WorldWideScience

Sample records for break repair complex

  1. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    Science.gov (United States)

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  2. The transcriptional histone acetyltransferase cofactor TRRAP associates with the MRN repair complex and plays a role in DNA double-strand break repair.

    Science.gov (United States)

    Robert, Flavie; Hardy, Sara; Nagy, Zita; Baldeyron, Céline; Murr, Rabih; Déry, Ugo; Masson, Jean-Yves; Papadopoulo, Dora; Herceg, Zdenko; Tora, Làszlò

    2006-01-01

    Transactivation-transformation domain-associated protein (TRRAP) is a component of several multiprotein histone acetyltransferase (HAT) complexes implicated in transcriptional regulation. TRRAP was shown to be required for the mitotic checkpoint and normal cell cycle progression. MRE11, RAD50, and NBS1 (product of the Nijmegan breakage syndrome gene) form the MRN complex that is involved in the detection, signaling, and repair of DNA double-strand breaks (DSBs). By using double immunopurification, mass spectrometry, and gel filtration, we describe the stable association of TRRAP with the MRN complex. The TRRAP-MRN complex is not associated with any detectable HAT activity, while the isolated other TRRAP complexes, containing either GCN5 or TIP60, are. TRRAP-depleted extracts show a reduced nonhomologous DNA end-joining activity in vitro. Importantly, small interfering RNA knockdown of TRRAP in HeLa cells or TRRAP knockout in mouse embryonic stem cells inhibit the DSB end-joining efficiency and the precise nonhomologous end-joining process, further suggesting a functional involvement of TRRAP in the DSB repair processes. Thus, TRRAP may function as a molecular link between DSB signaling, repair, and chromatin remodeling.

  3. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.

    Science.gov (United States)

    Park, Eun-Jung; Hur, Shin-Kyoung; Kwon, Jongbum

    2010-10-15

    Recent studies have shown that the SWI/SNF family of ATP-dependent chromatin-remodelling complexes play important roles in DNA repair as well as in transcription. The INO80 complex, the most recently described member of this family, has been shown in yeast to play direct role in DNA DSB (double-strand break) repair without affecting the expression of the genes involved in this process. However, whether this function of the INO80 complex is conserved in higher eukaryotes has not been investigated. In the present study, we found that knockdown of hINO80 (human INO80) confers DNA-damage hypersensitivity and inefficient DSB repair. Microarray analysis and other experiments have identified the Rad54B and XRCC3 (X-ray repair complementing defective repair in Chinese-hamster cells 3) genes, implicated in DSB repair, to be repressed by hINO80 deficiency. Chromatin immunoprecipitation studies have shown that hINO80 binds to the promoters of the Rad54B and XRCC3 genes. Re-expression of the Rad54B and XRCC3 genes rescues the DSB repair defect in hINO80-deficient cells. These results suggest that hINO80 assists DSB repair by positively regulating the expression of the Rad54B and XRCC3 genes. Therefore, unlike yeast INO80, hINO80 can contribute to DSB repair indirectly via gene expression, suggesting that the mechanistic role of this chromatin remodeller in DSB repair is evolutionarily diversified.

  4. Phosphorylation: The Molecular Switch of Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    K. C. Summers

    2011-01-01

    Full Text Available Repair of double-stranded breaks (DSBs is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ, homologous recombination (HR, or the inclusive DNA damage response (DDR. These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.

  5. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.

    Science.gov (United States)

    Almond, Joshua R; Stohr, Bradley A; Panigrahi, Anil K; Albrecht, Dustin W; Nelson, Scott W; Kreuzer, Kenneth N

    2013-11-01

    The in vivo functions of the bacteriophage T4 Mre11/Rad50 (MR) complex (gp46/47) in double-strand-end processing, double-strand break repair, and recombination-dependent replication were investigated. The complex is essential for T4 growth, but we wanted to investigate the in vivo function during productive infections. We therefore generated a suppressed triple amber mutant in the Rad50 subunit to substantially reduce the level of complex and thereby reduce phage growth. Growth-limiting amounts of the complex caused a concordant decrease in phage genomic recombination-dependent replication. However, the efficiencies of double-strand break repair and of plasmid-based recombination-dependent replication remained relatively normal. Genetic analyses of linked markers indicated that double-strand ends were less protected from nuclease erosion in the depleted infection and also that end coordination during repair was compromised. We discuss models for why phage genomic recombination-dependent replication is more dependent on Mre11/Rad50 levels when compared to plasmid recombination-dependent replication. We also tested the importance of the conserved histidine residue in nuclease motif I of the T4 Mre11 protein. Substitution with multiple different amino acids (including serine) failed to support phage growth, completely blocked plasmid recombination-dependent replication, and led to the stabilization of double-strand ends. We also constructed and expressed an Mre11 mutant protein with the conserved histidine changed to serine. The mutant protein was found to be completely defective for nuclease activities, but retained the ability to bind the Rad50 subunit and double-stranded DNA. These results indicate that the nuclease activity of Mre11 is critical for phage growth and recombination-dependent replication during T4 infections.

  6. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.

    Science.gov (United States)

    Takeda, Shunichi; Hoa, Nguyen Ngoc; Sasanuma, Hiroyuki

    2016-08-01

    Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5'-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51-DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation-induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution.

  7. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline.

    Directory of Open Access Journals (Sweden)

    Hyun-Min Kim

    2014-10-01

    Full Text Available Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR and DSB repair (DSBR within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to γ-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline.

  8. Repair of DNA Double-Strand Breaks

    Science.gov (United States)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  9. Structure of the catalytic region of DNA ligase IV in complex with an Artemis fragment sheds light on double-strand break repair.

    Science.gov (United States)

    Ochi, Takashi; Gu, Xiaolong; Blundell, Tom L

    2013-04-02

    Nonhomologous end joining (NHEJ) is central to the repair of double-stranded DNA breaks throughout the cell cycle and plays roles in the development of the immune system. Although three-dimensional structures of most components of NHEJ have been defined, those of the catalytic region of DNA ligase IV (LigIV), a specialized DNA ligase known to work in NHEJ, and of Artemis have remained unresolved. Here, we report the crystal structure at 2.4 Å resolution of the catalytic region of LigIV (residues 1-609) in complex with an Artemis peptide. We describe interactions of the DNA-binding domain of LigIV with the continuous epitope of Artemis, which, together, form a three-helix bundle. A kink in the first helix of LigIV introduced by a conserved VPF motif gives rise to a hydrophobic pocket, which accommodates a conserved tryptophan from Artemis. We provide structural insights into features of LigIV among human DNA ligases.

  10. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.

    Directory of Open Access Journals (Sweden)

    Wenjian Ma

    2011-04-01

    Full Text Available DNA double-strand breaks (DSBs are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs with 3'-blocked termini generated in vivo. Using our recently developed assay for detecting end-processing at random DSBs in budding yeast, we show that single-strand lesions produced by the alkylating agent methyl methanesulfonate (MMS can generate DSBs in G2-arrested cells, i.e., S-phase independent. These derived DSBs were observed in apn1/2 endonuclease mutants and resulted from aborted base excision repair leading to 3' blocked single-strand breaks following the creation of abasic (AP sites. DSB formation was reduced by additional mutations that affect processing of AP sites including ntg1, ntg2, and, unexpectedly, ogg1, or by a lack of AP sites due to deletion of the MAG1 glycosylase gene. Similar to direct DSBs, the derived DSBs were subject to MRX (Mre11, Rad50, Xrs2-determined resection and relied upon the recombinational repair genes RAD51, RAD52, as well as on the MCD1 cohesin gene, for repair. In addition, we identified a novel DNA intermediate, detected as slow-moving chromosomal DNA (SMD in pulsed field electrophoresis gels shortly after MMS exposure in apn1/2 cells. The SMD requires nicked AP sites, but is independent of resection/recombination processes, suggesting that it is a novel structure generated during processing of 3'-blocked SSBs. Collectively, this study provides new insights into the potential consequences of alkylation base damage in vivo, including creation of novel structures as well as generation and repair of DSBs in nonreplicating cells.

  11. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability.

  12. Regulation of DNA double-strand break repair pathway choice

    Institute of Scientific and Technical Information of China (English)

    Meena Shrivastav; Leyma P De Haro; Jac A Nickoloff

    2008-01-01

    DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources includ-ing reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1 (XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.

  13. DNA double strand break repair, aging and the chromatin connection.

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei

    2016-06-01

    Are DNA damage and mutations possible causes or consequences of aging? This question has been hotly debated by biogerontologists for decades. The importance of DNA damage as a possible driver of the aging process went from being widely recognized to then forgotten, and is now slowly making a comeback. DNA double strand breaks (DSBs) are particularly relevant to aging because of their toxicity, increased frequency with age and the association of defects in their repair with premature aging. Recent studies expand the potential impact of DNA damage and mutations on aging by linking DNA DSB repair and age-related chromatin changes. There is overwhelming evidence that increased DNA damage and mutations accelerate aging. However, an ultimate proof of causality would be to show that enhanced genome and epigenome stability delays aging. This is not an easy task, as improving such complex biological processes is infinitely more difficult than disabling it. We will discuss the possibility that animal models with enhanced DNA repair and epigenome maintenance will be generated in the near future.

  14. A requirement for polymerized actin in DNA double-strand break repair.

    Science.gov (United States)

    Andrin, Christi; McDonald, Darin; Attwood, Kathleen M; Rodrigue, Amélie; Ghosh, Sunita; Mirzayans, Razmik; Masson, Jean-Yves; Dellaire, Graham; Hendzel, Michael J

    2012-07-01

    Nuclear actin is involved in several nuclear processes from chromatin remodeling to transcription. Here we examined the requirement for actin polymerization in DNA double-strand break repair. Double-strand breaks are considered the most dangerous type of DNA lesion. Double-strand break repair consists of a complex set of events that are tightly regulated. Failure at any step can have catastrophic consequences such as genomic instability, oncogenesis or cell death. Many proteins involved in this repair process have been identified and their roles characterized. We discovered that some DNA double-strand break repair factors are capable of associating with polymeric actin in vitro and specifically, that purified Ku70/80 interacts with polymerized actin under these conditions. We find that the disruption of polymeric actin inhibits DNA double strand break repair both in vitro and in vivo. Introduction of nuclear targeted mutant actin that cannot polymerize, or the depolymerization of endogenous actin filaments by the addition of cytochalasin D, alters the retention of Ku80 at sites of DNA damage in live cells. Our results suggest that polymeric actin is required for proper DNA double-strand break repair and may function through the stabilization of the Ku heterodimer at the DNA damage site.

  15. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Directory of Open Access Journals (Sweden)

    Maria E Morales

    Full Text Available Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR and single strand annealing (SSA, which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  16. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.

    Science.gov (United States)

    Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D

    2016-05-08

    The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.

  17. Double strand break repair functions of histone H2AX

    Energy Technology Data Exchange (ETDEWEB)

    Scully, Ralph, E-mail: rscully@bidmc.harvard.edu; Xie, Anyong

    2013-10-15

    Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form “γH2AX”). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the “histone code” is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.

  18. Microhomology directs diverse DNA break repair pathways and chromosomal translocations.

    Directory of Open Access Journals (Sweden)

    Diana D Villarreal

    Full Text Available Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR events after a DNA double-strand break (DSB in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.

  19. Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair.

    Science.gov (United States)

    Lemaître, Charlène; Soutoglou, Evi

    2014-07-01

    Chromosomal translocations are a hallmark of cancer cells and they represent a major cause of tumorigenesis. To avoid chromosomal translocations, faithful repair of DNA double strand breaks (DSBs) has to be ensured in the context of high ordered chromatin structure. However, chromatin compaction is proposed to represent a barrier for DSB repair. Here we review the different mechanisms cells use to alleviate the heterochromatic barrier for DNA repair. At the same time, we discuss the activating role of heterochromatin-associated proteins in this process, therefore proposing that chromatin structure, more than being a simple barrier, is a key modulator of DNA repair.

  20. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.;

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells....... We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, di......RNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. Knock down of Dicer or Ago2 in human cells reduces DSB repair. Our findings reveal a conserved function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules directing chromatin modifications or the recruitment...

  1. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    DEFF Research Database (Denmark)

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate...... accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms...... for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance...

  2. Nampt is involved in DNA double-strand break repair

    Institute of Scientific and Technical Information of China (English)

    Bingtao Zhu; Xiaoli Deng; Yifan Sun; Lin Bai; Zhikai Xiahou; Yusheng Cong; Xingzhi Xu

    2012-01-01

    DNA double-strand break (DSB) is the most severe form of DNA damage,which is repaired mainly through high-fidelity homologous recombination (HR) or error-prone non-homologous end joining (NHEJ).Defects in the DNA damage response lead to genomic instability and ultimately predispose organs to cancer.Nicotinamide phosphoribosyltransferase (Nampt),which is involved in nicotinamide adenine dinucleotide metabolism,is overexpressed in a variety of tumors.In this report,we found that Nampt physically associated with CtlP and DNA-PKcs/Ku80,which are key factors in HR and NHEJ,respectively.Depletion of Nampt by small interfering RNA (siRNA) led to defective NHEJ-mediated DSB repair and enhanced HR-mediated repair.Furthermore,the inhibition of Nampt expression promoted proliferation of cancer cells and normal human fibroblasts and decreased β-galactosidase staining,indicating a delay in the onset of cellular senescence in normal human fibroblasts.Taken together,our results suggest that Nampt is a suppressor of HR-mediated DSB repair and an enhancer of NHEJ-mediated DSB repair,contributing to the acceleration of cellular senescence.

  3. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available PURPOSE: DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair. METHODS AND MATERIALS: Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain. RESULTS: While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage. DISCUSSION: Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more

  4. Multiple-pathway analysis of double-strand break repair mutations in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dena M Johnson-Schlitz

    2007-04-01

    Full Text Available The analysis of double-strand break (DSB repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.

  5. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  6. Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Wigard P. Kloosterman

    2012-06-01

    Full Text Available Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.

  7. Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism.

    Science.gov (United States)

    Beishline, Kate; Kelly, Crystal M; Olofsson, Beatrix A; Koduri, Sravanthi; Emrich, Jacqueline; Greenberg, Roger A; Azizkhan-Clifford, Jane

    2012-09-01

    Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H(2)O(2). Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant γH2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects.

  8. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein.

    Directory of Open Access Journals (Sweden)

    Prabha Sarangi

    2015-01-01

    Full Text Available Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect.

  9. Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein

    Science.gov (United States)

    Sarangi, Prabha; Steinacher, Roland; Altmannova, Veronika; Fu, Qiong; Paull, Tanya T.; Krejci, Lumir; Whitby, Matthew C.; Zhao, Xiaolan

    2015-01-01

    Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. PMID:25569253

  10. RAD50, an SMC family member with multiple roles in DNA break repair: How does ATP affect function?

    NARCIS (Netherlands)

    E. Kinoshita (Eri); E. van der Linden (Eddy); H. Sanchez (Humberto); C. Wyman (Claire)

    2009-01-01

    textabstractThe protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid sequence similarity and overall architecture make Rad50 a member of the structural maintenance of c

  11. Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair

    NARCIS (Netherlands)

    O. Limbo (Oliver); D. Moiani (Davide); A. Kertokalio (Aryandi); C. Wyman (Claire); J.A. Tainer (John); P. Russell (Paul)

    2012-01-01

    textabstractThe Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structur

  12. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sze Ham Chan

    2010-07-01

    Full Text Available DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or "alternative" end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta, encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair.

  13. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23/sup 0/)> rad51-1(30/sup 0/)> rad54-3(36/sup 0/). At 36/sup 0/, rad54-3 cells cannot repair double-strand breaks, while 23/sup 0/, they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36/sup 0/ shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation. (ERB)

  14. Meiotic and mitotic functions of mammalian RAD 18 in DNA double-strand break repair

    NARCIS (Netherlands)

    A. Inagaki (Akiko)

    2010-01-01

    textabstractThis thesis focuses on the role of RAD 18 in DNA double-strand break (DSB ) repair. Much is known about the role of RAD 18, and its critical substrate PCNA in replication damage bypass (RDB ) repair. However, the roles of RAD 18 in DSB repair are still elusive, although several interacti

  15. Double-strand break repair and G4 DNA stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Pontier, D.B.

    2010-01-01

    DNA double-strand breaks (DSBs) can be repaired by three canonical repair pathways. Homologous recombination (HR) uses the sister chromatid or homologous chromosome as a template to repair the DSB in an error-free manner. In non-homologous end-joining (NHEJ), the broken ends are ligated with little

  16. Genetic and environmental influence on DNA strand break repair: a twin study

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander;

    2013-01-01

    -strand breaks), and some of the most hazardous lesions (DNA double-strand breaks). DNA damage signaling response (Gamma-H2AX signaling), relative amount of endogenous damage, and DNA-strand break repair capacities were studied in peripheral blood mononuclear cells from 198 twins (94 monozygotic and 104...

  17. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs......) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate...

  18. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  19. Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs and recombinational repair between sister chromatids.

    Directory of Open Access Journals (Sweden)

    Pranav Ullal

    Full Text Available Efficient repair of DNA double-stranded breaks (DSB requires a coordinated response at the site of lesion. Nucleolytic resection commits repair towards homologous recombination, which preferentially occurs between sister chromatids. DSB resection promotes recruitment of the Mec1 checkpoint kinase to the break. Rtt107 is a target of Mec1 and serves as a scaffold during repair. Rtt107 plays an important role during rescue of damaged replication forks, however whether Rtt107 contributes to the repair of DSBs is unknown. Here we show that Rtt107 is recruited to DSBs induced by the HO endonuclease. Rtt107 phosphorylation by Mec1 and its interaction with the Smc5-Smc6 complex are both required for Rtt107 loading to breaks, while Rtt107 regulators Slx4 and Rtt101 are not. We demonstrate that Rtt107 has an effect on the efficiency of sister chromatid recombination (SCR and propose that its recruitment to DSBs, together with the Smc5-Smc6 complex is important for repair through the SCR pathway.

  20. Adriamycin does not affect the repair of X-ray induced DNA single strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Cantoni, O.; Sestili, P.; Cattabeni, F.

    1985-06-01

    The ability of the antitumor antibiotic adriamycin (Ad) to inhibit the rejoining of DNA single strand breaks produced by X-rays was investigated in cultured cells. Chinese hamster ovary cells were given 400 rad and were allowed to repair in the presence or absence of Ad for 60 min at 37degC. The drug did not affect the ability of cells to repair DNA breaks and residual breaks found after the repair period were attributed to those induced by Ad alone. (author). 16 refs.

  1. Genetics of x-ray induced double strand break repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Budd, M.E.

    1982-01-01

    This thesis examined the possible fates of x-ray induced double strand breaks in Saccharomyces cerevisiae. One possible pathway which breaks can follow is the repair pathway and this pathway was studied by assaying strains with mutations in RAD51, RAD54, and RAD57 loci for double strand break repair using neutral sucrose sedimentation. Rad54-3 strains were sensitive to x-ray at 36/sup 0/ and resistant at 23/sup 0/, while rad57-1 strains are sensitive to radiation at 23/sup 0/ and resistant at 36/sup 0/. In order of increasing radiation sensitivity one finds: rad57-1(23/sup 0/)> rad51-1(30/sup 0/)>rad54-3(36/sup 0/). At the restrictive temperature 36/sup 0/, rad54-3 cells are unaable to repair double strand breaks, while at the permissive temperature, 23/sup 0/, these strains are able to repair double strand breaks. On the other hand, strains with the rad57-1 mutation appear to be able to rejoin broken chromosomes at both the permissive and restrictive temperature. However, the low assay is not distinguishing large DNA fragments which allow cell survival from large DNA fragments which cause cell death. A rad51-1 strain also appeared able to rejoin broken chromosomes, and is thus capable of incomplete repair. The data can be explained with the hypotheses that rad54-3 cells are blocked in a later step of repair. The fate of double strand breaks when they are left unrepaired was also investigated with the temperature conditional rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they are modified and become uncommitted lesions. The rate these uncommitted lesions are repaired is slower than the rate the original breaks are repaired.

  2. DNA Single-Strand Break Repair and Spinocerebellar Ataxia with Axonal Neuropathy-1

    OpenAIRE

    Caldecott, K. W.

    2007-01-01

    DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiester...

  3. DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1

    OpenAIRE

    El-Khamisy, S.F.; Caldecott, K. W.

    2007-01-01

    DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiester...

  4. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    OpenAIRE

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements requir...

  5. New tools to study DNA double-strand break repair pathway choice.

    Directory of Open Access Journals (Sweden)

    Daniel Gomez-Cabello

    Full Text Available A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  6. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  7. The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks

    Directory of Open Access Journals (Sweden)

    De Benedetti Arrigo

    2005-09-01

    Full Text Available Abstract Background The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and missegregation of chromosomes probably, due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases it's resistance to ionizing radiation (IR or the radiomimetic drug doxorubicin, also likely due to changes in chromatin remodeling. TLK1B is translationally regulated by the availability of the translation factor eIF4E, and its synthesis is activated by IR. The reason for this mechanism of regulation is likely to provide a rapid means of promoting repair of DSBs. TLK1B specifically phosphorylates histone H3 and Asf1, likely resulting in changes in chromatin structure, particularly at double strand breaks (DSB sites. Results In this work, we provide several lines of evidence that TLK1B protects the cells from IR by facilitating the repair of DSBs. First, the pattern of phosphorylation and dephosphorylation of H2AX and H3 indicated that cells overexpressing TLK1B return to pre-IR steady state much more rapidly than controls. Second, the repair of episomes damaged with DSBs was much more rapid in cells overexpressing TLK1B. This was also true for repair of genomic damage. Lastly, we demonstrate with an in vitro repair system that the addition of recombinant TLK1B promotes repair of a linearized plasmid incubated with nuclear extract. In addition, TLK1B in this in vitro system promotes the assembly of chromatin as shown by the formation of more highly supercoiled topomers of the plasmid. Conclusion In this work, we provide evidence that TLK1B promotes the repair of DSBs, likely as a consequence of a change in chromatin remodeling capacity that

  8. DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis.

    Science.gov (United States)

    Inagaki, Akiko; Schoenmakers, Sam; Baarends, Willy M

    2010-05-16

    Chromosome pairing and synapsis during meiotic prophase requires the formation and repair of DNA double-strand breaks (DSBs) by the topoisomerase-like enzyme SPO11. Chromosomes, or chromosomal regions, that lack a pairing partner, such as the largely heterologous X and Y chromosomes, show delayed meiotic DSB repair and are transcriptionally silenced. Herein, we review meiosis-specific aspects of DSB repair in relation to homology recognition and meiotic silencing of heterologous regions. We propose a dynamic interplay between progression of synapsis and persistent meiotic DSBs. Signaling from these persistent breaks could inhibit heterologous synapsis and stimulate meiotic silencing of the X and Y chromosomes.

  9. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander;

    2013-01-01

    single-strand breaks (SSBs) and double-strand breaks (DSBs) in human peripheral blood mononuclear cells (PBMCs). Of these lesions, DSBs are the least frequent but the most dangerous for cells. We have measured the level of endogenous SSBs, SSB repair capacity, γ-H2AX response, and DSB repair capacity...... in a study population consisting of 216 individuals from a population-based sample of twins aged 40-77 years. Age in this range did not seem to have any effect on the SSB parameters. However, γ-H2AX response and DSB repair capacity decreased with increasing age, although the associations did not reach...

  10. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin

    OpenAIRE

    Kakarougkas, Andreas; Ismail, Amani; Chambers, Anna; Riballo, Queti; Herbert, Alex; Kunzel, Julia; Lobrich, Markus; Jeggo, Penny; Downs, Jessica

    2014-01-01

    Summary Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes ...

  11. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.

    Science.gov (United States)

    Vu, Giang T H; Cao, Hieu X; Reiss, Bernd; Schubert, Ingo

    2017-02-28

    In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.

  12. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua

    2014-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute...... (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian...

  13. Branch migration prevents DNA loss during double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Julia S P Mawer

    2014-08-01

    Full Text Available The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.

  14. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair

    Science.gov (United States)

    2016-01-01

    DNA double-strand breaks are lesions that form during metabolism, DNA replication and exposure to mutagens. When a double-strand break occurs one of a number of repair mechanisms is recruited, all of which have differing propensities for mutational events. Despite DNA repair being of crucial importance, the relative contribution of these mechanisms and their regulatory interactions remain to be fully elucidated. Understanding these mutational processes will have a profound impact on our knowledge of genomic instability, with implications across health, disease and evolution. Here we present a new method to model the combined activation of non-homologous end joining, single strand annealing and alternative end joining, following exposure to ionising radiation. We use Bayesian statistics to integrate eight biological data sets of double-strand break repair curves under varying genetic knockouts and confirm that our model is predictive by re-simulating and comparing to additional data. Analysis of the model suggests that there are at least three disjoint modes of repair, which we assign as fast, slow and intermediate. Our results show that when multiple data sets are combined, the rate for intermediate repair is variable amongst genetic knockouts. Further analysis suggests that the ratio between slow and intermediate repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that non-homologous end joining and alternative end joining are not independent. Finally, we consider the proportion of double-strand breaks within each mechanism as a time series and predict activity as a function of repair rate. We outline how our insights can be directly tested using imaging and sequencing techniques and conclude that there is evidence of variable dynamics in alternative repair pathways. Our approach is an important step towards providing a unifying theoretical framework for the dynamics of DNA repair processes. PMID:27741226

  15. Proximal Contact Repair of Complex Amalgam Restorations.

    Science.gov (United States)

    Zguri, M N; Casey, J A; Jessup, J P; Vandewalle, K S

    2017-01-12

    The carving of a complex amalgam restoration may occasionally result in light proximal contact with the adjacent tooth. The purpose of this study was to investigate the strength of complex amalgam restorations repaired with a proximal slot amalgam preparation. Extracted human third molars of similar coronal size were sectioned 1 mm apical to the height of the contour using a saw and were randomly distributed into 9 groups of 10 teeth each. One pin was placed at each line angle of the flattened dentinal tooth surface. A metal matrix band was placed and an admixed alloy was condensed and carved to create a full crown contour but with a flat occlusal surface. A proximal slot was prepared with or without a retention groove and repaired using a single-composition spherical amalgam 15 minutes, 24 hours, one week, or six months after the initial crown condensation. The specimens were stored for 24 hours in 37°C water before fracture at the marginal ridge using a round-ended blade in a universal testing machine. The control group was not repaired. The mean maximum force in newtons and standard deviation were determined per group. Data were analyzed with a 2-way analysis of variance as well as Tukey and Dunnett tests (α=0.05). Significant differences were found between groups based on type of slot preparation (p=0.017) but not on time (p=0.327), with no significant interaction (p=0.152). No significant difference in the strength of the marginal ridge was found between any repair group and the unrepaired control group (p>0.076). The proximal repair strength of a complex amalgam restoration was not significantly different from an unrepaired amalgam crown. Placing a retention groove in the proximal slot preparation resulted in significantly greater fracture strength than a slot with no retention grooves. Time of repair had no significant effect on the strength of the repair.

  16. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize...... in vivo DSBR in single cells. Using this system, we demonstrate for the first time that Rad52 DNA repair foci and DSBs colocalize. Time-lapse microscopy reveals that the relocalization of Rad52 protein into a focal assembly is a rapid and reversible process. In addition, analysis of DNA damage checkpoint......-deficient cells provides direct evidence for coordination between DNA repair and subsequent release from checkpoint arrest. Finally, analyses of cells experiencing multiple DSBs demonstrate that Rad52 foci are centres of DNA repair capable of simultaneously recruiting more than one DSB....

  17. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair.

    Science.gov (United States)

    Chiolo, Irene; Minoda, Aki; Colmenares, Serafin U; Polyzos, Aris; Costes, Sylvain V; Karpen, Gary H

    2011-03-04

    Double-strand breaks (DSBs) in heterochromatic repetitive DNAs pose significant threats to genome integrity, but information about how such lesions are processed and repaired is sparse. We observe dramatic expansion and dynamic protrusions of the heterochromatin domain in response to ionizing radiation (IR) in Drosophila cells. We also find that heterochromatic DSBs are repaired by homologous recombination (HR) but with striking differences from euchromatin. Proteins involved in early HR events (resection) are rapidly recruited to DSBs within heterochromatin. In contrast, Rad51, which mediates strand invasion, only associates with DSBs that relocalize outside of the domain. Heterochromatin expansion and relocalization of foci require checkpoint and resection proteins. Finally, the Smc5/6 complex is enriched in heterochromatin and is required to exclude Rad51 from the domain and prevent abnormal recombination. We propose that the spatial and temporal control of DSB repair in heterochromatin safeguards genome stability by preventing aberrant exchanges between repeats.

  18. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Huiming Lu

    2016-06-01

    Full Text Available The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR-dependent DNA double-strand break repair (DSBR. Depletion of RECQL4 severely reduces HR-mediated repair and 5′ end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN, which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4’s helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4’s unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

  19. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.

    Science.gov (United States)

    Lu, Huiming; Shamanna, Raghavendra A; Keijzers, Guido; Anand, Roopesh; Rasmussen, Lene Juel; Cejka, Petr; Croteau, Deborah L; Bohr, Vilhelm A

    2016-06-28

    The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

  20. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks

    DEFF Research Database (Denmark)

    Lu, Huiming; Shamanna, Raghavendra A; Keijzers, Guido

    2016-01-01

    The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR......). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly...... interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's...

  1. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    OpenAIRE

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with ...

  2. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  3. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    Science.gov (United States)

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  4. Repair Pathway Choices and Consequences at the Double-Strand Break.

    Science.gov (United States)

    Ceccaldi, Raphael; Rondinelli, Beatrice; D'Andrea, Alan D

    2016-01-01

    DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.

  5. DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks.

    Science.gov (United States)

    van Overbeek, Megan; Capurso, Daniel; Carter, Matthew M; Thompson, Matthew S; Frias, Elizabeth; Russ, Carsten; Reece-Hoyes, John S; Nye, Christopher; Gradia, Scott; Vidal, Bastien; Zheng, Jiashun; Hoffman, Gregory R; Fuller, Christopher K; May, Andrew P

    2016-08-18

    The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.

  6. Analysis of DNA double-strand break repair pathways in mice

    Energy Technology Data Exchange (ETDEWEB)

    Brugmans, Linda [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands); Kanaar, Roland [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands); Department of Radiation Oncology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam (Netherlands); Essers, Jeroen [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands) and Department of Radiation Oncology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam (Netherlands)]. E-mail: j.essers@erasmusmc.nl

    2007-01-03

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.

  7. DNA double strand breaks repair pathways in mouse male germ cells

    NARCIS (Netherlands)

    Ahmed, E.A.

    2009-01-01

    DNA double strand breaks (DSBs) are induced by ionizing radiation, and during meiotic recombination. DSBs are repaired via two main pathways, homologous recombination (HR) and non homologous end-joining (NHEJ). There are three main types of male germ cells, spermatogonia, spermatocytes and spermatid

  8. The role of homologous recombination in mitotic and meiotic double-strand break repair

    NARCIS (Netherlands)

    Vries, Femke Adriana Theodora de

    2007-01-01

    All organisms are composed of cells and the cell’s nucleus contains DNA. The induction of DNA damage is a threat to organisms. Signalling of DNA damage and subsequent repair is of substantial importance. Double-strand breaks (DSBs) in DNA can be induced by ionising radiation and DNA damaging agents

  9. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair.

    Science.gov (United States)

    Czornak, Kamila; Chughtai, Sanaullah; Chrzanowska, Krystyna H

    2008-01-01

    Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.

  10. Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells.

    Directory of Open Access Journals (Sweden)

    Hua Fung

    Full Text Available Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR or nonhomologous end-joining (NHEJ. For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny.

