WorldWideScience

Sample records for bread wheat triticum

  1. Main varieties of bread (Triticum aestivum L.) and durum (Triticum durum Desf.) wheat.

    OpenAIRE

    М. П. Чебаков

    2008-01-01

    Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L.) and hard (Triticum durum Desf.) are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  2. Main varieties of bread (Triticum aestivum L. and durum (Triticum durum Desf. wheat.

    Directory of Open Access Journals (Sweden)

    М. П. Чебаков

    2008-04-01

    Full Text Available Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L. and hard (Triticum durum Desf. are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  3. Comparison of foliar anatomy of ten bread wheat (triticum, poaceae) and ten barley (hordeum, poaceae) cultivars

    International Nuclear Information System (INIS)

    Ardic, M.; Sezer, O.; Ozgdsd, K.; Yaylaci, O. K.; Koyuncu, O.; Olgun, M.; Bascdftcd, Z. B.; Ayter, N. G.

    2015-01-01

    The aim of this study is to determine anatomical differences and classification of leaf and leaf cell characteristics (cuticle thickness, upper epidermis thickness, lower epidermis thickness, mesophyll thickness, parenchyma thickness and leaf thickness) between 10 bread wheat cultivars (Triticum aestivum L.) and 10 barley cultivars (Hordeum vulgare L.). Classification of leaf characteristics in bread wheat and barley cultivars and relationship between leaf characteristics are made by principal component and correlation analyses. Highest thickness belongs to W8 Mufitbey cultivar in mesophyll and lower epidermis and W1 Sonmez 01 cultivar have the lowest thickness of upper epidermis in bread wheat. In Barley, B1 Ince cultivar has highest leaf thickness mesophyll and parenchyma; lowest thickness of cuticle is included B7 Cumhuriyet 50 cultivar. All other cultivars have homogenous contents of leaf characteristics. (author)

  4. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum.

    Science.gov (United States)

    Gupta, Ruchi; Hogan, Campbell J; Perugini, Matthew A; Soares da Costa, Tatiana P

    2018-05-09

    Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a K M (pyruvate) of 0.45 mM, K M (l-aspartate-4-semialdehyde) of 0.07 mM, k cat of 56 s -1 , and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a R g of 33 Å and D max of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.

  5. Evaluation of Salt Stress Effect on the Agro-Physiological Traits of Bread Wheat (Triticum aestivum L. and Durum Wheat (Triticum turgidum L. at the Seedling Stage

    Directory of Open Access Journals (Sweden)

    P. Golkar

    2016-07-01

    Full Text Available This experiment was conducted to evaluate the effects of salt stress on some agro-physiological traits in ten varieties of bread (Triticum aestivum L. and durum (Triticum turgidum L. wheats in seedling stage. A greenhouse experiment was carried out as a split plot experiment based on a completely randomized design with four replications in hydroponic condition. Different agronomic and physiological traits (such as Na+, K+, Ca+2 contents and relative water content (RWC were studied. Salinity showed significant effect on all of the studied traits, except for root dry weight and the ratio of Na+/Ca+2. Increase in NaCl level led to significant reductions in all studied traits. The studied genotypes showed significant difference for radicle length, leaf length, seedling dry weight, leaf dry weight, root dry weight, RWC and Na+, K+, Ca+2 concentrations and Na+/K+ and Na+/Ca+2 ratios. The genotype × salinity interaction was significant for RWC, Na+, Ca+2 and Na+/Ca+2. The salt stress increased the leaf Na+ while it decreased the K+ and Ca2+ concentrations. The greatest shoot dry weight (0.035 g, root dry weight (0.024 g and Na+/Ca+2 ratio (1.71 were found in genotype Alamot (bread wheat and the greatest plantlet length (12 cm was observed in genotype Verinak. The greatest rootlet length (14.63 cm, dry weight of seedlings (0.057 g, RWC (82.20%, membrane stability (0.59, K+ (3.38 mg/g dry weight and the smallest Na+/K+ ratio (0.17 were detected in genotype Toos (bread wheat. The genotype Toos was identified as the most tolerant genotype to salt stress.

  6. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  7. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  8. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum).

    Science.gov (United States)

    Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A

    2018-03-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars

    International Nuclear Information System (INIS)

    Hart, J.J.; Norvell, W.A.; Welch, R.M.; Sullivan, L.A.; Kochian, L.V.

    1998-01-01

    Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 micromolar) than in the durum wheat cultivar (3.9 micromolar). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions

  10. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Pont, Caroline; Murat, Florent; Confolent, Carole; Balzergue, Sandrine; Salse, Jérôme

    2011-12-02

    Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes. We performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence. We suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization.

  12. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  13. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  14. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  15. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum)[OPEN

    Science.gov (United States)

    Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.

    2018-01-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813

  16. Effect of gamma irradiation, evaporation retardants and transpiration suppressants on grain yield, nutrient uptake and moisture-use efficiency on bread wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Dash, D.K.; Sen, Avijit; Misra, N.M.

    1988-01-01

    A field trial was conducted on 'Malaviya 37' bread wheat (Triticum aestivum Linn. emend. Fiori and Paol.) in 1982-83 and 1983-84. It included 4 dos es of gamma irradiation of seeds (0, 2.5, 4.5 and 6.5 kR) and 5 treatments of evaporation retardants and transpiration suppressants, viz. control, rice (Oryza sativa Linn.) straw, wheat straw, rice straw + phenyl mercuric acetate (150 ppm) and wheat straw + kaolin (6 per cent). Seed irradiation with gamma-rays at 6.5 kR and wheat straw + kaolin gave 11.76 and 61.37 per cent higher yield than the control respectively. For moisture-use efficiency and NPK uptake these treatments also showed the same trend. (author). 12 refs

  17. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  18. IDENTIFICATION OF TECHNOLOGICALLY IMPORTANT GENES AND THEIR PRODUCTS IN THE COLLECTION OF BREAD WHEAT GENOTYPES

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2015-02-01

    Full Text Available Wheat is the second most cultivated crop on the world and is very important plant for feed not only mankind but also animals. Because of this is necessary to develop new varieties with better properties. Bread making quality of wheat grain is one of the most important paramaters for quality evaluation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE of wheat storage proteins and allelic specific polymerase chain reaction (AS-PCR are analysis suitable for identification, differentiation and characterization of bread wheat (Triticum aestivum L.. There were analysed 16 genotypes of new varieties of bread wheat in our work by SDS-PAGE and obtained results were verified by AS-PCR. Analysed genotypes of bread wheat genotypes were homogenous and single line with very good bread making quality. Our results confirmed hypothesis, that cultivated bread wheat genotypes are uniformed with high production and quality but there is a risk of sensitivity to environmental conditions. SDS-PAGE analyses of wheat grain proteins are fast and not very expensive technique, which provide us information of bread making quality of grains. However, there is possibility of environmental influence on protein synthesis and because of this is necessary to couple these analysis with analysis of DNA.

  19. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  20. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    Science.gov (United States)

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  1. Yr10 gene polymorphism in bread wheat varieties | Temel | African ...

    African Journals Online (AJOL)

    Yellow rust resistance locus Yr10 located on chromosome 1B in Moro and originated from the Turkish line PI178383 was investigated in terms of polymorphism in seven winter type bread wheat cvs. (Triticum aestivum ssp. Aestivum) Altay2000, zgi2001, Sönmez2001 (yellow rust resistant), Aytýn98, ES14, Harmankaya99 ...

  2. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  3. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars

    International Nuclear Information System (INIS)

    Hart, J.J.; Welch, R.M.; Norvell, W.A.; Sullivanm, L.A.; Kochian, L.V.

    1998-01-01

    High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20-40 nM; maximum initial velocity, 26-29 nmol g-1 fresh weight h-1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain

  4. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  5. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides

    International Nuclear Information System (INIS)

    Grama, A.; Gerechter-Amitai, Z.K.; Blum, A.; Rubenthaler, G.L.

    1984-01-01

    Triticum dicoccoides sel. G-25, a selection of wild emmer with a protein content of 20.5% and a kernel weight of 31.5 mg, was used as the donor of protein genes. Since this selection is highly resistant to stripe rust, the object of the crossing programme was to transfer this resistance, together with the high protein potential, to durum and bread wheat cultivars susceptible to the disease. In the tetraploid lines obtained from the T. dicoccoides/T. durum cross, the protein values ranged from 17 to 22%. These lines had resistance to stripe rust from the wild emmer and to stem rust from the durum. After two further crosses between these tetraploid lines and T. aestivum cultivars, several lines were selected which combined good yield, high protein level and resistance to rust diseases. These lines attained protein levels of 14 to 19% in the whole grain and 14 to 17% in the flour, combined with yields of 4.5 to 6.0 t/ha. They had also inherited resistance to stem rust, and in some instances also to leaf rust, from the cultivated wheat parental lines. (author)

  6. Development of TaqMan probes targeting the four major celiac disease epitopes found in α-gliadin sequences of spelt (Triticum aestivum ssp. spelta) and bread wheat (Triticum aestivum ssp. aestivum).

    Science.gov (United States)

    Dubois, Benjamin; Bertin, Pierre; Muhovski, Yordan; Escarnot, Emmanuelle; Mingeot, Dominique

    2017-01-01

    Celiac disease (CD) is caused by specific sequences of gluten proteins found in cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ). Among them, the α-gliadins display the highest immunogenicity, with four T-cell stimulatory epitopes. The toxicity of each epitope sequence can be reduced or even suppressed according to the allelic form of each sequence. One way to address the CD problem would be to make use of this allelic variability in breeding programs to develop safe varieties, but tools to track the presence of toxic epitopes are required. The objective of this study was to develop a tool to accurately detect and quantify the immunogenic content of expressed α-gliadins of spelt and bread wheat. Four TaqMan probes that only hybridize to the canonical-i.e. toxic-form of each of the four epitopes were developed and their specificity was demonstrated. Six TaqMan probes targeting stable reference genes were also developed and constitute a tool to normalize qPCR data. The probes were used to measure the epitope expression levels of 11 contrasted spelt accessions and three ancestral diploid accessions of bread wheat and spelt. A high expression variability was highlighted among epitopes and among accessions, especially in Asian spelts, which showed lower epitope expression levels than the other spelts. Some discrepancies were identified between the canonical epitope expression level and the global amount of expressed α-gliadins, which makes the designed TaqMan probes a useful tool to quantify the immunogenic potential independently of the global amount of expressed α-gliadins. The results obtained in this study provide useful tools to study the immunogenic potential of expressed α-gliadin sequences from Triticeae accessions such as spelt and bread wheat. The application of the designed probes to contrasted spelt accessions revealed a high variability and interesting low canonical epitope expression levels in the

  7. Response of bread wheat ( Triticum aestivum L.) to application of ...

    African Journals Online (AJOL)

    Both biological and partial budget analysis reveals that the use of N at rate of 64 kg N ha-1 as UREAStabil and 64 kg N ha-1 as conventional urea could give optimum bread wheat yield in Hawzien and in Emba Alaje, respectively, and in areas where the rainfall distribution and soil type is similar with study districts where ...

  8. Quality characteristics of bread produced from wheat, rice and maize flours.

    Science.gov (United States)

    Rai, Sweta; Kaur, Amarjeet; Singh, Baljit; Minhas, K S

    2012-12-01

    Rice (Oryza sativa) flour and maize (Zea mays) meal substitution in wheat (Triticum aestivum) flour, from 0 to 100% each, for the production of bread was investigated. The proximate analysis, pasting properties, bread making qualities of raw materials and sensory evaluation of the bread samples were determined. The pasting temperature increased with increased percentage of rice flour and maize meal. But the other pasting characters decreased with the higher proportion of rice flour. The baking absorption was observed to increase with higher level of maize meal but it decreased when level of rice flour was increased. Loaf weight (g) decreased with progressive increase in the proportion of maize meal but increased when rice flour incorporation was increased. Loaf volume, loaf height and specific volume decreased for progressively higher level of maize meal and rice flour. The sensory evaluation revealed that 25% replacement of wheat flour was found to be more acceptable than control sample.

  9. et de blé dur (Triticum durum

    African Journals Online (AJOL)

    SARAH

    31 mai 2017 ... Study of the genetic diversity of some varieties of bread wheat (Triticum aestivum L.) and durum wheat. (Triticum durum Desf.) ...... Crop adaptation to climate change,1e éd. Oxford, Wiley-Blackwell, 595 p. Zeven AC,1998. Landraces: a review of definitions and classifications. Euphytica 104(2) : 127-139.

  10. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  11. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Fuyan; Chen, Feng; Wu, Peipei; Zhang, Ning; Cui, Dangqun

    2015-08-01

    This study cloned two novel TaLox genes on chromosome of 4BS and developed a co-dominant marker, Lox-B23, in bread wheat that showed highly significant association with lipoxygenase activity. Lipoxygenase (Lox), a critical enzyme in the carotenoid biosynthetic pathway, significantly influences the color and processing quality of wheat-based products. Two novel Lox genes, designated TaLox-B2 and TaLox-B3, were cloned on chromosome 4BS of Chinese bread wheat. The deduced amino acid sequence showed that both TaLox-B2 and TaLox-B3 genes encoded an 861-aa protein and possessed a lipoxygenase superfamily domain at the 170-838 interval. Two different TaLox-B2 alleles, designated TaLox-B2a and TaLox-B2b, were subsequently discovered. A co-dominant marker, Lox-B23, was developed based on sequences of TaLox-B2a, TaLox-B2b, and TaLox-B3 genes to precisely distinguish these three alleles in Chinese bread cultivars. Among five allelic combinations of Lox genes at Lox-B1, Lox-B2, and Lox-B3 loci, wheat cultivars with TaLox-B1a/TaLox-B2a/TaLox-B3a combination exhibited the highest Lox activity, whereas those with TaLox-B1a/TaLox-B2b/TaLox-B3b combination significantly showed the lowest Lox activity. A RIL population was used to evaluate the influence of TaLox-B3a gene on Lox activity. Results showed that TaLox-B3a gene could significantly increase the Lox activity in bread wheat. Physical mapping indicated that both TaLox-B2 and TaLox-B3 genes were located on chromosome 4BS in bread wheat. This study provides useful information to further understand the molecular and genetic bases of Lox activity in bread wheat.

  12. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    Science.gov (United States)

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.

    Science.gov (United States)

    Achtar, S; Moualla, M Y; Kalhout, A; Röder, M S; MirAli, N

    2010-11-01

    Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.

  14. Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions.

    Science.gov (United States)

    Hai, Lin; Wagner, Carola; Friedt, Wolfgang

    2007-07-01

    Genetic diversity in spring bread wheat (T. aestivum L.) was studied in a total of 69 accessions. For this purpose, 52 microsatellite (SSR) markers were used and a total of 406 alleles were detected, of which 182 (44.8%) occurred at a frequency of bread wheats was H ( e ) = 0.65. A comparatively higher diversity was observed between wheat varieties from Southern European countries (Austria/Switzerland, Portugal/Spain) corresponding to those from other regions.

  15. The influence of cultivar, year and nitrogen supply on quality parameters of bread wheat (Triticum aestivum. L

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2006-01-01

    Full Text Available Field experiments with 3 winter wheat (Triticum, aestivum. L; Lasta, Sremica and Pobeda was applied nitrogen (rate N as follows: 0, 60, 120 and 180 kg Nha-1 from 2000 to 2002. The varieties differed in their biological and production characteristics as well as in technological quality. The analyzed samples belonged to the international ISDV (Internationale Stickstoff Dauer Versuche stationary field trial established at the Rimski Šančevi Experiment Field of the Institute of Field and Vegetable Crops in Novi Sad. Improvement of end use quality in winter wheat depends on thorough understanding of the influences of environment, variety, and their interaction. Grain protein content (GPC, sedimentation value (SED, energy dough, Hagberg falling number (HFN and bread crumb quality number were measured. Highly significant differences were detected among the environments (A, rate N (B and varieties (C for each of the quality variables. Both variety (V and environment (E had a significant effect on quality traits. Significant Vx E interactions indicated that quality trait evaluations must be undertaken for environments. The most influence on protein content and sedimentation value have been climatitic condition. According to lot of environment influence on falling number and dow energy the main part of variance it is genotype and phenotype variability. .

  16. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Reijo Laatikainen

    2017-11-01

    Full Text Available Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h, would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs, and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjective tolerance to wheat. The study was conducted as a randomised double-blind controlled 7-day study (n = 26. Tetrameric ATI structures were unravelled in both breads vs. baking flour, but the overall reduction in ATIs to their monomeric form was higher in the sourdough bread group. Sourdough bread was also lower in FODMAPs. However, no significant differences in gastrointestinal symptoms and markers of low-grade inflammation were found between the study breads. There were significantly more feelings of tiredness, joint symptoms, and decreased alertness when the participants ate the sourdough bread (p ≤ 0.03, but these results should be interpreted with caution. Our novel finding was that sourdough baking reduces the quantities of both ATIs and FODMAPs found in wheat. Nonetheless, the sourdough bread was not tolerated better than the yeast-fermented bread.

  17. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density.

    Science.gov (United States)

    Liu, Pan; Liu, Jie; Dong, Huixue; Sun, Jiaqiang

    2018-02-01

    Bread wheat (Triticum aestivum) spike architecture is an important agronomic trait. The Q gene plays a key role in the domestication of bread wheat spike architecture. However, the regulatory mechanisms of Q expression and transcriptional activity remain largely unknown. In this study, we show that overexpression of bread wheat tae-miR172 caused a speltoid-like spike phenotype, reminiscent of that in wheat plants with the q gene. The reduction in Q transcript levels in the tae-miR172 overexpression transgenic bread wheat lines suggests that the Q expression can be suppressed by tae-miR172 in bread wheat. Indeed, our RACE analyses confirmed that the Q mRNA is targeted by tae-miR172 for cleavage. According to our analyses, the Q protein is localized in nucleus and confers transcriptional repression activity. Meanwhile, the Q protein could physically interact with the bread wheat transcriptional co-repressor TOPLESS (TaTPL). Specifically, the N-terminal ethylene-responsive element binding factor-associated amphiphilic repression (EAR) (LDLNVE) motif but not the C-terminal EAR (LDLDLR) motif of Q protein mediates its interaction with the CTLH motif of TaTPL. Moreover, we show that the N-terminal EAR motif of Q protein is also essentially required for the transcriptional repression activity of Q protein. Taken together, we reveal the functional regulation of Q protein by tae-miR172 and transcriptional co-repressor TaTPL in controlling the bread wheat spike architecture. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat

    KAUST Repository

    Byrt, Caitlin Siobhan

    2014-10-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K+/Na+ ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na+-selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na+ concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na+ from the xylem vessels in the root and has an important role in restricting the transport of Na+ from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na+ exclusion and is critical in maintaining a high K+/Na+ ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  19. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat

    KAUST Repository

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S.; Plett, Darren; Munns, Rana; Tester, Mark A.; Gilliham, Matthew

    2014-01-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K+/Na+ ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na+-selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na+ concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na+ from the xylem vessels in the root and has an important role in restricting the transport of Na+ from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na+ exclusion and is critical in maintaining a high K+/Na+ ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  20. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    Science.gov (United States)

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  1. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  2. Prediction of bread-making quality using size exclusion high ...

    African Journals Online (AJOL)

    Variation in the distribution of protein molecular weight in wheat (Triticum aestivum), influences breadmaking quality of wheat cultivars, resulting in either poor or good bread. The objective of this study was to predict breadmaking quality of wheat cultivars using size exclusion high performance liquid chromatography.

  3. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. ATTEMPT TO APPLY STABILIZED WHEAT GERM FOR BREAD SUPPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2015-02-01

    Full Text Available The increased interest in rational nutrition causes, that from many years is observed a growing consumption of bread, and novel food supplemented with health promoting components. For the bread production in Poland mainly wheat and rye cake flours are used, depleted of a many valuable nutrients such as protein, dietary fibre, minerals and vitamins. Because of their unique chemical composition wheat germs are a particularly valuable resource, both for direct consumption and to enhance the nutritional value of food products. The aim of the study was to prepare wheat bread with a 10% addition of commercial stabilized wheat germs. Based on the obtained results, it was found that wheat germs, due to their unique chemical composition, were a particularly valuable resource to supplement the nutritional value of bread. However, germs had detrimental effect on mechanical properties of dough, and on bread quality. Texture of bread crumb and its chemical composition were analysed. It was shown, that germs subjected to fermentation process could be used in wheat bread production as dietary fibre and mineral compound supplement.

  5. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome

    OpenAIRE

    Laatikainen, Reijo; Koskenpato, Jari; Hongisto, Sanna-Maria; Loponen, Jussi; Poussa, Tuija; Huang, Xin; Sontag-Strohm, Tuula; Salmenkari, Hanne; Korpela, Riitta

    2017-01-01

    Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS) symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h), would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs) and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs), and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjectiv...

  6. Fusarium head blight resistance and mycotoxin profiles of four Triticum species genotypes

    Directory of Open Access Journals (Sweden)

    Tomasz GÓRAL

    2017-05-01

    Full Text Available Fusarium head blight (FHB resistance was evaluated for accessions of four Triticum species, including bread wheat (modern and old cultivars, spelt, emmer, and einkorn. Fusarium head infection, Fusarium kernel damage and accumulation of trichothecene toxins (deoxynivalenol, nivalenol in grains were analysed. Modern bread wheat cultivars were the most susceptible to head infection, and emmer and einkorn accessions were the most resistant. Kernel damage was the least for emmer and spelt and greatest for bread wheat. No significant differences between the four host species were observed for toxin accumulation. However, the greatest amounts of deoxynivalenol were detected in the grains of modern wheat cultivars and the least in old bread wheat cultivars. The greatest amount of nivalenol was detected in einkorn grains and the least in old bread wheat cultivars. Wide variability of resistance of all types in all four species was observed. Accessions resistant to FHB and toxin accumulation in grains were identified.

  7. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    Science.gov (United States)

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  8. Genetic control of bread wheat (Triticum aestivum L. traits

    Directory of Open Access Journals (Sweden)

    Zine El Abidine Fellahi

    2016-02-01

    Full Text Available Nine bread wheat genotypes were crossed under a partial diallel scheme, in which group 1 counted five lines and group 2 four lines. The 20 F1 ’s and their parents were evaluated in randomized complete block design with three replications at the Field Crop Institute-Agricultural Experimental Station of Setif (Algeria during the 2011/2012 cropping season. The results showed that the components associated with additive effects were more relevant than those associated with the dominance effects for these traits. Based on the KD /KR ratio, the dominant alleles are present in greater frequency in the first group of parents, while the opposite is true for the second group. Values of the gene proportion with positive and negative effects in the parents revealed an unequal distribution of dominant genes in the parents for almost all the traits except for number of grain per spike in the second group which showed an equal distribution.

  9. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View

  10. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety

    DEFF Research Database (Denmark)

    Starr, Gerrard; Hansen, Åse Solvej; Petersen, Mikael Agerlin

    2015-01-01

    evaluation, from these eight were selected for bread evaluation. Porridge and bread results were compared. Variations were found in both evaluations. Five odour- and nine flavour descriptors were found to be common to both wheat porridge and bread. The results for two descriptors: "cocoa" and "oat porridge......" were correlated between the wheat porridge and bread samples. Analysis of whole-meal and low-extraction samples revealed that the descriptors "malt", "oat-porridge", "øllebrød", "cocoa" and "grain" mostly characterized wheat bran, while descriptors for "maize", "bean-shoots", "chamomile", "umami...

  11. Induced variation for Pelshenke value and caryopsis weight in bread wheat

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Arain, M.A.

    1986-01-01

    The paper presents the evidence of induced mutations for Pelshenke value and caryopsis weight. M 2 population of bread wheat (Triticum aestivum L.) variety Pak 70 derived from different doses of gamma rays (100, 150, 200 Gy) and fast neutrons (300, 450, 600 Rads) were screened. The coefficient of variation for Pelshenke value was considerably higher in Nf 450 Rads and 100 Gy gamma ray treatments in comparison with the untreated control. Gamma ray treatments were more effective than fast neutrons in increasing the caryopsis weight. Selection strategy based on highly heritable traits can result in breeding varieties with high yield and improved baking quality. (author)

  12. Impact of Added Colored Wheat Bran on Bread Quality

    OpenAIRE

    Lenka Machálková; Marie Janečková; Luděk Hřivna; Yvona Dostálová; Joany Hernandez; Eva Mrkvicová; Tomáš Vyhnánek; Václav Trojan

    2017-01-01

    The impact of colored wheat bran addition on bread quality was tested on wheat varieties with purple pericarp (Konini, Rosso and Karkulka) and on a variety containing blue aleurone (Skorpion). The effect of 10 %, 15 % and 20 % bran addition on sensory evaluation, bread color and texture was compared to the characteristics of bread prepared from wheat variety Mulan. The addition of 10 % bran significantly increased the sensory evaluation scores of bread. Crumb characteristics were improved mai...

  13. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    Science.gov (United States)

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Discrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose.

    Science.gov (United States)

    Sapirstein, Harry D; Siddhu, Silvi; Aliani, Michel

    2012-11-01

    The principal objective of this study was to evaluate the capability of electronic (E) nose technology to discriminate refined and whole wheat bread made with white or red wheat bran according to their headspace volatiles. Whole wheat flour was formulated with a common refined flour from hard red spring wheat, blended at the 15% replacement level with bran milled from representative samples of one hard red and 2 hard white wheats. A commercial formula was used for breadmaking. Results varied according to the nature of the sample, that is, crust, crumb, or whole slices. Bread crust and crumb were completely discriminated. Crumb of whole wheat bread made with red bran was distinct from other bread types. When misclassified, whole wheat bread crumb with white bran was almost invariably identified as refined flour bread crumb. Using crust as the basis for comparisons, the largest difference in volatiles was between refined flour bread and whole wheat bread as a group. When refined flour bread crust was misclassified, samples tended to be confused with whole white wheat crust. Samples prepared from whole bread slices were poorly discriminated in general. E-nose results indicated that whole wheat bread formulated with white bran was more similar in volatile makeup to refined flour bread compared to whole wheat bread made with red bran. The E-nose appears to be very capable to accommodate differentiation of bread volatiles whose composition varies due to differences in flour or bran type. Consumer preference of bread made using refined flour in contrast to whole wheat flour is partly due to the different aroma of whole wheat bread. This study used an electronic nose to analyze bread volatiles, and showed that whole wheat bread incorporating white bran was different from counterpart bread made using red bran, and was closer in volatile makeup to "white" bread made without bran. Commercial millers and bakers can take advantage of these results to formulate whole wheat flour

  15. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  16. Quality of grain and flour of foreign bread wheat cultivars (Triticum aestivum L. under the conditions of south Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Chamurliyski

    2016-12-01

    Full Text Available Abstract. Dobrudzha Agricultural Institute One of the main directions of the breeding programs in common winter wheat, besides increasing productivity, is developing of cultivars with excellent baking properties. An important prerequisite for this is the involvement of new gene plasma of variable origin, which is adequate to the growing conditions and the desired breeding direction. The aim of investigation is study of some main properties related to the grain quality and the baking properties of bread wheat accessions of foreign origin under the conditions of the South Dobrudzha region. Twenty-five foreign bread wheat cultivars of various origins were investigated for a three year period. Cultivars Aglika, Enola, Pryaspa and Yantur were used as standards. Some indices related to the quality of grain and flour were analyzed at the Bread Making Laboratory of (DAI. The expression of the following parameters was followed: test weigh, % of protein, sedimentation, wet gluten yield, softening degree, pharinographic value, bread volume, and the quality index (QI was calculated. The cultivars, which demonstrated high grain quality, were the Romanian Faur, Moldovan Dobropolka, American Wahoo and the Ukrainian Zmina. Averaged for the three years, highest variation was found for the index pharinographic value. On the whole, the materials with origin from Romania, Ukraine and USA were characterized with high values of the quality indices. Cultivars Faur and Zmina can be successfully included in the breeding program of DAI for development of strong wheat varieties

  17. Bread-Making Quality of Standard Winter Wheat Cultivars

    OpenAIRE

    Ćurić, Duška; Novotni, Dubravka; Bauman, Ingrid; Krička, Tajana; Jukić, Željko; Voća, Neven; Kiš, Darko

    2009-01-01

    The purpose of this study was to define an impact of the cultivar, year and cultivation area of the standard Croatian winter wheat on the bread-making quality. The bread-making quality of cultivars ‘Divana’, ‘Žitarka’ and ‘Sana’ from the crop years 1998, 2000, 2002, 2004 and 2006, and from Zagreb and Osijek location was analyzed. Wheat from the cultivar tests cultivated under the same agro technological conditions was used for this testing. The tested winter wheat bread-making quality primari...

  18. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.

    Science.gov (United States)

    Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán

    2009-07-01

    An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

  19. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  20. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  1. miR156-Targeted SBP-Box Transcription Factors Interact with DWARF53 to Regulate TEOSINTE BRANCHED1 and BARREN STALK1 Expression in Bread Wheat.

    Science.gov (United States)

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Sun, Jiaqiang

    2017-07-01

    Genetic and environmental factors affect bread wheat ( Triticum aestivum ) plant architecture, which determines grain yield. In this study, we demonstrate that miR156 controls bread wheat plant architecture. We show that overexpression of tae-miR156 in bread wheat cultivar Kenong199 leads to increased tiller number and severe defects in spikelet formation, probably due to the tae-miR156-mediated repression of a group of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE ( SPL ) genes. Furthermore, we found that the expression of two genes TEOSINTE BRANCHED1 ( TaTB1 ) and BARREN STALK1 ( TaBA1 ), whose orthologous genes in diverse plant species play conserved roles in regulating plant architecture, is markedly reduced in the tae-miR156-OE bread wheat plants. Significantly, we demonstrate that the strigolactone (SL) signaling repressor DWARF53 (TaD53), which physically associates with the transcriptional corepressor TOPLESS, can directly interact with the N-terminal domains of miR156-controlled TaSPL3/17. Most importantly, TaSPL3/17-mediated transcriptional activation of TaBA1 and TaTB1 can be largely repressed by TaD53 in the transient expression system. Our results reveal potential association between miR156-TaSPLs and SL signaling pathways during bread wheat tillering and spikelet development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Bread winter wheat breeding (Triticum aestivum L. using spring varieties genepool in forest-steppe Environments of Ukraine

    Directory of Open Access Journals (Sweden)

    В. С. Кочмарський

    2010-10-01

    Full Text Available It is concluded by investigations that wheat crossing of various development types between themselves cause increase of formbuilding process in hybrid progeny, promoting the selection of practically valuable recombinats. The genotypes which present the practical valuable by complex of adaptive traits and properties have been selected by phenotype stability in the breeding process. The new bread winter wheat variety Pamyati Remesla developed with participation of spring wheat variety Hja 22139 (Finland has been proposed for including it into the Register of Plant varieties of Ukraine adapted for use in Steppe, Forest- Steppe and Woodland of Ukraine since 2010.

  3. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat.

    Science.gov (United States)

    Wingen, Luzie U; Orford, Simon; Goram, Richard; Leverington-Waite, Michelle; Bilham, Lorelei; Patsiou, Theofania S; Ambrose, Mike; Dicks, Jo; Griffiths, Simon

    2014-08-01

    A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources. In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.

  4. Sowing terms of winter bread wheat variety-innovations (Triticum aestivum L. in the conditions of change of climate

    Directory of Open Access Journals (Sweden)

    О. Л. Дергачов

    2010-10-01

    Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.

  5. Buckwheat-enriched wheat bread: National market placement possibilities

    Directory of Open Access Journals (Sweden)

    Sakač Marijana B.

    2015-01-01

    Full Text Available Quality parameters and the possibility of successful placement of buckwheat-enriched wheat bread on the national market are presented in this paper. Analysis of the market position of buckwheat-enriched wheat bread includes demands, offer and competition. Elements that affect the overall retail price of buckwheat-enriched wheat bread are given in details, along with SWOT analysis and marketing plan including target market, market supply and product marketing mix. According to all performed analyses it could be concluded that this product should be positioned on the national market, especially for people with special needs and requirements.

  6. Quality characterization of wheat, maize and sorghum steamed breads from Lesotho.

    Science.gov (United States)

    Nkhabutlane, Pulane; du Rand, Gerrie E; de Kock, Henriëtte L

    2014-08-01

    In Lesotho, traditional bread covers different types of dumplings prepared with cereal flour, water, salt and sourdough. This study characterized eight steamed breads prepared from wheat, maize and sorghum. Breads were prepared from both commercial and self-milled flours according to the procedures followed in rural and urban areas of Lesotho. Descriptive sensory evaluation was conducted to profile sensory properties of the breads. Flour particle sizes, sourdough properties and bread colour, volume and texture were also characterized. The type of cereal and milling properties of the flour used had substantial effects on the physical and sensory properties of the bread. Steamed wheat breads had greater volume, softer crumb and more bland flavour compared with sorghum and maize breads. Both sorghum and maize steamed breads prepared according to traditional Basotho procedures were characterized by low loaf volume, denser crumb, more complex and strong flavours and aroma, notably sour, musty, malty, dairy sour and fermented aroma. The texture of the non-wheat bread types was heavy, chewy, dry, fibrous and more brittle and needed a higher compression force to deform. This study provided insight on the sensory properties of steamed bread as prepared in Lesotho. Further research is needed to optimize sensory properties of the non-wheat steamed breads by controlling the flour particle size, compositing non-wheat flours with different levels of wheat flour, addition of protein sources and gums, altering the amount of water, improving the pre-gelatinization process and optimizing the steaming method of cooking bread. © 2013 Society of Chemical Industry.

  7. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    Science.gov (United States)

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-10-01

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  8. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat.

    Science.gov (United States)

    Lai, Kaitao; Lorenc, Michał T; Lee, Hong Ching; Berkman, Paul J; Bayer, Philipp Emanuel; Visendi, Paul; Ruperao, Pradeep; Fitzgerald, Timothy L; Zander, Manuel; Chan, Chon-Kit Kenneth; Manoli, Sahana; Stiller, Jiri; Batley, Jacqueline; Edwards, David

    2015-01-01

    Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole-genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co-cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low-density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Reaction of Rust on Some Bread Wheat Varieties in Çukurova Region

    OpenAIRE

    AY, Hasan

    2013-01-01

    This study was conducted with 126 varieties of wheat between 2009-2010 years in Adana. There has not been artificially inoculated yellow, leaf and stem rusts. Races of rust in natural were evaluated in both years. Between 2009-2010 this study was conducted in Adana, with 126 varieties of bread wheat. In both years, only the natural environment leaf rust races inoculated for assessments reactions of bread wheat. According to results, 49 bread wheat varieties were found resistant, 6 bread wheat...

  10. Rheology of Potato flour Mixes and Wheat to Make Bread

    Directory of Open Access Journals (Sweden)

    Ely Fernando Sacón-Vera

    2016-07-01

    Full Text Available Evaluate the rheological properties of flour mixes Ipomoea batata and Triticum vulgare for the preparation of bread dough, was the goal of this research for it a completely randomized design, as treatments sweet potato flour was used varieties are used: Toquecita, Guayaco Purple, Purple Ecuador, Brazil and Ina Purple in a 30/70 ratio (sweet potato flour / wheat flour respectively. The rheological variables: water absorption, development time, weakening of the dough stability, water absorption index (C1, mixing rate (C2, gluten strength index (C3, gel viscosity (C4, resistance index amylase (C5 and starch retro gradation index (C6 were evaluated with Mixolab equipment. The results showed that the variety Purple Brazil showed better characteristics of flours recommended premixes for the baking process in response to these indices

  11. Augmenting the salt tolerance in wheat ( Triticum aestivum ) through ...

    African Journals Online (AJOL)

    Augmenting the salt tolerance in wheat ( Triticum aestivum ) through exogenously applied silicon. ... African Journal of Biotechnology ... physiology and biochemistry of wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) ...

  12. Determination of Main Plant Sterols in Turkish Bread Wheat (Triticum aestivum L. by GC-MS

    Directory of Open Access Journals (Sweden)

    Halil Erdem

    2017-07-01

    Full Text Available Plant sterols are belong to triterpenes family of natural products which includes more than 200 different types of plant sterols and more than 4000 other types of triterpenes. The optimization of method, specially the derivatization step as well as the corresponding analytical validation, is the main goal of this study. The optimum temperature, time and reagent volume of derivatization step were obtained at 60°C, 60 minutes and 50 µL, respectively. A rapid and sensitive gas chromatographic–mass spectrometric method was developed and validated for quantitative analysis of the most common plant sterols (β-sitosterol, campesterol and stigmasterol in 20 Turkish bread wheat cultivars using GC-MS-SIM. Separation of β-cholestanol (I.S, campesterol, stigmasterol and β-sitosterol was achieved on Rxi (5Sil MS column (60 m×0.25 mm. The limits of detection for β-sitosterol, campesterol and stigmasterol were 0.074, 0.054 and 0.064 mg kg-1, respectively with RSD ≤ 0.66%. The obtained concentrations of campesterol, stigmasterol and β-sitosterol from 20 Turkish bread wheat cultivars ranged from: 15.30 to 76.02, 4.27 to 23.23 and 303.21 to 682.66 mg kg-1, respectively.

  13. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    Science.gov (United States)

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. PCR-based isolation and identification of full-length low-molecular-weight glutenin subunit genes in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Jiang, Wei; Guo, Xiaoli; Yang, Wenlong; Sun, Jiazhu; Ling, Hongqing; Zhang, Aimin

    2011-12-01

    Low-molecular-weight glutenin subunits (LMW-GSs) are encoded by a multi-gene family and are essential for determining the quality of wheat flour products, such as bread and noodles. However, the exact role or contribution of individual LMW-GS genes to wheat quality remains unclear. This is, at least in part, due to the difficulty in characterizing complete sequences of all LMW-GS gene family members in bread wheat. To identify full-length LMW-GS genes, a polymerase chain reaction (PCR)-based method was established, consisting of newly designed conserved primers and the previously developed LMW-GS gene molecular marker system. Using the PCR-based method, 17 LMW-GS genes were identified and characterized in Xiaoyan 54, of which 12 contained full-length sequences. Sequence alignments showed that 13 LMW-GS genes were identical to those found in Xiaoyan 54 using the genomic DNA library screening, and the other four full-length LMW-GS genes were first isolated from Xiaoyan 54. In Chinese Spring, 16 unique LMW-GS genes were isolated, and 13 of them contained full-length coding sequences. Additionally, 16 and 17 LMW-GS genes in Dongnong 101 and Lvhan 328 (chosen from the micro-core collections of Chinese germplasm), respectively, were also identified. Sequence alignments revealed that at least 15 LMW-GS genes were common in the four wheat varieties, and allelic variants of each gene shared high sequence identities (>95%) but exhibited length polymorphism in repetitive regions. This study provides a PCR-based method for efficiently identifying LMW-GS genes in bread wheat, which will improve the characterization of complex members of the LMW-GS gene family and facilitate the understanding of their contributions to wheat quality.

  15. [Bread from the bioactivated wheat grain with the raised nutrition value].

    Science.gov (United States)

    Ponomareva, E I; Alekhina, N N; Bakaeva, I A

    2016-01-01

    Bread from the bioactivated grain of wheat differs in high content of dietary fibers, minerals and vitamins compared to traditional types of bread, but, despite this, it has low protein and lysine content. The aim of the study was the development of bread with the raised nutritional value from the bioactivated wheat grain by use of flour from cake of wheat germ (6.5%). It has been established that the flour from wheat germ has protein biological value (77.4%) and the amino acid score according to lysine (100.3%) above 12 and 40.5%, respectively, compared with those from bioactivated wheat. During calculation of nutritive, biological and energy value of products from the bioactivated wheat grain it is revealed that the biological value of bread from wheat germ flour slightly exceeded the biological value of the bread without its addition and amounted to 70.80%, due to a high protein content and a balanced amino acid composition. The protein content in the test sample of bakery products was 19.0% higher than the control, phosphorus - 13.0%, zinc - 50.0%.

  16. Optimization of Bread Preparation from Wheat Flour and Malted Rice Flour

    Directory of Open Access Journals (Sweden)

    Subajiny VELUPPILLAI

    2010-03-01

    Full Text Available The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan were steeped in distilled water (12 h, 30°C and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%, insoluble dietary fiber (3.95%, total dietary fiber (4.57% and free amino acid content (0.64 g/kg than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively.

