-Right-Pointing-Pointer Univariate and multivariate statistical analysis built improved statistical models. Black-Right-Pointing-Pointer Limits of detection are comparable or better in case of cerium and cesium.

  11. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com [Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, UP 211002 (India); Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  12. Developing mobile LIBS solutions for real world applications

    Science.gov (United States)

    Li, Qun; Li, Jing; Bakeev, Katherine; Wang, Sean

    2015-06-01

    We present a new type of handheld laser-induced breakdown spectroscopy (LIBS) spectrometer for developing mobile atomic spectroscopy solutions for real world applications. A micro diode-pumped passive Q-switched solid-state laser with high repetition rate of well above 1 kHz in comparison to 1-10 Hz as used in a traditional LIBS instrument is employed to produce a train of laser pulses. The laser beam is further fast scanned over a pre-defined area, hence generating several hundreds of micro-plasmas per second at different locations. Synchronized miniature CCD array spectrometer modules collect the LIBS signal and generate LIBS spectra. By adjusting the integration time of the spectrometer to cover a plurality of periods of the laser pulse train, the spectrometer integrates the LIBS signal produced by this plurality of laser pulses. Hence the intensity of the obtained LIBS spectrum can be greatly improved to increase the signal-to-noise ratio (SNR). This unique feature of the high repetition rate laser based LIBS system allows it to measure elements at trace levels, hence reducing the limit of detection (LOD). The increased signal intensity also lessens the sensitivity requirement for the optical spectrometer. In addition, the energy of the individual laser pulse can be reduced in comparison to traditional LIBS system to obtain the same signal level, making the laser pulse less invasive to the sample. The typical measurement time is within 1 second. Several examples of real world applications will be presented.

  13. Development of laser-induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration

    Science.gov (United States)

    Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin

    2015-05-01

    The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.

  14. Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen Zhen [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima 770-8501 (Japan); Deguchi, Yoshihiro, E-mail: ydeguchi@tokushima-u.ac.jp [Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima 770-8501 (Japan); Kuwahara, Masakazu; Taira, Takuya [Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima 770-8501 (Japan); Zhang, Xiao Bo [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima 770-8501 (Japan); Yan, Jun Jie; Liu, Ji Ping [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Watanabe, Hiroaki [Energy Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Kanagawa 240-0196 (Japan); Kurose, Ryoichi [Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540 (Japan)

    2013-09-01

    In order to simulate coal combustion and develop optimal and stable boiler control systems in real power plants, it is imperative to obtain the detailed information in coal combustion processes as well as to measure species contents in fly ash, which should be controlled and analyzed for enhancing boiler efficiency and reducing environmental pollution. The fly ash consists of oxides (SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, CaO, and so on), unburned carbon, and other minor elements. Recently laser-induced breakdown spectroscopy (LIBS) technique has been applied to coal combustion and other industrial fields because of the fast response, high sensitivity, real-time and non-contact features. In these applications it is important to measure controlling factors without any sample preparation to maintain the real-time measurement feature. The relation between particle content and particle diameter is also one of the vital researches, because compositions of particles are dependent on their diameter. In this study, we have detected the contents of size-segregated particles using LIBS. Particles were classified by an Anderson cascade impactor and their contents were measured using the output of 1064 nm YAG laser, a spectrograph and an ICCD camera. The plasma conditions such as plasma temperature are dependent on the size of particles and these effects must be corrected to obtain quantitative information. The plasma temperature was corrected by the emission intensity ratio from the same atom. Using this correction method, the contents of particles can be measured quantitatively in fixed experimental parameters. This method was applied to coal and fly ash from a coal-fired burner to measure unburned carbon and other contents according to the particle diameter. The acquired results demonstrate that the LIBS technique is applicable to measure size-segregated particle contents in real time and this method is useful for the analysis of coal combustion and its control

  15. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    Science.gov (United States)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz

  16. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Łazarek, Łukasz, E-mail: lukasz.lazarek@pwr.wroc.pl [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Antończak, Arkadiusz J.; Wójcik, Michał R. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Drzymała, Jan [Faculty of Geoengineering, Mining and Geology, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples.

  17. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Haslinger, M.J.; Bodea, M.A.; Huber, N. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Wolfmeir, H. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe{sub 2}O{sub 3} powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe{sub 2}O{sub 3} pellets and Fe{sub 3}O{sub 4} ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λ{sub L}). The UV pulses (λ{sub L} = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λ{sub L} = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of t{sub d} ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency. - Highlights: • Chlorine in iron oxide is measured by LIBS with LOD = 440 ppm and LOQ = 720 ppm. • The LOD of Cl is among the best values achieved on solid samples by LIBS. • Enhanced emission of Cl is observed by orthogonal UV laser re-excitation of plasma. • Cl signals are enhanced at long interpulse delays and short detector gate delays. • Measured LIBS signals of Cl and Fe qualitatively agree with calculated emissions.

  18. Development of the double-pulse technique to improve the analytical performance of Laser Induced Breakdown Spectroscopy (LIBS) on solids: Nuclear and geological applications; Developpement de la technique de la double impulsion laser pour ameliorer les performances analytiques de l'Ablation Laser couplee a la Spectrometrie d'Emission Optique (AL/SEO) sur solides: Applications nucleaires et geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.

    2005-10-15

    The double-pulse technique has been developed to improve the analytical performance of Laser Ablation coupled to Optical Emission Spectroscopy (LA/OES). This approach relies on the addition of a second time-resolved laser pulse to the classical LA/OES system. It has been studied on aluminium alloys according to different geometries of the two laser beams (orthogonal and collinear geometries) before being applied to different materials (synthetic glass, rock, steel, sodium chloride). The increase in emission intensity depends on the temporal parameters, on the excitation energy level of the emission line, on the concentration of the studied element and on the analyzed matrix. The double-pulse LA/OES technique can be particularly interesting to improve the sensitivity towards vitreous matrices containing elements emitting lines with high excitation energy levels. (author)

  19. Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ryan B., E-mail: randerson@astro.cornell.edu [Cornell University Department of Astronomy, 406 Space Sciences Building, Ithaca, NY 14853 (United States); Bell, James F., E-mail: Jim.Bell@asu.edu [Arizona State University School of Earth and Space Exploration, Bldg.: INTDS-A, Room: 115B, Box 871404, Tempe, AZ 85287 (United States); Wiens, Roger C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663 MS J565, Los Alamos, NM 87545 (United States); Morris, Richard V., E-mail: richard.v.morris@nasa.gov [NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 (United States); Clegg, Samuel M., E-mail: sclegg@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663 MS J565, Los Alamos, NM 87545 (United States)

    2012-04-15

    We investigated five clustering and training set selection methods to improve the accuracy of quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy (LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO{sub 2} at a stand-off distance of 7 m at 17 mJ per pulse to simulate the operational conditions of the ChemCam LIBS instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set selection methods, which do not require prior knowledge of the chemical composition of the test-set samples, are based on grouping similar spectra and selecting appropriate training spectra for the partial least squares (PLS2) model. These methods were: (1) hierarchical clustering of the full set of training spectra and selection of a subset for use in training; (2) k-means clustering of all spectra and generation of PLS2 models based on the training samples within each cluster; (3) iterative use of PLS2 to predict sample composition and k-means clustering of the predicted compositions to subdivide the groups of spectra; (4) soft independent modeling of class analogy (SIMCA) classification of spectra, and generation of PLS2 models based on the training samples within each class; (5) use of Bayesian information criteria (BIC) to determine an optimal number of clusters and generation of PLS2 models based on the training samples within each cluster. The iterative method and the k-means method using 5 clusters showed the best performance, improving the absolute quadrature root mean squared error (RMSE) by {approx} 3 wt.%. The statistical significance of these improvements was {approx} 85%. Our results show that although clustering methods can modestly improve results, a large and diverse training set is the most reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate standards and

  20. [Experimental investigation of quantitatively analysing trace Mo in complex metallic alloys by laser induced breakdown spectroscopy].

    Science.gov (United States)

    Wang, Zhen-Nan; Li, Ying; Zhang, Qing-Yu; Lu, Yuan; Zheng, Rong-Er

    2011-06-01

    The quantitative analysis using laser induced breakdown spectroscopy (LIBS), lack of appropriate interior label element, is described and applied to trace element molybdenum (Mo) detection in complex metallic alloys. A Q-switched Nd : YAG laser operating at 532 nm was utilized to generate plasma and the emission was recorded by a grating spectrometer equipped with CCD, boxcar and PMT. The three peak heights of Mo I , 550.649, 553.305 and 557.045 nm, changing with Mo mass fraction in metallic alloys were measured to produce calibration curves respectively, and double blind method was used to analyse a test sample. Based on Mo I 550.649 nm line, the Mo mass fraction in the test sample was determined to be 2.229% with relative error of 5.57% in comparison with the given value of 2.111%. On using Mo I 557.045 nm line, the relative error was found to be doubled due to the overlap with Fe emission lines. While taking the total height of three atomic lines into account in analysis, the resulted error dropped to 7.58%, even better than the average of predicted concentrations based on the above three lines. The obtained results demonstrate that satisfactory precision could be obtained under a consistent experiment condition with the above scheme, even without appropriate interior label element. The methods of maintaining stable laser ablation efficiency on sample are also discussed.

  1. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    Science.gov (United States)

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  2. Testing a portable laser-induced breakdown spectroscopy system on geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Rakovsky, Jozef, E-mail: jozef.rakovsky@fmph.uniba.sk [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Department of Experimental Physics FMFI, Comenius University, Mlynska dolina, 842 48 Bratislava (Slovakia); Musset, Olivier [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Buoncristiani, JeanFrancois [Laboratoire Biogeosciences, UMR CNRS 6282, Universite de Bourgogne, 6 Boulevard Gabriel 21000 Dijon (France); Bichet, Vincent [Laboratoire Chrono-Environnement, UMR CNRS 6249, Universite de Besancon, 16 Route de Gray 25000 Besancon (France); Monna, Fabrice [Laboratoire ARTeHIS, UMR CNRS 6298, Universite de Bourgogne, 6 Boulevard Gabriel 21000 Dijon (France); Neige, Pascal [Laboratoire Biogeosciences, UMR CNRS 6282, Universite de Bourgogne, 6 Boulevard Gabriel 21000 Dijon (France); Veis, Pavel [Department of Experimental Physics FMFI, Comenius University, Mlynska dolina, 842 48 Bratislava (Slovakia); State Geological Institute of Dionyz Stur, Mlynska dolina 1, 817 04 Bratislava 11 (Slovakia)

    2012-08-15

    This paper illustrates the potentialities of a home-made portable LIBS (laser-induced breakdown spectroscopy) instrument in Earth sciences, more particularly in geochemically recognizing (i) tephra layers in lacustrine sediments and (ii) fossilization processes in ammonites. Abundances for selected lines of Al, Ca, Fe, Ti, Ba and Na were determined in lacustrine chalk sediments of the Jura, where the Laacher See Tephra (LST) layer is recorded. A statistical treatment of elemental maps produced from the section of a sedimentary column containing the LST event allows instrumental conditions to be optimized. Accumulating spectra from close shot positions gives better results than multiplying shots at the same location. A depth profile method was applied to study ammonite fossilization (pyritization, phosphatization) processes. Depth variations of Fe, Ca, Al intensities, and Fe/Ca and Al/Ca ratios provide indications about pyritization, but phosphatization processes cannot be determined with our device. - Highlights: Black-Right-Pointing-Pointer Element cartography maps for sediment which contains tephra layer have been created. Black-Right-Pointing-Pointer The maps have been used for on-site conditions determination by statistical treatment. Black-Right-Pointing-Pointer Pyritization process on ammonite surface was identified successfully.

  3. Quantitative Analysis of Lead in Tea Samples by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Wang, J.; Shi, M.; Zheng, P.; Xue, S.

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) is applied at natural atmosphere to compare the quantitative analysis performances of the toxic heavy metal element lead (Pb) in Pu'er tea leaves, determined by three calibration methods: the external standard method, the internal standard method, and the multiple linear regression method. The Pb I line at 405.78 nm is chosen as the analytical spectral line to perform the calibration. The linear correlation coefficients ( R 2 ) of the predicted concentrations versus the standard reference concentrations determined by the three methods are 0.97916, 0.98462, and 0.99647, respectively. The multiple linear regression method gives the best performance with respect to average relative errors (ARE = 2.69%), maximum relative errors (MRE = 4.94%), average relative standard deviations (ARSD = 9.69%) and maximum relative standard deviations (MRSD = 24.44%) of the predicted concentrations of Pb in eight samples, compared to the other two methods. It is shown that the multiple linear regression method is more accurate and stable in predicting concentrations of Pb in Pu'er tea leaf samples.

  4. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vítková, Gabriela [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); CEPLANT, R and D Center for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Novotný, Karel [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno (Czech Republic); CEITEC — Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Pořízka, Pavel [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); Novotný, Jan [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); Všianský, Dalibor [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Čelko, Ladislav [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); and others

    2014-11-01

    Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups — stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements. - Highlights: • Comparison of two potentially field-deployable LIBS setups is introduced. • The aim is classification of LIBS spectra of brick samples into several localities. • LDA filled with PCA scores is proposed as an effective classification method. • An influence of brick firing temperature on LIBS spectra is discovered and examined.

  5. Laser-induced Breakdown Spectroscopy used to Detect Endophyte-mediated Accumulation of Metals by Tall Fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Stewart, Arthur J [ORNL; Gwinn, Dr. Kimberley [University of Tennessee, Knoxville (UTK); Waller, John C [ORNL

    2010-01-01

    Laser-induced breakdown spectroscopy was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by ICP-MS. Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni and Zn) were measured by both techniques at concentrations great enough to reliably compare. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP-MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  6. Dual-Spectroscopy Platform for the Surveillance of Mars Mineralogy Using a Decisions Fusion Architecture on Simultaneous LIBS-Raman Data.

    Science.gov (United States)

    Moros, Javier; ElFaham, Mohamed Mostafa; Laserna, J Javier

    2018-02-06

    A single platform, integrated by a laser-induced breakdown spectroscopy detector and a Raman spectroscopy sensor, has been designed to remotely (5 m) and simultaneously register the elemental and molecular signatures of rocks under Martian surface conditions. From this information, new data fusion architecture at decisions level is proposed for the correct categorization of the rocks. The approach is based on a decision-making process from the sequential checking of the spectral features representing the cationic and anionic counterparts of the specimen. The scrutiny of the LIBS response by using a moving-window algorithm informs on the diversity of the elemental constituents. The output rate of emission lines allows projecting in a loop the elements as the cationic counterpart of the rock. In parallel, the Raman response of the unknown is compared with all the molecular counterparts of the hypothesized cation that are stored in a spectral library. The largest similarity rate unveils the final identity of the unknown. The identification capabilities of the architecture have been underscored through blind tests of 10 natural rocks with different origins. The great majority of forecasts have matched with the real identities of the inspected targets. The strength of this platform to simultaneously acquire the multielemental and the molecular information from a specimen by using the same laser events greatly enhances the "on-surface" missions for the surveillance of mineralogy.

  7. Recognition of archaeological materials underwater by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, V. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy)]. E-mail: lazic@frascati.enea.it; Colao, F. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy); Fantoni, R. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy); Spizzicchino, V. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy)

    2005-08-31

    The detection of different materials immersed in seawater has been studied by means of Laser Induced Breakdown Spectroscopy. The plasma emission was produced by a Q-Switched Nd:YAG laser operated at 1064 nm in a dual pulse mode. Different classes of materials potentially found in the undersea archaeological parks, such as iron, copper-based alloys, precious alloys, marble and wood have been examined. Data acquisition and processing were optimized for better signal control and in order to improve the detection threshold. In all the examined cases but wood, qualitative analysis was successful and allowed for the material recognition. The spectral features necessary to clearly distinguish marble materials from calcareous rocks have been also established. It was found that these characteristic spectral intervals could be also used for the recognition of sedimentary layers deposited on the underwater findings. Quantitative chemical analysis was also performed on submerged bronze samples, after generating calibration curves with standards of similar matrix composition.

  8. A comparison of different strategies in multivariate regression models for the direct determination of Mn, Cr, and Ni in steel samples using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.

  9. Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf

    Science.gov (United States)

    Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Gunter, Lee E.; Engle, Nancy L.; Wymore, Ann M.; Weston, David J.

    2017-12-01

    The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activation analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.

  10. Laser induced breakdown spectroscopy for bulk minerals online analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Sapir-Sofer, I.; Modiano, H.; Stana, R. [LDS, Petah Tiqwa (Israel). Research Dept.