  11. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa

    Directory of Open Access Journals (Sweden)

    Aaron A. Goodarzi

    2012-09-01

    Full Text Available Over recent decades, a deep understanding of pathways that repair DNA double strand breaks (DSB has been gained from biochemical, structural, biophysical and cellular studies. DNA non-homologous end-joining (NHEJ and homologous recombination (HR represent the two major DSB repair pathways, and both processes are now well understood. Recent work has demonstrated that the chromatin environment at a DSB significantly impacts upon DSB repair and that, moreover, dramatic modifications arise in the chromatin surrounding a DSB. Chromatin is broadly divided into open, transcriptionally active, euchromatin (EC and highly compacted, transcriptionally inert, heterochromatin (HC, although these represent extremes of a spectrum. The HC superstructure restricts both DSB repair and damage response signaling. Moreover, DSBs within HC (HC-DSBs are rapidly relocalized to the EC-HC interface. The damage response protein kinase, ataxia telangiectasia mutated (ATM, is required for HC-DSB repair but is dispensable for the relocalization of HC-DSBs. It has been proposed that ATM signaling enhances HC relaxation in the DSB vicinity and that this is a prerequisite for HC-DSB repair. Hence, ATM is essential for repair of HC-DSBs. Here, we discuss how HC impacts upon the response to DSBs and how ATM overcomes the barrier that HC poses to repair.

  12. ERCC1-XPF endonuclease facilitates DNA double-strand break repair.

    Science.gov (United States)

    Ahmad, Anwaar; Robinson, Andria Rasile; Duensing, Anette; van Drunen, Ellen; Beverloo, H Berna; Weisberg, David B; Hasty, Paul; Hoeijmakers, Jan H J; Niedernhofer, Laura J

    2008-08-01

    ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.

  13. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase.

    Science.gov (United States)

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.

  14. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining.

    Directory of Open Access Journals (Sweden)

    Richard Bowater

    2006-02-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ. Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages.

  15. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund;

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer...... cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1......-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs...

  16. The Caenorhabditis elegans homolog of Gen1/Yen1 resolvases links DNA damage signaling to DNA double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Aymeric P Bailly

    2010-07-01

    Full Text Available DNA double-strand breaks (DSBs can be repaired by homologous recombination (HR, which can involve Holliday junction (HJ intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53-mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair.

  17. Conservative Repair of a Chromosomal Double-Strand Break by Single-Strand DNA through Two Steps of Annealing▿ †

    OpenAIRE

    Storici, Francesca; Snipe, Joyce R.; Chan, Godwin K.; Dmitry A Gordenin; Michael A Resnick

    2006-01-01

    The repair of chromosomal double-strand breaks (DSBs) is essential to normal cell growth, and homologous recombination is a universal process for DSB repair. We explored DSB repair mechanisms in the yeast Saccharomyces cerevisiae using single-strand oligonucleotides with homology to both sides of a DSB. Oligonucleotide-directed repair occurred exclusively via Rad52- and Rad59-mediated single-strand annealing (SSA). Even the SSA domain of human Rad52 provided partial complementation for a null...

  18. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia;

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.......RNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian...

  19. OsRAD51C Is Essential for Double Strand Break Repair in Rice Meiosis

    Directory of Open Access Journals (Sweden)

    Ding eTang

    2014-05-01

    Full Text Available RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.

  20. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast

    Institute of Scientific and Technical Information of China (English)

    Ran Tao; Hua Chen; Chan Gao; Pcng Xue; Fuquan Yang; Jing-Dong J Han; Bing Zhou; Ye-Guang Chen

    2011-01-01

    Xbp1 has been shown to regulate the cell cycle as a transcriptional repressor in budding yeast Saccharomyces cerevisiae.In this study,we demonstrated that Xbp1 regulates DNA double-strand break (DSB) repair in S.cerevisiae.Xbp1 physically and genetically interacts with the histone deacetylase Rpd3 complex.Chromatin immunoprecipitation revealed that Xbp1 is required for efficient deacetylation of histone H4 flanking DSBs by the Rpd3 complex.Deletion of XBP1 leads to the delayed deacetylation of histone H4,which is coupled with increased nucleosome displacement,increased DNA end resection and decreased non-homologous end-joining (NHEJ).In response to DNA damage,Xbp1 is upregulated in a Mec1-Rad9-Rad53 checkpoint pathway-dependent manner and undergoes dephosphorylation.Cdk1,a central regulator of S.cerevisiae cell cycle,is responsible for Xbp1 phosphorylation at residues Ser146,Ser271 and Ser551.Substitution of these serine residues with alanine not only increases the association of Xbp1 with the Rpd3 complex and its recruitment to a DSB,but also promotes DSB repair.Together,our findings reveal a role for Xbp1 in DSB repair via NHEJ through regulation of histone H4 acetylation and nucleosome displacement in a positive feedback manner.

  1. Artemis is required to improve the accuracy of repair of double-strand breaks with 5'-blocked termini generated from non-DSB-clustered lesions.

    Science.gov (United States)

    Malyarchuk, Svitlana; Castore, Reneau; Shi, Runhua; Harrison, Lynn

    2013-05-01

    Clustered DNA lesions are defined as ≥2 damage events within 20 bp. Oxidised bases, abasic (AP) sites, single-strand breaks and double-strand breaks (DSBs) exist in radiation-induced clusters, and these lesions are more difficult to repair and can be more mutagenic than single lesions. Understanding clustered lesion repair is therefore important for the design of complementary treatments to enhance radiotherapy. Non-DSB-clustered lesions consisting of opposing AP sites can be converted to DSBs by base excision repair, and non-homologous end-joining (NHEJ) plays a role in repairing these DSBs. Artemis is an endonuclease that removes blocking groups from DSB termini during NHEJ. Hence, we hypothesised that Artemis plays a role in the processing of DSBs or complex DSBs generated from non-DSB-clustered lesions. We examined the repair of clusters containing two or three lesions in wild-type (WT) or Artemis-deficient (ART(-/-)) mouse fibroblasts using a reporter plasmid. Each cluster contained two opposing tetrahydrofurans (an AP site analogue), which AP endonuclease can convert to a DSB with blocked 5' termini. Loss of Artemis did not decrease plasmid survival, but did result in more mutagenic repair with plasmids containing larger deletions. This increase in deletions did not occur with ClaI-linearised plasmid. Since Mre11 has been implicated in deletional NHEJ, we used small interfering RNA to reduce Mre11 in WT and ART(-/-) cells, but decreasing Mre11 did not change the size of deletions in the repair products. This work implicates Artemis in limiting the deletions introduced during repair of 5'-blocked termini DSBs generated from non-DSB-clustered lesions. Decreasing repair accuracy without decreasing repair capacity could result in mutated cells surviving irradiation. Inhibiting Artemis in normal cells could promote carcinogenesis, while in tumour cells enhanced mutagenic repair following irradiation could promote tumour recurrence.

  2. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Janet L Gibson

    Full Text Available Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR. We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  3. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Science.gov (United States)

    Gibson, Janet L; Lombardo, Mary-Jane; Aponyi, Ildiko; Vera Cruz, Diana; Ray, Mellanie P; Rosenberg, Susan M

    2015-01-01

    Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  4. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction...

  5. Fluorometric analysis of the formation and repair of DNA breaks in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N.I.; Proskuryakov, S.Ya.; Ivannik, B.P.; Kutmin, A.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the dependence of the fluorescence of ethidium bromide upon NaOH concentration after staining of single- and double-strand DNA in cell lysates was demonstrated. The method of fluorometry was used to study the dose dependence of a change in the share of double-stranded DNA in the irradiated thymocytes and Ehrlich ascites carcinoma cells which permitted to determine the appearance and repair of DNA breaks in these cells.

  6. Modeling damage complexity-dependent non-homologous end-joining repair pathway.

    Directory of Open Access Journals (Sweden)

    Yongfeng Li

    Full Text Available Non-homologous end joining (NHEJ is the dominant DNA double strand break (DSB repair pathway and involves several repair proteins such as Ku, DNA-PKcs, and XRCC4. It has been experimentally shown that the choice of NHEJ proteins is determined by the complexity of DSB. In this paper, we built a mathematical model, based on published data, to study how NHEJ depends on the damage complexity. Under an appropriate set of parameters obtained by minimization technique, we can simulate the kinetics of foci track formation in fluorescently tagged mammalian cells, Ku80-EGFP and DNA-PKcs-YFP for simple and complex DSB repair, respectively, in good agreement with the published experimental data, supporting the notion that simple DSB undergo fast repair in a Ku-dependent, DNA-PKcs-independent manner, while complex DSB repair requires additional DNA-PKcs for end processing, resulting in its slow repair, additionally resulting in slower release rate of Ku and the joining rate of complex DNA ends. Based on the numerous experimental descriptions, we investigated several models to describe the kinetics for complex DSB repair. An important prediction of our model is that the rejoining of complex DSBs is through a process of synapsis formation, similar to a second order reaction between ends, rather than first order break filling/joining. The synapsis formation (SF model allows for diffusion of ends before the synapsis formation, which is precluded in the first order model by the rapid coupling of ends. Therefore, the SF model also predicts the higher number of chromosomal aberrations observed with high linear energy transfer (LET radiation due to the higher proportion of complex DSBs compared to low LET radiation, and an increased probability of misrejoin following diffusion before the synapsis is formed, while the first order model does not provide a mechanism for the increased effectiveness in chromosomal aberrations observed.

  7. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2010-01-05

    The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of {gamma}-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8 h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8 h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.

  8. Symmetry breaking of solitons in two-dimensional complex potentials

    CERN Document Server

    Yang, Jianke

    2014-01-01

    Symmetry breaking is reported for continuous families of solitons in the nonlinear Schr\\"odinger equation with a two-dimensional complex potential. This symmetry-breaking bifurcation is forbidden in generic complex potentials. However, for a special class of partially parity-time-symmetric potentials, such symmetry breaking is allowed. At the bifurcation point, two branches of asymmetric solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability of these solitons near the bifurcation point are also studied, and two novel stability properties for the bifurcated asymmetric solitons are revealed. One is that at the bifurcation point, zero and simple imaginary linear-stability eigenvalues of asymmetric solitons can move directly into the complex plane and create oscillatory instability. The other is that the two bifurcated asymmetric solitons, even though having identical powers and being related to each other by spatial mirror reflection, can possess different types of unstable eigenval...

  9. RNF4 is required for DNA double-strand break repair in vivo

    DEFF Research Database (Denmark)

    Vyas, R; Kumar, R; Clermont, F

    2013-01-01

    for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling......Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial......, and that Rnf4-deficient cells and mice exhibit increased sensitivity to genotoxic stress. Mechanistically, we show that Rnf4 targets SUMOylated MDC1 and SUMOylated BRCA1, and is required for the loading of Rad51, an enzyme required for HR repair, onto sites of DNA damage. Similarly to inactivating mutations...

  10. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  11. Preferential repair of DNA double-strand break at the active gene in vivo.

    Science.gov (United States)

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K; Bhaumik, Sukesh R

    2012-10-19

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.

  12. Mouse RAD54 Affects DNA Double-Strand Break Repair and Sister Chromatid Exchange

    Science.gov (United States)

    Dronkert, Mies L. G.; Beverloo, H. Berna; Johnson, Roger D.; Hoeijmakers, Jan H. J.; Jasin, Maria; Kanaar, Roland

    2000-01-01

    Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA. PMID:10757799

  13. Finite element analysis to model complex mitral valve repair.

    Science.gov (United States)

    Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent

    2016-01-01

    Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.

  14. MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice

    Directory of Open Access Journals (Sweden)

    Arun Gupta

    2014-07-01

    Full Text Available Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ or homologous recombination (HR. Here, we report that double-strand breaks (DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase phosphorylation (p-T392-MOF and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  15. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  16. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  17. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) o

  18. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    NARCIS (Netherlands)

    A. Campalans (Anna); R. Amouroux (Rachel); H. Menoni (Hervé); W. Vermeulen (Wim); J.P. Radicella (Pablo)

    2013-01-01

    textabstractSingle-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1,

  19. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.

  20. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes.

    Science.gov (United States)

    Wright, Sarah M; Woo, Yong H; Alley, Travis L; Shirley, Bobbi-Jo; Akeson, Ellen C; Snow, Kathy J; Maas, Sarah A; Elwell, Rachel L; Foreman, Oded; Mills, Kevin D

    2009-05-15

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.

  1. Positive regulation of DNA double strand break repair activity during differentiation of long life span cells: the example of adipogenesis.

    Directory of Open Access Journals (Sweden)

    Aline Meulle

    Full Text Available Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs, and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ that relies on the DNA dependent protein kinase (DNA-PK activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate

  2. Analysis of DNA Double-strand Break (DSB) Repair in Mammalian Cells

    Science.gov (United States)

    Seluanov, Andrei; Mao, Zhiyong; Gorbunova, Vera

    2010-01-01

    DNA double-strand breaks are the most dangerous DNA lesions that may lead to massive loss of genetic information and cell death. Cells repair DSBs using two major pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Perturbations of NHEJ and HR are often associated with premature aging and tumorigenesis, hence it is important to have a quantitative way of measuring each DSB repair pathway. Our laboratory has developed fluorescent reporter constructs that allow sensitive and quantitative measurement of NHEJ and HR. The constructs are based on an engineered GFP gene containing recognition sites for a rare-cutting I-SceI endonuclease for induction of DSBs. The starting constructs are GFP negative as the GFP gene is inactivated by an additional exon, or by mutations. Successful repair of the I-SceI-induced breaks by NHEJ or HR restores the functional GFP gene. The number of GFP positive cells counted by flow cytometry provides quantitative measure of NHEJ or HR efficiency. PMID:20864925

  3. Analysis of DNA double-strand break (DSB) repair in mammalian cells.

    Science.gov (United States)

    Seluanov, Andrei; Mao, Zhiyong; Gorbunova, Vera

    2010-09-08

    DNA double-strand breaks are the most dangerous DNA lesions that may lead to massive loss of genetic information and cell death. Cells repair DSBs using two major pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Perturbations of NHEJ and HR are often associated with premature aging and tumorigenesis, hence it is important to have a quantitative way of measuring each DSB repair pathway. Our laboratory has developed fluorescent reporter constructs that allow sensitive and quantitative measurement of NHEJ and HR. The constructs are based on an engineered GFP gene containing recognition sites for a rare-cutting I-SceI endonuclease for induction of DSBs. The starting constructs are GFP negative as the GFP gene is inactivated by an additional exon, or by mutations. Successful repair of the I-SceI-induced breaks by NHEJ or HR restores the functional GFP gene. The number of GFP positive cells counted by flow cytometry provides quantitative measure of NHEJ or HR efficiency.

  4. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks

    OpenAIRE

    Yang, Yun-Gui; Saidi, Amal; Frappart, Pierre-Olivier; Min, WooKee; Barrucand, Christelle; Dumon-Jones, Valérie; Michelon, Jocelyne; Herceg, Zdenko; Wang, Zhao-Qi

    2006-01-01

    NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting...

  5. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    Science.gov (United States)

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  6. CtIP-BRCA1 modulates the choice of DNA double-strand break repair pathway throughout the cell cycle

    OpenAIRE

    Yun, Maximina H.; Hiom, Kevin

    2009-01-01

    The repair of DNA double-strand breaks (DSB) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSB occurs through non-homologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ)1. These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional2, there is an increase in repair of DSB by homologous recomb...

  7. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.

    Science.gov (United States)

    Saito, Yuichiro; Zhou, Hui; Kobayashi, Junya

    2016-01-01

    The importance of chromatin modification, including histone modification and chromatin remodeling, for DNA double-strand break (DSB) repair, as well as transcription and replication, has been elucidated. Phosphorylation of H2AX to γ-H2AX is one of the first responses following DSB detection, and this histone modification is important for the DSB damage response by triggering several events, including the accumulation of DNA damage response-related proteins and subsequent homologous recombination (HR) repair. The roles of other histone modifications such as acetylation, methylation and ubiquitination have also been recently clarified, particularly in the context of HR repair. NBS1 is a multifunctional protein that is involved in various DNA damage responses. Its recently identified binding partner RNF20 is an E3 ubiquitin ligase that facilitates the monoubiquitination of histone H2B, a process that is crucial for recruitment of the chromatin remodeler SNF2h to DSB damage sites. Evidence suggests that SNF2h functions in HR repair, probably through regulation of end-resection. Moreover, several recent reports have indicated that SNF2h can function in HR repair pathways as a histone remodeler and that other known histone remodelers can also participate in DSB damage responses. On the other hand, information about the roles of such chromatin modifications and NBS1 in non-homologous end joining (NHEJ) repair of DSBs and stalled fork-related damage responses is very limited; therefore, these aspects and processes need to be further studied to advance our understanding of the mechanisms and molecular players involved.

  8. Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability.

    Directory of Open Access Journals (Sweden)

    Ana B Herrero

    Full Text Available Multiple myeloma (MM is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ, and Rad51, involved in homologous recombination (HR. Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited.

  9. The involvement of human RECQL4 in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Singh, Dharmendra Kumar; Karmakar, Parimal; Aamann, Maria Diget

    2010-01-01

    Rothmund-Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas....... The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double-strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately...... sensitive to gamma-irradiation and accumulate more gammaH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB's in the RECQL4-deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser...

  10. Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break.

    Directory of Open Access Journals (Sweden)

    Elise Darmon

    Full Text Available DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division.

  11. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer...... in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI...

  12. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin

    Science.gov (United States)

    El-Khamisy, Sherif F.; Katyal, Sachin; Patel, Poorvi; Ju, Limei; McKinnon, Peter J.; Caldecott, Keith W.

    2009-01-01

    Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1−/−/Aptx−/− double knockout quiescent mouse astrocytes compared with Tdp1−/− or Aptx−/− single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1−/− and Tdp1−/−/Aptx−/− double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1−/−, Aptx−/− or Tdp1−/−/Aptx−/− astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1. PMID:19303373

  13. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    Energy Technology Data Exchange (ETDEWEB)

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The

  14. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xue Lian, E-mail: xuelian@suda.edu.cn [School of Radiation Medicine and Public Health, Medical College of Soochow University, No. 199, Ren' ai Road, Suzhou 215123 (China); Yu Dong, E-mail: ydong@ncc.go.jp [Tumor Endocrinology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Furusawa, Yoshiya; Okayasu, Ryuichi [Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Tong Jian; Cao Jianping; Fan Saijun [School of Radiation Medicine and Public Health, Medical College of Soochow University, No. 199, Ren' ai Road, Suzhou 215123 (China)

    2009-11-02

    High linear energy transfer (LET) radiation shows different biological effects from low-LET radiation. The complex nature of high LET radiation-induced damage, especially the clustered DNA damage, brings about slow repair of DNA double strand breaks (DSBs), which finally lead to higher lethality and chromosome aberration. Ionizing radiation (IR) induced DNA DSBs are repaired by both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR) pathways in mammalian cells. The novel function of ataxia telangiectasia-mutated (ATM) protein is its involvement in the DSB repair of slow kinetics for 'dirty' breaks rejoining by NHEJ, this suggests that ATM may play a more important role in high LET radiation-induced DNA damage. We show here that KU55933, an ATM inhibitor could distinctly lower the clonogenic survival in normal human skin fibroblast cells exposed to carbon ion radiation and dramatically impair the normal process for DSB repair. We also implicated the involvement of ATM in the two pathways of DNA DSB repair, with DNA-PKcs and Rad51 as the representative proteins. The phosphorylation of DNA-PKcs at Thr-2609 with both immunoblotting and immunofluorescent staining indicated an ATM-dependent change, while for Rad51, KU55933 pretreatment could postpone the formation of nuclear Rad51 foci. Interestingly, we also found that pretreatment with chloroquine, an ATM stimulator could protect cells from carbon ion radiation only at lower doses. For doses over 1 Gy, protection was no longer observed. There was a dose-dependent increase for ATM kinase activity, with saturation at about 1 Gy. Chloroquine pretreatment prior to 1 Gy of carbon ion radiation did not enhance the autophosphorylation of ATM at serine 1981. The function of ATM in G2/M checkpoint arrest facilitated DSB repair in high-LET irradiation. Our results provide a possible mechanism for the direct involvement of ATM in DSB repair by high-LET irradiation.

  15. TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination

    Science.gov (United States)

    Mao, Zhiyong; Seluanov, Andrei; Jiang, Ying; Gorbunova, Vera

    2007-01-01

    TRF2 (telomeric repeat binding factor 2) is an essential component of the telomeric cap, where it forms and stabilizes the T-loop junctions. TRF2 forms the T-loops by stimulating strand invasion of the 3′ overhang into duplex DNA. TRF2 also has been shown to localize to nontelomeric DNA double-strand breaks, but its functional role in DNA repair has not been examined. Here, we present evidence that TRF2 is involved in homologous recombination (HR) repair of nontelomeric double-strand breaks. Depletion of TRF2 strongly inhibited HR and delayed the formation of Rad51 foci after γ-irradiation, whereas overexpression of TRF2 stimulated HR. Depletion of TRF2 had no effect on nonhomologous end-joining, and overexpression of TRF2 inhibited nonhomologous end-joining. We propose, based on our results and on the ability of TRF2 to mediate strand invasion, that TRF2 plays an essential role in HR by facilitating the formation of early recombination intermediates. PMID:17670947

  16. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.

    Science.gov (United States)

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J

    2016-02-29

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  17. Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells

    Science.gov (United States)

    Suzuki, Tetsuya; Yasui, Manabu

    2016-01-01

    Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS. PMID:27601585

  18. ZIP4H (TEX11 deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

    Directory of Open Access Journals (Sweden)

    Carrie A Adelman

    2008-03-01

    Full Text Available We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs. This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11, a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB mice, Zip4h(-/Y mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

  19. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors.

    Science.gov (United States)

    Kalfalah, Faiza; Seggewiß, Sabine; Walter, Regina; Tigges, Julia; Moreno-Villanueva, María; Bürkle, Alexander; Ohse, Sebastian; Busch, Hauke; Boerries, Melanie; Hildebrandt, Barbara; Royer-Pokora, Brigitte; Boege, Fritz

    2015-02-01

    Dermal fibroblasts provide a paradigmatic model of cellular adaptation to long-term exogenous stress and ageing processes driven thereby. Here we addressed whether fibroblast ageing analysedex vivo entails genome instability. Dermal fibroblasts from human female donors aged 20-67 years were studied in primary culture at low population doubling. Under these conditions, the incidence of replicative senescence and rates of age-correlated telomere shortening were insignificant. Genome-wide gene expression analysis revealed age-related impairment of mitosis, telomere and chromosome maintenance and induction of genes associated with DNA repair and non-homologous end-joining, most notably XRCC4 and ligase 4. We observed an age-correlated drop in proliferative capacity and age-correlated increases in heterochromatin marks, structural chromosome abnormalities (deletions, translocations and chromatid breaks), DNA strand breaks and histone H2AX-phosphorylation. In a third of the cells from old and middle-aged donors repair of X-ray induced DNA strand breaks was impaired despite up-regulation of DNA repair genes. The distinct phenotype of genome instability, increased heterochromatinisation and (in 30% of the cases futile) up-regulation of DNA repair genes was stably maintained over several cell passages indicating that it represents a feature of geroconversion that is distinct from cellular senescence, as it does not encompass a block of proliferation.

  20. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  1. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    Science.gov (United States)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  2. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    OpenAIRE

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Charles A. Laughton; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2012-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chine...

  3. Robustness of Complex Networks under Attack and Repair

    Institute of Scientific and Technical Information of China (English)

    HU Bin; LI Fang; ZHOU Hou-Shun

    2009-01-01

    To study the robustness of complex networks under attack and repair,we introduce a repair model of complex networks.Based on the model,we introduce two new quantities,i.e.attack fraction f_a and the maximum degree of the nodes that have never been attacked K_a,to study analytically the critical attack fraction and the relati ve size of the giant component of complex networks under attack and repair,using the method of generating function.We show analytically and numerically that the repair strategy significantly enhances the robustness of the scale-free network and the effect of robustness improvement is better for the scale-free networks with a smaller degree exponent.We discuss the application of our theory in relation to the understanding of robustness of complex networks with reparability.

  4. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    Directory of Open Access Journals (Sweden)

    Benura Azeroglu

    2016-02-01

    Full Text Available Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300, arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  5. DNA double strand break repair enzymes function at multiple steps in retroviral infection

    Directory of Open Access Journals (Sweden)

    Agematsu Kazunaga

    2009-12-01

    Full Text Available Abstract Background DNA double strand break (DSB repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. Results A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method based on inverse- and Alu-PCR, we analyzed sequences around 3' HIV-1 integration sites in ATM-, Mre11- and NBS1- deficient cells. Increased abnormal junctions between the HIV-1 provirus and the host DNA were found in these mutant cell lines compared to the complemented cell lines and control MRC5SV cells. The abnormal junctions contained two types of insertions: 1 GT dinucleotides, which are normally removed by integrase during integration, and 2 inserted nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-deficient cells, part of a primer binding site sequence was also detected. The 5' host-virus junctions in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair enzymes play roles in the 3'-processing reaction and protection of the ends of viral DNA after reverse transcription. We also identified both 5' and 3' junctional sequences of the same provirus by inverse PCR and found that only the 3' junctions were abnormal with aberrant short repeats, indicating that the integration step was partially impaired in these cells. Furthermore, the conserved base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells. Conclusions These results suggest that DSB repair enzymes are

  6. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    Science.gov (United States)

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  7. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

    Science.gov (United States)

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  8. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cel......DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks...... of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (¿-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing...... Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including...

  9. Tying the loose ends together in DNA double strand break repair with 53BP1

    Directory of Open Access Journals (Sweden)

    Carpenter Phillip B

    2006-08-01

    Full Text Available Abstract To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs, through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR, during DNA replication, or through immunoglobulin heavy chain (IgH rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK kinases ATM (mutated in ataxia telangiectasia, ATR (ATM and Rad3-related kinase, and the DNA-dependent protein kinase (DNA-PK activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR that utilizes an undamaged sister chromatid template (or homologous chromosome and non- homologous end joining (NHEJ, an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos. The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1 in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.

  10. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.

  11. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

    Directory of Open Access Journals (Sweden)

    Bray Clifford M

    2009-06-01

    Full Text Available Abstract Background DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. Results Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs and also double strand breaks (DSBs, implicating AtLIG1 in repair of both these lesions. Conclusion Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.

  12. Defective DNA Ligation during Short-Patch Single-Strand Break Repair in Ataxia Oculomotor Apraxia 1 ▿

    Science.gov (United States)

    Reynolds, John J.; El-Khamisy, Sherif F.; Katyal, Sachin; Clements, Paula; McKinnon, Peter J.; Caldecott, Keith W.

    2009-01-01

    Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′ termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx−/− neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase. PMID:19103743

  13. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    Science.gov (United States)

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  14. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  15. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair.

    Science.gov (United States)

    Bauters, Marijke; Van Esch, Hilde; Friez, Michael J; Boespflug-Tanguy, Odile; Zenker, Martin; Vianna-Morgante, Angela M; Rosenberg, Carla; Ignatius, Jaakko; Raynaud, Martine; Hollanders, Karen; Govaerts, Karen; Vandenreijt, Kris; Niel, Florence; Blanc, Pierre; Stevenson, Roger E; Fryns, Jean-Pierre; Marynen, Peter; Schwartz, Charles E; Froyen, Guy

    2008-06-01

    Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

  16. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks.

    Science.gov (United States)

    Sallmyr, Annahita; Tomkinson, Alan E; Rassool, Feyruz V

    2008-08-15

    Expression of oncogenic BCR-ABL in chronic myeloid leukemia (CML) results in increased reactive oxygen species (ROS) that in turn cause increased DNA damage, including DNA double-strand breaks (DSBs). We have previously shown increased error-prone repair of DSBs by nonhomologous end-joining (NHEJ) in CML cells. Recent reports have identified alternative NHEJ pathways that are highly error prone, prompting us to examine the role of the alternative NHEJ pathways in BCR-ABL-positive CML. Importantly, we show that key proteins in the major NHEJ pathway, Artemis and DNA ligase IV, are down-regulated, whereas DNA ligase IIIalpha, and the protein deleted in Werner syndrome, WRN, are up-regulated. DNA ligase IIIalpha and WRN form a complex that is recruited to DSBs in CML cells. Furthermore, "knockdown" of either DNA ligase IIIalpha or WRN leads to increased accumulation of unrepaired DSBs, demonstrating that they contribute to the repair of DSBs. These results indicate that altered DSB repair in CML cells is caused by the increased activity of an alternative NHEJ repair pathway, involving DNA ligase IIIalpha and WRN. We suggest that, although the repair of ROS-induced DSBs by this pathway contributes to the survival of CML cells, the resultant genomic instability drives disease progression.

  17. Nonnative Speaker-Initiated Repair in A Sequential Complex Context

    DEFF Research Database (Denmark)

    Yufu, Mamiko

    Repair has been one of the main subjects of conversation analytical studies and the focus is often put on achieving mutual understanding. However, there are also some phenomena unique to a contact situation, which may be due to restricted linguistic knowledge of nonnative speakers, difference...... to such factors as how Germans see Japanese, the interference of Japanese conversational styles, etc. Through the analyses of nonnative speaker-initiated repair, the context-sensitive complexities are demonstrated in this paper....

  18. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection

    Science.gov (United States)

    Westmoreland, James W.; Resnick, Michael A.

    2016-01-01

    Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids. PMID:26503252

  19. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions

    Science.gov (United States)

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-01

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or 60Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  20. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, M.O.; Dysart, G. (Merck Institute for Therapeutic Research, West Point, PA (USA))

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  1. The complex choreography of transcription-coupled repair.

    Science.gov (United States)

    Spivak, Graciela; Ganesan, Ann K

    2014-07-01

    A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.

  2. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  3. DNA Double Strand Break Repair and its Association with Inherited Predispositions to Breast Cancer

    Directory of Open Access Journals (Sweden)

    Scott Rodney J

    2004-02-01

    Full Text Available Abstract Mutations in BRCA1 account for the majority of familial aggregations of early onset breast and ovarian cancer (~70% and about 1/5 of all early onset breast cancer families; in contrast, mutations in BRCA2 account for a smaller proportion of breast/ovarian cancer families and a similar proportion of early onset breast cancer families. BRCA2 has also been shown to be associated with a much more pleiotropic disease spectrum compared to BRCA1. Since the identification of both BRCA1 and BRCA2 investigations into the functions of these genes have revealed that both are associated with the maintenance of genomic integrity via their apparent roles in cellular response to DNA damage, especially their involvement in the process of double strand DNA break repair. This review will focus on the specific roles of both genes and how functional differences may account for the diverse clinical findings observed between families that harbour BRCA1 or BRCA2 mutations.

  4. Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish.

    Science.gov (United States)

    Liu, Jingang; Gong, Lu; Chang, Changqing; Liu, Cong; Peng, Jinrong; Chen, Jun

    2012-09-20

    The use of reporter systems to analyze DNA double-strand break (DSB) repairs, based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce I, is usually carried out with cell lines. In this study, we developed three visual-plus quantitative assay systems for homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA) DSB repair pathways at the organismal level in zebrafish embryos. To initiate DNA DSB repair, we used two I-Sce I recognition sites in opposite orientation rather than the usual single site. The NHEJ, HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions, and the repair of DNA lesion caused by I-Sce I could be tracked by EGFP expression in the embryos. Apart from monitoring the intensity of green fluorescence, the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction (qPCR). Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos. Furthermore, while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52, respectively, NHEJ could only be impaired by the knockdown of ligaseIV (lig4) when the NHEJ construct was cut by I-Sce I in vivo. More interestingly, blocking NHEJ with lig4-MO increased the frequency of HR, but decreased the frequency of SSA. Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal, and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.