  17. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  18. Genotype-dependent responses of wheat ( Triticum aestivum L ...

    African Journals Online (AJOL)

    Experiments were conducted under controlled conditions to investigate the growth and physiological - biochemical responses of wheat (Triticum aestivum L.) seedlings to UV-B, drought, and their combined stresses. Both UV-B and drought treatments retarded seedling growth with UV-B having worse impact on wheat plants ...

  19. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  20. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  1. Binding of zinc and iron to wheat bread, wheat bran, and their components.

    Science.gov (United States)

    Ismail-Beigi, F; Faraji, B; Reinhold, J G

    1977-10-01

    Wholemeal wheat bread decreases the availability and intestinal absorption of divalent metals. To define this action further, binding of zinc in vitro to a wheat wholemeal bread (Tanok), dephytinized Tanok, and cellulose was determined at pH 5.0 to 7.5. Zinc binding by each was highly pH-dependent and reached a maximum at pH 6.5 to 7.5. Removal of phytate from Tanok did not reduce its binding capability. Wheat bran at pH 6.5 and 6.8 bound 72% of iron (0.5 microgram/ml of solution) and 82.5% of zinc (1.43 microgram/ml solution), respectively. Lignin and two of the hemicellulose fractions of wheat bran and high binding capabilities for zinc (85.6, 87.1, and 82.1%, respectively) whereas a third had a lower zinc-binding capability (38.7%). Binding of zinc to various celluloses and dextrans is also demonstrated. Formation of complexes of these metals with wheat fiber can explain, at least in part, the decreased availability of dietary iron and zinc in wholemeal wheat bread.

  2. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    KAUST Repository

    Takahashi, Fuminori

    2015-08-05

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  3. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Directory of Open Access Journals (Sweden)

    Fuminori Takahashi

    Full Text Available Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  4. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Science.gov (United States)

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  5. Wheat bread aroma compounds in crumb and crust: A review.

    Science.gov (United States)

    Pico, Joana; Bernal, José; Gómez, Manuel

    2015-09-01

    Bread is one of the most widely consumed foods in the world. Among the different properties that define its quality, the aroma of bread is considered essential to its approval by consumers. Knowing what the compounds found in bread are, as well as the most important ones in crumb and crust, and understanding their biological sources and how they affect the final aroma of bread, could make it possible to modify the steps of bread manufacturing in order to enhance those with a positive impact and reduce those with a negative impact. The aim of this review is to provide a guideline correlating a great deal of the information now available regarding wheat bread aroma. For this purpose, a total of 326 volatile compounds reported in the literature have been included. The sensorial correlation of these compounds with the final aroma of wheat bread has also been explained, as well as the biological sources that generate them. Finally, it is shown how modifying the production stages of wheat bread could also affect the odour quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. GENETIC DIVERSITY OF WINTER BREAD WHEAT (Triticum aestivum L. ssp. vulgare

    Directory of Open Access Journals (Sweden)

    Sonja Petrović

    2011-06-01

    Full Text Available Diversity was analyzed based on agronomic and morphologic traits and molecular data. The main objectives of this study were: 1. to estimate genetic diversity of wheat germplasm using agronomic and morphologic traits and molecular markers, 2. to investigate the existence of genetic erosion within tested wheat germplasm, 3. to explore potential utilization of combination of agronomic, morphologic and molecular markers in plant breeding. Forty winter bread wheat varieties were used originating from Croatia, Austria, France, Italy and Russia. Field trial was conducted during two vegetation years (2007/2008, 2008/2009 in three replications according to randomized block design. Ten traits were included in agronomic and morphologic analysis. Composition of high molecular weight glutenin subunits (HMW GS was evaluated for 16 varieties, whereas literature data are used for the rest. Starch composition analysis was based on amylose and amylopectin isolation, their quantity and ratio. For the SSR analysis 26 microsatellite primers were used, and for the AFLP analysis four primer combinations. Statistical analysis was performed using SAS Software 9.1.3, NTSYS ver.2.2., Arlequin ver2.0. and Powermarker ver.3.25. Analyzed varieties displayed highly significant differences (p<0,001 for all agronomic traits and for amylose/amylopectin ratio. High variability of HMW GS was found among varieties. Estimation of genetic diversity based on morphologic and molecular data were used to construct dendograms. AMOVA was used to evaluate variability based on molecular data. Genetic diversity was estimated among and within morphologic and molecular data. SSR and AFLP markers showed efficient discrimination power between highly related genotypes. Significant correlation was found out between two molecular methods which showed more accurate estimate of genetic diversity than by agronomic and morphologic data.

  7. Buckwheat and quinoa seeds as supplements in wheat bread production

    Directory of Open Access Journals (Sweden)

    Demin Mirjana A.

    2013-01-01

    Full Text Available The aim of this work was to compare the nutritional characteristics of wheat bread with the bread produced of wheat flour supplemented with quinoa and buckwheat seeds. Bread making properties of these blends were analyzed in order to investigate their ability to make moulded bread. Quinoa (Chenopodium quinoa Will. and buckwheat seeds were grown in the vicinity of Belgrade, Serbia. The addition of pseudocereal seeds (at levels of 30% and 40% and a selected technological process, which included hydrothermal preparation of supplements, resulted with a valuable effect on nutritive value of breads. In comparison with the wheat bread that was used as control sample, the protein increase of 2% and the increase of crude fiber content at around 0.5% in 30% supplemented breads were registered. Furthermore, the incorporation of both seeds mixture at the level of 40%, increased the content of protein for 2.5% and fiber content for 0.4%. In regard to the starch, fat, and ash contents there were no major differences. The investigated breads were nutritionally superior to the wheat bread. Chemical composition of the selected seeds was also investigated. The results showed that the blends containing either 30% or 40% of selected seeds expressed high potential for the production of molded breads, as new baking products with enhanced nutritional composition. The applied technological procedure was modified in such way that for all blended combination of supplements it changed rheological properties of dough. Furthermore, it resulted in a good volume of breads with excellent sensory properties of aroma-odor and taste.

  8. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality

    Science.gov (United States)

    Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele o...

  9. DEVELOPMENT OF A FUNCTIONAL PURPOSE WHIPPED BREAD WHOLE GRAIN WHEAT, RYE AND WHEAT BRAN

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article discusses the development of whipped bakery products enriched with dietary fiber, minerals, vitamins retinol, tocopherol, group, polyunsaturated fatty acids through the use of rye and wheat bran and flour of wholegrain wheat. The main raw material for enrichment whipped bakery products used wheat bran and rye. Choice of rye and wheat bran as supplementation prepared whipped bread is explained not only from the point of view of the rationality of the use of this secondary raw materials, but also its rich vitamin and mineral composition. Wheat bran contain the necessary man of b vitamins, including B1, B2, B6, PP and others. Found provitamin a (carotene and vitamin E (tocopherol. Bran is rich in mineral substances. Among them potassium, magnesium, chromium, zinc, copper, selenium and other trace elements. Thanks to this composition bran are essential dietary product. They are rich in insoluble fiber and can be useful to reduce the risk of developing colon cancer. Rye bran contain dietary fiber, tocopherol E, thiamin B1, Riboflavin B2, Pantothenic acid B5, B4 (choline, nicotinic acid B3, etc. In the bran rich set of microelements and macroelements such as iron, calcium, magnesium, phosphorus, potassium, zinc, iodine, selenium, chromium, etc. the Introduction in the diet, bran rye contribute to the prevention and treatment of atherosclerosis, diabetes and anemia. They restore blood pressure, reduce blood sugar levels and improve the cardiovascular system. Flour from wholegrain wheat is the main supplier of bread protein and starch, while preserving the maximum of the original nutritional value of the grain, enriched whipped bread macro - and micronutrients. The analysis of the chemical composition of flour from wholegrain wheat, rye and wheat bran leads to the conclusion that the choice of these types of materials suitable for making the recipe whipped bakery products, because their use can increase the content in bread is not only the

  10. An overview of wheat genome sequencing and its implications for ...

    Indian Academy of Sciences (India)

    National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India ... Wheat (Triticum aestivum L.) serves as the staple food for. 30% of the global .... bread wheat genome is a product of multiple rounds of hybrid.

  11. Genetic variability, path-coefficient and correlation studies in twenty elite bread-wheat (triticum aestivum L.) lines

    International Nuclear Information System (INIS)

    Mujahid, M.Y.; Asif, M.; Ahmad, I.; Kisana, N.A.; Ahmad, Z.; Asim, M.

    2005-01-01

    Twenty bread-wheat elite lines of diverse origin, developed by various research institutes in the country, were tested and evaluated at National Agricultural Research Centre (NARC) under optimum irrigated conditions. Significant variation was observed for all the traits studied viz: days to heading, days to maturity, kernel weight, test weight and grain yield. Genotypic and phenotypic correlations were computed and the direct and indirect contributions of each trait towards grain-yield were determined. Grain-yield showed significant association with test weight and kernel weight. Direct positive effects of kernel weight and test weight towards grain-yield suggest the effectiveness of these traits to select and identify the desirable wheat- genotypes for a target environment. (author)

  12. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption.

    Science.gov (United States)

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-09-02

    Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children's bread choices from white to whole wheat during breakfast to increase whole grain intake. In a between-subjects experiment conducted at twelve primary schools in the Netherlands, with school as the unit of condition assignment, children were exposed to an assortment of white and whole wheat bread rolls, both varying in shape (regular versus fun). Children were free to choose the type and number of bread rolls and toppings to eat during breakfast. Consumption of bread rolls was measured at class level via the number of bread rolls before and after breakfast. In addition, children (N = 1113) responded to a survey including questions about the breakfast. Results of the field experiment showed that about 76% of bread consumption consisted of white bread rolls. Consumption of white bread rolls did not differ according to shape (all P-values > 0.18). However, presenting fun-shaped whole wheat bread rolls almost doubled consumption of whole wheat bread (P = 0.001), particularly when the simultaneously presented white bread rolls had a regular shape (interaction P = 0.02). Survey results suggest that slight increases in perceived pleasure and taste are associated with these effects. Overall, presenting whole wheat bread in fun shapes may be helpful in increasing consumption of whole wheat bread in children. Future research could examine how improving the visual appeal of healthy foods may lead to sustained behaviour changes.

  13. Quality of wholemeal wheat bread enriched with green coffee beans

    Directory of Open Access Journals (Sweden)

    Urszula Gawlik-Dziki

    2016-01-01

    Full Text Available Scientific studies have revealed that bioactive components of coffee play a preventive role against various degenerative diseases. Green coffee, in particular, is characterized by its unique composition and properties. The objective of this work was to investigate the influence of green coffee (Coffea arabica beans (GCB addition on the quality and antioxidant properties (AA of the wholemeal bread. For bread preparation, flour form GCB, and wholemeal wheat flour, type 2000 were used. Wholemeal wheat flour was replaced with GCB flour at 1 to 5% levels. Loaf volume, texture, color and sensory properties of bread were determined. Furthermore, total phenolic content and antioxidant activity were evaluated. The results showed that bread supplementation with GCB had little influence on the bread volume. The highest volume of bread was obtained with 3 and 4% of GCB flour. The texture properties of bread crumb (hardness, elasticity, cohesiveness and chewiness were slightly changed as a result of the GCB addition. The lightness of bread crumb decreased with the GCB addition (average from 46.3 to 42.6. Besides, the addition of GCB significantly enriched wheat bread with hydrophilic phenolic compounds. The phenolic compounds were highly bioaccessible in vitro. Moreover, the GCB addition enhanced antiradical activity of bread.

  14. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.

    Science.gov (United States)

    Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A

    2017-11-14

    The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread

  15. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  16. Characterization and glutenin diversity in tetraploid wheat varieties ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Important methods applied for the breeding of bread-quality wheat (Triticum durum L.) consist of small- scale bread-quality tests for the determination of the grain protein content, SDS-sedimentation volume, thousand weight kernel and ... marked as a x and y – type subunits, based on their electrophoretic ...

  17. TEXTURE ANALYSIS OF SPELT WHEAT BREAD

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available The bread quality is considerably dependent on the texture characteristic of bread crumb. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what are inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators of bread crumb for texture quality of three Triticum spelta L. cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. The bread texture quality was evaluated on texture analyzer TA.XT Plus and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%.Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was measured in Rubiota, whereas bread crumb samples from Franckenkorn were the most firm and stiff. Relative elasticity confirmed that the lowest firmness and stiffness was found in Rubiota bread. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety.

  18. Identification of bitter compounds in whole wheat bread.

    Science.gov (United States)

    Jiang, Deshou; Peterson, Devin G

    2013-11-15

    Bitterness in whole wheat bread can negatively influence product acceptability and consumption. The overall goal of this project was to identify the main bitter compounds in a commercial whole wheat bread product. Sensory-guided fractionation of the crust (most bitter portion of the bread sample) utilising liquid-liquid extraction, solid-phase extraction, ultra-filtration and 2-D offline RPLC revealed multiple bitter compounds existed. The compounds with the highest bitterness intensities were selected and structurally elucidated based on accurate mass-TOF, MS/MS, 1D and 2D NMR spectroscopy. Eight bitter compounds were identified: Acortatarins A, Acortatarins C, 5-(hydroxymethyl)furfural(HMF), 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP), N-(1-deoxy-d-fructos-1-yl)-l-tryptophan (ARP), Tryptophol (TRO), 2-(2-formyl-5-(hydroxymethyl-1H-pyrrole-1-yl)butanoic acid (PBA) and Tryptophan (TRP). Based on the structures of these compounds, two main mechanisms of bitterness generation in wheat bread were supported, fermentation and Maillard pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Higher bioavailability of iron from whole wheat bread compared with iron-fortified white breads in caco-2 cell model: an experimental study.

    Science.gov (United States)

    Nikooyeh, Bahareh; Neyestani, Tirang R

    2017-06-01

    Bread, as the staple food of Iranians, with average per capita consumption of 300 g d -1 , could potentially be a good vehicle for many fortificants, including iron. In this study, iron bioavailability from flat breads (three fortified and one whole wheat unfortified) was investigated using in vitro simulation of gastrointestinal digestion and absorption in a caco-2 cell model. Despite having a lower ferritin/protein ratio in comparison with fortified breads, whole wheat bread showed higher iron bioavailability than the other three types of bread. Assuming iron bioavailability from the ferrous sulfate supplement used as standard was about 10%, the estimated bioavailability of iron from the test breads was calculated as 5.0-8.0%. Whole wheat bread (∼8%), as compared with the fortified breads (∼5-6.5%), had higher iron bioavailability. Iron from unfortified whole wheat bread is more bioavailable than from three types of iron-fortified breads. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ladislav Haris

    2010-01-01

    Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-che­mi­cal properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Me­rit­to varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.

  2. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2013-01-01

    Full Text Available Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w was evaluated in combination with high-methylated pectin (HM-pectin added at levels of 1 to 3% (w/w according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  3. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types.

    Science.gov (United States)

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrné, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with high-methylated pectin (HM-pectin) added at levels of 1 to 3% (w/w) according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  4. Effects of Bread Making and Wheat Germ Addition on the Natural Deoxynivalenol Content in Bread

    Science.gov (United States)

    Giménez, Isabel; Blesa, Jesús; Herrera, Marta; Ariño, Agustín

    2014-01-01

    Deoxynivalenol (DON, vomitoxin) is a type-B trichothecene mycotoxin produced by several field fungi such as Fusarium graminearum and Fusarium culmorum and known to have various toxic effects. This study investigated the effect of the bread making process on the stability of DON in common bread and wheat germ-enriched bread using naturally contaminated ingredients at the level of 560 µg/kg. The concentration of DON and its evolution during bread making were determined by immunoaffinity column cleanup followed by liquid chromatography with diode array detection (HPLC-DAD). During the bread making process, DON was reduced by 2.1% after fermentation and dropped by 7.1% after baking, reaching a maximum reduction of 19.8% in the crust as compared with a decrease of 5.6% in the crumb. The addition of 15% wheat germ to the dough did not affect DON stability during bread making, showing an apparent increase of 3.5% after fermentation and a reduction by 10.2% after baking. PMID:24451845

  5. Gamma radiation influence on technological characteristics of wheat flour

    Science.gov (United States)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  6. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  7. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  8. Postprandial glucose metabolism and SCFA after consuming wholegrain rye bread and wheat bread enriched with bioprocessed rye bran in individuals with mild gastrointestinal symptoms

    DEFF Research Database (Denmark)

    Lappi, J; Mykkänen, H; Knudsen, Knud Erik Bach

    2014-01-01

    BackgroundRye bread benefits glucose metabolism. It is unknown whether the same effect is achieved by rye bran-enriched wheat bread. We tested whether white wheat bread enriched with bioprocessed rye bran (BRB + WW) and sourdough wholegrain rye bread (WGR) have similar effects on glucose metabolism...... and plasma level of short chain fatty acids (SCFAs).  MethodsTwenty-one (12 women) of 23 recruited subjects completed an intervention with a four-week run-in and two four-week test periods in cross-over design. White wheat bread (WW; 3% fibre) was consumed during the run-in, and WGR and BRB + WW (10% fibre.......05) and propionate (p = 0.009) at 30 min increased during both rye bread periods.ConclusionsBeneficial effects of WGR over white wheat bread on glucose and SCFA production were confirmed. The enrichment of the white wheat bread with bioprocessed rye bran (BRB + WW) yielded similar but not as pronounced effects than...

  9. Identification of superior parents and hybrids from diallel crosses of bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Baloch, M.J.; Rajper, T.A.; Jatoi, W.A.

    2013-01-01

    Five parents of bread wheat (Triticum aestivum L.) viz. TD-1, SKD-1, Marvi, Moomal and Mehran were crossed in a half diallel design; hence 10 F 1 hybrids were developed. Parents alongwith hybrids were evaluated for combining ability and heterosis for tillers/plant, spike length, spike density, grains/spike, grain yield/plant and seed index. The experiment was conducted in a randomized complete block design with four replications at Botanical Garden, Department of Plant Breeding and Genetics, Sindh Agriculture University,Tandojam, during 2010. The analysis of variance due to genotypes, parents, hybrids and parents vs. hybrids was significant for all the characters which revealed presence of significant amount of genetic variability in the material. The results also indicated significant differences among the parents for their general combining ability (GCA) and hybrids for specific combining ability (SCA) suggesting the importance of both additive and non-additive genes in the expression of traits studied. The greater magnitude of SCA variances over GCA were recorded for tillers/plant, grains/spike and grain yield/plant which indicated the importance of additive gene action while the involvement of non-additive genes was evident in the inheritance of spike length, spike density and seed index. Among the parents, generally TD-I, Mehran, Moomal and Marvi were the best general combiners for tillers/plant, spike length, spike density, grains/spike, grain yield/plant and seed index. Whereas, the hybrids like SKD-1 x Mehran, Marvi x Mehran, Marvix Moomal and TD-I x SKD-I were the best specific combiners for majority of yield traits. Positive heterosis was expressed by the hybrid SKD-1 x Moomal for tillers per plant; TD-I x Moomal for spike length; TD-1 x SKD-I for grains per spike; Marvi x Mehran for spike density and Marvi x Moomal for seed index. The best parents and hybrids could be effectively utilized in hybridization and selection programmes and also for hybrid crop

  10. Elemental characterization of bread and durum wheat by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Catarina Galinha; Maria do Carmo Freitas; Pacheco, A.M.G.

    2013-01-01

    Cereals are by far the most significant agricultural crops, not only due to the sheer amount of their gross-tonnage production and prevalence in human diets worldwide, but also as food vehicles of important items for human nutrition and wellness at large-proteins, dietary fibers and oligoelements, such as selenium, calcium, zinc and iron, to name just a few. Still, some micronutrients feature an uneven distribution in the upper continental crust, and thus in cultivation soils deriving therefrom. Whether soils have always been poor in an essential element, or have just become deprived of it by intensive farming, the result is the same: insufficient soil-plant transfer, feeble-to-nonexistent plant uptake, and, therefore, unsatisfactory dietary distribution of that element through the food chain. Countries that implemented corrective measures or programs of crop biofortification and consumer education have been successful in dealing with some micronutrients' deficiencies. Given their relative weight in Portuguese diets, cereals are obvious candidates for crop-supplementation strategies that may contribute to an upgrade in the health status of the whole population. A good knowledge of element-baseline data for major cereal varieties (plants) and main production areas (soils) is a pre-requisite though. The present work was aimed at an elemental characterization of cereals and soils from relevant wheat-producing areas of mainland Portugal. This paper is focused on wheat samples-bread and durum wheats; Triticum aestivum L. (Farak and Jordao cultivars) and Triticum durum Desf. (Don Duro and Simeto cultivars), respectively-from the 2009 campaign, collected at Tras-os-Montes, Alto Alentejo and Baixo Alentejo (inland regions). Elemental concentrations were determined by instrumental neutron activation analysis (INAA; k 0 -variant), and assessed with the k 0 -IAEA software. Quality control was asserted through the analysis of NIST-SRM R 1567a (Wheat Flour), NIST-SRM R 1568a

  11. The effect of baking temperature and buckwheat flour addition on the selected properties of wheat bread

    Directory of Open Access Journals (Sweden)

    A. Selimović

    2014-01-01

    Full Text Available Wholegrain buckwheat flour was used to substitute 15 %, 30 % and 40 % of wheat flour to make buckwheat enriched wheat bread. Proximate composition, sensory evaluation, total phenols content and antioxidant activity of buckwheat enriched wheat breads were analysed and compared with wheat bread. Wholegrain buckwheat flour contained higher total phenols than wheat flour. The incorporation of buckwheat flour from 15 % to 40 % in bread samples increased the total phenols content from 0.25 (mg GA/g d.m. sample to 0.65 (mg GA/g d.m. sample, and antioxidant activity from 208.45 (µmol Fe2+/L extract to 354.45 (µmol Fe2+/L extract. Total phenols content decreased during the baking process, while the antioxidant activity increased. Bread samples with 15 %, 30 % and 40 % of wholegrain buckwheat flour showed lower lightness (L and whiteness index (WI values of crust and crumb colour compared to the wheat bread. Addition of buckwheat flour increased redness (a and yellowness (b colour values for crumb. Sensory results indicating that three breads with buckwheat flour were moderately acceptable. No differences were found in overall sensory attributes between buckwheat flour enriched bread samples with 15 % and wheat bread (control sample.

  12. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  13. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    Science.gov (United States)

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  14. Infuence of gamma radiation on the rheological and functional properties of bread wheats

    International Nuclear Information System (INIS)

    Paredes-Lopez, O.; Covarrubias-Alvarez, M.M.

    1984-01-01

    The effects of gamma irradiation on some biochemical, rheological and functional properties of bread wheats were studied. Two wheat cultivars were selected to represent medium-strong and weak dough mixing strengths. Falling number values were severely depressed at doses of 500 and 1000 krad. Rheological dough properties, as assessed with the mixograph and farinograph, were also investigated. Radiation at medium doses produced an increase in the farinograph water absorption for both wheats. Radiation decreased the amount of bound water as compared to the control sample. For the medium-strong wheat low levels of radiation produced bread with volumes and overall bread quality equal to or slightly better than those of the control flour, whereas for the weak wheat an improvement of the baking performance was obtained at all the low doses of radiation. However, the overall bread quality of both wheats was highly reduced at medium doses of radiation. (author)

  15. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  16. [Resistance of bread wheat (Triticum aestivum L.) to preharvest sprouting: an association analysis].

    Science.gov (United States)

    Mart'ianov, S P; Dobrotvorskaia, T V

    2012-10-01

    A statistical analysis of the data about 1422 bread wheat accessions with estimated preharvest sprouting was carried out. Close associations of preharvest sprouting resistance with the grain color and with resistance to Fusarium head blight were revealed, as well as weak, but statistically significant, associations with the type of development, awnedness, and reduced height genes Rht-B1 and Rht-D1 (insensitive to gibberellin GA3). The pedigree analysis showed that the cluster structures of the gene pools of the North American red-grained and white-grained varieties are practically identical. In both groups, varieties that are resistant to preharvest sprouting differ from susceptible ones in the percentage of the contributions of the Crimean and Mediterranean landraces. Resistance is associated with a high contribution by the Crimean landrace and susceptibility is associated with a high contribution by the Mediterranean landrace.

  17. Bread wheat varieties as influenced by different nitrogen levels.

    Science.gov (United States)

    Hussain, Iqtidar; Khan, Muhammad Ayyaz; Khan, Ejaz Ahmad

    2006-01-01

    Experiment was conducted to determine the effect of different nitrogen levels on four bread wheat varieties (Triticum aestivum L.) viz. Inqilab-91, Daman-98, Dera-98 and Punjab-96 at Gomal University, Dera Ismail Khan (NWFP), Pakistan during 2000 approximatey 2001. The experiment was laid out in split plot design having four replications using a net plot size of 2 m x 5 m. Nitrogen doses used were 0, 50, 100, 150 and 200 kg/ha. The results showed that different nitrogen levels had significant effects on plant height, total number of plants/m(2), number of grains/spike, number of spike/m(2), spike weight, biological yield, grain yield and grain protein content. Maximum plant height, total number of plants/m(2), number of spikes/m(2), spike weight, biological yield and grain protein content were observed at 200 kg N/ha. Among wheat varieties Daman-98 had maximum plant height, spike weight, grains/spike, 1000-grain weight, biological yield and grain yield. Inqilab-91 had heavier grains and the most grain protein content, while Dera-98 had the maximum plant population and spikes/m(2). Grain yield and biological yield were statistically similar at doses of 150 kg N/ha and 200 kg N/ha. However, dose of 200 kg N/ha, compared to dose of 150 Kg N/ha, significantly increased the protein content.

  18. Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress.

    Science.gov (United States)

    Suneja, Yadhu; Gupta, Anil Kumar; Bains, Navtej Singh

    2017-01-01

    Antioxidant enzymes are known to play a significant role in scavenging reactive oxygen species and maintaining cellular homeostasis. Activity of four antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was examined in the flag leaves of nine Aegilops tauschii and three Triticum dicoccoides accessions along with two bread wheat cultivars under irrigated and rain-fed conditions. These accessions were shortlisted from a larger set on the basis of field performance for a set of morpho-physiological traits. At anthesis, significant differences were observed in enzyme activities in two environments. A 45% elevation in average GR activity was observed under rain-fed conditions. Genotypic variation was evident within each environment as well as in terms of response to stress environment. Aegilops tauschii accession 3769 (86% increase in SOD, 41% in CAT, 72% in APX, 48% in GR activity) and acc. 14096 (37% increase in SOD, 32% CAT, 25% APX, 42% GR) showed up-regulation in the activity of all the four studied antioxidant enzymes. Aegilops tauschii accessions-9809, 14189 and 14113 also seemed to have strong induction mechanism as elevated activity of at least three enzymes was observed in them under rain-fed conditions. T. dicoccoides , on the other hand, maintained active antioxidative machinery under irrigated condition with relatively lower induction under stress. A significant positive correlation (r = 0.760) was identified between change in the activity of CAT and GR under stress. Changes in plant height, spike length and grain weight were recorded under stress and non-stress conditions on the basis of which a cumulative tolerance index was deduced and accessions were ranked for drought tolerance. Overall, Ae. tauschii accession 3769, 14096, 14113 (DD-genome) and T. dicoccoides accession 7054 (AABB-genome) may be used as donors to combine beneficial stress adaptive traits of all the three sub

  19. Fibre fortification of wheat bread: impact on mineral composition and bioaccessibility.

    Science.gov (United States)

    Martins, Zita E; Pinto, Edgar; Almeida, Agostinho A; Pinho, Olívia; Ferreira, Isabel M P L V O

    2017-05-24

    In this work, wheat bread was fortified with fibre enriched extracts recovered from agroindustry by-products, namely, elderberry skin, pulp and seeds (EE); orange peel (OE); pomegranate peel and interior membranes (PE); and spent yeast (YE). The impact of this fortification on the total and bioaccessible mineral composition of wheat breads, estimated mineral daily intake, and the relationship between bioaccessibility and dietary fibre was evaluated. Fortification with OE, EE, and PE improved the content of essential minerals in bread when compared to control bread. The exception was bread fortified with YE, which presented a mineral content similar to control bread, but its mineral bioaccessibility was significantly higher than in all the other bread formulations. The opposite was observed for PE bread, which presented a significant reduction of bioaccessible minerals. We concluded that the origin of the fibre rich extract must be carefully selected, to avoid potential negative impact on mineral bioaccessibility.

  20. Induced variability for protein content in bread wheat

    International Nuclear Information System (INIS)

    Singhal, N.C.; Jain, H.K.; Austin, A.

    1978-01-01

    The negative correlation observed between seed weight and percentage of protein in the seeds of bread wheat is a function of the fact that increase in seed size is commonly associated with a disproportionately large deposition of starch relative to the protein. The present study, as well as our earlier analysis, shows that exceptional genotypes of bread wheat do exist in which increase in seed weight is associated with a relatively larger synthesis of protein. In the course of the present investigation on radiation-induced variability, genotypes showing more efficient synthesis of storage proteins in their seeds have been identified in the M 2 and M 3 generations. The induced variability, thus, makes it possible to break the negative correlation between seed weight and percentage of protein in the seed. Based on these findings, it has been suggested that in a protein improvement programme on bread wheat it should be useful to select in the segregating generation plants showing increase in seed size, some of which can be expected to be relatively more efficient in protein synthesis and give higher protein yields. (author)

  1. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    OpenAIRE

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrn?, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with...

  2. IPR 118 - Bread wheat cultivar

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Riede

    2007-01-01

    Full Text Available Wheat cultivar IPR 118 developed by IAPAR has a good yield potential and is widely adapted. It is earlymaturing and moderately tolerant to shattering and soil aluminum, moderately resistant to leaf rust and presents high glutenstrength for bread-making. The overall yield exceeded controls by 13%.

  3. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution

    Czech Academy of Sciences Publication Activity Database

    Raats, D.; Frenkel, Z.; Krugman, T.; Šimková, Hana; Paux, E.; Doležel, Jaroslav; Feuillet, C.; Korol, A.; Fahima, T.

    2013-01-01

    Roč. 14, č. 12 (2013) ISSN 1465-6906 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.465, year: 2013

  4. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    A Triticum timopheevii-derived bread wheat line, Selection G12, was screened with 40 pathotypes of leaf rust pathogen, Puccinia triticina at seedling stage and with two most commonly prevalent pathotypes 77-5 and 104-2 at adult plant stage. Selection G12 showed resistance at both seedling and adult plant stages.

  5. Gamma radiation influence on technological characteristics of wheat flour

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L.d.

    2012-01-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it. - Highlights: ► We study the influence of gamma radiation on wheat flour and properties of breads. ► Falling number decreased with radiation remaining almost constant up to one month. ► Ionizing radiation may confer an increase in texture parameters, weight and height on the bread.

  6. The pangenome of hexaploid bread wheat

    Czech Academy of Sciences Publication Activity Database

    Montenegro, J. D.; Golicz, A. A.; Bayer, P.E.; Hurgobin, B.; Lee, H. T.; Chan, C. K. K.; Visendi, P.; Lai, K.; Doležel, Jaroslav; Batley, J.; Edwards, D.

    2017-01-01

    Roč. 90, č. 5 (2017), s. 1007-1013 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : database * diversity * genome * pangenome * single nucleotide polymorphisms * Triticum aestivum * wheat Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  7. Upgrading of shamy wheat bread quality through supplement with flour of certain gamma irradiated legumes

    International Nuclear Information System (INIS)

    Nassef, A.E.

    1997-01-01

    Soybean flour,chick peas flour and lupines were irradiated at 0,5 and 10 kGy and individually used to replace 5,10 or 15% of wheat flour in shamy bread. The effect of supplementation of wheat flour with these legume flours on the major, chemical composition and nutritional quality of bread was studied. Results indicated that protein, ash and fiber contents of supplemented shamy bread were higher than the control. On the other hand, the amino acids of the shamy wheat bread supplemented irradiated legumes flour, improved the quality (water retention capacity, stailing rate and bread freshness) of bread

  8. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  9. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Microbiological, Nutritional, and Sensory Quality of Bread Produced from Wheat and Potato Flour Blends

    Directory of Open Access Journals (Sweden)

    Udeme Joshua Josiah Ijah

    2014-01-01

    Full Text Available Dehydrated uncooked potato (Irish and sweet flour was blended by weight with commercial wheat flour at 0 to 10% levels of substitution to make bread. Comparative study of the microbial and nutritional qualities of the bread was undertaken. The total aerobic bacterial counts ranged from 3.0 × 105 cfu/g to 1.09 × 106 cfu/g while the fungal counts ranged from 8.0 × 101 cfu/g to 1.20 × 103 cfu/g of the sample. Coliforms were not detected in the bread. Bacteria isolated were species of Bacillus, Staphylococcus, and Micrococcus while fungi isolates were species of Aspergillus, Penicillium, Rhizopus, and Mucor. The mean sensory scores (color, aroma, taste, texture, and general acceptability were evaluated. The color of the bread baked from WF/IPF2 (wheat/Irish potato flour, 95 : 5% blend was preferred to WF (wheat flour, 100% while WF/SPF1 (wheat/sweet potato flour, 100% and WF/IPF1 (wheat/Irish potato flour, 90 : 10% aroma were preferred to WF. However, the bread baked from WF, WF/IPF2 (wheat flour/Irish potato flour, 95 : 5%, and WF/SPF2 (wheat/sweet potato flour, 95 : 5% was more acceptable than other blends. The use of hydrated potato flour in bread making is advantageous due to increased nutritional value, higher bread yield, and reduced rate of staling.

  11. Effect of different iron compounds on wheat and gluten-free breads.

    Science.gov (United States)

    Kiskini, Alexandra; Kapsokefalou, Maria; Yanniotis, Stavros; Mandala, Ioanna

    2010-05-01

    Iron fortification of bread often results in sub-optimal quality of the final product due to undesirable changes in the physical characteristics and sensory properties of the bread. In this study both the form of iron (soluble, insoluble or encapsulated) and the type of bread (wheat or gluten-free) were varied in order to investigate the effect of iron and gluten on the product characteristics. The effect of iron on the quality characteristics of the breads investigated depended on iron type, but not on iron solubility. Colour, crust firmness, specific volume, cell number and uniformity as well as aroma were the attributes that were mainly affected in iron-enriched wheat bread. In some cases, specific volume was 30% lower than that of the control sample, while cell uniformity was significantly lower, as low as 50% of the control sample in some fortified samples. In gluten-free breads, differences between unfortified and fortified samples included colour, crust firmness, cell number, 'moisture' odour, metallic taste and stickiness. In some cases, the sensory scores were better for fortified samples. Differences due to iron fortification were less pronounced in gluten-free compared to wheat breads. The choice of the appropriate iron compound which will not cause adverse quality changes is still a challenge.

  12. Substitution of wheat flour with “acha” ( Digitaria exilis ) for bread ...

    African Journals Online (AJOL)

    Effect of wheat flour (WF) substitution with 'Acha' flour (AF) on the quality attributes in bread making was investigated using the following composite blends ratios 85:15, 80:20, 75:25, 70:30, 100:0 (AF) with 100% wheat flour as control. Proximate analysis on both composite flours and their bread products, as well as sensory ...

  13. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplican sequencing

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Esselink, D.G.; Goryunova, S.V.; Meer, van der I.M.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2013-01-01

    Background - Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses

  14. Comparative study of the nutritional quality of potato-wheat steamed and baked breads made with four potato flour cultivars.

    Science.gov (United States)

    Liu, Xingli; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Fauconnier, Maire Laure

    2017-03-01

    We investigated the nutritional quality of steamed and baked breads containing 35% potato flour from four potato cultivars. Compared with traditional wheat varieties, potato-wheat steamed and baked breads contained higher dietary fiber (1.87-fold), K (2.68-fold), vitamin C (28.56-fold), and total polyphenol (1.90-fold) contents and greater antioxidant activity (1.23-fold). Moreover, the estimated glycemic index of potato-wheat breads ranged from 61.20 (Hongmei-wheat baked bread) to 67.36 (Atlantic-wheat steamed bread), which was lower than that of wheat steamed bread (70.22) and baked bread (70.62). In terms of nutritional value, Hongmei was the optimum cultivar, followed by Blue Congo, Shepody, and Atlantic. For the same cultivar, the nutritional value of steamed bread was higher than that of baked bread. In conclusion, potato flour is a potential wheat flour supplement that improves the nutritional and functional properties of breads.

  15. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  16. Quality Parameters Of Wheat Bread Enriched With Pumpkin (Cucurbita Moschata By-Products

    Directory of Open Access Journals (Sweden)

    Kampuse Solvita

    2015-12-01

    Full Text Available Pumpkin processing into puree, juice, candied fruit and pumpkin seed oil results in large amount of by-products. Pumpkins are rich in carotenes, vitamins, minerals, pectin and dietary fibre. The aim of the current study was to evaluate effect of pumpkin pomace and pumpkin residue powder on wheat bread quality. The total content of carotenes was analyzed by spectrophotometric method. The initial increase of pumpkin residue addition indicated increase in loaf volume, which started to decrease at higher amounts. Sensory evaluation (appearance; surface, crust; porosity; texture, crumb; taste, and flavour of wheat bread with pumpkin revealed very high consumer acceptance except sample with 50% pomace addition. Total carotene content and colour b* value in wheat bread increased by adding pumpkin by-products. It is recommended to add 5% and 10% of pumpkin powder and no more than 30% of pumpkin pomace (calculated per 100 kg of flour to dough for production of wheat bread with pumpkin by-product additions.

  17. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat

    International Nuclear Information System (INIS)

    Singer, Carolina Sobral

    2006-01-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  18. The effect of a default-based nudge on the choice of whole wheat bread

    NARCIS (Netherlands)

    Kleef, van Ellen; Seijdell, Karen; Vingerhoeds, Monique H.; Wijk, de René A.; Trijp, van Hans C.M.

    2018-01-01

    Consumer choices are often influenced by the default option presented. This study examines the effect of whole wheat bread as a default option in a sandwich choice situation. Whole wheat bread consists of 100% whole grain and is healthier than other bread types that are commonly consumed, such as

  19. Some Physical and Chemical Properties of Iraqi Wheat Varieties and their Relationship with Bread Characteristics

    International Nuclear Information System (INIS)

    Fadhl, J.; AL-A'ani, S.; AL-Noori, F.; Sajet, A.

    2005-01-01

    The results showed that the volume of the bread baked from wheat flour of Tammoze 3 was increased significantly compared to other wheat varieties. Maxiback flour gave the smallest bread volume; whereas Abugraib and Rabi'ah bread were not significantly different. Abugraib wheat was not significantly different from Rabi'ah bread. The taste panel results were compatible with baking results. Tammoze 3 was the highest in one thousand grain weight and total protein percentage. Rabi'ah wheat flour was superior in water absorption Among the tested wheat flour varieties, maxiback flour showed best fat content. Amylases and proteases activities were higher in wheat grains than in flour. Protease activity was the highest in Maxiback flour; whereas in Tammoze 3 it was the lowest. (Author's) 19 refs., 5 tabs

  20. Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp
as a Functional Food Product.

    Science.gov (United States)

    Różyło, Renata; Gawlik-Dziki, Urszula; Dziki, Dariusz; Jakubczyk, Anna; Karaś, Monika; Różyło, Krzysztof

    2014-12-01

    In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20% (converted to dry matter) caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat flour with up to 10% of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10% of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids) and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15% of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE) inhibitors. The highest activity was determined in the bread with 15 and 20% pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro . Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefits. Key words : pumpkin, bread, texture, antioxidants, bioaccessibility in vitro, angiotensin-converting enzyme (ACE) inhibition.

  1. Bread Making Potential of Composite Flour of Wheat-Acha ...

    African Journals Online (AJOL)

    Bread-making potentials of composite flours containing 90% wheat and 10% acha enriched with 0-15% cowpea flour were investigated. Proximate composition and functional properties of the blends were studied using AOAC standard methods. Bread loaves were prepared from the blends using the straight dough method ...

  2. Organic Bread Wheat Production and Market in Europe

    DEFF Research Database (Denmark)

    David, C.; Abecassis, J.; Carcea, M.