    2007-12-15

    The purpose of the work was to prove the ability of LIBS to provide on-line analyses for raw ores in field conditions. An industrial LIBS machine was developed and successfully tested for on-belt evaluation of phosphate measuring Mg, Fe, Al, Bone Phosphate Lime (BPL), Insoluble phase and Metal Impurity Ratio (MER) and of coal measuring its ash content. The comparison of LIBS on-line data with control analyses revealed good correlation, which corresponds to the required detection limits and accuracy. With frequent elemental data from a LIBS system, process engineers have the tools to best optimize the process. These processes could be minerals blending and separation to meet customer specifications, monitoring and controlling the efficiency of a minerals process, or a minerals accounting function.

  11. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    Energy Technology Data Exchange (ETDEWEB)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2016-01-25

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulse in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.

  12. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Diwakar, P. K.; Harilal, S. S.; Freeman, J. R.; Hassanein, A.

    2013-09-01

    Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.

  13. Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peruchi, Lidiane Cristina; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Guerra, Marcelo Braga Bueno; Almeida, Eduardo de; Rufini, Iolanda Aparecida [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil); Santos, Dário [Federal University of São Paulo, R. Prof. Artur Riedel 275, 09972-270, Diadema SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil)

    2014-10-01

    Laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were evaluated for the determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn in pressed pellets of wheat flours. EDXRF and LIBS calibration models were built with analytes mass fractions determined by inductively coupled plasma optical emission spectrometry after microwave-assisted acid digestion in a set of 25 wheat flour laboratory samples. Test samples consisted of pressed pellets prepared from wheat flour mixed with 30% mm{sup −1} cellulose binder. Experiments were carried out with a LIBS setup consisted of a Q-switched Nd:YAG laser and a spectrometer with Echelle optics and ICCD, and a benchtop EDXRF system fitted with a Rh target X-ray tube and a Si(Li) semiconductor detector. The correlation coefficients from the linear calibration models of P, K, Ca, Mg, S, Fe, Mn and Zn determined by LIBS and/or EDXRF varied from 0.9705 for Zn to 0.9990 for Mg by LIBS, and from 0.9306 for S to 0.9974 for K by EDXRF. The coefficients of variation of measurements varied from 1.2 to 20% for LIBS, and from 0.3 to 24% for EDXRF. The predictive capabilities based on RMSEP (root mean square error of prediction) values were appropriate for the determination of P, Ca, Mg, Fe, Mn and Zn by LIBS, and for P, K, S, Ca, Fe, and Zn by EDXRF. In general, results from the analysis of NIST SRM 1567a Wheat flour by LIBS and EDXRF were in agreement with their certified mass fractions. - Highlights: • Combination of LIBS and EDXRF for quantitative analysis of wheat flour. • Validation performed for determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn. • Same test samples can be used for both methods. • Appropriate limits of detection for all tested analytes. • Methods are simple and provide fast and accurate results for routine analysis.

  14. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  15. Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources.

    Science.gov (United States)

    Remus, Jeremiah J; Harmon, Russell S; Hark, Richard R; Haverstock, Gregory; Baron, Dirk; Potter, Ian K; Bristol, Samantha K; East, Lucille J

    2012-03-01

    Obsidian is a natural glass of volcanic origin and a primary resource used by indigenous peoples across North America for making tools. Geochemical studies of obsidian enhance understanding of artifact production and procurement and remain a priority activity within the archaeological community. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique being examined as a means for identifying obsidian from different sources on the basis of its 'geochemical fingerprint'. This study tested whether two major California obsidian centers could be distinguished from other obsidian localities and the extent to which subsources could be recognized within each of these centers. LIBS data sets were collected in two different spectral bands (350±130 nm and 690±115 nm) using a Nd:YAG 1064 nm laser operated at ~23 mJ, a Czerny-Turner spectrograph with 0.2-0.3 nm spectral resolution and a high performance imaging charge couple device (ICCD) detector. Classification of the samples was performed using partial least-squares discriminant analysis (PLSDA), a common chemometric technique for performing statistical regression on high-dimensional data. Discrimination of samples from the Coso Volcanic Field, Bodie Hills, and other major obsidian areas in north-central California was possible with an accuracy of greater than 90% using either spectral band. © 2012 Optical Society of America

  16. Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder

    Science.gov (United States)

    Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2017-11-01

    A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.

  17. Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Russell S. [ARL Army Research Office, Environmental Sciences Division, Durham, NC (United States); Shughrue, Katrina M.; Hark, Richard R. [Juniata College, Department of Chemistry, Huntingdon, PA (United States); Remus, Jeremiah J. [Clarkson University, Department of Electrical and Computer Engineering, Potsdam, NY (United States); Wise, Michael A. [Smithsonian Institution, Department of Mineral Sciences, Washington, DC (United States); East, Lucille J. [Applied Spectra, Inc., Fremont, CA (United States)

    2011-07-15

    Conflict minerals is a term applied to ores mined in conditions of armed conflict and human rights abuse. Niobium and tantalum are two rare metals whose primary natural occurrence is in the complex oxide minerals columbite and tantalite, the ore of which is commonly referred to as coltan. The illicit export of coltan ore from the Democratic Republic of the Congo is thought to be responsible for financing the ongoing civil conflicts in this region. Determining the chemical composition of an ore is one of the means of ascertaining its provenance. Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e., ''chemical fingerprint'') of any material in real time. To test this idea for columbite-tantalite, three sample sets were analyzed. Partial least squares discriminant analysis (PLSDA) allows correct sample-level geographic discrimination at a success rate exceeding 90%. (orig.)

  18. Selective ablation of Copper-Indium-Diselenide solar cells monitored by laser-induced breakdown spectroscopy and classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Vallejo, David [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Ashkenasi, David, E-mail: d.ashkenasi@lmtb.de [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Lemke, Andreas [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Eichler, Hans Joachim [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany)

    2013-09-01

    Laser-induced breakdown spectroscopy (LIBS) and two classification methods, i.e. linear correlation and artificial neural networks (ANN), are used to monitor P1, P2 and P3 scribing steps of Copper-Indium-Diselenide (CIS) solar cells. Narrow channels featuring complete removal of desired layers with minimum damage on the underlying film are expected to enhance efficiency of solar cells. The monitoring technique is intended to determine that enough material has been removed to reach the desired layer based on the analysis of plasma emission acquired during multiple pass laser scribing. When successful selective scribing is achieved, a high degree of similarity between test and reference spectra has to be identified by classification methods in order to stop the scribing procedure and avoid damaging the bottom layer. Performance of linear correlation and artificial neural networks is compared and evaluated for two spectral bandwidths. By using experimentally determined combinations of classifier and analyzed spectral band for each step, classification performance achieves errors of 7, 1 and 4% for steps P1, P2 and P3, respectively. The feasibility of using plasma emission for the supervision of processing steps of solar cell manufacturing is demonstrated. This method has the potential to be implemented as an online monitoring procedure assisting the production of solar cells. - Highlights: • LIBS and two classification methods were used to monitor CIS solar cells processing. • Selective ablation of thin-film solar cells was improved with inspection system. • Customized classification method and analyzed spectral band enhanced performance.

  19. Laser-induced breakdown spectroscopy on metallic samples at very low temperature in different ambient gas pressures

    Science.gov (United States)

    El-Saeid, R. H.; Abdelhamid, M.; Harith, M. A.

    2016-02-01

    Analysis of metals at very low temperature adopting laser-induced breakdown spectroscopy (LIBS) is greatly beneficial in space exploration expeditions and in some important industrial applications. In the present work, the effect of very low sample temperature on the spectral emission intensity of laser-induced plasma under both atmospheric pressure and vacuum has been studied for different bronze alloy samples. The sample was cooled down to liquid nitrogen (LN) temperature 77 K in a special vacuum chamber. Laser-induced plasma has been produced onto the sample surface using the fundamental wavelength of Nd:YAG laser. The optical emission from the plasma is collected by an optical fiber and analyzed by an echelle spectrometer combined with an intensified CCD camera. The integrated intensities of certain spectral emission lines of Cu, Pb, Sn, and Zn have been estimated from the obtained LIBS spectra and compared with that measured at room temperature. The laser-induced plasma parameters (electron number density Ne and electron temperature Te) were investigated at room and liquid nitrogen temperatures for both atmospheric pressure and vacuum ambient conditions. The results suggest that reducing the sample temperature leads to decrease in the emission line intensities under both environments. Plasma parameters were found to decrease at atmospheric pressure but increased under vacuum conditions.

  20. Laser-Induced Breakdown Spectroscopy coupled with chemometrics for the analysis of steel: The issue of spectral outliers filtering

    Science.gov (United States)

    Pořízka, Pavel; Klus, Jakub; Prochazka, David; Képeš, Erik; Hrdlička, Aleš; Novotný, Jan; Novotný, Karel; Kaiser, Jozef

    2016-09-01

    In this manuscript we highlight the necessity of outlier filtering prior the multivariate classification in Laser-Induced Breakdown Spectroscopy (LIBS) analyses. For the purpose of classification we chose to analyse BAM steel standards that possess similar composition of major and trace elements. To assess the improvement in figures of merit we compared the performance of three outlier filtering approaches (based on Principal Component Analysis, linear correlation and total spectral intensity) already separately discussed in the LIBS literature. The truncated data set was classified using Soft Independent Modelling of Class Analogies (SIMCA). Yielded results showed significant improvement in the performance of multivariate classification coupled to filtered data. The best performance was observed for the total spectral intensity filtering approach gaining the analytical figures of merit (overall accuracy, sensitivity, and specificity) over 98%. It is noteworthy that the results showed relatively low sensitivity and high specificity of the SIMCA algorithm regardless of the presence of outliers in the data sets. Moreover, it was shown that the variance in the data topology of training and testing data sets has a great impact on the consequent data classification.

  1. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  2. Quantitative analysis of chromium in potatoes by laser-induced breakdown spectroscopy coupled with linear multivariate calibration.

    Science.gov (United States)

    Chen, Tianbing; Huang, Lin; Yao, Mingyin; Hu, Huiqin; Wang, Caihong; Liu, Muhua

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) coupled with the linear multivariate regression method was utilized to analyze chromium (Cr) quantitatively in potatoes. The plasma was generated using a Nd:YAG laser, and the spectra were acquired by an Andor spectrometer integrated with an ICCD detector. The models between intensity of LIBS characteristic line(s) and concentration of Cr were constructed to predict quantitatively the content of target. The unary, binary, ternary, and quaternary variables were chosen for verifying the accuracy of linear regression calibration curves. The intensity of characteristic lines Cr (CrI: 425.43, 427.48, 428.97 nm) and Ca (CaI: 422.67, 428.30, 430.25, 430.77, 431.86 nm) were used as input data for the multivariate calculations. According to the results of linear regression, the model of quaternary linear regression was established better in comparing with the other three models. A good agreement was observed between the actual content provided by atomic absorption spectrometry and the predicted value obtained by the quaternary linear regression model. And the relative error was below 5.5% for validation samples S1 and S2. The result showed that the multivariate approach can obtain better predicted accuracy than the univariate ones. The result also suggested that the LIBS technique coupled with the linear multivariate calibration method could be a great tool to predict heavy metals in farm products in a rapid manner even though samples have similar elemental compositions.

  3. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lijuan [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Gilon, Nicole [Institut des Sciences Analytiques, UMR5280 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Zeng, Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined. - Highlights: • Direct determination of wear metals in lubricating oils using LIBS. • Generalized calibration curves for different oils. • Ablation of a thin oil layer on a pure metallic target.

  4. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Fabiano Barbieri, E-mail: fbgonzaga@inmetro.gov.br [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Rocha, Werickson Fortunato de Carvalho [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Correa, Deleon Nascimento [Technical–Scientific Police Superintendency, Criminalistic Institute Dr. Octávio Eduardo de Brito Alvarenga—IC-SPTC-SP, 05507-060 São Paulo, SP (Brazil)

    2015-07-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny–Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples. - Highlights: • Compact and low-cost laser-induced breakdown spectrometer • Analysis of tax stamps used in alcoholic beverages • Detection of false tax stamps using the LIBS spectra and chemometrics • Falsification detection ascribed to different levels of calcium concentration.

  5. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Scharun, Michael, E-mail: michael.scharun@ilt.fraunhofer.de [RWTH Aachen University, Chair for Laser Technology, Steinbachstraße 15, Aachen (Germany); Fricke-Begemann, Cord; Noll, Reinhard [Fraunhofer Institute for Laser Technology, Steinbachstraße 15, Aachen (Germany)

    2013-09-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features. - Highlights: • Mobile, hand-guided LIBS apparatus for metal analysis, even for steel • Comparable results as state-of-the-art SD-OES instrument • New sectioned calibration function resulting in smaller deviations • Comparison of univariate and multivariate analysis methods.

  6. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    Science.gov (United States)

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  7. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  8. Application OF LIBS To Estimate The Age Of Broiler Breeders

    Science.gov (United States)

    Salam, Z. Abdel; Harith, M. A.

    2011-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a well-known spectrochemical elemental analysis technique. In our investigations of the LIBS spectra it has been found that there is a remarkable correlation between the ionic to atomic spectral lines emission ratio and the surface hardness of eggshell for two Different Broiler Breeder at different age. The proposed technique has been applied successfully in poultry science to estimate the age of broiler breeders by measuring the surface hardness of their eggshell. The experiments have been performed on two different strains, Arbor Acres plus (AAP) and Hubard Classic (HC), and the results were satisfactory.

  9. Laser-induced breakdown spectroscopy & enrichment by chelation

    NARCIS (Netherlands)

    Roosma, J.R.; Veen, J.J.F. van

    2012-01-01

    LIBS is used for fast, multi-component analysis of element compositions, but it is not very suitable for liquids. Moreover the sensitivity for metal ions is often insufficient. A fast and sensitive detection tool for metal ions in food matrices, including aqueous solutions, is developed. The

  10. Calibration-free laser-induced breakdown spectroscopy for ...

    Indian Academy of Sciences (India)

    ing, analysis of archaeology and art works, determination of radioactive and hazardous materials, environmental monitoring, space exploration, military explosive detection and biomedical studies. Quantitative LIBS analysis is conventionally performed using calibration-based meth- od in which calibration curves of emission ...

  11. Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoqin; Xu, Tao; Lin, Qingyu [Research Center of Analytical Instrumentation, College of Chemistry, Sichuan University, Chengdu 610064 (China); Liang, Long [College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Niu, Guanghui; Lai, Hongjun; Xu, Mingjun; Wang, Xu [Research Center of Analytical Instrumentation, College of Chemistry, Sichuan University, Chengdu 610064 (China); Li, Hua [College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-03-01

    The correct identification of rock types is critical for understanding the origins and history of any particular rock body. Laser-induced breakdown spectroscopy (LIBS) has developed into an excellent analytical tool for geological materials research because of its numerous technical advantages compared with traditional methods. The coupling of LIBS with advanced multivariate analysis has received increasing attention because it facilitates the rapid processing of spectral information to differentiate and classify samples. In this study, we collected LIBS datasets for 16 sedimentary rocks from Triassic strata in Sichuan Basin. We compared the performance of two types of spectrometers (Czerny–Turner and Echelle) for classification of rocks using two advanced multivariate statistical techniques, i.e., partial least squares discriminant analysis (PLS-DA) and support vector machines (SVMs). Comparable levels of performance were achievable when using the two systems in the best signal reception conditions. Our results also suggest that SVM outperformed PLS-DA in classification performance. Then, we compared the results obtained when using pre-selected wavelength variables and broadband LIBS spectra as variable inputs. They provided approximately equivalent levels of performance. In addition, the rock slab samples were also analyzed directly after being polished. This minimized the analysis time greatly and showed improvement of classification performance compared with the pressed pellets. - Highlights: • SVM and PLS-DA were compared using two spectrometers to classify sedimentary rocks. • SVM combined with LIBS improved the classification accuracy compared with PLS-DA. • Minimal difference using pre-selected and broadband spectra as variable inputs • Improved classification performance achievable using polished rock slab samples.