  5. Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Jingang Liu; Lu Gong; Changqing Chang; Cong Liu; Jinrong Peng; Jun Chen

    2012-01-01

    The use of reporter systems to analyze DNA double-strand break (DSB) repairs,based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce Ⅰ,is usually carried out with cell lines.In this study,we developed three visual-plus quantitative assay systems for homologous recombination (HR),non-homologous end joining (NHEJ) and single-strand annealing (SSA) DSB repair pathways at the organismal level in zebrafish embryos.To initiate DNA DSB repair,we used two I-Sce Ⅰ recognition sites in opposite orientation rather than the usual single site.The NHEJ,HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions,and the repair of DNA lesion caused by I-Sce Ⅰ could be tracked by EGFP expression in the embryos.Apart from monitoring the intensity of green fluorescence,the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction (qPCR).Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos.Furthermore,while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52,respectively,NHEJ could only be impaired by the knockdown of ligaseⅣ (lig4) when the NHEJ construct was cut by I-Sce Ⅰ in vivo.More interestingly,blocking NHEJ with lig4-MO increased the frequency of HR,but decreased the frequency of SSA.Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal,and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.

  6. Laser-guided repair of complex bile duct strictures.

    NARCIS (Netherlands)

    Gulik, T. van; Beek, J.; Reuver, P. de; Aronson, D.C.; Delden, O. van; Busch, O.; Gouma, D.

    2009-01-01

    BACKGROUND: The repair of bile duct strictures (BDS) requires identification of healthy bile duct proximal to the stenosis. Identification may be difficult in complex bile duct injuries after cholecystectomy or partial liver resection. AIM: We describe a technique to identify the prestenotic bile du

  7. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  8. DNA double-strand break repair: a theoretical framework and its application.

    Science.gov (United States)

    Murray, Philip J; Cornelissen, Bart; Vallis, Katherine A; Chapman, S Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, (111)In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting (111)In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  9. A new powerful method for site-specific transgene stabilization based on chromosomal double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Artem Tkachuk

    Full Text Available Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms.

  10. A New Powerful Method for Site-Specific Transgene Stabilization Based on Chromosomal Double-Strand Break Repair

    Science.gov (United States)

    Kravchuk, Oksana; Savitsky, Mikhail

    2011-01-01

    Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms. PMID:22022613

  11. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese.

  12. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions.

    Science.gov (United States)

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-02-18

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.

  13. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Oorschot, Bregje van, E-mail: b.vanoorschot@amc.uva.nl [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Hovingh, Suzanne E. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moerland, Perry D. [Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Medema, Jan Paul; Stalpers, Lukas J.A. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Franken, Nicolaas A.P. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands)

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  14. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Hexi Shen

    2017-01-01

    Full Text Available Double-strand breaks (DSBs are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR and nonhomologous end-joining (NHEJ. NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ and the more error-prone KU-independent backup-NHEJ (b-NHEJ pathways, involving the poly (ADP-ribose polymerases (PARPs. However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3 and protoporphyrinogen oxidase (PPO genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80, b-NHEJ (parp1 parp2, or both (ku80 parp1 parp2. We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants.

  15. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    Science.gov (United States)

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.

  16. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakajima

    Full Text Available During the DNA damage response (DDR, ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5, a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.

  17. Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1- Ndt80 Negative Feedback Loop.

    Science.gov (United States)

    Prugar, Evelyn; Burnett, Cameron; Chen, Xiangyu; Hollingsworth, Nancy M

    2017-03-01

    During meiosis, homologous chromosomes are physically connected by crossovers and sister chromatid cohesion. Interhomolog crossovers are generated by the highly regulated repair of programmed double strand breaks (DSBs). The meiosis-specific kinase, Mek1, is critical for this regulation. Mek1 down-regulates the mitotic recombinase Rad51, indirectly promoting interhomolog strand invasion by the meiosis-specific recombinase, Dmc1. Mek1 also promotes the formation of crossovers that are distributed throughout the genome by interference and is the effector kinase for a meiosis-specific checkpoint that delays entry into Meiosis I until DSBs have been repaired. The target of this checkpoint is a meiosis-specific transcription factor, Ndt80, which is necessary to express the polo-like kinase, CDC5, and the cyclin, CLB1, thereby allowing completion of recombination and meiotic progression. This work shows that Mek1 and Ndt80 negatively feedback on each other such that when DSB levels are high, Ndt80 is inactive due to high levels of Mek1 activity. As DSBs are repaired, chromosomes synapse and Mek1 activity is reduced below a threshold that allows activation of Ndt80. Ndt80 transcription of CDC5 results in degradation of Red1, a meiosis-specific protein required for Mek1 activation, thereby abolishing Mek1 activity completely. Elimination of Mek1 kinase activity allows Rad51-mediated repair of any remaining DSBs. In this way, cells do not enter Meiosis I until recombination is complete and all DSBs are repaired.

  18. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2000-09-01

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70{sup -/-}, RAD54{sup -/-}, and KU70{sup -/-}/ RAD54{sup -/-} of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70{sup -/-} cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 {sup -/-} cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  19. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  20. Escherichia coli radD (yejH) gene: a novel function involved in radiation resistance and double-strand break repair

    OpenAIRE

    Chen, Stefanie H.; Byrne, Rose T.; Wood, Elizabeth A; Cox, Michael M.

    2015-01-01

    A transposon insertion screen implicated the yejH gene in the repair of ionizing radiation-induced damage. The yejH gene, which exhibits significant homology to the human transcription-coupled DNA repair gene XPB, is involved in the repair of double strand DNA breaks. Deletion of yejH significantly sensitized cells to agents that cause double strand breaks (ionizing radiation, UV radiation, ciprofloxacin). In addition, deletion of both yejH and radA hypersensitized the cells to ionizing radia...

  1. ERCC1-XPF endonuclease facilitates DNA double-strand break repair

    NARCIS (Netherlands)

    R.A. Ahmad (Riris); A.R. Robinson (Andria Rasile); A. Duensing (Anette); E. van Drunen (Ellen); H.B. Beverloo (Berna); D.B. Weisberg (David); P. Hasty (Paul); J.H.J. Hoeijmakers (Jan); L.J. Niedernhofer (Laura)

    2008-01-01

    textabstractERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyce

  2. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-strand break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-02-28

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-strand break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-strand break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosome 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. This article is protected by copyright. All rights reserved.

  3. Mouse BAZ1A (ACF1 is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    James A Dowdle

    2013-11-01

    Full Text Available ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.

  4. Subtelomeric I-SceI-Mediated Double-Strand Breaks Are Repaired by Homologous Recombination in Trypanosoma cruzi

    Science.gov (United States)

    Chiurillo, Miguel A.; Moraes Barros, Roberto R.; Souza, Renata T.; Marini, Marjorie M.; Antonio, Cristiane R.; Cortez, Danielle R.; Curto, María Á.; Lorenzi, Hernán A.; Schijman, Alejandro G.; Ramirez, José L.; da Silveira, José F.

    2016-01-01

    Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families. PMID:28066363

  5. Subtelomeric I-SceI-Mediated Double-Strand Breaks Are Repaired by Homologous Recombination in Trypanosoma cruzi.

    Science.gov (United States)

    Chiurillo, Miguel A; Moraes Barros, Roberto R; Souza, Renata T; Marini, Marjorie M; Antonio, Cristiane R; Cortez, Danielle R; Curto, María Á; Lorenzi, Hernán A; Schijman, Alejandro G; Ramirez, José L; da Silveira, José F

    2016-01-01

    Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families.

  6. Preventing damage limitation: targeting DNA-PKcs and DNA double strand break repair pathways for ovarian cancer therapy

    Directory of Open Access Journals (Sweden)

    Daniela A Dungl

    2015-10-01

    Full Text Available Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is are associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumour cell defects in homologous recombination - a repair pathway activated in response to DNA double strand breaks (DSB - are most commonly associated with platinum sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ, another DSB repair pathway. DNA-PKcs is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signalling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease.

  7. A technical report on repair of amalgam-dentin complex.

    Science.gov (United States)

    Ozcan, M; Salihoğlu-Yener, E

    2011-01-01

    This clinical report describes a repair protocol for cusp fracture of a failed amalgam-dentin complex. A maxillary right first premolar with an amalgam restoration presented a buccal cusp fracture. Chairside repair has been undertaken by conditioning the existing amalgam restoration with silica coating (30 μm CoJet®-Sand), phosphoric acid etching the beveled enamel surface, priming dentin, and application of a bonding agent on both enamel and dentin. Thereafter, the amalgam was silanized (ESPE®-Sil), and opaque resin was applied and polymerized to mask the amalgam. The fractured buccal cusp was modeled using resin composite (Clearfil Photo Posterior) and photo-polymerized. Finally, the amalgam was refinished and refurbished and the composite was finished and polished.

  8. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Directory of Open Access Journals (Sweden)

    Koji eYoshimoto

    2012-12-01

    Full Text Available Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma. Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT has been described as the main modulator to determine the sensitivity of glioblastoma to TMZ, a subset of glioblastoma does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR, and the base-excision repair (BER pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break (SSB repair and double-strand break (DSB repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  9. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.

    Science.gov (United States)

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K; Price, Brendan D

    2015-06-16

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4-Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.

  10. The complex Langevin analysis of spontaneous symmetry breaking induced by complex fermion determinant

    CERN Document Server

    Ito, Yuta

    2016-01-01

    In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the determination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from...

  11. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility.

    Science.gov (United States)

    Keimling, Marlen; Deniz, Miriam; Varga, Dominic; Stahl, Andreea; Schrezenmeier, Hubert; Kreienberg, Rolf; Hoffmann, Isabell; König, Jochem; Wiesmüller, Lisa

    2012-05-01

    Most presently known breast cancer susceptibility genes have been linked to DSB repair. To identify novel markers that may serve as indicators for breast cancer risk, we performed DSB repair analyses using a case-control design. Thus, we examined 35 women with defined familial history of breast and/or ovarian cancer (first case group), 175 patients with breast cancer (second case group), and 245 healthy women without previous cancer or family history of breast cancer (control group). We analyzed DSB repair in peripheral blood lymphocytes (PBLs) by a GFP-based test system using 3 pathway-specific substrates. We found increases of microhomology-mediated nonhomologous end joining (mmNHEJ) and nonconservative single-strand annealing (SSA) in women with familial risk vs. controls (P=0.0001-0.0022) and patients with breast cancer vs. controls (P=0.0004-0.0042). Young age (DSB repair activities in PBLs as method to estimate breast cancer susceptibility beyond limitations of genotyping and to predict responsiveness to therapeutics targeting DSB repair-dysfunctional tumors.

  12. C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression.

    Directory of Open Access Journals (Sweden)

    Michiko Hayashi

    2007-11-01

    Full Text Available Chromosome inheritance during sexual reproduction relies on deliberate induction of double-strand DNA breaks (DSBs and repair of a subset of these breaks as interhomolog crossovers (COs. Here we provide a direct demonstration, based on our analysis of rad-50 mutants, that the meiotic program in Caenorhabditis elegans involves both acquisition and loss of a specialized mode of double-strand break repair (DSBR. In premeiotic germ cells, RAD-50 is not required to load strand-exchange protein RAD-51 at sites of spontaneous or ionizing radiation (IR-induced DSBs. A specialized meiotic DSBR mode is engaged at the onset of meiotic prophase, coincident with assembly of meiotic chromosome axis structures. This meiotic DSBR mode is characterized both by dependence on RAD-50 for rapid accumulation of RAD-51 at DSB sites and by competence for converting DSBs into interhomolog COs. At the mid-pachytene to late pachytene transition, germ cells undergo an abrupt release from the meiotic DSBR mode, characterized by reversion to RAD-50-independent loading of RAD-51 and loss of competence to convert DSBs into interhomolog COs. This transition in DSBR mode is dependent on MAP kinase-triggered prophase progression and coincides temporally with a major remodeling of chromosome architecture. We propose that at least two developmentally programmed switches in DSBR mode, likely conferred by changes in chromosome architecture, operate in the C. elegans germ line to allow formation of meiotic crossovers without jeopardizing genomic integrity. Our data further suggest that meiotic cohesin component REC-8 may play a role in limiting the activity of SPO-11 in generating meiotic DSBs and that RAD-50 may function in counteracting this inhibition.

  13. Increased repair of {gamma}-induced DNA double-strand breaks at lower dose-rate in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, D.; Hindo, J.; Averbeck, D. [Centre Universitaire d' Orsay, Inst. Curie-Section de Recherche, Orsay CEDEX (France)]. E-mail: dietrich.averbeck@curie.u-psud.fr

    2004-02-01

    DNA double-strand breaks (DSBs) are highly cell damaging. We asked whether for a given dose a longer irradiation time would be advantageous for the repair of DSBs. Varying the {gamma}-irradiation dose and its delivery time (0.05 Gy/min low dose-rate (LDR) compared with 3.5 Gy/min high dose-rate), confluent Chinese hamster ovary cells (CHO-K1) and Ku80 mutant cells (xrs-6) deficient in nonhomologous end-joining (NHEJ) were irradiated in agarose plugs at room temperature using a cesium-137 {gamma}-ray source. We used pulsed-field gel electrophoresis (PFGE) to measure DSBs in terms of the fraction of activity released (FAR). At LDR, one third of DSBs were repaired in CHO-K1 but not in xrs-6 cells, indicating the involvement of NHEJ in the repair of {gamma}-induced DSBs at a prolonged irradiation incubation time. To improve DSB measurements, we introduced in our PFGE protocol an antioxidant at the cell lysis step, thus avoiding free-radical side reactions on DNA and spurious DSBs. Addition of the metal chelator deferoxamine (DFO) decreased more efficiently the basal DSB level than did reduced glutathione (GSH), showing that measuring DSBs in the absence of DFO reduces precision and underestimates the role of NHEJ in the dose-rate effect on DSB yield. (author)

  14. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.

    Science.gov (United States)

    Budhagatapalli, Nagaveni; Rutten, Twan; Gurushidze, Maia; Kumlehn, Jochen; Hensel, Goetz

    2015-07-06

    Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.

  15. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mognato, Maddalena, E-mail: maddalena.mognato@unipd.it [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Girardi, Cristina; Fabris, Sonia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Celotti, Lucia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Padova (Italy)

    2009-04-26

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with {gamma}-rays and incubated in static condition (1g) or in modeled microgravity (MMG). {gamma}-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of {gamma}-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of {gamma}-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  16. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes.

    Science.gov (United States)

    Wang, Yibin; Smith, Krissy; Waldman, Barbara Criscuolo; Waldman, Alan S

    2011-04-03

    Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.

  17. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  18. Structural Biology of DNA Repair: Spatial Organisation of the Multicomponent Complexes of Nonhomologous End Joining

    Directory of Open Access Journals (Sweden)

    Takashi Ochi

    2010-01-01

    Full Text Available Nonhomologous end joining (NHEJ plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods—X-ray crystallography, electron microscopy and small angle X-ray scattering—can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere.

  19. Arthroscopic foveal repair of the triangular fibrocartilage complex.

    Science.gov (United States)

    Atzei, Andrea; Luchetti, Riccardo; Braidotti, Federica

    2015-02-01

    Background Foveal disruption of the triangular fibrocartilage complex (TFCC) is associated with distal radioulnar joint (DRUJ) instability. TFCC fixation onto the fovea is the suitable treatment, which is not achieved by conventional arthroscopic techniques. We describe an all-inside arthroscopic technique that uses a suture anchor through distal DRUJ arthroscopy for foveal repair of the TFCC. Materials and Methods Forty-eight patients with TFCC foveal tear and DRUJ instability were selected according to the Atzei-European Wrist Arthroscopy Society (EWAS) algorithm of treatment. Retrospective evaluation included pain, DRUJ instability, range of motion (ROM), grip strength, Modified Mayo Wrist Score (MMWS), and the Disabilities of the Arm, Shoulder, and Hand (DASH) Score. Description of Technique DRUJ arthroscopy was performed to débride the TFCC and the foveal area. Under arthroscopic guidance, a suture anchor was inserted via the distal foveal portal to repair the TFCC onto the fovea. Sutures were tied on the radiocarpal surface of the TFCC. Postoperative immobilization of forearm rotation was maintained for 4 weeks. Heavy tasks were allowed after 3 months. Results After a mean follow-up of 33 months, pain improved significantly but remained moderate in four patients, severe in one. DRUJ instability resolved in 44 patients. Wrist ROM increased. Grip strength, MMWS, and DASH score improved significantly. Excellent and good MMWS equaled 83.3%. Forty-one patients (85.5%) resumed previous work and sport activities. As a postoperative complication, five patients experienced neuroapraxia of the dorsal sensory branch of the ulnar nerve (DSBUN) with full spontaneous recovery. Conclusions With appropriate indications and patient selection, arthroscopic foveal repair of the TFCC may restore DRUJ stability and provide satisfactory results without significant complications.

  20. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity.

    Science.gov (United States)

    Mirzoeva, Olga K; Kawaguchi, Tomohiro; Pieper, Russell O

    2006-11-01

    The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.

  1. 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair.

    Science.gov (United States)

    Lottersberger, Francisca; Karssemeijer, Roos Anna; Dimitrova, Nadya; de Lange, Titia

    2015-11-05

    Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.

  2. Reconstitution and structure of a bacterial Pnkp1RnlHen1 RNA repair complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pei; Selvadurai, Kiruthika; Huang , Raven H. (UIUC)

    2016-01-22

    Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. We report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins—Pnkp1, Rnl and Hen1—that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1–Rnl–Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim of each ring. Furthermore, the architecture and the locations of the active sites of the Pnkp1–Rnl–Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.

  3. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression.

  4. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    Science.gov (United States)

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Laughton, Charles A.; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2013-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant (V-C8(Rev1)). b) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested synthetic lethality (SL) in CH ovary cells expressing a dominant–negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. Synthetic lethality was also demonstrated in CH cells expressing a dominant–negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising synthetic lethality target in cancer. PMID:22377908

  5. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome.

    Directory of Open Access Journals (Sweden)

    Wanxu Huang

    Full Text Available Tandem repeats (TRs are abundant and widely distributed in eukaryotic genomes. TRs are thought to have various functions in gene transcription, DNA methylation, nucleosome position and chromatin organization. Variation of repeat units in the genome is observed in association with a number of diseases, such as Fragile X Syndrome, Huntington's disease and Friedreich's ataxia. However, the underlying mechanisms involved are poorly understood, largely owing to the technical limitations in modification of TRs at definite sites in the genome in vivo. Transcription activator-like effector nucleases (TALENs are widely used in recent years in gene targeting for their specific binding to target sequences when engineered in vitro. Here, we show that the repair of a double-strand break (DSB induced by TALENs adjacent to a TR can produce serial types of mutations in the TR region. Sequencing analysis revealed that there are three types of mutations induced by the DSB repair, including indels only within the TR region or within the flanking TALEN target region or simutaneously within both regions. Therefore, desired TR mutant types can be conveniently obtained by using engineered TALENs. These results demonstrate that TALENs can serve as a convenient tool for modifying TRs in the genome in studying the functions of TRs.

  6. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.L.; Sugawara, N.; Haber, J.E. [Brandeis Univ., Waltham, MA (United States)] [and others

    1996-03-01

    HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching. 43 refs., 8 figs., 3 tabs.

  7. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks

    DEFF Research Database (Denmark)

    Liberti, Sascha E; Andersen, Sofie Dabros; Wang, Jing

    2011-01-01

    Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S......-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein...... (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues...

  8. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells.

    Science.gov (United States)

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-29

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis.

  9. Exstrophy epispadias complex- Issues beyond the initial repair

    Directory of Open Access Journals (Sweden)

    Jai K Mahajan

    2012-01-01

    Full Text Available Despite advances in the management of exstrophy epispadias complex (EEC, the quality of life of these patients is far from good. The post-operative period is complicated by numerous and variable events - infection, dehiscence, upper tract dilatation with deterioration, fistulas, stone formation and incontinence to name a few of the major complications. Redo surgery for bladder closure, bladder neck reconstruction, epispadias repair and closure of fistulas are frequently required. The current focus is on limiting the frequency and morbidity of the reconstructive procedures. A successful initial closure and early satisfactory cosmetic and functional results are gratifying for the family and the health care team, but this is only the beginning of the lifelong care necessary for bladder exstrophy (BE patients. In this article, the long-term outcome of various treatment options and the continent procedures in BE has been reviewed, tracing the journey of these patients into adolescence and adulthood.

  10. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    1997-01-01

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and surviva

  11. Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1

    Energy Technology Data Exchange (ETDEWEB)

    Fishman-Lobell, J.; Habert, J.E. (Brandeis Univ., Waltham, MA (United States))

    1992-10-15

    Double-strand breaks (DSBs) in Saccharomyces cerevisiae can be repaired by gene conversions or by deletions resulting from single-strand annealing between direct repeats of homologous sequences. Although rad1 mutants are resistant to x-rays and can complete DSB-mediated mating-type switching, they could not complete recombination when the ends of the break contained approximately 60 base pairs of nonhomology. Recombination was restored when the ends of the break were made homologous to donor sequences. Additionally, the absence of RAD1 led to the frequent appearance of a previously unobserved type of recombination product. These data suggest RAD1 is required to remove nonhomologous DNA from the 3{prime} ends of recombining DNA, a process analogous to the excision of photodimers during repair of ultraviolet-damaged DNA.

  12. The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair.

    Science.gov (United States)

    Ball, Lindsay G; Hanna, Michelle D; Lambrecht, Amanda D; Mitchell, Bryan A; Ziola, Barry; Cobb, Jennifer A; Xiao, Wei

    2014-01-01

    Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.

  13. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Tamara Goldfarb

    Full Text Available Recombination between homologous chromosomes of different parental origin (homologs is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs] show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in

  14. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae.

    Science.gov (United States)

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A

    2015-11-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.

  15. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends.

    Directory of Open Access Journals (Sweden)

    Jim Westmoreland

    2009-09-01

    Full Text Available Resection of DNA double-strand break (DSB ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random "dirty-ended" DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE. We utilized this "PFGE-shift" to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after gamma-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1-2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent.

  16. [Double-strand DNA breaks induction and repair in human blood lymphocytes irradiated with adapting dose].

    Science.gov (United States)

    Osipov, A N; Lizunova, E Iu; Vorob'eva, N Iu; Pelevina, I I

    2009-01-01

    Using a DNA-comet assay was shown that irradiation of human blood lymphocytes at G1 cell cycle with a low conditioning dose (5 cGy) induces an adaptive response (AR) manifested in reduction of the double-strand DNA (DSB) amount induced by challenging dose at 10 Gy. 24 h after conditioning irradiation (48 h after PHA addition) in cells irradiated at both conditioning and challenging doses a relative DBS amount was approximately 24% less in comparison to versus a control irradiated at challenging dose only. 48 h after adapting irradiation this index increased to approximately 35%, while 72 h after was decreased to approximately 29%. AR observed by us during 72 h after its induction did not accompanied by statistically significant changes in DBS repair enhancing. It is possible to assume that basic role in AR forming in lymphocytes under experimental conditions used by us playing the processes preventing radiation-induced DBS formation (antioxidant defense system activation, chromatin conformation changes ets).

  17. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    Science.gov (United States)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  18. Breaking news dissemination in the media via propagation behavior based on complex network theory

    Science.gov (United States)

    Liu, Nairong; An, Haizhong; Gao, Xiangyun; Li, Huajiao; Hao, Xiaoqing

    2016-07-01

    The diffusion of breaking news largely relies on propagation behaviors in the media. The tremendous and intricate propagation relationships in the media form a complex network. An improved understanding of breaking news diffusion characteristics can be obtained through the complex network research. Drawing on the news data of Bohai Gulf oil spill event from June 2011 to May 2014, we constructed a weighted and directed complex network in which media are set as nodes, the propagation relationships as edges and the propagation times as the weight of the edges. The primary results show (1) the propagation network presents small world feature, which means relations among media are close and breaking news originating from any node can spread rapidly; (2) traditional media and official websites are the typical sources for news propagation, while business portals are news collectors and spreaders; (3) the propagation network is assortative and the group of core media facilities the spread of breaking news faster; (4) for online media, news originality factor become less important to propagation behaviors. This study offers a new insight to explore information dissemination from the perspective of statistical physics and is beneficial for utilizing the public opinion in a positive way.

  19. The mismatch repair system modulates curcumin sensitivity through induction of DNA strand breaks and activation of G2-M checkpoint.

    Science.gov (United States)

    Jiang, Zhihua; Jin, ShunQian; Yalowich, Jack C; Brown, Kevin D; Rajasekaran, Baskaran

    2010-03-01

    The highly conserved mismatch (MMR) repair system corrects postreplicative errors and modulates cellular responses to genotoxic agents. Here, we show that the MMR system strongly influences cellular sensitivity to curcumin. Compared with MMR-proficient cells, isogenically matched MMR-deficient cells displayed enhanced sensitivity to curcumin. Similarly, cells suppressed for MLH1 or MSH2 expression by RNA interference displayed increased curcumin sensitivity. Curcumin treatment generated comparable levels of reactive oxygen species and the mutagenic adduct 8-oxo-guanine in MMR-proficient and MMR-deficient cells; however, accumulation of gammaH2AX foci, a marker for DNA double-strand breaks (DSB), occurred only in MMR-positive cells in response to curcumin treatment. Additionally, MMR-positive cells showed activation of Chk1 and induction of G(2)-M cell cycle checkpoint following curcumin treatment and inhibition of Chk1 by UCN-01 abrogated Chk1 activation and heightened apoptosis in MMR-proficient cells. These results indicate that curcumin triggers the accumulation of DNA DSB and induction of a checkpoint response through a MMR-dependent mechanism. Conversely, in MMR-compromised cells, curcumin-induced DSB is significantly blunted, and as a result, cells fail to undergo cell cycle arrest, enter mitosis, and die through mitotic catastrophe. The results have potential therapeutic value, especially in the treatment of tumors with compromised MMR function.

  20. Correlativity study between expression of DNA double-strand break repair protein and radiosensitivity of tumor cells

    Institute of Scientific and Technical Information of China (English)

    Liang ZHUANG; Shiying YU; Xiaoyuan HUANG; Yang CAO; Huihua XIONG

    2009-01-01

    DNA double-strand break (DSB) is generally regarded as the most lethal of all DNA lesions after radiation. KuS0, DNA-PK catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) proteins are major DSB repair proteins. In this study, survival fraction at 2Gy (SF2) values of eight human tumor cell lines (including four human cervical carcinoma cell lines HeLa, SiHa, C33A, Caski, three human breast carcinoma cell lines MCF-7, MDA-MB-231, MDA-MB-453, and one human lung carcinoma cell line A549) were acquired by clone formation assay, and western blot was applied to detect the expressions of Ku80, DNA-PKcs and ATM protein. The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis. We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference. The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2 (r=0.723, P =0.043), but Ku80 and ATM expression had no correlation with SF2 (P>0.05). These findings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.

  1. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Yoshitaka Seki

    2015-09-01

    Full Text Available Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase, ROS1 (c-ros oncogene 1, or RET (rearranged during transfection occur in 1%–5% of lung adenocarcinomas (LADCs and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them.

  2. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers.

    Science.gov (United States)

    Cifuentes, Marta; Rivard, Maud; Pereira, Lucie; Chelysheva, Liudmila; Mercier, Raphael

    2013-01-01

    Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.

  3. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers.

    Directory of Open Access Journals (Sweden)

    Marta Cifuentes

    Full Text Available Two hallmark features of meiosis are i the formation of crossovers (COs between homologs and ii the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.

  4. Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Donghong Ju

    Full Text Available BACKGROUND: The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. The integrity of the Rpn4-proteasome feedback loop is critical for cell viability under stressed conditions. We have demonstrated that inhibition of Rpn4 degradation sensitizes cells to DNA damage, particularly in response to high doses of DNA damaging agents. The underlying mechanism, however, remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using yeast genetics and biochemical approach we show that inhibition of Rpn4 degradation displays a synthetic growth defect with deletion of the MEC1 checkpoint gene and sensitizes several checkpoint mutants to DNA damage. In addition, inhibition of Rpn4 degradation leads to a defect in repair of double-strand breaks (DSBs by nonhomologous end-joining (NHEJ. The expression levels of several key NHEJ genes are downregulated and the recruitment of Yku70 to a DSB is reduced by inhibition of Rpn4 degradation. We find that Rpn4 and the proteasome are recruited to a DSB, suggesting their direct participation in NHEJ. Inhibition of Rpn4 degradation may result in a concomitant delay of release of Rpn4 and the proteasome from a DSB. CONCLUSION/SIGNIFICANCE: This study provides the first evidence for the role of proteasomal degradation of Rpn4 in NHEJ.

  5. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    Science.gov (United States)

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  6. Auto-pickfi rst breaks with complex raypaths for undulate surface conditions

    Institute of Scientific and Technical Information of China (English)

    An Sheng-Pei; Hu Tian-Yue; Cui Yong-Fu; Duan Wen-Sheng; Peng Geng-Xin

    2015-01-01

    First-break picking is the key step in seismic data processing for surveying undulate surfaces, and directly infl uences the precision of near-surface modeling and effects of static corrections. The currentfi rst-break auto-picking methods may fail when the signal-to-noise ratio (SNR) is low for seismic data in the undulate area, and require labor and time intensive manual picking. This study develops an improved super-virtual interferometry (SVI) method that combines multichannel and multidomain quality control (MMQC) techniques to achieve auto-pickedfi rst breaks. The improved SVI method extends the SVI application to enhance the SNR for near-surface scattered waves for thefi rst time, which allows for the SVI method to adapt tofi rst breaks with complex raypaths by linear combination of refractions and near-surface scattered waves. Methods of inverse and multidomain interferometry are developed to effectively enhance the virtual records extracted by the SVI method. The deconvolution filter for waveforms is used to increase resolution and reduce false picks, while the MMQC technique is designed to auto-correct false picks and increase the stability of auto-pickingfi rst breaks. The robust technique developed in this study enables stable processing of large 3D seismic datasets. Higher quality results are obtained using the approach presented in this paper to actualfi eld data from the mountain areas in western China, when compared to some commonly used commercial software.

  7. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Farjana Fattah

    2010-02-01

    Full Text Available The repair of DNA double-strand breaks (DSBs is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR and non-homologous end joining (NHEJ. In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ pathway and an "alternative" NHEJ (A-NHEJ pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs, XLF, and LIGIV, and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.

  8. Dominant negative mutant of Plasmodium Rad51 causes reduced parasite burden in host by abrogating DNA double-strand break repair.

    Science.gov (United States)

    Roy, Nabamita; Bhattacharyya, Sunanda; Chakrabarty, Swati; Laskar, Shyamasree; Babu, Somepalli Mastan; Bhattacharyya, Mrinal Kanti

    2014-10-01

    Malaria parasites survive through repairing a plethora of DNA double-stranded breaks (DSBs) experienced during their asexual growth. In Plasmodium Rad51 mediated homologous recombination (HR) mechanism and homology-independent alternative end-joining mechanism have been identified. Here we address whether loss of HR activity can be compensated by other DSB repair mechanisms. Creating a transgenic Plasmodium line defective in HR function, we demonstrate that HR is the most important DSB repair pathway in malarial parasite. Using mouse malaria model we have characterized the dominant negative effect of PfRad51(K143R) mutant on Plasmodium DSB repair and host-parasite interaction. Our work illustrates that Plasmodium berghei harbouring the mutant protein (PfRad51(K143R)) failed to repair DSBs as evidenced by hypersensitivity to DNA-damaging agent. Mice infected with mutant parasites lived significantly longer with markedly reduced parasite burden. To better understand the effect of mutant PfRad51(K143R) on HR, we used yeast as a surrogate model and established that the presence of PfRad51(K143R) completely inhibited DNA repair, gene conversion and gene targeting. Biochemical experiment confirmed that very low level of mutant protein was sufficient for complete disruption of wild-type PfRad51 activity. Hence our work provides evidence that HR pathway of Plasmodium could be efficiently targeted to curb malaria.