    2012-01-01

    yield under organic production. The choice of cultivar, green manure, fertilization and intercropping legumes – grain or forage – are efficient ways to obtain high grain quality and quantity. The economic viability of wheat production in Europe is also affected by subsidies from European Union agri......This chapter is a first attempt to analyse bottlenecks and challenges of European organic bread wheat sector involving technical, political and market issues. From 2000, the organic grain market has largely increased in Western Europe. To balance higher consumer demand there is a need to increase...... organic production by a new transition and technical improvement. Bread wheat is grown in a variety of crop rotations and farming systems where four basic organic crop production systems have been defined. Weeds and nitrogen deficiency are considered to be the most serious threat inducing lowest grain...

  3. QUALITY EVALUATION OF WHEAT-PUMPKIN-GOLDEN FLAXSEED COMPOSITE BREAD

    Directory of Open Access Journals (Sweden)

    Georgiana Gabriela CODINĂ

    2017-06-01

    Full Text Available The purpose of this study was to optimize the level of wheat, pumpkin seed (PSF and golden flaxseed flour (GFs that can be used in order to obtain high quality bread. The independent variables levels used were between 90 and 95 % for wheat flour and between 2.5% and 7.5% for pumpkin seed and golden flaxseed flour. The quality parameters analyzed were the following: loaf volume, porosity, elasticity and bread crumb structure. The mixture experiment design was used for optimization. Special quadratic mixture models were obtained for all the dependent variables. The optimum mixture levels were of 92.43% for wheat flour, 5.06% for pumkin seed flour and 2.51% for golden seed flour. The values of these flours in terms of loaf volume of bread, porosity and elasticity were of 422 cm3/100g, 76.15%, and 92.82%, respectively. The textural properties (hardness, cohesiveness, adhesiveness, viscosity, elasticity, gumminess, chewiness were analyzed for the control sample and the optimum bread sample obtained with PSF and GFs addition. For the last one mentioned hardness, elasticity, gumminess and chewiness increase with 25.03%, 7.31%, 23.41%, 25.77% while the cohesiveness value decreases with 1.47%.

  4. Defatted Soy Flour Supplementation of Wheat Bread ameliorates Blood Chemistry and Oxidative Stress in Wistar rats.

    Science.gov (United States)

    Ebuehi, O A T; Okafor, H K

    2015-01-01

    Bread is a convenience food made from wheat flour, which is derived from wheat and whose technology of which dates back to the ancient Egyptians. It is therefore of economic advantage if wheat importation to Nigeria can be reduced by substitution with other suitable materials. This led to the whole idea of composite flour, which is a mixture of wheat with other materials to form suitable flour for baking'purposes. The study is to ascertain the effect of supplementation of bread with defatted soy flour on blood chemistry and oxidative stress in Wistar rats. Wheat flour mixed with high quality defatted Soy flour at several ratios: 90:10, 80:20, 70:30, and 60:40. The 90:10, 80:20, 70:30, and 60:40 flour mixtures were used to prepare 10%, 20%, 30%, and 40% Soya bread, respectively. The control bread (100%) was prepared with 100% wheat flour. Bread produced with these blends compared with regular 100% wheat bread and was tested for chemical and. organoleptic characteristics. Sixteen rats were randomly given codes and allocated to 2 different groups via tables with random numbers to feed on the 100% wheat blend and soy supplemented bread (90% wheat flour/10% soy flour) for 28 days. The weights and feedintake of the rats were computed on dailybasis. Blood was taken for biochemical assays and liver was used for antioxidant assay, that is activities of catalase, super oxider dismutase (SOD) and reduced glutathine level. The activities of serum SOD and catalase were significantly increase (pbread as compared to the control, (wheat bread) and a significant decrease (pbread as compared to the control. There was a significant decrease (pbread.

  5. Global adaptation patterns of Australian and CIMMYT spring bread wheat.

    Science.gov (United States)

    Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark

    2007-10-01

    The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.

  6. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  7. Staling of wheat bread stored in modified atmosphere

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Hansen, A.

    2001-01-01

    Modified atmosphere packing (MAP) of bread is known to extend the microbial shelf-life. However, the effect of MAP on staling of bread is more questionable, and conflicting results are reported in the literature. To investigate the effect of BT AP, wheat bread was packed in modified atmosphere...... containing 100% CO2 and in a mixture gas of 50% CO2 and 50% N-2, respectively. The control bread was packed in atmospheric air. No significant effects of MAP were found during storage of bread for 7 days at 20 degreesC compared to control bread. when changes in bread firmness and starch retrogradation...... measured by differential scanning calorimetry (DSC) were used as parameters for the staling rates. Ira addition, no significant differences were obtained in firmness between bread stored in 100% CO,, and in the mixture gas of CO2 and N-2 after 7 and 14 days, respectively. The present study thus...

  8. Variability in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers.

    Science.gov (United States)

    Chandna, Ruby; Gupta, Sarika; Ahmad, Altaf; Iqbal, Muhammad; Prasad, Manoj

    2010-06-01

    Wheat (Triticum aestivum L.) is a staple food for half of the world. Its productivity and agronomical practices, especially for nitrogen supplementation, is governed by the nitrogen efficiency (NE) of the genotypes. We analyzed 16 popular cultivated Indian varieties of wheat for their NE and variability estimates using a set of 21 simple sequence repeat (SSR) markers, derived from each wheat chromosome. These genotypes were categorized into three groups, viz., low, moderate, and high nitrogen efficient. Of these 16 genotypes, we have reported six, eight, and two genotypes in high, moderate, and low NE categories, respectively. The differential NE in these genotypes was supported by nitrogen uptake and assimilation parameters. The values of average polymorphic information content and marker index for these SSR markers were estimated to be 0.32 and 0.59, respectively. The genetic similarity coefficient for all possible pairs of varieties ranged from 0.41 to 0.76, indicating the presence of considerable range of genetic diversity at molecular level. The dendrogram prepared on the basis of unweighted pair-group method of arithmetic average algorithm grouped the 16 wheat varieties into three major clusters. The clustering was strongly supported by high bootstrap values. The distribution of the varieties in different clusters and subclusters appeared to be related to their variability in NE parameter that was scored. Genetically diverse parents were identified that could potentially be used for their desirable characteristics in breeding programs for improvement of NE in wheat.

  9. Wheat Bread with Pumpkin (Cucurbita maxima L. Pulp as a Functional Food Product

    Directory of Open Access Journals (Sweden)

    Renata Różyło

    2014-01-01

    Full Text Available In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20 % (converted to dry matter caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat fl our with up to 10 % of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10 % of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15 % of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE inhibitors. The highest activity was determined in the bread with 15 and 20 % pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro. Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefi ts.

  10. The effect of a default-based nudge on the choice of whole wheat bread.

    Science.gov (United States)

    van Kleef, Ellen; Seijdell, Karen; Vingerhoeds, Monique H; de Wijk, René A; van Trijp, Hans C M

    2018-02-01

    Consumer choices are often influenced by the default option presented. This study examines the effect of whole wheat bread as a default option in a sandwich choice situation. Whole wheat bread consists of 100% whole grain and is healthier than other bread types that are commonly consumed, such as brown or white bread. A pilot survey (N = 291) examined the strength of combinations of toppings and bread type as carrier to select stimuli for the main study. In the main experimental study consisting of a two (bread type) by two (topping type) between-subjects design, participants (N = 226) were given a free sandwich at a university stand with either a relatively unhealthy deep-fried snack (croquette) or a healthy topping. About half of the participants were offered a whole wheat bun unless they asked for white bun, and the other half were offered a white bun unless they asked for a whole wheat bun. Regardless of the topping, the results show that when the whole wheat bun was the default option, 108 out of 115 participants (94%) decided to stick with this default option. When the default of bread offered was white, 89 out of 111 participants (80%) similarly chose to stick with this default. Across conditions, participants felt equally free to make a choice. The attractiveness of and willingness to pay for the sandwich were not affected by default type of bread. This study demonstrated a strong default effect of bread type. This clearly shows the benefit of steering consumers towards a healthier bread choice, by offering healthier default bread at various locations such as restaurants, schools and work place canteens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: a focus on gas cell stabilization mechanisms.

    Science.gov (United States)

    Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A

    2015-04-01

    Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Diallel analysis of anther culture response in wheat ( Triticum ...

    African Journals Online (AJOL)

    The four wheat (Triticum aestivum L.) genotypes differing in their ability to produce embryogenic callus from anther culture were reciprocally crossed and inheritance of anther culture response [callus induction frequency (CIF, %), embryogenic callus induction frequency (ECIF, %), regeneration capacity of callus (RCC, %) ...

  13. Molecular Mapping of Reduced Plant Height Gene Rht24 in Bread Wheat.

    Science.gov (United States)

    Tian, Xiuling; Wen, Weie; Xie, Li; Fu, Luping; Xu, Dengan; Fu, Chao; Wang, Desen; Chen, Xinmin; Xia, Xianchun; Chen, Quanjia; He, Zhonghu; Cao, Shuanghe

    2017-01-01

    Height is an important trait related to plant architecture and yield potential in bread wheat ( Triticum aestivum L.). We previously identified a major quantitative trait locus QPH.caas-6A flanked by simple sequence repeat markers Xbarc103 and Xwmc256 that reduced height by 8.0-10.4%. Here QPH.caas-6A , designated as Rht24 , was confirmed using recombinant inbred lines (RILs) derived from a Jingdong 8/Aikang 58 cross. The target sequences of Xbarc103 and Xwmc256 were used as queries to BLAST against International Wheat Genome Sequence Consortium database and hit a super scaffold of approximately 208 Mb. Based on gene annotation of the scaffold, three gene-specific markers were developed to genotype the RILs, and Rht24 was narrowed to a 1.85 cM interval between TaAP2 and TaFAR . In addition, three single nucleotide polymorphism (SNP) markers linked to Rht24 were identified from SNP chip-based screening in combination with bulked segregant analysis. The allelic efficacy of Rht24 was validated in 242 elite wheat varieties using TaAP2 and TaFAR markers. These showed a significant association between genotypes and plant height. Rht24 reduced plant height by an average of 6.0-7.9 cm across environments and were significantly associated with an increased TGW of 2.0-3.4 g. The findings indicate that Rht24 is a common dwarfing gene in wheat breeding, and TaAP2 and TaFAR can be used for marker-assisted selection.

  14. Lactic Acid Bacteria Combinations for Wheat Sourdough Preparation and Their Influence on Wheat Bread Quality and Acrylamide Formation.

    Science.gov (United States)

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina

    2017-10-01

    Different lactic acid bacteria (LAB) from spontaneous wheat sourdough were isolated, identified, and characterized by their growth, acidification rate, and carbohydrate metabolism. The combinations of isolated LAB (Pediococcus pentosaceus LUHS183 and Leuconostoc mesenteroides LUHS242, P. pentosaceus LUHS183 and Lactobacillus brevis LUHS173, P. pentosaceus LUHS183 and Enterococcus pseudoavium LUHS 234, P. pentosaceus LUHS183 and Lactobacillus curvatus LUHS51, Lactobacillus plantarum LUHS135 and L. curvatus LUHS51, L. plantarum LUHS135 and P. pentosaceus LUHS183) were used for wheat sourdough production, and the effects of LAB fermentation in sourdoughs on wheat bread quality parameters and acrylamide formation were evaluated. All of the tested strains (except E. pseudoavium LUHS 234) were able to ferment l-arabinose, d-ribose, d-galactose, d-fructose, and d-maltose and showed high tolerance to acidic conditions. The highest overall acceptability (135.8 ± 5.5 mm) was found in the bread produced with L. plantarum and P. pentosaceus sourdough. This group of bread also showed the highest shape coefficient (2.59 ± 0.02), the highest specific volume (3.40 ± 0.03 cm 3 /g), the highest porosity (76.6 ± 0.3%), and the highest moisture content (33.7%). Selected sourdoughs reduced acrylamide content in bread samples by 29.5% (sourdough prepared with P. pentosaceus and L. mesenteroides) to 67.2% (sourdough prepared with P. pentosaceus and L. curvatus). These cultures potentially can be used to reduce acrylamide in breads. The data of this study have practical applications. L. plantarum and P. pentosaceus sourdoughs increases overall acceptability, specific volume, and porosity of wheat bread. Besides the fact that sourdoughs produced by using combinations of selected LAB strains improved the quality parameters of bread, fermentation with prepared sourdoughs also reduced the acrylamide content in wheat bread samples by 29.5% (sourdough prepared with P. pentosaceus

  15. Bread wheat selection against abiotic and biotic stresses in highland Balochistan, Pakistan

    International Nuclear Information System (INIS)

    Begum, I.; Afzal, J.; Afzal, J.

    2008-01-01

    Bread wheat (Triticum aestivum L. ssp. aestivum) lines were screened in multi-location trials in highland Balochistan, Pakistan from 1982 (F2) to 1990 (fixed lines). Objective of the study was to select and evaluate desirable genotypes for winter planting, Of 816 entries, only four successfully passed through the observation nurseries and yield trials. After nine years of testing only genotype ICW81.1471 was selected for wide-scale agronomic testing. Although the yield potential of this genotype was not significantly higher than that of the local check, it had the important advantage of possessing good resistance to yellow rust (Puccinia striiformis West) The results showed that exposure of segregating population to the prevailing environmental stresses of cold and drought was an effective selection procedure for identifying genotypes which are resistant to such stresses. Effective selection can be made for other desirable attributes such as disease and pest resistance, plant height and time to maturity. (author)

  16. Fructan content of commonly consumed wheat, rye and gluten-free breads.

    Science.gov (United States)

    Whelan, Kevin; Abrahmsohn, Olivia; David, Gondi J P; Staudacher, Heidi; Irving, Peter; Lomer, Miranda C E; Ellis, Peter R

    2011-08-01

    Fructans are non-digestible carbohydrates with various nutritional properties including effects on microbial metabolism, mineral absorption and satiety. They are present in a range of plant foods, with wheat being an important source. The aim of the present study was to measure the fructan content of a range of wheat, rye and gluten-free breads consumed in the United Kingdom. Fructans were measured in a range of breads using selective enzymic hydrolysis and spectrophotometry based on the AOAC 999.03 method. The breads generally contained low quantities of fructan (0.61-1.94 g/100 g), with rye bread being the richest source (1.94 g/100 g). Surprisingly, gluten-free bread contained similar quantities of fructan (1.00 g/100 g) as other breads. There was wide variation in fructan content between individual brands of granary (0.76-1.09 g/100 g) and gluten-free breads (0.36-1.79 g/100 g). Although they contain only low quantities of fructan, the widespread consumption of bread may make a significant contribution to fructan intakes.

  17. QUALITY AND NUTRITIONAL VALUE OF WHEAT BREAD WITH A PREPARATION OF OAT PROTEINS

    Directory of Open Access Journals (Sweden)

    Renata Sabat

    2012-02-01

    Full Text Available The aim of this study was to investigate possibilities and advisability of the use of oats insoluble protein preparation for the production of wheat bread, in order to increase the amount of protein and biological value of protein in this kind of bakery. Research material consisted of the preparation of insoluble oats protein, wheat flour and wheat bread made with the share of oat protein: 5%, 7.5% and 10%, by weight of wheat flour. AOAC methods (2006 were used to determine protein, β-D-glucan and dietary fiber in raw materials and final products. Amino acid composition was measured with the help of amino acid analyzer AAA 400 and used to calculate chemical score (CS and the integrated index of essential amino acids (EAAI, according to FAO/WHO/UNU, 2007. Quality of breads was evaluated by their volume, baking yield and total baking loss, and organoleptic assessment. Bread crumb texture profile was analyzed by texture analyzer TA.XT Plus.

  18. Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat (Triticum aestivum, L.

    Directory of Open Access Journals (Sweden)

    Simerjeet Kaur

    2017-11-01

    Full Text Available Plant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic biofuel industry. To reduce culm lodging in wheat and for improved ethanol production, delineation of the variation for stem cellulose content could prove useful. We present results on the analysis of the stem cellulose content of 288 diverse wheat accessions and its genome-wide association study (GWAS. Cellulose concentration ranged from 35 to 52% (w/w. Cellulose content was normally distributed in the accessions around a mean and median of 45% (w/w. Genome-wide marker-trait association study using 21,073 SNPs helped identify nine SNPs that were associated (p < 1E-05 with cellulose content. Four strongly associated (p < 8.17E-05 SNP markers were linked to wheat unigenes, which included β-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane protein of unknown function. These genes may be directly or indirectly involved in the formation of cellulose in wheat culms. GWAS results from this study have the potential for genetic manipulation of cellulose content in bread wheat and other small grain cereals to enhance culm strength and improve biofuel production.

  19. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate.

    Science.gov (United States)

    Mor, Suman; Kaur, Kamalpreet; Khaiwal, Ravindra

    2013-11-01

    Pot experiments were carried out to study the effect of different dilutions of leachate generated from municipal solid waste (MSW) landfill on bread wheat (Triticum aestivum). Eight treatment groups with different concentrations (0-100%) of leachate were prepared and treatments were given to the plants till they reached complete vegetative phase (45 days). The growth performances of wheat plants were assessed in terms of various parameters such as shoot and root length, dry biomass and chlorophyll content. Plants treated with higher concentrations of leachate (75% and 100%) showed higher growth (2.5 and 6%) and 100% survival rate as compared to control. However, high shoot weight (0.028 and 0.030 gm) and high chlorophyll content (213 and 230%) was reported in 30 and 40% leachate treatment as compared to control. Some symptoms of stress (discoloration of leaf blade, wilting and yellowing of plants) were also observed in plants, which could be related to the presence of high concentration of salts in the leachate. The current study suggests that MSW landfill leachate is rich in nutrients and can be used as fertilizer but before its application, the salinity level and concentration of toxic metals present in leachate should be considered in accordance with the tolerance ability of any plant.

  20. QUALITY AND NUTRITIONAL VALUE OF WHEAT BREAD WITH A PREPARATION OF OAT PROTEINS

    OpenAIRE

    Renata Sabat; KrzysztofBuksa; Barbara Mickowska; Rafał Ziobro; Halina Gambuś; Dorota Pastuszka

    2012-01-01

    The aim of this study was to investigate possibilities and advisability of the use of oats insoluble protein preparation for the production of wheat bread, in order to increase the amount of protein and biological value of protein in this kind of bakery. Research material consisted of the preparation of insoluble oats protein, wheat flour and wheat bread made with the share of oat protein: 5%, 7.5% and 10%, by weight of wheat flour. AOAC methods (2006) were used to determine protein, β-D-gluc...

  1. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Zia, M.A.; Ashraf, M.; Akram, A.

    2014-01-01

    Ten cultivars (five registered S-24, Inqlab-91, Saher-2006, Fsd-2008, and Lasani, and five candidate cultivars P.B-18, M.P-65, S.H-20, AARI-10, and G.A-20) of spring wheat (Triticum aestivum L.) were examined for high temperature stress tolerance. Plants were grown in soil filled pots in the Botanical Garden of the Department of Botany University of Agriculture Faisalabad, Pakistan. Three different temperature regimes (30, 40 and 50 degree C) were applied at two different growth stages (tillering and boot) for three temperature durations 30, 60 and 90 min in a growth chamber. The leaf and root samples were collected after two weeks of temperature treatment and then analyzed for enzymatic and non-enzymatic antioxidants as well as inorganic nutrients (N, P, K+, Ca2+). At the end, data obtained were statistically analyzed to distinguish heat tolerant from non-tolerant wheat cultivars. After appraisal of growth, antioxidant defense system and uptake of nutrients it was found that cvs. S-24, Inqlab-91, Saher-2006, Fsd-2008, Lasani and G.A-20 exhibited better thermo-tolerance capabilities than the other wheat cultivars (P.B-18, M.P-65, S.H-20, AARI-10). Among the thermo-tolerant wheat cultivars, G.A-20 and Lasani were superior in maintaining shoot fresh weights and shoot length, high antioxidant activities and better nutrient uptake at both tillering and boot stages. The response of all cultivars to heat stress applied at the tillering stage or boot stage was almost the same. (author)

  2. Assessment of genetic diversity among sixty bread wheat ( Triticum ...

    African Journals Online (AJOL)

    Assessment of genetic diversity among wheat cultivars is important to ensure that a continuous pool of cultivars with varying desirable traits is maintained. In view of this, a molecular study was conducted to assess the genetic diversity of sixty wheat cultivars using sixty microsatellite markers. Amplified alleles from each ...

  3. Assessment of genetic diversity among sixty bread wheat (Triticum ...

    African Journals Online (AJOL)

    Mwale

    2016-05-25

    May 25, 2016 ... the highest genetic diversity followed by genome B while genome D was the lowest diverse. Cluster ... and 95% of people in the developing countries eat wheat or maize in ... area for wheat production in China due to pressure from ...... hypertension in the stroke-prone spontaneously hypertensive rat. Cell.

  4. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  5. Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation

    Directory of Open Access Journals (Sweden)

    Wenshuang LI,Shengnan ZHAI,Hui JIN,Weie WEN,Jindong LIU,Xianchun XIA,Zhonghu HE

    2016-06-01

    Full Text Available Carotenoid content of wheat is an important criterion for prediction of the commercial and nutritional value of products made from bread wheat (Triticum aestivum cultivars. The objective of this study was to determine the major components of carotenoids in Chinese wheat using ultra performance liquid chromatography (UPLC including lutein, zeaxanthin, α-carotene and β-carotene. Grain carotenoid content was investigated in 217 cultivars from three major Chinese wheat regions and from seven other countries grown in two environments. Genotype contributed to the majority of variation in carotenoid components. Lutein, zeaxanthin and β-carotene concentrations varied from 18.3 to 100.1, 4.9 to 12.0 and 0.9 to 48.7 μg per 100 g in wheat flour with an average of 40.2, 7.2 and 18.2 μg per 100 g, respectively. Lutein (61.3% was the main carotenoid component, followed by β-carotene (27.7% and zeaxanthin (11.0%. No α-carotene was detected. Total carotenoids, lutein, zeaxanthin and β-carotene were all higher in cultivars with the 1BL.1RS translocation compared to those without the translocation. This is the first report on assay of lutein, zeaxanthin and β-carotene concentrations for a large number of wheat cultivars. These data will be useful for genetic improvement of wheat carotenoid content and for understanding of the carotenoid biosynthetic pathway in wheat.

  6. Características tecnológicas de genótipos de trigo (Triticum aestivum L. cultivados no cerrado Technological characteristics of wheat (Triticum aestivum L. genotypes grown in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    2007-06-01

    Full Text Available Realizou-se este estudo com o objetivo de estudar as características grau de extração, proteína bruta, número de queda, alveografia, farinografia, volume específico e escore de pontos dos pães obtidos de amostras de grãos de genótipos de trigo (Triticum aestivum L. plantados no cerrado brasileiro. Amostras de grãos de trigo dos genótipos Embrapa 22, Embrapa 42, Önix, Taurum e Fundacep 27, plantados no cerrado brasileiro, safra 2003/2004 foram avaliadas em delineamento inteiramente casualizado, no laboratório de Cereais do Centro de Pesquisa em Alimentação da Universidade de Passo Fundo, sendo os resultados experimentais analisados pelo emprego da análise de variância (Anova e nos modelos significativos as médias comparadas entre si pelo teste de Tukey a 5% de probabilidade de erro. As cultivares de trigo foram classificadas com base na alveografia e número de queda em melhorador, pão e brando. Nos trigos classificados como melhoradores as propriedades funcionais dos pães foram inferiores, o que define a utilização destas farinhas para mesclas com trigos de menor força de glúten. No cerrado brasileiro é possível produzir trigo classe melhorador.The aim of this study was to investigate the characteristics of flour extraction grade, protein content, falling number, alveography, farinography, specific volume and point score of bread made from samples of grain of wheat genotypes grown in the Brazilian Cerrado. Samples of wheat grains of genotypes Embrapa 22, Embrapa 42, Önix, Taurum and Fundacep 27, grown in the Brazilian Cerrado, 2003/2004 crop, were disposed in fully randomized design, in the Cereal Laboratory at the Centro de Pesquisa em Alimentação of the University of Passo Fundo. The results were analyzed by variance analysis and the means compared by Tukey's test at 5% error probability. The wheat cultivars were classified according to alveography and falling number in improved, bread and bland. In the wheat

  7. Seed-borne mycoflora of local and improved wheat ( Triticum ...

    African Journals Online (AJOL)

    Three varieties each of local and improved wheat (Triticum sativum) cultivars were investigated for seed-borne pathogenic mycoflora using the plate technique and laid on completely randomized design. A total 99 fungal isolate grouped into five fungal species namely; Rhizopus nigricans, Mucor spp, Penillium jenseni, ...

  8. Metabolic profiling of sourdough fermented wheat and rye bread.

    Science.gov (United States)

    Koistinen, Ville M; Mattila, Outi; Katina, Kati; Poutanen, Kaisa; Aura, Anna-Marja; Hanhineva, Kati

    2018-04-09

    Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.

  9. Ca2+/cation antiporters (CaCA: Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Mehak Taneja

    2016-11-01

    Full Text Available The Ca2+/cation antiporters (CaCA superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat. Herein, we identified thirty four TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B and D subgenome and homeologous chromosome (HC, except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about ten transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections and abiotic stresses (heat, drought, salt suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However the role of individual gene needs to be established. The present study unfolded the opportunity

  10. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca 2+ /cation antiporters (CaCA) superfamily proteins play vital function in Ca 2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail

  11. THE COMPARISON OF QUALITY AND CHEMICAL COMPOSITION OF BREADS BAKED WITH RESIDUAL AND COMMERCIAL OAT FLOURS AND WHEAT FLOUR

    OpenAIRE

    Dorota Litwinek; Halina Gambuś; Gabriela Zięć; Renata Sabat; Anna Wywrocka-Gurgul; Wiktor Berski

    2013-01-01

    The aim of the present work was to compare the quality and nutritional value of breads with 50% addition of oat flours of different origin (commercial and residual – a by-product obtained during production of β-glucan preparation) to standard wheat bread. Commercial wheat and oat flours and residual oat flour, as well as wheat and 50/50% wheat/oat breads were used as material in this research. Quality of breads was evaluated by their volume, baking yield and total baking loss. Bread crumb tex...

  12. Genetics of flowering time in bread wheat Triticum aestivum

    Indian Academy of Sciences (India)

    Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also ...

  13. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  14. Novel Structural and Functional Motifs in cellulose synthase (CesA Genes of Bread Wheat (Triticum aestivum, L..

    Directory of Open Access Journals (Sweden)

    Simerjeet Kaur

    Full Text Available Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean revealed motifs unique to monocots (Poales or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

  15. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

    NARCIS (Netherlands)

    Herpen, van T.W.J.M.; Goryunova-Svetlana, V.; Schoot, van der J.; Mitreva, M.; Salentijn, E.M.J.; Vorst, O.F.J.; Schenk, M.F.; Veelen, van P.; Koning, de F.; Soest, van L.J.M.; Vosman, B.J.; Bosch, H.J.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2006-01-01

    Background - Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the a-gliadins contain several peptides that are associated to the disease. Results - We obtained 230

  16. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread.

    Science.gov (United States)

    Yuan, Biao; Zhao, Liyan; Yang, Wenjian; McClements, David Julian; Hu, Qiuhui

    2017-09-01

    Edible mushrooms contain a variety of bioactive molecules that may enhance human health and wellbeing. Consequently, there is increasing interest in fortifying functional foods with these nutraceutical-rich substances. However, incorporation of mushroom-based ingredients into foods should not adversely affect the quality attributes of the final product. In this study, the impact of incorporating powdered Auricularia auricula, a widely consumed edible mushroom, into bread products was examined. The rheological and structural properties of wheat dough and bread supplemented with 0% to 10% (w/w) A. auricula flour were measured. Supplementation of wheat doughs with A. auricula flour increased the peak viscosity and enhanced their water holding capacity. Rapid viscosity analysis showed that peak and final viscosities of the blended flour (wheat flour with A. auricula flour) were higher than wheat flour alone. However, dough stability and elastic modulus were reduced by blending wheat flour with A. auricula flour. SEM observation showed that doughs with up to 5% (w/w) A. auricula flour had acceptable gluten network microstructure. Characterization of the quality attributes of bread indicated that incorporation of A. auricula flour at levels >5% negatively impacted bread volume, height, texture, and appearance. © 2017 Institute of Food Technologists®.

  17. BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

    Czech Academy of Sciences Publication Activity Database

    Šimková, Hana; Šafář, Jan; Kubaláková, Marie; Suchánková, Pavla; Čihalíková, Jarmila; Robert-Quatre, Heda; Azhaguvel, P.; Weng, Y. Q.; Peng, J.; Lapitan, N. L. V.; Ma, Y. Q.; You, F. M.; Luo, M. C.; Bartoš, Jan; Doležel, Jaroslav

    -, č. 302543 (2011), s. 1-11 ISSN 1110-7243 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.436, year: 2011

  18. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat

    Czech Academy of Sciences Publication Activity Database

    Liu, M.; Stiller, J.; Holušová, Kateřina; Vrána, Jan; Liu, D.; Doležel, Jaroslav; Liu, C.

    2016-01-01

    Roč. 6, NOV 8 (2016), č. článku 36398. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * fusarium crown rot * pan-genome * hexaploid wheat * bread wheat * draft genome * rna-seq * maize * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  19. allelic variation of hmw glutenin subunits of ethiopian bread wheat

    African Journals Online (AJOL)

    journal

    High molecular weight glutenins are often effective in identifying wheat (Triticum ... There were highly significant differences between genotypes and banding ... was without deliberate selection pressure towards high Glu-1 scoring alleles ...

  20. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... Four lines of bread wheat (N-82-9, N-83-5, ... Key words: Water stress, Triticum aestivum, yield, proline, TSS. .... Numbers in the columns followed by the same letters are not significantly different at P .... constituents, Acta Bot.

  1. Effect of Glu-B3 Allelic Variation on Sodium Dodecyl Sulfate Sedimentation Volume in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2013-01-01

    Full Text Available Sodium dodecyl sulfate (SDS sedimentation volume has long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. In order to survey the influence of low-molecular-weight glutenin subunits (LMW-GSs at Glu-B3 locus on wheat SDS sedimentation volume, a total of 283 wheat (Triticum aestivum L. varieties including landraces and improved and introduced cultivars were analyzed using 10 allele-specific PCR markers at the Glu-B3 locus. The highest allele frequency observed in the tested varieties was Glu-B3i with 21.9% in all varieties, 21.1% in landraces, 25.5% in improved cultivars, and 12% in introduced cultivars. Glu-B3 locus represented 8.6% of the variance in wheat SDS sedimentation volume, and Glu-B3b, Glu-B3g, and Glu-B3h significantly heightened the SDS sedimentation volume, but Glu-B3a, Glu-B3c, and Glu-B3j significantly lowered the SDS sedimentation volume. For the bread-making quality, the most desirable alleles Glu-B3b and Glu-B3g become more and more popular and the least desirable alleles Glu-B3a and Glu-B3c got less and less in modern improved cultivars, suggesting that wheat grain quality in China has been significantly improved through breeding effort.

  2. Effect of gamma-irradiation on the natural occurence of Fusarium mycotoxins in wheat, flour and bread

    International Nuclear Information System (INIS)

    Aziz, N.H.; Attia, E.-S.A.; Farag, S.A.

    1997-01-01

    A survey was carried out to obtain data on the occurence of Fusarium mycotoxin in wheat and flour samples collected from local markets in Egypt and to study the influence of gamma-irradiation on controlling the occurrence of thesemycotoxins in wheat, flour and bread. Deoxynivalenol (DON) was detected in five samples of wheat at levels ranging from 103 to 287 ug/kg and one sample each of flour and bread concentrations 188 and 170 ug/kg. Zearaleone (ZEN) was detected in ten samples of wheat at levels from 28 to 42 ug/kg and four samples each of flour and bread at concentrations of 95 and 34 ug/kg, respectively. T-2 toxin was detected only in one sample each of wheat, flour and bread at concentrations of 2.9, 2.2, and 2.3 ug/kg, respectively. Gamma-irradiation at dose level of 6 kGy completely eliminated fungal flora in flour and wheat. DON, ZEN and T-2 toxin concentrations are reduced to 85, 20 and 2.0 ug/kg for wheat and to 125, 45, and 1.0 ug/kg for flour after 4 kGy exposure and a sharp drop in Fusarium toxin levels occured at 6 kGy and was eliminated at 8 kGy. Bread prepared from 6 kGy was contaminate4d with Fusarium toxin at levels below 5 ug/kg. It was noticed that gamme-irradiation reduce greatly the natural occurrence of Fusarium mycotoxins in bread

  3. Determination of Zearalenone concenteration in wheat, Oat and Maize breads in Isfahan

    Directory of Open Access Journals (Sweden)

    E Rahimi

    2015-08-01

    Full Text Available Zearalenone is a mycotoxin that poses a risk to human health due to its oestrogenic, immunotoxigenic, teratogenic and carcinogenic effects. This study was undertaken to determine the concentration of zearolenone in different types of bread consumed in Isfahan. In a descriptive study, a total of 60 samples consisting of wheat, oat and maize breads was obtained from Isfahan retails from October 2011 to December 2012. Using ELISA method the samples were surveyed for the presence of zearalenone. According to the results, concentration of zearalenone in positive samples ranged between 0.35 and 45.38 ng/g. Moreover, the mean and standard deviation of zearalenone concentration in wheat, oat and maize breads were estimated as 3.94 ± 6.21, 8.52 ±12.81 and 9.53 ±10.35 ng/g, respectively. Any positive sample contained zearalenone concentration more than the maximum level of 50 ng/g set by the European Regulation for zearalenone in cereals and bread. However, it is essential to continuously monitor the zearalenone contamination level in cereals and particularly in wheat.

  4. Thermo-mechanical and micro-structural properties of xylanase containing whole wheat bread

    Directory of Open Access Journals (Sweden)

    G. Ghoshal

    2016-12-01

    Full Text Available Xylanase is a hemicellulase that can hydrolyses the complex polysaccharides. Hemicelluloses are main components of cell walls of cereal grains. Moreover, hemicelluloses are considered as potential sources of mono- and oligosaccharides. In this study, influence of xylanase on the physicochemical properties and sensory qualities of the whole wheat bread during storage was investigated. Studies of whole wheat bread on microstructure, texture, thermotics, Scanning Electron Microscopic (SEM, X-Ray Diffraction (XRD were conducted at ambient temperature of 25 and 4 °C respectively. During storage at different temperatures, bread containing xylanase exhibited less firmness but larger volume with whiter crumb color and longer shelf life as compared to control bread. Results of firmness, enthalpy, Fourier Transformation Infra Red (FTIR and X-Ray Diffraction (XRD studies suggested a lower staling rate of bread containing xylanase as compared to control one. Bread containing xylanase showed a smoother surface and more uniform pore size than the control. Significant differences in microstructure of control and bread containing xylanase were observed which might be attributed due to the change in water starch gluten interaction. These differences were also found to be interrelated to the textural properties of bread. Better sensory features were achieved in bread containing xylanase.

  5. Gamma rays induced variability in bread wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Sobieh, S. El-S.S.; Ragab, A.I.

    2000-01-01

    The present study was established in the experimental farm belonging to plant Research Department, Nuclear Research Center, Inchas to study the effect of gamma ray (0.200 and 300 Gy) on means of yield and yield attributes for irradiated populations of Giza 164 and Sakha 92, varieties in comparison with untreated control, Moreover, genetic variation was studied by estimate phenotypic, genotypic, coefficient of variation, heritability and genetic advance under selection of bread wheat varieties (Giza 164 and Sakha 92). 1- In -M 1 - generation: (1995-1996) on plant with morphological change (dwarfness) was identified in 300Gy dose of Giza 164 variety. Moreover, this varient was confirmed and segregated in M 2 generation into three types of segregants (dwarf-semidwarf and tall stem). 2- Results showed that mean values of yield and yield attributes of irradiated populations in M 2 of Giza 164 and Sakha 92 varieties were insignificantly increased. High magnitudes of G.C-V.%, Hb% and Gs% for number of spike/plant and number of grain/spike were obtained, however moderate magnitude was found for the weight of grains spike. The high values of heritability and genetic gains from selection for these triaits in the next generations. The correlation between grain yield and each of number of spike/plant and number of grain/spike were positive and highly significant however, it was positive and significant for weight grain/spike. Some variants with morphological changes i.e. dwarf, semidward, tall stem, earlly maturity and brown spike were selected in M 2 generations. These variants surpassed their mother varieties for one or more of yield attributes suggesting the importance of further evaluation and confirmation of this variants in the next generations

  6. Molecular investigations on grain filling rate under terminal heat ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-07-10

    Jul 10, 2013 ... under terminal heat stress in bread wheat. (Triticum aestivum L.) Girish Chandra Pandey1, Jagadish ... ficantly in all the bread and durum wheat genotypes, because of significant interaction of each ..... wheat varieties and registered genetic stocks (Triticum L.). Technical. Bulletin No.13, Directorate of Wheat ...

  7. The defence?associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias

    OpenAIRE

    Powell, Jonathan J.; Fitzgerald, Timothy L.; Stiller, Jiri; Berkman, Paul J.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2016-01-01

    Summary Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA?seq approach to analyse homoeolog?specific global gene expression patterns in wheat during infection by the fungal pa...

  8. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality

    Directory of Open Access Journals (Sweden)

    Mouming Zhao

    2007-01-01

    Full Text Available Two fractions (50-K and permeate from a proteolytic hydrolysate (degree of hydrolysis, DH=3.8 % of wheat gluten were separated using ultrafiltration (UF membrane with molecular mass cut-off of 50 kDa. The effects of the wheat gluten hydrolysate (WGH and its UF fractions on the mixing behaviour and viscoelastic properties of wheat dough were presented. The WGH and its UF fractions modified the mixing properties of dough. The addition of these fractions improved the viscoelastic characteristics of wheat dough. A significant (p<0.05 effect of 50-K fraction on these characteristics of wheat dough was observed. After adding these fractions, the bread was considered acceptable by the sensory panel. Also, 50-K fraction resulted in significant (p<0.05 increase in the crumb firmness, while the bread made with wheat flour with WGH and permeate (P fraction showed softer crumbs compared to that of wheat flour. Moreover, these fractions had anti-staling properties for bread during storage. Hence, the wheat gluten hydrolysate and its UF fractions are the products with promising potential in the baking products.

  9. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    Science.gov (United States)

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  10. THE COMPARISON OF QUALITY AND CHEMICAL COMPOSITION OF BREADS BAKED WITH RESIDUAL AND COMMERCIAL OAT FLOURS AND WHEAT FLOUR

    Directory of Open Access Journals (Sweden)

    Dorota Litwinek

    2013-02-01

    Full Text Available The aim of the present work was to compare the quality and nutritional value of breads with 50% addition of oat flours of different origin (commercial and residual – a by-product obtained during production of β-glucan preparation to standard wheat bread. Commercial wheat and oat flours and residual oat flour, as well as wheat and 50/50% wheat/oat breads were used as material in this research. Quality of breads was evaluated by their volume, baking yield and total baking loss. Bread crumb texture profile was analyzed by texture analyzer TA.XT Plus. Organoleptic assesment was performed by 15 skilled pearson‘s panel. Moreover both in flours and breads protein, lipids, mineral compounds, dietary fiber (soluble and insoluble fraction and β-glucans content were analyzed by AOAC methods.

  11. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    Science.gov (United States)

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  12. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L. improves dough mixing properties by their incorporation into glutenin polymers.

    Directory of Open Access Journals (Sweden)

    Fengyun Ma

    Full Text Available Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  13. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines.

    Science.gov (United States)

    van den Broeck, Hetty C; van Herpen, Teun W J M; Schuit, Cees; Salentijn, Elma M J; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J; Smulders, Marinus J M; Gilissen, Ludovicus J W J; van der Meer, Ingrid M

    2009-04-07

    Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD). The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the alpha-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the omega-gliadin, gamma-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  14. Effect of gamma-irradiation of wheat on voltile flavor components of bread

    International Nuclear Information System (INIS)

    Rao, V.S.; Vakil, U.K.; Bandyopadhyay, C.; Sreenivasan, A.