  12. Multivariate Methods for Prediction of Geologic Sample Composition with Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Morris, Richard; Anderson, R.; Clegg, S. M.; Bell, J. F., III

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) uses pulses of laser light to ablate a material from the surface of a sample and produce an expanding plasma. The optical emission from the plasma produces a spectrum which can be used to classify target materials and estimate their composition. The ChemCam instrument on the Mars Science Laboratory (MSL) mission will use LIBS to rapidly analyze targets remotely, allowing more resource- and time-intensive in-situ analyses to be reserved for targets of particular interest. ChemCam will also be used to analyze samples that are not reachable by the rover's in-situ instruments. Due to these tactical and scientific roles, it is important that ChemCam-derived sample compositions are as accurate as possible. We have compared the results of partial least squares (PLS), multilayer perceptron (MLP) artificial neural networks (ANNs), and cascade correlation (CC) ANNs to determine which technique yields better estimates of quantitative element abundances in rock and mineral samples. The number of hidden nodes in the MLP ANNs was optimized using a genetic algorithm. The influence of two data preprocessing techniques were also investigated: genetic algorithm feature selection and averaging the spectra for each training sample prior to training the PLS and ANN algorithms. We used a ChemCam-like laboratory stand-off LIBS system to collect spectra of 30 pressed powder geostandards and a diverse suite of 196 geologic slab samples of known bulk composition. We tested the performance of PLS and ANNs on a subset of these samples, choosing to focus on silicate rocks and minerals with a loss on ignition of less than 2 percent. This resulted in a set of 22 pressed powder geostandards and 80 geologic samples. Four of the geostandards were used as a validation set and 18 were used as the training set for the algorithms. We found that PLS typically resulted in the lowest average absolute error in its predictions, but that the optimized MLP ANN and

  13. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Negre, E. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Pelascini, F. [CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Panczer, G.; Yu, J. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France)

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R{sup 2} = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated. - Highlights: • Automated alignment of the collection fiber by real-time plasma imaging • High level control of experimental parameters in LIBS experiments • Improvement of the short and long term stability in LIBS

  14. LIBS Sensor for Sub-surface CO2 Leak Detection in Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Jinesh JAIN

    2017-07-01

    Full Text Available Monitoring carbon sequestration poses numerous challenges to the sensor community. For example, the subsurface environment is notoriously harsh, with large potential mechanical, thermal, and chemical stresses, making long-term stability and survival a challenge to any potential in situ monitoring method. Laser induced breakdown spectroscopy (LIBS has been demonstrated as a promising technology for chemical monitoring of harsh environments and hard to reach places. LIBS has a real- time monitoring capability and can be used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of the probe design and the use of fiber- optics has made LIBS particularly suited for remote measurements. The paper focuses on developing a LIBS instrument for downhole high-pressure, high-temperature brine experiments, where CO2 leakage could result in changes in the trace mineral composition of an aquifer. The progress in fabricating a compact, robust, and simple LIBS sensor for widespread subsurface leak detection is presented.

  15. Spectroscopy of laser-produced plasmas: Setting up of high ...

    Indian Academy of Sciences (India)

    induced breakdown spectroscopy system ... We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified charge coupled device (ICCD) to detect and quantify trace ...

  16. Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres.

    Science.gov (United States)

    Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2013-01-01

    For the rapid and precise sorting of steel scrap with relatively high contents of copper, laser-induced breakdown spectroscopy (LIBS) is a promising method. It has several advantages such that it can work under ambient air atmospheres, and specimens can be tested without any pretreatment, such as acid digestion, polishing of the surface of the specimens, etc. For the application of LIBS for actual steel scrap, we obtained emission spectra by an LIBS system, which was mainly comprised of an Nd:YAG laser, an Echelle-type spectrometer, and an ICCD detector. The standard reference materials (SRMs) of JISF FXS 350-352, which are Fe-Cu binary alloy and have certified concentrations of copper, were employed for making calibration lines. Considering spectral interferences from the emission lines of the iron matrix in the alloys, Cu I lines having wavelengths of 324.754 and 327.396 nm could be chosen. In five replicate measurements of each SRM, shorter delay times after laser irradiation and longer gate widths for detecting the transient emission signal are suggested to be the optimal experiment parameters. In the determination process, utilizing the calibration line from Cu I 327.396 nm was better because of less spectral interference. By using 200 pulsed laser shots for the measurement sequence, a limit of detection of 0.004 Cu at% could be obtained.

  17. Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions

    Science.gov (United States)

    Dequaire, T.; Meslin, P.-Y.; Beck, P.; Jaber, M.; Cousin, A.; Rapin, W.; Lasne, J.; Gasnault, O.; Maurice, S.; Buch, A.; Szopa, C.; Coll, P.

    2017-05-01

    Organic matter has been continuously delivered by meteorites and comets to Mars since its formation, and possibly formed in situ by abiogenic and/or biogenic processes. This organic matter may be preserved from the harsh oxidizing environment of Mars in specific locations. Together with water, organic molecules are necessary to the emergence of life as we know it. Since the first martian landers, scientists have been searching for organics and until today, only one positive detection has been made by a Gas Chromatography Mass Spectrometer (GCMS) instrument onboard the Curiosity rover. In this article we investigate a complementary approach to guide the search for organic matter using ChemCam, the first Laser-Induced Breakdown Spectroscopy (LIBS) instrument on Mars. This experimental study focuses on the analysis of carbon and nitrogen LIBS signatures in organoclay samples and allows the determination of the critical level (Lc) and limit of detection (LoD) of these elements with LIBS under Mars-like conditions, giving new insights into the search of organic matter on Mars.

  18. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  19. Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism

    Science.gov (United States)

    Kanawade, Rajesh; Mehari, Fanuel; Knipfer, Christian; Rohde, Maximilian; Tangermann-Gerk, Katja; Schmidt, Michael; Stelzle, Florian

    2013-09-01

    This study focuses on tissue differentiation using 'Laser Induced Breakdown Spectroscopy' (LIBS) by monitoring the plasma plume created during laser surgery processes. This technique is aimed at controlling a laser surgery feedback system in real time. An Excimer laser (Ar-F 193 nm) was used for the ablation of tissue samples. Fat, muscle, nerve and skin tissue samples of bisected ex-vivo pig heads were prepared as test objects for the ablation procedure. A single fiber was used to collect emissions and deliver them to a spectrometer. The obtained LIBS spectra in the measured emissions were analyzed to determine each tissue type according to their chemical composition. The elements found in the samples and their emission spectra were in agreement with those described in literature. The collected LIBS spectra were analyzed to differentiate the tissues using statistical data analysis: Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Receiver Operating Characteristics (ROC). The obtained preliminary results suggest a successful differentiation of the target tissues with high sensitivity and specificity. The main goal of this study was to qualitatively identify tissue types during laser ablation, which will provide a real time feedback mechanism for clinical Laser surgery applications to significantly improve the accuracy and safety of laser surgery procedures.

  20. Laser induced breakdown spectroscopy for bone and cartilage differentiation - ex vivo study as a prospect for a laser surgery feedback mechanism.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximilian; Knipfer, Christian; Kanawade, Rajesh; Klämpfl, Florian; Adler, Werner; Stelzle, Florian; Schmidt, Michael

    2014-11-01

    Laser surgery enables for very accurate, fast and clean modeling of tissue. The specific and controlled cutting and ablation of tissue, however, remains a central challenge in the field of clinical laser applications. The lack of information on what kind of tissue is being ablated at the bottom of the cut may lead to iatrogenic damage of structures that were meant to be preserved. One such example is the shaping or removal of diseased cartilaginous and bone tissue in the temporomandibular joint (TMJ). Diseases of the TMJ can induce deformation and perforation of the cartilaginous discus articularis, as well as alterations to the cartilaginous surface of the condyle or even the bone itself. This may result in restrictions of movement and pain. The aim of a surgical intervention ranges from specific ablation and shaping of diseased cartilage, bone or synovial tissues to extensive removal of TMJ structures. One approach to differentiate between these tissues is to use Laser Induced Breakdown Spectroscopy (LIBS). The ultimate goal is a LIBS guided feedback control system for surgical laser systems that enables real-time tissue identification for tissue specific ablation. In the presented study, the authors focused on the LIBS based differentiation between cartilage tissue and cortical bone tissue using an ex-vivo pig model.

  1. Proof of Principle for a Real-Time Pathogen Isolation Media Diagnostic: The Use of Laser-Induced Breakdown Spectroscopy to Discriminate Bacterial Pathogens and Antimicrobial-Resistant Staphylococcus aureus Strains Grown on Blood Agar

    Directory of Open Access Journals (Sweden)

    Rosalie A. Multari

    2013-01-01

    Full Text Available Laser-Induced Breakdown Spectroscopy (LIBS is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media.

  2. Detection of toxic metals (lead and chromium) in talcum powder using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Gondal, Mohammed A; Dastageer, Mohamed A; Naqvi, Akhtar A; Isab, Anvar A; Maganda, Yasin W

    2012-10-20

    A laser induced breakdown spectroscopic (LIBS) system was developed using a 266 nm laser and a high-resolution spectrograph (Andor SR 500 i-A) to detect the trace levels of the highly toxic metals such as lead and chromium present in different brands of talcum powder available in the local market. The strongest atomic transition lines of lead (Pb) (405.7 nm) and chromium (Cr) (425.4 nm) were used as spectral markers to simultaneously detect lead and chromium. The LIBS system was calibrated for these two heavy metals, and the system was able to detect 15-20 parts per million (ppm) of lead and 20-30 ppm of chromium in the talcum powder sample. The limits of detection of the LIBS system were also estimated, and they are 1.96 and 1.72 ppm per million respectively for lead and chromium. This study is highly significant due to the use of cosmetic products that could affect the health of millions of people around the globe.

  3. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Rawad, E-mail: rawad.saad@cea.fr [CEA, DEN, DPC, SEARS, LANIE, 91191 Gif-sur-Yvette (France); L' Hermite, Daniel, E-mail: daniel.lhermite@cea.fr [CEA, DEN, DPC, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Bousquet, Bruno, E-mail: bruno.bousquet@u-bordeaux1.fr [LOMA, Université de Bordeaux, CNRS, 351 Cours de la Libération, 33405 Talence Cedex (France)

    2014-11-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm{sup −1} energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation.

  4. Quantitative Analysis of Magnesium in Soil by Laser-Induced Breakdown Spectroscopy Coupled with Nonlinear Multivariate Calibration

    Science.gov (United States)

    Yongcheng, J.; Wen, S.; Baohua, Z.; Dong, L.

    2017-09-01

    Laser-induced breakdown spectroscopy (LIBS) coupled with the nonlinear multivariate regression method was applied to analyze magnesium (Mg) contents in soil. The plasma was generated using a 100 mJ Nd:YAG pulsed laser, and the spectra were acquired using a multi-channel spectrometer integrated with a CCD detector. The line at 383.8 nm was selected as the analysis line for Mg. The calibration model between the intensity of characteristic line and the concentration of Mg was constructed. The traditional calibration curve showed that the concentration of Mg was not only related to the line intensity of itself, but also to other elements in soil. The intensity of characteristic lines for Mg (Mg I 383.8 nm), manganese (Mn) (Mn I 403.1 nm), and iron (Fe) (Fe I 407.2 nm) were used as input data for nonlinear multivariate calculation. According to the results of nonlinear regression, the ternary nonlinear regression was the most appropriate of the studied models. A good agreement was observed between the actual concentration provided by inductively coupled plasma mass spectrometry (ICP-MS) and the predicted value obtained using the nonlinear multivariate regression model. The correlation coefficient between predicted concentration and the measured value was 0.987, while the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were reduced to 0.017% and 0.014%, respectively. The ratio of the standard deviation of the validation to the RMSEP increased to 8.79, and the relative error was below 1.21% for nine validation samples. This indicated that the multivariate model can obtain better predicted accuracy than the calibration curve. These results also suggest that the LIBS technique is a powerful tool for analyzing the micro-nutrient elements in soil by selecting calibration and validation samples with similar matrix composition.

  5. Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models

    Science.gov (United States)

    Huang, Lin; Yao, Mingyin; Xu, Yuan; Liu, Muhua

    2013-04-01

    In order to prove the feasibility of laser-induced breakdown spectroscopy (LIBS) in measuring toxic metals Cr in water solution, a series of potassium bichromate standard solutions were prepared in the lab. The characteristic line intensity of Cromium (Cr) element at 357.87, 359.35, 360.53, 425.43, 427.48, and 428.97 nm was taken to build up the correlation with concentration. The indexes of relative standard deviation, intercept, slope, R 2 (coefficient of determination), and root mean square error of calibration were selected to verify the precision and accuracy of models. The comprehensive results showed that the 425.43 nm line had better superiority than other lines. And the detection limit of 6 ug/ml and repeatability of 3 % are reported. To improve the model accuracy further, the intensity ratio of single 425.43 nm line to the whole spectrum was extracted. And a linear relationship between the intensity ratio and the element Cr concentration was constructed. The results demonstrated the intensity ratio calibration had better accuracy than single line calibration, especially after smoothing. To verify the accuracy of prediction, the 100 ug/ml concentration sample was used as prediction sample. The relative error values are 13.2, 11.7, and 10.8 % for single line calibration, intensity ratio calibration with raw data, and by use of smooth processing data, respectively. The results further indicated that the intensity ratio calibration improved the accuracy of measurement than single line calibration. It is worth mentioning that the application of LIBS aiming the direct analysis of heavy metals in water is a great challenge that still needs efforts for its development and validation.

  6. Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines

    Science.gov (United States)

    Lu, Shengzi; Dong, Meirong; Huang, Jianwei; Li, Wenbing; Lu, Jidong; Li, Jun

    2018-02-01

    T91 steel is a representative martensitic heat-resistant steel widely used in high temperature compression components of industrial equipment. During the service period, the operation safety and the service life of the equipment will be affected by the change of structure and mechanical properties of the steel components, which is called material aging. In order to develop a rapid in-situ aging estimation technology of high temperature compression components surface, laser-induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) was employed in this paper. The spectral characteristics of 10 T91 steel specimens with different aging grades were analyzed. Line intensities and the line intensity ratios (ionic/atomic and alloying element/matrix element) that indicate the change of metallographic structure were used to establish SVM models, and the results using different variable sets were compared. The model was optimized by comparing different pulse number for practical effectiveness, and the robustness of the model was investigated in dealing with the inhomogeneity of steel composition. The study results show that the estimation model obtained the best performance using line intensities and line intensity ratios averaged from 31st-60th laser pulses as input variables. The estimation accuracy of validation set was greatly improved from 75.8% to 95.3%. In addition, the model showed the outstanding capacity for handling the fluctuations of spectral signals between measuring-points (spots), which indicated that the aging estimation based on a few measuring-points is feasible. The studies presented here demonstrate that the LIBS coupled with SVM is a new useful technique for the aging estimation of steel, and would be well-suited for fast safety assessment in industrial field.

  7. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  8. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  9. Classification of wines according to their production regions with the contained trace elements using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Tian, Ye; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng; Li, Hua; Yu, Jialu; Bernard, Jérôme; Chen, Li; Martin, Serge; Delepine-Gilon, Nicole; Bocková, Jana; Veis, Pavel; Chen, Yanping; Yu, Jin

    2017-09-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to classify French wines according to their production regions. The use of the surface-assisted (or surface-enhanced) sample preparation method enabled a sub-ppm limit of detection (LOD), which led to the detection and identification of at least 22 metal and nonmetal elements in a typical wine sample including majors, minors and traces. An ensemble of 29 bottles of French wines, either red or white wines, from five production regions, Alsace, Bourgogne, Beaujolais, Bordeaux and Languedoc, was analyzed together with a wine from California, considered as an outlier. A non-supervised classification model based on principal component analysis (PCA) was first developed for the classification. The results showed a limited separation power of the model, which however allowed, in a step by step approach, to understand the physical reasons behind each step of sample separation and especially to observe the influence of the matrix effect in the sample classification. A supervised classification model was then developed based on random forest (RF), which is in addition a nonlinear algorithm. The obtained classification results were satisfactory with, when the parameters of the model were optimized, a classification accuracy of 100% for the tested samples. We especially discuss in the paper, the effect of spectrum normalization with an internal reference, the choice of input variables for the classification models and the optimization of parameters for the developed classification models.

  10. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    Science.gov (United States)

    Gonzaga, Fabiano Barbieri; Rocha, Werickson Fortunato de Carvalho; Correa, Deleon Nascimento

    2015-07-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny-Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples.

  11. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS

    Science.gov (United States)

    Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST team

    2017-12-01

    A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.

  12. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  13. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Romppanen, Sari; Häkkänen, Heikki; Kaski, Saara

    2017-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples.

  14. First ionization potential measurements using laser-induced breakdown spectroscopy

    OpenAIRE

    Sherbini, Ahsraf M. EL; Faham, Mohamed M. EL; Parigger, Christian G.

    2016-01-01

    The first ionization potential of neutral atoms is determined from thresholds of laser-induced optical breakdown. Bulk material ablation plasma of aluminum, silver, lead, indium and copper is created in laboratory air with focused, 5-ns pulsed Nd:YAG, 1064 nm IR radiation. At fixed spot size of 2 $\\pm$ 0.1 mm, the laser fluence is varied from 16 to 3 J/cm$^2$. The first ionization potentials of the lines Al I 396.2, Ag I 520.9, Pb I 405.8 and 406.2, In I 410.2 and Cu I 515.3 nm are measured t...