  9. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).

    Science.gov (United States)

    Paget, Sonia; Dubuissez, Marion; Dehennaut, Vanessa; Nassour, Joe; Harmon, Brennan T; Spruyt, Nathalie; Loison, Ingrid; Abbadie, Corinne; Rood, Brian R; Leprince, Dominique

    2017-01-10

    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.

  10. The AtRAD21.1 and AtRAD21.3 Arabidopsis cohesins play a synergistic role in somatic DNA double strand break damage repair

    OpenAIRE

    2014-01-01

    Background The RAD21 cohesin plays, besides its well-recognised role in chromatid cohesion, a role in DNA double strand break (dsb) repair. In Arabidopsis there are three RAD21 paralog genes (AtRAD21.1, AtRAD21.2 and AtRAD21.3), yet only AtRAD21.1 has been shown to be required for DNA dsb damage repair. Further investigation of the role of cohesins in DNA dsb repair was carried out and is here reported. Results We show for the first time that not only AtRAD21.1 but also AtRAD21.3 play a role ...

  11. Complex scaling method for three- and four-body scattering above the break-up thresholds

    CERN Document Server

    Lazauskas, Rimantas

    2012-01-01

    A formalism based on the complex-scaling method is presented to solve the few particle scattering problem in configuration space using bound state techniques with trivial boundary conditions. Several applications to A=3,4 systems are presented to demonstrate the efficiency of the method in computing elastic as well as break-up reactions with Hamiltonians including both short and long-range interaction.

  12. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Directory of Open Access Journals (Sweden)

    Sheng Hu

    Full Text Available DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  13. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  14. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model.

    Science.gov (United States)

    Delacôte, Fabien; Lopez, Bernard S

    2008-01-01

    A DNA double-strand break (DSB) is a highly harmful lesion that can lead to genome rearrangements. Two main pathways compete for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). Depending on the cell cycle phase, the choice of one DSB repair pathway over the other will secure genome stability maintenance or in contrast will increase the risk of genetic instability. HR with the sister chromatid is an efficient way to maintain genome stability, for damage occurring at a post-replication stage. However, in G(1) checkpoint-defective cells, DSBs produced in the G(1) phase and not repaired by NHEJ, can progress through S phase and be processed by HR in late S/G(2) phase. We propose the "trans-S DSB repair" model to account for these data. In this situation HR cannot use the sister chromatid (which is also broken at the same locus) and is thus forced to use ectopic homologous sequences dispersed through the genome, increasing the risk of genetic instability. This shows that the two DSB repair pathways can compete through the cell cycle and underlines the importance of the association between the cell cycle checkpoint and the appropriate DNA repair pathway for genome stability maintenance.

  15. Pregnancy after fontan repair of complex congenital heart disease.

    Science.gov (United States)

    Hoare, J V; Radford, D

    2001-11-01

    We describe four successful pregnancies in three women who had previously had a Fontan repair for congenital heart disease. Each pregnancy resulted in a live birth and there was no maternal mortality The infants were premature, being delivered at 26, 30 and 35 weeks, and weighing 1,020, 1,333 and 1,930 g respectively The fourth infant was born at 32 weeks and no birthweight is available. Maternal complications occurred and were those anticipated after a Fontan repair. Two mothers required treatment for supraventricular arrhythmias (atrial flutter and fibrillation). Ventricular failure was present in two mothers and required ongoing drug treatment. Raised systemic venous pressures caused peripheral oedema in two mothers and hepatomegaly and ascites in one mother. The physiology, potential complications, anaesthetic concerns and drug treatment in pregnancy after Fontan repair are discussed.

  16. Evolution of DNA Double-Strand Break Repair by Gene Conversion: Coevolution Between a Phage and a Restriction-Modification System

    Science.gov (United States)

    Yahara, Koji; Horie, Ryota; Kobayashi, Ichizo; Sasaki, Akira

    2007-01-01

    The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}/b_{0},\\end{equation*}\\end{document} the ratio of the burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}\\end{equation*}\\end{document} under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage

  17. Viscosimetric analysis of the occurrence and repair of DNA single-strand breaks in irradiated animal tissues.

    Science.gov (United States)

    Ryabchenko, N I; Ivannik, B P; Proskuryakov SYa

    1982-04-01

    The yields of immediate DNA single-strand breaks in normal tumour tissues of irradiated animals were measured by a viscosimetric method of determination of high-polymer single-strand DNA molecular weight in alkaline nuclear lysates. It has been shown that in irradiated thymus, bone marrow leukocytes, Ehrlich ascitic carcinoma and Zaidel hepatoma cells (first group by tissues) in vivo the yields of DNA single-strand breaks were characterized by 80 to 130 eV per break. In in vivo irradiated liver, lymph node, spleen, and sarcoma 180 cells (second group of tissues) the yields of DNA single-strand breaks have been characterized by 30 to 40 eV per break. DNA single-strand breaks of the first group of tissues have rejoined 1 hour after the irradiation in vivo; DNA single-strand breaks of the second group have not done so.

  18. Viscosimetric analysis of the occurrence and repair of DNA single-strand breaks in irradiated animal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N.I.; Ivannik, B.P.; Proskuryakov, S.Ya. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    1982-04-01

    The yields of immediate DNA single-strand breaks in normal tumour tissues of ..gamma..-irradiated animals were measured by a viscosimetric method of determination of high-polymer single-strand DNA molecular weight in alkaline nuclear lysates. It has been shown that in irradiated thymus, bone marrow leukocytes, Ehrlich ascitic carcinoma and Zaidel hepatoma cells (first group of tissues) in vivo the yields of DNA single-strand breaks were characterized by 80 to 130 eV per break. In in vivo irradiated liver, lymph node, spleen, and sarcoma 180 cells (second group of tissues) the yields of DNA single-strand breaks have been characterized by 30 to 40 eV per break. DNA single-strand breaks of the first group of tissues have rejoined 1 hour after the irradiation in vivo; DNA single-strand breaks of the second group have not done so.

  19. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  20. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation.

    Science.gov (United States)

    Zhao, Bi-xing; Chen, Hang-zi; Du, Xiao-dan; Luo, Jie; He, Jian-ping; Wang, Rong-hao; Wang, Yuan; Wu, Rong; Hou, Ru-rong; Hong, Ming; Wu, Qiao

    2011-08-01

    In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.

  1. Simulation of 125I induced DNA strand breaks in a CAP-DNA complex.

    Science.gov (United States)

    Li, W; Friedland, W; Jacob, P; Paretzke, H G; Panyutin, I; Neumann, R D

    2002-01-01

    The E. coli catabolite gene activator protein (CAP)-DNA complex with 125I located at the position of the H5 atom of the cytosine near the centre was incorporated into the PARTRAC track structure code. DNA strand breaks due to irradiation were calculated by track structure and radical attack simulations; strand breaks due to neutralisation of the highly charged 125Te ion were derived from a semi-empirical distribution. According to the calculations, the neutralisation effect dominates the strand breakage frequency at 2 bases away from the 125I decay site on both strands. The first breakage distribution counted from a 32P labelled end on the strand with 125I agreed well with experimental data, but on the opposite strand, the calculated distribution is more concentrated around the decay site and its yield is about 20% larger than the measured data.

  2. In vitro binding kinetics of DNA double strand break repair proteins Ku70/80 and DNA-PKcs quantified by fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy

    Science.gov (United States)

    Abdisalaam, Salim; Chen, David J.; Alexandrakis, George

    2012-02-01

    DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage that occurs in eukaryotic cells. There are two distinct pathways of repairing DSBs, homologous recombination (HR) and non-homologous end joining (NHEJ). In the NHEJ repairing pathway, DSB recognition and repair initiation is directed by the interaction of DNAbinding subunit Ku70/80 heterodimer with the DNA-PK protein catalytic subunit (DNA-PKcs). Mutations in these proteins result in repair stalling and eventual DNA misrepair that may lead to genomic instability. Studying the binding kinetics of these repair proteins is therefore important for understanding the conditions under which DSB repair stalls. Currently open questions are, what is the minimum DNA length that this complex needs to get a foothold onto a DSB and how tightly does DNA-PKcs bind onto the DNA-Ku70/80 complex. Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS) techniques have the potential to give information about the binding kinetics of DNA-protein and protein-protein interactions at the single-molecule level. In this work, FCS/FCCS measurements were performed to explore the minimum DNA base-pair (bp) length that Ku70/80 needed as a foothold to bind effectively onto the tips of different lengths of double-stranded DNA (dsDNA) fragments that mimic DSBs. 25 bp, 33 bp and 50 bp of dsDNA were used for these experiments and binding was studied as a function of salt concentration in solution. It was found that the 25 bp binding was weak even at physiological salt concentrations while the dissociation constant (Kd) remained constant for 33 and 50 bp dsDNA strand lengths. These studies indicated that the minimum binding length for the Ku70/8 is in the vicinity of 25 bp. The specificity of binding of Ku70/80 was proven by competitive binding FCCS experiments between Cy5-labeled DNA, GFP-Ku70/80 and titrations of unlabeled Ku70/80. Finally, using FCCS it was possible to estimate

  3. COMPLEX SIMULATION MODEL OF TRAIN BREAKING-UP PROCESS AT THE HUMPS

    Directory of Open Access Journals (Sweden)

    E. B. Demchenko

    2015-11-01

    Full Text Available Purpose. One of the priorities of station sorting complex functioning improvement is the breaking-up process energy consumptions reduction, namely: fuel consumption for train pushing and electric energy consumption for cut braking. In this regard, an effective solution of the problem of energy consumption reduction at breaking-up subsystem requires a comprehensive handling of train pushing and cut rolling down processes. At the same time, the analysis showed that the current task of pushing process improvement and cut rolling down effectiveness increase are solved separately. To solve this problem it is necessary to develop the complex simulation model of train breaking up process at humps. Methodology. Pushing process simulation was done based on adapted under the shunting conditions traction calculations. In addition, the features of shunting locomotives work at the humps were taken into account. In order to realize the current pushing mode the special algorithm of hump locomotive controlling, which along with the safety shunting operation requirements takes into account behavioral factors associated with engineer control actions was applied. This algorithm provides train smooth acceleration and further movement with speed, which is close to the set speed. Hump locomotive fuel consumptions were determined based on the amount of mechanical work performed by locomotive traction. Findings. The simulation model of train pushing process was developed and combined with existing cut rolling down model. Cut initial velocity is determined during simulation process. The obtained initial velocity is used for further cut rolling process modeling. In addition, the modeling resulted in sufficiently accurate determination of the fuel rates consumed for train breaking-up. Originality. The simulation model of train breaking-up process at the humps, which in contrast to the existing models allows reproducing complexly all the elements of this process in detail

  4. The Anterior Preperitoneal Approach for Repair of Complex Inguinal Hernias

    Directory of Open Access Journals (Sweden)

    Safa Onel

    2014-08-01

    Results: A total of 40 patients (Male:32, Female:8 underwent hernia repair with our technique during the study period. The mean age was (+/-SD 44+/-6.8 years. Four patients had giant direct hernia,12 patients had giant inguino-scrotal hernia, 14 patients had recurrent and 10 patients had femoral hernia. 4 patients were underwent emergent surgery due to incarceration. The mean operation time was (+/-SD 61+/-11 min. There was no recurrence with the mean follow-up time of 7+/-2.2 years. Cnclusion: Our surgical technique allows to repair all types of inguinal hernia with one piece of prolene mesh by covering all potential defects. [Cukurova Med J 2014; 39(4.000: 822-828

  5. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    Science.gov (United States)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  6. Complex Tricuspid Valve Repair in Patients With Pacer Defibrillator-Related Tricuspid Regurgitation.

    Science.gov (United States)

    Raman, Jaishankar; Sugeng, Lissa; Lai, David T M; Jeevanandam, Valluvan

    2016-04-01

    Tricuspid valve regurgitation in patients with heart failure or in those undergoing complex cardiac operations is associated with increased morbidity and mortality. We report our results with a technique of repairing the tricuspid valves while retaining the pacer defibrillator lead. Patients had tricuspid valve repairs that included repositioning of the pacer defibrillator lead, approximation of septal and inferior/posterior leaflets in a modified cleft repair, and implantation of a tricuspid annuloplasty ring. This procedure was performed in more than 42 patients with good success.

  7. The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radiotherapy; Le complexe de reparation de l'ADN DNA-PK, une cible pharmacologique en chimiotherapie et radiotherapie anticancereuse

    Energy Technology Data Exchange (ETDEWEB)

    Salles, B.; Calsou, P.; Frit, P.; Muller, C. [Institut de Pharmacologie et Biologie Structurale (IPBS), UMR CNRS 5089, 31 - Toulouse (France)

    2006-05-15

    A line of investigation in the search for sensitizing tumor cells to chemotherapy or radiotherapy relies on the selection of DNA repair inhibitors. In the area of DNA repair mechanisms, DNA-dependent protein kinase (DNA-PK) represents a key complex. Indeed DNA-PK is involved in the non-homologous end joining (NHEJ) process that corresponds to the major activity responsible for cell survival after ionizing radiation or chemotherapeutic treatment producing DNA double strand breaks. DNA-PK belongs to the PI3-K related kinase family and specific inhibitors have been recently selected and evaluated as radio- and chemo-sensitizers. These drugs, along with other ways to inhibit the DSBs repair process, are presented and discussed. (authors)

  8. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Mezard, C.; Nicolas, A. [Universite Paris-Sud, Orsay (France)

    1994-02-01

    Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions; (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product. 67 refs., 4 figs., 5 tabs.

  9. Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes.

    Science.gov (United States)

    Ono, Ryuichi; Ishii, Masayuki; Fujihara, Yoshitaka; Kitazawa, Moe; Usami, Takako; Kaneko-Ishino, Tomoko; Kanno, Jun; Ikawa, Masahito; Ishino, Fumitoshi

    2015-07-28

    The CRISPR/Cas system efficiently introduces double strand breaks (DSBs) at a genomic locus specified by a single guide RNA (sgRNA). The DSBs are subsequently repaired through non-homologous end joining (NHEJ) or homologous recombination (HR). Here, we demonstrate that DSBs introduced into mouse zygotes by the CRISPR/Cas system are repaired by the capture of DNA sequences deriving from retrotransposons, genomic DNA, mRNA and sgRNA. Among 93 mice analysed, 57 carried mutant alleles and 22 of them had long de novo insertion(s) at DSB-introduced sites; two were spliced mRNAs of Pcnt and Inadl without introns, indicating the involvement of reverse transcription (RT). Fifteen alleles included retrotransposons, mRNAs, and other sequences without evidence of RT. Two others were sgRNAs with one containing T7 promoter-derived sequence suggestive of a PCR product as its origin. In conclusion, RT-product-mediated DSB repair (RMDR) and non-RMDR repair were identified in the mouse zygote. We also confirmed that both RMDR and non-RMDR take place in CRISPR/Cas transfected NIH-3T3 cells. Finally, as two de novo MuERV-L insertions in C57BL/6 mice were shown to have characteristic features of RMDR in natural conditions, we hypothesize that RMDR contributes to the emergence of novel DNA sequences in the course of evolution.

  10. Effect of 2-deoxy-D-glucose on DNA double strand break repair, cell survival and energy metabolism in euoxic Ehrlich ascites tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Jha, B.; Pohlit, W. (L.N. Mithila Univ., Darbhanga (India). Botany Dept.)

    1992-10-01

    Effects of 2-deoxy-D-glucose (2-DG) on DNA double strand break (dsb) repair, cell survival and on the energy metabolism were investigated in exponentially growing Ehrlich ascites tumour (EAT) cells. Cells in suspension were exposed to 40 Gy of X-rays and allowed to repair (up to 4h) with or without 2-DG at 37[sup o]C. DNA dsb rejoining was measured by means of clamped homogeneous electric field (CHEF), a pulsed field gel electrophoresis technique. The fraction of activity released (FAR) during electrophoresis (DNA associated [sup 14]C-thymidine) was used as a parameter to determine the number of dsb present in the DNA. Biphasic kinetics for dsb repair were observed. The presence of 2-DG significantly inhibited the slow component of dsb repair. The presence of 2-DG also enhanced radiation-induced cell killing. ATP content of cells was measured by a bioluminescence method. ATP content in exponentially growing cells was about 4 pg per cell. The level of ATP was reduced by 50% in presence of 2-DG (C[sub 2-DG]/C[sub G] = 1.0). (author).

  11. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex.

    Science.gov (United States)

    Gruz-Gibelli, Emmanuelle; Chessel, Natacha; Allioux, Clélia; Marin, Pascale; Piotton, Françoise; Leuba, Geneviève; Herrmann, François R; Savioz, Armand

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  12. Role of ubiquitination in meiotic recombination repair

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associated with ubiquitination with regard to homologous recombination (HR)-dependent DSB repair.

  13. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    Science.gov (United States)

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  14. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice...... with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor....

  15. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  16. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anna Brzostek

    Full Text Available The intracellular pathogen Mycobacterium tuberculosis (Mtb is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs. These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR and non-homologous ends joining (NHEJ, in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA, NHEJ [Δ(ku,ligD], or both DSB repair systems [Δ(ku,ligD,recA]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.

  17. β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation.

    Directory of Open Access Journals (Sweden)

    Nicholas A Wallace

    2015-03-01

    Full Text Available Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs. Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2. The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure.

  18. H. pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Mara L. Hartung

    2015-10-01

    Full Text Available The human bacterial pathogen Helicobacter pylori exhibits genotoxic properties that promote gastric carcinogenesis. H. pylori introduces DNA double strand breaks (DSBs in epithelial cells that trigger host cell DNA repair efforts. Here, we show that H. pylori-induced DSBs are repaired via error-prone, potentially mutagenic non-homologous end-joining. A genome-wide screen for factors contributing to DSB induction revealed a critical role for the H. pylori type IV secretion system (T4SS. Inhibition of transcription, as well as NF-κB/RelA-specific RNAi, abrogates DSB formation. DSB induction further requires β1-integrin signaling. DSBs are introduced by the nucleotide excision repair endonucleases XPF and XPG, which, together with RelA, are recruited to chromatin in a highly coordinated, T4SS-dependent manner. Interestingly, XPF/XPG-mediated DNA DSBs promote NF-κB target gene transactivation and host cell survival. In summary, H. pylori induces XPF/XPG-mediated DNA damage through activation of the T4SS/β1-integrin signaling axis, which promotes NF-κB target gene expression and host cell survival.

  19. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.R. [Los Alamos National Lab., NM (United States)]|[Tottori Univ., Yonago (Japan); Kurimasa, Akihiro; Oshimura, Mitsuo [Tottori Univ., Yonago (Japan); Dynan, W.S. [Univ. of Colorado, Boulder, CO (United States); Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Davis, CA (United States); Chen, D.J. [Los Alamos National Lab., NM (United States)

    1995-04-11

    The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an {approx}350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway. 38 refs., 3 figs.

  20. Stress influences decisions to break a safety rule in a complex simulation task in females.

    Science.gov (United States)

    Starcke, Katrin; Brand, Matthias; Kluge, Annette

    2016-07-01

    The current study examines the effects of acutely induced laboratory stress on a complex decision-making task, the Waste Water Treatment Simulation. Participants are instructed to follow a certain decision rule according to safety guidelines. Violations of this rule are associated with potential high rewards (working faster and earning more money) but also with the risk of a catastrophe (an explosion). Stress was induced with the Trier Social Stress Test while control participants underwent a non-stress condition. In the simulation task, stressed females broke the safety rule more often than unstressed females: χ(2) (1, N=24)=10.36, p<0.001, V=0.66. In males, no difference between stressed and unstressed participants was observed. We conclude that stress increased the decisions to break the safety rule because stressed female participants focused on the potential high gains while they neglected the risk of potential negative consequences.

  1. Effects of Manipulating Task Complexity on Self-Repairs during L2 Oral Production

    Science.gov (United States)

    Gilabert, Roger

    2007-01-01

    This paper analyses the effects of manipulating the cognitive complexity of L2 oral tasks on language production. It specifically focuses on self-repairs, which are taken as a measure of accuracy since they denote both attention to form and an attempt at being accurate. By means of a repeated measures design, 42 lower-intermediate students were…

  2. Current hydrogel solutions for repairing and regeneration of complex tissues.

    Science.gov (United States)

    Wang, Y; Cai, Li-Quan; Nugraha, B; Gao, Y; Leo, H L

    2014-01-01

    Hydrogel system, as one of the most important biomaterials, is widely studied because of its tremendous potential in regenerative medicine conferred by its wide range of malleable biochemical and physical characteristics, which include its biocompatibility with the elemental biomolecules in vital tissues, its high water retention capability and adjustable soft-tissue-like physicochemical properties. These properties are modifiable to facilitate the targeted tissue protected from external damaging disturbance and having the encapsulated cells' physiology-functional phenotypes induced or maintained in situ. Recently, hydrogels are increasingly used in the R&D of regenerative medicine to build complex tissue. Most of the insightful work focuses on how to select and fabricate the hydrogel models with desired physicochemical properties, flexibility of auto response to various bio-stimuli, and capability of efficiently forming the complex tissue-mimicking construct at different scales. The present review introduced the major types of hydrogeis, the desirable physicochemical properties, the current fabrication methodologies and special organ-based cases of applications of hydrogels, which are used in complex tissue engineering. In addition, this review also discussed the major hurdles faced by the R&D of hydrogel systems for complex tissue medicine.

  3. Distinct mechanisms for opposite functions of homeoproteins Cdx2 and HoxB7 in double-strand break DNA repair in colon cancer cells.

    Science.gov (United States)

    Soret, Christine; Martin, Elisabeth; Duluc, Isabelle; Dantzer, Françoise; Vanier, Marie; Gross, Isabelle; Freund, Jean-Noël; Domon-Dell, Claire

    2016-05-01

    Homeobox genes, involved in embryonic development and tissues homeostasis in adults, are often deregulated in cancer, but their relevance in pathology is far from being fully elucidated. In colon cancers, we report that the homeoproteins HoxB7 and Cdx2 exhibit different heterogeneous patterns, Cdx2 being localized in moderately altered neoplasic glands in contrast to HoxB7 which predominates in poorly-differentiated areas; they are coexpressed in few cancer cells. In human colon cancer cells, both homeoproteins interact with the DNA repair factor KU70/80, but functional studies reveal opposite effects: HoxB7 stimulates DNA repair and cell survival upon etoposide treatment, whereas Cdx2 inhibits both processes. The stimulatory effect of HoxB7 on DNA repair requires the transactivation domain linked to the homeodomain involved in the interaction with KU70/80, whereas the transactivation domain of Cdx2 is dispensable for its inhibitory function, which instead needs the homeodomain to interact with KU70/80 and the C-terminal domain. Thus, HoxB7 and Cdx2 respectively use transcription-dependent and -independent mechanisms to stimulate and inhibit DNA repair. In addition, in cells co-expressing both homeoproteins, Cdx2 lessens DNA repair activity through a novel mechanism of inhibition of the transcriptional function of HoxB7, whereby Cdx2 forms a molecular complex with HoxB7 and prevents it to recognize its target in the chromatin. These results point out the complex interplay between the DSB DNA repair activity and the homeoproteins HoxB7 and Cdx2 in colon cancer cells, making the balance between these factors a determinant and a potential indicator of the efficacy of genotoxic drugs.

  4. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  5. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula.

    Science.gov (United States)

    Dupuy, Pierre; Gourion, Benjamin; Sauviac, Laurent; Bruand, Claude

    2016-11-23

    The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double strand breaks (DSB). In particular, the reactive oxygen (ROS) and nitrogen (RNS) species produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSB. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, a S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis, or that DSB are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.

  6. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.

  7. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling.

    Science.gov (United States)

    Chen, Su-Ren; Hao, Xiao-Xia; Zhang, Yan; Deng, Shou-Long; Wang, Zhi-Peng; Wang, Yu-Qian; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-04-01

    Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling.

  8. TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair.

    Science.gov (United States)

    Gazy, Inbal; Zeevi, David A; Renbaum, Paul; Zeligson, Sharon; Eini, Lital; Bashari, Dana; Smith, Yoav; Lahad, Amnon; Goldberg, Michal; Ginsberg, Doron; Levy-Lahad, Ephrat

    2015-01-01

    Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, pDSB repair in malignancy. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, pDSB repair in malignancy.

  9. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Ewelina A Wojcik

    Full Text Available Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs. However, the contribution of each of the DSB repair pathways, homologous recombination (HR, non-homologous end-joining (NHEJ and single-strand annealing (SSA, to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1 directly interfering with replication fidelity, 2 stimulating the three main DSB repair pathways, and 3 enticing L5 site-specific recombination.

  10. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes

    Science.gov (United States)

    Lacoste, Sandrine; Bhatia, Smita; Chen, Yanjun; Bhatia, Ravi; O’Connor, Timothy R.

    2017-01-01

    Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient’s stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much

  11. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes.

    Science.gov (United States)

    Lacoste, Sandrine; Bhatia, Smita; Chen, Yanjun; Bhatia, Ravi; O'Connor, Timothy R

    2017-01-01

    Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much higher

  12. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Rahman, Sadia; Lisby, Michael

    2007-01-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly...... identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized...... propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins....

  13. Dynamics of the HP1β-PCNA-containing complexes in DNA replication and repair.

    Science.gov (United States)

    Trembecka-Lucas, Dominika O; Szczurek, Aleksander T; Dobrucki, Jurek W

    2013-01-01

    Heterochromatin protein 1 (HP1), a small non-histone chromosomal protein, was recently shown to form a complex in vivo with Proliferating Cell Nuclear Antigen (PCNA), a key factor in DNA replication. The complex, which requires HP1β in a form of a dimer, is engaged in DNA repair and replication. We now provide further evidence based on FRET-FLIM live cell studies confirming the association and close proximity between HP1β and PCNA in the complex. We also demonstrate using FRAP, that although HP1β-PCNA complexes are highly mobile in nonreplicating nuclei, when engaged in DNA replication, they become bound and do not exchange with the mobile pool. These observations are in agreement with a notion that a subpopulation of HP1 molecules interact with PCNA in vivo during DNA replication. Similarly, HP1β which is associated with PCNA in regions of DNA repair, is bound and does not exchange with the mobile pool, suggesting that HP1β in association with PCNA may be a component of a DNA repair complex.

  14. Atmospheric-pressure plasma jet induces DNA double-strand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Yoonna; Kim, Kangil; Kang, Kyu-Tae; Lee, Jong-Soo; Yang, Sang Sik; Chung, Woo-Hyun

    2014-10-15

    Non-thermal plasma generated under atmospheric pressure produces a mixture of chemically reactive molecules and has been developed for a number of biomedical applications. Recently, plasma jet has been proposed as novel cancer therapies based on the observation that free radicals generated by plasma jet induce mitochondria-mediated apoptotic cell death. We show here that air plasma jet induces DNA double-strand breaks (DSBs) in yeast chromosomes leading to genomic instability and loss of viability, which are alleviated by Rad51, the yeast homolog of Escherichiacoli RecA recombinase, through DNA damage repair by a homologous recombination (HR) process. Hypersensitivity of rad51 mutant to air plasma was not restored by antioxidant treatment unlike sod1 mutant that was highly sensitive to reactive oxygen species (ROS) challenge, suggesting that plasma jet induces DSB-mediated cell death independent of ROS generation. These results may provide a new insight into the mechanism of air plasma jet-induced cell death.

  15. Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome

    Science.gov (United States)

    Feri, Adeline; Loll-Krippleber, Raphaël; Commere, Pierre-Henri; Maufrais, Corinne; Sertour, Natacha; Schwartz, Katja; Sherlock, Gavin; Bougnoux, Marie-Elisabeth

    2016-01-01

    ABSTRACT The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. PMID:27729506

  16. Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome.

    Science.gov (United States)

    Feri, Adeline; Loll-Krippleber, Raphaël; Commere, Pierre-Henri; Maufrais, Corinne; Sertour, Natacha; Schwartz, Katja; Sherlock, Gavin; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe; Legrand, Mélanie

    2016-10-11

    The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species.

  17. Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome

    Directory of Open Access Journals (Sweden)

    Adeline Feri

    2016-10-01

    Full Text Available The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4, including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species.

  18. Arthroscopic repair of peripheral avulsions of the triangular fibrocartilage complex of the wrist: a multicenter study.

    Science.gov (United States)

    Corso, S J; Savoie, F H; Geissler, W B; Whipple, T L; Jiminez, W; Jenkins, N

    1997-02-01

    A multicenter study to assess arthroscopic reconstruction of the peripheral attachment of the triangular fibrocartilage complex was undertaken. A total of 44 patients (45 wrists) from three institutions were reviewed. Twenty-seven of the 45 wrists had associated injuries, including distal radius fracture (4), partial or complete rupture of the scapholunate (7), lunotriquetral (9), ulnocarpal (2), or radiocarpal (2) ligaments. There were two fractured ulnar styloids and one scapholunate accelerated collapse (SLAC) wrist deformity. The peripheral tears were repaired using a zone-specific repair kit. The patients were immobilized in a munster cast, allowing elbow flexion and extension, but no pronation or supination for 4 weeks, followed by 2 to 4 weeks in a short arm cast or VersaWrist splint. All patients were reexamined independently 1 to 3 years postoperatively by a physician, therapist, and registered nurse. The results were graded according to the Mayo modified wrist score. Twenty-nine of the 45 wrists were rated excellent. 12 good, 1 fair, and 3 poor. Overall, 42 of the 45 patients (93%) rated as satisfactory and returned to sports or work activities. One patient had chronic pain, and two patients had ulnar nerve symptoms, although motion was normal in all, and their grip strength was at least 75% of the opposite hand. Arthroscopic repair of peripheral tears of the triangular fibrocartilage complex (TFCC) is a satisfactory method of repairing these injuries.

  19. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  20. Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes.

    Science.gov (United States)

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2016-01-01

    Here, we report the identification of the Brassica-specific gene MS5(d), which is responsible for male sterility in Brassica napus. The MS5(d) gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5(d) gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5(d), encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5(d) likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.

  1. Collision of Trapped Topoisomerase 2 with Transcription and Replication: Generation and Repair of DNA Double-Strand Breaks with 5′ Adducts

    Directory of Open Access Journals (Sweden)

    Hong Yan

    2016-07-01

    Full Text Available Topoisomerase 2 (Top2 is an essential enzyme responsible for manipulating DNA topology during replication, transcription, chromosome organization and chromosome segregation. It acts by nicking both strands of DNA and then passes another DNA molecule through the break. The 5′ end of each nick is covalently linked to the tyrosine in the active center of each of the two subunits of Top2 (Top2cc. In this configuration, the two sides of the nicked DNA are held together by the strong protein-protein interactions between the two subunits of Top2, allowing the nicks to be faithfully resealed in situ. Top2ccs are normally transient, but can be trapped by cancer drugs, such as etoposide, and subsequently processed into DSBs in cells. If not properly repaired, these DSBs would lead to genome instability and cell death. Here, I review the current understanding of the mechanisms by which DSBs are induced by etoposide, the unique features of such DSBs and how they are repaired. Implications for the improvement of cancer therapy will be discussed.

  2. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia;

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM...... represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role...... for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid...

  3. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair.

    Directory of Open Access Journals (Sweden)

    Corina Penterling

    Full Text Available Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2, which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2, on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.

  4. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  5. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

    Science.gov (United States)

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.

  6. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Aya Kurosawa

    Full Text Available Nonhomologous end-joining (NHEJ and homologous recombination (HR are two major pathways for repairing DNA double-strand breaks (DSBs; however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.