    1978-01-01

    Comparative sensory and objective evaluations of bread prepared from wheat flour, irradiated at different doses, have been carried out. The preference of bread decreases with higher radiation dose (1 Mrad) due to increase in off-flavor intensity. Total carbonyl contents are increased in irradiated products. A significant inverse correlation between consumer preference and total carbonyls as well as GLC headspace vapor analysis, is established. An attempt has been made to postulate a mechanism for the excessive formation of volatiles, imparting off-flavor in bread from irradiated wheat. It is suggested that they may arise from the volatile degradation products of amino acids and proteins or by their interaction with reducing sugars, the ultimate radiation-induced breakdown product of starch

  15. Bran characteristics and bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  16. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers.

    Science.gov (United States)

    Hao, Chenyang; Wang, Lanfen; Ge, Hongmei; Dong, Yuchen; Zhang, Xueyong

    2011-02-18

    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (Pvarieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ∼ 25 cM) compared to landraces (<5 ∼ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.

  17. Genetic characterization of Moroccan and the exotic bread wheat cultivars using functional and random DNA markers linked to the agronomic traits for genomics-assisted improvement.

    Science.gov (United States)

    Henkrar, Fatima; El-Haddoury, Jamal; Ouabbou, Hassan; Bendaou, Najib; Udupa, Sripada M

    2016-06-01

    Genetic characterization, diversity analysis and estimate of the genetic relationship among varieties using functional and random DNA markers linked to agronomic traits can provide relevant guidelines in selecting parents and designing new breeding strategies for marker-assisted wheat cultivar improvement. Here, we characterize 20 Moroccan and 19 exotic bread wheat (Triticum aestivum L.) cultivars using 47 functional and 7 linked random DNA markers associated with 21 loci of the most important traits for wheat breeding. The functional marker analysis revealed that 35, 45, and 10 % of the Moroccan cultivars, respectively have the rust resistance genes (Lr34/Yr18/Pm38), dwarfing genes (Rht1b or Rht2b alleles) and the leaf rust resistance gene (Lr68). The marker alleles for genes Lr37/Yr17/Sr38, Sr24 and Yr36 were present only in the exotic cultivars and absent in Moroccan cultivars. 25 % of cultivars had 1BL.1RS translocation. 70 % of the wheat cultivars had Ppo-D1a and Ppo-A1b associated with low polyphenol oxidase activity. 10 % of cultivars showed presence of a random DNA marker allele (175 bp) linked to Hessian fly resistance gene H22. The majority of the Moroccan cultivars were carrying alleles that impart good bread making quality. Neighbor joining (NJ) and principal coordinate analysis based on the marker data revealed a clear differentiation between elite Moroccan and exotic wheat cultivars. The results of this study are useful for selecting suitable parents for making targeted crosses in marker-assisted wheat breeding and enhancing genetic diversity in the wheat cultivars.

  18. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance.

    Science.gov (United States)

    Bae, Woosung; Lee, Sung Ho; Yoo, Sang-Ho; Lee, Suyong

    2014-08-01

    A maltotetraose-producing enzyme (G4-amylase) was utilized to improve the baking performance of whole-grain wheat flour. Whole-grain bread dough prepared with G4-amylase showed reduced water absorption and increased development time, while the dough stability was not affected. Also, the G4-amylase-treated samples exhibited lower Mixolab torque values than the control upon heating and cooling. Rheological measurements showed the decreased ratio of Rmax /E and increased tan δ, clearly demonstrating that the viscous characteristics of whole-grain bread dough became dominant with increasing levels of G4-amylase. The use of G4-amylase produced whole-grain wheat breads with a variety of maltooligosaccharides, primarily maltotetraose that positively contributed to the bread volume (1.2-fold higher than the control). Moreover, G4-amylase delayed the crumb firming of whole-grain wheat bread during a 7-d storage period, showing that it can function as an antiretrogradation agent to enhance the quality attributes of whole-grain wheat bread. © 2014 Institute of Food Technologists®

  19. Response of bread wheat ( Tritcum aestivum L. ) to nitrogen after ...

    African Journals Online (AJOL)

    Crop rotation is a common practice in the study area, but there is no enough information on the specific rate of nitrogen to be applied after legumes for wheat production. Hence, on farm field experiments were conducted to determine the amount of nitrogen fertilizer rates needed for bread wheat after chick pea, grass pea, ...

  20. Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers

    DEFF Research Database (Denmark)

    Orabi, Jihad; Jahoor, Ahmed; Backes, Gunter Martin

    2014-01-01

    A collection of 189 bread wheat landraces and cultivars, primarily of European origin, released between 1886 and 2009, was analyzed using two DNA marker systems. A set of 76 SSR markers and ~7,000 DArT markers distributed across the wheat genome were employed in these analyses. All of the SSR...... markers were found to be polymorphic, whereas only 2,532 of the ~7,000 DArT markers were polymorphic. A Mantel test between the genetic distances calculated based on the SSR and DArT data showed a strong positive correlation between the two marker types, with a Pearson's value (r) of 0.66. We assessed...... the genetic diversity and allelic frequencies among the accessions based on spring- versus winter-wheat type as well as between landraces and cultivars. We also analyzed the changes in genetic diversity and allelic frequencies in these samples over time. We observed separation based on both vernalization type...

  1. [Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits].

    Science.gov (United States)

    Dobrotvorskaia, T V; Martynov, S P

    2011-07-01

    The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.

  2. Bread in the Economy of Qualities: The Creative Reconstitution of the Canada-UK Commodity Chain for Wheat

    Science.gov (United States)

    Magnan, Andre

    2011-01-01

    This article traces the creative reconstitution of the Canada-UK wheat-bread commodity chain since the 1990s. In the mid-1990s, the Canadian Wheat Board (CWB) and a British bakery, Warburtons, pioneered an innovative identity-preserved sourcing relationship that ties contracted prairie wheat growers to consumers of premium bread in the United…

  3. Molecular markers for drought tolerance in bread wheat

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-22

    May 22, 2013 ... Molecular markers for drought tolerance in bread wheat. Tharwat El Ameen. Department of Genetics, South Valley University, Qena, 83523, Egypt. Accepted 3 May, 2013. Random amplified polymorphic DNA (RAPD) primers associated with drought tolerance was used in this study to characterize drought ...

  4. The Impact of Novel Fermented Products Containing Extruded Wheat Material on the Quality of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaiciulyte-Funk

    2011-01-01

    Full Text Available Lactobacillus sakei MI806, Pediococcus pentosaceus MI810 and Pediococcus acidilactici MI807, able to produce bacteriocin-like inhibitory substances, were originally isolated from Lithuanian spontaneous rye sourdough and adapted in the novel fermentation medium containing extruded wheat material. The novel fermented products (50 and 65 % moisture content were stored at the temperatures used in bakeries (15 days at 30–35 °C in the summer period or 20 days under refrigeration conditions at 0–6 °C. The number of lactic acid bacteria (LAB was determined during the storage of fermented products for 15–20 days. Furthermore, the effect of novel fermented products stored under different conditions on wheat bread quality was examined. Extruded wheat material was found to have a higher positive effect on LAB growth compared to the control medium by lowering the reduction of LAB populations in fermented products with the extension of storage time and increase of temperature. During storage, lower variation and lower decrease in LAB count were measured in the novel fermented products with a moisture content of 65 % compared to those with 50 %. Furthermore, this humidity allows for the production of a product with higher moisture content in continuous production processes. The addition of the new fermented products with 65 % humidity to the wheat bread recipe (10 % of the quantity of flour had a significant effect on bread quality: it increased the acidity of the crumb and specific volume of the bread, and decreased the fractal dimension of the crumb pores and crumb firmness. Based on the microbiological investigations of fermented products during storage and baking tests, the conditions of LAB cultivation in novel fermentation media were optimized (time of cultivation approx. 20 days at 0–6 °C and approx. 10 days at 30–35 °C.

  5. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  6. Effect of Different Levels of Sodium Chloride on Germination Characteristics of 20 Cultivars of Bread and Durum Wheat20 Cultivars of Bread and Durum Wheat

    Directory of Open Access Journals (Sweden)

    E Bijanzadeh

    2011-01-01

    Full Text Available Abstract Salt stress is a major stress influencing wheat seedling establishment. A laboratory experiment was conducted to evaluate the response of 20 cultivars of wheat to two levels of salinity (8 and 16 dS/m NaCl, at the College of Agriculture, Shiraz University, Shiraz, Iran in 2008. Maximum root length was obtained in Dabira (5.73 mm at 16dS/m salinity level. In control, durum wheat cultivars including D81-17, Yavaros, D82-16, D79-15 and Taro3 had the maximum root length compared to bread wheat, however, with increasing salinity level to 16dS/m, minimum root length was observed in D82-16 (0.3 mm. In all cultivars, with increasing salinity level, shoot length was decreased and minimum shoot length was observed in D82-16 and D79-15. Under control conditions, Taro 3 cultivar had maximum seedling dry weight (108.6 mm, however, at 8 and 16 dS/m salinity levels, seedling dry weight of this cultivar was decreased to 92.33 and 78.43 mg, respectively. All seeds (100% were germinated in D82-16, Taro3, Bolani Cross, and Chamran cultivars under 16 dS/m but in Marvdasht cultivar, seed germination percentage under 8 and 16 dS/m reached to 65 and 50%, respectively. Shiraz (10.8 seeds/day, Adl Cross(10 seeds/day, and Bolani Cross (9.1 seeds/day had maximum germination rate under 16 dS/m salinity level. Differences among wheat cultivars also found in germination stress index (germination rate under stress divided by germination rate under control and Shiraz, Adl Cross and Bolani Cross had maximum germination stress index, while Yavaros and D82-16 had minimum germination stress index. Furthermore, with increasing salinity level, different responses were observed among wheat cultivars in root and shoot length, germination rate and germination stress index which demonstrated the genetic diversity among wheat cultivars. It appeared that durum wheat cultivars, compared to bread wheat cultivars, had lower germination stress index and germination rate. Among what

  7. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  8. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Su-Que, Lan; Ya-Ning, Meng; Xing-Pu, Li; Ye-Lun, Zhang; Guang-Yao, Song; Hui-Juan, Ma

    2013-05-17

    Steamed wheat bread have previously been shown to induce comparatively high postprandial plasma glucose responses, on the contrary, buckwheat products induced lower postprandial plasma glucose. The present study was to assess the effects of micronutrient enriched bread wheat variety Jizi439 and buckwheat on postprandial plasma glucose in healthy and diabetic subjects comparing with buckwheat and other bread wheat varieties. Two experiments were conducted to study the effects of bread wheat variety Jizi439 on the postprandial plasma glucose levels of the randomly selected subjects. The first experiment involved three types of steamed bread with equivalent of 50 g available carbohydrate fed to 10 normal weight young healthy subjects. Two types of steamed bread were made from two purple-grain bread wheat varieties, Jizi439 and Chu20, respectively, and the third type was made from the mixture of different white grain wheat varieties. Plasma glucose levels of each subject were measured at 15, 30, 45, 60, 120 min after eating. Glucose was used as a reference, the total area under curve (AUC) and glycemic index (GI) was calculated for test meal. The second experiment was performed among ten type 2 diabetics who were served equivalent of 50 g available carbohydrate of steamed bread made from Jizi 439, the mixture of white grain bread wheat and buckwheat, respectively. The plasma glucose increment was determined two hours thereafter. In the first experiment, consumption of the steamed bread made from Jizi439 resulted in the least increase in plasma glucose and the GI was significantly lower than that of Chu20 and the mixture. In the second experiment, the average of postprandial 2 h plasma glucose increment of Jizi439 was 2.46 mmol/L which was significantly lower than that of the mixture of white wheat but was not significantly different from buckwheat. The results indicated that consumption of Jizi439 steamed bread resulted in significantly lower plasma glucose in

  9. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    Science.gov (United States)

    Wu, Huixia; Doherty, Angela; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  10. Whole wheat bread: Effect of bran fractions on dough and end-product quality

    Science.gov (United States)

    Consumption of whole-wheat based products is encouraged due to its important nutritional elements that beneficial to human health. However, processing of whole-wheat based products, such as whole-wheat bread, results in poor end-product quality. Bran was postulated as the major problem. In this stud...

  11. Amaranth addition to enzymatically modified wheat flour improves dough functionality, bread immunoreactivity and quality.

    Science.gov (United States)

    Heredia-Sandoval, N G; Calderón de la Barca, A M; Carvajal-Millán, E; Islas-Rubio, A R

    2018-01-24

    Consumers with gluten-related disorders require gluten-free (GF) foods to avoid an immune response. Alternative to the use of non-gluten containing grains to prepare GF bread, the gluten reactivity has been greatly reduced using a proline specific cleavage enzyme, however, the gluten functionality was lost. The aim of this study was to evaluate the effect of adding an amaranth flour blend (AFB) to enzymatically modified wheat-flour proteins on dough functionality and to evaluate the immunoreactivity and acceptability of the prepared bread. First, wheat flour (20% w/v, substrate) was hydrolyzed using 8.4 U mg -1 protein Aspergillus niger prolyl-endopeptidase (AnPEP) for 8 h at 40 °C under constant agitation. Four types of breads were prepared with the same formulation except for the type of flour (14% w.b.): wheat flour (WF), WF-AFB unmodified not incubated, WF-AFB unmodified incubated and WF-AFB modified. The protein composition and free thiols were analyzed before and after amaranth addition, and the flour and bread proteins were run using SDS-PAGE and immune-detected in blots with IgA from celiac disease patients. The immunoreactive gluten content, specific volume and bread acceptability were evaluated. The polymeric proteins and free thiol groups of WF decreased after AnPEP treatment. The electrophoretic patterns of the modified flour and bread proteins were different and the IgA-immunodetection in blots was highly reduced, particularly for the higher molecular weight subunits. The addition of AFB to the modified wheat flour prepared using AnPEP improved the dough functionality by increasing the thiol groups and allowed the preparation of a sensorially acceptable bread with only 60 mg kg -1 immunoreactive gluten.

  12. Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread

    Science.gov (United States)

    This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...

  13. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains.

    Science.gov (United States)

    Yu, Lilei; Beta, Trust

    2015-08-26

    Phenolic profiles and antioxidant properties of purple wheat varieties were investigated to document the effects of bread-making. Bread crust and crumb along with samples collected after mixing, 30 min fermenting, 65 min fermenting, and baking were examined. Free phenolic content (105.4 to 113.2 mg FAE/100 g) significantly (p 0.05) decreased after 30 min fermentation (7% to 9%) compared to the dough after mixing, but increased significantly (p bread crust demonstrated increased free (103% to 109%) but decreased bound (2% to 3%) phenolic content, whereas bread crumb exhibited a reversal of these results. Total anthocyanin content (TAC) significantly (p bread crust (0.8 to 4.4 mg cyn-3-glu equiv./100 g). p-Hydroxybenzoic, vanillic, p-coumaric, and ferulic acids were detected in free-phenolic extracts, while protocatechuic, caffeic syringic, and sinapic were additional acids in bound-phenolic extracts. Cyanidin-3-glucoside was the detectable anthocyanin in purple wheat. Bread-making significantly (p bread.

  14. Water footprint assessment along the wheat-bread value chain towards the sustainable use of freshwater in South Africa

    Science.gov (United States)

    Mohlotsane, Pascalina; Owusu-Sekyere, Enoch; Jordaan, Henry

    2017-04-01

    A significant amount of water is used in food production. The current increase in demand for food and impact of climate change place much pressure on the available water resources. South Africa is soon approaching complete utilisation of its available surface water, with irrigated agriculture accountable for about 63% of the country's available water use. This poses a threat to food security. Wheat is the largest winter cereal crop produced in South Africa, approximately 80% of this wheat is used to produce Bread. Bread consumption in South Africa is estimated at 2.8 billion loaves per annum. About 62 loaves of bread are consumed per person per annum with noticeable differences in preferences. Therefore, it is important to account for the amount of water used along the wheat-bread production chain. In this paper, we examined water footprint along the wheat-bread value chain. The water footprint concept provides an appropriate framework for analysis to find the link between the consumption of agricultural goods and the use of water resources. The paper employed the Global Water Footprint Standard approach to calculating the volumetric green, blue and grey water footprint along the wheat-bread value chain. Our findings reveal that wheat production at the farm level accounts for 99.95 percent of the total water footprint of the bread, while processing and wholesale levels only account for 0.56 per cent. Our findings highlight the importance of effective and efficient water use at the farm level for wheat production. Specifically, the total water footprint of wheat bread is 937.42m3.ton-1. The green water component was found to be 190.59m3.ton-1 and that of blue water was 745.28 m3.ton-1. Grey water footprint accounted for only 1.55 m3.ton-1. The results indicate that the amount of water used at farm level is the largest contributor to the total water footprint of bread. Given the blue water scarcity situation in South Africa, it is very critical for wheat producers to

  15. BREAD CRUMBS TEXTURE OF SPELT

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk – Szabó

    2014-02-01

    Full Text Available Texture analysis is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. Evaluation of the mechanical properties of bread crumb is important not only for quality assurance in the bakeries, but also for assessing the effects of changes in dough ingredients and processing condition and also for describing the changes in bread crumb during storage. Crumb cellular structure is an important quality criterion used in commercial baking and research laboratories to judge bread quality alongside taste, crumb colour and crumb physical texture. In the framework of our research during the years 2010 – 2011 were analyzed selected indicators of bread crumb for texture quality of three Triticum spelta L. cultivars – Altgold, Rubiota and Ostro grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Altgold and Ostro were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.65++, -0.66++. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  16. Effect of the addition of wheat bran stream on dough rheology and bread quality

    Directory of Open Access Journals (Sweden)

    Iuliana Banu

    2012-08-01

    Full Text Available The milling by-products have high nutritional value and can be incorporated into white flour. This study was aimed at comparatively examining the rheological behaviour of the doughs made from wheat white flour with different levels (3-30% of bran streams incorporated and from wholewheat. The results indicated significant correlations between the ash content of the wheat bran streams incorporated into flour and Alveograph, Rheofermentograph and Mixolab parameters. The white flour sample with 25% wheat bran streams had the ash content similar to wholewheat, but the dough rheology was improved. The quality of the white flour bread with 25% wheat bran streams was improved compared to the wholemeal bread.

  17. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines

    Directory of Open Access Journals (Sweden)

    Bosch Dirk

    2009-04-01

    Full Text Available Abstract Background Gluten proteins can induce celiac disease (CD in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum (AABBDD. Results The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. Conclusion The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  18. Tolerância de genótipos de trigo comum, trigo duro e triticale à toxicidade de alumínio em soluções nutritivas Tolerance of bread wheat, durum wheat and triticale genotypes to aluminum toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2006-01-01

    Full Text Available Foi estudado o comportamento diferencial de 12 genótipos de trigo comum (Triticum aestivum L., um genótipo de trigo duro (Triticum durum L., e um de triticale (Triticosecale sp em soluções nutritivas de tratamento contendo duas concentrações salinas (1/5 e 1/10 da completa e seis concentrações de alumínio ( 0, 2, 4, 6, 8 e 10 mg L-1, à temperatura de 25 ± 1ºC e pH 4,0. Foram utilizadas dez plântulas por parcela e quatro repetições. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após permanecer 48 horas em solução nutritiva completa, contendo uma concentração conhecida de alumínio combinada com cada uma das concentrações salinas. Os genótipos de trigo comum IAC-289, IAC-350 e IAC-370 e a cultivar controle Anahuac, e os genótipos de trigo duro IAC-1003 e de triticale IAC-5 foram os mais sensíveis a níveis crescentes de Al3+nas soluções nutritivas de tratamento e, portanto, somente seriam indicados para cultivo em solos corrigidos. Os genótipos de trigo comum IAC-24 e IAC-378 e a cultivar controle BH-1146 destacaram-se pela tolerância à toxicidade de Al3+, com potencial para uso em solos ácidos e como fontes genéticas de tolerância nos futuros cruzamentos. Os sintomas de toxicidade de alumínio foram maiores com a elevação da concentração de alumínio e da diminuição das concentrações de sais da solução nutritiva para todos os genótipos estudados.Twelve bread wheat (Triticum aestivum L., one durum wheat (Triticum durum L. and one triticale (Triticosecale sp genotypes were studied in nutrient solutions with a high salt concentration in experiment 1 and a weak salt concentration in experiment 2, for aluminum tolerance at six levels: 0, 2, 4, 6, 8 and 10 mg L-1, under temperature 25 ± 1ºC and pH 4,0. Four replications were used per experiment. Aluminum tolerance was evaluated by measuring root growth in an aluminum-free complete

  19. Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene

    Czech Academy of Sciences Publication Activity Database

    Staňková, Helena; Valárik, Miroslav; Lapitan, N.L.V.; Berkman, P.J.; Batley, J.; Edwards, D.; Luo, M.C.; Tulpová, Zuzana; Kubaláková, Marie; Stein, N.; Doležel, Jaroslav; Šimková, Hana

    2015-01-01

    Roč. 128, č. 7 (2015), s. 1373-1383 ISSN 0040-5752 R&D Projects: GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : TRITICUM-AESTIVUM L. * BREAD WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.900, year: 2015

  20. Effect of Hydrocolloids and Emulsifiers on Baking Quality of Composite Cassava-Maize-Wheat Breads

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2014-01-01

    Full Text Available Cassava is widely available worldwide but bread quality is impaired when cassava is used in the bread formulation. To overcome this problem, different improvers were tested in the preparation of composite cassava-maize-wheat (CMW breads. Emulsifiers, diacetyl tartic acid ester of monoglycerides (DATEM, sodium stearoyl-2-lactylate (SSL, and lecithin (LC; and hydrocolloids, carboxymethylcellulose (CMC and high-methylated pectin (HM pectin were added during dough preparation of the composite flours (cassava-maize-wheat, 40 : 10 : 50. Each emulsifier was tested in combination with the hydrocolloids at levels of 0.1, 0.3, and 0.5% while hydrocolloids were used at a level of 3%. Bread quality attributes such as specific loaf volume, crust colour, crumb moisture, and firmness were measured. The specific volume of the fresh breads significantly improved with the addition of hydrocolloids (7.5 and 13% and in combination with emulsifiers (from 7.9 to 27% compared with bread produced without improvers. A significant improvement of brownness index and firmness of the composite flours breads was achieved with the addition of hydrocolloids and emulsifiers. The results show that emulsifiers and hydrocolloids can significantly improve the baking quality of CMW breads and thereby enhance the potential for using locally produced flours in bread baking.

  1. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Genetics of flowering time in bread wheat Triticum aestivum ...

    Indian Academy of Sciences (India)

    2012-04-17

    Apr 17, 2012 ... in response to vernalization (Flood and Halloran 1984;. Goncharov ... ering signal (florigen) that moves from leaves to apices and induces .... Weeding was done man- ually. ...... gene action for vernalization response in wheat.

  3. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.

    Science.gov (United States)

    Nasiri Esfahani, Behnaz; Kadivar, Mahdi; Shahedi, Mohammad; Soleimanian-Zad, Sabihe

    2017-11-01

    This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p bread (r = 0.925, p breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.

  4. Effect of processing on phenolic composition of dough and bread fractions made from refined and whole wheat flour of three wheat varieties.

    Science.gov (United States)

    Lu, Yingjian; Luthria, Devanand; Fuerst, E Patrick; Kiszonas, Alecia M; Yu, Liangli; Morris, Craig F

    2014-10-29

    This study investigated the effect of breadmaking on the assay of phenolic acids from flour, dough, and bread fractions of three whole and refined wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenoilc acids showed that yields of total phenolic acids (TPA) were 5-17% higher among all varieties and flour types when samples were directly hydrolyzed in the presence of ascorbate and EDTA as compared to the method separating free, soluble conjugates and bound, insoluble phenolic acids. Ferulic acid (FA) was the predominant phenolic acid, accounting for means of 59 and 81% of TPA among all refined and whole wheat fractions, respectively. All phenolic acids measured were more abundant in whole wheat than in refined samples. Results indicated that the total quantified phenolic acids did not change significantly when breads were prepared from refined and whole wheat flour. Thus, the potential phytochemical health benefits of total phenolic acids appear to be preserved during bread baking.

  5. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao

    2015-11-04

    Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

  6. Thermo-mechanic and sensory properties of wheat and rye breads produced with varying concentration of the additive

    Directory of Open Access Journals (Sweden)

    Demin Mirjana A.

    2013-01-01

    Full Text Available The effects of different concentrations of the complex additive containing emulsifiers, oxido-reductive substances and enzymes, on the rheological conditions of dough, and on the sensory properties of three groups of bread were investigated. The best initial quality and the lowest degree of protein network weakening had the dough obtained from mixed wheat and rye flours. The best expected baking properties were shown by the white wheat flour due to the least damage of its starch. The use of the additive has an effect on the absorption of water and on the majority of C-values of all sorts of flour. The amount of additive had a significant effect on the sensory properties of wheat bread crumb texture. Also, storage duration significantly affected (p <0.01 the sensory properties of integral wheat bread aroma-taste and the weighted mean score. The interaction of these two factors had no significant effect on any of sensory properties of the investigated groups of bread.

  7. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  8. Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2014-01-01

    Full Text Available Low-molecular-weight glutenin subunits (LMW-GS are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L. and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality.

  9. Studies on Production of Arabic Bread From Irradiated and Stored Potato Flour as Partial Substitute of Wheat Flour

    International Nuclear Information System (INIS)

    Al-Kuraieef, A.N.

    2012-01-01

    The present study was carried out to evaluate Arabic bread produced from potato flour and wheat flour. Potato flour was prepared from Diamont cultivar of potato tubers after irradiation with 50 and 150 Gy. The ratios of potato flour were 5, 10 and 15% and the flour was stored for six months and taken for analysis every three months. Amino acids, protein, carbohydrate, baking and staling tests were applied to study the effect of adding potato flour extracts from tubers of non-irradiated and irradiated potato to wheat flour in Arabic bread making. Amino acids in potato and wheat were studied. The flour of wheat was found to be poor in lysine while potato flour contained about twice of these amino acids. Protein content was decreased with increasing the ratios of potato flour. The addition of potato flour to the Arabic bread increased the percentage of essential amino acids. Moreover, the addition of potato flour during storage periods had an improving effect on the quality of Arabic bread. Water retention capacity (the staling rate) was increased progressively with increasing the percentage as potato flour in the bread which was effective in keeping bread fresh and organoleptic properties

  10. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    Science.gov (United States)

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  11. Sensory Quality of Wheat and Cassava Breads as Affected by Some ...

    African Journals Online (AJOL)

    The effects of some leguminous seed flours (LSF) on the quality of wheat and cassava breads were investigated. Three LSF, namely Brachystegia eurycoma, Detarium microcarpum, and Mucuna sloanei were added into wheat flour and cassava flour at 0 (control), 0.5, 1.0, 1.5, and 2.0% of the flour basis. The different flour ...

  12. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION BAKERY PRODUCTS Requirements for Specific Standardized Bakery Products... composition of milk and/or other dairy products does not apply. (b) The name of the food is “whole wheat bread...

  13. Evaluation of 14 winter bread wheat genotypes in normal irrigation ...

    African Journals Online (AJOL)

    Evaluation of 14 winter bread wheat genotypes in normal irrigation and stress conditions after anthesis stage. ... African Journal of Biotechnology ... Using biplot graphic method, comparison of indices amounts and mean rating of indices for ...

  14. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate.

    Science.gov (United States)

    Mahmoud, Amer F; Hassan, Mohamed I; Amein, Karam A

    2015-12-01

    Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 2 rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

  15. Meiotic chromosome behaviours in M1 generation of bread wheat irradiated by gamma-rays

    International Nuclear Information System (INIS)

    Watanabe, Y.; Takato, S.

    1982-01-01

    Growing plants of bread wheat (Triticum aestivum L. 2 n=6x=42, AABBDD) were subjected to acute or chronic irradiation by gamma-rays from 60Co and meiotic chromosome behaviours of PMCS in M 1 generation were cytologically compared. Both acute and chronic irradiations produced different types of chromosomal aberrations at the meiotic stages. Among them, translocation type was the most frequent, followed by univalent type. A mixed type, i. e. translocation accompanying one or more univalents was often detected. Even normal type which lacked translocation and univalent included laggards and briclges without exception. Other meiotic abnormalities such as deletion, iso-chromosome and micronuclei were observed frequently in both treatments. Dose dependency of translocation frequency was not recognized in this experiment. In chronic irradiation, different chromosome numbers and meiotic behaviours were found not only among florets of a spike but also among anthers of a floret. A number of plants with aneuploid-like grass types occurred at a high frequency in M 1 , especially with low exposure

  16. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    International Nuclear Information System (INIS)

    Mallasy, Limya Osman Husain

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra

  17. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    Energy Technology Data Exchange (ETDEWEB)

    Mallasy, Limya Osman Husain [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra. 132 refs., 14 tabs., 7 figs.

  18. Hard Winter Wheat and Flour Properties in Relation to Breadmaking Quality of Straight-dough Bread: Flour Particle Size and Bread Crumb Grain

    Institute of Scientific and Technical Information of China (English)

    S H Park; O K Chung; P A Seib

    2006-01-01

    Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage,swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~ 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p < 0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μ m in size and representing 9.6%~ 19.3% of the flour weights was correlated positively (r =0.78, p < 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p<0.05) with crumb grain score.

  19. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations.

    Science.gov (United States)

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Prinyawiwatkul, Witoon; Tungtrakul, Patcharee

    2010-08-01

    Brown rice has been reported to be more nutritious after germination. Germinated brown rice flours (GBRFs) from different steeping conditions (in distilled water [DI, pH 6.8] or in a buffer solution [pH 3] for either 24 or 48 h at 35 degrees C) were evaluated in this study. GBRF obtained from brown rice steeped at pH 3 for 48 h contained the highest amount of free gamma aminobutyric acid (GABA; 67 mg/100 g flour). The composite flour (wheat-GBRF) at a ratio of 70 : 30 exhibited significantly lower peak viscosity (PV) (56.99 - 132.45 RVU) with higher alpha-amylase activity (SN = 696 - 1826) compared with those of wheat flour (control) (PV = 136.46 RVU and SN = 1976). Bread formulations, containing 30% GBRF, had lower loaf volume and greater hardness (P rice flour (BRF). Acceptability scores for aroma, taste, and flavor of breads prepared with or without GBRFs (30% substitution) were not significantly different, with the mean score ranging from 6.1 (like slightly) to 7 (like moderately). Among the bread formulations containing GBRF, the one with GBRF prepared after 24 h steeping at pH 3 had a slightly higher (though not significant) overall liking score (6.8). This study demonstrated that it is feasible to substitute wheat flour with up to 30% GBRF in bread formulation without negatively affecting sensory acceptance. Practical Application: Our previous study revealed that flours from germinated brown rice have better nutritional properties, particularly gamma-aminobutyric acid (GABA), than the nongerminated one. This study demonstrated feasibility of incorporating up to 30% germinated brown rice flour in a wheat bread formulation without negatively affecting sensory acceptance. In the current United States market, this type of bread may be sold as frozen bread which would have a longer shelf life. Further study is thus needed.

  20. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  1. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  2. Bioethanol production from waste bread samples made from mixtures of wheat and buckwheat flours

    OpenAIRE

    Ačanski, Marijana; Pastor, Kristian; Razmovski, Radojka; Vučurović, Vesna; Psodorov, Đorđe

    2014-01-01

    In this paper yields of bioethanol from seven samples of bread were compared. Samples of bread were produced and prepared in a laboratory by mixing wheat and buckwheat flour in amounts of 0, 20, 40, 50, 60, 80 and 100%. At first, the analysis of all seven samples of bread was done (dry matter, starch content and pH value of bread sample suspensions). Then the waste bread suspensions were hydrolyzed by applying commercial hydrolytic enzymes, Termamyl® SC and SAN Extra® L. The fermentation proc...

  3. Effects of transgene-encoded high-molecular weight glutenin proteins in wheat flour blends and sponge and dough baking

    Science.gov (United States)

    HMW glutenin subunits are the most important determinants of wheat (Triticum aestivum L.) bread-making quality, and subunit composition explains a large percentage of the variability observed between genotypes. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1D...

  4. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance.

    Science.gov (United States)

    Wu, Honghong; Shabala, Lana; Zhou, Meixue; Shabala, Sergey

    2014-10-01

    Understanding the intrinsic mechanisms involved in the differential salinity tolerance between bread wheat and durum wheat is essential for breeding salt-tolerant varieties to cope with the global salinity issue threatening future food supply. In the past, higher salinity tolerance in bread wheat compared with durum wheat has been attributed to its better ability to exclude Na(+) from uptake. Here we show that another mechanism, namely more superior K(+) retention ability in the leaf mesophyll, also contributes to this difference. A strong positive correlation (R(2) > 0.41, P varieties. However, while the above correlation was strong in bread wheat, it was statistically insignificant in durum wheat. Consistent with these findings, a significantly higher relative leaf K(+) content was found in bread wheat than in durum wheat. In contrast to root tissues, the role of voltage-gated K(+) channels in K(+) retention in the wheat mesophyll was relatively small, and non-selective cation channels played a major role in controlling intracellular K(+) homeostasis. Moreover, a significant negative correlation between NaCl-induced mesophyll H(+) flux and mesophyll K(+) retention was found, and interpreted as a compensatory mechanism employed by sensitive varieties to regain K(+) leaked into the apoplast. It is concluded that bread wheat and durum wheat show different strategies of coping with salinity, and that targeting mechanisms conferring K(+) retention in the leaf mesophyll may be a promising way to improve the overall salinity tolerance in these species. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2007-08-01

    Full Text Available Abstract Background Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC. In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1, Brassica (BoASY1 and rice (OsPAIR2 have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. Results The full length wheat cDNA and genomic clone, TaASY1, has been isolated, sequenced and characterised. TaASY1 is located on chromosome Group 5 and the open reading frame displays significant nucleotide sequence identity to OsPAIR2 (84% and AtASY1 (63%. Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occur. Immunolocalisation using transmission electron microscopy showed TaASY1 interacts with chromatin that is associated with both axial elements before SC formation as well as lateral elements of formed SCs. Conclusion TaASY1 is a homologue of ScHOP1, AtASY1 and OsPAIR2 and is the first gene to be isolated from bread wheat that is involved in pairing and synapsis of homologous chromosomes.

  6. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  7. Economical factors of wheat (Triticum aestivum L. diversity: econometric stimation

    Directory of Open Access Journals (Sweden)

    S.S. Hamraz

    2016-05-01

    Full Text Available In this study tried to calculate attributed-based index and measurement of farmer’s attention to wheat (Triticum aestivum L. seed environmental, cropping and marketing attribute and evaluate social– economical factors influencing on this index. After this estimation, effective factors have selected. Related data to 102 Mashhad wheat producers, Iran were used for estimations Poisson regression. Results showed that in seed characteristics set; marketability and taste were more important factors. Also, results of this study corroborant previews study and only variables age and family number make difference. Also, education, farming and non–farming income, farming experience, farm area and loan receive have positive effect on these characteristics.

  8. BREAD-MAKING QUALITY OF SLOVAK AND SERBIAN WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2014-02-01

    Full Text Available The basic prerequisite for the production of bakery products of a good quality is the knowledge of the quality parameters of raw materials introduced in the production process and the ability to use their potential. The bread making properties of 17 pure European wheat cultivars were analysed. Baking experiments were carried out according to the methodology of the research workplace; 1000 g of flour was processed with the addition of salt, sugar and yeast. Fermentation for 35 minutes at 30 ° C was followed by the baking with steaming (at 240 ° C and then 220 ° C. During an experimental baking test the selected parameters: loaf volume (cm3, specific loaf volume (cm3.100g-1 loaf, volume efficiency (cm3.100g-1 flour, cambering (loaf height/width ratio, bread yield (%, bread yield baking loss (% in bread were evaluated. Loaf volume has been considered as the most important criterion for the bread-making quality. In the analysed samples (11 varieties of Slovak origin and 6 varieties of Serbian origin, the value of this parameter ranged from 3575 cm3 to 5575 cm3 with higher values occurred in Slovak varieties (average 4 640.91 cm3 compared to the Serbian varieties (average 4 363.33 cm3. Based on the complex evaluation of wheat varieties of the Slovak and Serbian origin assessing the selected quality parameters of the baking experiment it can be concluded that in terms of baking quality the three Slovak varieties IS Ezopus, Bonavita and Jarissa were the best. Therefore, they are recommended for cultivation and their subsequent use in the baking industry, in particular for the production of bread According to a baking quality the evaluated varieties can be sorted from best to worst in the following order: IS Ezopus (SK > Bonavita (SK > Jarissa (SK > IS Questor > Etida (SRB > Venistar (SK > Renesansa (SRB > IS Conditor (SK > IS Corvinus (SK > Zvezdana (SRB > Simonida (SRB > Viglanka (SK > IS Agape (SK > NS 40S (SRB > Panonnija (SRB > IS Escoria (SK

  9. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  10. Gluten characteristics imparting bread quality in wheats differing for high molecular weight glutenin subunits at Glu D1 locus.

    Science.gov (United States)

    Mohan, Devinder; Gupta, Raj Kumar

    2015-07-01

    High yielding genotypes differing for high molecular weight glutenin subunits at Glu D1 locus in national wheat programme of India were examined for bread loaf volume, gluten and protein contents, gluten strength, gluten index and protein-gluten ratio. Number of superior bread quality genotypes in four agro-climatically diverse zones of Indian plains was comparable in both categories of wheat i.e., 5 + 10 and 2 + 12. There wasn't any difference in average bread loaf volume and grain protein content either. 5 + 10 wheats showed better gluten strength and their gluten quality was also superior in the zones where protein content was high. 2 + 10 wheats exerted more gluten due to better protein-gluten ratio. Good bread making in 5 + 10 was derived by better gluten strength and also gluten quality in certain regions but bread quality in 2 + 12 wheats was channelized through higher gluten content as they were more efficient in extracting gluten from per unit protein. Difference in route to bread quality was apparent as gluten content and gluten strength were the key gluten attributes in 5 + 10 whereas protein content and gluten index were prominent in 2 + 12 types. Unlike 2 + 12, there was a ceiling in gluten harvest of 5 + 10 wheats as higher protein failed to deliver more gluten after some limit.

  11. Environmental and economic aspects of Triticum aestivum L. and Avena sativa growing

    Directory of Open Access Journals (Sweden)

    Jelínková Zuzana

    2016-01-01

    Full Text Available This paper deals with the assessment of cultivation of bread wheat (Triticum aestivum L. and oat (Avena sativa grown in Central Europe within the conventional and organic farming systems in terms of greenhouse gas emissions and economic profitability. Organic farming may be one of the tools for mitigation of greenhouse gas emissions from agricultural production. In the context of crop production, cereals rank among the most commonly grown crops and therefore bread wheat and oat were chosen. The Climate change impact category was assessed within the simplified LCA method and the production of greenhouse gas emissions expressed in CO2e per the production unit was calculated. Economic balance of the cultivation of monitored cereals was compiled based on the yields, farm gate prices and costs. On its basis, the cultivation of wheat within the organic farming system appears to be the most profitable. From an environmental point of view, the emission load of the organic farming system is reduced by 8.04 % within the wheat production and by 15.46 % within the oat cultivation. Therefore, the organic farming system in the Czech Republic appears to be more environmentally friendly and economically efficient within the cereals production.

  12. Antioxidant capacity versus chemical safety of wheat bread enriched with pomegranate peel powder

    DEFF Research Database (Denmark)

    Altunkaya, Arzu; Hedegaard, Rikke Susanne Vingborg; Brimer, Leon

    2013-01-01

    Pomegranate peel powder (PP), a by-product of the pomegranate juice industry rich in polyphenols, was explored for use in bread production, due to its potential health effects. Wheat bread was prepared using different levels for replacement of flour with PP (0 to 10 g per 100 g flour) resulting...

  13. Genetic diversity among old Portuguese bread wheat cultivars and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 88; Issue 3. Genetic diversity among old Portuguese bread wheat cultivars and botanical varieties evaluated by ITS rDNA PCR-RFLP markers. A. Carvalho H. Guedes-Pinto J. Lima-Brito. Research Note Volume 88 Issue 3 December 2009 pp 363-367 ...

  14. Wholegrain vs. refined wheat bread and pasta. Effect on postprandial glycemia, appetite, and subsequent ad libitum energy intake in young healthy adults

    DEFF Research Database (Denmark)

    Kristensen, M.; Jensen, M.G.; Riboldi, G.