  15. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste.

    Science.gov (United States)

    Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues

    2017-12-01

    Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Classification and Discrimination of Minerals Using Laser Induced Breakdown Spectroscopy and Raman Spectroscopy

    Science.gov (United States)

    Bi, Yunfeng; Zhang, Ying; Yan, Jingwen; Wu, Zhongchen; Li, Ying

    2015-11-01

    The classification and discrimination of minerals are important in geological research. The distribution of rocks and minerals may be inferred based on their identification, which is helpful for the investigation of some geological and environmental evolution problems, either on the earth or on other planets. LIBS and Raman spectra techniques have shown great advantages in simultaneous multi-component, in-situ, and non-destructive detection and they play an important role in rock composition analysis. In this presentation, six kinds of minerals (Gypsum, Spodumene, Barite, Haematite, Moonstone, and Labradorite) were detected by first using LIBS and Raman systems, and then several other methods (PCA, PLS-DA, ANN, and SVM) were used to evaluate the LIBS, Raman, and the fused LIBS/Raman data, respectively. The results indicate the superiority of the fused LIBS/Raman data in mineral classification, which stems from their complementary analysis abilities when studying element composition and structural features. supported by Shandong University of China (No. 2014ZQXM004) and National Natural Science Foundation of China (No. 41503063)

  17. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy

    NARCIS (Netherlands)

    Schouten, R.E.; Farneti, B.; Tijskens, L.M.M.; Algarra Alarcon, A.; Woltering, E.J.

    2014-01-01

    The aim of this study was to increase the understanding of chlorophyll breakdown and lycopene synthesis at a quantitative level in Solanum lycopersicum fruit. To accomplish this, a kinetic model is proposed describing the transition from chloro- to chromoplast. Remittance VIS spectroscopy was used

  18. Calculation and optimization of sample identification by laser induced breakdown spectroscopy via correlation analysis

    NARCIS (Netherlands)

    Lentjes, M.; Dickmann, K.; Meijer, J.

    2007-01-01

    Linear correlation analysis may be used as a technique for the identification of samples with a very similar chemical composition by laser induced breakdown spectroscopy. The spectrum of the “unknown” sample is correlated with a library of reference spectra. The probability of identification by

  19. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.500, year: 2016

  20. Development of automated system for real-time LIBS analysis

    Science.gov (United States)

    Mazalan, Elham; Ali, Jalil; Tufail, Kashif; Haider, Zuhaib

    2017-03-01

    Recent developments in Laser Induced Breakdown Spectroscopy (LIBS) instrumentation allow the acquisition of several spectra in a second. The dataset from a typical LIBS experiment can consist of a few thousands of spectra. To extract the useful information from that dataset is painstaking effort and time consuming process. Most of the currently available softwares for spectral data analysis are expensive and used for offline data analysis. LabVIEW software compatible with spectrometer (in this case Ocean Optics Maya pro spectrometer), can be used to for data acquisition and real time analysis. In the present work, a LabVIEW based automated system for real-time LIBS analysis integrated with spectrometer device is developed. This system is capable of performing real time analysis based on as-acquired LIBS spectra. Here, we have demonstrated the LIBS data acquisition and real time calculations of plasma temperature and electron density. Data plots and variations in spectral intensity in response to laser energy were observed on LabVIEW monitor interface. Routine laboratory samples of brass and calcine bone were utilized in this experiment. Developed program has shown impressive performance in real time data acquisition and analysis.

  1. Combined raman/laser-induced breakdown spectrometer: space and non-space applications

    NARCIS (Netherlands)

    Sandtke, M.; Laan, E.C.; Ahlers, B.

    2010-01-01

    TNO has developed the combination of two spectroscopic analysis methods in one instrument. Raman spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS) were brought together for an instrument to be flown on the ExoMars mission from the European Space Agency (ESA) to investigate the Martian

  2. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    Science.gov (United States)

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.

  3. Relative Determination of Micronutrients of Different Species of Teff (Eragrestis) Seeds of Ethiopia Origin by Calibration Free Laser Induced Breakdown Spectroscopy Technique

    Science.gov (United States)

    Mamo, Dilbetigle Assefa; Chaubey, Ashok K.

    2014-03-01

    The laser-induced breakdown spectroscopy technique has been used to analysis the multi-component of three different species of Teff seeds (Red, White and Sirgegna) of Ethiopia origin using a second harmonic (532 nm) of a nanosecond Q-switched Nd: YAG laser focused on the surface of the pelletized powder of Teff seed. Based on the idea of the plasma is homogeneous. The seven essential micronutrients in three species of Teff seeds are identified carbon as a matrix element. Electron density and plasma temperature are calculated applying Saha-Boltzmann equation and Boltzmann plot method. And making use of the semi-quantitative method the three species relative concentrations of (Ca, Mg, Al, Si, Mn, Fe and K) are obtained using Calibration Free Laser Induced Breakdown Spectroscopy (CF-LIBS) technique. The result demonstrated that the relative concentrations of the some elements in the species are different. In Red Teff species Ca is more, but Mg is least. On the contrary Mg is high in Sirgegna and White Teff as compared to Red Teff. And High content of Calcium, Magnesium and Iron micronutrients are found in the three species.

  4. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  5. Comparative investigation of laser ablation plumes in air and argon by analysis of spectral line shapes: Insights on calibration-free laser-induced breakdown spectroscopy

    Science.gov (United States)

    Hermann, Jörg; Gerhard, Christoph; Axente, Emanuel; Dutouquet, Christophe

    2014-10-01

    We investigate the characteristic features of plume expansion in air and argon resulting from ultraviolet laser ablation of solid matter in conditions typically applied in material analysis via laser-induced breakdown spectroscopy (LIBS). Barite crown glass is chosen as a target material for the characteristic emission spectrum suitable for plasma diagnostics. The space-integrated plasma emission spectrum recorded with an echelle spectrometer coupled to a gated detector is compared to the computed spectral radiance of a nonuniform plasma in local thermodynamic equilibrium. In particular, resonance lines of neutral sodium atoms and barium ions are observed to probe gradients of temperature and density within the plume. It is shown that laser ablation in argon leads to an almost uniform plasma whereas gradients of temperature and density are evidenced in ambient air. The discrepancy is attributed to the different physical properties of both gases leading to a stronger vapor-gas energy exchange in the case of air. However, strong gradients occur only in a thin peripheral zone, close to the vapor-gas contact front. The larger plasma core appears almost uniform. The peripheral zone of low temperature mostly contributes to the plasma emission spectrum by absorption and material analysis via calibration-free LIBS in air may ignore the nonuniform character of the plasma if only transitions of small optical thickness are considered.

  6. Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, Gabriela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Novotny, Karel, E-mail: codl@sci.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Prokes, Lubomir [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Hrdlicka, Ales [Central European Institute of Technology, CEITEC MU, Masaryk University (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Novotny, Jan [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Malina, Radomir; Prochazka, David [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)

    2012-07-15

    The goal of this paper is to compare two selected statistical techniques used for identification of archeological materials merely on the base of their spectra obtained by stand-off laser-induced breakdown spectroscopy (stand-off LIBS). Data processing using linear discriminant analysis (LDA) and artificial neural networks (ANN) were applied on spectra of 18 different samples, some of them archeological and some recent, containing 7 types of material (i.e. shells, mortar, bricks, soil pellets, ceramic, teeth and bones). As the input data PCA scores were taken. The intended aim of this work is to create a database for simple and fast identification of archeological or paleontological materials in situ. This approach can speed up and simplify the sampling process during archeological excavations that nowadays tend to be quite damaging and time-consuming. - Highlights: Black-Right-Pointing-Pointer We use statistical techniques for identification of archeological materials. Black-Right-Pointing-Pointer Input data for LDA and ANN are PC scores counted from stand-off LIBS spectra. Black-Right-Pointing-Pointer The method used for identification of archeological materials provides good results. Black-Right-Pointing-Pointer After recording more spectra we can get useful tool for rapid analysis in situ.

  7. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves

    Science.gov (United States)

    da Silva Gomes, Marcos; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dário, Junior; Krug, Francisco José

    2013-08-01

    Calibration is still a challenging task when dealing with the direct analysis of solids. This is particularly true for laser-induced breakdown spectroscopy (LIBS), and laser ablation inductively coupled plasma optical emission spectrometry/mass spectrometry, when the calibrations are matrix-dependent and/or appropriate certified reference materials are generally not available. Looking at the analysis of plant materials in the form of pressed pellets by LIBS, a new method to overcome and/or minimize this difficulty is proposed by keeping the matrix constant in order to produce matrix-matched calibration pellets. To achieve this goal and to test this novel approach, ground sugar cane leaves were chosen and submitted to acid extractions for obtaining the corresponding blank or a material containing very low concentrations of the analytes. The resulting dried solid material was used either as a blank or a low concentration standard, and also homogeneously mixed with the original plant material at appropriate ratios as well. The corresponding pellets were used as calibration standards and ablated at 30 different sites by applying 25 laser pulses per site with a Q-switched Nd:YAG at 1064 nm. The plasma emission collected by lenses was directed through an optical fiber towards a spectrometer equipped with Echelle optics and intensified charge-coupled device. Delay time and integration time gate were fixed at 2.0 and 5.0 μs, respectively. This calibration strategy was tested for the determination of Ca, Mg, K, P, Cu, Mn, and Zn by LIBS in pellets of leaves from 17 varieties of sugar cane and good correlations were obtained with inductively coupled plasma optical emission spectrometry results in the corresponding acid digests. The proposed approach was also useful to estimate the limits of detection based on measurements of blanks, as recommended by IUPAC, or with the aid of a low concentration standard.

  8. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hoehse, Marek [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Mory, David [LTB Lasertechnik Berlin, Rudower Chaussee 29, 12489 Berlin (Germany); Florek, Stefan [ISAS - Institute for Analytical Science, Albert-Einstein-Str. 9, D-12489 Berlin (Germany); Weritz, Friederike [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Gornushkin, Igor, E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Panne, Ulrich [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Humboldt Universitaet zu Berlin, Chemistry Department, Brook-Taylor-Strasse 2, D-12489 Berlin (Germany)

    2009-11-15

    Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same approx 0.002 mm{sup 2} sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle-Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200-6000 cm{sup -1} without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290-945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up.

  9. Combined LIBS-Raman for remote detection and characterization of biological samples

    Science.gov (United States)

    Anderson, Aaron S.; Mukundan, Harshini; McInroy, Rhonda E.; Clegg, Samuel M.

    2015-03-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy have rich histories in the analysis of a wide variety of samples in both in situ and remote configurations. Our team is working on building a deployable, integrated Raman and LIBS spectrometer (RLS) for the parallel elucidation of elemental and molecular signatures under Earth and Martian surface conditions. Herein, results from remote LIBS and Raman analysis of biological samples such as amino acids, small peptides, mono- and disaccharides, and nucleic acids acquired under terrestrial and Mars conditions are reported, giving rise to some interesting differences. A library of spectra and peaks of interest were compiled, and will be used to inform the analysis of more complex systems, such as large peptides, dried bacterial spores, and biofilms. These results will be presented and future applications will be discussed, including the assembly of a combined RLS spectroscopic system and stand-off detection in a variety of environments.

  10. Detection of toxic elements using laser-induced breakdown spectroscopy in smokers' and nonsmokers' teeth and investigation of periodontal parameters.

    Science.gov (United States)

    Alhasmi, Abdul M; Gondal, Mohammed A; Nasr, Mohamed M; Shafik, Sami; Habibullah, Yusuf B

    2015-08-20

    A laser-induced breakdown spectrometer (LIBS) was built and optimized to detect levels of toxic elements such as lead, cadmium, and arsenic present in the roots of extracted teeth of smokers and nonsmokers. Sixty extracted teeth from patients having a history of chronic periodontitis were divided into two groups of 30 teeth each for smoker and nonsmoker patients and, as controls, a third group of 30 patients who did not have a history of chronic periodontitis. The respective elemental concentration (Pb, Cd, and As) 23-29, 0.26-0. 31, and 0.64-11 ppm are for nonsmokers, 35-55, 0.33-0.51, and 0.91-1.5 ppm are for smokers, and lastly 0.17-0.31, 0.01-0.05, and 0.05-0.09 ppm are for control group. In order to test the validity of the results achieved using our LIBS system, a standard inductively coupled plasma (ICP) technique was also applied for the analysis of the same teeth samples, and ICP results were found to be in excellent agreement with our LIBS results. In addition to this, the gingival index, plaque index, clinical attachment loss (CAL) and probing pocket depth were also recorded. Our LIBS spectroscopic analysis showed high levels of lead, cadmium, and arsenic concentration on root surfaces of teeth, which may be due to CAL.

  11. Progress in LIBS for landmine detection

    Science.gov (United States)

    Gottfried, Jennifer L.; Harmon, Russell S.; La Pointe, Aaron

    2009-05-01

    The ability to interrogate objects buried in soil and ascertain their chemical composition in-situ would be an important capability enhancement for both military and humanitarian demining. Laser Induced Breakdown Spectroscopy (LIBS) is a simple spark spectrochemical technique using a pulsed laser. Recent developments in broadband and man-portable LIBS provide the capability for the real-time detection at very high sensitivity of all elements in any target material because all chemical elements emit in the 200-940 nm spectral region. This technological advance offers a unique potential for the development of a rugged and reliable man-portable or robot-deployable chemical sensor that would be capable of both in-situ point probing and chemical sensing for landmine detection. Broadband LIBS data was acquired under laboratory conditions for more than a dozen different types of anti-personnel and anti-tank landmine casings from four countries plus a set of antitank landmine simulants. Subsequently, a statistical classification technique (partial least squares discriminant analysis, PLS-DA) was used to discriminate landmine casings from the simulants and to assign "unknown" spectra to a mine type based upon a library classification approach. Overall, a correct classification success of 99.0% was achieved, with a misclassification rate of only 1.8%. This performance illustrates the potential that LIBS has to be developed into a field-deployable device that could be utilized as a confirmatory sensor in landmine detection. The operational concept envisioned is a small LIBS system that is either man-portable or robot-deployed in which a micro-laser is contained in the handle of a deminer's probe, with laser light delivered and collected through an optical fiber in the tapered tip of the probe. In such a configuration, chemical analysis could be readily accomplished by LIBS after touching the buried object that one is interested in identifying and using real-time statistical

  12. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva Gomes, Marcos da [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil); Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luiz km 235, São Carlos, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil); Santos, Dário [Universidade Federal de São Paulo, Departamento de Ciências Exatas e da Terra, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil)

    2013-08-01

    Calibration is still a challenging task when dealing with the direct analysis of solids. This is particularly true for laser-induced breakdown spectroscopy (LIBS), and laser ablation inductively coupled plasma optical emission spectrometry/mass spectrometry, when the calibrations are matrix-dependent and/or appropriate certified reference materials are generally not available. Looking at the analysis of plant materials in the form of pressed pellets by LIBS, a new method to overcome and/or minimize this difficulty is proposed by keeping the matrix constant in order to produce matrix-matched calibration pellets. To achieve this goal and to test this novel approach, ground sugar cane leaves were chosen and submitted to acid extractions for obtaining the corresponding blank or a material containing very low concentrations of the analytes. The resulting dried solid material was used either as a blank or a low concentration standard, and also homogeneously mixed with the original plant material at appropriate ratios as well. The corresponding pellets were used as calibration standards and ablated at 30 different sites by applying 25 laser pulses per site with a Q-switched Nd:YAG at 1064 nm. The plasma emission collected by lenses was directed through an optical fiber towards a spectrometer equipped with Echelle optics and intensified charge-coupled device. Delay time and integration time gate were fixed at 2.0 and 5.0 μs, respectively. This calibration strategy was tested for the determination of Ca, Mg, K, P, Cu, Mn, and Zn by LIBS in pellets of leaves from 17 varieties of sugar cane and good correlations were obtained with inductively coupled plasma optical emission spectrometry results in the corresponding acid digests. The proposed approach was also useful to estimate the limits of detection based on measurements of blanks, as recommended by IUPAC, or with the aid of a low concentration standard. - Highlights: • Blanks and/or low concentration standards of plant

  13. Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z., E-mail: martinm1@ornl.gov [BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mayes, Melanie A. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Heal, Katherine R. [Department of Oceanography, University of Washington, Seattle, WA 98122 (United States); Brice, Deanne J. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wullschleger, Stan D. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-09-01

    Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200–800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r{sup 2} = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra. - Highlights: • This research has successfully identified the organic and inorganic carbon in soil. • Multivariate analysis was used to show success in building a statistical model. • Can be used to

  14. Direct determination of Ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO{sub 2} nanoparticle concentration

    Energy Technology Data Exchange (ETDEWEB)

    Menneveux, Jérôme; Wang, Fang; Lu, Shan; Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Gilon, Nicole [Institut des Sciences Analytiques, UMR5280 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Chen, Yanping [Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-07-01

    Sunscreen represents a large variety of creams which, in the analytical point of view, exhibit a similar matrix. Such matrix corresponds to a semi-solid emulsion of mixture of oil and water. The formulation of a cream can include metal and nonmetal elements in different contents in order to realize specific pharmaceutical or cosmetic functions designed for the product. The complex matrix of these materials makes their analysis challenging for classical elemental analytical techniques with specific and complicated sample pretreatment procedures needed for reliable quantification. In this work we demonstrate and assess direct determination, without any pretreatment, of elemental content, especially for metallic element such as titanium, in a sunscreen using laser-induced breakdown spectroscopy (LIBS). The used configuration corresponds to that of indirect ablation of a thin film of cream applied on the surface of a pure aluminum target. We especially focused, in this work, on the case of high concentration of TiO{sub 2} nanoparticle in cream. Such choice was justified first by the fact that such concentration level is usually found in commercial sunscreens. On the other hand, titanium presents a large number of lines, neutral as well as singly ionized, in the spectral range from the near UV to the near IR. It provides therefore an ideal case to study line selection method to manage the effect of self-absorption, which becomes unavoidable at high concentration level, and to optimize measurement precision. Through such study, we try to deduce a quantifiable and generalizable line selection method for high performance LIBS measurements. More specifically, calibration curves were first established using 6 laboratory-prepared samples. The quadratic term of the curves was then studied as a function of the intensity of the used lines and their type (neutral or ion, resonant or non-resonant). The prediction performance of the lines was assessed with 2 validation samples with

  15. Desarrollo instrumental y de metodología analítica para el análisis directo de sólidos mediante LIBS

    OpenAIRE

    Álvarez Llamas, César

    2012-01-01

    El objetivo del presente trabajo consiste en el desarrollo y optimización de un sistema experimental LIBS (Laser-Induced Breakdown Spectroscopy), y en su aplicación para el análisis directo de muestras sólidas.