  7. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    Directory of Open Access Journals (Sweden)

    Anastazja Grabarz

    2013-10-01

    Full Text Available The choice of the appropriate double-strand break (DSB repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp generated by alternative end-joining (A-EJ. BLM represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role for BLM that influences the DSB repair pathway choice: (1 protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2 promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid unscheduled resection that might jeopardize genome integrity.

  8. Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations?

    Energy Technology Data Exchange (ETDEWEB)

    Aka, Peter [Laboratory for Cell Genetics, Department of Biology, Free University of Brussels, Pleinlaan 2, B-1050 Brussels (Belgium)]. E-mail: paka@vub.ac.be; Mateuca, Raluca [Laboratory for Cell Genetics, Department of Biology, Free University of Brussels, Pleinlaan 2, B-1050 Brussels (Belgium); Buchet, Jean-Pierre [Unit of Industrial Toxicology and Occupational Medicine, Catholic University of Louvain, Clos Chapelle, Aux-Champs, B-1200 Brussels (Belgium); Thierens, Hubert [Department of Biomedical Physics and Radiation Protection, University of Ghent, Proeftuinstraat 86, B-9000 Ghent (Belgium); Kirsch-Volders, Micheline [Laboratory for Cell Genetics, Department of Biology, Free University of Brussels, Pleinlaan 2, B-1050 Brussels (Belgium)

    2004-11-22

    Identification of higher risk individuals carrying genetic polymorphisms responsible for reduced DNA repair capacity has substantial preventive implications as these individuals could be targeted for cancer prevention. We have conducted a study to assess the predictivity of the OGG1, XRCC1 and XRCC3 genotypes and the in vitro single strand break repair phenotype for the induction of genotoxic effects. At the population level, a significant contribution of the OGG1 genotypes to the in vitro DNA strand break repair capacity was found. At an individual level, the OGG1 variants Ser/Cys and Cys/Cys genotypes showed a slower in vitro DNA repair than the Ser/Ser OGG1genotype. A multivariate analysis performed with genotypes, age, cumulative dose, exposure status and smoking as independent variables indicated that in the control population, repair capacity is influenced by age and OGG1 polymorphisms. In the exposed population, DNA damage is greater in older men and in smokers. Repair capacity is slower in individuals with Ser/Cys or Cys/Cys OGG1 genotypes compared to those with the Ser/Ser OGG1 genotype. Micronuclei (MN) frequencies increased with age and the cumulative dose of {gamma}-rays. Analysis of the total population revealed that genetic polymorphisms in XRCC1 resulted in higher residual DNA (RDNA) values and the Met/Met variant of XRCC3 resulted in an increased frequency of micronuclei. The analysis confirms that MN frequencies are reliable biomarkers for the assessment of genetic effects in workers exposed to ionising radiation (IR). A combined analysis of the three genotypes, OGG1, XRCC1 and XRCC3 polymorphisms is advised in order to assess individual susceptibility to ionising radiation. As an alternative or complement, the in vitro DNA strand break repair phenotype which integrates several repair pathways is recommended. Smokers with OGG1 polymorphisms who are exposed to ionising radiation represent a specific population requiring closer medical surveillance

  9. XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes.

    NARCIS (Netherlands)

    P.J. van der Spek (Peter); A.P.M. Eker (André); S. Rademakers (Suzanne); C.E. Visser (Cécile); K. Sugasawa (Kaoru); C. Masutani (Chikahide); F. Hanaoka (Fumio); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1996-01-01

    textabstractThe xeroderma pigmentosum syndrome complementation group C (XP-C) is due to a defect in the global genome repair subpathway of nucleotide excision repair (NER). The XPC protein is complexed with HHR23B, one of the two human homologs of the yeast NER protein, RAD23 (Masutani at al. (1994)

  10. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Sundheim, Ottar;

    2011-01-01

    XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both...

  11. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure; Etude des cassures de l'ADN et des mecanismes de reparation dans les sequences telomeriques interstitielles: Influence de la structure chromatinienne

    Energy Technology Data Exchange (ETDEWEB)

    Revaud, D.

    2009-06-15

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  12. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  13. Photoreactive DNA as a tool for studying topography of nucleotide excision repair complex

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Nucleotide excision repair (NER is one of the major DNA repair pathways in eukaryotic cells preventing genetic abnormalities caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to environmental carcinogens or chemotherapeutic drugs. In view of the extraordinarily broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on contribution of photoaffinity labeling technique in the study of DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER.

  14. External longitudinal titanium support for the repair of complex pectus excavatum in adults.

    Science.gov (United States)

    Puma, Francesco; Vannucci, Jacopo; Santoprete, Stefano

    2012-12-01

    Several techniques exist for the repair of complex pectus excavatum. The placement of retrosternal metal bars improves the results by reducing the recurrence rate, but entails several possible risks, complications and disadvantages. A new method, specifically conceived for the repair of severe, asymmetric forms in adult patients, is reported. The corrected bone is fixed in the proper position by two, patient-customized, titanium struts, externally screwed to the manubrium and sternal body. Any retrosternal bar is thus avoided, reducing possible complications, without hampering the chest wall dynamic. In this particularly difficult issue, this technique provides long-term good functional, mechanical and cosmetic results and does not entail a second surgery for struts removal.

  15. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.; Smogorzewska, Agata; Rudge, Derek G.; Buzovetsky, Olga; Elledge, Stephen J.; Pavletich, Nikola P. (Harvard-Med); (Cornell); (MSKCC)

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  16. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    W Joo; G Xu; n Persky; A Smogorzewska; D Rudge; O Buzovetsky; S Elledge; N Pavletich

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  17. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function.

    Science.gov (United States)

    Xue, Lian; Furusawa, Yoshiya; Okayasu, Ryuichi; Miura, Masahiko; Cui, Xing; Liu, Cuihua; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Yajima, Hirohiko; Yu, Dong

    2015-01-01

    DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.

  18. Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms

    Science.gov (United States)

    Zhang, Wen-Wei; Lypaczewski, Patrick

    2017-01-01

    ABSTRACT CRISPR-Cas9-mediated genome editing has recently been adapted for Leishmania spp. parasites, the causative agents of human leishmaniasis. We have optimized this genome-editing tool by selecting for cells with CRISPR-Cas9 activity through cotargeting the miltefosine transporter gene; mutation of this gene leads to miltefosine resistance. This cotargeting strategy integrated into a triple guide RNA (gRNA) expression vector was used to delete all 11 copies of the A2 multigene family; this was not previously possible with the traditional gene-targeting method. We found that the Leishmania donovani rRNA promoter is more efficient than the U6 promoter in driving gRNA expression, and sequential transfections of the oligonucleotide donor significantly eased the isolation of edited mutants. A gRNA and Cas9 coexpression vector was developed that was functional in all tested Leishmania species, including L. donovani, L. major, and L. mexicana. By simultaneously targeting sites from two different chromosomes, all four types of targeted chromosomal translocations were generated, regardless of the polycistronic transcription direction from the parent chromosomes. It was possible to use this CRISPR system to create a single conserved amino acid substitution (A189G) mutation for both alleles of RAD51, a DNA recombinase involved in homology-directed repair. We found that RAD51 is essential for L. donovani survival based on direct observation of the death of mutants with both RAD51 alleles disrupted, further confirming that this CRISPR system can reveal gene essentiality. Evidence is also provided that microhomology-mediated end joining (MMEJ) plays a major role in double-strand DNA break repair in L. donovani. IMPORTANCE Leishmania parasites cause human leishmaniasis. To accelerate characterization of Leishmania genes for new drug and vaccine development, we optimized and simplified the CRISPR-Cas9 genome-editing tool for Leishmania. We show that co-CRISPR targeting

  19. On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    CERN Document Server

    Katsirelos, George; Walsh, Toby

    2010-01-01

    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking c...

  20. TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair

    Science.gov (United States)

    Renbaum, Paul; Zeligson, Sharon; Eini, Lital; Bashari, Dana; Smith, Yoav; Lahad, Amnon; Goldberg, Michal; Ginsberg, Doron; Levy-Lahad, Ephrat

    2015-01-01

    Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51

  1. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  2. Structure of the Sulphiredoxin-Peroxiredoxin Complex Reveals an Essential Repair Embrace

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson,T.; Johnson, L.; Lowther, W.

    2008-01-01

    Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling1. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal2. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 Angstroms crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.

  3. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  4. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    Science.gov (United States)

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  5. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context.

    Science.gov (United States)

    Gunn, Amanda; Bennardo, Nicole; Cheng, Anita; Stark, Jeremy M

    2011-12-09

    During repair of multiple chromosomal double strand breaks (DSBs), matching the correct DSB ends is essential to limit rearrangements. To investigate the maintenance of correct end use, we examined repair of two tandem noncohesive DSBs generated by endonuclease I-SceI and the 3' nonprocessive exonuclease Trex2, which can be expressed as an I-SceI-Trex2 fusion. We examined end joining (EJ) repair that maintains correct ends (proximal-EJ) versus using incorrect ends (distal-EJ), which provides a relative measure of incorrect end use (distal end use). Previous studies showed that ATM is important to limit distal end use. Here we show that DNA-PKcs kinase activity and RAD50 are also important to limit distal end use, but that H2AX is dispensable. In contrast, we find that ATM, DNA-PKcs, and RAD50 have distinct effects on repair events requiring end processing. Furthermore, we developed reporters to examine the effects of the transcription context on DSB repair, using an inducible promoter. We find that a DSB downstream from an active promoter shows a higher frequency of distal end use, and a greater reliance on ATM for limiting incorrect end use. Conversely, DSB transcription context does not affect end processing during EJ, the frequency of homology-directed repair, or the role of RAD50 and DNA-PKcs in limiting distal end use. We suggest that RAD50, DNA-PKcs kinase activity, and transcription context are each important to limit incorrect end use during EJ repair of multiple DSBs, but that these factors and conditions have distinct roles during repair events requiring end processing.

  6. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break.

    Directory of Open Access Journals (Sweden)

    M Scott Brown

    2015-12-01

    Full Text Available The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs. Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt Rad51 filaments and also by one or more short Dmc1 filaments.

  7. Feasibility and safety of biventricular repair in neonates with hypoplastic left heart complex.

    Science.gov (United States)

    Bergonzini, S; Mendoza, A; Paz, M A; Garcia, E; Aguilar, J M; Arlati, F G; Galletti, L; Comas, J V

    2015-02-01

    Hypoplastic left heart syndrome is a spectrum of structural cardiac malformations characterized by variable underdevelopment of the left heart-aorta complex. A minority of patients having a milder degree of left ventricular hypoplasia, described as hypoplastic left heart complex (HLHC), may be selected for biventricular repair. The objective of this study was to assess the outcome of the biventricular approach in HLHC. We evaluated retrospectively 30 neonates diagnosed with HLHC from the "12 de Octubre" University Hospital, following established criteria. We analyzed the echocardiographic data recorded just after birth and at last follow-up after surgery. All patients were operated on in the neonatal period using various surgical techniques. There were no early deaths and only 1 late death after a mean follow-up of 62.9 ± 43.8 months. All patients presented a significant growth of the left ventricular structures, with a Z-score increase of 1.17 ± 1.05 for mitral annulus, 1.72 ± 1.23 for aortic annulus, and 1.33 ± 1.46 for left ventricular end-diastolic diameter. Postoperatively, 18 patients showed a left valvular stenosis, and 17 patients underwent a reoperation and/or an interventional procedure. Freedom from surgery or interventional catheterizations at 1, 3 and 5 years was 53, 49 and 43%, respectively. The 29 current survivors are all in a good functional status. In our experience, we achieved good results from biventricular repair in patients with HLHC, with a significant growth of left heart structures and an excellent clinical status at a medium-term follow-up. Nevertheless, there was a high rate of reoperations and/or interventional catheterizations.

  8. Complex patterns arise through spontaneous symmetry breaking in dense homogeneous networks of neural oscillators

    Science.gov (United States)

    Singh, Rajeev; Menon, Shakti N.; Sinha, Sitabhra

    2016-02-01

    There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.

  9. Single stage repair of a complex pathology: end stage ischaemic cardiomyopathy, ascending aortic aneurysm and thoracic coarctation

    Directory of Open Access Journals (Sweden)

    Parissis Haralabos

    2011-11-01

    Full Text Available Abstract The not uncommon combination of ascending aortic pathology with late presenting coarctation is a difficult surgical challenge. The two stage approach is usually adopted. The necessity for cardiac transplantation adds to the complexity: a trans-sternal approach and single stage repair become mandatory.

  10. Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast.

    Directory of Open Access Journals (Sweden)

    Ann Demogines

    2008-07-01

    Full Text Available Complex traits typically involve the contribution of multiple gene variants. In this study, we took advantage of a high-density genotyping analysis of the BY (S288c and RM strains of Saccharomyces cerevisiae and of 123 derived spore progeny to identify the genetic loci that underlie a complex DNA repair sensitivity phenotype. This was accomplished by screening hybrid yeast progeny for sensitivity to a variety of DNA damaging agents. Both the BY and RM strains are resistant to the ultraviolet light-mimetic agent 4-nitroquinoline 1-oxide (4-NQO; however, hybrid progeny from a BYxRM cross displayed varying sensitivities to the drug. We mapped a major quantitative trait locus (QTL, RAD5, and identified the exact polymorphism within this locus responsible for 4-NQO sensitivity. By using a backcrossing strategy along with array-assisted bulk segregant analysis, we identified one other locus, MKT1, and a QTL on Chromosome VII that also link to the hybrid 4-NQO-sensitive phenotype but confer more minor effects. This work suggests an additive model for sensitivity to 4-NQO and provides a strategy for mapping both major and minor QTL that confer background-specific phenotypes. It also provides tools for understanding the effect of genetic background on sensitivity to genotoxic agents.

  11. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast

    DEFF Research Database (Denmark)

    Moss, Jennifer; Tinline-Purvis, Helen; Walker, Carol A

    2010-01-01

    Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found th...

  12. Choreography of oxidative damage repair in mammalian genomes.

    Science.gov (United States)

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  13. PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials

    Energy Technology Data Exchange (ETDEWEB)

    Dorey, Patrick; Lishman, Anna [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom); Dunning, Clare [SMSAS, University of Kent, Canterbury, UK CT2 7NF (United Kingdom); Tateo, Roberto [Dip. di Fisica Teorica and INFN, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy)], E-mail: p.e.dorey@durham.ac.uk, E-mail: t.c.dunning@kent.ac.uk, E-mail: AnnaLishman@dunelm.org.uk, E-mail: tateo@to.infn.it

    2009-11-20

    We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordan block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives new insight into a phase transition to infinitely many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly solvable limit, the inhomogeneous complex square well, is also identified.

  14. Endoscope-assisted repair of large nasal septal perforation using a complex mucoperichondrial flap and free tissue graft

    Institute of Scientific and Technical Information of China (English)

    张庆泉; 张杰; 李树峰

    2003-01-01

    Objective To improve the closure rate of large nasal septal perforations. Methods Using an endoscope, complex mucoperichondrial/mucoperiosteal flaps on one side and free tissue graft on the other, we designed a procedure to repair large nasal septal perforations.Results In our series, 8 patients were operated on with this procedure, resulting in complete closure of the perforation and subsequent relief of symptoms. Conclusion This technique may be used as an alter*$native for the repair of large nasal septal perforations.

  15. Complex Orbitals, Multiple Local Minima, and Symmetry Breaking in Perdew-Zunger Self-Interaction Corrected Density Functional Theory Calculations.

    Science.gov (United States)

    Lehtola, Susi; Head-Gordon, Martin; Jónsson, Hannes

    2016-07-12

    Implentation of seminumerical stability analysis for calculations using the Perdew-Zunger self-interaction correction is described. It is shown that real-valued solutions of the Perdew-Zunger equations for gas phase atoms are unstable with respect to imaginary orbital rotations, confirming that a proper implementation of the correction requires complex-valued orbitals. The orbital density dependence of the self-interaction corrected functional is found to lead to multiple local minima in the case of the acrylic acid, H6, and benzene molecules. In the case of benzene, symmetry breaking that results in incorrect ground state geometry is found to occur, erroneously leading to alternating bond lengths in the molecule.

  16. Conformal Complex Scalar Singlet Extensions of the Standard Model: Symmetry Breaking Patterns and Phenomenology

    CERN Document Server

    Wang, Zhi-Wei; Steele, T G; Mann, R B; Hanif, T

    2016-01-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554\\,\\rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1)' leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.

  17. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  18. Pectoralis Muscle Flap Repair Reduces Paradoxical Motion of the Chest Wall in Complex Sternal Wound Dehiscence

    Science.gov (United States)

    Zeitani, Jacob; Russo, Marco; Pompeo, Eugenio; Sergiacomi, Gian Luigi; Chiariello, Luigi

    2016-01-01

    Background The aim of the study was to test the hypothesis that in patients with chronic complex sternum dehiscence, the use of muscle flap repair minimizes the occurrence of paradoxical motion of the chest wall (CWPM) when compared to sternal rewiring, eventually leading to better respiratory function and clinical outcomes during follow-up. Methods In a propensity score matching analysis, out of 94 patients who underwent sternal reconstruction, 20 patients were selected: 10 patients underwent sternal reconstruction with bilateral pectoralis muscle flaps (group 1) and 10 underwent sternal rewiring (group 2). Eligibility criteria included the presence of hemisternum diastases associated with multiple (≥3) bone fractures and radiologic evidence of synchronous chest wall motion (CWSM). We compared radiologically assessed (volumetric computed tomography) ventilatory mechanic indices such as single lung and global vital capacity (VC), diaphragm excursion, synchronous and paradoxical chest wall motion. Results Follow-up was 100% complete (mean 85±24 months). CWPM was inversely correlated with single lung VC (Spearman R=−0.72, p=0.0003), global VC (R=−0.51, p=0.02) and diaphragm excursion (R=−0.80, p=0.0003), whereas it proved directly correlated with dyspnea grade (Spearman R=0.51, p=0.02) and pain (R=0.59, p=0.005). Mean CWPM and single lung VC were both better in group 1, whereas there was no difference in CWSM, diaphragm excursion and global VC. Conclusion Our study suggests that in patients with complex chronic sternal dehiscence, pectoralis muscle flap reconstruction guarantees lower CWPM and greater single-lung VC when compared with sternal rewiring and it is associated with better clinical outcomes with less pain and dyspnea. PMID:27733997

  19. Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair.

    Science.gov (United States)

    Smith, Johanna A; Wang, Feng-Xiang; Zhang, Hui; Wu, Kou-Juey; Williams, Kevin Jon; Daniel, René

    2008-01-22

    Retroviral transduction involves integrase-dependent linkage of viral and host DNA that leaves an intermediate that requires post-integration repair (PIR). We and others proposed that PIR hijacks the host cell double-strand DNA break (DSB) repair pathways. Nevertheless, the geometry of retroviral DNA integration differs considerably from that of DSB repair and so the precise role of host-cell mechanisms in PIR remains unclear. In the current study, we found that the Nijmegen breakage syndrome 1 protein (NBS1), an early sensor of DSBs, associates with HIV-1 DNA, recruits the ataxia telangiectasia-mutated (ATM) kinase, promotes stable retroviral transduction, mediates efficient integration of viral DNA and blocks integrase-dependent apoptosis that can arise from unrepaired viral-host DNA linkages. Moreover, we demonstrate that the ATM kinase, recruited by NBS1, is itself required for efficient retroviral transduction. Surprisingly, recruitment of the ATR kinase, which in the context of DSB requires both NBS1 and ATM, proceeds independently of these two proteins. A model is proposed emphasizing similarities and differences between PIR and DSB repair. Differences between the pathways may eventually allow strategies to block PIR while still allowing DSB repair.

  20. Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.

    Science.gov (United States)

    Klein, Julius; Spencer, Steven J; Reinkensmeyer, David J

    2012-05-01

    Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton would help the motor system learn the movement. We also examined how the particular form of the decomposition affected learning. Three groups of unimpaired participants trained with the target arm movement broken down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently ("anatomical" decomposition), 2) three component shoulder motions in Euler coordinates and elbow flexion/extension ("Euler" decomposition), or 3) the motion of the tip of the elbow and motion of the hand with respect to the elbow, independently ("visual" decomposition). A control group practiced the same number of movements, but experienced the target motion only, achieving eight times more direct practice with this motion. Despite less experience with the target motion, part training was better, but only when the arm trajectory was decomposed into anatomical components. Varying robotic movement training to include practice of simpler, anatomically-isolated motions may enhance its efficacy.

  1. Complexity Quantification for Overhead Transmission Line Emergency Repair Scheme via a Graph Entropy Method Improved with Petri Net and AHP Weighting Method

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2014-01-01

    Full Text Available According to the characteristics of emergency repair in overhead transmission line accidents, a complexity quantification method for emergency repair scheme is proposed based on the entropy method in software engineering, which is improved by using group AHP (analytical hierarchical process method and Petri net. Firstly, information structure chart model and process control flowchart model could be built by Petri net. Then impact factors on complexity of emergency repair scheme could be quantified into corresponding entropy values, respectively. Finally, by using group AHP method, weight coefficient of each entropy value would be given before calculating the overall entropy value for the whole emergency repair scheme. By comparing group AHP weighting method with average weighting method, experiment results for the former showed a stronger correlation between quantified entropy values of complexity and the actual consumed time in repair, which indicates that this new method is more valid.

  2. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex.

    Science.gov (United States)

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.

  3. Effects of ara A and fresh medium on chromosome damage and DNA double-strand break repair in X-irradiated stationary cells

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P.E. (GSF-Abteilung fuer Biophysikalische Strahlenforschung, Frankfurt am Main (Germany, F.R.))

    1984-01-01

    The detailed kinetics of repair of dsb in Ehrlich ascites tumour cells over long repair intervals have been studied and compared under conditions simulating procedures known to cause large changes in cell survival, i.e. holding cells in stationary phase for 7 h after x-radiation, transference of cells to fresh growth medium immediately after x-radiation, and treatment with the DNA synthesis inhibitor 9-..beta..-D-arabinofuranosyladenine (ara A) for 30 min before, during and for 7 h after x-irradiation. These conditions have also been investigated for their effects on frequencies of chromosome abnormalities (anaphase bridges and fragments). Conditions leading to both an inhibition of dsb repair (in the presence of ara A) as well as an acceleration of dsb repair (by fresh growth medium) led to higher frequencies of chromosome abnormalities compared with those for cells under stationary conditions for 7 h after irradiation. Holding dsb open for long periods with ara A may maximize the probability of formation of aberrations, however, the data for fresh medium treatment showed it is not merely the rate at which dsb repair which determines the aberration frequency, and indicated the presence of other biochemical mechanisms in the cell determining the frequency of conversion of dsb into chromosome aberrations.

  4. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions

    NARCIS (Netherlands)

    Moser, J; Volker, M; Kool, H; Alekseev, S; Vrieling, H; Yasui, A; van Zeeland, AA; Mullenders, LHF

    2005-01-01

    Previous studies point to the XPC-hHR23B complex as the principal initiator of global genome nucleotide excision repair (NER) pathway, responsible for the repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) in human cells. However, the UV-damaged DNA binding protei

  5. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA...... lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair....

  6. Evaluation of the economic efficiency of maintenance and repair of the subsystems of regional radioelectronic complex system

    Directory of Open Access Journals (Sweden)

    B. A. Mandziy

    2013-09-01

    Full Text Available Introduction. In the paper the problem of assessing the economic efficiency of the strategies of maintenance the regional radioelectronic complex system, on the example, of base stations cellular network which are placed at a considerable distance from the service center is carried out. The description of the typical strategy of maintenance of the base stations cellular network. The description of the typical strategy of the maintenance of the base stations of cellular network, which includes realization of the one maintenance crews the repair works and planned preventative maintenance been made. The construction of the model of process of maintenance of the subsystems of regional radioelectronic complex system as a system of differential equations Kolmogorov - Chapman. The development of the mathematical model of the maintenance of base stations cellular network as a system of differential equations Kolmogorov - Chapman is carried out. The process of maintenance is represented as a queuing system. The formation of expression for the average unit cost that per unit time spent of the regional radioelectronic complex system in working condition. To assess the cost-effectiveness of maintenance of base stations of cellular network, the formula average unit costs, which account for repairing works, planned preventative maintenance and three-stage process of maintenance is built. Evaluation of the economic efficiency of maintenance strategy. Based on the developed mathematical models and formulas calculating the average unit costs the dependence of availability factor of regional radioelectronic complex system and average unit costs on the frequency of the maintenance is obtained. Based on the results, evaluation of economic efficiency of maintenance strategy is carried out. Conclusion. In this paper the cost-effectiveness of maintenance and repair of the subsystems of regional radioelectronic complex system is assessed . The method of obtaining the

  7. Double-strand break DNA repair genotype predictive of later mortality and cancer incidence in a cohort of non-smokers

    NARCIS (Netherlands)

    Neasham, David; Gallo, Valentina; Guarrera, Simonetta; Dunning, Alison; Overvad, Kim; Tjonneland, Anne; Clavel-Chapelon, Francoise; Linseisen, Jakob P.; Malaveille, Christian; Ferrari, Pietro; Boeing, Heiner; Benetou, Vassiliki; Trichopoulou, Antonia; Palli, Domenico; Crosignani, Paolo; Tumino, Rosario; Panico, Salvatore; Bueno-De-Mesquita, H. Bas; Peeters, Petra H.; van Gib, Carla H.; Lund, Eiliv; Gonzalez, Carlos A.; Martinez, Carmen; Dorronsoro, Miren; Barricarte, Aurelio; Navarro, Carmen; Quiros, Jose R.; Berglund, Goran; Jarvholm, Bengt; Khaw, Kay Tee; Key, Timothy J.; Bingham, Sheila; Jose Diaz, Tormo M.; Riboli, Elio; Matullo, Giuseppe; Vineis, Paolo

    2009-01-01

    We followed-up for mortality and cancer incidence 1088 healthy non-smokers from a population-based study, who were characterized for 22 variants in 16 genes involved in DNA repair pathways. Follow-up was 100% complete. The association between polymorphism and mortality or cancer incidence was analyz

  8. Comparison of repair of DNA double-strand breaks in identical sequences in primary human fibroblast and immortal hamster-human hybrid cells harboring a single copy of human chromosome 11

    Science.gov (United States)

    Fouladi, B.; Waldren, C. A.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Lobrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.

  9. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Synowiec, Ewelina [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Krupa, Renata [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland); Morawiec, Zbigniew; Wasylecka, Maja [Department of Surgical Oncology, N. Copernicus Hospital, Lodz (Poland); Dziki, Lukasz; Morawiec, Jan [Department of General and Colorectal Surgery, Medical University of Lodz, Lodz (Poland); Blasiak, Janusz [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Wozniak, Katarzyna, E-mail: wozniak@biol.uni.lodz.pl [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2010-12-10

    UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by {gamma}-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p < 0.05) difference in DRE related to the c.73G>A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.

  10. A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring.

    Science.gov (United States)

    Srivas, Rohith; Costelloe, Thomas; Carvunis, Anne-Ruxandra; Sarkar, Sovan; Malta, Erik; Sun, Su Ming; Pool, Marijke; Licon, Katherine; van Welsem, Tibor; van Leeuwen, Fred; McHugh, Peter J; van Attikum, Haico; Ideker, Trey

    2013-12-26

    Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER) with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  11. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  12. Unsuitability of lymphoblastoid cell lines as surrogate of cryopreserved isolated lymphocytes for the analysis of DNA double-strand break repair activity

    Energy Technology Data Exchange (ETDEWEB)

    Zijno, Andrea [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Rome (Italy); Porcedda, Paola [Department of Clinical and Biological Sciences, University of Turin (Italy); Saini, Francesca [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Rome (Italy); Allione, Alessandra [Institute for Scientific Interchange (ISI) Foundation, Villa Gualino, Turin (Italy); Garofalo, Bruno; Marcon, Francesca [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Rome (Italy); Guarrera, Simonetta [Institute for Scientific Interchange (ISI) Foundation, Villa Gualino, Turin (Italy); Turinetto, Valentina; Minieri, Valentina [Department of Clinical and Biological Sciences, University of Turin (Italy); Funaro, Ada [Department of Genetics, Biology and Biochemistry, University of Turin (Italy); Crebelli, Riccardo [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Rome (Italy); Giachino, Claudia [Department of Clinical and Biological Sciences, University of Turin (Italy); Matullo, Giuseppe, E-mail: giuseppe.matullo@unito.it [Institute for Scientific Interchange (ISI) Foundation, Villa Gualino, Turin (Italy); Department of Genetics, Biology and Biochemistry, University of Turin (Italy)

    2010-02-03

    As first task of a comprehensive investigation on DNA repair genotype-phenotype correlations, the suitability of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) as surrogate of cryopreserved peripheral blood mononuclear cells (PBMCs) in DNA repair phenotypic assays was evaluated. To this aim the amount of DNA damage induced by {gamma}-rays and DNA repair capacity were evaluated in unstimulated (G{sub 0}) and mitogen-simulated (G{sub 2}) PBMC from 20 healthy subjects and in EBV-transformed LCL obtained from the same individuals. Phosphorylation of histone H2AX, micronuclei and chromosomal aberrations were the end-points investigated. The results obtained show higher basal frequencies of binucleated cells bearing micronuclei and nucleoplasmic bridge (NPB) in LCL with respect to PBMC, suggesting that EBV transformation may be associated with chromosomal instability. After irradiation, higher levels of micronuclei were induced in G{sub 0}-treated PBMC compared to cycling LCL; conversely, NPB were more frequent in LCL than in PBMC. Moreover, higher levels of chromosomal aberrations were observed in G{sub 2}-treated PBMC compared to LCL. Concerning {gamma}-H2AX measurements, phosphorylation levels 1 h after treatment and dephosphorylation kinetics were basically similar in LCL and in PBMC. However, while Spearman's test showed a strong correlation between the results obtained in replicated experiments with PBMC, high inter-experimental variability and poor reproducibility was observed in the experiments performed with LCL, possibly due to the intrinsic instability of LCL. In summary, both the analysis of {gamma}-H2AX and the evaluation of chromosome damage highlighted a larger inter-experimental variability in the results obtained with LCL compared to PBMC. Noteworthy, the two set of results proved to lack any significant correlation at the individual level. These results indicate that LCL may be unsuitable for investigating genotype

  13. HOPE, "Repair," and the Complexities of Reciprocity: Inmates Tutoring Inmates in a Total Institution

    Science.gov (United States)

    Carter, Shannon

    2008-01-01

    This article analyzes one prison literacy program in Texas that trains inmate participants to teach other men and women, likewise incarcerated and often dyslexic, to read and write in English. Noting the regular recurrence of the words "repair" and "hope" in participants' descriptions of HOPE and associated activities, the author makes extensive…

  14. Post-replicative repair involves separase-dependent removal of the kleisin subunit of cohesin.

    Science.gov (United States)

    McAleenan, Alexandra; Clemente-Blanco, Andres; Cordon-Preciado, Violeta; Sen, Nicholas; Esteras, Miguel; Jarmuz, Adam; Aragón, Luis

    2013-01-10

    DNA double-strand break repair is critical for cell viability and involves highly coordinated pathways to restore DNA integrity at the lesion. An early event during homology-dependent repair is resection of the break to generate progressively longer 3' single-strand tails that are used to identify suitable templates for repair. Sister chromatids provide near-perfect sequence homology and are therefore the preferred templates during homologous recombination. To provide a bias for the use of sisters as donors, cohesin--the complex that tethers sister chromatids together--is recruited to the break to enforce physical proximity. Here we show that DNA breaks promote dissociation of cohesin loaded during the previous S phase in budding yeast, and that damage-induced dissociation of cohesin requires separase, the protease that dissolves cohesion in anaphase. Moreover, a separase-resistant allele of the gene coding for the α-kleisin subunit of cohesin, Mcd1 (also known as Scc1), reduces double-strand break resection and compromises the efficiency of repair even when loaded during DNA damage. We conclude that post-replicative DNA repair involves cohesin dissociation by separase to promote accessibility to repair factors during the coordinated cellular response to restore DNA integrity.