    2010-01-01

    based oil wholemeal wheat breads and pasta in comparison to similar refined wheat products on postprandial glycemia, appetite and ad libitum energy intake (EI). Test meals (50 g carbohydrates; 2MJ) consisted of refined wheat bread (RWB), wholegrain wheat bread (WWB), refined wheat pasta (RWP......) and wholegrain wheat pasta (WWP) and were served after an overnight fast. Appetite ratings and blood glucose were assessed for 180 min after which an ad libitum lunch meal was served and El measured. The 180 min glucose responses were similar for wholemeal and refined products, but pasta meals gave significantly...

  15. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread

    DEFF Research Database (Denmark)

    Juntunen, Katri S; Laaksonen, David E; Autio, Karin

    2003-01-01

    and glucose responses. DESIGN: Nineteen healthy postmenopausal women aged 61 +/- 1 y, with a body mass index (in kg/m(2)) of 26.0 +/- 0.6, and with normal glucose tolerance participated in the study. The test products were refined wheat bread (control), endosperm rye bread, traditional rye bread, and high......BACKGROUND: Rye bread has a beneficial effect on the postprandial insulin response in healthy subjects. The role of rye fiber in insulin and glucose metabolism is not known. OBJECTIVE: The aim of the study was to determine the effect of the content of rye fiber in rye breads on postprandial insulin...

  16. The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal.

    Science.gov (United States)

    Altınel, Burak; Ünal, S Sezgin

    2017-05-01

    This study was carried out to evaluate the effects of amyloglucosidase, glucose oxidase, hemicellulase (mainly consist of endo-1,4-β-xylanase), cellulase, lipase, and the combination of phospholipase and hemicellulase (phospholipase + hemicellulase) on the extensographic properties of dough and the quality characteristics of bread prepared from wheat meal. The enzymes were added separately in two different amounts. The addition of glucose oxidase (at 0.0003-0.001%) caused a significant decrease in the resistance to extension, ratio of resistance to extensibility and energy values of the wheat meal dough compared with the control dough. The addition of hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) also improved the wheat meal dough rheology by reducing the resistance to extension and the ratio of resistance to extensibility. Glucose oxidase (at 0.0003-0.001%), hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) addition improved the specific volume of wheat meal bread compared with the control bread. Increasing the dosage of glucose oxidase from 0.0003 to 0.001% caused a further increase in the specific volume of wheat meal bread. The addition of hemicellulase (at 0.001-0.005%) caused a significant decrease in the baking loss and an increase in the moisture content of wheat meal bread compared with the control bread. The addition of amyloglucosidase (at 0.000875-0.001%), lipase (at 0.0002-0.001%) and cellulase (at 0.0003-0.0005%) did not considerably affected the dough rheological and the quality characteristics of wheat meal bread.

  17. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects

    OpenAIRE

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F

    2015-01-01

    Background Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. Results A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and express...

  18. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains

    Directory of Open Access Journals (Sweden)

    Lilei Yu

    2015-08-01

    Full Text Available Phenolic profiles and antioxidant properties of purple wheat varieties were investigated to document the effects of bread-making. Bread crust and crumb along with samples collected after mixing, 30 min fermenting, 65 min fermenting, and baking were examined. Free phenolic content (105.4 to 113.2 mg FAE/100 g significantly (p < 0.05 increased during mixing, fermenting, and baking (65% to 68%. Bound phenolics slightly (p > 0.05 decreased after 30 min fermentation (7% to 9% compared to the dough after mixing, but increased significantly (p < 0.05 during 65 min fermenting and baking (16% to 27%. Their antioxidant activities followed a similar trend as observed for total phenolic content. The bread crust demonstrated increased free (103% to 109% but decreased bound (2% to 3% phenolic content, whereas bread crumb exhibited a reversal of these results. Total anthocyanin content (TAC significantly (p < 0.05 decreased by 21% after mixing; however, it gradually increased to 90% of the original levels after fermenting. Baking significantly (p < 0.05 decreased TAC by 55%, resulting in the lowest value for bread crust (0.8 to 4.4 mg cyn-3-glu equiv./100 g. p-Hydroxybenzoic, vanillic, p-coumaric, and ferulic acids were detected in free-phenolic extracts, while protocatechuic, caffeic syringic, and sinapic were additional acids in bound-phenolic extracts. Cyanidin-3-glucoside was the detectable anthocyanin in purple wheat. Bread-making significantly (p < 0.05 increased the phenolic content and antioxidant activities; however, it compromised the anthocyanin content of purple wheat bread.

  19. Effect of the Chickpea (Cicer arietinum L. Flour Addition on Physicochemical Properties of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Simona Man

    2015-05-01

    Full Text Available Chickpea flour is a good source of proteins, fibers, minerals and other bioactive compounds and it could be an ideal ingredient for improve the nutritional value of bread and bakery products. The aim of this study was to supplement wheat flour (WF with various levels of chickpea flour (CF in order to obtain bread with good nutritional and quality characteristics. Four experimental variants obtained by substituting wheat flour with different proportions (0%, 10%, 20%, and 30% of chickpea flour were used. The results showed a valuable increment in bread protein and fiber content. The volume of the breads decreased as the level of chickpea flour (CF increased due the dilution of gluten content in the blend and due to the interactions among fiber components, water and gluten. Nevertheless, substitution at 10%, 20% and 30%, gives parameter values at least as good as the control sample (WFB and produces acceptable bread, in terms of weight, volume and sensorial properties.

  20. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread

    Directory of Open Access Journals (Sweden)

    Mykkänen Hannu

    2011-10-01

    Full Text Available Abstract Background The mechanism behind the lowered postprandial insulin demand observed after rye bread intake compared to wheat bread is unknown. The aim of this study was to use the metabolomics approach to identify potential metabolites related to amino acid metabolism involved in this mechanism. Methods A sourdough fermented endosperm rye bread (RB and a standard white wheat bread (WB as a reference were served in random order to 16 healthy subjects. Test bread portions contained 50 g available carbohydrate. In vitro hydrolysis of starch and protein were performed for both test breads. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h and gastric emptying rate (GER was measured. Changes in the plasma metabolome were investigated by applying a comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics platform (GC×GC-TOF-MS. Results Plasma insulin response to RB was lower than to WB at 30 min (P = 0.004, 45 min (P = 0.002 and 60 min (P in vitro protein digestibility. There were no differences in GER between breads. From 255 metabolites identified by the metabolomics platform, 26 showed significant postprandial relative changes after 30 minutes of bread intake (p and q values Conclusions A single meal of a low fibre sourdough rye bread producing low postprandial insulin response brings in several changes in plasma amino acids and their metabolites and some of these might have properties beneficial for health.

  1. Chemometric Analysis of High Molecular Mass Glutenin Subunits and Image Data of Bread Crumb Structure from Croatian Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    Zorica Jurković

    2002-01-01

    Full Text Available The aim of this work is to investigate functional relationships among wheat properties, high molecular mass (weight (HMW glutenin subunits and bread quality produced from eleven Croatian wheat cultivars by chemometric analysis. HMW glutenin subunits were fractionated by sodium dodecylsulfate polyacrylamid gel electrophoresis (SDS-PAGE and subsequently analysed by scanning densitometry in order to quantify HMW glutenin fractions. Wheat properties are characterised by four variables: protein content, sedimentation value, wet gluten and gluten index. Bread quality is assessed by the standard measurement of loaf volume, and visual quality of bread slice is quantified by 8 parameters by the use of computer image analysis. The data matrix with 21 columns (measured variables and 11 rows (cultivars is analysed for determination of number of latent variables. It was found that the first two latent variables account for 92, 85 and 87 % of variance of wheat quality properties, HMW glutenin fractions, and the bread quality parameters, respectively. Classification and functional relationships are discussed from the case data (cultivars and variable projections to the planes of the first two latent variables. Between Glu-D1y proportion and the bread quality parameters (standard parameter loaf volume and bread crumb cell area fraction determined by image analysis the strongest positive correlations are found r = 0.651 and r = 0.885, respectively. Between Glu-B1x proportion and the bread quality parameters the strongest negative correlations are found r =-0.535 and r = –0.841, respectively. The results are discussed in view of possible development of new and improvement of existing wheat cultivars and optimisation of bread production.

  2. Induced Mutations for Improving Production on Bread and Durum Wheat

    Science.gov (United States)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  3. Induced Mutations for Improving Production on Bread and Durum Wheat

    International Nuclear Information System (INIS)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-01-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff

  4. CRUMB TEXTURE OF SPELT BREAD

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk-Szabó

    2013-12-01

    Full Text Available Abstract The bread quality is considerably dependent on the texture characteristic of bread crumb. Crumb texture is an important quality indicator, as consumer prefer different bread taste. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators for bread texture quality of five Triticum spelta L. varieties – Altgold, Oberkulmer Rotkorn, Ostro, Rubiota and Franckenkorn grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard method and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Franckenkorn and Altgold were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.81++, -0.78++. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  5. Evolution of bread-making quality of Spanish bread-wheat genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.; Aparicio, N.; Ruiz-Paris, E.; Oliete, B.; Caballero, P. A.

    2009-07-01

    In this study, 36 Spanish wheat genotypes (five modern commercial cultivars, four cultivars introduced after the green revolution and 27 land races from northwestern Spain) were evaluated. Grain (yield, specific weight, protein content and falling number) and flour (yield, protein content, Zeleny index, wet gluten and gluten index) properties were analyzed. Dough behaviour during mixing (DoughLAB) and handling (alveograph) was also considered. An evolution in grain and flour properties was observed over time. In modern cultivars, grain yield was improved owing to higher grain production. In land races, higher grain yields were related to larger grain size. Unlike in land races, an inverse correlation between grain yield and protein content was found in modern cultivars. In addition, because of their high protein quality, modern cultivars surpassed land races in bread-making properties. Land races showed considerable variability in protein quality and scored lower curve configuration ratio values than other cultivars with similar strength. Cultivars introduced after the green revolution reached the highest levels of bread-making quality, a feature attributable to their high protein quality. (Author) 24 refs.

  6. Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men

    DEFF Research Database (Denmark)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli

    2017-01-01

    PURPOSE: Underlying mechanisms of the beneficial health effects of low glycemic index starchy foods are not fully elucidated yet. We varied the wheat particle size to obtain fiber-rich breads with a high and low glycemic response and investigated the differences in postprandial glucose kinetics...... and metabolic response after their consumption. METHODS: Ten healthy male volunteers participated in a randomized, crossover study, consuming (13)C-enriched breads with different structures; a control bread (CB) made from wheat flour combined with wheat bran, and a kernel bread (KB) where 85 % of flour...... in a difference in glucose response and kinetics, but in a pronounced difference in GLP-1 response. Thus, changing the processing conditions of wheat for baking bread can influence the metabolic response beyond glycemia and may therefore influence health....

  7. Effect of the addition of mixture of plant components on the mechanical properties of wheat bread

    Science.gov (United States)

    Wójcik, Monika; Dziki, Dariusz; Biernacka, Beata; Różyło, Renata; Miś, Antoni; Hassoon, Waleed H.

    2017-10-01

    Instrumental methods of measuring the mechanical properties of bread can be used to determine changes in the properties of it during storage, as well as to determine the effect of various additives on the bread texture. The aim of this study was to investigate the effect of the mixture of plant components on the physical properties of wheat bread. In particular, the mechanical properties of the crumb and crust were studied. A sensory evaluation of the end product was also performed. The mixture of plant components included: carob fiber, milled grain red quinoa and black oat (1:2:2) - added at 0, 5, 10, 15, 20, 25 % - into wheat flour. The results showed that the increase of the addition of the proposed additive significantly increased the water absorption of flour mixtures. Moreover, the use of the mixture of plant components above 5% resulted in the increase of bread volume and decrease of crumb density. Furthermore, the addition of the mixture of plant components significantly affected the mechanical properties of bread crumb. The hardness of crumb also decreased as a result of the mixture of plant components addition. The highest cohesiveness was obtained for bread with 10% of additive and the lowest for bread with 25% of mixture of plant components. Most importantly, the enrichment of wheat flour with the mixture of plant components significantly reduced the crust failure force and crust failure work. The results of sensory evaluation showed that the addition of the mixture of plant components of up to 10% had little effect on bread quality.

  8. Bread making properties of wheat flour supplemented with thermally processed hypoallergenic lupine flour

    Energy Technology Data Exchange (ETDEWEB)

    Guillamon, E.; Cuadrado, C.; Pedrosa, M. M.; Varela, A.; Cabellos, B.

    2010-07-01

    In recent years there has been increased interest in using lupine for human nutrition due to its nutritional properties and health benefits. Moreover, lupine is used as an ingredient in bread making because of its functional and technological properties. However, a higher number of allergic reactions to this legume have recently been reported as a consequence of a more widespread consumption of lupine-based foods. In a previous study, several thermal treatments were applied to lupine seeds and flours resulting in reduced allergenicity. In order to study how this thermal processing (autoclaving and boiling) affects the bread making properties, raw and thermally processed lupine flours were used to replace 10% of wheat flour. The effect of supplementing wheat flour with lupine flour on physical dough properties, bread structure and sensory characteristics were analysed. The results indicated that thermally-treated lupine flours, had similar bread making and sensorial properties as untreated lupine flour. These thermal treatments could increase the potential use of lupine flour as a food ingredient while reducing the risk to provoke allergic reactions. (Author) 36 refs.

  9. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    In this study, fourteen bread wheat varieties, twelve of which were introduced into Turkey from Romania, were evaluated for grain yield and seven agronomic properties in Biga, Çanakkale in northwest part of Turkey in 2005 - 2006 and 2006 - 2007 growing seasons. The objectives of the research, carried out in a completely ...

  10. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Carla Ceoloni

    2017-12-01

    Full Text Available Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x and tetraploid durum wheat (T. durum, 4x, widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or

  11. Study of Yield and Effective Traits in Bread Wheat Recombinant Inbred Lines (Triticum aestivum L. under Water Deficit Condition

    Directory of Open Access Journals (Sweden)

    S. Mohammad zadeh

    2013-11-01

    Full Text Available The effects some traits on seed yield of recombinant inbred lines of wheat under water deficit stress was studied. This research was done at the Agricultural Research Stations, Islamic Azad University, Tabriz Branch in 2010- 2011. 28 recombinant inbred lines of wheat bread with two parents (Norstar and Zagros in split plot experiment based on a randomized complete block design with three replications at two irrigation levels (70 and 140 mm evaporation from pan class A were studied. Analysis of variance indicated a significant genetic differences in all traits under study among the lines. Lines No. 32, 163 and 182 produced highest yield under both irrigation levels. Number of spikes, grains per spike and harvest index had the highest positive correlation with grain yield. Path analysis based on stepwise regression showed that under the normal irrigation conditions, number spike (0.556, number of grains per spike (0.278, weight of 1000 grain (0.259 and the drought stress number spike (0.430, straw yield (0.276 and peduncle length (0.323 had the most direct and positive effect on yield respectively.

  12. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt

    KAUST Repository

    Mü ller, Thomas; Schierscher-Viret, Beate; Fossati, Dario; Brabant, Cé cile; Schori, Arnold; Keller, Beat; Krattinger, Simon G.

    2017-01-01

    Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.

  13. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt

    KAUST Repository

    Müller, Thomas

    2017-11-04

    Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.

  14. The Influence of Scalded Flour, Fermentation, and Plants Belonging to Lamiaceae Family on the Wheat Bread Quality and Acrylamide Content.

    Science.gov (United States)

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina; Cizeikiene, Dalia

    2018-06-01

    The aim of this study was to investigate the influence of additives such as plants belonging to Lamiaceae family (Thymus vulgaris, Carum carvi, Origanum vulgare, Ocimum basilicum, and Coriandrum sativum), scalded flour (SF) or scalded flour fermented with Lactobacillus plantarum LUHS135 (SFFLp) on the quality and acrylamide formation in wheat bread. The formation of acrylamide and bread quality significantly depended on the king of plants used and the amount of SF and SFFLp used. The additives of T. vulgaris and SF increased the content of acrylamide by 3.4-fold in comparison with bread prepared without SF, whereas the addition of SFFLp significantly reduced the content of acrylamide in bread, especially using 5% of SFFLp supplemented with O. vulgare and 15% of SFFLp supplemented with C. sativum (respectively by 40% and 29.4%) therefore could be recommended for safer bread production. The addition of 5% (from total wheat flour content) of scalded wheat flour fermented with Lactobacillus plantarum LUHS135 strain (SFFLp) with Origanum vulgare addition, and 5% or 10% of SFFLp prepared with Ocimum basilicum, and 15% of SFFLp prepared with Coriandrum sativum significantly reduce the content of acrylamide in wheat bread, therefore could be recommended for safer bread production. © 2018 Institute of Food Technologists®.

  15. Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp as a Functional Food Product

    OpenAIRE

    Renata Różyło; Dariusz Dziki; Anna Jakubczyk; Monika Karaś; Urszula Gawlik-Dziki; Krzysztof Różyło

    2014-01-01

    In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20 % (converted to dry matter) caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory chara...

  16. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    Science.gov (United States)

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  17. Do ancient types of wheat have health benefits compared with modern bread wheat?

    Science.gov (United States)

    Shewry, Peter R

    2018-01-01

    A number of studies have suggested that ancient wheats have health benefits compared with modern bread wheat. However, the mechanisms are unclear and limited numbers of genotypes have been studied, with a particular focus on Kamut ® (Khorasan wheat). This is important because published analyses have shown wide variation in composition between genotypes, with further effects of growth conditions. The present article therefore critically reviews published comparisons of the health benefits of ancient and modern wheats, in relation to the selection and growth of the lines, including dietary interventions and comparisons of adverse effects (allergy, intolerance, sensitivity). It is concluded that further studies are urgently required, particularly from a wider range of research groups, but also on a wider range of genotypes of ancient and modern wheat species. Furthermore, although most published studies have made efforts to ensure the comparability of material in terms of growth conditions and processing, it is essential that these are standardised in future studies and this should perhaps be a condition of publication.

  18. Physicochemical composition and glycemic index of whole grain bread produced from composite flours of quality protein maize and wheat

    Directory of Open Access Journals (Sweden)

    C. T. Akanbi

    2016-01-01

    Full Text Available This study entails quality assessment of whole grain bread produced from composite flours of quality protein maize and wheat. Quality protein maize and wheat were processed into flours and mixed at various ratios for bread production. The proximate compositions, physical properties, glycemic response, functional and sensory properties of the samples were evaluated using standard methods. The result showed no significant difference (p<0.05 in the proximate composition parameters of the bread samples. The loaf height (2.50 - 3.95 cm, volume (291.00 - 415.00 cm3 and specific volume(1.72 - 2.42 cm3/g decreased significantly with increasing level of quality protein maize, however, loaf length was not affected by the substitution of quality protein maize. The result of the functional properties showed that final viscosity, water absorption and swelling capacity increased with increasing level of quality protein maize. The result of the glycemic response showed that the inclusion of quality protein maize resulted in decline in the blood glucose content (glycemic index of the products. The bread samples were generally acceptable however; bread with 100% wheat was the most preferred. The result of the sensory properties showed that there was significant difference (p<0.05 in the texture and taste of 100% wheat bread and the other samples. The study concluded that substitution of quality protein maize with wheat produced acceptable whole grain loaves that have positive effect on the reduction of blood glucose level.

  19. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    Science.gov (United States)

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  20. Properties and nutritional value of wheat bread enriched by hemp products

    Directory of Open Access Journals (Sweden)

    Ivan Švec

    2015-08-01

    Full Text Available Hemp (Cannabis sativa is annual plant that is native to China and remained as important material for food, industrial  and medical purposes. As source of cannabinoids belongs to controversial, but due to its excellent nutritional profile, non-gluten protein, fat and fibre it has potential in bakery products. Addition of 5% - 20% of hemp press cake fine flour and fine wholemeal significantly increased dietary fibre content, but their influence on volume of laboratory baked bread was different. Reflecting actual dosage, both types of hemp press cake flour diminished bun sizes about 6% - 33%; volumes of bread containing hulled wholemeal were comparable to standard (mean 310 mL/100 g vs. 333 ml/100 g, respectively. Only dehulled wholemeal hemp form increased the bread specific volume (6% - 30%, especially as 10% fortification (434 mL/100 g. Six Canadian hemp products were added as 10% and 20% on wheat flour base, comprising fine hemp flour and coarse hemp powder, dehulled whole seeds, hulled hemp seeds with sea salt as well as 50% and 43% hemp protein concentrates (KP1-KP6, respectively. The higher level of KP1, KP2, KP5 and KP6, the lower bread specific volumes were determined (decrease about 9% - 48%. Soft increase in buns size caused by 10% and 20% KP3 (323 and 319 ml/100 g vs. 296 mL/100 g was insignificant. The effect of KP4 was reversely verifiable, magnifying the parameter about 25% and 17%, respectively. In terms of protein content in bread, a level 11.75% in wheat bread has risen to approx. 14.5% and 18.0% when 10% and 20% of KP3 and KP5, respectively, was included into bread recipe. All six Canadian hemp products increased dietary fibre content in bread, mainly owing to KP4 and both protein concentrates (up to 4 and 3 times, respectively. Incorporation of hemp flour up to the level of 10% positively affected bread sensorial properties.

  1. Mutational rectification for resistance to diseases in rice and bread wheat

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.; Kar, G.N.; Sen, B.

    1976-01-01

    The mutation breeding programme with a view to rectify the defects of severe susceptibility to important diseases of a few varieties of rice and bread wheat was undertaken using different mutagenic treatments with radiation (X-rays and gamma rays), chemical mutagens (EMS, NMU, NEU) and combination of radiation and chemical mutagens (gamma rays + EMS). In rice two mutant strains have shown moderate resistance to helminthosporiose, one strain to both helminthosporiose and blast and five strains resistant to bacterial leaf blight under artificial epiphytotic conditions. In bread wheat, out of large M 2 population, derived from different mutagenic treatments, the frequencies of appearance of mutants resistant to rust diseases were observed to be 0.03 percent in H.D. 1944 from 0.2 percent EMS treatment, 0.06 percent in H.D. 1999 from 0.01 percent NEU treatment and 0.07 percent in Kalyan Sona from combined treatment with 20 krad gamma rays and 0.4 percent EMS. The mutants bred true for resistance upto M 6 generations. A few of the mutants, resistant to different diseases in rjce and bread wheat, proved to be very promising in yield. An early (earlier to Kalyan Sona by 25 days) mutant, derived from Kalyan Sona, topped in yield out of 49 varieties tested in 1974l75 in Delhi and Pusa. The Kalyan Sona early tested in 1974-75 in Delhi and Pusa. The Kalyan Sona early mutant is having resistance to yellow and brown rusts. (author)

  2. Optimisation of wheat-sprouted soybean flour bread using response ...

    African Journals Online (AJOL)

    The effect of sprouted soybean flour on wheat bread was studied. Sprouting significantly increased the vitamin C content of soybean flour from 2.0 mg kg-1 to 3.25 mg kg-1. The sprouted soybean flour resulted in increased loaf volume, a firmer, spongy and more elastic loaf. However, increasing the sprouted soybean flour ...

  3. Reduced-Gliadin Wheat Bread: An Alternative to the Gluten-Free Diet for Consumers Suffering Gluten-Related Pathologies

    Science.gov (United States)

    Gil-Humanes, Javier; Pistón, Fernando; Altamirano-Fortoul, Rossana; Real, Ana; Comino, Isabel; Sousa, Carolina; Rosell, Cristina M.; Barro, Francisco

    2014-01-01

    Wheat flour cannot be tolerated by those who suffer allergies to gluten. Human pathologies associated with grain proteins have increased worldwide in recent years, and the only effective treatment available is a lifelong gluten-free diet, which is complicated to follow and detrimental to gut health. This manuscript describes the development of wheat bread potentially suitable for celiac patients and other gluten-intolerant individuals. We have made bread using wheat flour with very low content of the specific gluten proteins (near gliadin-free) that are the causal agents for pathologies such as celiac disease. Loaves were compared with normal wheat breads and rice bread. Organoleptic, nutritional, and immunotoxic properties were studied. The reduced-gliadin breads showed baking and sensory properties, and overall acceptance, similar to those of normal flour, but with up to 97% lower gliadin content. Moreover, the low-gliadin flour has improved nutritional properties since its lysine content is significantly higher than that of normal flour. Conservative estimates indicate that celiac patients could safely consume 67 grams of bread per day that is made with low-gliadin flour. However, additional studies, such as feeding trials with gluten-intolerant patients, are still needed in order to determine whether or not the product can be consumed by the general celiac population, as well as the actual tolerated amount that can be safely ingested. The results presented here offer a major opportunity to improve the quality of life for millions of sufferers of gluten intolerance throughout the world. PMID:24621595

  4. Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat.

    Science.gov (United States)

    Kumar, Sushil; Sharma, Vishakha; Chaudhary, Swati; Tyagi, Anshika; Mishra, Poonam; Priyadarshini, Anupama; Singh, Anupam

    2012-01-01

    Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.

  5. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  6. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  7. In vitro wheat haploid embryo production by wheat x maize cross system under different environmental conditions

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmad, J.

    2011-01-01

    Haploids are helpful in studies for inter genomic relationship, identifying molecular markers, reducing time period of varietal development and increasing efficiency of breeding program. In case of bread wheat (Triticum aestivum L.), wheat x maize cross system is the most successful system due to its higher efficiency, more haploid embryo production and low genetic specificity. The haploid embryo production is affected by many factors i.e. light, temperature, relative humidity and tiller culture media. A study was carried out comprising 25 genotypes of bread wheat for haploid embryo production using 100 mgL/sup -1/ 2,4-D, 40Gl/sup -1/ Sucrose and 8mlL/sup -1/ Sulphurous acid. Haploid embryo production was observed at various levels of environmental factors i.e. maize pollen collection temperature, time of pollination after tiller emasculation, light intensity and relative humidity during haploid seed formation. Maximum haploid embryo formation recorded was 9.52%. Best temperature observed for pollination was 21-26 degree C, optimum time duration for pollination was 24 hours after emasculation, light intensity was 10,000 Lux and relative humidity was 60-65% at 20-22 degree C. (author)

  8. THE INFLUENCE OF PROCESSED PRODUCTS OF WHEAT GERM ON GRAIN BREAD QUALITY

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2014-01-01

    Full Text Available Development and introduction of new types of bakery products with increased nutritional value is one of the basic and urgent problems in the bakery industry. The solution of it is the use of whole grains, as well as secondary products of their processing. The use of by-products of wheat germ (oil, oilcake, oilcake flour, which are rich in proteins and enhances the nutritional value of products is considered to be a promising area in the bakery industry. At the same time the program objectives products, developed in the framework of the "Strategy of development of the food processing industry of the Russian Federation for the period up to 2020"products, are expanding the production of cereal-based foods , and involving of secondary resources in the economy. These technologies are re-source efficient. They allow efficient use of by-products raw materials of the milling industry. The process for the preparation of grain bread on the basis of a thick sourdough from bioactivated wheat grain is known. However, despite all the advantages of grain breads with high amounts of dietary fiber, minerals and vitamins, they exhibit low levels of protein and lysine deficiency. At present larger preference is given to the raw materials of natural origin (millet, buckwheat and oatmeal flours, fruit puree, whole grains, oil, flour and wheat germ flakes, and etc. for foods enrichment in modern food science. Products of processing of wheat germ: oil, flakes, oilcake and oil-cake flour are widely used in bakery technology. To improve the nutritional value flour from wheat germ oilcake was used in the work. In the course of the research its positive effect on the quality of semi-finished and finished products was found. They differed from the control sample in a high content of antioxidants and better digestibility of proteins bread crumb.

  9. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste

    International Nuclear Information System (INIS)

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2015-01-01

    Graphical abstract: Volatile fatty acid spectra of acidified WBS, RBS or FBS differ, but methanogenesis is similar. Display Omitted - Highlights: • Biogas improvement by co-digestion of wheat and rye bread. • Increased population density at high organic loading rates. • Less Pelotomaculum but increased numbers of Syntrophobacter and Smithella found in rye bread reactor. • Replacement of Methanosarcinales by acetate-oxidizers in rye bread co-digestion. • Increasing proportion of Methanomicrobiales in biowaste + rye bread reactor. - Abstract: Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m −3 d −1 organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m −3 d −1 and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m −3 d −1 OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO 2 and hydrogen

  10. Effect of bambara groundnut flour (Vigna subterranea (L.) Verdc.) supplementation on chemical, physical, nutritional and sensory evaluation of wheat bread.

    Science.gov (United States)

    Abdualrahman, Mohammed A Y; Ali, Ali O; Elkhalifa, Elamin A; Sulieman, Abdelmoneim E

    2012-09-01

    Bambara groundnut (Vigna subterrenea (L) Verdc) is a major source of vegetable protein in sub-Saharan Africa. And the aim of this study was to enhance the nutritional value of wheat bread through the addition of bambara groundnut flour to wheat four. For this, bambara groundnut seeds were soaked in tap water, manually decorticated, sun dried and milled into fine flour. Proximate analysis of flours of de-hulled bambara groundnut and wheat were conducted. Flour of de-hulled bambara groundnut was used for bread supplementation in ratios of 5, 10 and 15%. Rheological properties of the control flour and wheat flour supplemented with 10% of de-hulled bambara groundnut flour were conducted. The total area and dough development time increased. However, water absorption, stability and extensibility respectively decreased, from 71.3; 8.5; 190 in the control flour to 71.0; 5.5; 180 in the 10% supplemented flour. The increases in the resistance to extension and proportional number from 260 to 280 and 1.37 to 1.56, respectively resulted in stiff dough. The most important effect of wheat bread supplementation was the improvement of protein quantity from 13.74 +/- 0.02% for the control bread to 15.49 +/- 0.02, 17.00 +/- 0.05 and 18.98 +/- 0.02% for the 5, 10 and 15% blending ratios, respectively. The in-vitro protein digestibility progressively increased from 84.33 +/- 0.03 in the control bread to 85.42 +/- 0.04, 86.57 +/- 0.04 and 87.64 +/- 0.03 in breads containing 5, 10 and 15% bambara groundnut flour. The sensory attributes of different types of bread showed that, a significant difference was observed in texture, colour and overall acceptability. However, the panelists gave higher score for 10% de-hulled bambara groundnut flour bread than bread made from other blends. The loaf weights, loaf volume and specific volume increased. However, while the loaf weight increased with addition of 15% de-hulled bambara groundnut flour, both of loaf volume and specific volume decreased

  11. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.)

    OpenAIRE

    Н. В. Булавка; Л. М. Голик

    2007-01-01

    The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days). Vernalization requierement differences among varieties from different climatic zones were revealed.

  12. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Laura Ercoli

    2014-01-01

    Full Text Available Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf. production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L., maize (Zea mays L., sunflower (Helianthus annuus L., and bread wheat (Triticum aestivum L. on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno.

  13. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation.

    Science.gov (United States)

    Verspreet, Joran; Hemdane, Sami; Dornez, Emmie; Cuyvers, Sven; Delcour, Jan A; Courtin, Christophe M

    2013-02-13

    The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.

  14. Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men.

    Science.gov (United States)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2017-04-01

    Underlying mechanisms of the beneficial health effects of low glycemic index starchy foods are not fully elucidated yet. We varied the wheat particle size to obtain fiber-rich breads with a high and low glycemic response and investigated the differences in postprandial glucose kinetics and metabolic response after their consumption. Ten healthy male volunteers participated in a randomized, crossover study, consuming 13 C-enriched breads with different structures; a control bread (CB) made from wheat flour combined with wheat bran, and a kernel bread (KB) where 85 % of flour was substituted with broken wheat kernels. The structure of the breads was characterized extensively. The use of stable isotopes enabled calculation of glucose kinetics: rate of appearance of exogenous glucose, endogenous glucose production, and glucose clearance rate. Additionally, postprandial plasma concentrations of glucose, insulin, glucagon, incretins, cholecystokinin, and bile acids were analyzed. Despite the attempt to obtain a bread with a low glycemic response by replacing flour by broken kernels, the glycemic response and glucose kinetics were quite similar after consumption of CB and KB. Interestingly, the glucagon-like peptide-1 (GLP-1) response was much lower after KB compared to CB (iAUC, P bread did not result in a difference in glucose response and kinetics, but in a pronounced difference in GLP-1 response. Thus, changing the processing conditions of wheat for baking bread can influence the metabolic response beyond glycemia and may therefore influence health.

  15. Durum Wheat (Triticum Durum Desf. Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Martina Cirlini

    2013-12-01

    Full Text Available Deoxynivalenol (DON is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B, was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  16. Improvement of fatty acid profile and studio of rheological and technological characteristics in breads supplemented with flaxseed, soybean, and wheat bran flours.

    Science.gov (United States)

    Osuna, Mariana B; Judis, María A; Romero, Ana M; Avallone, Carmen M; Bertola, Nora C

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg(-1) of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg(-1) SF, the better acceptance, baking features, and enhanced fatty acid profile.

  17. Improvement of Fatty Acid Profile and Studio of Rheological and Technological Characteristics in Breads Supplemented with Flaxseed, Soybean, and Wheat Bran Flours

    Directory of Open Access Journals (Sweden)

    Mariana B. Osuna

    2014-01-01

    Full Text Available Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA profile of bakery products, producing breads with low saturated fatty acid (SFA content and with high polyunsaturated fatty acid (PUFA content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF, soybeans flour (SF, or wheat bran (WB was used to replace 50, 100, and 150 g kg−1 of wheat flour (WF in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg−1 SF, the better acceptance, baking features, and enhanced fatty acid profile.

  18. Improvement of Fatty Acid Profile and Studio of Rheological and Technological Characteristics in Breads Supplemented with Flaxseed, Soybean, and Wheat Bran Flours

    Science.gov (United States)

    Osuna, Mariana B.; Judis, María A.; Romero, Ana M.; Avallone, Carmen M.; Bertola, Nora C.

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg−1 of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg−1 SF, the better acceptance, baking features, and enhanced fatty acid profile. PMID:25478592

  19. A physical map of the 1-gigabase bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Paux, E.; Sourdille, P.; Salse, J.; Saintenac, C.; Choulet, F.; LeRoy, P.; Korol, A.; Michalak, M.; Kianian, S.; Spielmeyer, W.; Lagudah, E.; Somers, D.; Kilian, A.; Alaux, M.; Vautrin, S.; Bergès, H.; Eversole, K.; Appels, R.; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Bernard, M.; Feuillet, C.

    2008-01-01

    Roč. 322, č. 5898 (2008), s. 101-104 ISSN 0036-8075 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z5038910 Keywords : RUST RESISTANCE GENE * TRITICUM-AESTIVUM * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 28.103, year: 2008

  20. Quality assessment of flour and bread from sweet potato wheat ...

    African Journals Online (AJOL)

    This study was to assess the quality of the flour and bread produced from sweet potato wheat composite flour blends. Matured and freshly harvested sweet potato (Ipomea batatas L.) was obtained from a local market in Akure, Nigeria. The tubers were thoroughly washed, peeled, washed again, drained, chipped, oven dried, ...

  1. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  2. Products deriving from microbial fermentation are linked to insulinaemic response in pigs fed breads prepared from whole-wheat grain and wheat and rye ingredients

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Jørgensen, Henry Johs. Høgh; Serena, Anja

    2011-01-01

    The effects of wheat and rye breads made from whole-wheat grain (WWG), wheat aleurone flour (WAF) or rye aleurone flour (RAF) on net portal absorption of carbohydrate-derived nutrients (glucose, SCFA and lactate) and apparent insulin secretion were studied in a model experiment with catheterised...

  3. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    International Nuclear Information System (INIS)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-01-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  4. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-07-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  5. Shelf life characteristics of bread produced from ozonated wheat flour.

    Science.gov (United States)

    Obadi, Mohammed; Zhu, Ke-Xue; Peng, Wei; Sulieman, Abdellatif A; Mahdi, Amer Ali; Mohammed, Khalid; Zhou, Hui-Ming

    2017-11-13

    The objective of this work was to study the effect of ozone treatment on the quality of bread and its shelf life. Flour was treated with ozone gas a rate of 5 L/min for 5, 15, 25, 35, and 45 min. Baking studies showed that bread made from flour treated with ozone for 15 min exhibited improved quality properties (in terms of specific volume, bread color, and crumb cell numbers). Exposure to ozone for shorter times did not cause obvious changes in the major volatile compounds of bread. A shelf life tests showed that ozone gas treatment influenced the extent of starch crystallinity. The relative starch crystallinity of bread made from flour treated with ozone for 15 min was lower than the control value, as were the hardness, springiness, and cohesiveness. Microscopic examination of crumb structure revealed remarkable differences between control and treated breads. Although ozone is a naturally occurring substance found in the atmosphere, ozone can also be produced synthetically. Recently, ozone has come to be regarded as a new treatment for flour. Especially in countries where the chlorination is forbidden, ozone treatment may be of a great interest if it were associated with significant and reliable changes in flour. Ozone treatment of wheat flour tends to improve bread shelf life and quality in terms of physiochemical, baking properties, X-ray diffraction data, volatile compound levels, crumb structure, and textural characteristics. Given such findings, desirable shelf life and bread qualities may be achieved when ozone is used as a flour oxidant prior to bread baking. Analyses of the effects of ozone gas on treatment of flour on bread shelf life and quality would aid the production of high quality and extend the shelf life of bread. © 2017 Wiley Periodicals, Inc.

  6. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption

    OpenAIRE

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-01-01

    Background: Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children’s bread choices from white to whole wheat during breakfast to increase whole grain intake. Methods: In a between-subjects experiment conducted at twelv...

  7. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.

    Directory of Open Access Journals (Sweden)

    Н. В. Булавка

    2007-12-01

    Full Text Available The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days. Vernalization requierement differences among varieties from different climatic zones were revealed.

  8. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    Science.gov (United States)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  9. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chaoran, E-mail: Chaoran.Li3@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Mörtelmaier, Christoph, E-mail: Christoph.Moertelmaier@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Winter, Josef, E-mail: Josef.Winter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); Gallert, Claudia, E-mail: Claudia.Gallert@HS-Emden-Leer.de [Karlsruhe Institute of Technology (KIT), Institute of Biology for Engineers and Biotechnology of Wastewater, Am Fasanengarten, D-76128 Karlsruhe (Germany); University of Applied Science, Hochschule Emden-Leer, Faculty of Technology, Division Microbiology – Biotechnology, Constantiaplatz 4, D-26723 Emden (Germany)

    2015-06-15

    Graphical abstract: Volatile fatty acid spectra of acidified WBS, RBS or FBS differ, but methanogenesis is similar. Display Omitted - Highlights: • Biogas improvement by co-digestion of wheat and rye bread. • Increased population density at high organic loading rates. • Less Pelotomaculum but increased numbers of Syntrophobacter and Smithella found in rye bread reactor. • Replacement of Methanosarcinales by acetate-oxidizers in rye bread co-digestion. • Increasing proportion of Methanomicrobiales in biowaste + rye bread reactor. - Abstract: Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m{sup −3} d{sup −1} organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m{sup −3} d{sup −1} and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m{sup −3} d{sup −1} OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO{sub 2} and hydrogen.

  10. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  11. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples

    Directory of Open Access Journals (Sweden)

    Abboud Al-Saleh

    2012-11-01

    Full Text Available The relationships between breadmaking quality, kernel properties (physical and chemical, and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%, 1000-kernel weight (35.2–46.9 g and the test weight (82.2–88.0 kg/hL. All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours. A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **, as well as with the vitreousness of the kernel (r = 0.54 *. Protein content was also correlated with dough stability (r = 0.86 **, extensibility (r = 0.8 **, and negatively correlated with dough weakness (r = −0.69 **. Bread firmness and dough weakness were positively correlated (r = 0.66 **. Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  12. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples.

    Science.gov (United States)

    Al-Saleh, Abboud; Brennan, Charles S

    2012-11-22

    The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  13. Genetic characterisation of novel resistance alleles to stem rust and stripe rust in wheat-alien introgression lines

    OpenAIRE

    Rahmatov, Mahbubjon

    2016-01-01

    Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops world-wide, but is attacked by many diseases and pests that cause significant yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr resistance genes are already defeated...