  16. Portable LIBS system for determining the composition of multilayer structures on objects of cultural value

    Energy Technology Data Exchange (ETDEWEB)

    Moreira Osorio, Lesther [IMRE-Havana University, Vedado 10400, Havana (Cuba); Ponce Cabrera, Luis V; Arronte Garcia, Miguel A; Flores Reyes, Teresa [CICATA-IPN, km 14.5 Carretera Tampico Puerto industrial, Altamira 89600, Tamps (Mexico); Ravelo, Ivette, E-mail: lesther.moreira@gmail.com [National Center for Conservation, Restoration and Museology (CENCREM) (Cuba)

    2011-01-01

    This study presents the use of a portable Laser Induced Breakdown Spectroscopy (LIBS) prototype for determining the elemental composition of a metal jug. The system includes emission from a multiuse Q-switched Nd:YAG laser. By sampling at different points, the surface composition is determined. Furthermore, the presence of two layers of Pb and Cu and their thicknesses are determined through in-depth analysis.

  17. High stability breakdown of noble gases with femtosecond laser pulses.

    Science.gov (United States)

    Heins, A M; Guo, Chunlei

    2012-02-15

    In the past, laser-induced breakdown spectroscopy (LIBS) signals have been reported to have a stability independent of the pulse length in solids. In this Letter, we perform the first stability study of femtosecond LIBS in gases (to our best knowledge) and show a significant improvement in signal stability over those achieved with longer pulses. Our study shows that ultrashort-pulse LIBS has an intrinsically higher stability in gas compared to nanosecond-pulse LIBS because of a deterministic ionization process at work in the femtosecond pulse. Relative standard deviations below 1% are demonstrated and are likely only limited by our laser output fluctuations. This enhanced emission stability may open up possibilities for a range of applications, from monitoring rapid gas dynamics to high-quality broadband light sources.

  18. Detection and Analytical Capabilities for Trace Level of Carbon in High-Purity Metals by Laser-Induced Breakdown Spectroscopy with a Frequency Quintupled 213 nm Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masaki Ohata

    2017-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS with a frequency quintupled 213 nm Nd:YAG laser was examined to the analysis of trace level of carbon (C in high-purity metals and its detection and analytical capabilities were evaluated. Though C signal in a wavelength of 247.9 nm, which showed the highest sensitivity of C, could be obtained from Cd, Ti, and Zn ca. 7000 mg kg−1 C in Fe could not be detected due to the interferences from a lot of Fe spectra. Alternative C signal in a wavelength of 193.1 nm could not be also detected from Fe due to the insufficient laser output energy of the frequency quintupled 213 nm Nd:YAG laser. The depth analysis of C by LIBS was also demonstrated and the C in Cd and Zn was found to be contaminated in only surface area whereas the C in Ti was distributed in bulk. From these results, the frequency quintupled 213 nm Nd:YAG laser, which was adopted widely as a commercial laser ablation (LA system coupled with inductively coupled plasma mass spectrometry (ICPMS for trace element analysis in solid materials, could be used for C analysis to achieve simultaneous measurements for both C and trace elements in metals by LIBS and LA-ICPMS, respectively.

  19. Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane-air flames

    Science.gov (United States)

    Tian, Zhaohua; Dong, Meirong; Li, Shishi; Lu, Jidong

    2017-10-01

    Laser-induced breakdown spectroscopy was evaluated for the analysis of the structure of laminar premixed methane-air flames. Firstly, breakdown threshold pulse energy and plasma energy in different areas of the flame were measured simultaneously, and an approximate linear relation between them was detected. Secondly, a new approach was proposed to qualitatively characterize the flame temperature distributions based on the plasma energy distributions. Finally, combination of the spatial analysis of the spectrum intensity, plasma energy and equivalence ratio, the laminar premixed flames structure was investigated deeply, including the distribution of the flame temperature, the width and distribution of different flame region (e.g. premixed combustion regions, high temperature regions.),as well as the location of the flame front.

  20. LIBS: a potential tool for industrial/agricultural waste water analysis

    Science.gov (United States)

    Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.

  1. Analysis of LiSn alloy at several depths using LIBS

    Energy Technology Data Exchange (ETDEWEB)

    Suchoňová, M., E-mail: maria.suchonova@fmph.uniba.sk [Dept. of Experimental Physics, Faculty of Mathematics Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Krištof, J.; Pribula, M. [Dept. of Experimental Physics, Faculty of Mathematics Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Veis, M. [Dept. of Inorganic Chemistry, Faculty of Natural Science, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava 4 (Slovakia); Tabarés, F.L. [Fusion Department, Ciemat, Av Complutense 40, 28040 Madrid (Spain); Veis, P., E-mail: pavel.veis@fmph.uniba.sk [Dept. of Experimental Physics, Faculty of Mathematics Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2017-04-15

    The difference between the composition of the surface and the inner part of the LiSn sample was studied using Calibration Free Laser Induced Breakdown Spectroscopy (CF-LIBS) method. The sample was analysed under the low pressure (1330 Pa) in Ar atmosphere. The spectra were record using Echelle spectrometer (Mechelle ME5000). Gate delay and gate width was optimised and set to 300 ns. In order to analyse depth profile the LIBS spectra was recorded after each laser shot. The electron density analysed by laser induced plasma was determined separately for each laser shot, which means for each ablated layer of investigated sample. The difference between the individual shots taken at distinct sites of the sample are shown. The CF-LIBS method was used to determine the elemental composition near the surface and in the central part of the LiSn sample.

  2. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  3. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  4. Laser induced breakdown spectroscopy for heavy metal detection in a sand matrix

    Science.gov (United States)

    Michel, Anna P. M.; Sonnichsen, Frederick

    2016-11-01

    Sediments in many locations, including harbors and coastal areas, can become contaminated and polluted, for example, from anthropogenic inputs, shipping, human activities, and poor waste management. Sampling followed by laboratory analysis has been the traditional methodology for such analysis. In order to develop rapid methodologies for field analysis of sediment samples, especially for metals analyses, we look to Laser Induced Breakdown Spectroscopy as an option. Here through laboratory experiments, we demonstrate that dry sand samples can be rapidly analyzed for the detection of the heavy metals chromium, zinc, lead, and copper. We also demonstrate that cadmium and nickel are detectable in sand matrices at high concentrations.

  5. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  6. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  7. Effects of univariate and multivariate regression on the accuracy of hydrogen quantification with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ytsma, Cai R.; Dyar, M. Darby

    2018-01-01

    Hydrogen (H) is a critical element to measure on the surface of Mars because its presence in mineral structures is indicative of past hydrous conditions. The Curiosity rover uses the laser-induced breakdown spectrometer (LIBS) on the ChemCam instrument to analyze rocks for their H emission signal at 656.6 nm, from which H can be quantified. Previous LIBS calibrations for H used small data sets measured on standards and/or manufactured mixtures of hydrous minerals and rocks and applied univariate regression to spectra normalized in a variety of ways. However, matrix effects common to LIBS make these calibrations of limited usefulness when applied to the broad range of compositions on the Martian surface. In this study, 198 naturally-occurring hydrous geological samples covering a broad range of bulk compositions with directly-measured H content are used to create more robust prediction models for measuring H in LIBS data acquired under Mars conditions. Both univariate and multivariate prediction models, including partial least square (PLS) and the least absolute shrinkage and selection operator (Lasso), are compared using several different methods for normalization of H peak intensities. Data from the ChemLIBS Mars-analog spectrometer at Mount Holyoke College are compared against spectra from the same samples acquired using a ChemCam-like instrument at Los Alamos National Laboratory and the ChemCam instrument on Mars. Results show that all current normalization and data preprocessing variations for quantifying H result in models with statistically indistinguishable prediction errors (accuracies) ca. ± 1.5 weight percent (wt%) H2O, limiting the applications of LIBS in these implementations for geological studies. This error is too large to allow distinctions among the most common hydrous phases (basalts, amphiboles, micas) to be made, though some clays (e.g., chlorites with ≈ 12 wt% H2O, smectites with 15-20 wt% H2O) and hydrated phases (e.g., gypsum with ≈ 20

  8. The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy

    Science.gov (United States)

    Anderson, Ryan B.; Morris, Richard V.; Clegg, Samuel M.; Bell, James F.; Wiens, Roger C.; Humphries, Seth D.; Mertzman, Stanley A.; Graff, Trevor G.; McInroy, Rhonda

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging ( i.e. five spectra per target) and with averaging ( i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO 2, 0.87 wt.% TiO 2, 2.36 wt.% Al 2O 3, 2.20 wt.% Fe 2O 3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na 2O, 0.81 wt.% K 2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced by the ratio of laser beam diameter (˜490 μm) to grain size, with coarse-grained rocks often

  9. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration.

    Science.gov (United States)

    Cho, Yuichiro; Horiuchi, Misa; Shibasaki, Kazuo; Kameda, Shingo; Sugita, Seiji

    2017-08-01

    In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10-3 Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K2O K emission line at 769 nm normalized with that of the oxygen line yields the best results for the 30 mJ laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K2O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K2O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K2O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in previous

  10. Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of Al

    Science.gov (United States)

    Nakimana, Agnes; Tao, Haiyan; Gao, Xun; Hao, Zuoqiang; Lin, Jingquan

    2013-07-01

    Aluminum alloy was analysed by using femtosecond laser-induced breakdown spectroscopy under argon, air and helium environments at pressures ranging from 1 to 80 kPa. The results reveal that both spectra intensity and lines detection are significantly influenced by the ambient conditions. In all ambient gases, as the pressure increases the emitted light initially increases, attains its maximum intensity and then decreases with further increase in pressure. It is also observed that some lines are well detected at low pressures in argon while they are absent at the same pressures in helium. In addition, plasma parameters such as electron densities and electron temperature have been investigated at different pressures in the three gases. Hotter and denser plasma has been observed in argon than that in air and helium. Furthermore, it is noted that plasma parameters at relative low pressures of argon (1 kPa) are similar to those obtained at relative high pressures of helium (80 kPa). The optimum conditions for the use of argon and helium as ambient gases have been determined. In fact, argon provides the best environment of femtosecond laser-induced breakdown spectroscopy only at relative low pressures while helium constitutes a good environment only at relative high pressures.

  11. Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: chemometric applications for better data interpretation.

    Science.gov (United States)

    Aquino, Francisco W B; Pereira-Filho, Edenir R

    2015-03-01

    Because of their short life span and high production and consumption rates, mobile phones are one of the contributors to WEEE (waste electrical and electronic equipment) growth in many countries. If incorrectly managed, the hazardous materials used in the assembly of these devices can pollute the environment and pose dangers for workers involved in the recycling of these materials. In this study, 144 polymer fragments originating from 50 broken or obsolete mobile phones were analyzed via laser-induced breakdown spectroscopy (LIBS) without previous treatment. The coated polymers were mainly characterized by the presence of Ag, whereas the uncoated polymers were related to the presence of Al, K, Na, Si and Ti. Classification models were proposed using black and white polymers separately in order to identify the manufacturer and origin using KNN (K-nearest neighbor), SIMCA (Soft Independent Modeling of Class Analogy) and PLS-DA (Partial Least Squares for Discriminant Analysis). For the black polymers the percentage of correct predictions was, in average, 58% taking into consideration the models for manufacturer and origin identification. In the case of white polymers, the percentage of correct predictions ranged from 72.8% (PLS-DA) to 100% (KNN). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  13. The effect of sequential dual-gas testing on laser-induced breakdown spectroscopy-based discrimination: Application to brass samples and bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Rehse, Steven J., E-mail: rehse@wayne.ed [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Mohaidat, Qassem I., E-mail: mohaidat_76@yahoo.co [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)

    2009-10-15

    Four Cu-Zn brass alloys with different stoichiometries and compositions have been analyzed by laser-induced breakdown spectroscopy (LIBS) using nanosecond laser pulses. The intensities of 15 emission lines of copper, zinc, lead, carbon, and aluminum (as well as the environmental contaminants sodium and calcium) were normalized and analyzed with a discriminant function analysis (DFA) to rapidly categorize the samples by alloy. The alloys were tested sequentially in two different noble gases (argon and helium) to enhance discrimination between them. When emission intensities from samples tested sequentially in both gases were combined to form a single 30-spectral line 'fingerprint' of the alloy, an overall 100% correct identification was achieved. This was a modest improvement over using emission intensities acquired in argon gas alone. A similar study was performed to demonstrate an enhanced discrimination between two strains of Escherichia coli (a Gram-negative bacterium) and a Gram-positive bacterium. When emission intensities from bacteria sequentially ablated in two different gas environments were combined, the DFA achieved a 100% categorization accuracy. This result showed the benefit of sequentially testing highly similar samples in two different ambient gases to enhance discrimination between the samples.

  14. [Research on fast classification based on LIBS technology and principle component analyses].

    Science.gov (United States)

    Yu, Qi; Ma, Xiao-Hong; Wang, Rui; Zhao, Hua-Feng

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) and the principle component analysis (PCA) were combined to study aluminum alloy classification in the present article. Classification experiments were done on thirteen different kinds of standard samples of aluminum alloy which belong to 4 different types, and the results suggested that the LIBS-PCA method can be used to aluminum alloy fast classification. PCA was used to analyze the spectrum data from LIBS experiments, three principle components were figured out that contribute the most, the principle component scores of the spectrums were calculated, and the scores of the spectrums data in three-dimensional coordinates were plotted. It was found that the spectrum sample points show clear convergence phenomenon according to the type of aluminum alloy they belong to. This result ensured the three principle components and the preliminary aluminum alloy type zoning. In order to verify its accuracy, 20 different aluminum alloy samples were used to do the same experiments to verify the aluminum alloy type zoning. The experimental result showed that the spectrum sample points all located in their corresponding area of the aluminum alloy type, and this proved the correctness of the earlier aluminum alloy standard sample type zoning method. Based on this, the identification of unknown type of aluminum alloy can be done. All the experimental results showed that the accuracy of principle component analyses method based on laser-induced breakdown spectroscopy is more than 97.14%, and it can classify the different type effectively. Compared to commonly used chemical methods, laser-induced breakdown spectroscopy can do the detection of the sample in situ and fast with little sample preparation, therefore, using the method of the combination of LIBS and PCA in the areas such as quality testing and on-line industrial controlling can save a lot of time and cost, and improve the efficiency of detection greatly.

  15. Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1 nm

    Science.gov (United States)

    Gondal, M. A.; Maganda, Y. W.; Dastageer, M. A.; Al Adel, F. F.; Naqvi, A. A.; Qahtan, T. F.