  15. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy.

    Science.gov (United States)

    Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R; Baranello, Laura; Levens, David; Kraemer, Kenneth H; Stefanini, Miria

    2016-04-01

    The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.

  16. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy

    Science.gov (United States)

    Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J.; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G.; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A.; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R.; Baranello, Laura; Levens, David; Kraemer, Kenneth H.; Stefanini, Miria

    2016-01-01

    The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP. PMID:26996949

  17. 气动剪板机曲轴断裂的修复%Repair of Crankshaft Break on Pneumatic Shearing Machine

    Institute of Scientific and Technical Information of China (English)

    罗相文

    2013-01-01

      介绍气动离合剪板机曲轴断裂事故,采取镶轴、焊接的方法修复曲轴,控制好焊接材料、母材、温度等条件,修复后可正常使用。%Introduces the malfunction of crankshaft creak on pneumatic shearing machine,repairs the crankshaft in way of inlay shaft,it can worked well in case of controlling the welding materials,base material and temperature.

  18. Detrended Fluctuation Analysis on Correlations of Complex Networks Under Attack and Repair Strategy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We analyze the correlation properties of the Erdos-Rényi random graph (RG) and the Barabási-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree k representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability pre. The average degree , revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of pre.

  19. [The modified Lichtenstein technique for complex inguinal hernia repair--how I do it].

    Science.gov (United States)

    Zuvela, Marinko

    2011-01-01

    The Lichtenstein technique is modified for solving complex groin hernias such as huge hernias with massive transversal fascia destruction associated with the increased intraabdominal pressure or recurrent hernias with the destroyed Poupart's ligament. Whilst these hernias are usually managed by preperitoneal techniques (open or laparoscopic) under general or regional anesthesia, as an "inpatient" procedure, they can be solved applying a modified Lichtenstein technique, most frequently under local anesthesia, as an "out-patient" procedure. The modifications of Lichtenstein technique include the foIlowing: a) lateral movement and fixation of the lower corner of the mesh, caudally to the tubercle, by 20-30 degrees in relation to its lower border, fully protecting the medial triangle (direct inguinal recurrence prevention); b) fixation of the lower border of the mesh by a running "U" suture to both Poupart's and Coopers's ligaments, from the tubercle to the femoral vein, fully protecting the femoral triangle (femoral recurrence prevention); c) the lower mesh border fixation by a running suture, 2-3 cm laterally to the internal inguinal ring, together with the "locking" of the internal inguinal ring by two interrupted sutures, one fixing the superior mesh tail to the inferior one--cranial to the spermatic cord, 1-1,5 cm medially to the Poupart's ligament, and the other fixing the lower border of the superior mesh tail and the lower border of the inferior mesh tail to the inferior part of the Poupart's ligament, 1 cm cranially and laterally to the preceding suture, fully protecting the lateral triangle (indirect inguinal recurrence prevention). One thousand eighteen patients with 1236 (unilateral 800, bilateral 218) inguinal hernias were electively operated on by the modified Lichtenstein technique between January 2003-January 2011. All operations were performed by a single surgeon. One hundred and thirty (10.5%) hernias were recurrent following one or more tension or

  20. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24− cancer cells

    Science.gov (United States)

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-01

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24− cell surface marker profile. Here, we report that human CD44+/CD24− cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24− cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24− state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24− cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness. DOI: http://dx.doi.org/10.7554/eLife.21615.001 PMID:28092266

  1. Break-induced telomere synthesis underlies alternative telomere maintenance.

    Science.gov (United States)

    Dilley, Robert L; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D; Wondisford, Anne R; Greenberg, Roger A

    2016-11-03

    Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

  2. DNA Strand Breaks, Neurodegeneration and Aging in the Brain

    OpenAIRE

    Katyal, Sachin; McKinnon, Peter J

    2008-01-01

    Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relat...

  3. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    DEFF Research Database (Denmark)

    De Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B;

    2015-01-01

    The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP...... the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding....... free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along...

  4. [DNA homologous recombination repair in mammalian cells].

    Science.gov (United States)

    Popławski, Tomasz; Błasiak, Janusz

    2006-01-01

    DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.

  5. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer; Die individuelle Reparatur von strahleninduzierten DNA-Doppelstrangbruechen in Lymphozyten. Implikationen fuer die radiogene Dermatitis beim Mammakarzinom

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Patrick Wilhelm

    2011-07-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated

  6. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks

    DEFF Research Database (Denmark)

    Watanabe, Sugiko; Watanabe, Kenji; Akimov, Vyacheslav;

    2013-01-01

    Chromatin ubiquitylation flanking DNA double-strand breaks (DSBs), mediated by RNF8 and RNF168 ubiquitin ligases, orchestrates a two-branch pathway, recruiting repair factors 53BP1 or the RAP80-BRCA1 complex. We report that human demethylase JMJD1C regulates the RAP80-BRCA1 branch of this DNA...

  7. Both hMutSα and hMutSß DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Akihiro Tajima

    Full Text Available BACKGROUND: Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR complex hMutSα binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to examine if hMutSß plays a role in 5-FU recognition. METHODS: We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized hMutSα and hMutSß in electromobility shift assays (EMSA and further analyzed binding using surface plasmon resonance. RESULTS: MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSα and hMutSß, intermediate cytotoxicity in cells with hMutSα alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSα. CONCLUSION: Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with hMutSα and/or hMutSß 5-FU binding ability (hMutSα>hMutSß. The MMR complexes provide a hierarchical chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient tumors.

  8. RAD50 and NBS1 form a stable complex functional in DNA binding and tethering

    NARCIS (Netherlands)

    E. van der Linden (Eddy); H. Sanchez (Humberto); E. Kinoshita (Eri); R. Kanaar (Roland); C. Wyman (Claire)

    2009-01-01

    textabstractThe RAD50/MRE11/NBS1 protein complex (RMN) plays an essential role during the early steps of DNA double-strand break (DSB) repair by homologous recombination. Previous data suggest that one important role for RMN in DSB repair is to provide a link between DNA ends. The striking architect

  9. DNA双链断裂修复与重症联合免疫缺陷%DNA double-strand breaks repair and severe combined immunodeficiencies

    Institute of Scientific and Technical Information of China (English)

    王坤英; 赵艳红; 李卫国

    2008-01-01

    DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).

  10. Pathway choice for DNA double-strand break repair%DNA双链断裂修复的选择性调控机制

    Institute of Scientific and Technical Information of China (English)

    唐子执; 刘聪; 曾鸣

    2014-01-01

    在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用.真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制.最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控.将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、CtIP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制.

  11. Optimality in DNA repair.

    Science.gov (United States)

    Richard, Morgiane; Fryett, Matthew; Miller, Samantha; Booth, Ian; Grebogi, Celso; Moura, Alessandro

    2012-01-07

    DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge.

  12. The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity.

    Science.gov (United States)

    Bouthier de la Tour, Claire; Boisnard, Stéphanie; Norais, Cédric; Toueille, Magali; Bentchikou, Esma; Vannier, Françoise; Cox, Michael M; Sommer, Suzanne; Servant, Pascale

    2011-12-10

    The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also show that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.

  13. DNA Strand Breaks, Neurodegeneration and Aging in the Brain

    Science.gov (United States)

    Katyal, Sachin; McKinnon, Peter J.

    2013-01-01

    Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relatively common lesion which if not repaired can impact cells via interference with transcription. Thus, this lesion, and probably to a lesser extent DNA double strand breaks, may be particularly relevant to aging in the neural cell population. In this review we will examine the consequences of defective DNA strand break repair towards homeostasis in the brain. Further, we also consider the utility of mouse models as reagents to understand the connection between DNA strand breaks and aging in the brain. PMID:18455751

  14. Abdominal Wall Hernia in Complex Patients incidences, risk factors and timing of repair

    NARCIS (Netherlands)

    J. Verhelst (Joost)

    2016-01-01

    markdownabstractThis thesis consists of two parts: __part 1__ describes a new prosthesis for the treatment of large and complex incisional hernia. Furthermore the natural course and consequences of conservative treatment are described; __part 2__ focusses on three complex groups of patients wit

  15. Primitive neuroectodermal tumor of the zygomaticoorbital complex: a rare location and ways of surgical repair of the area

    Directory of Open Access Journals (Sweden)

    Ch. R. Ragimov

    2015-01-01

    Full Text Available Primitive neuroectodermal tumor in the zygomaticoorbital region is a rare neoplasm of the head and neck. Due to the necessity for wide radical excision of a primary tumor, there may be serious functional and cosmetic disorders that substantially affect quality of life in patients. Restoration of this region is one of the challenges of reconstructive surgery because of the specific features of the relief of bone structures. The paper describes a clinical case of the site of primitive neuroectodermal tumor in the zygomaticoorbital complex and a method for repairing postresectional defect and completely recovering the function of the organ of vision and aesthetic parameters of the face.

  16. Perventricular device closure of residual muscular ventricular septal defects after repair of complex congenital heart defects in pediatric patients.

    Science.gov (United States)

    Zhu, Da; Tao, Kaiyu; An, Qi; Luo, Shuhua; Gan, Changping; Lin, Ke

    2013-01-01

    Residual muscular ventricular septal defects are surgical challenges, especially after the repair of complex congenital heart defects. We investigated perventricular device closure as a salvage technique in pediatric patients who had postoperative residual muscular ventricular septal defects. From February 2009 through June 2011, 14 pediatric patients at our hospital had residual muscular ventricular septal defects after undergoing surgical repair of complex congenital heart defects. Ten patients met our criteria for perventricular device closure of the residual defects: significant left-to-right shunting (Qp/Qs >1.5) or substantial hemodynamic instability (a defect ≥2 mm in size). The patients' mean age was 20.4 ± 13.5 months, and their mean body weight was 10 ± 3.1 kg. The median diameter of the residual defects was 4.2 mm (range, 2.5-5.1 mm). We deployed a total of 11 SQFDQ-II Muscular VSD Occluders (Shanghai Shape Memory Alloy Co., Ltd.; Shanghai, China) in the 10 patients, in accord with conventional techniques of perventricular device closure. The mean procedural duration was 31.1 ±9.1 min. We recorded the closure and complication rates perioperatively and during a 12-month follow-up period. Complete closure was achieved in 8 patients; 2 patients had persistent trivial residual shunts. No deaths, conduction block, device embolism, or other complications occurred throughout the study period. We conclude that perventricular device closure is a safe, effective salvage treatment for postoperative residual muscular ventricular septal defects in pediatric patients. Long-term studies with larger cohorts might further confirm this method's feasibility.

  17. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle.

    Science.gov (United States)

    Taleei, Reza; Nikjoo, Hooshang

    2013-08-30

    The paper presents a model of double strand breaks (DSB) repair in G1 and early S phases of the cell cycle. The model is based on a plethora of published information on biochemical modification of DSB induced by ionizing radiation. So far, three main DSB repair pathways have been identified, including nonhomologous end-joining (NHEJ), homologous recombination (HR), and microhomology-mediated end-joining (MMEJ). During G1 and early S phases of the cell cycle, NHEJ and MMEJ repair pathways are activated dependent on the type of double strand breaks. Simple DSB are a substrate for NHEJ, while complex DSB and DSB in heterochromatin require further end processing. Repair of all DSB start with NHEJ presynaptic processes, and depending on the type of DSB pursue simple ligation, further end processing prior to ligation, or resection. Using law of mass action the model is translated into a mathematical formalism. The solution of the formalism provides the step by step and overall repair kinetics. The overall repair kinetics are compared with the published experimental measurements. Our calculations are in agreement with the experimental results and show that the complex types of DSBs are repaired with slow repair kinetics. The G1 and early S phase model could be employed to predict the kinetics of DSB repair for damage induced by high LET radiation.

  18. Break It

    Institute of Scientific and Technical Information of China (English)

    MATTHEW PLOWRIGHT; GWYNN GUILFORD

    2008-01-01

    @@ Resolutions are not natural - otherwise you wouldn't have to "resolve" to execute them. This year, instead of planning how to commit to a slew of unattainable goals, why not prepare for breaking your resolutions the right way?

  19. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair

    Science.gov (United States)

    Cremers, Niels A. J.; Suttorp, Maarten; Gerritsen, Marlous M.; Wong, Ronald J.; van Run-van Breda, Coby; van Dam, Gooitzen M.; Brouwer, Katrien M.; Kuijpers-Jagtman, Anne Marie; Carels, Carine E. L.; Lundvig, Ditte M. S.; Wagener, Frank A. D. T. G.

    2015-01-01

    Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with

  20. Right thoracotomy approach for repair of recurrent or complex coarctation of the aorta using an extra-anatomic ascending aorta to descending aorta bypass graft off-pump.

    Science.gov (United States)

    Tabry, Imad F; Zachariah, Zachariah P

    2013-01-01

    A previously described but rarely used surgical technique for the repair of complex or recurrent coarctation of the aorta through a right thoracotomy approach is presented in detail. It has the advantages of being simple and avoiding left chest re-entry, median sternotomy and cardiopulmonary bypass altogether.

  1. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    Science.gov (United States)

    de Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B.; Molina, Rafael; Cordeiro, Tiago N.; Castillo, Francisco; Villate, Maider; Merino, Nekane; Delgado, Sandra; Gil-Cartón, David; Luque, Irene; Diercks, Tammo; Bernadó, Pau; Montoya, Guillermo; Blanco, Francisco J.

    2015-03-01

    The intrinsically disordered protein p15PAF regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15PAF-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15PAF tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15PAF also contacts the inside of, and passes through, the PCNA ring. The disordered p15PAF termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15PAF binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15PAF acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.

  2. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells.

    Science.gov (United States)

    Cattoglio, Claudia; Zhang, Elisa T; Grubisic, Ivan; Chiba, Kunitoshi; Fong, Yick W; Tjian, Robert

    2015-05-01

    The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.

  3. Factors Influencing Adaptation and Performance at Physical Exercise in Complex Congenital Heart Diseases after Surgical Repair

    Directory of Open Access Journals (Sweden)

    P. P. Bassareo

    2014-01-01

    Full Text Available In the last thirty years, steady progress in the diagnostic tools and care of subjects affected by congenital heart diseases (CHD has resulted in a significant increase in their survival to adulthood, even for those affected by complex CHD. Based on these premises, a number of teenagers and adults affected by corrected (surgically or through interventional techniques CHD ask to be allowed to undertake sporting activities, both at a recreational and competitive level. The purpose of this review is to examine the mechanisms influencing the adaption at physical exercise of patients suffering from complex CHD. The conclusion is that even if there are some modest risks with exercise, they should be seen in perspective, and the life-long benefits of regular exercise on general health, mood, and well-being should be emphasized.

  4. Synthesis of Biotinylated Inositol Hexakisphosphate To Study DNA Double-Strand Break Repair and Affinity Capture of IP6-Binding Proteins.

    Science.gov (United States)

    Jiao, Chensong; Summerlin, Matthew; Bruzik, Karol S; Hanakahi, Leslyn

    2015-10-20

    Inositol hexakisphosphate (IP6) is a soluble inositol polyphosphate, which is abundant in mammalian cells. Despite the participation of IP6 in critical cellular functions, few IP6-binding proteins have been characterized. We report on the synthesis, characterization, and application of biotin-labeled IP6 (IP6-biotin), which has biotin attached at position 2 of the myo-inositol ring via an aminohexyl linker. Like natural IP6, IP6-biotin stimulated DNA ligation by nonhomologous end joining (NHEJ) in vitro. The Ku protein is a required NHEJ factor that has been shown to bind IP6. We found that IP6-biotin could affinity capture Ku and other required NHEJ factors from human cell extracts, including the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and XLF. Direct binding studies with recombinant proteins show that Ku is the only NHEJ factor with affinity for IP6-biotin. DNA-PKcs, XLF, and the XRCC4:ligase IV complex interact with Ku in cell extracts and likely interact indirectly with IP6-biotin. IP6-biotin was used to tether streptavidin to Ku, which inhibited NHEJ in vitro. These proof-of-concept experiments suggest that molecules like IP6-biotin might be used to molecularly target biologically important proteins that bind IP6. IP6-biotin affinity capture experiments show that numerous proteins specifically bind IP6-biotin, including casein kinase 2, which is known to bind IP6, and nucleolin. Protein binding to IP6-biotin is selective, as IP3, IP4, and IP5 did not compete for binding of proteins to IP6-biotin. Our results document IP6-biotin as a useful tool for investigating the role of IP6 in biological systems.

  5. Ability of sodium copper chlorophyllin complex to repair photoaged skin by stimulation of biomarkers in human extracellular matrix

    Directory of Open Access Journals (Sweden)

    McCook JP

    2016-07-01

    Full Text Available John P McCook,1 Thomas J Stephens,2 Lily I Jiang,2 Robert M Law,3 Vincent Gotz4 1Discovery Partners LLC, Frisco, 2Thomas J. Stephens & Associates, Inc., Richardson, 3ProPath, Dallas, TX, 4MDRejuvena, Inc., San Diego, CA, USA Purpose: To examine the effect of sodium copper chlorophyllin complex on the expression of biomarkers of photoaged dermal extracellular matrix indicative of skin repair.Patients and methods: Following a previously published 12-day clinical assessment model, skin biopsy samples from the forearms of four healthy females with signs of photoaged skin were obtained and samples were analyzed by immunohistochemistry for key biomarkers of aging skin after each subject was treated with a test material consisting of a gel containing a liposomal dispersion of sodium copper chlorophyllin complex 0.05%, a positive control of tretinoin cream 0.025%, and an untreated negative control.Results: There was a statistically significantly greater amount of fibrillin/amyloid P and epidermal mucins found for skin treated with the test material containing 0.05% sodium copper chlorophyllin complex and the reference control tretinoin 0.025% cream compared to the negative control (untreated site. Expression of procollagen 1 and dermal mucin also showed a greater presence in the samples treated with the test material and the reference control compared to the negative control, though the differences were not statistically significant. No adverse events were observed or reported by the subjects during the course of the study.Conclusion: The results of this human biopsy study suggest that both retinoids and sodium copper chlorophyllin complex have beneficial effects on biomarkers of photoaged skin. Products containing both sodium copper chlorophyllin complex and retinols may provide a dual approach to reversing age-related decreases in hyaluronic acid (HA in the skin: inhibition of the breakdown of HA via sodium copper chlorophyllin complex by inhibition

  6. DNA Repair-Protein Relocalization After Heavy Ion Exposure

    Science.gov (United States)

    Metting, N. F.

    1999-01-01

    Ionizing radiation is good at making DNA double strand breaks, and high linear energy transfer (LET) radiations such as heavy ion particles are particularly efficient. For this reason, the proteins belonging to repair systems that deal with double strand breaks are of particular interest. One such protein is Ku, a component in the non-homologous recombination repair system. The Ku protein is an abundant, heterodimeric DNA end-binding complex, composed of one 70 and one 86 kDa subunit. Ku protein binds to DNA ends, nicks, gaps, and regions of transition between single and double-stranded structure. These binding properties suggest an important role in DNA repair. The Ku antigen is important in this study because it is present in relatively large copy numbers and it is part of a double-strand-break repair system. More importantly, we consistently measure an apparent upregulation in situ that is not verified by whole-cell-lysate immunoblot measurements. This apparent upregulation is triggered by very low doses of radiation, thus showing a potentially useful high sensitivity. However, elucidation of the mechanism underlying this phenomenon is still to be done.

  7. Symmetry breaking and light-induced spin-state trapping in a mononuclear FeII complex with the two-step thermal conversion

    Science.gov (United States)

    Buron-Le Cointe, M.; Ould Moussa, N.; Trzop, E.; Moréac, A.; Molnar, G.; Toupet, L.; Bousseksou, A.; Létard, J. F.; Matouzenko, G. S.

    2010-12-01

    Crystallographic, magnetic, and Raman investigations of the mononuclear [FeII(Hpy-DAPP)](BF4)2 complex are presented. Its particular feature is a two-step thermal spin conversion in spite of a unique symmetry-independent iron site per unit cell. The plateau around 140 K is associated with a symmetry breaking visible by the appearance of weak (0k0) k odd Bragg peaks. Symmetries of the high-temperature high-spin state and of the low-temperature low-spin state are both monoclinic P21/c , so that the symmetry breaking on the plateau is associated with a reentrant phase transition. It is discussed in relation with Ising-type microscopic models. At the plateau level, the two symmetry-independent molecules differ both by their spin state and the conformation (chair versus twist-boat) of one metallocycle. At low-temperature photoinduced phenomena have been investigated: a partial phototransformation [light-induced excited spin-state trapping (LIESST) effect] is observed under visible red irradiation. Raman spectroscopy shows that the molecular photoinduced state is the high-spin one. Nevertheless, as no macroscopic symmetry breaking is observed, the unique average cationic [FeII(Hpy-DAPP)] state of the unit cell is intermediate between pure low-spin and high-spin states and presents a conformational disorder for one metallocycle. Reverse-LIESST has also been evidenced using near infrared excitation. Thus, the mononuclear [Fe(Hpy-DAPP)](BF4)2 compound offers the opportunity to discuss the interplay between spin conversion, molecular conformational change, and ordering processes.

  8. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    Science.gov (United States)

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  9. Temperature requirements differ for the two stages of seed dormancy break in Aegopodium podagraria (Apiaceae), a species with deep complex morphophysiological dormancy.

    Science.gov (United States)

    Phartyal, Shyam S; Kondo, Tetsuya; Baskin, Jerry M; Baskin, Carol C

    2009-06-01

    Only a few studies have considered the possibility that low temperature requirements may vary among stages of dormancy break in seeds with morphophysiological dormancy (MPD). We show that this lack of consideration in previous studies on seed dormancy and germination of Aegopodium podagraria might explain the low germination percentages and/or the relatively long periods of incubation needed for germination. Under natural temperatures, embryos began to grow in September and were fully elongated by late December; most growth occurred when the average daily mean temperature was about 10°C. Radicles emerged under snow in late winter, and cotyledons emerged after snowmelt in early spring. In laboratory experiments, 100% of the embryos grew to full length at both 0 and 5°C, whereas 0°C was much more effective than 5°C in overcoming the physiological dormancy in seeds after embryos were fully elongated. Following radicle emergence, cotyledons emerged readily in a wide range of temperatures ≥5°C. GA(3) did not substitute for the low temperature requirement for dormancy break. Seed dormancy in A. podagraria fits Nikolaeva's formula for deep complex MPD, i.e., C(3)B-C(3). Better germination of seeds pretreated at 0° than at 5°C has practical implications for cultivating this species.

  10. Effects of Complex Symmetry-Breakings on Alpha Particle Power Loads on First Wall Structures and Equilibrium in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Kurki-Suonio, T. [Aalto University, Finland; Spong, Donald A [ORNL; Asunta, O. [Aalto University, Finland; Tani, K. [Japan Atomic Energy Agency (JAEA), Naka; Strumberger, E. [Max Planck Institute for Plasma Physics, Garching, Germany; Briguglio, S. [EURATOM / ENEA, Italy; Koskela, T. [Aalto University, Finland; Vlad, G. [EURATOM / ENEA, Italy; Günter, S. [Max-Planck Institute, Garching, Germany; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Putvinski, S. [ITER Organization, Cadarache, France; Hamamatsu, K. [Japan Atomic Energy Agency (JAEA), Naka

    2011-01-01

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  11. The Break

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille

    2016-01-01

    The chapter elaborates on how to deal with one of the major challenges facing organizations worldwide; Stress. The Break enacts a quantum approach to meet the challenges by proposing a combination of three different quantum storytelling technologies; protreptic mentoring, walking and material sto...

  12. Breaking Routines

    DEFF Research Database (Denmark)

    Kesting, Peter; Jørgensen, Frances

    2010-01-01

    On some level, innovation begins when the current way of doing things is questioned and alternatives are sought. In cognitive terms, this can be conceptualized as the point at which an agent breaks with existing routine and returns to planning and decision-making. Thus far, however, very little...

  13. Supersymmetry breaking

    Indian Academy of Sciences (India)

    Emilian Dudas

    2009-01-01

    We review the various mechanisms of supersymmetry breaking and its trans-mission to the observable sector. We argue that hybrid models where gauge dominates over gravity mediation, but gravity provides the main contributions to the Higgs sector masses and the neutralino mass, are able to combine the advantages and reduce the disadvantages of the two transmission mechanisms.

  14. Self-repairing complex helical columns generated via kinetically controlled self-assembly of dendronized perylene bisimides.

    Science.gov (United States)

    Percec, Virgil; Hudson, Steven D; Peterca, Mihai; Leowanawat, Pawaret; Aqad, Emad; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A

    2011-11-16

    The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-3-PBI, was recently reported to self-assemble in complex helical columns containing tetramers of PBI as basic repeat unit. These tetramers contain a pair of two molecules arranged side-by-side and another pair in the next stratum of the column turned upside-down and rotated around the column axis. Intra- and intertetramer rotation angles and stacking distances are different. At high temperature, (3,4,5)12G1-3-PBI self-assembles via a thermodynamically controlled process in a 2D hexagonal columnar phase while at low temperature in a 3D orthorhombic columnar array via a kinetically controlled process. Here, we report the synthesis and structural analysis, by a combination of differential scanning calorimetry, X-ray and electron diffraction, and solid-state NMR performed at different temperatures, on the supramolecular structures generated by a library of (3,4,5)nG1-3-PBI with n = 14-4. For n = 11-8, the kinetically controlled self-assembly from low temperature changes in a thermodynamically controlled process, while the orthorhombic columnar array for n = 9 and 8 transforms from the thermodynamic product into the kinetic product. The new thermodynamic product at low temperature for n = 9, 8 is a self-repaired helical column with an intra- and intertetramer distance of 3.5 Å forming a 3D monoclinic periodic array via a kinetically controlled self-assembly process. The complex dynamic process leading to this reorganization was elucidated by solid-state NMR and X-ray diffraction. This discovery is important for the field of self-assembly and for the molecular design of supramolecular electronics and solar cell.

  15. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya;

    2011-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling...... complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate...... proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential...

  16. Nonhomologous Mechanisms of Repair of Chromosomal Breaks

    Energy Technology Data Exchange (ETDEWEB)

    Haber, J. E.

    2001-12-19

    Discovered three new proteins involved in DNA damage assessment. Interestingly they are all proteins involved in recombination, but they have very different roles in that process and other proteins that might be expected to be equivalently involved are not. This is developing into a very significant area of research.

  17. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Otterlei, Marit; Pena Diaz, Javier

    2004-01-01

    Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using...

  18. Targeting base excision repair as a sensitization strategy in radiotherapy.

    NARCIS (Netherlands)

    Vens, C.; Begg, A.C.

    2010-01-01

    Cellular DNA repair determines survival after ionizing radiation. Human tumors commonly exhibit aberrant DNA repair since they drive mutagenesis and chromosomal instability. Recent reports have shown alterations in the base excision repair (BER) and single strand break repair (SSBR) pathways in huma

  19. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  20. Severe tracheobronchial compression in a patient with Turner′s syndrome undergoing repair of a complex aorto-subclavian aneurysm: Anesthesia perspectives

    Directory of Open Access Journals (Sweden)

    Christopher C .C. Hudson

    2014-01-01

    Full Text Available We present a case of severe tracheobronchial compression from a complex aorto-subclavian aneurysm in a patient with Turner′s syndrome undergoing open surgical repair. Significant airway compression is a challenging situation and requires careful preoperative preparation, maintenance of spontaneous breathing when possible, and consideration of having an alternative source of oxygenation and circulation established prior to induction of general anesthesia. Cardiopulmonary monitoring is essential for safe general anesthesia and diagnosis of unexpected intraoperative events.

  1. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour;

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  2. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  3. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  4. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  5. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    Science.gov (United States)

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  6. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    Science.gov (United States)

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.

  7. The Break

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille; Larsen, Jens

    2015-01-01

    are elaborated as founding differences for the leadership actions to come aka for the engagement in practices of becoming. Material storytelling story modes are posed as material-discursive attempts at rebalancing present hegemonies of mind/body, nature/culture, matter/meaning, etc. with relation to the posed...... and euro each year. The paper tries to explore new ways to deal with these challenges through a quantum approach to storytelling where the enactment of core values, bodies, spaces and artifacts positions managers and CEO’s from major Scandinavian organizations in sites where they can re-evaluate their life...... stones on a table in an office of a municipality in Denmark. Silence….. Rebuilding rooms for taking breaks with the inclusion of different activities such as a game of soccer or a hike seems to provide the tools to rework these imbalances or enslaving patterns. Break……. The attempt at meeting...

  8. The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gothwal, Santosh K; Patel, Neem J; Colletti, Meaghan M; Sasanuma, Hiroyuki; Shinohara, Miki; Hochwagen, Andreas; Shinohara, Akira

    2016-02-01

    Histone modification is a critical determinant of the frequency and location of meiotic double-strand breaks (DSBs), and thus recombination. Set1-dependent histone H3K4 methylation and Dot1-dependent H3K79 methylation play important roles in this process in budding yeast. Given that the RNA polymerase II associated factor 1 complex, Paf1C, promotes both types of methylation, we addressed the role of the Paf1C component, Rtf1, in the regulation of meiotic DSB formation. Similar to a set1 mutation, disruption of RTF1 decreased the occurrence of DSBs in the genome. However, the rtf1 set1 double mutant exhibited a larger reduction in the levels of DSBs than either of the single mutants, indicating independent contributions of Rtf1 and Set1 to DSB formation. Importantly, the distribution of DSBs along chromosomes in the rtf1 mutant changed in a manner that was different from the distributions observed in both set1 and set1 dot1 mutants, including enhanced DSB formation at some DSB-cold regions that are occupied by nucleosomes in wild-type cells. These observations suggest that Rtf1, and by extension the Paf1C, modulate the genomic DSB landscape independently of H3K4 methylation.

  9. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  10. Cell polarity protein Par3 complexes with DNA-PK via Ku70 and regulates DNA double-strand break repair

    Institute of Scientific and Technical Information of China (English)

    Longhou Fang; YiGuo Wang; Dan Du; Guang Yang; Tim Tak Kwok; Siu Kai Kong; Benjamin Chen; David J Chen; Zhengjun chen

    2007-01-01

    @@ The author affiliations were mixed up in the previous published version. The third fund number of National Natural Science Foundation of China in the Acknowledgments was wrong, it should be "30270335".

  11. Preperitoneal sutureless mesh repair of inguinal hernia by open inguinal approach using inferior epigastric vessel complex as landmark: A tertiary care centre experience

    Directory of Open Access Journals (Sweden)

    Inderjit Chawla

    2014-01-01

    Full Text Available Introduction: The study is a clinical trial done on patients with inguinal hernia, who were treated by open preperitoneal sutureless mesh repair, using inferior epigastric vessel complex as landmark. Aim: To study the postoperative complications and recurrence rates associated with the open preperitoneal sutureless mesh repair. Materials and Methods: Total 100 patients of inguinal hernia were recruited in this clinical trial from January 2009 to December 2012. Those with bilateral inguinal hernia or recurrent hernias were excluded from the study. Results: The average time taken to complete the surgery was 42.2 minutes and the average hospital stay was 2.5 days. Post-surgery, at a median follow-up period of 2 years, only 2 patients had seroma formation. Visual analog scale pain scores of 4 and 6 were seen in 60% and 40% cases, respectively. No recurrences were encountered post-surgery in any of the case till the last follow-up. Conclusion: This procedure was found to have fewer complications and was less time-consuming as compared to the other conventional open hernia repairs.

  12. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  13. 53BP1 regulates DSB repair using Rif1 to control 5' end resection.