  14. Gamma radiation effects on commercial Mexican bread making wheat flour

    Science.gov (United States)

    Agúndez-Arvizu, Z.; Fernández-Ramírez, M. V.; Arce-Corrales, M. E.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-04-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 60C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  15. Gamma radiation effects on commercial Mexican bread making wheat flour

    Energy Technology Data Exchange (ETDEWEB)

    Agundez-Arvizu, Z. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Fernandez-Ramirez, M.V. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Arce-Corrales, M.E. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares-UNAM, A.P. 70-543, Mexico 04510 DF (Mexico); Melendrez, R. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Chernov, V. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico)]. E-mail: mbarboza@cajeme.cifus.uson.mx

    2006-04-15

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a {sup 6}C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  16. Gamma radiation effects on commercial Mexican bread making wheat flour

    International Nuclear Information System (INIS)

    Agundez-Arvizu, Z.; Fernandez-Ramirez, M.V.; Arce-Corrales, M.E.; Cruz-Zaragoza, E.; Melendrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-01-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 6 C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties

  17. Economic Evaluation of Improved Irrigated Bread Wheat Varieties with National and International Origins and Its Impacts on Transfer of Supply Function

    Directory of Open Access Journals (Sweden)

    hormoz asadi

    2017-08-01

    Full Text Available Introduction Agricultural research is important and one of the determinant factors of development of technologies in agricultural sector. Among agricultural research disciplines, breeding programs, especially, wheat breeding programs are one of the applied approaches in improving of production and food security. Based on a study by Byerlee & Traxler (1995, economic benefits and Internal Rate of Return (IRR for Impact of International Wheat Improvement (for all breeding programs were estimated US$3.0 billion per year with internal rate of 53%, and economic benefits for Impact of International Wheat Improvement (Attributed to IWIN was estimated US$1.5 billion per year during 1966-90. Materials and methods The main objectives of this research were to determine shift of supply function of variety and impacts of breeding wheat varieties on reduction costs, and determination of economic return of released irrigated bread wheat in breeding program for the period of 1991-2000. Wheat varieties included; 23 varieties of released irrigated bread wheat by wheat breeding program of Seed and Plant Improvement Institute (SPII and Provincial Agricultural Research Centers. Ex-ante and Ex-post methods were used in this study. Measuring criteria for these methods were; quantity of shift in supply function, cost-benefit analysis and internal rate of return of varieties. For estimation of reduction costs and shift of supply function of varieties in breeding program were calculated following Brennan et al. (2002: Where: Cvb: Cost reduction due to breeding program, TCh: Cost production per ha, Yv (without: yield of check variety in breeding plots, Yv (with: yield of new variety in breeding plots, PSS: % supply shift in breeding program and Pw: price of wheat grain per kg For assessing economic criteria, Net Present Value (NPV, Cost-Benefit Analysis and Internal Rate of Return (IRR were used: Following Brennan et al (2002, gross benefit of irrigated bread wheat

  18. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  19. Concentrations of radiocaesium in Italian durum wheat and its products after the Chernobyl accident

    International Nuclear Information System (INIS)

    Lotfi, M.; Notaro, M.; Azimi-Garakani, D.; Tommasino, L.; Cubadda, R.; Santaroni, G.P.

    1990-01-01

    The radiocaesium concentrations of over 400 samples of durum wheat (triticum durum) collected throughout Italy after the Chernobyl accident have been measured to study the implications of contamination of this specific type of wheat used primarily in making alimentary pasta. The transfer of radiocaesium from the wheat sample of highest activity into the human food chain was studied systematically by measuring radiocaesium levels in the outer layers of the grain and in semolina, pasta and bread produced this wheat. The effect of cooking on the nuclide content of pasta was also studied, the results showing that most of the radiocaesium is removed into the water in which the pasta is boiled. (author)

  20. Quantitative aspects of the metabolism of lignans in pigs fed fibre-enriched rye and wheat bread

    DEFF Research Database (Denmark)

    Lærke, Helle N; Mortensen, Marianne A; Hedemann, Mette S

    2009-01-01

    A diet rich in lignans has been suggested to be protective against a range of chronic diseases. The distribution and metabolic fate of lignans is, however, very poorly understood. We fed high-fibre wheat breads low in lignans (n 8) or high-fibre rye breads (n 9) rich in plant lignans to pigs for ......, liver, breast and brain at a much higher level with rye than with wheat, but only in the form of enterolactone. The importance and implications of systemic exposure to plant lignans remain to be elucidated....

  1. Response of Bread Wheat (Triticum aestivum L.) to Application of ...

    African Journals Online (AJOL)

    The disadvantage of urea fertilizer is that considerable ... environmental cost associated with N losses via NH3 volatilization, NO3. - leaching .... Where Yf is the total biological yield (grain plus straw) of the fertilized plot (kg);. Yu is the total ... price, which is 9 Birr kg-1 of wheat grain yield for Hawzien and 11 ETB for Emba.

  2. Biofortification of folates in white wheat bread by selection of yeast strain and process.

    Science.gov (United States)

    Hjortmo, Sofia; Patring, Johan; Jastrebova, Jelena; Andlid, Thomas

    2008-09-30

    We here demonstrate that folate content in yeast fermented food can be dramatically increased by using a proper (i) yeast strain and (ii) cultivation procedure for the selected strain prior to food fermentation. Folate levels were 3 to 5-fold higher in white wheat bread leavened with a Saccharomyces cerevisiae strain CBS7764, cultured in defined medium and harvested in the respiro-fermentative phase of growth prior to dough preparation (135-139 microg/100 dry matter), compared to white wheat bread leavened with commercial Baker's yeast (27-43 microg/100 g). The commercial Baker's yeast strain had been industrially produced, using a fed-batch process, thereafter compressed and stored in the refrigerator until bakings were initiated. This strategy is an attractive alternative to fortification of bread with synthetically produced folic acid. By using a high folate producing strain cultured a suitable way folate levels obtained were in accordance with folic acid content in fortified cereal products.

  3. Differentiation of Bread Made with Whole Grain and Refined Wheat (T. aestivum) Flour Using LC/MS-based chromatographic Fingerprinting and Chemometric Approaches

    Science.gov (United States)

    A fuzzy chromatography mass spectrometric (FCMS) fingerprinting method combined with chemometric analysis was established to diffrentiate between whole wheat (WW) flours and refined wheat (RW) flour, and the breads made from them. The chemical compositions of the bread samples were profiled using h...

  4. EVALUATION OF QUALITY INDICATORS RELATED TO QUALITY BREAD WHEAT PROMISING LINES

    Directory of Open Access Journals (Sweden)

    Watson Munyanyi

    2014-01-01

    Full Text Available The bread waste is one of the important socio-economic's issues country now, the urgent need is feeling to improve the wheat quality. Therefore, using the methods of farming and breeding is necessary to improve the quality of this strategic product. As a result, tests of quality's traits in wheat promising lines in Isfahan climate took place. In this study, the choice 17 advanced lines of compare the performances,s experiments, an experiment was conducted for two consecutive cropping (2011-2012 at cultural experiment and research centre in Isfahan located in Kabutar Abad region. Randomized complete block designs with 3 replications were compared with Spring variety (for control. Traits including: 1000 grain weight, hectolitre weight, protein content, Zeleny sedimentation rate, bread volume, grain moisture content, grain hardness, water absorption, falling number, percentage of dry gluten, gluten index, sedimentation rates were SDS.The results of the combined analysis of variance qualitative characteristics,s for two consecutive cropping showed that treatments with compare together and control variety had significant influence in 1% probability.Correlation coefficients of two years showed that the compound test significant positive correlation within grain hardness index and protein content, wet gluten and dry deposition rates of SDS. Also, significant positive correlation with the percentage of protein content of dry gluten. In view of the high correlation with protein content of dry gluten (quantity. However, grain hardness and relatively high correlation with SDS sedimentation as an important measure of protein quality. Therefore, the test results of dry gluten grains can be tough to choose in order to improve the quality of wheat bread may be used.

  5. [Phenotypic effects of puroindoline gene alleles of bread wheat].

    Science.gov (United States)

    Chebotar, S V; Kurakina, K O; Khokhlov, O M; Chebotar, H O; Syvolap, Iu M

    2012-01-01

    85 winter bread wheat varieties and lines that have been developed mostly in Ukraine were analyzed with NIR for parameters of hardness and protein content. The hardness data were compared with the data of puroindoline gene alleles analysis done earlier and the published data. Significant variation of parameters of hardness was revealed when there was low polymorphism of puroindoline genes indicating the presence of additional genes that influence the hardness parameters.

  6. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  7. Phytate negatively influences wheat dough and bread characteristics by interfering with cross-linking of glutenin molecules

    Science.gov (United States)

    The influence of added phytate on dough properties and bread baking quality was studied to determine the role of phytate in the impaired functional properties of whole grain wheat flour for baking bread. Phytate addition to refined flour at a 1% level substantially increased mixograph mixing time, g...

  8. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  9. Studies on certain aspects of seed-borne fungi. VI. Fungi associated with different cultivars of wheat (Triticum aestivum L.)

    OpenAIRE

    K. K. Pandey

    2014-01-01

    Fungi associated with eight cultivars of wheat have been investigated. Twenty seven species were isolated from external and internal surface of all the wheat (Triticum aestivum L.) cultivars respectively. Out of five dominant and subdominant fungi anly Aspergillus terreus and Alternaria tenuis were able to colonize internally. The culture filtrates of test fungi reduced the germination of all wheat varieties up to different degrees.

  10. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    Science.gov (United States)

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust

  11. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  12. Quality and cost evaluation of bread produced from blends of wheat ...

    African Journals Online (AJOL)

    Background: This study was necessitated by the need to improve the nutritional quality of baked products, ensure their acceptability and the baker's profitability. Objective: The aim of the study therefore was to evaluate the quality and cost of bread produced from composite flours of wheat and partially defatted soy. Materials ...

  13. IMAGE ANALYSIS OF BREAD CRUMB STRUCTURE IN RELATION TO GLUTEN STRENGTH OF WHEAT

    Directory of Open Access Journals (Sweden)

    D. Magdić

    2006-06-01

    Full Text Available The objective of this study was to determine bread slice medium part properties in relation to quality parameters with a focus on gluten strength. Since sensory evaluation of bread is time consuming, expensive and subjective in nature, computerized image analysis was applied as objective method of bread crumb quality evaluation. Gluten Index method was applied as fast and reliable tool for defining gluten strength of wheat. Significant (P90 Ana, Demetra, Klara, Srpanjka and Divana have shown trend to give unequal and bigger crumb grains while cultivars Golubica, Barbara, Žitarka, Kata and Sana with optimal gluten strength (GI= 60-90 have shown finer and uniform crumb grain.

  14. MICROBIOLOGICAL AND NUTRITIONAL QUALITY OF WARANKASHI ENRICHED BREAD

    Directory of Open Access Journals (Sweden)

    O. E. Dudu

    2012-08-01

    Full Text Available The study was carried out to determine the microbiological and nutritional quality, organoleptic, rheological and textural effect as well as the effect on the shelf life of wheat bread enriched with West African cottage cheese (warankashi at different substitution levels (1 %, 3 % and 5 %. The protein and fat content of wheat bread significantly increased but carbohydrate levels decreased significantly as enrichment with Warankashi increased. The amino acid profile of the wheat bread increased with increasing enrichment. The incorporation of Warankashi into wheat flour affected the rheological and textural properties of wheat flour; the rate of water absorption of the wheat flour decreased as Warankashi incorporation levels increased. Also, the dough stability time of the enriched flours was lesser than that of the wheat flour. The 3 % enrichment level had the highest dough consistency (520 BU. The extensibility of 1 % and 3 % wara bread dough were the same while that of wheat flour bread and 5 % Warankashi were the same. The 3 % wara bread dough had the highest resistance to extension. Shelf life of the bread remained unaffected by Warankashi incorporation but the rate of bacteria and fungi (yeast and mould growth decreased significantly (P < 0.05 as enrichment levels increased. There was no significant difference between the organoleptic properties of wheat bread to that of the enriched breads but the 3 % Warankshi enriched bread had the highest consumer acceptability.

  15. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo.

    Science.gov (United States)

    Mateo Anson, Nuria; Aura, Anna-Marja; Selinheimo, Emilia; Mattila, Ismo; Poutanen, Kaisa; van den Berg, Robin; Havenaar, Robert; Bast, Aalt; Haenen, Guido R M M

    2011-01-01

    Whole grain consumption has been linked to a lower risk of metabolic syndrome, which is normally associated with a low-grade chronic inflammation. The benefits of whole grain are in part related to the inclusion of the bran, rich in phenolic acids and fiber. However, the phenols are poorly bioaccessible from the cereal matrix. The aim of the present study was to investigate the effect of bioprocessing of the bran in whole wheat bread on the bioavailability of phenolic acids, the postprandial plasma antioxidant capacity, and ex vivo antiinflammatory properties. After consumption of a low phenolic acid diet for 3 d and overnight fasting, 8 healthy men consumed 300 g of whole wheat bread containing native bran (control bread) or bioprocessed bran (bioprocessed bread) in a cross-over design. Urine and blood samples were collected for 24 h to analyze the phenolic acids and metabolites. Trolox equivalent antioxidant capacity was measured in plasma. Cytokines were measured in blood after ex vivo stimulation with LPS. The bioavailabilities of ferulic acid, vanillic acid, sinapic acid, and 3,4-dimethoxybenzoic acid from the bioprocessed bread were 2- to 3-fold those from the control bread. Phenylpropionic acid and 3-hydroxyphenylpropionic acid were the main colonic metabolites of the nonbioaccessible phenols. The ratios of pro-:antiinflammatory cytokines were significantly lower in LPS-stimulated blood after the consumption of the bioprocessed bread. In conclusion, bioprocessing can remarkably increase the bioavailability of phenolic acids and their circulating metabolites, compounds which have immunomodulatory effects ex vivo.

  16. Targeted introgression of stem rust Ug99 resistance from wheatgrasses into pasta and bread wheat

    Science.gov (United States)

    In the past 50 years, a number of stem rust resistance (Sr) genes have been transferred from several wheat-related grasses into durum (i.e. pasta) and bread wheat through chromosome translocations and additions. To utilize these genes for controlling the Ug99 races of the stem rust pathogen, we ini...

  17. Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.

    Science.gov (United States)

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye

    2017-06-01

    Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.

  18. Proximate composition, bread characteristics and sensory ...

    African Journals Online (AJOL)

    This study was carried out to investigate proximate composition, bread characteristics and sensory evaluation of cocoyam-wheat composite breads at different levels of cocoyam flour substitution for human consumption.A whole wheat bread (WWB) and cocoyam-composite breads (CCB1,CCB 2 and CCB 3) were prepared ...

  19. Formulation and characterization of bread using coconut-pulp flour and wheat flour composite with addition of xanthan-gum

    Science.gov (United States)

    Erminawati; Sidik, W.; Listanti, R.; Zulfakar, H.

    2018-01-01

    Coconut-pulp flour is coconut flour made from by-product of coconut-milk based food products. The flour contains no gluten and high fibre, which can be considered as functional potential food. Bread made from composite-flour of coconut-pulp flour and wheat flour was studied for its physic-chemical and sensory characteristics. Addition of hydrocolloid, like xanthan-gum, was aimed to provide viscoelasticity for the dough which is essential for baked product. Composite-flour proportion used in this study was; 10CPF/90WF, 15CPF/85WF and 20CPF/80WF; and xanthan gum to total flour of 0,1% and 0,4%. Variable observed were; crumb-texture, crumb-colour, taste of coconut, preference and flavour; moisture, ash, fiber and soluble-protein contents. The research showed that addition of coconut-pulp flour in the composite-flour decreased specific volume value and increased the bread texture produced. It also increased the bread moisture-content, ash-content, fibre-content and soluble protein-content. Moreover, the xanthan-gum addition resulted in decreased specific-volume value and increased texture and fiber-content of the bread produced. Overall, the sensory characteristic of crumb colour, flavour and panellist preference revealed better than control bread made from wheat flour, however its crumb texture harder compare to control bread made from wheat flour. This study showed that coconut-pulp flour potential to be developed for production of functional food.

  20. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  1. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  2. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum grown strictly under low input conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2014-09-01

    Full Text Available An evaluation of the agronomic performance of two tetraploid wheat varieties (Triticum turgidum spp. durum, Claudio; Triticum turgidum spp. turanicum, Kamut® grown strictly under low input conditions was carried out over three consecutive cropping years. The study reported grain yield values ranging from 1.8 to 2.6 t ha-1. Productivity showed to be primarily affected by environmental conditions, while no differences were observed between the two genotypes. The study of the yield components highlighted that the durum wheat variety had a higher plant density than Kamut®, but this discrepancy was offset by a greater number of kernels per spike and the kernel weight of khorasan wheat. The investigated wheat genotypes were also analysed to assess the mycotoxin (DON levels of wholegrain semolina and the efficiency of cleaning treatments to reduce contamination. Results showed that both wheat varieties had a good hygienic and sanitary quality with a DON content ranging from 0.35 to 1.31 mg kg-1, which was lower than the maximum acceptable level set by the European regulation at 1.75 mg kg-1. In addition, our research work investigated the effects of premilling cleaning procedures, such as water washing and brushing, on mycotoxin levels, which yielded interesting results in terms of decontamination efficiency. These methods were particularly efficient with Kamut® semolina (46-93% DON reduction, suggesting that mycotoxins accumulate in this variety at more superficial levels than in the durum wheat variety. On the whole, our study provided additional knowledge on the traits to be further improved to respond to low input requirements and to enhance the potential adaptability of wheat genotypes to organic agriculture. Our results emphasized the need to develop wheat varieties that can provide adequate performance without high levels of nitrogen inputs by selecting specific traits, such as kernel weight, spike length and kernel/spike. This may help

  3. Influence of xylanase addition on the characteristics of loaf bread prepared with white flour or whole grain wheat flour

    Directory of Open Access Journals (Sweden)

    Leandra Zafalon Jaekel

    2012-12-01

    Full Text Available The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme; however, the specific volume did not differ significantly (p < 0.05 among the breads with different enzyme concentrations. All formulations made from whole grain wheat flour and added with xylanase also had specific volumes significantly higher than those of the control sample, and the highest value was found for the 8 g xylanase.100 kg-1 flour formulation. With respect to moisture content, the formulations with different enzyme concentrations showed small significant differences when compared to the control samples. In general, breads made with the addition of 8 g enzyme.100 kg-1 flour had the lowest firmness values, thus presenting the best technological characteristics.

  4. Copper-65-absorption by men fed intrinsically and extrinsically labeled whole wheat bread

    International Nuclear Information System (INIS)

    Johnson, P.E.; Lykken, G.I.

    1988-01-01

    Six men were fed a diet composed of conventional foods with all bread as whole wheat bread. Intrinsically labeled 65 Cu bread (containing 6.5 ppm Cu and 48 atom % 65 Cu) was substituted for unlabeled bread for 3 days, and stools were collected for 24 days. Extrinsically labeled bread was then substituted for 3 days and another 24-day stool collection made. 65 Cu excretion was measured by mass spectrometry. Mean Cu intake was 1.10 mg of Cu/day. Average Cu balance was /minus/0.06 /+-/ 0.08 mg/day. Average absorption of the intrinsic copper was 72.2 /+-/ 9.3% and of extrinsic Cu 64.2 /+-/ 5.8%. The ratio of extrinsic to intrinsic absorption was 0.906 /+-/ 0.164. Absorption of intrinsic and extrinsic tracers did not differ significantly (p > 0.05) by a paired t-test, and the ratio (E/I) was not significantly different from 1. Use of extrinsic Cu tracers to assess Cu absorption is supported by these results

  5. Path coefficient and correlation of yield and yield associated traits in candidate bread wheat (triticum aestivum l)lines

    International Nuclear Information System (INIS)

    Muhammad, T.; Haider, S.; Qureshi, M. J.; Shah, G. S.; Zamir, R.

    2005-01-01

    Yield and yield contributing traits were studied in candidate bread wheat lines to find out the genetic contribution of the different characters towards grain yield at NIFA, Peshawar during 2001-02. All the characteristics studied differed significantly from each other. Days to heading showed negative and significant correlation with harvest index and grain yield but was negative and non-significant with the biological yield. Days to maturity were negatively correlated at both genotypic and phenotypic levels with biological yield; harvest index and grain yield and level of correlations were significant with harvest index and grain yield. Plant height showed negative genotypic and phenotypic correlation with harvest index and grain yield. Biological yield had positive and significant genotypic and phenotypic correlations with harvest index and grain yield. Harvest index had positive and highly significant genotypic and phenotypic correlation with grain yield. Genotypic and phenotypic correlation coefficients revealed that important characters influencing grain yield are harvest index and biological yield. Path analysis showed the importance in order of harvest index, biological yield, plant height, days to maturity and days to heading with grain yield. (author)

  6. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    Science.gov (United States)

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  baking characteristics.

  7. Effect of Lactobacillus casei- casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll.

    Science.gov (United States)

    Dastmalchi, Farnaz; Razavi, Seyed Hadi; Faraji, Mohammad; Labbafi, Mohsen

    2016-03-01

    The aim of this study was the evaluation of fermentation by lactic acid bacteria (LAB) contains lactobacillus (L.) casei- casei and L. reuteri on acrylamide formation and physicochemical properties of the Iranian flat bread named, Sangak, and Bread roll. Sangak and Bread roll were made with whole and white wheat flour, respectively. Whole-wheat flour had upper content of protein, sugar, ash, fiber, damaged starch and the activity of amylase than the white wheat flour. After 24 h of fermentation, the pH values of the sourdoughs made from whole-wheat flour (3.00, 2.90) were lower, in compared to sourdoughs prepared from white wheat flour (3.60, 3.58). In addition, in Sangak bread, glucose, and fructose were completely utilized after fermentation, but in bread roll, the reduced sugar levels increased after fermentation and baking that represent microorganisms cannot be activated and utilized sugars. Acrylamide formation was impacted by pH of sourdough and total reducing sugar (r = 0.915, r = 0.885 respectively). Bread roll and Sangak bread were fermented by L. casei- casei contained lowest acrylamide content, in two bread types (219.1, 104.3 μg/kg respectively). As an important result, the acrylamide content of Sangak bread in all cases was lower than in the Bread roll.

  8. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  9. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Powell, Jonathan J; Carere, Jason; Fitzgerald, Timothy L; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L; Gardiner, Donald M; Manners, John M; Henry, Robert J; Kazan, Kemal

    2017-03-01

    Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host

  10. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    Science.gov (United States)

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  11. Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview.

    Science.gov (United States)

    Dhanavath, Srinu; Prasada Rao, U J S

    2017-10-01

    Triticum dicoccum wheat is one of the ancient wheat species and is gaining popularity due to its suggested health benefits as well as its suitability for organic farming. In some parts of the world, certain traditional foods prepared with dicoccum wheat are preferred due to their better taste, texture, and flavor. It is rich in bioactive compounds and its starch has been reported to have slow digestibility. However, content and composition of bioactive compounds is reported to vary depending on the geographical location, seasonal variations, varieties used, and the analytical methods followed. Therefore, in the present study, we report the food uses, digestibility of starch, nutritional and nutraceutical compositions of dicoccum wheat grown in different parts of the world, and also its health benefits in ameliorating diabetes and celiac disease. © 2017 Institute of Food Technologists®.

  12. High molecular weight glutenin subunits of wheat : qualitative and quantitative variation in relation to bread-making quality

    NARCIS (Netherlands)

    Kolster, P.

    1992-01-01

    In view of the poor bread-making quality of the wheat grown in The Netherlands, only a small part of production is used for baking of bread. Therefore quality improvement is a major aim of plant breeding. Unfortunately, breeding for breadmaking quality is hampered by its complexity. The suitability

  13. The Effect of Different Zinc Application Methods on Yield and Grain Zinc Concentration of Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Hatun Barut

    2017-08-01

    Full Text Available This study was carried out to elucidate the impacts of zinc (Zn treatments on growth, development, quality and yield of commonly sown bread wheat cultivars under field conditions of Çukurova Region. Three different bread wheat cultivars (Adana-99, Ceyhan-99 and Pandas were experimented in randomized complete blocks-split plots experimental design with 3 replications. Field experiments were performed by two different Zn application methods; via soil and via soil+foliage. In the both trials, 0, 5, 10, 20, 30, and 40 kg ha-1 pure Zn doses were applied to the soil. 0.4% ZnSO4.7H2O solution was used for foliar Zn applications. Current findings revealed that Zn treatments had significant effects on grain yield, grain Zn concentration, grain phosphorus (P concentration and thousand grain weight of bread wheat cultivars, but significant effects were not observed on grain protein concentrations. Soil+foliar Zn treatments were more effective in improving grain Zn concentrations. It was concluded that 10- 20 kg ha-1 Zn treatment was quite effective on grain Zn concentrations.

  14. Postprandial plasma betaine and other methyl donor-related responses after consumption of minimally processed wheat bran or wheat aleurone, or wheat aleurone incorporated into bread.

    Science.gov (United States)

    Keaveney, Edel M; Price, Ruth K; Hamill, Lesley L; Wallace, Julie M W; McNulty, Helene; Ward, Mary; Strain, J J; Ueland, Per M; Molloy, Anne M; Piironen, Vieno; von Reding, Walter; Shewry, Peter R; Ward, Jane L; Welch, Robert W

    2015-02-14

    The bran and particularly the aleurone fraction of wheat are high in betaine and other physiological methyl donors, which may exert beneficial physiological effects. We conducted two randomised, controlled, cross-over postprandial studies to assess and compare plasma betaine and other methyl donor-related responses following the consumption of minimally processed bran and aleurone fractions (study A) and aleurone bread (study B). For both studies, standard pharmacokinetic parameters were derived for betaine, choline, folate, dimethylglycine (DMG), total homocysteine and methionine from plasma samples taken at 0, 0·5, 1, 2 and 3 h. In study A (n 14), plasma betaine concentrations were significantly and substantially elevated from 0·5 to 3 h following the consumption of both bran and aleurone compared with the control; however, aleurone gave significantly higher responses than bran. Small, but significant, increases were also observed in DMG measures; however, no significant responses were observed in other analytes. In study B (n 13), plasma betaine concentrations were significantly and substantially higher following consumption of the aleurone bread compared with the control bread; small, but significant, increases were also observed in DMG and folate measures in response to consumption of the aleurone bread; however, no significant responses were observed in other analytes. Peak plasma betaine concentrations, which were 1·7-1·8 times the baseline levels, were attained earlier following the consumption of minimally processed aleurone compared with the aleurone bread (time taken to reach peak concentration 1·2 v. 2·1 h). These results showed that the consumption of minimally processed wheat bran, and particularly the aleurone fraction, yielded substantial postprandial increases in plasma betaine concentrations. Furthermore, these effects appear to be maintained when aleurone was incorporated into bread.

  15. Chemical and Sensory Properties Evaluation of Pandesal Bread Produced From Wheat and Milkfish (Chanos chanos Flour Mixtures

    Directory of Open Access Journals (Sweden)

    Raymund B. Moreno

    2018-02-01

    Full Text Available This research was conducted to determine the chemical composition of pandesal bread produced from wheat and milkfish flour mixtures. This study also aimed to investigate the sensory level of acceptability of pandesal bread produced from wheat and milkfish flour mixtures as to appearance, aroma, taste, texture and general acceptability in 0%, 5%, 10% and 15% proportions of milkfish flour. Based on the findings of the study, the percentage of most acceptable treatment which is 95 % wheat flour with 5 % milkfish flour were; moisture content, crude protein, total fat, ash, carbohydrate and energy were 21.3, 10.9, 5.72, 1.58, 60.5 g/100 g. and 337 Kcal/100 g. respectively. In terms of appearance, aroma, texture, flavor, and general acceptability, significant differences were determined in the level of sensory acceptability of pandesal bread produced from wheat and milkfish flour mixtures with different proportions. The findings of this study also showed that there is a relation as to the proportional percentage of the different treatments in the sensory acceptability of the bangus pandesal – the lower the percentage of the milkfish flour added, the higher is the sensory acceptability of the finished product in terms of texture, taste and the general acceptability as a whole. As a recommendation, the results of adding milkfish flour into pandesal bread will be made the baseline database, using the information obtained, as a useful point of reference for further studies and to improve existing products and food processes, as well as for the development of new ones.

  16. Physical, sensory and chemical properties of bread prepared from ...

    African Journals Online (AJOL)

    Physical, sensory and chemical properties of bread prepared from wheat and ... Different levels (0, 1, 2 and 3% w/w) of cissus gum powder was added to ... flours for bread making where 100% wheat bread without cissus gum served as control. ... serve as a gluten substitute in preparing acceptable wheat bread substituted ...

  17. Gamma Radiation Influence on Rheological and Technological Characteristics of Wheat Flour (misr-1) and Sensory Properties of Pan Bread

    International Nuclear Information System (INIS)

    Anwar, M.M.; Asael, M.A.; El-Adly, N.A.

    2015-01-01

    This study aimed at determining the influence of gamma radiation on rheological and technological characteristics of flour extraction from irradiated wheat grains (misr-1) with 3,6 and 9 kGy, also baking quality and sensory characteristics of pan breads made from this flour. The rheological properties of wheat flour 72% extraction were determined by farinograph parameter, extensograph parameter and measured by amylo graph paramete. Gamma radiation caused increase in water absorption and decrease dough development time, and dough stability time. The decrease percentage increased by increasing dose rate and increased the dough weakness, also γ-irradiation increased the elasticity, decrease extensibility and decrease dough strength (energy), whereas γ-irradiation on wheat grains (misr-1) decrease the maximum viscosity of flour, it indicate an increase in enzymatic activity as a result of the breakdown of starch and improve the gluten index %, this fact is beneficial for bread baking purposes. So γ-irradiation increased volume loaf especially at the dose 6 kGy,and no real differences of taste, texture, appearance and odor scores for sensory evaluation of pan bread made of flour extraction from irradiated and un-irradiated wheat grains. Mean while, irradiation particularly at higher doses (6 and 9 kGy)caused difference in the color (darkness) of pan bread. Gamma irradiation increased the baking quality, and improvement volume loaf especially at the dose 6 kGy.

  18. Study on the effects of wheat bran incorporation on water mobility and biopolymer behavior during bread making and storage using time-domain 1H NMR relaxometry.

    Science.gov (United States)

    Hemdane, S; Jacobs, P J; Bosmans, G M; Verspreet, J; Delcour, J A; Courtin, C M

    2017-12-01

    Water binding is suggested to be key in the deleterious effect of wheat bran on bread quality. This study investigates water mobility and biopolymer behavior during bran-rich bread making and storage, using 1 H NMR. Coarse, ground, and pericarp-enriched bran were incorporated in bread dough, and their impact on freshly baked and stored bread properties was assessed. Compared to wheat flour control dough, bran incorporation resulted in a progressive immobilization of water during dough resting, which could be linked to changes in evolution of dough height during fermentation and oven rise. This, together with modified starch gelatinization behavior upon baking, can be related with the inferior quality of bran-rich breads. The impact was most pronounced with pericarp-enriched bran. Textural quality during storage was less affected for coarse or ground bran-rich bread compared to wheat flour bread, which could be principally attributed to retardation of amylopectin retrogradation in the presence of bran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  20. Effect of conventional milling on the nutritional value and antioxidant capacity of wheat types common in Ethiopia and a recovery attempt with bran supplementation in bread.

    Science.gov (United States)

    Heshe, Genet Gebremedhin; Haki, Gulelat Desse; Woldegiorgis, Ashagrie Zewdu; Gemede, Habtamu Fekadu

    2016-07-01

    The effect of wheat flour refined milling on nutritional and antioxidant quality of hard and soft grown in Ethiopia was evaluated. Bread was prepared with the supplementation of the white wheat flour with different levels (0%, 10%, 20%, and 25%) of wheat bran. Whole (100% extraction) and white wheat (68% extraction) flours were analyzed for proximates, minerals, and antioxidants. Results indicated that at a low extraction rate (68%), the protein, fat, fiber, ash, iron, zinc, phosphorous, and antioxidant contents of the samples significantly (P breads increased significantly (P bread, and the highest values (protein, 12.0 g/100 g; fat, 2.6 g/100 g; fiber, 2.5 g/100 g; ash, 3.3 g/100 g; iron, 4.8 mg/100 g and zinc, 2.33 mg/100 g) were found in 25% bran supplemented bread. The sensory evaluation of bread showed that all the supplementation levels had a mean score above 4 for all preferences on a 7- point hedonic scale. The results indicated that refined milling at 68% extraction significantly reduces the nutritional and antioxidant activity of the wheat flours. Bread of good nutritional and sensory qualities can be produced from 10% and 20% bran supplementations.

  1. The Determination of Bromine in Wheat, Flour and Bread by Neutron Activation Analysis. RCN Report

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Zonderhuis, J.

    1969-07-01

    Gaseous germicides are commonly used to improve the tenability of wheat. The bulk material is exposed to a gas which is highly poisonous to fungi. Methylene and ethylene dibromide are often used for this purpose. Traces of these compounds in wheat, flour and bread are dangerous. Consequently, the persistence of these gases should be determined experimentally. This implies that sensitive methods to detect traces of methylene and ethylene dibromide must be available. Neutron activation analysis can be used to determine the total amount of bromine present in the sample. This datum is a useful addition to the gaschromato-graphic determinations of the compounds involved. A routine method for the determination of bromine in corn, flour and bread has been developed and is described in the text

  2. Studies regarding the influence of brown flaxseed flour addition in wheat flour of a very good quality for bread making on bread quality

    Directory of Open Access Journals (Sweden)

    Georgiana Gabriela CODINA

    2016-11-01

    Full Text Available The aim of this study was to incorporate brown flaxseed into bread in order to improve it quality. For this purpose, different levels of whole ground brown flaxseed (5%, 10%, 15% and 20% were used to substitute wheat flour 650 type of a very good quality for bread making. The bread samples obtained were analyzed from the physical, colour, crumb cell, textural and sensory characteristics point of view. Samples containing 10% of brown flaxseed were with the highest values for loaf volume, porosity and elasticity. The control sample had lowerest redness and greenness value. The maximum hardness was found for bread with 20% brown flaxseed addition. With the increase level of brown flaxseed addition large cells can be noticed in crumb structure of bread. Samples containing 20% of flaxseed were rated poorest in tase, texture, overall acceptability, appearance. Our results indicated that brown flaxseed addition could be added to a typical bread formulation up to levels of 10% with a good overall acceptability offering promising healthy and nutritious alternative to consumers. Between bread flour characteristics at different brown flaxseed flour substitution levels principal component analysis shown significant correlations (p < 0.05 between bread physical characteristics (loaf volume, porosity, elasticity and bread  overall acceptability.

  3. Evaluation of Spring Bread Wheat Lines (Triticum aestivum L. and Their Classification by Using Some Agronomic Traits

    Directory of Open Access Journals (Sweden)

    A. Daryani

    2011-06-01

    Full Text Available To obtain superior genotypes from 30 advanced spring bread wheat cultivars a field experiment in RCBD was carried out in 1388. Traits like yield, yield components, harvest index, peduncle length, awn length, number of leaf, plant height, flag leaf area, penultimate leaf area, days to booting, days to spike emergence, days to flowering and physiological maturity were recorded. Analysis of variance showed significant difference among genotypes for the traits measured at %1 probability level. This indicates considerable genetic variations among the lines evaluated. Cluster analysis of traits measured, grouped lines into three categories. Eight lines were located in third cluster with respect to some traits including grain yield and other important traits like biological yield, number of seed per spike, spike length, peduncle length, plant height, flag leaf area, and number of spike per m² were found to be superior. By using factor analysis, five factors determined 78.99% of total variation. In this analysis, the first factor could account for 35% of total variation and nominated as effective factor on grain yield. Line with accession number of N-75-5 was found to be highest yielding (289.5 g/m2 (as compared with the other lines.

  4. Evaluation of Spring Bread Wheat Lines (Triticum aestivum L. and Their Classification by Using Some Agronomic Traits

    Directory of Open Access Journals (Sweden)

    A .R. Tarinejad

    2010-10-01

    Full Text Available To obtain superior genotypes from 30 advanced spring bread wheat cultivars a field experiment in RCBD was carried out in 1388. Traits like yield, yield components, harvest index, peduncle length, awn length, number of leaf, plant height, flag leaf area, penultimate leaf area, days to booting, days to spike emergence, days to flowering and physiological maturity were recorded. Analysis of variance showed significant difference among genotypes for the traits measured at %1 probability level. This indicates considerable genetic variations among the lines evaluated lines. Cluster analysis through Ward method, by using all of the traits, grouped lines into three clusters. Eight lines located in third cluster with respect to some traits including grain yield and other important traits like biological yield, number of seed per spike, spike length, peduncle length, plant height, flag leaf area, and number of spike per m² were superior. Factor analysis, five factors discriminated 78.99% of total variation. In this analysis, the first factor could determine 35% of total variation and nominated as effective factor on grain yield. Line with accession number N-75-5 was found to be highest yielding (289.5 g/m2 (as compared with the other lines.

  5. Allelic state at the microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in Egyptian bread wheat (Triticum aestivum L. genotypes released from 1947 to 2004

    Directory of Open Access Journals (Sweden)

    Salem Khaled F.M.

    2015-01-01

    Full Text Available Rht8 is widely used in dry environments such as Mediterranean regions where it increases plant adaptability. Variation at the Gatersleben wheat microsatellite Xgwm261 locus, whose 192-bp allele closely linked to the dwarfing gene Rht8, on chromosome 2D within 0.6 cM, was used to screen thirty Egyptian bread wheat genotypes released from (1947-2004 to assess the variation at this locus. There were three microsatellite allelic variants based on size. Screening of this wheat collection showed that the three alleles Xgwm261-165, Xgwm261-174 and Xgwm261-192 bp were the most frequent. The highest allele frequency was observed for a Xgwm261-165 bp fragment (65.52% followed by a Xgwm261-174 bp fragment (24.14%. However, the allele frequency of a Xgwm261-192 bp fragment among these wheat genotypes was 10.34%. The percentage distribution of dwarfing alleles for the microsatellite locus Xgwm261 in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively. PIC for Xgwm261 was 0.527. Genetic heritage of Egyptian genotypes at the microsatellite locus Xgwm261 is consequence of new parental components usage, carriers short plant and early maturity attributes and consequent selection progeny with these traits in breeding programs. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

  6. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  7. Proteome scale identification, classification and structural analysis of iron-binding proteins in bread wheat.

    Science.gov (United States)

    Verma, Shailender Kumar; Sharma, Ankita; Sandhu, Padmani; Choudhary, Neha; Sharma, Shailaja; Acharya, Vishal; Akhter, Yusuf

    2017-05-01

    Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wan, Weining; Huang, Honglin; Lv, Jitao; Han, Ruixia; Zhang, Shuzhen

    2017-12-05

    The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.

  9. Genetic diversity and structure found in samples of Eritrean bread wheat

    DEFF Research Database (Denmark)

    Desta, Zeratsion Abera; Orabi, Jihad; Jahoor, Ahmed

    2014-01-01

    Genetic diversity and structure plays a key role in the selection of parents for crosses in plant breeding programmes. The aim of the present study was to analyse the genetic diversity and structure of Eritrean bread wheat accessions. We analysed 284 wheat accessions from Eritrea using 30 simple...... sequence repeat markers. A total of 539 alleles were detected. The allele number per locus ranged from 2 to 21, with a mean allele number of 9.2. The average genetic diversity index was 0.66, with values ranging from 0.01 to 0.89. Comparing the three genomes of wheat, the B genome had the highest genetic...... diversity (0.66) and the D genome the lowest diversity (0.61). A STRUCTURE analysis based on the Bayesian model-based cluster analysis followed by a graphical representation of the distances by non-parametric multidimensional scaling revealed a distinct partition of the Eritrean wheat accessions into two...

  10. Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins.

    Science.gov (United States)

    Camerlengo, Francesco; Sestili, Francesco; Silvestri, Marco; Colaprico, Giuseppe; Margiotta, Benedetta; Ruggeri, Roberto; Lupi, Roberta; Masci, Stefania; Lafiandra, Domenico

    2017-12-19

    Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (-75.6% respect to the cv. Pegaso) and a minor level of transcripts (-80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less "toxic" wheat varieties.