    2014-04-01

    Fourth harmonic of a pulsed Nd:YAG laser (wavelength 266 nm) in combination with high resolution spectrograph equipped with Gated ICCD camera has been employed to design a high sensitive analytical system. This detection system is based on Laser Induced Breakdown Spectroscopy and has been tested first time for analysis of semi-fluid samples to detect fluoride content present in the commercially available toothpaste samples. The experimental parameters were optimized to achieve an optically thin and in local thermo dynamic equilibrium plasma. This improved the limits of detection of fluoride present in tooth paste samples. The strong atomic transition line of fluorine at 731.102 nm was used as the marker line to quantify the fluoride concentration levels. Our LIBS system was able to detect fluoride concentration levels in the range of 1300-1750 ppm with a detection limit of 156 ppm.

  16. Review of LIBS application in nuclear fusion technology

    Science.gov (United States)

    Li, Cong; Feng, Chun-Lei; Oderji, Hassan Yousefi; Luo, Guang-Nan; Ding, Hong-Bin

    2016-12-01

    Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma-wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

  17. Laser Induced Breakdown Spectroscopy as an In-Space Sample Return Canister Sterilization Method and Instrument

    Science.gov (United States)

    Dreyer, C. B.; Spear, J. R.; Lynch, K. L.; Johnson, L.; Bauer, A. J.

    2012-10-01

    LIBS applied to sterilize a surface via vaporization can be applied in space or on a planetary surface while providing direct characterization of ablated material. Applications include sample return or mitigation of sample cross contamination.

  18. Rapid Analysis of Energetic and Geo-Materials Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    2013-04-01

    applications, including the determination of lead (Pb) in soil and paint33, the online sorting of wood34, and the analysis of paints and coatings35. LIBS...polymers84, painted surfaces84, and plastic land mine casings85,86. In this paper, we will focus in detail on implementation of multivariate analysis to...fluorites, silicate rocks, and soils40. In general, all of the geomaterials analyzed with PLS-DA and LIBS were classified correctly by the most

  19. Surface morphology study of some Cu–Ni reference alloys using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sheta, S.A. [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt); Di Carlo, G.; Ingo, G.M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Area della Ricerca Roma 1 Montelibretti, 00016, Monterotondo Scalo, Rome (Italy); Harith, M.A., E-mail: mharithm@niles.edu.eg [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt)

    2016-04-15

    In the present work a detailed study of the surface morphology of purposely-prepared Cu–Ni reference alloys has been performed. These alloys have been prepared via tailored casting methods in order to have samples with same chemical composition and different local chemical enrichments of both metals. A micro-LIBS system for surface spatial scanning was set up based on a second harmonic Nd:YAG laser at 532 nm and using a focusing lens of focal length 7 cm to disclose the local chemical composition variation. Surface morphological scanning was performed for some of the binary Cu–Ni reference alloys to differentiate between chemically homogeneous and heterogeneous alloys. LIBS results were compared with the information of the Scanning Electron Microscope coupled with Energy Dispersive X-ray (SEMEDS) investigation carried out to provide surface local large-area chemical analysis via EDS technique. It has been proved that LIBS is a simple, sensitive and direct technique in the determination of homogeneity or heterogeneity of the sample's surface. The LIBS results have been shown to be more sensitive and accurate in the heterogeneity determination than other used conventional analytical techniques. - Highlights: • Surface LIBS scanning was performed for Cu–Ni reference alloy samples. • LIBS system was based on a 2nd harmonic Nd:YAG laser and a focusing lens (f = 7 cm). • LIBS results were compared with SEM imaging and EDS chemical analysis. • Surface homogeneity and heterogeneity have been differentiated successfully. • LIBS is a sensitive analytical tool in surface metallurgical study.

  20. Real-time specific surface area measurements via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Howard, James E.

    2017-01-01

    From healthcare to cosmetics to environmental science, the specific surface area (SSA) of micro- and mesoporous materials or products can greatly affect their chemical and physical properties. SSA results are also widely used to examine source rocks in conventional and unconventional petroleum resource plays. Despite its importance, current methods to measure SSA are often cumbersome, time-consuming, or require cryogenic consumables (e.g., liquid nitrogen). These methods are not amenable to high-throughput environments, have stringent sample preparation requirements, and are not practical for use in the field. We present a new application of laser-induced breakdown spectroscopy for rapid measurement of SSA. This study evaluates geological samples, specifically organic-rich oil shales, but the approach is expected to be applicable to many other types of materials. The method uses optical emission spectroscopy to examine laser-generated plasma and quantify the amount of argon adsorbed to a sample during an inert gas purge. The technique can accommodate a wide range of sample sizes and geometries and has the potential for field use. These advantages for SSA measurement combined with the simultaneous acquisition of composition information make this a promising new approach for characterizing geologic samples and other materials.

  1. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dyar, M.D., E-mail: mdyar@mtholyoke.edu [Dept. of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Carmosino, M.L.; Breves, E.A.; Ozanne, M.V. [Dept. of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Clegg, S.M.; Wiens, R.C. [Los Alamos National Laboratory, P.O. Box 1663, MS J565, Los Alamos, NM 87545 (United States)

    2012-04-15

    A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the

  2. Elemental Analysis and Comparison of Bulk Soil Using LA-ICP-MS and LIBS methods

    Science.gov (United States)

    Almirall, J.

    2012-04-01

    Elemental analysis methods utilizing Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) were developed and used in the characterization of soil samples from the US and Canada as part of a comprehensive forensic evaluation of soils. A LA-ICP-MS method was recently optimized for analysis and comparison between different soil samples in an environmental forensic application [1,2] and LIBS has recently attracted the interest of analytical chemists and forensic laboratories as a simpler, lower cost alternative to the more established analytical methods. In developing a LIBS method, there are many parameters to consider, including laser wavelength, spectral resolution, sensitivity, and matrix effects. The first LIBS method using a 266 nm laser for forensic soil analysis has also been recently reported by our group [3]. The results of an inter-laboratory comparison involving thirteen (13) laboratories conducting bulk elemental analysis by various methods are also reported. The aims of the inter-laboratory tests were: a) to evaluate the inter-laboratory performance of three methods (LA-ICP-MS, µXRF and LIBS) in terms of accuracy (bias), precision (relative standard deviation, RSD) and sensitivity using standard reference materials (SRMs); b) to evaluate the newly released NIST SRM 2710a, which supersedes 2710; and c) to evaluate the utility of LIBS as an alternative technique to LA-ICP-MS and µXRF for bulk analysis of soils. Each sample and standard was homogenized in a high-speed ball mill and pressed into pellets. Participants were instructed to measure the following elements: 7Li, 25Mg, 27Al, 42Ca, 45Sc, 47,49Ti, 51V, 55Mn, 88Sr, 137Ba, 206,207,208 Pb (LA-ICP-MS); Ti, Cr, Mn, Fe, Cu, Sr, Zr, Pb (µXRF); Ba, Cr, Cu, Fe, Li, Mg, Mn, Pb, Sr, Ti, Zr (LIBS). For both LIBS and µXRF, the choice of appropriate spectral lines was determined by the user, optimizing for linearity, sensitivity and precision

  3. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Labbe, Nicole [ORNL; Wagner, Rebekah J. [Pennsylvania State University, University Park, PA

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  4. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    Science.gov (United States)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  5. Direct determination of Ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO2 nanoparticle concentration

    Science.gov (United States)

    Menneveux, Jérôme; Wang, Fang; Lu, Shan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Chen, Yanping; Yu, Jin

    2015-07-01

    Sunscreen represents a large variety of creams which, in the analytical point of view, exhibit a similar matrix. Such matrix corresponds to a semi-solid emulsion of mixture of oil and water. The formulation of a cream can include metal and nonmetal elements in different contents in order to realize specific pharmaceutical or cosmetic functions designed for the product. The complex matrix of these materials makes their analysis challenging for classical elemental analytical techniques with specific and complicated sample pretreatment procedures needed for reliable quantification. In this work we demonstrate and assess direct determination, without any pretreatment, of elemental content, especially for metallic element such as titanium, in a sunscreen using laser-induced breakdown spectroscopy (LIBS). The used configuration corresponds to that of indirect ablation of a thin film of cream applied on the surface of a pure aluminum target. We especially focused, in this work, on the case of high concentration of TiO2 nanoparticle in cream. Such choice was justified first by the fact that such concentration level is usually found in commercial sunscreens. On the other hand, titanium presents a large number of lines, neutral as well as singly ionized, in the spectral range from the near UV to the near IR. It provides therefore an ideal case to study line selection method to manage the effect of self-absorption, which becomes unavoidable at high concentration level, and to optimize measurement precision. Through such study, we try to deduce a quantifiable and generalizable line selection method for high performance LIBS measurements. More specifically, calibration curves were first established using 6 laboratory-prepared samples. The quadratic term of the curves was then studied as a function of the intensity of the used lines and their type (neutral or ion, resonant or non-resonant). The prediction performance of the lines was assessed with 2 validation samples with

  6. Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A. C. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France); National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); Beldjilali, S. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France); LPPMCA, Universite des Sciences et de la Technologie d' Oran, BP 1505 El Mnaouer, Oran (Algeria); Socol, G.; Mihailescu, I. N. [National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); Craciun, V. [National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); MAIC, University of Florida, Gainesville, FL 32611 (United States); Hermann, J. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France)

    2011-10-15

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG ({lambda} = 266 nm) laser irradiation of thin indium zinc oxide films with variable In content deposited by combinatorial pulsed laser deposition on glass substrates. The samples were irradiated in 5 x 10{sup 4} Pa argon using laser pulses of 5 ns duration and 10 mJ energy. The plasma emission spectra were recorded with an Echelle spectrometer coupled to a gated detector with different delays with respect to the laser pulse. The relative concentrations of indium and zinc were evaluated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. Plasma temperature and electron density were deduced from the relative intensities and Stark broadening of spectral lines of atomic zinc. Analyses at different locations on the deposited thin films revealed that the In/(In + Zn) concentration ratio significantly varies over the sample surface, from 0.4 at the borders to about 0.5 in the center of the film. The results demonstrate that laser-induced breakdown spectroscopy allows for precise and fast characterization of thin films with variable composition.

  7. Accumulation of air in polymeric materials investigated by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yip, W. L.; Hermann, J. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. De Luminy, Marseille 13288 (France); Mothe, E. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. De Luminy, Marseille 13288 (France); Bertin Technology, 155 Rue Louis Armand, Aix-en-Provence 13290 (France); Beldjilali, S. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. De Luminy, Marseille 13288 (France); LPPMCA, Universite des Sciences et de la Technologie d' Oran, BP 1505 El Mnaouer, Oran (Algeria)

    2012-03-15

    We report on spectroscopic analyses of plasmas produced by laser irradiation of nitrogen-free and nitrogen-containing polymer materials. Ultraviolet laser pulses of 5 ns duration and 4 mJ energy were focused onto the samples with a fluence of about 20 Jcm{sup -2}. The plasma emission was analyzed with an Echelle spectrometer equipped with a gated detector. Comparing the spectra recorded during ablation in air and argon, it is shown that the spectral line emission of atomic nitrogen originates from the excitation of the ambient air, whereas the CN molecular bands are essentially emitted from the ablation plume. Furthermore, the measurements demonstrate an additional contribution of nitrogen emission from the air molecules accumulated in the polymer. Storage under vacuum over a duration of the order of one day leads to the release of the absorbed air. As a consequence of the air absorption, the measurement of elemental composition of polymers via laser-induced breakdown spectroscopy is particularly difficult. Here, we quantify the atmospheric contribution to the plume emission during polymer analysis.

  8. Laser-Induced Breakdown Spectroscopy and Plasma Characterization Generated by Long-Pulse Laser on Soil Samples

    Science.gov (United States)

    Xu, S.; Duan, W.; Ning, R.; Li, Q.; Jiang, R.

    2017-03-01

    The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988 × 1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

  9. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals - A review of applications and analytical performance

    Science.gov (United States)

    Bengtson, A.

    2017-08-01

    This review is focused on a comparison of LIBS with the two most common plasma Optical Emission Spectroscopy (OES) techniques for analysis of metals; spark OES and glow discharge (GD) OES. It is shown that these two techniques have only minor differences in analytical performance. An important part of the paper reviews a direct comparison of the analytical figures of merit for bulk analysis of steels using spark and LIBS sources. The comparison was carried out using one instrument with interchangeable sources, eliminating differences related to the optical system and detectors. It was found that the spark provides slightly better analytical figures of merit. The spark analysis is considerably faster, the simple design of the spark stand has enabled complete automation, both properties of great importance in the metallurgical industry for routine analysis. The analysis of non-metallic inclusions (NMI) with spark and LIBS is presented, in the case of the spark this has become known as Pulse Distribution Analysis (PDA). A very significant difference between the techniques is that the electrical spark typically evaporates 100 times more material than a single laser pulse, resulting in complete evaporation of an NMI present in the evaporated metal. The major advantage of LIBS is that it is localised with very good lateral resolution. The major advantages of spark is that it is much faster (can be done simultaneous with the bulk analysis) and easier to quantify. Compositional Depth Profiling (CDP) is compared for GD-OES and LIBS. It is shown that for applications where GD-OES is well suited, e.g. coated metallic sheet, GD-OES still performs slightly better than LIBS. Similar to the case of NMI analysis, the major advantage of LIBS is the great lateral resolution. This allows elemental surface mapping, as well as CDP of very small areas on μm scale. One further advantage of LIBS is that samples of almost any material, shape and size can be analysed, whereas GD-OES has

  10. Automated interpretation of LIBS spectra using a fuzzy logic inference engine.

    Science.gov (United States)

    Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R

    2012-03-01

    Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment. © 2012 Optical Society of America

  11. Study of the Matrix Effect on the Plasma Characterization of Six Elements in Aluminum Alloys using LIBS with a Portable Echelle Spectrometer

    OpenAIRE

    Tawfik W.

    2007-01-01

    Volume 2 PROGRESS IN PHYSICS April, 2007 Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable Echel...

  12. Short Communication on "Direct compositional quantification of (U-Th)O2 - MOX nuclear fuel using ns-UV-LIBS and chemometric regression models"

    Science.gov (United States)

    Singh, Manjeet; Sarkar, Arnab; Mao, Xianglei; Russo, Richard E.

    2017-02-01

    The determination of uranium with composition varying from 0% to 35 wt% in (Th-U)O2 mixed oxide fuel using laser induced breakdown spectroscopy (LIBS) utilizing partial least square regression (PLSR) has been demonstrated. Good agreement between expected and experiment results using 266 nm, 532 nm and 1064 nm was shown. The analytical results at 266 nm of 2-3% precision and ∼1% accuracy (bias) satisfy the acceptance criteria range for chemical analysis in the nuclear industry.

  13. ST-LIBS for heavy element detection in complex matrices

    Science.gov (United States)

    Tamboli, M. M.; V. K., Unnikrishnan; Devangad, Praveen; K. M., Muhammed Shameem; Santhosh, C.

    2017-06-01

    Interest in the use of laser-based sensors operating in stand-off mode is increasing due to the wide range of options offered in the evaluation of distant targets. In this work, a stand-off laser induced breakdown spectroscopy (ST-LIBS) system has been developed and demonstrated to determine the heavy elements in soil samples. Initially, different parameters of the device have been optimized in ambient atmosphere and tested for quantitative analysis of Nickel and Chromium at two different stand-off distances (1 m and 6 m). The prepared concentrations were in the range of 100 ppm to 600 ppm. The laser energy of 150 mJ was maintained through out the experiment and to obtain a real time situation the target was in static state.

  14. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.

    Science.gov (United States)

    L'Hermite, D; Vors, E; Vercouter, T; Moutiers, G

    2016-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm(2). The simultaneous detection of two markers may lead to a decrease of the number of false positive.

  15. Effect of laser beam parameters on melt mobilization and LIBS analysis of a special aluminum alloy containing zeolite

    Science.gov (United States)

    Khalil, Osama M.; Nakimana, Agnes

    2016-07-01

    Aluminum alloy containing zeolite was analyzed by using nanosecond and femtosecond laser-induced breakdown spectroscopy (ns and fs-LIBS). The results reveal that Laser parameters, target physical properties, and ambient conditions affect the laser ablation process. The aluminum silicate minerals present in the alloy under investigation enable material volume expansion under compression. In laser interaction with this alloy, it has been observed that the crater depth decreases with the increase of the surface hardness. In ns -LIBS, it is noted that the ablation speed decreases with time and suddenly decreases with less sharp slope and after that the ablation speed increases slightly. In additional the results show the vanishing and reform of the crater rim with the increase of ablation time. Furthermore, a comparison between ns and fs-LIBS analysis has been done. Ns-LIBS analysis reveals that both spectra intensity and lines detection are significantly influenced by the ambient conditions. However in fs-LIBS, the ambient conditions affect the presented lines amplitude and width with the same effect on all lines.