    Science.gov (United States)

    Zimmermann, Michal; Lottersberger, Francisca; Buonomo, Sara B; Sfeir, Agnel; de Lange, Titia

    2013-02-08

    The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.

  14. Molecular modeling on the recognition of DNA sequence and conformational repair of sheared DNA by novel chiral metal complex D, L-[Co(phen)2hpip]3+

    Institute of Scientific and Technical Information of China (English)

    WU; Yanbo; ZHANG; Cuiping

    2006-01-01

    A study on the recognition of DNA sequence and conformational repair of sheared DNA by Novel Chiral Metal complex D,L-[Co(phen)2hpip]3+ (phen=1,10 phenanthroline, hpip=2-[2-hydroxyphenyl] imidazole [4,5-f][1,10] phenanthroline) is carried out with molecular simulations. The results reveal that two isomers of the complex could both recognize the normal DNA in the minor groove orientation, while recognize the sheared DNA in the major groove orientation and both isomers could convert the conformation of mismatched bases from sheared form to parallel form. Further analysis shows that the steric details of complex's intercalation to base stack determine the results of recognition, which is induced by the steric collision among ancillary ligand phen, bases and DNA backbone, and by the steric crowding occurring in the process of structural expansion of bases and DNA backbone. Detailed analysis reveals that the conformational repair of mismatched bases relates not only to the steric interactions, but also to the π-π stack among normal bases, mismatched bases and hpip ligand.

  15. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans".

    Science.gov (United States)

    Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M

    2016-11-01

    The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.

  16. Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase

    Directory of Open Access Journals (Sweden)

    Stenerlöw Bo

    2007-10-01

    Full Text Available Abstract Background Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood. Results In this report we demonstrate that long single-stranded DNA (ssDNA ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times ≥ 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G1-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs (catalytic subunit of DNA-PK inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE, no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i. e., lysis at 50°C are used. Conclusion We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required.

  17. Tendon repair

    Science.gov (United States)

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  18. Urokinase plasminogen receptor and the fibrinolytic complex play a role in nerve repair after nerve crush in mice, and in human neuropathies.

    Directory of Open Access Journals (Sweden)

    Cristina Rivellini

    Full Text Available Remodeling of extracellular matrix (ECM is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies.

  19. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks.

    Science.gov (United States)

    Oum, Ji-Hyun; Seong, Changhyun; Kwon, Youngho; Ji, Jae-Hoon; Sid, Amy; Ramakrishnan, Sreejith; Ira, Grzegorz; Malkova, Anna; Sung, Patrick; Lee, Sang Eun; Shim, Eun Yong

    2011-10-01

    Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.

  20. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Moller, P.; Wallin, H.; Vogel, U.;

    2002-01-01

    The contribution of oxidative stress, different types of DNA damage and expression of DNA repair enzymes in colon and liver mutagenesis induced by 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) was investigated in four groups of six Big Blue rats fed diets with 0, 20, 70, and 200 mg IQ/kg for 3...

  1. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue Rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Håkan; Vogel, Ulla;

    2002-01-01

    The contribution of oxidative stress, different types of DNA damage and expression of DNA repair enzymes in colon and liver mutagenesis induced by 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) was investigated in four groups of six Big Blue rats fed diets with 0, 20, 70, and 200 mg IQ/kg for 3...

  2. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  3. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  4. The ca. 350 Ma Beja Igneous Complex: A record of transcurrent slab break-off in the Southern Iberia Variscan Belt?

    Science.gov (United States)

    Pin, Christian; Fonseca, Paulo E.; Paquette, Jean-Louis; Castro, Paulo; Matte, Philippe

    2008-12-01

    We report the results of an isotopic study of the large gabbro-dioritic Beja Igneous Complex (BIC) in the boundary between the highly contrasting Ossa-Morena (OM) and South Portuguese (SP) Zones of the Southern Iberian Variscan orogen. This boundary is interpreted as a major suture zone materialized by discontinuous, scattered strips of mafic/ultramafic rocks (the so-called Beja-Acebuches ophiolite complex, BAOC), and by mélange deposits of Middle to Late Devonian age in the Pulo do Lobo accretionary prism (PLAP). The Beja gabbro was interpreted either as part of the ophiolite-like units, or as a broadly arc-related massif reflecting the northward subduction of oceanic lithosphere. U-Pb zircon (ID-TIMS) dating of two diorites and a granodiorite points to igneous emplacement ages of 350 ± 2 Ma (Serpa), 352 ± 2 Ma (Torrão), and 353 ± 4 Ma (São Pedro), respectively, whereas a felsic dyke yields a slightly younger age of 345 ± 2 Ma. These results show that published Ar/Ar dates do not represent igneous crystallization ages, but merely reflect regional cooling below ca. 500 °C, at least 10 Ma after the major intrusive event, probably as a result of uplift of the OMZ side of the suture zone relative to the subsiding SPZ. 87Sr/ 86Sr 350 and ɛNd 350 display a large range of values (from 0.7041 to 0.7093 and from + 4.0 to - 6.1, respectively) which documents a rather complex petrogenetic history, with an important role played by crustal contamination processes. The more primitive Sr and Nd isotope signatures are measured in the mafic cumulates, while radiogenic Sr and unradiogenic Nd isotope compositions occur in the more evolved rock-types. The broad trend of decreasing ɛNd 350 with decreasing Sm/Nd and increasing SiO 2 concentration is reminiscent of crustal assimilation combined with fractional assimilation (AFC). ɛNd values of flasergabbros and associated cumulates ascribed to the ophiolite-like unit in the Guadiana valley are close to zero or even slightly

  5. Statistical Dependence of Pipe Breaks on Explanatory Variables

    Directory of Open Access Journals (Sweden)

    Patricia Gómez-Martínez

    2017-02-01

    Full Text Available Aging infrastructure is the main challenge currently faced by water suppliers. Estimation of assets lifetime requires reliable criteria to plan assets repair and renewal strategies. To do so, pipe break prediction is one of the most important inputs. This paper analyzes the statistical dependence of pipe breaks on explanatory variables, determining their optimal combination and quantifying their influence on failure prediction accuracy. A large set of registered data from Madrid water supply network, managed by Canal de Isabel II, has been filtered, classified and studied. Several statistical Bayesian models have been built and validated from the available information with a technique that combines reference periods of time as well as geographical location. Statistical models of increasing complexity are built from zero up to five explanatory variables following two approaches: a set of independent variables or a combination of two joint variables plus an additional number of independent variables. With the aim of finding the variable combination that provides the most accurate prediction, models are compared following an objective validation procedure based on the model skill to predict the number of pipe breaks in a large set of geographical locations. As expected, model performance improves as the number of explanatory variables increases. However, the rate of improvement is not constant. Performance metrics improve significantly up to three variables, but the tendency is softened for higher order models, especially in trunk mains where performance is reduced. Slight differences are found between trunk mains and distribution lines when selecting the most influent variables and models.

  6. Application of Skin Flap to the Complex Wound Repair%皮瓣在修复重建复杂创面中的应用

    Institute of Scientific and Technical Information of China (English)

    陈文斌; 朱晓; 刘志安

    2013-01-01

    目的:探讨皮瓣在修复重建复杂创面中的应用。方法:自1997年7月至2012年8月,应用游离皮瓣、带血管蒂岛状皮瓣修复20例因肿瘤或外伤形成的复杂性创面,创面有重要组织外露或功能部位,缺损最大约13cm×35cm最小10cm×20cm,切取相应的大小的皮瓣覆盖创面,继发性创面直接缝合或以植断层皮片覆盖。结果:20例患者皮瓣全部成活,修复后的形态自然、功能恢复程度良好,随访1个月到2年余形态自然。结论:对于复杂的创面修复,术前精心设计、针对每个患者的创面的特点,具体问题,具体分析,选择适合的皮瓣可以最大程度地修复创面,形态和功能都能得到很好的满足。%Objective To study the application of skin flap to the complex wound repair. Method Free or island skin flap were used to repair 20 cases with complex wound which resulted from trauma or tumor,and were characterized by the exposure of important tissue or locating in function area. The maxim of the defect area was 13cm×35cm,and the minimum of the area was 10cm×20cm. The skin flap of the same size was cut off to cover the atea,while the secondary defect was cured by direct suture or skin graft. Result All the skin flap of 20 cases survived completely,with natural structure and good function. After 1 month to 2 years of follow-up, it still showed a natural appearance. Conclusion The complex wound can be repaired well both in appearance and function after careful operation-designing and appropriate flap-selecting according to the characteristics of each wound.

  7. Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria.

    Science.gov (United States)

    Inam, Edu; Ibanga, Felicia; Essien, Joseph

    2016-12-01

    Using gas chromatography-mass spectrometry and an incremental lifetime cancer risks (ILCRs) assessment model, the bioaccumulation and cancer risk of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables (Vernonia amygdalina and Lasianthera africanum) grown in soils within an automobile repair complex environment in Uyo, Nigeria was studied. The total PAHs concentrations recorded for soils ranged from 0.02 to 1.77 mg/kg. The highest level of 1.77 mg/kg was recorded for soils from the main automobile repair complex (site 1). Low molecular weight (LMW) PAHs were predominant although some high molecular weight (HMW) PAHs suites (0.04 mg/kg of chrysene and 0.04 of benzo[k]fluoranthene) were also found in site 1. The leafy vegetables accumulated PAHs were mostly LMW. Accumulation levels were similar but the extent of PAH uptake in vegetables was species dependent as V. amygdalina accumulated more (0.81 mg/kg). The bioaccumulation factors (BaFs) calculated ranged from 0.22 to 0.63 for L. africanum, and 0.18 to 0.55 for V. amygdalina in site 1 where high PAH levels were recorded in soil. Pearson correlation coefficient analysis revealed a strong positive relation between the PAH content of soil and the amount accumulated by L. africanum (r = 0.5) and V. amygdalina (r = 0.8) at p = 0.05. The vegetable's potential to bioaccumulate PAHs is indicative of their use as good bioindicators for PAH contamination in soil. Only two of the USEPA possible human carcinogenic PAHs were detected, and carcinogenic risk assessment based on occupational exposures to soil particles by adults revealed that the total risk level (7.17 × 10(-5)) contribution from incidental soil ingestion, dermal contact, and soil particle dust inhalation slightly exceed the USEPA acceptable limits (automobile repair complexes across Nigeria.

  8. H4K20me0 marks post-replicative chromatin and recruits the TONSL₋MMS22L DNA repair complex

    Energy Technology Data Exchange (ETDEWEB)

    Saredi, Giulia; Huang, Hongda; Hammond, Colin M.; Alabert, Constance; Bekker-Jensen, Simon; Forne, Ignasi; Reverón-Gómez, Nazaret; Foster, Benjamin M.; Mlejnkova, Lucie; Bartke, Till; Cejka, Petr; Mailand, Niels; Imhof, Axel; Patel, Dinshaw J.; Groth, Anja [UCopenhagen; (MSKCC); (ICL); (LMU); (Zurich)

    2016-06-22

    Here, we report that after DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. In this paper we reveal that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL–MMS22L1, 2, 3, 4 homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific to new histones incorporated during DNA replication and mark post-replicative chromatin until the G2/M phase of the cell cycle. Accordingly, TONSL–MMS22L binds new histones H3–H4 both before and after incorporation into nucleosomes, remaining on replicated chromatin until late G2/M. H4K20me0 recognition is required for TONSL–MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Finally, together, these data reveal a histone-reader-based mechanism for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy.

  9. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  10. An Injectable Complex of β-tricalcium Phosphate Granules, Hyaluronate, and rhFGF-2 on Repair of Long-bone Fractures with Large Fragments.

    Science.gov (United States)

    Tanaka, T; Kumagae, Y; Chazono, M; Komaki, H; Kitasato, S; Kakuta, A; Marumo, K

    2014-01-01

    We evaluated the effects of an injectable complex of β-tricalcium phosphate (β-TCP) granules, hyaluronate, and recombinant human fibroblast growth factor-2 (rhFGF-2) on repair of unstable intertrochanteric fractures in elderly patients. Twenty-five patients (range, 76-91 years) having 31.A2 fractures (AO classification) were treated with injection of the complex followed by intramedullary nails. Bone regeneration and β-TCP resorption, unions of intertrochanteric fractures and displaced lesser trochanters to the shaft, and varus deformity of the femoral neck were assessed by X-ray and CT scans. Fracture union occurred in all cases and union of the displaced lesser trochanter to the shaft was obtained in 24 cases by 12 weeks. It is of interest that β-TCP granules were completely resorbed and marked new bone formation around the lesser trochanter was observed in all cases compared to cases not treated with the complex. Based on the results of intertrochanteric fractures, we applied this technique to two patients with subtrochanteric or humeral fractures in elderly patients, and obtained bone union. This complex is a paste-like material that is easy to handle, and it may be of considerable use in treatment of both unstable intertrochanteric fractures and other cortical bone defects with minimal surgical invasion.

  11. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality.

    Science.gov (United States)

    Taleei, Reza; Girard, Peter M; Nikjoo, Hooshang

    2015-02-01

    The purpose of this work is to test the hypothesis that kinetics of double strand breaks (DSB) repair is governed by complexity of DSB. To test the hypothesis we used our recent published mechanistic mathematical model of DSB repair for DSB induced by selected protons, deuterons, and helium ions of different energies representing radiations of different qualities. In light of recent advances in experimental and computational techniques, the most appropriate method to study cellular responses in radiation therapy, and exposures to low doses of ionizing radiations is using mechanistic approaches. To this end, we proposed a 'bottom-up' approach to study cellular response that starts with the DNA damage. Monte Carlo track structure method was employed to simulate initial damage induced in the genomic DNA by direct and indirect effects. Among the different types of DNA damage, DSB are known to be induced in simple and complex forms. The DSB repair model in G1 and early S phases of the cell cycle was employed to calculate the repair kinetics. The model considers the repair of simple and complex DSB, and the DSB produced in the heterochromatin. The inverse sampling method was used to calculate the repair kinetics for each individual DSB. The overall repair kinetics for 500 DSB induced by single tracks of the radiation under test were compared with experimental results. The results show that the model is capable of predicting the repair kinetics for the DSB induced by radiations of different qualities within an accepted range of uncertainty.

  12. Abrupt two-step and symmetry breaking spin crossover in an iron(III) complex: an exceptionally wide [LS-HS] plateau.

    Science.gov (United States)

    Harding, David J; Phonsri, Wasinee; Harding, Phimphaka; Murray, Keith S; Moubaraki, Boujemaa; Jameson, Guy N L

    2015-09-14

    [Fe(qsal-Br)2]NO3·2MeOH is reported which undergoes abrupt two step symmetry breaking spin crossover, T½(1st step) = 136 K and T½(2nd step) = 232 K with a hysteresis of 16 K and 5 K, respectively, and an unprecedented [HS-LS] plateau of 96 K.

  13. Bladder exstrophy repair

    Science.gov (United States)

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... Bladder exstrophy repair involves two surgeries. The first surgery is to repair the bladder and the second one is to attach ...

  14. Mismatch-mediated error prone repair at the immunoglobulin genes.

    Science.gov (United States)

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  15. H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex

    DEFF Research Database (Denmark)

    Saredi, Giulia; Huang, Hongda; Hammond, Colin M;

    2016-01-01

    that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL–MMS22L homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific...... is required for TONSL–MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Together, these data reveal a histone-reader-based mechanism...... for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy....

  16. Code breaking in the pacific

    CERN Document Server

    Donovan, Peter

    2014-01-01

    Covers the historical context and the evolution of the technically complex Allied Signals Intelligence (Sigint) activity against Japan from 1920 to 1945 Describes, explains and analyzes the code breaking techniques developed during the war in the Pacific Exposes the blunders (in code construction and use) made by the Japanese Navy that led to significant US Naval victories

  17. A PALB2-interacting domain in RNF168 couples homologous recombination to DNA break-induced chromatin ubiquitylation

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Typas, Dimitris; Caron, Marie-Christine

    2017-01-01

    DNA double-strand breaks (DSB) elicit a ubiquitylation cascade that controls DNA repair pathway choice. This cascade involves the ubiquitylation of histone H2A by the RNF168 ligase and the subsequent recruitment of RIF1, which suppresses homologous recombination (HR) in G1 cells. The RIF1-dependent...... recognizes histone ubiquitylation by physically associating with ubiquitin-bound RNF168. This direct interaction is mediated by the newly identified PALB2-interacting domain (PID) in RNF168 and the WD40 domain in PALB2, and drives DNA repair by facilitating the assembly of PALB2-containing HR complexes...... at DSBs. Our findings demonstrate that RNF168 couples PALB2-dependent HR to H2A ubiquitylation to promote DNA repair and preserve genome integrity....

  18. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Muralidhar L Hegde; Tapas K Hazra; Sankar Mitra

    2008-01-01

    Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEl, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E.coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate ter-mini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APEl. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.

  19. Recognition of double strand breaks by a mutator protein (MU2 in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raghuvar Dronamraju

    2009-05-01

    Full Text Available Telomere capture, a rare event that stabilizes chromosome breaks, is associated with certain genetic abnormalities in humans. Studies pertaining to the generation, maintenance, and biological effects of telomere formation are limited in metazoans. A mutation, mu2(a, in Drosophila melanogaster decreases the rate of repair of double strand DNA breaks in oocytes, thus leading to chromosomes that have lost a natural telomere and gained a new telomere. Amino acid sequence, domain architecture, and protein interactions suggest that MU2 is an ortholog of human MDC1. The MU2 protein is a component of meiotic recombination foci and localizes to repair foci in S2 cells after irradiation in a manner similar to that of phosphorylated histone variant H2Av. Domain searches indicated that the protein contains an N-terminal FHA domain and a C-terminal tandem BRCT domain. Peptide pull-down studies showed that the BRCT domain interacts with phosphorylated H2Av, while the FHA domain interacts with the complex of MRE11, RAD50, and NBS. A frameshift mutation that eliminates the MU2 BRCT domain decreases the number and size of meiotic phospho-H2Av foci. MU2 is also required for the intra-S checkpoint in eye-antennal imaginal discs. MU2 participates at an early stage in the recognition of DNA damage at a step that is prerequisite for both DNA repair and cell cycle checkpoint control. We propose a model suggesting that neotelomeres may arise when radiation-induced chromosome breaks fail to be repaired, fail to arrest progression through meiosis, and are deposited in the zygote, where cell cycle control is absent and rapid rounds of replication and telomere formation ensue.

  20. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair

    DEFF Research Database (Denmark)

    Kanu, N.; Grönroos, E.; Martinez, P.;

    2015-01-01

    proteins minichromosome maintenance complex component (MCM7) and DNA polymerase δ hindering replication fork progression, and failure to load lens epithelium-derived growth factor and the Rad51 homologous recombination repair factor at DNA breaks. Consistent with these data, we observe chromosomal......, suppression of replication stress and the coordination of DNA repair.......-of-function through an integrated bioinformatics and functional genomics approach. We find that bi-allelic SETD2 aberrations are not associated with microsatellite instability in ccRCC. SETD2 depletion in ccRCC cells revealed aberrant and reduced nucleosome compaction and chromatin association of the key replication...

  1. Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end-joining (NHEJ) independent of downstream damage response (DDR) pathways.

    Science.gov (United States)

    Sears, Catherine R; Turchi, John J

    2012-07-13

    The treatment for advanced stage non-small cell lung cancer (NSCLC) often includes platinum-based chemotherapy and IR. Cisplatin and IR combination therapy display schedule and dose-dependent synergy, the mechanism of which is not completely understood. In a series of in vitro and cell culture assays in a NSCLC model, we investigated both the downstream and direct treatment and damage effects of cisplatin on NHEJ catalyzed repair of a DNA DSB. The results demonstrate that extracts prepared from cisplatin-treated cells are fully capable of NHEJ catalyzed repair of a DSB using a non-cisplatin-damaged DNA substrate in vitro. Similarly, using two different host cell reactivation assays, treatment of cells prior to transfection of a linear, undamaged reporter plasmid revealed no reduction in NHEJ compared with untreated cells. In contrast, transfection of a linear GFP-reporter plasmid containing site-specific, cisplatin lesions 6-bp from the termini revealed a significant impairment in DSB repair of the cisplatin-damaged DNA substrates in the absence of cellular treatment with cisplatin. Together, these data demonstrate that impaired NHEJ in combined cisplatin-IR treated cells is likely the result of a direct effect of cisplatin-DNA lesions near a DSB and that the indirect cellular effects of cisplatin treatment are not significant contributors to the synergistic cytotoxicity observed with combination cisplatin-IR treatment.

  2. Radiation sensitivity of the gastrula-stage embryo: Chromosome aberrations and mutation induction in lacZ transgenic mice: The roles of DNA double-strand break repair systems.

    Science.gov (United States)

    Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah

    2015-10-01

    At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including

  3. Tribute to dr louis keith: twin and physician extraordinaire/twin research reports: influences on asthma severity; chimerism revisited; DNA strand break repair/media reports: twins born apart; elevated twin frequencies; celebrity father of twins; conjoined twinning.

    Science.gov (United States)

    Segal, Nancy L

    2014-10-01

    The International Society for Twin Studies has lost a valued friend and colleague. Dr Louis Keith, Emeritus Professor of Obstetrics and Gynecology at Northwestern University, in Chicago, passed away on Sunday, July 6, 2014. His life and work with twins will be acknowledged at the November 2014 International Twin Congress in Budapest, Hungary. Next, twin research reports on the severity of asthma symptoms, a case of chimerism, and factors affecting DNA breakage and repair mechanisms are reviewed. Media reports cover twins born apart, elevated twin frequencies, a celebrity father of twins, and a family's decision to keep conjoined twins together.

  4. Conservation and Specificity of DNA Double-strand Break Repair in Plants%植物DNA双链断裂修复的保守性和特异性

    Institute of Scientific and Technical Information of China (English)

    唐丽; 李美茹; 李洪清

    2006-01-01

    文章概述了植物DNA双链断裂(double-strand break,DSB)修复的研究进展.从酵母、脊椎动物、植物在此领域已取得的成果来看,真核生物DSB修复在过程和参与蛋白方面均有一定的进化保守性;另一方面,植物的DSB修复有其特异之处.

  5. DNA ligase I and Nbs1 proteins associate in a complex and colocalize at replication factories.

    Science.gov (United States)

    Vago, Riccardo; Leva, Valentina; Biamonti, Giuseppe; Montecucco, Alessandra

    2009-08-15

    DNA ligase I is the main DNA ligase activity involved in eukaryotic DNA replication acting in the joining of Okazaki fragments. This enzyme is also implicated in nucleotide excision repair and in the long-patch base excision repair while its role in the recombinational repair pathways is poorly understood. DNA ligase I is phosphorylated during cell cycle at several serine and threonine residues that regulate its participation in different DNA transactions by modulating the interaction with different protein partners. Here we use an antibody-based array method to identify novel DNA ligase-interacting partners. We show that DNA ligase I participates in several multiprotein complexes with proteins involved in DNA replication and repair, cell cycle control, and protein modification. In particular we demonstrate that DNA ligase I complexes with Nbs1, a core component of the MRN complex critical for detection, processing and repair of double-stranded DNA breaks. The analysis of epitope tagged DNA ligase I mutants demonstrates that the association is mediated by the catalytic fragment of the enzyme. DNA ligase I and Nbs1 colocalize at replication factories during unperturbed replication and after treatment with DNA damaging agents. Since MRN complex is involved in the repair of double-stranded DNA breaks by homologous recombination at stalled replication forks our data support the notion that DNA ligase I participates in homology dependent pathways that deal with replication-associated lesions generated when replication fork encounters DNA damage.

  6. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; Sunjevaric, Ivana; De Piccoli, Giacomo;

    2007-01-01

    at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause r...

  7. Recognition and Repair of Communicative Failures: The Interaction between Theory of Mind and Cognitive Complexity in Schizophrenic Patients

    Science.gov (United States)

    Bosco, Francesca M.; Bono, Adele; Bara, Bruno G.

    2012-01-01

    The aim of the present research is to perform a detailed and empirical investigation of schizophrenia patients' deficits in recognizing and recovering a communicative failure. In particular, this paper investigates the role of Theory of Mind (ToM) and of the complexity of the mental representations involved in explaining patients' deficits in…

  8. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair.

    Science.gov (United States)

    Morrison, Ashby J; Highland, Jessica; Krogan, Nevan J; Arbel-Eden, Ayelet; Greenblatt, Jack F; Haber, James E; Shen, Xuetong

    2004-12-17

    While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.

  9. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  10. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...

  11. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  12. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  13. The new base excision repair pathway in mammals mediated by tyrosyl-DNA-phosphodiesterase 1

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Human tyrosyl-DNA phosphodiesterase 1 (Tdp1 hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety and has been implicated in the repair of Topoisomerase I (TopI-DNA covalent complexes. Tdp1 can also hydrolyze other 3' end DNA alterations including 3' phosphoglycolate and 3' abasic (AP sites, and exhibits the 3' nucleosidase activity indicating that it may function as a general 3' end-processing DNA repair enzyme. Recently we have shown a new Tdp1 activity generating DNA strand break with the 3' phosphate termini from the AP site. AP sites are formed spontaneously and are inevitable intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic, and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair, initiated by DNA glycosylases performing beta, delta-elimination cleavage of the AP sites, has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites that is initiated by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap.

  14. Hsp90: A New Player in DNA Repair?

    Directory of Open Access Journals (Sweden)

    Rosa Pennisi

    2015-10-01

    Full Text Available Heat shock protein 90 (Hsp90 is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis, transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR pathways that include: (i cell cycle arrest; (ii transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.

  15. A Stylistic Analysis of Break,Break,Break

    Institute of Scientific and Technical Information of China (English)

    李瑶

    2015-01-01

    Break, Break, Break is a poem by Alfred Lord Tennyson, the Poet Laureate during the Queen Victoria's reign. This exquisite little poem is wel known for the poet's grief-stricken feelings and heart-broken emotions over the premature death of his best friend, Arthur Henry Halam. Most of the previous studies on this poem focus on the emotional level to consider it as an elegy, expressing sorrow and lamentation for the death of a particular person. However, in order to have a deep understanding in general, this paper analyzes the poem based on the stylistic theory, concerning on the lexical level and the semantic level. It aims at helping the readers to cultivate a sense of appropriateness, to sharpen the understanding and appreciation of literary works and to achieve adaptation in translation.

  16. Breaking Wave Characteristics and Breaking Wave Forces on Slender Cylinders

    OpenAIRE

    Chella, Mayilvahanan Alagan

    2016-01-01

    Offshore wind farms have become an increasingly important source of clean and renewable energy. Most recent offshore wind farms are deployed close to the coast in shallow waters. One of the major factors influencing the initial investment of this technology is the design of the substructure and foundation. The physical processes associated with the non-linear shallow water hydrodynamics are rather complex since the wave motion is strongly influenced by the seabed. Breaking wave...

  17. The cerebro-oculo-facio-skeletal syndrome point mutation F231L in the ERCC1 DNA repair protein causes dissociation of the ERCC1-XPF complex

    NARCIS (Netherlands)

    M. Faridounnia (Maryam); H. Wienk (Hans); L. Kovačič (Lidija); G.E. Folkers (Gert); N.G.J. Jaspers (Nicolaas); R. Kaptein (Robert); J.H.J. Hoeijmakers (Jan); R. Boelens (Rolf)

    2015-01-01

    textabstractThe ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and

  18. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  19. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.

    Science.gov (United States)

    Hegde, Pavana M; Dutta, Arijit; Sengupta, Shiladitya; Mitra, Joy; Adhikari, Sanjay; Tomkinson, Alan E; Li, Guo-Min; Boldogh, Istvan; Hazra, Tapas K; Mitra, Sankar; Hegde, Muralidhar L

    2015-08-21

    The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.

  20. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  1. 儿童复杂跟腱缺损的修复重建%Repair of Complex Achilles Tendon Defect in Children

    Institute of Scientific and Technical Information of China (English)

    王季; 蔡锦方; 王建超; 李宗玉; 曹学成; 张继党

    2016-01-01

    Objective To observe the clinical effect of peroneal artery perforator flap combined gastrocnemius aponeurosis on repairing complex Achilles tendon defect in Children. Methods Between October 2009and December 2014,12 cases of complex Achilles tendon defects in children were repaired with peroneal artery perforator flap combined gastrocnemius aponeu-rosis. 5 cases were fresh injury,7 cases were old defects. The size of the wounds ranged from 22 cm2 to 64 cm2 . The length of tendon defect ranged from 3. 5 cm to 7. 0 cm. The clinical outcome was evaluated by Ankle joint dynamic degree,AOFAS score and SF36 score before and after operation. Results 8 cases were primary healed. 2 cases with skin necrosis and 2 cases with donor site necrosis. 1 cases experience recurrent infection. The plantar extension at 1 year was significantly better than that at 3 months after operation and pre-operation. The dorsal extension at 1 year was significantly better than that at 3 months after op-eration,but no significant difference was found between at 1 year and pre-operation. The AOFAS score and SF36 score at 1 year after operation were significantly larger than those at 3 months after operation and pre-operation. Conclusion Peroneal artery perforator flap with gastrocnemius aponeurosis is an ideal repair method in repairing complex achilles tendon defect in Chil-dren.%目的:了解应用带腓肠肌腱膜的腓动脉穿支皮瓣修复儿童复杂跟腱缺损的效果。方法2009年10月至2014年12月收治儿童复杂跟腱缺损12例,采用带腓肠肌腱膜的腓动脉穿支皮瓣进行修复。其中男7例,女5例;年龄3~13岁。车辆轮辐伤8例,砸伤2例,挤压伤1例,交通事故伤1例。5例为新鲜缺损,7例为陈旧性缺损。皮肤缺损范围22~64 cm2,跟腱缺损长度3.5~7.0 cm。统计手术前后踝关节动度、AOFAS 评分、SF36评分,对疗效进行评价。结果一期愈合8例,皮瓣表皮坏死2例,皮瓣远端坏死1

  2. Femoral hernia repair

    Science.gov (United States)

    Femorocele repair; Herniorrhaphy; Hernioplasty - femoral ... During surgery to repair the hernia, the bulging tissue is pushed back in. The weakened area is sewn closed or strengthened. This repair ...

  3. Undescended testicle repair

    Science.gov (United States)

    Orchidopexy; Inguinal orchidopexy; Orchiopexy; Repair of undescended testicle; Cryptorchidism repair ... first year of life without treatment. Undescended testicle repair surgery is recommended for patients whose testicles do ...

  4. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins.

    Science.gov (United States)

    Lisby, Michael; Barlow, Jacqueline H; Burgess, Rebecca C; Rothstein, Rodney

    2004-09-17

    DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting and processing DNA ends in conjunction with Sae2 and by RP-A recognizing single-stranded DNA and recruiting additional checkpoint and repair proteins.

  5. Exonuclease 1 and its versatile roles in DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Liu, Dekang; Rasmussen, Lene Juel

    2016-01-01

    Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin...

  6. Aortic aneurysm repair - endovascular

    Science.gov (United States)

    EVAR; Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... Endovascular aortic repair is done because your aneurysm is very large, growing quickly, or is leaking or bleeding. You may have ...

  7. Intestinal obstruction repair

    Science.gov (United States)

    Repair of volvulus; Intestinal volvulus - repair; Bowel obstruction - repair ... Intestinal obstruction repair is done while you are under general anesthesia . This means you are asleep and DO NOT feel pain. ...

  8. Changes in DNA repair during aging

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei; Mao, Zhiyong; Hine, Christpher

    2007-01-01

    DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old. PMID:17913742

  9. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  10. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  11. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  12. Checkpoint adaptation and recovery: back with Polo after the break

    NARCIS (Netherlands)

    Vugt, M.A.T.M. van; Medema, R.H.