  11. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil

    International Nuclear Information System (INIS)

    Koeleli, Nurcan; Eker, Selim; Cakmak, Ismail

    2004-01-01

    The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg -1 soil) and Cd (0, 10 and 25 mg kg -1 soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids

  12. Structural changes of starch during baking and staling of rye bread.

    Science.gov (United States)

    Mihhalevski, Anna; Heinmaa, Ivo; Traksmaa, Rainer; Pehk, Tõnis; Mere, Arvo; Paalme, Toomas

    2012-08-29

    Rye sourdough breads go stale more slowly than wheat breads. To understand the peculiarities of bread staling, rye sourdough bread, wheat bread, and a number of starches were studied using wide-angle X-ray diffraction, nuclear magnetic resonance ((13)C CP MAS NMR, (1)H NMR, (31)P NMR), polarized light microscopy, rheological methods, microcalorimetry, and measurement of water activity. The degree of crystallinity of starch in breads decreased with hydration and baking to 3% and increased during 11 days of storage to 21% in rye sourdough bread and to 26% in wheat bread. (13)C NMR spectra show that the chemical structures of rye and wheat amylopectin and amylose contents are very similar; differences were found in the starch phospholipid fraction characterized by (31)P NMR. The (13)C CP MAS NMR spectra demonstrate that starch in rye sourdough breads crystallize in different forms than in wheat bread. It is proposed that different proportions of water incorporation into the crystalline structure of starch during staling and changes in starch fine structure cause the different rates of staling of rye and wheat bread.

  13. Induced mutations for rust resistance in bread wheat

    International Nuclear Information System (INIS)

    Sawhney, R.N.

    1989-01-01

    Full text: Seeds of variety ''Lalbahadur'' were treated with 0.04% NMH. M 2 plants were inoculated with a mixture of pathotypes of each of the 3 Puccinia species (P. graminis, P. recondita, P. striiformis). Plants with simultaneous resistance to all 3 rusts were selected. Repeated testing in subsequent generations confirmed the resistance. The mutant lines are morphologically similar to the parent cultivar and therefore could be used as components of a multiline variety. Comparison of variety pattern against the Indian pathotypes of rusts suggests that the mutant genes are different from the ones known already in bread wheat. (author)

  14. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Identification of isoforms of microRNAs in wheat (Triticum aestivum L. and their role in leaf rust pathogenesis

    Directory of Open Access Journals (Sweden)

    Summi Dutta

    2017-10-01

    Full Text Available Bread wheat, a type of grass under genus Triticum and species aestivum covers the largest land area when production of cereal crops is considered. Being an allohexaploid (2n=6x=42; AABBDD, its genome is contributed by three progenitors and is evolutionarily rich. Rust in leaves, caused by Puccinia triticina, severely affects grain quality. MicroRNAs are considered as major components of gene silencing and so have deep role to play during stress. Post transcriptional modification of miRNAs which generates isomiRNAs significantly affects target specificity especially when the modification occurs in 5′end. A total of four small RNA libraries were prepared through next-generation Illumina sequencing techniques from leaves of two wheat Near Isogenic Lines (NILs, HD2329 (susceptible and HD2329 + LR24 (resistant. Prior to this, one set of the two NILs was mock inoculated and considered as control (with sRNA library code named SM-mi and RM-mi while other was treated with urediniospores of leaf rust fungus (with sRNA library code named SPI-mi and RPI-mi. Clean reads in all four libraries were previously used for prediction of 559 novel miRNAs and in the current study it was used to detect isoforms of these miRNAs. A total of 237 isoforms were detected for 41 miRNAs. These isoforms included both 5′ and 3′ modifications of miRNAs. There were 27 miRNAs with 5′ modifications and five miRNAs with 3′ modifications while nine miRNAs showed both types of modifications.

  16. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun

    2017-12-19

    During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which

  17. Technological characteristics of bread containing integral irradiated flours

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Mastro, Nelida L. del

    2011-01-01

    Wheat is normally used to make bread, pasta, and noodles, because among the cereal flours, only wheat flour has the ability to form cohesive dough upon hydration. For that reason, only partial substitution of wheat flour can be recommended. In this work, pan breads were prepared with 30% content of irradiated whole wheat, whole rye and coarse cornmeal and the influence of blending on bread making capabilities investigated through some technological characteristics. All-brand wheat, rye and cornmeal flours were irradiated with 0, 1, 3 and 9 kGy in a 60 Co and the deformation force, height and weight of breads prepared with those blends were then determined. Breads prepared with irradiated whole wheat flour showed an increase in the deformation force with the increase of radiation dose. The bread height presented also an increase for the doses of 1 and 3 kGy. Breads prepared with refined wheat flour blended with irradiated whole rye flour showed an increased deformation force for radiation doses of 1 and 3 kGy and an increase in weight for samples irradiated with 1 kGy. Coarse cornmeal blended flour showed a great increase of the deformation force upon irradiation, and an increase in weight for samples irradiated with 3 kGy. The results indicate that the addition of irradiated integral flour, whole wheat, whole rye flour and cornmeal to wheat flour may confer changes in physical properties beside an increment in nutritional value. (author)

  18. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    KAUST Repository

    Liu, Guozheng

    2016-07-06

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  19. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1 examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2 explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3 investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L. and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs, but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  20. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    KAUST Repository

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population.

  1. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    Science.gov (United States)

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population. PMID:27383841

  2. CD 1550 – bread wheat cultivar with high gluten strength for the cooler regions of Brazil

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Franco

    2015-03-01

    Full Text Available Cultivar CD 1550 is well-suited for the wheat-growing regions 1 and 2 of Rio Grande do Sul, Santa Catarina and Paraná and 3 of Paraná. It has the characteristics of bread wheat and high gluten strength. The average potential yield is 3828 kg ha-1, 7% higher than that of the controls.

  3. Production of a high-nutritional-value functional food, the Update1 bread, with the supplementation of the wheat flour with high-protein-content raw food materials

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available During our research, we added extracted soya bean meal, egg-white powder, gluten, wheat sourdough, and bamboo fibre to wheat flour in order to increase the quantity of the essential amino acid and the biological value of the wheat protein, producing such a functional, health-protecting, health-preservative food product which is suitable to satisfy the essential amino acid requirements of humans, assuming normal nutrition. Furthermore, we could produce such a food, which, on the one hand, was suitable to confine or prevent the essential amino acid’s malnutrition symptoms, while, on the other hand, when applied alone, to meet the consumers’ needs. During our work, we determined the protein content and amino acid composition of the wheat flour, of the additives used in bread baking, and in the bread both baked with supplementation (Update1 bread and without supplementation (normal bread, as well as the quantity of the Maillard reaction products (hydroxymethylfurfural. We calculated the biological value of the protein of different breads and evaluated the sensory characteristics of the produced functional food and the fortified bread, supplemented with high essential-amino-acid-containing additives.

  4. Improved fluorimetric measurement of uranium uptake and distribution in spring wheat (Triticum aestivum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Borcia, Catalin [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Physics; Popa, Karin; Cecal, Alexandru [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Chemistry; Murariu, Manuela [' ' Petru Poni' ' Institute of Macromolecular Chemistry, Iasi (Romania)

    2016-08-01

    Uranium uptake and (radio)toxicity was tested on spring wheat (Triticum aestivum L.) in a laboratory study using differently concentrated uranium nitrate solutions. Within these experiments, two analytical assays of uranium were comparatively tested: a fast and improved fluorimetric assay and the classical colorimetric (U(IV)-arsenazo(III) complexation) one. During the germination, the wheat seeds and plantlets supported well the uranium solutions of treatment within the entire concentration range (1 x 10{sup -4} -5 x 10{sup -3} M). Uranium proved to be non (radio)toxic to wheat as compared with other natural and anthropogenic radiocations, probably because its uptake by spring wheat during the germination is low. Indeed, only a small fraction of uranium administered was located within the roots, whereas the uranium content of the stems was negligible. A high correlation between the results obtained by two analytical methods was found. However, the fluorimetric assay proved to be more reliable and fast, and accurate.

  5. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels

    International Nuclear Information System (INIS)

    Wang, M.-E; Zhou, Q.-X.

    2006-01-01

    Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd. - Soluble protein content and peroxidase activity in seedlings were the biomarkers indicating joint stress of chemicals

  6. Studies on some ecophysiological traits associated with competitiveness of old and new Iranian bread wheat (Triticum aestivum L. cultivars against wild oat ( Avena ludoviciana L.

    Directory of Open Access Journals (Sweden)

    eskandar zand

    2009-06-01

    Full Text Available An experiment was conducted during 1996-1997 growing season in Mashhad, NE of Iran to evaluate the genetic improvement in ecophysiological traits that enhance the competitiveness of Iranian winter wheat (Triticum aestivuml against wild oat ( Avena ludovicianal. Six Iranian winter wheat cultivars which have been released during the past 40 years were used for this experiment. A factorial experiment was arranged in a randomized complete block design with three replications. Each cultivar was planted at its own optimum seeding rate with and without competition with wild oat. Wild oat was planted at a constant density of 80 plants per square meter. The results showed that more recent cultivars had much higher competitive ability compared to earlier cultivars. Alvand (the most recent cultivar had higher dry matter accumulation, crop growth rate (CGR, leaf area index (LAI and relative leaf area growth rate (RLGR compared to Bezostaya. Alvand had a higher proportion of its leaf area in higher canopy layer. Wild oat was also shorter in height when it was competing with Alvand compared to Bezostaya. It was found that following characteristics were the most important criteria in competitive ability of winter wheat against wild oats: 1 leaf area at the end of tillering stage. 2 final leaf area index. 3 relative leaf area index, and 4 the canopy layer where the higher leaf area was measured

  7. Whole grain wheat sourdough bread does not affect plasminogen activator inhibitor-1 in adults with normal or impaired carbohydrate metabolism.

    Science.gov (United States)

    MacKay, K A; Tucker, A J; Duncan, A M; Graham, T E; Robinson, L E

    2012-09-01

    Epidemiological studies suggest whole grain consumption is associated with a reduced risk of cardiovascular disease (CVD), possibly through alterations in glucose metabolism and subsequent effects on plasminogen activator inhibitor (PAI)-1, a novel biomarker for CVD. Our aim was to investigate the effect of 6 wk of whole grain wheat sourdough bread consumption versus refined white bread on PAI-1. Normoglycemic/normoinsulinemic (NGI; n = 14; age 53 ± 6 y; BMI 26.5 ± 2.9 kg/m(2)) and hyperglycemic/hyperinsulinemic (HGI; n = 14; age 57 ± 7 y; BMI 35.7 ± 5.7 kg/m(2)) adults incorporated whole grain wheat sourdough (162.5 g) or white (168.8 g) bread into their diet, for 6 wk in a randomized crossover study. Pre- and post-intervention, fasting blood samples were analyzed for PAI-1 (primary outcome), as well as glucose, insulin and glucagon (secondary outcomes) at fasting and postprandially after an oral glucose tolerance test (OGTT). Anthropometric measures, fasting glucose, insulin, glucagon and PAI-1 antigen and activity were not different between treatments in either NGI or HGI adults. Glucose incremental area under the curve (iAUC) was lower (19%, P = 0.02) after 6 wk consumption of whole grain wheat sourdough bread compared to white bread in the HGI group, with no differences in insulin or glucagon iAUC in either group. Our data showed decreased glucose iAUC after an OGTT following 6 wk whole grain wheat bread consumption in adults with differing glycemic/insulinemic status, but no improvements in PAI-1 or fasting glycemic parameters. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Baking properties of irradiated wheat flour and their effects on the quality of hard crust bread

    International Nuclear Information System (INIS)

    Alvarez, M.; Cuquerella, J.; Granado, R.; Silvestre, J.

    1987-01-01

    The effects of gamma irradiation on rheological characteristics and baking properties of hard wheat flour were studied in the range 0,5 kGy-2,0 kGy. Different quality parameters and the staling kinetics of hard bread produced with control and irradiated flours were also evaluated. Samples were stored before and after treatment at room temperature (16 0 C-30 0 C, 60%-98% R.H.). It is possible to make hard crust bread, the main bread consumed by the Cuban people, from irradiated flour (up to 2,0 kGy) two weeks after treatment. No changes due to irradiation of the flour in quality of bread were found. The Brabender maximum viscosity and the falling number of flour decreased in irradiated samples, but these results did not affect the quality of bread produced

  9. The effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  10. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  11. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat;Propriedades fisico-quimicas, reologicas, entalpicas e de panificacao da farinha obtida de trigo irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Carolina Sobral

    2006-07-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  12. CHARACTERIZATION OF GLIADIN AND HMW GLUTENIN PROTEIN COMPOSITION IN COLOURED WHEAT (TRITICUM AESTIVUM L. VARIETIES

    Directory of Open Access Journals (Sweden)

    Valéria Šudyová

    2011-12-01

    Full Text Available Wheat is one of the most important grains in our daily diet. Coloured wheat contains natural anthocyanin compounds. Bioactive compounds in wheat have attracted increasingly more interest from breeders because of their benefits. It is important to fully understand protein properties of red, blue, purple, and yellow-coloured wheat in order to predict their potential uses for culturing new varieties. All 21 accessions originating from different geographical areas of world were evaluated for high molecular weight glutenin subunit (HMW-GS and T1BL.1RS wheat-rye translocation using SDS-PAGE and A-PAGE. The data indicated the prevalence of the allele 1 (36%, allele 0 (30% and allele 2* (34% at the Glu-1A and five alleles, namely 7+8 (36%, 7+9 (29%, 20 (21%, 7 (12% and 17+18 (2% represented the Glu-1B. Existence of 2 alleles at the locus Glu-1D was revealed, in fact 21% of them showed the subunit pairs Glu-1D 5+10 correlated with good bread making properties. Protein subunit Glu-1A1 and Glu-1A2* were correlated positively with improved dough strength as compared to subunit null. On the chromosome Glu-1B subunit 17+18 and 7+8 were associated with slightly stronger gluten type than 7+9, whereas subunit 20 and 7 were associated with weak gluten properties. On the basis of electrophoretic separation of gliadin fraction it was found that only one genotype contained T1BL.1RS wheat-rye translocation. The Glu-1 quality score ranged from 4 to 10. Suitable accessions can be used for the crossing programs to improve colour and good technological quality of bread wheat.  doi:10.5219/161

  13. The Relationship between Black Point and Fungi Species and Effects of Black Point on Seed Germination Properties in Bread Wheat

    OpenAIRE

    TOKLU, Faruk; AKGÜL, Davut Soner; BİÇİCİ, Mehmet; KARAKÖY, Tolga

    2014-01-01

    This study was undertaken to investigate the relationship between some fungi species and black point incidence and the effect of black point on seed weight, germination percentage, seedling emergence, seedling establishment, number of embryonic roots, and coleoptile length under field conditions in bread wheat. In this research, black-pointed and black point-free kernel samples of 5 bread wheat cultivars, namely Ceyhan-99, Doğankent-1, Yüreğir-89, Seyhan-95, and Adana-99 - commonly grown unde...

  14. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Vrána, Jan; Burešová, Veronika; Cápal, Petr; Farkas, A.; Darko, E.; Cseh, A.; Kubaláková, Marie; Molnár-Láng, M.; Doležel, Jaroslav

    2016-01-01

    Roč. 88, č. 3 (2016), s. 452-467 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : tertiary gene pool * triticum-aestivum * common wheat * addition lines * mitotic chromosomes * plant chromosomes * hexaploid wheat * ae. speltoides * dna-sequences * rye genome * Aegilops umbellulata * Aegilops comosa * Aegilops speltoides * Aegilops markgrafii * flow cytometric chromosome sorting * fluorescence insitu hybridization * conserved orthologous set markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.901, year: 2016

  15. Characterization of N-type glycosylation sites and glycan structures of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing

    2011-01-01

    Wheat (Triticum aestivum L.) possesses preformed phytase activity in the grain that is essential to make phosphate available to cell metabolism and in food and feed (Brejnholt S. et al., 2011). Cereals contain the purple acid phosphatase type of phytases, PAPhy (Dionisio G. et al., 2011a). Mature......., Skov L. Brinch-Pedersen H. (2011). The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J. Sci. Food Agri. (in press). Dionisio G., Madsen C.K., Holm P.B., Welinder K.G., Jørgensen M., Stoger E., Arcalis E., Brinch-Pedersen H. (2011a......) Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.), Maize (Zea maize L.) and Rice (Oryza sativa L.). Plant Physiol. [in press, Jan 10, Epub ahead of print] Dionisio G., Brinch-Pedersen H., Welinder K.G., Jørgensen M. (2011b...

  16. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  17. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    Science.gov (United States)

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  18. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    Science.gov (United States)

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  19. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  20. A kaizen approach to food safety quality management in the value chain from wheat to bread

    CERN Document Server

    Hill, Victoria

    2014-01-01

    This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lastly, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.

  1. Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta.

    Science.gov (United States)

    Martinez, Cristina S; Ribotta, Pablo D; Añón, María Cristina; León, Alberto E

    2014-03-01

    The technological and sensory quality of pasta made from bread wheat flour substituted with wholemeal amaranth flour (Amaranthus mantegazzianus) at four levels, 15, 30, 40 and 50% w/w was investigated. The quality of the resulted pasta was compared to that of control pasta made from bread wheat flour. The flours were analyzed for chemical composition and pasting properties. Cooking behavior, color, raw and cooked pasta texture, scanning electron microscopy and sensory evaluation were determined on samples. The pasta obtained from amaranth flour showed some detriment of the technological and sensory quality. So, a maximum substitution level of 30% w/w was defined. This is an equilibrium point between an acceptable pasta quality and the improved nutritional and functional properties from the incorporation of amaranth flour.

  2. Characterization of the Bread Made with Durum Wheat Semolina Rendered Gluten Free by Sourdough Biotechnology in Comparison with Commercial Gluten-Free Products.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Montemurro, Marco; Gobbetti, Marco

    2016-09-01

    Durum wheat semolina was fermented with sourdough lactic acid bacteria and fungal proteases aiming at a complete gluten hydrolysis. The gluten-free (GF) semolina, added with naturally GF ingredients and structuring agents, was used to produce bread (rendered GF bread; rGFB) at industrial level. An integrated approach including the characterization of the main chemical, nutritional, structural, and sensory features was used to compare rGFB to a gluten-containing bread and to 5 commercial naturally GF breads. High-performance liquid chromatography was used for free amino acids (FAAs), organic acids, and ethanol analysis. A methanolic extract was used for determining total phenols and antioxidant activity. The bread characterization also included the analysis of dietary fibers, mycotoxins, vitamins, and heavy metals. Beyond chemical analysis, nutritional profile was evaluated considering the in vitro protein digestibility and the predicted glycemic index, while the instrumental texture profile analysis was performed to investigate the structure and the physical/mechanical properties of the baked goods. Beyond the huge potential of market expansion, the main advantages of durum wheat semolina rendered GF can be resumed in the high availability of FAAs, the high protein digestibility, the low starch hydrolysis index, and the better technological properties of bread compared to the commercial GF products currently present on the market. Vitamins, minerals, and dietary fiber profiles are comparable to those of gluten-containing wheat bread. Also the sensory profile, determined by a panel test, can be considered the most similar to those of conventional baked goods, showing all the sourdough bread classic attributes. © 2016 Institute of Food Technologists®

  3. The influence of bread improvers and different technological parameters on bread quality

    OpenAIRE

    Duobienė, Lina

    2015-01-01

    Goal of the research: to analyse quality parameters of different types of bread, produced with or without improvers, also to evaluate intensity of microbiological spoilage of bread during storage. Results and findings: Different bread technologies have influence on bread quality parameters and in all cases bread improvers have positive influence on bread quality: „Lietuviškas ragaišis“ (Lithuanian whole wheat bread) using improvers the higher specific volume (21.27%) and porosity (9.02%...

  4. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  5. The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread.

    Science.gov (United States)

    Nivelle, Mieke A; Bosmans, Geertrui M; Delcour, Jan A

    2017-11-22

    The impact of parbaking on the quality and shelf life of large tin bread baked from 270 g of wheat flour was investigated using a proton nuclear magnetic resonance method combined with techniques that measure at different length scales. With increasing partial baking time, the resilience of fresh partially baked crumb increased because of its more extended amylose and gluten networks. During subsequent storage, the crumb became more firm due to an increased extent of amylopectin retrogradation and moisture redistribution. Although only amylopectin retrogradation was reversed during final baking, a fresh fully baked (FB) bread with reversed crumb softness was obtained. Furthermore, the rate of crumb firming during final storage of FB bread was not higher than that of conventionally baked bread. This was attributed to the high crumb to crust ratio of large tin bread which caused the crumb moisture content to remain sufficiently high despite nonreversible moisture redistribution during intermediate storage.

  6. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  7. Effect of heat treatment to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread.

    Science.gov (United States)

    Pérez, Isela Carballo; Mu, Tai-Hua; Zhang, Miao; Ji, Lei-Lei

    2017-12-01

    The effect of heat treatment at 90, 100, 110 and 120 ℃ for 20 min to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread was investigated. The lightness (L*) and a* of sweet potato flour samples after heat treatment were increased, while the b* were decreased significantly, as well as the particle size, volume and area mean diameter ( p sweet potato flour was observed, where the number of irregular granules increased as the temperature increased from 90 to 120 ℃. Compared with sweet potato flour samples without heat treatment and with heat treatment at 90, 100 and 120 ℃, the gelatinization temperature and enthalpy change of sweet potato flour at 110 ℃ were the lowest, which were 77.94 ℃ and 3.67 J/g, respectively ( p sweet potato flour increased significantly from 1199 ml without heat treatment to 1214 ml at 90 ℃ ( p sweet potato-wheat bread with sweet potato flour after heat treatment increased significantly, which was the largest at 90 ℃ (2.53 cm 3 /g) ( p sweet potato flour could be potentially used in wheat bread production.

  8. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread

    Science.gov (United States)

    Chávez-Santoscoy, Rocio A.; Lazo-Vélez, Marco A.; Serna-Sáldivar, Sergio O.; Gutiérrez-Uribe, Janet A.

    2016-01-01

    Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29) was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05). PMID:26901186

  9. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris Seed Coats Incorporated into Whole Wheat Bread

    Directory of Open Access Journals (Sweden)

    Rocio A. Chávez-Santoscoy

    2016-02-01

    Full Text Available Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29 was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05.

  10. Leaf appearance rate and final main stem leaf number as affected by temperature and photoperiod in cereals grown in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Ezio Riggi

    2017-09-01

    Full Text Available In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf., two bread wheat (Triticum aestivum L. and two barley (Hordeum vulgare L. cultivars, using six different sowing dates (SD. Significant effects of SD on final main stem leaf number (FLN, thermal leaf appearance rate (TLAR, daily leaf appearance rate (DLAR and phyllochron (PhL were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V. Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.

  11. The role of seed size in the non-genetic variation exhibited in salt tolerance studies involving the bread wheat cv. chinese spring

    Directory of Open Access Journals (Sweden)

    P. K. Martin

    2014-01-01

    Full Text Available The intention of this study was to confirm the role of seed size in the non-genetic variation exhibited during salinity tolerance experiments involving the bread wheat cv. Chinese Spring. The nutrient film/rockwool hydroponics technique was utilised. This study concluded that seed size does not play a significant role in the non-genetic variation generated during a study of salinity tolerance of the bread wheat cv. Chinese Spring.

  12. 100-year history of the development of bread winter wheat breeding programs

    Directory of Open Access Journals (Sweden)

    М. А. Литвиненко

    2016-05-01

    Full Text Available Purpose. Review of the main achievements of the Wheat Breeding and Seed ProductionDepartment in the Plant Breeding and Genetic Institute – National Centre of Seed and Cultivar Investigation in the developing theoretical principles of breeding and creation of winter wheat varieties of different types during 100-year (1916–2016 period of breeding programs realization. Results. The main theoretical, methodical developments and breeding achievements of Wheat Breeding and Seed Production Department during 100-year (1916–2016 history have been considered. In the course of the Department activity, the research and metho­dology grounds of bread winter wheat breeding and seed production have been laid, 9 stages of breeding programs development have been accomplished. As a result, more than 130 varieties of different types have been created, 87 of them have been released in some periods or registered in the State registers of plants varieties of Ukraine and other countries and grown in the total sowing area about 220 million hectares.

  13. Shelf life assessment of industrial durum wheat bread as a function of packaging system.

    Science.gov (United States)

    Licciardello, Fabio; Giannone, Virgilio; Del Nobile, Matteo Alessandro; Muratore, Giuseppe; Summo, Carmine; Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito Michele; Pasqualone, Antonella

    2017-06-01

    This study compared the effect of different packaging systems on industrial durum wheat bread shelf-life, with regard to thermoformed packaging (TF) and flow-packaging (FP). Two TFs having different thickness and one FP were compared by assessing physico-chemical and sensorial properties and volatile compounds of sliced bread during 90days of storage. Texture, a w and bread moisture varied according to a first-order kinetic model, with FP samples ageing faster than TFs. Sensorial features such as consistency, stale odor, and sour odor, increased their intensity during storage. Furans decreased, whereas hexanal increased. The Principal Component Analysis of the whole dataset pointed out that the TF system at reduced thickness could be adopted up to 60days, without compromising the standard commercial life of industrial bread and allowing to save packaging material. The FP system would allow further saving, but it should be preferred when the expected product turnover is within 30days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sajjad, Muhammad; Ma, Xiaoling; Habibullah Khan, Sultan; Shoaib, Muhammad; Song, Yanhong; Yang, Wenlong; Zhang, Aimin; Liu, Dongcheng

    2017-10-16

    The Flo2 gene is a member of a conserved gene family in plants. This gene has been found to be related to thousand grain weight (TGW) in rice. Its orthologs in hexaploid wheat were cloned, and the haplotype variation in TaFlo2-A1 was tested for association with TGW. The cloned sequences of TaFlo2-A1, TaFlo2-B1 and TaFlo2-D1 contained 23, 23 and 24 exons, respectively. The deduced proteins of TaFlo2-A1 (1734 aa), TaFlo2-B1 (1698 aa) and TaFlo2-D1 (1682 aa) were highly similar (>94%) and exhibited >77% similarity with the rice FLO2 protein. Like the rice FLO2 protein, four tetratricopeptide repeat (TPR) motifs were observed in the deduced TaFLO2 protein. An 8-bp InDel (-10 to -17 bp) in the promoter region and five SNPs in first intron of TaFlo2-A1 together formed two haplotypes, TaFlo2-A1a and TaFlo2-A1b, in bread wheat. TaFlo2 was located on homeologous group 2 chromosomes. TaFlo2-A1 was inferred to be located on deletion bin '2AL1-0.85-1.00'. The TaFlo2-A1 haplotypes were characterized in the Chinese Micro Core Collection (MCC) and Pakistani wheat collection using the molecular marker TaFlo2-Indel8. TaFlo2-A1 was found to be associated with TGW but not with grain number per spike (GpS) in both the MCC and Pakistani wheat collections. The frequency of TaFlo2-A1b (positive haplotype) was low in commercial wheat cultivars; thus this haplotype can be selected to improve grain weight without negatively affecting GpS. The expression level of TaFlo2-A1 in developing grains at 5 DAF (days after flowering) was positively correlated with TGW in cultivars carrying the positive haplotype. This study will likely lead to additional investigations to understand the regulatory mechanism of the Flo2 gene in hexaploid wheat. Furthermore, the newly developed molecular marker 'TaFlo2-InDel8' could be incorporated into the kit of wheat breeders for use in marker-assisted selection.

  15. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Directory of Open Access Journals (Sweden)

    Małgorzata Tańska

    2016-01-01

    Full Text Available This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5 % of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough.

  16. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    Science.gov (United States)

    Tańska, Małgorzata; Rotkiewicz, Daniela; Piętak, Andrzej

    2016-01-01

    Summary This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5% of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough. PMID:27904407

  17. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    Science.gov (United States)

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  18. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  19. Radiation-induced chromosome breakages in bread wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Larik, A.S.

    1975-01-01

    Meiosis and pollen fertility were studied in the M 2 generation in four varieties of hexaploid wheat. Meiosis was characterized by the formation of interchange configurations, such as rings and chains of four chromosomes in several cells. Chromosomal aberrations showed linear relationship with gamma irradiation; 45 kR dose induced the highest chromosomal abnormalities. Most multivalents were interchange rings of four chromosomes. Translocations involving two pairs of homologous or nonhomologous chromosomes seemed to be higher in frequency than those involving more than two pairs of chromosomes. Anaphase abnormalities, such as laggards, bridges and fragments and unequal segregation of chromosomes, were frequently observed. Pollen fertility was considerably reduced in the M 2 plants arising form the treatments of higher doses of gamma rays because of the induced chromosome interchanges. (author)

  20. Chemometric Analysis of High Molecular Mass Glutenin Subunits and Image Data of Bread Crumb Structure from Croatian Wheat Cultivars

    OpenAIRE

    Zorica Jurković; Rezica Sudar; Damir Magdić; Daniela Horvat; Želimir Kurtanjek

    2002-01-01

    The aim of this work is to investigate functional relationships among wheat properties, high molecular mass (weight) (HMW) glutenin subunits and bread quality produced from eleven Croatian wheat cultivars by chemometric analysis. HMW glutenin subunits were fractionated by sodium dodecylsulfate polyacrylamid gel electrophoresis (SDS-PAGE) and subsequently analysed by scanning densitometry in order to quantify HMW glutenin fractions. Wheat properties are characterised by four variables: protein...

  1. Reaction to diseases of six gamma-irradiated genotypes of wheat (Triticum spp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1977-01-01

    Seed from six genotypes of spring wheat: Huelquen, Collafen, Yafen, PLA771 and Bluebird No.3 (Triticum aestivum L.), and also Quilafen (Triticum durum Desf.) was exposed to gamma radiation in doses of 10 and 25 krad. The aim of the research is to produce cultivars resistant to the main diseases, with a high protein content and grain yield, for the north-central region of Chile (29-35 0 latitude south). The selection process up to the generation M 5 has made it possible to identify mutants with a higher level of resistance to Puccinia graminis, Puccinia recondita and Puccinia striiformis than the original genotypes. Progress made in improving resistance to a fungal complex attacking the spikelets of the mutant cultivars Huelquen and Yafen, to Erysiphe graminis, and to the yellow dwarf virus in barley (BYDV), has been slighter. The yield of grain and protein per unit surface of the mutants studied during repeated experiments has been greater than for the controls. If this trend continues, there should be a number of mutants that could be used for commercial cultivation. (author)

  2. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Cormier, Fabien; Le Gouis, Jacques; Dubreuil, Pierre; Lafarge, Stéphane; Praud, Sébastien

    2014-12-01

    This study identified 333 genomic regions associated to 28 traits related to nitrogen use efficiency in European winter wheat using genome-wide association in a 214-varieties panel experimented in eight environments. Improving nitrogen use efficiency is a key factor to sustainably ensure global production increase. However, while high-throughput screening methods remain at a developmental stage, genetic progress may be mainly driven by marker-assisted selection. The objective of this study was to identify chromosomal regions associated with nitrogen use efficiency-related traits in bread wheat (Triticum aestivum L.) using a genome-wide association approach. Two hundred and fourteen European elite varieties were characterised for 28 traits related to nitrogen use efficiency in eight environments in which two different nitrogen fertilisation levels were tested. The genome-wide association study was carried out using 23,603 SNP with a mixed model for taking into account parentage relationships among varieties. We identified 1,010 significantly associated SNP which defined 333 chromosomal regions associated with at least one trait and found colocalisations for 39 % of these chromosomal regions. A method based on linkage disequilibrium to define the associated region was suggested and discussed with reference to false positive rate. Through a network approach, colocalisations were analysed and highlighted the impact of genomic regions controlling nitrogen status at flowering, precocity, and nitrogen utilisation on global agronomic performance. We were able to explain 40 ± 10 % of the total genetic variation. Numerous colocalisations with previously published genomic regions were observed with such candidate genes as Ppd-D1, Rht-D1, NADH-Gogat, and GSe. We highlighted selection pressure on yield and nitrogen utilisation discussing allele frequencies in associated regions.

  3. Effects of alkylresorcinols on volume and structure of yeast-leavened bread.

    Science.gov (United States)

    Andersson, Annica Am; Landberg, Rikard; Söderman, Thomas; Hedkvist, Sofie; Katina, Kati; Juvonen, Riikka; Holopainen, Ulla; Lehtinen, Pekka; Aman, Per

    2011-01-30

    Alkylresorcinols (AR) are amphiphilic phenolic compounds found in high amounts in wheat, durum wheat and rye, with different homologue composition for each cereal. The effect of different amounts of added AR from these cereals on bread volume, height, porosity and microstructure was studied. Breads with added rye bran (with high levels of AR) or acetone-extracted rye bran (with low levels of AR) were also baked, as well as breads with finely milled forms of each of these brans. Breads with high amounts of added AR, irrespective of AR homologue composition, had a lower volume, a more compact structure and an adverse microstructure compared with breads with no or low levels of added AR. AR were also shown to inhibit the activity of baker's yeast. There was no difference in bread volume and porosity between bread baked with rye bran and acetone-extracted rye bran or with brans of different particle size. Irrespective of homologue composition, AR had a negative effect on wheat bread properties when added in high amounts as purified extracts from wheat, durum wheat and rye. Natural levels of AR in rye bran, however, did not affect the volume and porosity of yeast-leavened wheat breads. 2010 Society of Chemical Industry.

  4. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

    Directory of Open Access Journals (Sweden)

    van Veelen Peter A

    2006-01-01

    Full Text Available Abstract Background Bread wheat (Triticum aestivum is an important staple food. However, wheat gluten proteins cause celiac disease (CD in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease. Results We obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87% contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome, as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific. Conclusion Our analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic

  5. Fundamental and empirical rheological behaviour of wheat flour doughs and comparison with bread making performance

    NARCIS (Netherlands)

    Janssen, A. M.; vanVliet, T; Vereijken, JM

    The rheological characteristics of wheat flour doughs from the cultivars Obelisk and Katepwa and of biscuit flour doughs, and also of biscuit flour doughs containing glutens isolated from cv. Obelisk and cv. Katepwa flour, were compared and discussed in relation to bread making performance. Four

  6. Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity.

    Science.gov (United States)

    Świeca, Michał; Gawlik-Dziki, Urszula; Dziki, Dariusz; Baraniak, Barbara

    2017-04-15

    The potential bioaccessibility and bioavailability of phenolics, caffeine and antioxidant activity of wheat bread enriched with green coffee were studied. Supplementation enhanced nutraceutical potential by improving phenolic content and lipid protecting capacity. The simulated-digestion-released phenolics (mainly caffeic acid, syringic acid and vanillic acid) from bread, also caused significant qualitative changes (chlorogenic acids were cleaved and significant amounts of caffeic acid and ferulic acid were determined). Compared to the control, for the bread with 1% and 5% of the functional component the contents of phenolics were 1.6 and 3.33 times higher. Also, an approximately 2.3-fold increase in antioxidant activity was found in bread containing 5% of the supplement. The compounds responsible for antioxidant potential have high bioaccessibility but poor bioavailability. The qualitative composition of the phenolic fraction has a key role in developing the antioxidant potential of bread; however, caffeine and synergism between antioxidants are also important considerations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2006-10-01

    Full Text Available Abstract Background Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. Results We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. Conclusion This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

  8. Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Horvath, Aniko; Didier, Audrey; Koenig, Jean; Exbrayat, Florence; Charmet, Gilles; Balfourier, François

    2009-11-01

    A highly polymorphic core collection of bread wheat and a more narrow-based breeding material, gathered from pedigrees of seven modern cultivars, was analysed in order to compare genetic diversity indices and linkage disequilibrium (LD) patterns along the chromosome 3B with microsatellite (SSR) and Diversity Arrays Technology markers. Five ancestral gene pools could be identified within the core collection, indicating a strong geographical structure (Northwest Europe, Southeast Europe, CIMMYT-ICARDA group, Asia, Nepal). The breeding material showed a temporal structure, corresponding to different periods of breeding programmes [old varieties (from old landraces to 1919), semi-modern varieties (1920-1959), modern varieties (1960-2006)]. Basic statistics showed a higher genetic diversity in the core collection than in the breeding material, indicating a stronger selection pressure in this latter material. More generally, the chromosome 3B had a lower diversity than the whole B-genome. LD was weak in all studied materials. Amongst geographical groups, the CIMMYT-ICARDA pool presented the longest ranged LD in contrast to Asian accessions. In the breeding material, LD increased from old cultivars to modern varieties. Genitors of seven modern cultivars were found to be different; most marker pairs in significant LD were observed amongst genitors of Alexandre and Koreli varieties, indicating an important inbreeding effect. At low genetic distances (0-5 cM), the breeding material had higher LD than the core collection, but globally the two materials had similar values in all classes. Marker pairs in significant LD are generally observed around the centromere in both arms and at distal position on the short arm of the chromosome 3B.

  9. Quality characteristics of wheat flour dough and bread containing grape pomace flour.

    Science.gov (United States)

    Šporin, Monika; Avbelj, Martina; Kovač, Boris; Možina, Sonja Smole

    2018-04-01

    Wheat bread was enriched with 6%, 10% and 15% dried and milled grape pomace flour from two grape cultivars: 'Merlot' and 'Zelen'. Rheological, textural, sensory and antioxidant properties of the enriched dough and bread were evaluated, and compared to control samples. Grape cultivar had significant impact on the rheological characteristics of the dough, and on the sensory and antioxidant properties of the final bread. Development time and dough stability were longer when 'Merlot' grape pomace flour was added compared to 'Zelen' grape pomace flour and the control. Grape pomace flour addition affected bread volume, firmness, crumb and crust colour, and odour and taste intensity. Moreover, grape pomace flour addition resulted in a stickier and less springy crumb texture, and some negative sensorial properties, such as increased intensity of aftertaste and sand feeling in the mouth. The phenolic content and antioxidant activity of bread were positively correlated with grape pomace flour addition ( r = 0.987, p = 0.01 and r = 0.941, p = 0.01 between phenolic content and ferric reducing antioxidant power and phenolic content and 2,2-diphenyl-1-picrylhydrazyl, respectively). The highest total phenolic contents were 5.92 mg gallic acid equivalents (GAE)/g dw for 'Merlot' and 3.65 mg gallic acid equivalents /g dw for 'Zelen', which were seen for the bread prepared with the highest grape pomace flour addition (15%). The highest antioxidant activity determined by the 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays were seen for the bread prepared with the highest 'Merlot' grape pomace flour addition (15%). Dough characteristic and sensory profile are strongly influenced by cultivar of grape pomace flour. Based on results of sensory profiling, the variety 'Zelen' is suggested for use.

  10. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  11. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell

    Directory of Open Access Journals (Sweden)

    Maria Irene Baggio de Moraes Fernandes

    2000-12-01

    Full Text Available Worldwide wheat (Triticum aestivum L. em. Thell, 2n = 6X = 42, AABBDD breeding programs aim to reorganize genotypes to achieve better yields, environmental adaptation and food quality. The necessary interdisciplinarity for breeding purposes requires an accurate choice of the most appropriate cellular and/or molecular strategies available to be integrated with agronomic approaches in order to overcome the genetic limitation of each cultivated species, at each agroecosystem. Cytogenetics has given a great contribution to wheat genetic studies and breeding, due to viability of chromosomal variants because of homoeology among genomes in this allohexaploid species and the genus Triticum. The level of development of cytogenetic techniques achieved over the last 60 years has set wheat apart from other cereal crops in terms of possibilities to introduce genetic material from other species. Cytogenetic approaches have been extensively used in chromosomal mapping and/or resistance gene transference from tribe Triticeae-related species. Monosomic analysis, entire chromosomes engineered through single additions and/or substitutions, reciprocal translocation through radiation or manipulation of homoeologous pairing, as well as synthesis of new amphiploids to allow homologous recombination by chiasmata evolved considerably since the past decades. The association of tissue culture and molecular biology techniques provides bread wheat breeding programs with a powerful set of biotechnological tools. However, knowledge on genetic system components, cytotaxonomical relationships, cytogenetic structure and evolutionary history of wheat species cannot be neglected. This information indicates the appropriate strategy to avoid isolation mechanisms in interspecific or intergeneric crosses, according to the genome constitution of the species the desired gene is to be transferred from. The development of amphiploids as "bridge" species is one of the available procedures

  12. Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy

    DEFF Research Database (Denmark)

    Ringsted, Tine; Siesler, Heinz Wilhelm; Engelsen, Søren Balling

    2017-01-01

    Staling of bread is a major source of food waste and efficient monitoring of it can help the food industry in the development of anti-staling recipes. While the staling fingerprint in the mid-infrared region is fairly well established this paper set out to find the most informative parts...... of the near-infrared spectra with respect to staling. For this purpose, two-dimensional correlation spectroscopy on near- and mid-infrared spectra of wheat bread crumb during aging was employed for the first time. The important mid-infrared absorption band at 1047 cm−1 related to amylopectin retrogradation...... was found to correlate positively with increased bread hardness and to co-vary with the near-infrared band at 910 nm in the short wavelength region (r2 = 0.88 to hardness), the near-infrared band at 1688 nm in the 1. overtone region (r2 = 0.97 to hardness) and to the near-infrared band in the long...