  16. [Effect of Characteristic Variable Extraction on Accuracy of Cu in Navel Orange Peel by LIBS].

    Science.gov (United States)

    Li, Wen-bing; Yao, Ming-yin; Huang, Lin; Chen, Tian-bing; Zheng, Jian-hong; Fan, Shi-quan; Liu Mu-hua HE, Mu-hua; Lin, Jin-long; Ouyang, Jing-yi

    2015-07-01

    Heavy metals pollution in foodstuffs is more and more serious. It is impossible to satisfy the modern agricultural development by conventional chemical analysis. Laser induced breakdown spectroscopy (LIBS) is an emerging technology with the characteristic of rapid and nondestructive detection. But LIBS' s repeatability, sensitivity and accuracy has much room to improve. In this work, heavy metal Cu in Gannan Navel Orange which is the Jiangxi specialty fruit will be predicted by LIBS. Firstly, the navel orange samples were contaminated in our lab. The spectra of samples were collected by irradiating the peel by optimized LIBS parameters. The laser energy was set as 20 mJ, delay time of Spectral Data Gathering was set as 1.2 micros, the integration time of Spectral data gathering was set as 2 ms. The real concentration in samples was obtained by AAS (atom absorption spectroscopy). The characteristic variables Cu I 324.7 and Cu I 327.4 were extracted. And the calibration model was constructed between LIBS spectra and real concentration about Cu. The results show that relative error of the predicted concentrations of three relational model were 7.01% or less, reached a minimum of 0.02%, 0.01% and 0.02% respectively. The average relative errors were 2.33%, 3.10% and 26.3%. Tests showed that different characteristic variables decided different accuracy. It is very important to choose suitable characteristic variable. At the same time, this work is helpful to explore the distribution of heavy metals between pulp and peel.

  17. Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov, S.V., E-mail: shabanov@math.ufl.edu [Department of Mathematics, University of Florida, Gainesville, FL 32611 (United States); BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin (Germany); Gornushkin, I.B. [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin (Germany)

    2014-10-01

    A dynamical model of a laser induced plasma with axial symmetry is developed to systematically study the effects of the plasma equation of state, radiation transfer, various transport phenomena (viscosity, thermal conductivity, diffusion), and the ablation surface on the observable quantities such as spectra emitted by LIBS plasmas containing multiple species. Theoretical and numerical foundations of the model are described in detail. It is shown that the plasma spectra simulated with the equation of state based on the energy balance that includes the kinetic (thermal) energy, ionization energy, and energy of electronic excitations in atoms and ions differ significantly from the spectra obtained for plasmas modeled in the ideal gas approximation (where only the kinetic energy is included into the energy balance). Various transport phenomena, such as viscosity, diffusion, and thermal conductivity, are shown to have a little effect on the spectra. Radiation losses are proved to have noticeable effects. The effects of various interactions (adhesion, heat exchange, mass inflows) of the evolving plasma with the ablation surface are also illustrated by numerical simulations for typical LIBS plasmas. The model provides a numerical tool to assess various settings for LIBS plasma experiments as well as to interpret experimental data. - Highlights: • A gas dynamic model of laser induced plasma with axial symmetry is developed. • The effects of the plasma equation of state, radiation transfer, transport phenomena, and the ablation surface on the plasma evolution and the plasma spectra are systematically studied. • Numerous numerical simulations visualize the physical portrait of the plasma at different stages of its evolution. • The model provides a numerical tool to assess various settings for LIBS plasma experiments and to interpret experimental data.

  18. Design and development of a LIBS system on linear plasma device PSI-2 for in situ real-time diagnostics of plasma-facing materials

    Directory of Open Access Journals (Sweden)

    X. Jiang

    2017-08-01

    Full Text Available Laser induced breakdown spectroscopy (LIBS is a strong candidate for detecting and monitoring the H/D/T content on the surface of plasma facing components (PFCs due to its capability of fast direct in situ measurement in extreme environment (e.g., vacuum, magnetic field, long distance, complex geometry. To study the feasibilities and encounter the challenges of LIBS on plasma devices, a LIBS system has been set up on the linear plasma device PSI-2. A number of key parameters including laser energy, the influence of magnetic field and the persistence of laser induced plasma are studied. Real-time measurements of deuterium outgassing on tungsten samples exposed to deuterium plasma of 1025 D/m2 are performed in the first 40–130 min after plasma exposure. The experimental results are compared to the calculations in the literature.

  19. Detection of deuterium retention by LIBS at different background pressures

    Science.gov (United States)

    Paris, P.; Butikova, J.; Laan, M.; Aints, M.; Hakola, A.; Piip, K.; Tufail, I.; Veis, P.

    2017-01-01

    ITER plans foresee the quantitative diagnostics of fuel retention in reactor walls at near-atmospheric pressures. Using laser induced breakdown spectroscopy (LIBS) for this purpose assumes a reliable resolving of Balmer α-lines of hydrogen isotopes in spectra of plasma produced by focused laser radiation onto the target surface. To develop LIBS for quantitative diagnostics of fuel retention during the maintenance breaks of ITER, the effect of background gas pressure on the laser-induced plasma characteristics has been studied. The background pressure limits the expansion rate of plasma and as a result it leads to higher plasma concentrations. At the same time the limiting factor of the resolving of hydrogen isotope lines is the lines broadening by Stark effect, which is the function of electron concentration. The resolving of lines become possible recording spectra at longer delay times after the laser pulse. On the other hand, at longer delays the signal-to-noise ratio decreases. As a compromise, we found that at atmospheric pressure and at delay times >2000 ns, a fitting of H α and D α lines by Voigt contours allows a reliable discrimination of these lines.

  20. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    Science.gov (United States)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  1. Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films

    Science.gov (United States)

    2010-01-05

    by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005). 22. D. K. Killinger, S. D. Allen, R. D. Waterbury , C. Stefano, and...2007). 23. D. K. Killinger, S. D. Allen, R. D. Waterbury , C. Stefano, and E. L. Dottery, “LIBS plasma enhancement for standoff detection applications...Proceedings of SPIE, the International Society for Optical Engineering (2008), pp. 695403–695403. 24. A. Pal, R. D. Waterbury , E. L. Dottery, and D

  2. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    Science.gov (United States)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  3. VUV absorption spectroscopy measurements of the role of fast neutral atoms in a high-power gap breakdown

    Science.gov (United States)

    Filuk; Bailey; Cuneo; Lake; Nash; Noack; Maron

    2000-12-01

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)x10(14) cm(-3) for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)x10(15) cm(-3) for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  4. Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kanawade, Rajesh, E-mail: Rajesh.Kanawade@aot.uni-erlangen.de [Clinical Photonics Lab, Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen (Germany); Institute of Photonics Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen (Germany); Mehari, Fanuel [Master Programme in Advanced Optical Technologies (MAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen (Germany); Knipfer, Christian; Rohde, Maximilian [Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstrasse 11, 91054 Erlangen (Germany); Tangermann-Gerk, Katja [Bayerisches Laserzentrum GmbH, Konrad-Zuse-Strasse 2-6, 91052 Erlangen (Germany); Schmidt, Michael [Clinical Photonics Lab, Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen (Germany); Institute of Photonics Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen (Germany); Bayerisches Laserzentrum GmbH, Konrad-Zuse-Strasse 2-6, 91052 Erlangen (Germany); and others

    2013-09-01

    This study focuses on tissue differentiation using ‘Laser Induced Breakdown Spectroscopy’ (LIBS) by monitoring the plasma plume created during laser surgery processes. This technique is aimed at controlling a laser surgery feedback system in real time. An Excimer laser (Ar-F 193 nm) was used for the ablation of tissue samples. Fat, muscle, nerve and skin tissue samples of bisected ex-vivo pig heads were prepared as test objects for the ablation procedure. A single fiber was used to collect emissions and deliver them to a spectrometer. The obtained LIBS spectra in the measured emissions were analyzed to determine each tissue type according to their chemical composition. The elements found in the samples and their emission spectra were in agreement with those described in literature. The collected LIBS spectra were analyzed to differentiate the tissues using statistical data analysis: Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Receiver Operating Characteristics (ROC). The obtained preliminary results suggest a successful differentiation of the target tissues with high sensitivity and specificity. The main goal of this study was to qualitatively identify tissue types during laser ablation, which will provide a real time feedback mechanism for clinical Laser surgery applications to significantly improve the accuracy and safety of laser surgery procedures. - Graphical abstract: Skin, fat, muscle and nerve tissue differentiation. - Highlights: • Methods to differentiate tissues for the application in a laser surgery feedback control system • Successful differentiation of the target tissues with high sensitivity and specificity for laser surgery application • Real time feedback mechanism for clinical Laser surgery applications • Laser surgery requirements • Biomedical applications of LIBS.

  5. Quantitative methods for compensation of matrix effects and self-absorption in LIBS signals of solids

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  6. Extracting Time-Resolved Information from Time-Integrated Laser-Induced Breakdown Spectra

    Directory of Open Access Journals (Sweden)

    Emanuela Grifoni

    2014-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS data are characterized by a strong dependence on the acquisition time after the onset of the laser plasma. However, time-resolved broadband spectrometers are expensive and often not suitable for being used in portable LIBS instruments. In this paper we will show how the analysis of a series of LIBS spectra, taken at different delays after the laser pulse, allows the recovery of time-resolved spectral information. The comparison of such spectra is presented for the analysis of an aluminium alloy. The plasma parameters (electron temperature and number density are evaluated, starting from the time-integrated and time-resolved spectra, respectively. The results are compared and discussed.

  7. [The study on the laser-induced breakdown spectroscopy properties of compound fertilizer with different physical forms].

    Science.gov (United States)

    Li, Jun; Lu, Ji-dong; Yao, Shun-chun; Dong, Mei-rong

    2012-04-01

    In order to study the mechanism of laser-induced breakdown spectroscopy for detecting the chemical components content of compound fertilizer in detail, two physical forms of compound fertilizer samples (powder and granular) were used for this study. The authors analyzed the laser-induced breakdown spectroscopy properties of samples with different physical forms made under different preparation pressure. And the spectral characteristics and plasma characteristics of N,P and K in the powder and granules made under the preparation pressure of 0, 0. 5, 2, 4, and 6 MPa, respectively were compared experimentally. The experiments results showed that the spectral characteristics of the two forms have obvious difference when the pressure is small and the grain samples have significant higher line intensity than those of the powder samples. With the increase in the pressure, the difference in the plasma characteristics between these two physical forms was reduced, and all the characteristic spectral lines intensity of the same physical form samples increases firstly and reduces afterward.

  8. A comparison of multivariate analysis techniques and variable selection strategies in a laser-induced breakdown spectroscopy bacterial classification

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Russell A., E-mail: putnamr@uwindsor.ca [Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Mohaidat, Qassem I., E-mail: q.muhaidat@yu.edu.jo [Department of Physics, Yarmouk University, Irbid 21163 (Jordan); Daabous, Andrew, E-mail: daabousa@uwindsor.ca [Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Rehse, Steven J., E-mail: rehse@uwindsor.ca [Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2013-09-01

    Laser-induced breakdown spectroscopy has been used to obtain spectral fingerprints from live bacterial specimens from thirteen distinct taxonomic bacterial classes representative of five bacterial genera. By taking sums, ratios, and complex ratios of measured atomic emission line intensities three unique sets of independent variables (models) were constructed to determine which choice of independent variables provided optimal genus-level classification of unknown specimens utilizing a discriminant function analysis. A model composed of 80 independent variables constructed from simple and complex ratios of the measured emission line intensities was found to provide the greatest sensitivity and specificity. This model was then used in a partial least squares discriminant analysis to compare the performance of this multivariate technique with a discriminant function analysis. The partial least squares discriminant analysis possessed a higher true positive rate, possessed a higher false positive rate, and was more effective at distinguishing between highly similar spectra from closely related bacterial genera. This suggests it may be the preferred multivariate technique in future species-level or strain-level classifications. - Highlights: • Laser-induced breakdown spectroscopy was used to classify bacteria by genus. • We examine three different independent variable down selection models. • A PLS-DA returned higher rates of true positives than a DFA. • A PLS-DA returned higher rates of false positives than a DFA. • A PLS-DA was better able to discriminate similar spectra compared to DFA.

  9. The Role of Plasma Shielding in Double-Pulse Femtosecond Laser-Induced Breakdown Spectroscopy

    CERN Document Server

    Penczak, John S; Bar, Ilana; Gordon, Robert J

    2013-01-01

    It is well known that optical emission produced by femtosecond laser-induced breakdown on a surface may be enhanced by using a pair of laser pulses separated by a suitable delay. Here we elucidate the mechanism for this effect both experimentally and theoretically. Using a bilayer sample consisting of a thin film of Ag deposited on an Al substrate as the ablation target and measuring the breakdown spectrum as a function of fluence and pulse delay, it is shown experimentally that the enhanced signal is not caused by additional ablation initiated by the second pulse. Rather, particle-in-cell calculations show that the plasma produced by the first pulse shields the surface from the second pulse for delays up to 100 ps. These results indicate that the enhancement is the result of excitement of particles entrained in the plasma produced by the first pulse.

  10. LIBS: a new versatile field-deployable real-time detector system with potential for landmine detection

    Science.gov (United States)

    Harmon, Russell S.; De Lucia, Frank C.; Winkel, Raymond J., Jr.; LaPointe, Aaron; Grossman, Scott L.; McNesby, Kevin L.; Miziolek, Andrzej W.

    2003-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique that utilizes a pulsed laser to create a microplasma on the target together with an array spectrometer to capture the transient light for elemental identification and quantification. LIBS has certain important characteristics that make it a very attractive sensor technology for military uses. Such attributes include that facts that LIBS (1) is relatively simple and straightforward, (2) requires no sample preparation, (3) generates a real-time response, and (4) only engages a very small sample (pg-ng) of matter in each laser shot and microplasma event, (5) has inherent high sensitivity, and (6) responds to all forms of unknowns, and, therefore, is particularly suited for the sensing of dangerous materials. Additionally, a LIBS sensor system can be inexpensive, configured to be man-portable, and designed for both in-situ point sensing and remote stand-off detection with distances of up to 20-25 meters. Broadband LIBS results covering the spectral region from 200-970 nm acquired at the Army Research Laboratory (ARL) under laboratory conditions for a variety of landmine casings and explosive materials. This data will illustrate the potential that LIBS has to be developed into a hand-deployable device that could be utilized as a confirmatory sensor in landmine detection. The concept envisioned is a backpack-size system in which an eyesafe micro-laser is contained in the handle of a deminer's probe and light is delivered and collected through an optical fiber in the tapered tip of the probe. In such a configuration, analyses can be made readily by touching the buried object that one is interested in identifying.

  11. Mapping Analyte Distributions in Surrogate Nuclear Melt Glass Using Laser-induced Breakdown Spectroscopy and Micro X-Ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Shattan, Michael [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); McIntosh, Kathryn [Univ. of Tennessee, Knoxville, TN (United States); Auxier II, John [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Parigger, Christian [Univ. of Tennessee, Knoxville, TN (United States); Hall, Howard [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-10

    Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation

  12. MSL MARS CHEMCAM LIBS SPECTRA 4/5 RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MSL ChemCam LIBS RDR data set contains calibrated spectra and higher level products derived from raw data collected by the ChemCam Laser Induced Breakdown...

  13. Variables selection: A critical issue for quantitative laser-induced breakdown spectroscopy

    Science.gov (United States)

    Guezenoc, Julian; Bassel, Léna; Gallet-Budynek, Anne; Bousquet, Bruno

    2017-08-01

    In this paper, we demonstrate the importance of variable selection on the prediction ability of LIBS quantitative partial least squares (PLS) models. The spectral lines of potassium at 766.49 nm and 769.90 nm were considered in the framework of an agricultural soils analysis. Univariate models demonstrating very poor correlation between the peak areas of the potassium lines and the related concentration values, a series of PLS models allowed to significantly improve the prediction ability compared to the univariate approach. This improvement was due to advanced variable selection, achieved through the use of two output data provided after PLS calculation, namely the Variable Importance in Projection (VIP) and the Coefficients graph. In this demonstration, the gain was significant because the two spectral lines of potassium at 766.49 nm and 769.90 nm exhibited unusual profiles. Indeed, including in a PLS model only the variables related to the edges of these lines allowed a significant improvement of its predictive ability (Q2 = 0.84, RMSE = 1.49 g/kg) compared to another PLS model only including the variables related to the central parts of these lines (Q2 = 0.78, RMSE = 1.59 g/kg).