    2004-01-01

    S. cerevisiae cells that are unable to repair a double strand break ultimately escape the DNA damage checkpoint arrest and enter mitosis. This process called 'adaptation' depends on functional Cdc5, a Polo-like kinase, and was long thought to be limited to single-cell organisms. However, the recent

  13. Checkpoint adaptation and recovery : back with Polo after the break

    NARCIS (Netherlands)

    van Vugt, Marcel A T M; Medema, René H

    2004-01-01

    S. cerevisiae cells that are unable to repair a double strand break ultimately escape the DNA damage checkpoint arrest and enter mitosis. This process called 'adaptation' depends on functional Cdc5, a Polo-like kinase, and was long thought to be limited to single-cell organisms. However, the recent

  14. Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells.

    Science.gov (United States)

    Bindra, Ranjit S; Goglia, Alexander G; Jasin, Maria; Powell, Simon N

    2013-06-01

    Double-strand break (DSB) repair pathways are critical for the maintenance of genomic integrity and the prevention of tumorigenesis in mammalian cells. Here, we present the development and validation of a novel assay to measure mutagenic non-homologous end-joining (NHEJ) repair in living cells, which is inversely related to canonical NHEJ and is based on the sequence-altering repair of a single site-specific DSB at an intrachromosomal locus. We have combined this mutagenic NHEJ assay with an established homologous recombination (HR) assay such that both pathways can be monitored simultaneously. In addition, we report the development of a ligand-responsive I-SceI protein, in which the timing and kinetics of DSB induction can be precisely controlled by regulating protein stability and cellular localization in cells. Using this system, we report that mutagenic NHEJ repair is suppressed in growth-arrested and serum-deprived cells, suggesting that end-joining activity in proliferating cells is more likely to be mutagenic. Collectively, the novel DSB repair assay and inducible I-SceI will be useful tools to further elucidate the complexities of NHEJ and HR repair.

  15. Consistency of Trend Break Point Estimator with Underspecified Break Number

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2017-01-01

    Full Text Available This paper discusses the consistency of trend break point estimators when the number of breaks is underspecified. The consistency of break point estimators in a simple location model with level shifts has been well documented by researchers under various settings, including extensions such as allowing a time trend in the model. Despite the consistency of break point estimators of level shifts, there are few papers on the consistency of trend shift break point estimators in the presence of an underspecified break number. The simulation study and asymptotic analysis in this paper show that the trend shift break point estimator does not converge to the true break points when the break number is underspecified. In the case of two trend shifts, the inconsistency problem worsens if the magnitudes of the breaks are similar and the breaks are either both positive or both negative. The limiting distribution for the trend break point estimator is developed and closely approximates the finite sample performance.

  16. Cohesin protects genes against γH2AX Induced by DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Pierre Caron

    2012-01-01

    Full Text Available Chromatin undergoes major remodeling around DNA double-strand breaks (DSB to promote repair and DNA damage response (DDR activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.

  17. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.

    Science.gov (United States)

    Aymard, François; Bugler, Beatrix; Schmidt, Christine K; Guillou, Emmanuelle; Caron, Pierre; Briois, Sébastien; Iacovoni, Jason S; Daburon, Virginie; Miller, Kyle M; Jackson, Stephen P; Legube, Gaëlle

    2014-04-01

    Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.

  18. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  19. Signalization and repair of the DNA double-strand breaks of in the cerebral tumors: modulation of the radiation response with the chemotherapy treatments; Signalization et reparation des cassures double-brin de l'ADN dans les gliomes: modulation de la reponse aux traitements chimio-radiotherapeutiques

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkova-Bencokova, Z

    2007-07-15

    There are about 6000 new cases of nervous system tumours each year in France. However, the current radio chemotherapeutic approaches against brain tumours remain still insufficient to produce a satisfactory therapeutic index. In parallel, the knowledge of the early radiobiological events has considerably progressed in the last few years. This thesis aims to provide new insights in the molecular and cellular response of brain tumours to radio chemotherapy. This thesis was divided into four stages. Stage 1: a novel DNA double-strand breaks repair pathway depending on the MRE11 protein but independent of the phosphorylation of H2AX emerged from the study of artefacts of the immunofluorescence technique and a systematic analysis of the radiosensitivity of human cells. Stage 2: the radiobiological features of 3 rodent models of glioma among the most used in preclinical trials and of 7 human glioma cell lines were investigated. Functional impairments of the BRCA1 protein in response to radiation and/or cisplatin were observed in the majority of the models tested, raising the question of the role of this protein in the anti-glioma treatments and in glioma genesis. Stage 3: in order to extend our approach to genetic syndromes associated with cerebral tumours predisposition, the radiobiological characteristics of the fibroblasts resulting from patients suffering from neurofibromatosis type 1 (NF1), a pathology associated with a strong incidence of peripheral nervous system tumours, were investigated. NF1 appeared to be a syndrome with moderated radiosensitivity, associated with a weak deficiency of DNA end-joining repair but with a strong activity of MRE11. These results enabled us to propose a preliminary model involving both proteins BRCA1 and NF1. Stage 4: considering the role of BRCA1 in the inhibition of some tyrosine kinase activity and in the response to cisplatin, we tested the radiobiological effects of treatments combining radiation, cisplatin and tyrosine kinase

  20. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  1. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  2. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  3. Local Morphological Response of the Distal Femoral Articular–Epiphyseal Cartilage Complex of Young Foals to Surgical Stab Incision and Potential Relevance to Cartilage Injury and Repair in Children

    Science.gov (United States)

    Hendrickson, Eli H.S.; Ekman, Stina; Carlson, Cathy S.; Dolvik, Nils I.

    2013-01-01

    Objective: Describe the local morphological response of the articular–epiphyseal cartilage complex to surgical stab incision in the distal femur of foals, with emphasis on the relationship between growth cartilage injury, enchondral ossification, and repair. Design: Nine foals were induced into general anesthesia at the age of 13 to 15 days. Four full-thickness stab incision defects were created in the cartilage on the lateral aspect of the lateral trochlear ridge of the left distal femur. Follow-up examination was carried out from 1 to 49 days postoperatively, including examination of intact bones, sawed slabs, and histological sections. Results: Incision defects filled with cells displaying fibroblast-, chondrocyte-, and osteoblast-like characteristics, potentially validating the rationale behind the drilling of stable juvenile osteochondritis dissecans lesions in children. Incisions induced necrosis within the cartilage on the margins at all depths of the defects. Sharp dissection may therefore be contraindicated in cartilage repair in young individuals. Incisions caused a focal delay in enchondral ossification in 2 foals, apparently related to the orientation of the incision defect relative to the direction of ossification. Defects became progressively surrounded by subchondral bone, in which granulation tissue containing clasts and foci of osteoblast-like cells was observed. Continued enchondral ossification was therefore likely to result in healing of uncomplicated defects to morphologically normal bone. Conclusions: Epiphyseal growth cartilage injury had the potential to exert a negative effect on enchondral ossification. Enchondral ossification exerted a beneficial effect on repair. This relationship warrants consideration in future studies of cartilage injury and repair within the articular–epiphyseal cartilage complex of all species. PMID:26069670

  4. Control of gene editing by manipulation of DNA repair mechanisms.

    Science.gov (United States)

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  5. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    Science.gov (United States)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with DSB induced by 56Fe ions. Vanillin, an inhibitor of DNA-PK(sub cs), reduces significantly the rate of DSB repair in HF19 cells following 1 Gy gamma

  6. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    Science.gov (United States)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with Vanillin, an inhibitor of DNA-PK(sub cs), reduces significantly the rate of DSB repair in HF19 cells following 1 Gy gamma-radiation but at 0.25 Gy gamma

  7. Calculation of Minimum Break Point Set for Multi-area Complex Loop Network of Power System%电力系统多区域复杂环网的最小断点集计算

    Institute of Scientific and Technical Information of China (English)

    马静; 叶东华; 王彤; 王增平; 陈晓芳

    2011-01-01

    为从根本上改善最小断点集(minimum break point set,MBPS)适应系统结构非预设性变化的水平,提出多区域复杂环网最小断点集求取及更新算法。在静态网络拓扑情况下,利用保护关联矩阵并行计算各子区域的最小断点集,在此基础上,优化计算主区域的最小断点集,并据此确定全州最小断点集。在网络变结构的情况下,基于广义断点集提出单区域最小断点集更新方案,并将其推广至多区域网络,存主区域、子区域及单线路联络节点发生变结构情况下,快速更新最小断点集。典型的5区域68节点系统计算结果表明:该方法在最小断点集求取方面,不但能够保证全网断点数目合理,还能提高最小断点集的计算速度;在最小断点集更新方面,该方法仅需处理变结构所关联区域的最小断点集,即可实现全网最小断点集更新,有效地降低了复杂环网最小断点集更新的复杂性,计算量小,适用于多种网络变结构情况。%In order to basically improve the minimum break point set (MBPS) to adapt to the non-predictive change level of system structure, a novel scheme of calculating and updating the MBPS for multi-area complex loop network was proposed in this paper. According to static network topology, the MBPSs of sub-area are parallel calculated based on the relay-incidence matrix. Then, the optimization calculation for the MBPS of main-area is calculated and the final MBPS of the whole network is obtained. When the network topology is varied, a single-area MBPS updating algorithm was firstly proposed based on the generalized break point set. Then the method was applied to rapidly update MBPS in the multi-area when the network topology of the sub-area, main-area or single-line connection node is varied. The typical test system with 5-area, 68-bus study demonstrates the proposed method has the following advantages. In the aspect

  8. Interleukin-13 receptor isoforms: breaking through the complexity%白介素13受体及其亚型研究新进展

    Institute of Scientific and Technical Information of China (English)

    蔡累; 宋爱玲; 李树钧; 李志奎

    2009-01-01

    白介素13(interleukin-13,IL-13)是主要由活化的Th2细胞分泌的免疫调节因子,在过敏性炎症反应过程中起着重要的作用.其各种功能通过复杂的受体系统来完成,包括IL-4受体αa(IL-4Rα,CD124)和其他同族的两个细胞表面蛋白:IL-13受体al(IL-13Rα1,CD231α1)和IL-13受体α2(IL-13Rα2,CD231α2).在IL-13R中IL-13Rα1和IL-4Rα以同源二聚体形式存在.相反IL-13Rα2由于它的较短的胞内蛋白形式被认为是一个诱导受体.IL-13Rα2以胞膜蛋白、胞内蛋白和胞外可溶性蛋白3种形式存在.近来报道显示,膜性IL-13Rα2可能有信号转导的功能,可溶性IL-13Rα2可调节IL-13反应.可溶性受体IL-13Rα2比诱导受体有着更加复杂的功能.在这里我们将详述IL-13R的亚型并讨论IL-13Rα2功能.%Interleukin(IL)-13 is an immunoregulatory cytokine secreted predominantly by activated T-helper type 2(Th2)cells,and it has been identified as crucial factor in developing allergic inflammatory respnses.Its diverse functions are mediated by a complex receptor system including IL-4 receptor α(IL-4Rα; CD124)and two other cognate cell surface proteins,IL-13Rα1(CD231α1)and IL-13Rα2(CD231α2).IL-13Rα1 forms a heterodimer with IL-4Rα that is a signaling IL-13R.In contrast,IL-13Rα2 has been thought to be a decoy receptor due to its short cytoplasmic tail.IL-13Rα2 exists on the cell membrane,intracellularly,and in soluble form.Recent reports revealed that membrane IL-13Ra2 may have some signaling capabilities,and soluble IL-13Ra2 is a critical endogenous modulator for IL-13 responses.The receptor has more complicated functions than a simple decoy receptor.This review describes the isoforms of IL-13Rα2 and discusses newly revealed functions of IL-13Rα2.

  9. Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors.

    Science.gov (United States)

    Goglia, Alexander G; Delsite, Robert; Luz, Antonio N; Shahbazian, David; Salem, Ahmed F; Sundaram, Ranjini K; Chiaravalli, Jeanne; Hendrikx, Petrus J; Wilshire, Jennifer A; Jasin, Maria; Kluger, Harriet M; Glickman, J Fraser; Powell, Simon N; Bindra, Ranjit S

    2015-02-01

    Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.

  10. Alu elements and DNA double-strand break repair

    OpenAIRE

    White, Travis B; Morales, Maria E.; Deininger, Prescott L.

    2015-01-01

    Alu elements represent one of the most common sources of homology and homeology in the human genome. Homeologous recombination between Alu elements represents a major form of genetic instability leading to deletions and duplications. Although these types of events have been studied extensively through genomic sequencing to assess the impact of Alu elements on disease mutations and genome evolution, the overall abundance of Alu elements in the genome often makes it difficult to assess the rele...

  11. Balancing Pathways in DNA Double Strand Break Repair

    NARCIS (Netherlands)

    I. Brandsma (Inger)

    2016-01-01

    markdownabstractAll information a cell needs to live and survive is stored in the genomic DNA. Maintenance of an intact and uncompromised genome is of vital importance for cell survival. Damaged DNA can block transcription and replication, processes essential for cell viability. Persistent DNA damag

  12. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  13. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  14. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  15. Eye muscle repair - discharge

    Science.gov (United States)

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  16. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Suvi Jain

    2016-04-01

    Full Text Available Correct repair of DNA double-strand breaks (DSBs is critical for maintaining genome stability. Whereas gene conversion (GC-mediated repair is mostly error-free, repair by break-induced replication (BIR is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans compared to the case when both DSB ends come from the same break (Cis. However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the "origin" of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6.

  17. Hybrid Repair of Complex Thoracic Aortic Arch Pathology: Long-Term Outcomes of Extra-anatomic Bypass Grafting of the Supra-aortic Trunk

    Energy Technology Data Exchange (ETDEWEB)

    Lotfi, S., E-mail: shamim.lotfi@kcl.ac.uk; Clough, R. E.; Ali, T. [Guy' s and St. Thomas' NHS Trust, Vascular Surgery (United Kingdom); Salter, R. [Guy' s and St. Thomas' NHS Trust, Interventional Radiology (United Kingdom); Young, C. P. [Guy' s and St. Thomas' NHS Trust, Cardiac Surgery (United Kingdom); Bell, R.; Modarai, B.; Taylor, P., E-mail: peter.taylor@gstt.nhs.uk [Guy' s and St. Thomas' NHS Trust, Vascular Surgery (United Kingdom)

    2013-02-15

    Hybrid repair constitutes supra-aortic debranching before thoracic endovascular aortic repair (TEVAR). It offers improved short-term outcome compared with open surgery; however, longer-term studies are required to assess patient outcomes and patency of the extra-anatomic bypass grafts. A prospectively maintained database of 380 elective and urgent patients who had undergone TEVAR (1997-2011) was analyzed retrospectively. Fifty-one patients (34 males; 17 females) underwent hybrid repair. Median age was 71 (range, 18-90) years with mean follow-up of 15 (range, 0-61) months. Perioperative complications included death: 10 % (5/51), stroke: 12 % (6/51), paraplegia: 6 % (3/51), endoleak: 16 % (8/51), rupture: 4 % (2/51), upper-limb ischemia: 2 % (1/51), bypass graft occlusion: 4 % (2/51), and cardiopulmonary complications in 14 % (7/51). Three patients (6 %) required emergency intervention for retrograde dissection: (2 aortic root repairs; 2 innominate stents). Early reintervention was performed for type 1 endoleak in two patients (2 proximal cuff extensions). One patient underwent innominate stenting and revision of their bypass for symptomatic restenosis. At 48 months, survival was 73 %. Endoleak was detected in three (6 %) patients (type 1 = 2; type 2 = 1) requiring debranching with proximal stent graft (n = 2) and proximal extension cuff (n = 1). One patient had a fatal rupture of a mycotic aneurysm and two arch aneurysms expanded. No bypass graft occluded after the perioperative period. Hybrid operations to treat aortic arch disease can be performed with results comparable to open surgery. The longer-term outcomes demonstrate low rates of reintervention and high rates of graft patency.

  18. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair

    Directory of Open Access Journals (Sweden)

    Tony Gutschner

    2016-02-01

    Full Text Available CRISPR/Cas9 induces DNA double-strand breaks that are repaired by cell-autonomous repair pathways, namely, non-homologous end-joining (NHEJ, or homology-directed repair (HDR. While HDR is absent in G1, NHEJ is active throughout the cell cycle and, thus, is largely favored over HDR. We devised a strategy to increase HDR by directly synchronizing the expression of Cas9 with cell-cycle progression. Fusion of Cas9 to the N-terminal region of human Geminin converted this gene-editing protein into a substrate for the E3 ubiquitin ligase complex APC/Cdh1, resulting in a cell-cycle-tailored expression with low levels in G1 but high expression in S/G2/M. Importantly, Cas9-hGem(1/110 increased the rate of HDR by up to 87% compared to wild-type Cas9. Future developments may enable high-resolution expression of genome engineering proteins, which might increase HDR rates further, and may contribute to a better understanding of DNA repair pathways due to spatiotemporal control of DNA damage induction.

  19. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC.

    Science.gov (United States)

    Charles Richard, John Lalith; Shukla, Manu Shubhdarshan; Menoni, Hervé; Ouararhni, Khalid; Lone, Imtiaz Nisar; Roulland, Yohan; Papin, Christophe; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-07-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.

  20. Model Breaking Points Conceptualized

    Science.gov (United States)

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  1. Interference in DNA replication can cause mitotic chromosomal breakage unassociated with double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Mari Fujita

    Full Text Available Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs. We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways. Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54(-/-/KU70(-/- DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54(-/-/LIG4(-/- Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.

  2. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  3. Surgical repair of pulmonary artery branches.

    Science.gov (United States)

    Ghez, Olivier; Saeed, Imran; Serrato, Maria; Quintero, Diana Bernal; Kreitmann, Bernard; Fraisse, Alain; Uemura, Hideki; Seale, Anna; Daubeney, Piers; McCarthy, Karen; Ho, S Yen

    2013-01-01

    Surgical repair of pulmonary artery (PA) branches encompasses many different clinical scenarios and technical challenges. The most common, such as bifurcation and central PA reconstruction, are described, as well as the challenges of complex and peripheral reconstruction.

  4. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne;

    2009-01-01

    , it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA.......T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also...

  5. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing.

    OpenAIRE

    Davis, A P; Symington, L. S.

    2001-01-01

    The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeas...

  6. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1

    OpenAIRE

    Kijas, Amanda W.; Lim, Yi Chieh; Bolderson, Emma; Cerosaletti, Karen; Gatei, Magtouf; Jakob, Burkhard; Tobias, Frank; Taucher-Scholz, Gisela; Gueven, Nuri; Oakley, Greg; Concannon, Patrick; Wolvetang, Ernst; Khanna, Kum Kum; Wiesmüller, Lisa; Lavin, Martin F.

    2015-01-01

    The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the ...

  7. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest.

    Science.gov (United States)

    Niu, Yujie; Zhang, Xing; Zheng, Yuxin; Zhang, Rong

    2013-09-01

    γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.

  8. Relation of fragmented QRS complex to right ventricular fibrosis detected by late gadolinium enhancement cardiac magnetic resonance in adults with repaired tetralogy of fallot.

    Science.gov (United States)

    Park, Seung-Jung; On, Young Keun; Kim, June Soo; Park, Seung Woo; Yang, Ji-Hyuk; Jun, Tae-Gook; Kang, I-Seok; Lee, Heung Jae; Choe, Yeon Hyeon; Huh, June

    2012-01-01

    Fragmented QRS (fQRS) on 12-lead electrocardiography reflects conduction delay caused by myocardial fibrosis and dysfunction. Ventricular fibrosis detected by late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is reportedly correlated with worse clinical outcomes in adults with repaired tetralogy of Fallot (TOF). The aim of this study was to assess whether the presence of fQRS is associated with right ventricular (RV) fibrosis or dysfunction in this patient group. In 37 consecutive patients (median age 30 years, median age at repair 6.6 years), the number of leads showing fQRS, defined as the presence of >2 notches on the R/S wave in ≥2 contiguous leads, was counted. RV systolic function, dilatation, and LGE score were measured using LGE CMR. Ventricular LGE was observed mainly at the previous surgical sites: the RV outflow tract (33 of 37), ventricular septal defect patch region (15 of 37), and RV anterior wall (11 of 37). Fragmented QRS was found mostly in the right and mid precordial leads. The fQRS group (n = 20) demonstrated higher RV LGE scores (p <0.001) and lower RV ejection fractions (p = 0.02) and a trend toward larger RV end-diastolic and end-systolic volumes (p = 0.12 and p = 0.06, respectively) compared to the non-fQRS group (n = 17). The number of electrocardiographic leads showing fQRS was positively correlated with RV LGE score (r = 0.75, p <0.001). The presence of fQRS remained independently associated with the presence of supramedian RV LGE score, even after adjusting for relevant parameters. In conclusion, fQRS was closely associated with more extensive RV fibrosis and dysfunction in adults with repaired tetralogy of Fallot.

  9. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  10. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1.

    Science.gov (United States)

    Kijas, Amanda W; Lim, Yi Chieh; Bolderson, Emma; Cerosaletti, Karen; Gatei, Magtouf; Jakob, Burkhard; Tobias, Frank; Taucher-Scholz, Gisela; Gueven, Nuri; Oakley, Greg; Concannon, Patrick; Wolvetang, Ernst; Khanna, Kum Kum; Wiesmüller, Lisa; Lavin, Martin F

    2015-09-30

    The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.

  11. Breaking News as Radicalisation

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    The aim of the paper is to make explicit how the different categories are applied in the online newsroom and thus how new categories can be seen as positioning strategies in the form of radicalisations of already existing categories. Thus field theory provides us with tools to analyse how online...... journalists are using the categorisations to create hierarchies within the journalistic field in order to position themselves as specialists in what Tuchman has called developing news, aiming and striving for what today is know as breaking news and the “exclusive scoop,” as the trademark of online journalism...... provides us with the following two research questions: How does the category of breaking news fit into Tuchmans typology related to time, planning and technology? What types of stories are providing journalistic capital and how are online news stories categorised relatively within the journalistic field?...

  12. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  13. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    Energy Technology Data Exchange (ETDEWEB)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  14. Predicting appointment breaking.

    Science.gov (United States)

    Bean, A G; Talaga, J

    1995-01-01

    The goal of physician referral services is to schedule appointments, but if too many patients fail to show up, the value of the service will be compromised. The authors found that appointment breaking can be predicted by the number of days to the scheduled appointment, the doctor's specialty, and the patient's age and gender. They also offer specific suggestions for modifying the marketing mix to reduce the incidence of no-shows.

  15. Single sector supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Markus A.; Terning, John

    1999-03-18

    We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses.

  16. PCNA Modifications for Regulation of Post-Replication Repair Pathways

    OpenAIRE

    2008-01-01

    Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is ...

  17. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    Science.gov (United States)

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER.

  18. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks.

    Science.gov (United States)

    Nagaki, S; Yamamoto, M; Yumoto, Y; Shirakawa, H; Yoshida, M; Teraoka, H

    1998-05-08

    DNA ligase IV in a complex with XRCC4 is responsible for DNA end-joining in repair of DNA double-strand breaks (DSB) and V(D)J recombination. We found that non-histone chromosomal high mobility group (HMG) proteins 1 and 2 enhanced the ligation of linearized pUC119 DNA with DNA ligase IV from rat liver nuclear extract. Intra-molecular and inter-molecular ligations of cohesive-ended and blunt-ended DNA were markedly stimulated by HMG1 and 2. Recombinant HMG2-domain A, B, and (A + B) polypeptides were similarly, but non-identically, effective for the stimulation of DSB ligation reaction. Ligation of single-strand breaks (nicks) was only slightly activated by the HMG proteins. The DNA end-binding Ku protein singly or in combination with the catalytic component of DNA-dependent protein kinase (DNA-PK) as the DNA-PK holoenzyme was ineffective for the ligation of linearized pUC119 DNA. Although the stimulatory effect of HMG1 and 2 on ligation of DSB in vitro was not specific to DNA ligase IV, these results suggest that HMG1 and 2 are involved in the final ligation step in DNA end-joining processes of DSB repair and V(D)J recombination.

  19. DNA repair. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals. (HLW)

  20. Assessment of Human DNA Repair (NER) Capacity With DNA Repair Rate (DRR) by Comet Assay

    Institute of Scientific and Technical Information of China (English)

    WEI ZHENG; JI-LIANG HE; LI-FEN JIN; JIAN-LIN LOU; BAO-HONG WANG

    2005-01-01

    Objective Alkaline comet assay was used to evaluate DNA repair (nucleotide excision repair, NER) capacity of human fresh lymphocytes from 12 young healthy non-smokers (6 males and 6 females). Methods Lymphocytes were exposed to UV-C (254 nm) at the dose rate of 1.5 J/m2/sec. Novobiocin (NOV) and aphidicolin (APC), DNA repair inhibitors, were utilized to imitate the deficiency of DNA repair capacity at the incision and ligation steps of NER. Lymphocytes from each donor were divided into three grougs: UVC group, UVC plus NOV group, and UVC plus APC group. DNA single strand breaks were detected in UVC irradiated cells incubated for 0, 30, 60, 90, 120, 180, and 240 min after UVC irradiation. DNA repair rate (DRR) served as an indicator of DNA repair capacity. Results The results indicated that the maximum DNA damage (i.e. maximum tail length) in the UVC group mainly appeared at 90 min. The ranges of DRRs in the UVC group were 62.84%-98.71%. Average DRR value was 81.84%. The DRR difference between males and females was not significant (P<0.05). However, the average DRR value in the UVC plus NOV group and the UVC plus APC group was 52.98% and 39.57% respectively, which were significantly lower than that in the UVC group (P<0.01). Conclusion The comet assay is a rapid, simple and sensitive screening test to assess individual DNA repair (NER) capacity. It is suggested that the time to detect DNA single strand breaks in comet assay should include 0 (before UV irradiation), 90 and 240 min after exposure to 1.5 J·m-2 UVC at least. The DRR, as an indicator, can represent the individual DNA repair capacity in comet assay.

  1. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio;

    2009-01-01

    . Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB...... sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative...... role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1-Rad10 complex in DSB repair in yeast....

  2. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks

    NARCIS (Netherlands)

    K. Hanada (Katsuhiro); M. Budzowska (Magdalena); M. Modesti (Mauro); A. Maas (Alex); C. Wyman (Claire); J. Essers (Jeroen); R. Kanaar (Roland)

    2006-01-01

    textabstractRepair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible

  3. Method for microsurgical repairing of tendo calcaneus and complex tissue defect%跟腱及周围复合组织缺损的显微外科修复

    Institute of Scientific and Technical Information of China (English)

    刘勇; 张成进; 付兴茂; 王剑利; 王成琪; 张雪涛; 王蕾

    2013-01-01

    目的 探讨跟腱及周围复合组织缺损的显微外科修复方法及临床效果. 方法 自1994年6月至2011年3月,对356例跟腱伴周围复合组织缺损的患者采用不同的显微外科方法的治疗.根据跟腱缺损长度及周围软组织缺损情况分为A和B两类.A类为跟腱缺损在3 cm以内、皮肤缺损在3cm× 20 cm以内,采用跟腱直接缝合(166例)或Abraham倒“V-Y”腱成形术(72例)修复跟腱损伤,采用局部皮瓣转移(238例)修复周围软组织缺损.其中跟外侧皮瓣转移修复23例,足底内侧皮瓣转移修复58例,足背皮瓣转移修复40例,内踝上皮瓣转移修复48例,外踝上皮瓣转移修复24例,腓肠神经营养血管皮瓣转移修复29例,腓肠肌皮瓣推移修复修复16例.B类为跟腱缺损超过3 cm、皮肤缺损在3 cm×20 cm以上,跟腱难以直接缝合,则采用吻合血管的复合组织瓣一期修复跟腱和软组织缺损(118例).其中阔筋膜张肌皮瓣移植修复52例,膝上外侧复合组织瓣移植修复26例,背阔肌筋膜组织瓣移植修复24例,腹直肌前鞘肌皮瓣移植修复16例. 结果 临床应用356例,局部皮瓣转移238例中226例全部成活,12例部分成活,经换药后伤口愈合.游离组织瓣118例中109例全部成活,8例术后发生血管危象,经手术探查后成活,1例手术失败,改用其他组织瓣后存活.随访1.0 ~4.5年,平均3.2年,按Thermann功能评定:优240例,良86例,可22例,差8例,优良率91.6%. 结论 显微外科技术是修复跟腱伴周围复合组织缺损的优良方法,根据跟腱及周围复合组织缺损程度灵活选择不同的修复方法,可以达到良好的功能恢复目的.%Objectives To approach the method and clinical effect on tendo calcaneus and complex tissue defect with microsurgery repair.Methods Retrospective summary the methods of 356 cases with tendo calcaneus and complex tissueserious defect,which repaired by different microsurgery from June 1994 to March 201 1

  4. Breaking the Waves

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Kirketerp, Anne

    2006-01-01

    The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship....... Following the so-called 'Dogma' concept developed by Danish filmmakers, this contribution aim to explore the key elements making up the recipes guiding the entrepreneurship training program exercised by the school. Key factors forming a community of learning practice are outlined as well as the critical...... pedagogical elements on which the education in entrepreneurship rests....

  5. SIRT1 promotes DNA repair activity in response to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Min; Lee, Kee-Ho [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Human SIRT1 controls various physiological responses including cell fate, stress, and aging, through deacetylation of its specific substrate protein. In processing DNA damage signaling, SIRT1 attenuates a cellular apoptotic response by deacetylation of p53 tumor suppressor. Ectopically over-expressed SIRT1 resulted in the increase of repair of DNA strand breakages produced by radiation. On the other hand, repression of endogenous SIRT1 expression by SIRT1 siRNA led to the decrease of this repair activity, indicating that SIRT1 can regulate DNA repair capacity of cells with DNA strand breaks.

  6. A PALB2-interacting domain in RNF168 couples homologous recombination to DNA break-induced chromatin ubiquitylation

    Science.gov (United States)

    Luijsterburg, Martijn S; Typas, Dimitris; Caron, Marie-Christine; Wiegant, Wouter W; van den Heuvel, Diana; Boonen, Rick A; Couturier, Anthony M; Mullenders, Leon H; Masson, Jean-Yves; van Attikum, Haico

    2017-01-01

    DNA double-strand breaks (DSB) elicit a ubiquitylation cascade that controls DNA repair pathway choice. This cascade involves the ubiquitylation of histone H2A by the RNF168 ligase and the subsequent recruitment of RIF1, which suppresses homologous recombination (HR) in G1 cells. The RIF1-dependent suppression is relieved in S/G2 cells, allowing PALB2-driven HR to occur. With the inhibitory impact of RIF1 relieved, it remains unclear how RNF168-induced ubiquitylation influences HR. Here, we uncover that RNF168 links the HR machinery to H2A ubiquitylation in S/G2 cells. We show that PALB2 indirectly recognizes histone ubiquitylation by physically associating with ubiquitin-bound RNF168. This direct interaction is mediated by the newly identified PALB2-interacting domain (PID) in RNF168 and the WD40 domain in PALB2, and drives DNA repair by facilitating the assembly of PALB2-containing HR complexes at DSBs. Our findings demonstrate that RNF168 couples PALB2-dependent HR to H2A ubiquitylation to promote DNA repair and preserve genome integrity. DOI: http://dx.doi.org/10.7554/eLife.20922.001 PMID:28240985

  7. RTEL1 contributes to DNA replication and repair and telomere maintenance

    NARCIS (Netherlands)

    Uringa, Evert-Jan; Lisaingo, Kathleen; Pickett, Hilda A.; Brind'Amour, Julie; Rohde, Jan-Hendrik; Zelensky, Alex; Essers, Jeroen; Lansdorp, Peter M.

    2012-01-01

    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance

  8. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  9. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If left unre

  10. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  11. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the