  13. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches.

    Science.gov (United States)

    Ormoli, Leonardo; Costa, Corrado; Negri, Stefano; Perenzin, Maurizio; Vaccino, Patrizia

    2015-02-25

    A collection of 157 Triticum aestivum accessions, representative of wheat breeding in Italy during the 20(th) century, was assembled to describe the evolutionary trends of cultivated varieties throughout this period. The lines were cultivated in Italy, in two locations, over two growing seasons, and evaluated for several agronomical, morphological and qualitative traits. Analyses were conducted using the most common univariate approach on individual plant traits coupled with a correspondance multivariate approach. ANOVA showed a clear trend from old to new varieties, leading towards earliness, plant height reduction and denser spikes with smaller seeds. The average protein content gradually decreased over time; however this trend did not affect bread-making quality, because it was counterbalanced by a gradual increase of SDS sedimentation volume, achieved by the incorporation of favourable alleles into recent cultivars. Correspondence analysis allowed an overall view of the breeding activity. A clear-cut separation was observed between ancient lines and all the others, matched with a two-step gradient, the first, corresponding roughly to the period 1920-1940, which can be ascribed mostly to genetics, the second, from the 40s onward, which can be ascribed also to the farming practice innovations, such as improvement of mechanical devices and optimised use of fertilizers.

  14. Chemical Composition and Quality Characteristics of Wheat Bread Supplemented with Leafy Vegetable Powders

    Directory of Open Access Journals (Sweden)

    T. V. Odunlade

    2017-01-01

    Full Text Available The study investigated the effect of supplementation of the leaf powders of Telfairia occidentalis, Amaranthus viridis, and Solanum macrocarpon on the chemical composition and the quality characteristics of wheat bread. The bread samples were supplemented with each of the vegetable leaf powders at 1%, 2%, and 3% during preparation. The bread samples were assayed for proximate composition, mineral composition, physical, sensory, and antioxidant properties using standard methods. The addition of vegetable powders significantly increased the protein (9.50 to 13.93%, fibre (1.81 to 4.00%, ash (1.05 to 2.38%, and fat (1.27 to 2.00%. Supplementation with vegetable powder however significantly decreased (p<0.05 the carbohydrate and moisture contents. Significant (p<0.05 increases were recorded for all evaluated minerals as the level of vegetable powder increased. Supplementation with vegetable powder caused significant decrease in total phenolic content, percentage DPPH inhibition, metal chelating ability, ferric reducing antioxidant power, and total antioxidant capacity. Sensory results showed that there was significant decrease in sensory qualities with increasing supplementation. This therefore suggests that bread supplemented with vegetable powder could have more market penetration if awareness is highly created.

  15. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality.

    Science.gov (United States)

    Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen

    2018-03-01

    A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

  16. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  17. Study of improving the quality of bread and wheat-aegilops hybrids with the biotechnological ways

    Science.gov (United States)

    Ganbarzada, Aygun; Hasanova, Sudaba

    2016-08-01

    The great need of the people to bread demands to increase high qualitative grain plants. At present time for solving these problem different methods of biochemistry, genetics and molecular biology are widely used in the process of selection. To investigate biochemical peculiarities of wheat-aegilops hybrids and to define the correlative relation between these characteristics. To investigate the technological peculiarities of wheat- aegilops hybrids and to define the relation between their main biochemical and technological characteristics. The conclusion of this investigation showed the followings- the wheat-aegilops hybrids according to their morphological and biochemical characteristics have approached to wheats. The electrophoretic spectres of the wheat- aegilops hybrids which have stable for their morphological characteristics are homogeny and heterogenic. Hereditarily some group protein components have passed to their tribes from their parents. But spontaneous hybridisation results in taking part the components of other unknown wheats in these electrophoretic spectres. There is a relation between the electrophoretic spectres and the indications of the grain quality.

  18. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  19. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    Science.gov (United States)

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2

    DEFF Research Database (Denmark)

    Zhu, X.; Song, F.; Liu, S.

    2016-01-01

    fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non-AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE...... role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l−1) and salinity......, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress....

  1. Features of the organization of bread wheat chromosome 5BS based on physical mapping

    Czech Academy of Sciences Publication Activity Database

    Salina, E.A.; Nesterov, V.; Frenkel, Z.; Kiseleva, V. I.; Timonova, E. M.; Magni, F.; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, A.; Sergeeva, E.M.

    2018-01-01

    Roč. 19, FEB 9 (2018), č. článku 80. ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Chromosome 5BS * Genetic markers * Hexaploid wheat * Physical mapping * Sequencing * Synteny * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  2. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    Science.gov (United States)

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  3. Effects of Whole Grain Wheat Bread on Visceral Fat Obesity in Japanese Subjects: A Randomized Double-Blind Study.

    Science.gov (United States)

    Kikuchi, Yosuke; Nozaki, Satomi; Makita, Miki; Yokozuka, Shoji; Fukudome, Shin-Ichi; Yanagisawa, Takashi; Aoe, Seiichiro

    2018-04-18

    Metabolic syndrome is a risk factor for cardiovascular diseases and has become increasingly common in Japan. Epidemiological studies show inverse associations between intake of whole wheat grains and metabolic syndrome, but few dietary intervention trials have investigated the effect of whole wheat grain consumption. It was investigated whether a diet in which refined wheat bread (RW diet) was substituted by whole grain wheat bread (WW diet) would reduce visceral fat obesity in Japanese subjects. A randomized double-blind placebo-controlled intervention study was conducted in 50 Japanese subjects with body mass index (BMI) ≥ 23 kg/m 2 . Subjects were randomly assigned WW (WW group) or RW diets (RW group) for 12 weeks. Blood samples and computed tomography scans were obtained every 6th week. The WW group showed decrease (-4 cm 2 ) in visceral fat area (VFA) (p < 0.05), whereas the RW group showed no significant changes. These time-dependent changes were significantly different between the groups. WW diet led to significant and safe reductions in VFA in subjects with BMI ≥ 23 kg/m 2 . WW diet may contribute to preventing visceral fat obesity.

  4. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Lisetta Ghiselli

    2016-08-01

    Full Text Available Bread wheat (Triticum aestivum L. is an important cereal in human consumption. In recent years, there has been a growing interest in ancient wheat varieties. The latter represent an important source of germplasm, characterised by a broader genetic base and, therefore, a potential source of biodiversity. The objective of the study was to ascertain the optimal balance between the presence of secondary metabolites having beneficial effects on health and technological features that ensure successful baking quality. The experimental trial was performed in 2011-2012 on three organic farms located in three different areas within the province of Siena (Tuscany. In each location, an overall evaluation of the commercial, rheological and functional properties of five ancient Tuscan bread wheat varieties (Andriolo, Frassineto, Gentil rosso, Inallettabile 96, Verna as compared with a commercial modern variety (Palesio was carried out. The ancient varieties were compared both singularly (pure and in combination (mixtures of two varieties in equal proportion, respectively. Biometric and productive parameters were detected for each plot (32 plots in each farm. Macro- and trace elements, polyphenols, flavonoids and antioxidant activity (antiradical power, ARP were similarly determined on representative whole grain samples. Rheological analysis was carried out on flour samples. The multivariate statistical analysis using principal components analysis was performed on all variables analysed. The results showed a significant environment effect on the different parameters measured and did not reveal significant improvements in the variables measured when varieties were cultivated in mixtures. However, the study did reveal various interesting trends that are warranting of further investigation. The most interesting effect from a nutritional and functional point of view is the relationship between ARP, rheological properties, protein content and gluten content. These

  5. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  6. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L. collection.

    Directory of Open Access Journals (Sweden)

    István Monostori

    Full Text Available To satisfy future demands, the increase of wheat (Triticum aestivum L. yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE, are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat

  7. Mechanism of Resistance in two Bread Wheat (Triticum Aestivum L.) Lines to Russian Wheat Aphid (Diuraphis Noxia: Homoptra: Aphididae) in Kenya

    International Nuclear Information System (INIS)

    Malinga, J.N.

    2002-01-01

    Russian wheat aphid (Diuraphis noxia) is a recent pest of small cereals that is causing severe yield losses in farmers' fields and farmers have demanded a resistant wheat line. In wheat the pest causes both direct and indirect damage resulting in losses of up to 90%. Control of the aphid is a major constraint in the production of wheat in Kenya requiring the use of more than one systematic insecticide application.This cost is prohibitive.Breeding wheat for resistance to Russian wheat is the cheapest alternative and is the international trend. The use of Russian wheat aphid resistant cultivars may reduce the impact of these pest on cereal production. A study was therefore conducted in Kenya to understand and determine the genetics of inheritance pattern of D. noxia present in two new sources of resistance (RWA 8 and RWA 16). These two new sources would be potential donors of D. noxia resistance in breeding programmes. The two resistant donors with unknown resistance genes for Diuraphis noxia were crossed with susceptible Kenyan commercial wheat cultivar, Heroe. Resistant reaction of F 1 ,BC 1 and F2 indicated that resistance in the two lines differed. Resistant in RWA 8 may be controlled by a single dominant genes while RWA 16 by two incomplete dominant genes. It is unknown wether these genes are identical to any known, designated resistance genes. However, their resistance has been shown to be effective on the RWA population in Kenya. As studies continue on these genes at molecular level, it is recommended that resistant populations are carried on through the breeding programme to possibly identify and release a resistant variety for commercial production

  8. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  9. Performance of iron spot test with Arabic bread made from fortified white wheat flour.

    Science.gov (United States)

    Nichols, Erin; Aburto, Nancy; Masa'd, Hanan; Wirth, James; Sullivan, Kevin; Serdula, Mary

    2012-09-01

    The iron spot test (IST) is a simple qualitative technique for determining the presence of added iron in fortified flour. IST performance in bread has never been investigated. If found to perform well, the IST has the potential to provide a field-friendly method for testing bread and thus support the monitoring and evaluation of flour fortification programs. To assess the performance of the IST in Arabic bread made from white wheat flour. Bread samples were collected from 1,737 households during a national micronutrient survey in Jordan. A subsample of Arabic bread (n = 44) was systematically selected for testing by both the IST and spectrophotometry (criterion reference). Performance measures (sensitivity, specificity, and positive and negative predictive values) were calculated using five cutoffs to define the presence of added iron, including > or = 15.0 ppm (approximate level of natural iron in Arabic bread) and four additional cutoffs based on test performance. The iron contents of samples testing negative by IST ranged from 10.4 to 18.4 ppm, with one outlier at 41.0 ppm, which was excluded from subsequent analyses. The iron contents of samples testing positive by IST ranged from 16.1 to 38.4 ppm. With the exception of negative predictive values for the two lowest cutoffs (> or = 15.0 and > or = 16.1 ppm), all performance measures exceeded 83.3%. These results show promise for the IST as an inexpensive, field-friendly method for testing bread that could have a useful role in the monitoring and evaluation process for flour fortification programs.

  10. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Dongling; Hao, Chenyang; Wang, Lanfen; Zhang, Xueyong

    2012-11-01

    Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i.e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.

  11. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L. Estimated by SSR, DArT and Pedigree Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Laidò

    Full Text Available Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2, both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg and brittle rachis (Br characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.

  12. Quality Parameters Of Wheat Bread Enriched With Pumpkin (Cucurbita Moschata) By-Products

    OpenAIRE

    Kampuse Solvita; Ozola Liene; Straumite Evita; Galoburda Ruta

    2015-01-01

    Pumpkin processing into puree, juice, candied fruit and pumpkin seed oil results in large amount of by-products. Pumpkins are rich in carotenes, vitamins, minerals, pectin and dietary fibre. The aim of the current study was to evaluate effect of pumpkin pomace and pumpkin residue powder on wheat bread quality. The total content of carotenes was analyzed by spectrophotometric method. The initial increase of pumpkin residue addition indicated increase in loaf volume, which started to decrease a...

  13. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

    Science.gov (United States)

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-02-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread.

    Science.gov (United States)

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-10-04

    Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56%  reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.

  15. Enhancement of the folate content in Egyptian pita bread.

    Science.gov (United States)

    Hefni, Mohammed; Witthöft, Cornelia M

    2012-01-01

    Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi) bread, which is consumed daily. Bioprocessing (e.g. germination) has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF). Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined. Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter). The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF). Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg.

  16. Enhancement of the folate content in Egyptian pita bread

    Directory of Open Access Journals (Sweden)

    Cornelia M. Witthöft

    2012-04-01

    Full Text Available Introduction: Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi bread, which is consumed daily. Bioprocessing (e.g. germination has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF.Methods: Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined.Results: Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter. The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF.Conclusion: Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg.

  17. Aroma of Wheat Bread Crumb

    DEFF Research Database (Denmark)

    Birch, Anja Niehues

    and the volatile compounds from the bread crumb were extracted by dynamic headspace sampling and analysed by gas chromatography mass spectrometry. A wide range of volatile compounds was identified in bread crumb, mainly originating from the activity of yeast and from oxidation of flour lipids. The dominating...... headspace extraction (Paper II, III and V). The compounds were evaluated according to their odour activity value (OAV). The most aroma active compounds (OAV > 6) identified in bread crumb were; (E)-2-nonanal (green, tallow), 3-methylbutanal (malty), 3-methyl-1-butanol (balsamic, alcoholic), nonanal (citrus...

  18. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon.

    Science.gov (United States)

    Yin, Xiao Le; Jiang, Lei; Song, Ning Hui; Yang, Hong

    2008-06-25

    The herbicide isoproturon is widely used for controlling weed/grass in agricultural practice. However, the side effect of isoproturon as contaminants on crops is unknown. In this study, we investigated isoproturon-induced oxidative stress in wheat ( Triticum aestivum). The plants were grown in soils with isoproturon at 0-20 mg/kg and showed negative biological responses. The growth of wheat seedlings with isoproturon was inhibited. Chlorophyll content significantly decreased at the low concentration of isoproturon (2 mg/kg), suggesting that chlorophyll was rather sensitive to isoproturon exposure. The level of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, showed an increase, indicating oxidative damage to plants. The isoproturon-induced oxidative stress resulted in a substantial change in activities of the majority of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Activities of the antioxidant enzymes showed a general increase at low isoproturon concentrations and a decrease at high isoproturon concentrations. Activities of CAT in leaves showed progressive suppression under the isoproturon exposure. Analysis of nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed these results. We also tested the activity of glutathione S-transferase (GST) and observed the activity stimulated by isoproturon at 2-10 mg/kg.

  19. Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum eastivum)

    DEFF Research Database (Denmark)

    Mansion-Vaquie, Agathe; Ferrante, Marco; Cook, S M

    2017-01-01

    , intraguild predation, hyperparasitism) may complicate the assumption that a higher density of natural enemies would increase the level of biological control. We investigated the natural enemy guild composition and the predation rate along flower vs. grass margins at the edge of winter wheat (Triticum...... to the two margin types: specialists (mostly parasitic wasps) were attracted by the flower margins, while generalists (ground beetles, rove beetles and spiders) were more active in grass margins. The number of artificial caterpillars attacked was significantly greater in grass margins (mean = 48.9%, SD = 24...

  20. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    Science.gov (United States)

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    Science.gov (United States)

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil. Copyright © 2015. Published by Elsevier B.V.

  2. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  3. Modulation of nonessential amino acid biosynthetic pathways in virulent Hessian fly larvae (Mayetiola destructor), feeding on susceptible host wheat (Triticum aestivum)

    Science.gov (United States)

    Hessian fly (Mayetiola destructor), an obligate plant-parasitic gall midge, is an important dipteran pest of wheat (Triticum aestivum). The insect employs an effector-based feeding strategy to reprogram the host plant to be nutritionally beneficial for the developing larva by inducing formation of p...

  4. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  5. New wheat cultivars induced by fast neutrons in Iraq

    International Nuclear Information System (INIS)

    Ibrahim, I.F.; Al-Maaroof, E.M.; Al-Aubaidi, M.O.; Al-Janabi, K.K.; Al-Janabi, A.A.; Al-Rawi, L.; Ali, A.H.

    1994-01-01

    Wheat (Triticum aestivum L. ssp. aestivum) seeds from the cultivar Mexipak and F2 of the cross SaberBeg/Mexipak and saberBeg/Mexipak/Abu-Ghraib-4 were irradiated with fast neutrons and screened for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) during three generations. Thirty-eight and 226 variants showing resistant and moderately resistant reactions, respectively, were selected. Of these variants three mutants showing genetic purity and stability were studied for yield components for four successive generations. Analyses of proteins and isozymes along with chemical and physical properties were conducted on these mutants and their parents. Data on disease incidence, lodging, shattering and yield components indicated that all the mutants significantly surpassed the cultivars Mexipak, SaberBeg and Abu-Ghraib-4. Both mutants Tamuz-1 and Tamuz-2 surpassed Mexipak in bread-making quality, while the mutant Tamuz-3 had a higher tendency for better bread-making quality than Mexipak or SeberBeg

  6. Screening commercial wheat (triticum aestivum l.) varieties for agrobacterium mediated transformation ability

    International Nuclear Information System (INIS)

    Abid, N.; Maqbool, A.; Mlaik, K.

    2014-01-01

    Wheat is staple food crop of many countries including Pakistan. It has a large number of cultivars and genotypes. All genotypes have different tissue culture response that includes callus induction, regeneration and transformation efficiency. For transgenic plant production it is crucial to know tissue culture efficiency of a selected variety. Therefore, in the present study mature embryos of thirteen elite wheat (Triticum aestivum L.) varieties were evaluated for tissue culture response and their amenability to transformation. Each variety responded differently for callogenesis, transient GUS (glucuronidase) expression and regeneration. The results for callus induction and transient GUS expression ranged from 30-100% and 13-100%, respectively whereas regeneration response was quite different in tested varieties that ranged from 0-44%. Good quality callus was observed in all varieties except Dhurabi-11, Lasani-08, Millat and Pak-81. Maximum transient GUS expression (100%) was found in Faisalabad-2008. Highest regeneration (44%) was noticed in Pak-81. Results indicated that three varieties VIII-83, Faisalabad-2008 and Aas-11 are suitable for transformation in comparison to others. (author)

  7. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread.

    Science.gov (United States)

    Rebellato, Ana Paula; Bussi, Jéssica; Silva, Joyce Grazielle Siqueira; Greiner, Ralf; Steel, Caroline Joy; Pallone, Juliana Azevedo Lima

    2017-04-01

    This study aimed at investigating the effect of iron compounds used in whole wheat flour (WWF) fortification, both on rheological properties of the dough and on bread technological quality. Furthermore, bioaccessibility of iron (Fe), zinc (Zn) and calcium (Ca) in the final breads was determined. Rheological properties (mainly dough development time, stability, mixing tolerance index, resistance to extension and ratio number) of the dough and the technological quality of bread (mainly oven spring and cut opening) were altered. However, producing roll breads fortified with different iron compounds was still possible. NaFeEDTA (ferric sodium ethylene diamine tetra acetic acid) proved to be the most effective iron compound in the fortification of WWF, since it presented the highest levels of solubility (44.80%) and dialysability (46.14%), followed by microencapsulated ferrous fumarate (FFm). On the other hand, the microencapsulated ferrous sulfate (FSm) and reduced iron presented the lowest solubility (5.40 and 18.30%, respectively) and dialysability (33.12 and 31.79%, respectively). Zn dialysis was positively influenced by NaFeEDTA, FSm, and ferrous fumarate. As for Ca, dialysis was positively influenced by FSm and negatively influenced by FFm. The data indicated that there is a competitive interaction for the absorption of these minerals in whole wheat roll breads, but all studied minerals can be considered bioaccessible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G T [Universita della Tuscia, Viterbo (Italy); D' Amato, F [Dipartimento di Biologia delle Piante Agrarie, Universita di Pisa (Italy); Avanzi, S [Dipartimento di Botanica, Universita di Pisa (Italy); and others

    1993-12-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  9. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    International Nuclear Information System (INIS)

    Scarascia-Mugnozza, G.T.; D'Amato, F.; Avanzi, S.

    1993-01-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  10. Molecular markers based identification of diversity for drought tolerance in bread wheat varieties and synthetic hexaploids.

    Science.gov (United States)

    Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer

    2009-01-01

    The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.

  11. Nitrogen use efficiency in bread wheat (#T. aestivum L.#): breeding and gene discovery

    OpenAIRE

    Cormier, Fabien

    2015-01-01

    In a context of fertiliser reduction, breeding for enhanced nitrogen use efficiency in bread wheat is necessary. This PhD thesis resulting from private-public collaboration between the French National Institute for Agricultural Research and Biogemma aimed providing necessary tools. Analyses were conducted using a dataset of 225 commercial varieties genotyped with 24K SNP and tested in eight combinations of year, location, and nitrogen regimes. We showed that even if past selection increased n...

  12. Eating Christmas Cookies, Whole-wheat Bread and Frozen Chicken in the Kindergarten: Doing Pedagogy by Other Means

    NARCIS (Netherlands)

    Kontopodis, M.

    2013-01-01

    The study presented here explores eating as a pedagogical practice by paying attention to arrangements of things such as Christmas cookies, whole-wheat and white bread, frozen chicken, plates, chairs, tables, and freezers. Through a series of ethnographic research examples from German and Brazilian

  13. Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification.

    Science.gov (United States)

    Nionelli, Luana; Montemurro, Marco; Pontonio, Erica; Verni, Michela; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2018-08-20

    Lactic acid bacteria were isolated from hemp (Cannabis sativa L.) flour, spontaneously fermented dough, and type I sourdough. Isolates were identified and further selected based on pro-technological, nutritional and functional properties. Lactobacillus plantarum/s5, Pediococcus acidilactici/s5, and Leuconostoc mesenteroides/s1 were used as mixed starter to produce hemp sourdough. Significant decreases of the concentration of phytic acid, condensed tannins, and total saponins were observed during fermentation. The in vitro protein digestibility increased up to 90%. Experimental wheat breads were made adding 5% to 15% (w/w) hemp sourdough to the formula, characterized, and compared to baker's yeast wheat bread manufactured without hemp sourdough. The use of hemp sourdough improved the textural features of wheat bread, without adversely affect the sensory profile. Proportionally to the fortification with hemp sourdough, protein digestibility of the breads increased, while the predicted glycemic index significantly decreased (87 vs 100%). This work demonstrated that the fermentation with selected starters improved nutritional functionality of hemp flour, allowing its large-scale use in different food applications, meeting the consumers and producers request for novel fermented baked goods with a well-balanced nutritional profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Multi-element analysis of wheat flour and white bread by neutron activation

    International Nuclear Information System (INIS)

    Godinez A, M.A.

    1994-01-01

    One of the best source of feeding even for the human being as for animals are the Cereals. Although they are mainly energetic aliment, due to its composition in starch, they are a very important source of proteins and amino acids. They contribute mineral elements to the diet. Even those elements constitute a very small part of the total diet, they take a very important place in many human metabolic processes. To make a multielemental analysis of an aliment is very important that we are based on a very sensible analytic technique so we are able to find them, just as the Neutronic Activation. This Nuclear technique allows you to make a qualitative and quantitative analysis of the elements that are in a sample, but it does n't show the way in which the elements are presented. It is based in turning those elements into radioactive ones through its exposition to an uniform and constant fluid of neutrons, so then its radioactivity can be determined. The present work has as a main purpose to make a multielemental analysis of the wheat flour and white bread through the Neutronic Activation Technique, using the comparator method and establishing previously the most appropriate work conditions as much irradiation as digestion and measuring of the radioactivity of the sample. In this way, it was able to know that the wheat flour has potassium, chlorine, magnesium, sodium, iron, zinc, manganese, rubidium and selenium elements in a concentration of 2000, 700, 500, 25, 18, 13, 5.5, 0.9 and 0.01 - 0.3 mg/g respectively. In an other hand it was found that the white bread has the same elements than the wheat flour but its concentration was: 1700, 9000, 400, 7000, 52, 13, 6, 1 and 0.05 - 0.3 mg/g respectively. (Author)

  15. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    Science.gov (United States)

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  17. Characterization of Tamyb10 allelic variants and development of STS marker for pre-harvest sprouting resistance in Chinese bread wheat.

    Science.gov (United States)

    Wang, Y; Wang, X L; Meng, J Y; Zhang, Y J; He, Z H; Yang, Y

    2016-01-01

    Wheat grain color does not only affect the brightness of flour but also seed dormancy and pre-harvest sprouting (PHS) tolerance. The transcription factor Tamyb10 is an important candidate for R-1 gene, and the expression of its homologs determines wheat seed coat color. In the present study, the allelic variations of Tamyb10 were explored in a set of Chinese bread wheat varieties and advanced lines with different PHS tolerance, and a sequenced-tagged site (STS) marker for Tamyb10-D1 gene was developed, designated as Tamyb10D , which could be used as an efficient and reliable marker to evaluate the depth dormancy of wheat seeds. Using the marker Tamyb10D , 1629- and 1178-bp PCR fragments were amplified from the tolerant varieties, whereas a 1178-bp fragment was from the susceptible ones. Of the Chinese bread wheat varieties and advanced lines, 103 were used to validate the relationship between the polymorphic fragments of Tamyb10D and PHS tolerance. Statistical analysis indicated that Tamyb10D was significantly ( P  varieties, 8 Tamyb10 genotypes ( Tamybl0-A1 , Tamybl0-B1 , and Tamyb10-D1 loci) were detected, namely, aaa, aab, aba, abb, baa, bab, bba, and bbb, and these were significantly associated with GI value.

  18. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI).

    Science.gov (United States)

    Li, Juan; Kang, Ji; Wang, Li; Li, Zhen; Wang, Ren; Chen, Zheng Xing; Hou, Gary G

    2012-07-04

    A new method, a magnetic resonance imaging (MRI) technique characterized by T(2) relaxation time, was developed to study the water migration mechanism between arabinoxylan (AX) gels and gluten matrix in a whole wheat dough (WWD) system prepared from whole wheat flour (WWF) of different particle sizes. The water sequestration of AX gels in wheat bran was verified by the bran fortification test. The evaluations of baking quality of whole wheat bread (WWB) made from WWF with different particle sizes were performed by using SEM, FT-IR, and RP-HPLC techniques. Results showed that the WWB made from WWF of average particle size of 96.99 μm had better baking quality than those of the breads made from WWF of two other particle sizes, 50.21 and 235.40 μm. T(2) relaxation time testing indicated that the decreased particle size of WWF increased the water absorption of AX gels, which led to water migration from the gluten network to the AX gels and resulted in inferior baking quality of WWB.

  19. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  20. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  1. Assessment of heritability and genetic advance for agronomic traits in durum wheat (Triticum durum Desf.

    Directory of Open Access Journals (Sweden)

    HASSAN NIKKHAHKOUCHAKSARAEI

    2017-09-01

    Full Text Available In order to evaluate the amount of heritability for desirable agronomic characteristics and the genetic progress associated with grain yield of durum wheat (Triticum durum Desf., a split plot experiment was carried out with four replications during three cropping seasons (2009-2012. Three sowing dates (as environmental factor and six durum wheat varieties (as genotypic factor were considered as main and sub factors respectively. Analysis of variance showed interaction effects between genotypes and environments in days to ripening, plant height, spike length, number of grains per spike, number of spikes per unit area, grain mass and grain yield. The grain yield showed the highest positive correlation with number of grains per spike also grain mass (91 % and 85 %, respectively. A relatively high heritability of these traits (82.1 % and 82.2 %, respectively suggests that their genetic improvement is possible. The maximum genetic gain (19.6 % was observed for grain mass, indicating this trait should be a very important indicator for durum wheat breeders, although the climatic effects should not be ignored.

  2. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat.

    Science.gov (United States)

    Thomas, Mathieu; Demeulenaere, Elise; Dawson, Julie C; Khan, Abdul Rehman; Galic, Nathalie; Jouanne-Pin, Sophie; Remoue, Carine; Bonneuil, Christophe; Goldringer, Isabelle

    2012-12-01

    Since the domestication of crop species, humans have derived specific varieties for particular uses and shaped the genetic diversity of these varieties. Here, using an interdisciplinary approach combining ethnobotany and population genetics, we document the within-variety genetic structure of a population-variety of bread wheat (Triticum aestivum L.) in relation to farmers' practices to decipher their contribution to crop species evolution. Using 19 microsatellites markers, we conducted two complementary graph theory-based methods to analyze population structure and gene flow among 19 sub-populations of a single population-variety [Rouge de Bordeaux (RDB)]. The ethnobotany approach allowed us to determine the RDB history including diffusion and reproduction events. We found that the complex genetic structure among the RDB sub-populations is highly consistent with the structure of the seed diffusion and reproduction network drawn based on the ethnobotanical study. This structure highlighted the key role of the farmer-led seed diffusion through founder effects, selection and genetic drift because of human practices. An important result is that the genetic diversity conserved on farm is complementary to that found in the genebank indicating that both systems are required for a more efficient crop diversity conservation.

  3. Forming of productivity of new soft winter wheat varieties (Triticum aestivum L. subject to phyto-virus pressure

    Directory of Open Access Journals (Sweden)

    В. П. Петренкова

    2008-10-01

    Full Text Available The infection by phytoviruses and the productivity formation in the new varieties of winter bread wheat in the different years with virus damage were investigated. There were identified the varieties being more tolerant to the observed diseases, among these - the samples with different constituents of tolerance, which could be used in the breeding programs.

  4. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf. Varieties Grown in Dry Regions of Jordan

    Directory of Open Access Journals (Sweden)

    Abdul Latief A. Al-Ghzawi

    2018-05-01

    Full Text Available One critical challenge facing the world is the need to satisfy the food requirements of the dramatically growing population. Drought stress is one of the main limiting factors in the wheat-producing regions; therefore, wheat yield stability is a major objective of wheat-breeding programs in Jordan, which experience fluctuating climatic conditions in the context of global climate change. In the current study, a two-year field experiment was conducted for exploring the effect of four different water regimes on the yield, yield components, and stability of three wheat (Triticum aestivum L.; T. durum Desf. Jordanian cultivars as related to Canopy Temperature Depression (CTD, and Chlorophyll Content (measured by Soil-Plant Analysis Development, SPAD. A split plot design was used in this experiment with four replicates. Water treatment was applied as the main factor: with and without supplemental irrigation; 0%, 50%, 75%, and 100% of field capacity were applied. Two durum wheat cultivars and one bread wheat cultivar were split over irrigation treatments as a sub factor. In both growing seasons, supplemental irrigation showed a significant increase in grain yield compared to the rain-fed conditions. This increase in grain yield was due to the significantly positive effect of water availability on yield components. Values of CTD, SPAD, harvest index, and water use efficiency (WUE were increased significantly with an increase in soil moisture and highly correlated with grain yield. Ammon variety produced the highest grain yield across the four water regimes used in this study. This variety was characterized by the least thermal time to maturity and the highest values of CTD and SPAD. It was concluded that Ammon had the highest stability among the cultivars tested. Furthermore, CTD and SPAD can be used as important selection parameters in breeding programs in Jordan to assist in developing high-yielding genotypes under drought and heat stress conditions.

  5. Gluten of spelt wheat (Triticum aestivum subspecies spelta) as a source of peptides promoting viability and product yield of mouse hybridoma cell cultures

    Czech Academy of Sciences Publication Activity Database

    Franěk, František

    2004-01-01

    Roč. 52, č. 13 (2004), s. 4097-4100 ISSN 0021-8561 Institutional research plan: CEZ:AV0Z5038910 Keywords : spelt wheat (Triticum aestivum subsp spelta) * gluten * peptides Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.327, year: 2004

  6. High insoluble fibre content increases in vitro starch digestibility in partially baked breads.

    Science.gov (United States)

    Ronda, Felicidad; Rivero, Pablo; Caballero, Pedro A; Quilez, Joan

    2012-12-01

    Wheat breads prepared from frozen partially baked breads were characterized by their content of rapidly digestible starch (RDS) and slowly digestible starch (SDS) by the in vitro starch digestibility method developed by Englyst. Breads with different contents and types of fibre and breads prepared with different fermentation processes were studied. Bread with inulin and with a double fermentation had the lowest RDS content of 58.8 ± 1.7 and 60.0 ± 1.9 (% dry matter), respectively. Wheat bran bread, seeded bread, triple fermentation white bread and baguette-type bread showed values of RDS between 63.1 ± 1.7 and 65.7 ± 1.7 with no significant differences between them (p breads than in breads with added fibre. The highest values of the starch digestive rate index (SDRI) were obtained by the three types of breads with added fibre, which ranged from 91.8 ± 3.5 to 95.8 ± 3.5 versus 80.2 ± 3.5 to 87.5 ± 3.5 for white wheat breads. A significant (p bread crumbs corroborated this statement.

  7. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    Science.gov (United States)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  8. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat · Sushil Kumar Vishakha Sharma Swati Chaudhary Anshika Tyagi Poonam Mishra Anupama Priyadarshini ...

  9. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Kubaláková, Marie; Šimková, Hana; Farkas, A.; Cseh, A.; Megyeri, M.; Vrána, Jan; Molnár-Láng, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 127, č. 5 (2014), s. 1091-1104 ISSN 0040-5752 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : SYNTHETIC HEXAPLOID WHEAT * AEGILOPS-TRITICUM GROUP * GENETIC-LINKAGE MAP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.790, year: 2014

  10. Oxylipins discriminate between whole grain wheat and wheat aleurone intake: a metabolomics study on pig plasma

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    were also found in the flour and the bread consumed by pigs. Since the germ is part of the whole grain flour, the germ is most likely responsible for the elevated level of oxylipins in plasma after whole grain wheat consumption. This finding may also point towards bioactive compounds, which can be used......A pig model was used to investigate the difference in metabolic response of plasma between whole grain wheat and wheat aleurone. Six pigs were fed in a cross-over design iso dietary fiber (DF) breads prepared from whole grain wheat and wheat aleurone and with a wash-out diet based on bread produced...

  11. Multigrain bread processing with extruded flours

    Directory of Open Access Journals (Sweden)

    María José Crosa Balestra

    2014-12-01

    Full Text Available The effect in bread quality of a new bread making process and two replacement levels (20%, 36% of refined wheat flour by extrusion precooked prepared based on combination of oats, soybeans and wheat bran was studied. Composite flour was characterized according to its functional properties (water absorption index, grain size and nutritional properties (protein, total fiber, soluble fiber, ash, fat. The volume, whiteness index, rheological measurements (hardness, cohesiveness, springiness and chewiness of the bread were monitored. No significant changes were recorded in hardness, elasticity and chewiness of bread according to the level of substitution of composite flour; bread with 36% substitution was 7% less cohesive, with 27% less volume bread with 20% substitution. The process conditions caused greatest impact on the quality of bread. The new process resulted in a 37% increase in volume, 6% elasticity, 15% of cohesiveness and 44% decrease in hardness and 34% in chewiness, compared to the traditional process. This trend continued in the four days following the date of processing. The substitution level of composite flour did not cause significant changes in hardness, elasticity and chewiness of bread, but changes were observed in cohesiveness and volume. Bread with 36% substitution was 7% less cohesive, with 27% less volume than the 20% substitution.

  12. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread.

    Science.gov (United States)

    Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura

    2017-07-12

    The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.

  13. The influence of Glu-1 and Glu-3 loci on dough rheology and bread-making properties in wheat (Triticum aestivum L.) doubled haploid lines.

    Science.gov (United States)

    Langner, Monika; Krystkowiak, Karolina; Salmanowicz, Bolesław P; Adamski, Tadeusz; Krajewski, Paweł; Kaczmarek, Zygmunt; Surma, Maria

    2017-12-01

    The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Quality of Bread Supplemented with Antrodia
salmonea-Fermented Grains

    Science.gov (United States)

    Chien, Rao-Chi; Ulziijargal, Enkhjargal

    2016-01-01

    Summary Fermented grains of buckwheat, oat, embryo rice and wheat, which were prepared by solid-state fermentation with Antrodia salmonea, and the mycelium was used to substitute 7% of wheat flour to make bread. No difference in proximate composition, texture profile and contents of non-volatile taste components was observed among bread samples. White bread and bread supplemented with mycelium and fermented grains looked different. Bread supplemented with fermented grains had similar thermal properties, which differed from those of white bread and bread supplemented with mycelium. Bread supplemented with fermented grains contained substantial mass fractions (on dry mass basis) of adenosine (0.92–1.96 µg/g), ergosterol (24.53–30.12 µg/g), ergothioneine (2.16–3.18 µg/g) and γ-aminobutyric acid (2.20–2.45 µg/g). In addition, bread supplemented with mycelium contained lovastatin (0.43 µg/g). White bread and bread supplemented with fermented grains had similar sensory results. Overall, fermented grains could be incorporated into bread to provide beneficial effects. PMID:27904408

  15. Quality of Bread Supplemented with Antrodia salmonea-Fermented Grains

    Directory of Open Access Journals (Sweden)

    Rao-Chi Chien

    2016-01-01

    Full Text Available Fermented grains of buckwheat, oat, embryo rice and wheat, which were prepared by solid-state fermentation with Antrodia salmonea, and the mycelium was used to substitute 7 % of wheat flour to make bread. No difference in proximate composition, texture profile and contents of non-volatile taste components was observed among bread samples. White bread and bread supplemented with mycelium and fermented grains looked different. Bread supplemented with fermented grains had similar thermal properties, which differed from those of white bread and bread supplemented with mycelium. Bread supplemented with fermented grains contained substantial mass fractions (on dry mass basis of adenosine (0.92–1.96 μg/g, ergosterol (24.53–30.12 μg/g, ergothioneine (2.16–3.18 μg/g and γ-aminobutyric acid (2.20–2.45 μg/g. In addition, bread supplemented with mycelium contained lovastatin (0.43 μg/g. White bread and bread supplemented with fermented grains had similar sensory results. Overall, fermented grains could be incorporated into bread to provide beneficial effects.

  16. Characterization of textural, rheological, thermal, microstructural, and water mobility in wheat flour dough and bread affected by trehalose.

    Science.gov (United States)

    Peng, Bo; Li, Youqian; Ding, Shiyong; Yang, Jun

    2017-10-15

    The study aims to elucidate the effects of trehalose on the mechanical, thermal, and rheological properties of wheat flour dough and water distribution in bread. Texture profile analysis, DSC, farinograph, extensograph, and frequency sweep were applied in dough. The results from SEM revealed that the gluten film became less notable with the presence of trehalose. The kinetics of staling process, low-field 1 H NMR, and water-binding capacity were employed to characterize physicochemical properties of bread. Trehalose decreased the staling rate constant k, indicating an inhibitory effect on firming process in bread. Trehalose had the ability to retain water by hindering the interaction among water molecules, gluten and starch, thus relatively increasing the immobility of the part of water represented by T 22 in low-field 1 H NMR tests. Trehalose restricted water mobilization during storage, resulting in a better water-holding capacity. Our findings reveal that trehalose could be an improver in dough and bread-making performance, as well as an antistaling agent in bread. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of RAPD based markers for wheat rust resistance ...

    African Journals Online (AJOL)

    Rust diseases are the major cause of low yield of wheat in Pakistan. Wheat breeders all over the world as well as in Pakistan are deriving rust resistance genes from alien species like Triticum ventricosum and introducing them in common wheat (Triticum aestivum). One such example is the introgression of rust resistance ...

  18. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    Science.gov (United States)

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  19. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Science.gov (United States)

    Dong, Yan; Liu, Jindong; Zhang, Yan; Geng, Hongwei; Rasheed, Awais; Xiao, Yonggui; Cao, Shuanghe; Fu, Luping; Yan, Jun; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  20. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available Water soluble carbohydrates (WSC in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs, and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content and unfavorable alleles (decreasing WSC, indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.