  14. Laboratory Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) as a New in situ Chemical Sensing Technique for the Deep Ocean

    Science.gov (United States)

    2007-09-01

    sharing a bunk an( standing Jason watch with me for two months, for all the chats, for drinking about 1000 cups of coffee with me, for eating about 300...Christine Charette and John Farrington for all of their help and support, personally, profession- ally, and financially. I owe many thanks to the

  15. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  16. Real-time qualitative study of forsterite crystal - Melt lithium distribution by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lebedev, V. F.; Makarchuk, P. S.; Stepanov, D. N.

    2017-11-01

    A factor of lithium distribution between single-crystal forsterite (Cr,Li:Mg2SiO4) and its melt are studied by laser-induced breakdown spectroscopy. Lithium content in the crystalline phase is found to achieve a saturation at relatively low Li concentration in the melt (about 0.02%wt.). An algorithm and software are developed for real-time analysis of the studied spectra of lithium trace amounts at wide variation of the plasma radiation intensity. The analyzed plasma spectra processing method is based on the calculation of lithium emission part in the total emission of the target plasma for each recorded spectrum followed by the error estimation for the series of measurements in the normal distribution approximation.

  17. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Diwakar, P. K.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-07-22

    We investigated the emission properties of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated to the characteristic electron-ion relaxation time and hence to the inter-pulse delays. Spectroscopic excitation temperature analysis showed that the improvement in signal enhancement is caused by the delayed pulse efficient reheating of the pre-plume. The signal enhancement is also found to be related to the upper excitation energy of the selected lines, i.e., more enhancement noticed for lines originating from higher excitation energy levels, indicating reheating is the major mechanism behind the signal improvement.

  18. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Harilal, S. S.; Diwakar, P. K.; Hassanein, A.

    2013-07-01

    We investigated the emission properties of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated to the characteristic electron-ion relaxation time and hence to the inter-pulse delays. Spectroscopic excitation temperature analysis showed that the improvement in signal enhancement is caused by the delayed pulse efficient reheating of the pre-plume. The signal enhancement is also found to be related to the upper excitation energy of the selected lines, i.e., more enhancement noticed for lines originating from higher excitation energy levels, indicating reheating is the major mechanism behind the signal improvement.

  19. Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm.

    Science.gov (United States)

    Li, Kuohu; Guo, Lianbo; Li, Jiaming; Yang, Xinyan; Yi, Rongxing; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2017-02-01

    In this work, a genetic algorithm (GA) was employed to select the intensity ratios of the spectral lines belonging to the target and domain matrix elements, then these selected line-intensity ratios were taken as inputs to construct an analysis model based on an artificial neural network (ANN) to analyze the elements copper (Cu) and vanadium (V) in steel samples. The results revealed that the root mean square errors of prediction (RMSEPs) for the elements Cu and V can reach 0.0040 wt. % and 0.0039 wt. %, respectively. Compared to 0.0190 wt. % and 0.0201 wt. % of the conventional internal calibration approach, the reduction rates of the RMSEP values reached 78.9% and 80.6%, respectively. These results indicate that the GA combining ANN can excellently execute the quantitative analysis in laser-induced breakdown spectroscopy for steel samples and further improve analytical accuracy.

  20. Laser induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mukhono, P.M., E-mail: paulinemulongo@gmail.com; Angeyo, K.H., E-mail: hkalambuka@uonbi.ac.ke; Dehayem-Kamadjeu, A., E-mail: alix@uonbi.ac.ke; Kaduki, K.A., E-mail: kenkaduki@yahoo.com

    2013-09-01

    We exploited multivariate chemometric methods to reduce the spectral complexity and to retrieve trace heavy metal analyte concentration signatures directly from the LIBS spectra as well as, to extract their latent characteristics in two important environmental samples i.e. soils and rocks from a geothermal field lying in a high background radiation area (HBRA). As, Cr, Cu, Pb and Ti were modeled for direct trace (quantitative) analysis using partial least squares (PLS) and artificial neural networks (ANNs). PLS performed better in soils than in rocks; the use of ANN improved the accuracies in rocks because ANNs are more robust than PLS at modeling spectral non-linearities and correcting matrix effects. The predicted trace metal profiles together with atomic and molecular signatures acquired using single ablation in the 200–545 nm spectral range were utilized to successfully classify and identify the soils and rocks with regard to whether they were derived from (i) a high background radiation area (HBRA)-geothermal, (ii) HBRA-non-geothermal or (iii) normal background radiation area (NBRA)-geothermal field using principal components analysis (PCA) and soft independent modeling of class analogy (SIMCA). - Highlights: • We sampled geothermal field soils and rocks from high background radiation areas. • We developed multivariate calibration and classification models for five trace elements. • The models were used to predict concentrations and identify geothermal field samples. • High background geothermally active areas have elevated levels of As and Pb. • The areas are classified according to the trace atomic signatures of Ca, Mg and Si.

  1. Quantitative laser-induced breakdown spectroscopy data using peak area step-wise regression analysis: an alternative method for interpretation of Mars science laboratory results

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Samuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Dyar, Melinda D [MT HOLYOKE COLLEGE; Schafer, Martha W [LSU; Tucker, Jonathan M [MT HOLYOKE COLLEGE

    2008-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describe each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.

  2. A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements Of Trace Metals

    Energy Technology Data Exchange (ETDEWEB)

    Scott Goode; S. Michael Angel

    2004-01-20

    Develop a fiber-optic imaging probe for microanalysis of solid samples; Design a time-resolved plasma imaging system to measure the development of the LIBS signal; Setup a laboratory system capable of timing two lasers independently, for optimizing and characterizing dual-pulse LIBS; Compare the development of laser-induced plasmas generated with a single laser pulse to the development of laser-induced plasmas generated with a pre-ablation spark prior to sample ablation; Examine the effect of sample matrix on the LIBS signals of elements in different sample matrices; Investigate the effect of excitation wavelength of the ablation beam in pre-ablation spark dual-pulse LIBS experiments; Determine the effect of the physical properties of the sample on the mass of materials ablated.

  3. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    Energy Technology Data Exchange (ETDEWEB)

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.; Eiden, Gregory C.; Harilal, Sivanandan S.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conducted by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.

  4. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    Science.gov (United States)

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  5. A hybrid LIBS-Raman system combined with chemometrics: an efficient tool for plastic identification and sorting.

    Science.gov (United States)

    Shameem, K M Muhammed; Choudhari, Khoobaram S; Bankapur, Aseefhali; Kulkarni, Suresh D; Unnikrishnan, V K; George, Sajan D; Kartha, V B; Santhosh, C

    2017-05-01

    Classification of plastics is of great importance in the recycling industry as the littering of plastic wastes increases day by day as a result of its extensive use. In this paper, we demonstrate the efficacy of a combined laser-induced breakdown spectroscopy (LIBS)-Raman system for the rapid identification and classification of post-consumer plastics. The atomic information and molecular information of polyethylene terephthalate, polyethylene, polypropylene, and polystyrene were studied using plasma emission spectra and scattered signal obtained in the LIBS and Raman technique, respectively. The collected spectral features of the samples were analyzed using statistical tools (principal component analysis, Mahalanobis distance) to categorize the plastics. The analyses of the data clearly show that elemental information and molecular information obtained from these techniques are efficient for classification of plastics. In addition, the molecular information collected via Raman spectroscopy exhibits clearly distinct features for the transparent plastics (100% discrimination), whereas the LIBS technique shows better spectral feature differences for the colored samples. The study shows that the information obtained from these complementary techniques allows the complete classification of the plastic samples, irrespective of the color or additives. This work further throws some light on the fact that the potential limitations of any of these techniques for sample identification can be overcome by the complementarity of these two techniques. Graphical Abstract ᅟ.

  6. An exploratory study of the potential of LIBS for visualizing gunshot residue patterns.

    Science.gov (United States)

    López-López, María; Alvarez-Llamas, César; Pisonero, Jorge; García-Ruiz, Carmen; Bordel, Nerea

    2017-04-01

    The study of gunshot residue (GSR) patterns can assist in the reconstruction of shooting incidences. Currently, there is a real need of methods capable of furnishing simultaneous elemental analysis with higher specificity for the GSR pattern visualization. Laser-Induced Breakdown Spectroscopy (LIBS) provides a multi-elemental analysis of the sample, requiring very small amounts of material and no sample preparation. Due to these advantages, this study aims at exploring the potential of LIBS imaging for the visualization of GSR patterns. After the spectral characterization of individual GSR particles, the distribution of Pb, Sb and Ba over clothing targets, shot from different distances, were measured in laser raster mode. In particular, an array of spots evenly spaced at 800μm, using a stage displacement velocity of 4mm/s and a laser frequency of 5Hz was employed (e.g. an area of 130×165mm2 was measured in less than 3h). A LIBS set-up based on the simultaneous use of two spectrographs with iCCD cameras and a motorized stage was used. This set-up allows obtaining information from two different wavelength regions (258-289 and 446-463nm) from the same laser induced plasma, enabling the simultaneous detection of the three characteristic elements (Pb, Sb, and Ba) of GSR particles from conventional ammunitions. The ability to visualize the 2D distribution GSR pattern by LIBS may have an important application in the forensic field, especially for the ballistics area. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy

    Science.gov (United States)

    Meng, Deshuo; Zhao, Nanjing; Wang, Yuanyuan; Ma, Mingjun; Fang, Li; Gu, Yanhong; Jia, Yao; Liu, Jianguo

    2017-11-01

    The enrichment method of heavy metal in water with graphite and aluminum electrode was studied, and combined with plasma restraint device for improving the sensitivity of detection and reducing the limit of detection (LOD) of elements. For aluminum electrode enrichment, the LODs of Cd, Pb and Ni can be as low as several ppb. For graphite enrichment, the measurement time can be less than 3 min. The results showed that the graphite enrichment and aluminum electrode enrichment method can effectively improve the LIBS detection ability. The graphite enrichment method combined with plasma spatial confinement is more suitable for on-line monitoring of industrial waste water, the aluminum electrode enrichment method can be used for trace heavy metal detection in water. A LIBS method and device for soil heavy metals analysis was also developed, and a mobile LIBS system was tested in outfield. The measurement results deduced from LIBS and ICP-MS had a good consistency. The results provided an important application support for rapid and on-site monitoring of heavy metals in soil. (Left: the mobile LIBS system for analysis of heavy metals in soils. Top right: the spatial confinement device. Bottom right: automatic graphite enrichment device for on0line analysis of heavy metals in water).

  8. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    Science.gov (United States)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  9. Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy.

    Science.gov (United States)

    Wheeler, Jeffrey L; Pugh, McKinley; Atkins, S Jake; Porter, Jason M

    2017-12-01

    In this work, the thermal stability of the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) is investigated using infrared (IR) spectroscopy. Quantitative IR absorption spectral data are measured for heated [EMIM][EtSO4]. Spectra have been collected between 25 ℃ and 100 ℃ using a heated optical cell. Multiple samples and cell pathlengths are used to determine quantitative values for the molar absorptivity of [EMIM][EtSO4]. These results are compared to previous computational models of the ion pair. These quantitative spectra are used to measure the rate of thermal decomposition of [EMIM][EtSO4] at elevated temperatures. The spectroscopic measurements of the rate of decomposition show that thermogravimetric methods overestimate the thermal stability of [EMIM][EtSO4].

  10. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M Eileen

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30-900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200-980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018-5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps-a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18-670 ng m-3 can be achieved for most of the elements studied at a flow rate of 1.5 L min-1 with sampling times of 5 min.

  11. Melted Paraffin Wax as an Innovative Liquid and Solid Extractant for Elemental Analysis by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Papai, Rodrigo; Sato, Roseli Hiromi; Nunes, Lidiane Cristina; Krug, Francisco José; Gaubeur, Ivanise

    2017-03-07

    This work proposes a new development in the use of melted paraffin wax as a new extractant in a procedure designed to aggregate the advantages of liquid phase extraction (extract homogeneity, fast, and efficient transfer, low cost and simplicity) to solid phase extraction. As proof of concept, copper(II) in aqueous samples was converted into a hydrophobic complex of copper(II) diethyldithiocarbamate and subsequently extracted into paraffin wax. Parameters which affect the complexation and extraction (pH, DDTC, and Triton X-100 concentration, vortex agitation time and complexation time) were optimized in a univariate way. The combination of the extraction proposed procedure with laser-induced breakdown spectroscopy allowed the precise copper determination (coefficient of variation = 3.1%, n = 10) and enhanced detectability because of the concentration factor of 18 times. A calibration curve was obtained with a linear range of 0.50-10.00 mg L(-1) (R(2) = 0.9990, n = 7), LOD = 0.12 mg L(-1), and LOQ = 0.38 mg L(-1) under optimized conditions. An extraction procedure efficiency of 94% was obtained. The accuracy of the method was confirmed through the analysis of a reference material of human blood serum, by the spike and recovery trials with seawater, tap water, mineral water, and alcoholic beverages and by comparing with those results obtained by graphite furnace atomic absorption spectrometry.

  12. Elemental analysis of steel scrap metals and minerals by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vieitez, Maria Ofelia [Department of Physics, Royal Institute of Technology, AlbaNova University Centrum, SE-10691 Stockholm (Sweden); Hedberg, Jonas [Department of Physics, Royal Institute of Technology, AlbaNova University Centrum, SE-10691 Stockholm (Sweden); Launila, Olli [Department of Physics, Royal Institute of Technology, AlbaNova University Centrum, SE-10691 Stockholm (Sweden)]. E-mail: olli@physics.kth.se; Berg, Lars-Erik [Department of Physics, Royal Institute of Technology, AlbaNova University Centrum, SE-10691 Stockholm (Sweden)

    2005-08-31

    The atomic emission of laser-induced plasma on steel samples has been studied for quantitative elemental analysis. The plasma has been created with 8 ns wide pulses using the second-harmonic from a Q-switched Nd:YAG laser, in air at atmospheric pressure. The plasma emission is detected with temporal resolution, using an Echelle spectrometer of wide spectral range (300-900 nm) combined with an intensified charge coupled device camera. A plasma temperature of 7800 {+-} 400 K is determined using the Boltzmann plot method, from spectra obtained under optimized experimental conditions. As an example of an industrial application the concentration of copper in scrap metals is studied, which is an important factor to determine the quality of the samples to recycle. Cu concentrations down to 200 ppm can be detected. Another application of the laser-induced plasma spectroscopy method is the measurement of the nickel and copper concentrations in an iron-containing sample of reduced magma from the 1870s expedition to western Greenland by Adolf Erik Nordenskioeld. Different spectral lines of nickel are used for calibration, and their results are compared.

  13. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2015-05-01

    LIBS analysis of submerged materials in an underwater archeological site has been performed for the first time. A fiber-optics-based remote instrument was designed for the recognition and identification of archeological assets in the wreck of the Bucentaure (Bay of Cadiz, South of Spain). The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). Compared to single-pulse, an intensity enhancement factor of 15× was observed at the same irradiance value, 1.89 GW/cm(2). Thus, a longer pulse duration promotes the heating and melting of the sample, resulting in a greater mass ablated. As a consequence of the optimization of experimental conditions performed in laboratory, underwater characterization of ancient pottery was achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Use of the LIBS method in oil paintings examination based on examples of analyses conducted at the Wilanow Palace Museum

    Science.gov (United States)

    Modzelewska, ElŻbieta; Pawlak, Agnieszka; Selerowicz, Anna; Skrzeczanowski, Wojciech; Marczak, Jan

    2013-05-01

    This paper describes the preliminary results of a study of the paint layers in 17th-century paintings belonging to the collection of the Wilanow Palace Museum. The works chosen for examination are of great importance to the Museum, as they might have been painted by court artists of King John III Sobieski. The aim of the study was therefore to determine the technological structure of the paintings, to determine the scope of conservation interventions and, above all, to gather comparative material that would serve to conduct further multidisciplinary attributive research. The presentation relates to studies in which laser-induced breakdown spectroscopy (LIBS) and optical microscopy were used as diagnostic tools. LIBS is based on the evaporation of a small amount of the material under investigation, and the generation of plasma which emits continuum and line radiation. The analysis of line radiation allows us to identify the elements appearing in the sample being investigated. The microscope pictures were taken using a Bresser Digital Hand Micro 1.3Mpx and the Hirox 8700 microscopes. The results obtained have confirmed the utility of the LIBS method in the study of artworks. They have also proven that it can be used as a method to complement microchemical analysis, as well as an method to identify and examine artworks from which samples cannot be taken, as it is micro-destructive and the analysis can be conducted dir