WorldWideScience

Sample records for brca2 breast cancer

  1. BRCA2 Mutations in 154 Finnish Male Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Kirsi Syrjäkoski

    2004-09-01

    Full Text Available The etiology and pathogenesis of male breast cancer (MBC are poorly known. This is due to the fact that the disease is rare, and large-scale genetic epidemiologic studies have been difficult to carry out. Here, we studied the frequency of eight recurrent Finnish BRCA2 founder mutations in a large cohort of 154 MBC patients (65% diagnosed in Finland from 1967 to 1996. Founder mutations were detected in 10 patients (6.5%, eight of whom carried the 9346(-2 A>G mutation. Two novel mutations (4075 delGT and 5808 del5 were discovered in a screening of the entire BRCA2 coding region in 34 samples. However, these mutations were not found in the rest of the 120 patients studied. Patients with positive family history of breast and/or ovarian cancer were often BRCA2 mutation carriers (44%, whereas those with no family history showed a low frequency of involvement (3.6%; P < .0001. Finally, we found only one Finnish MBC patient with 999 dell, the most common founder mutation in Finnish female breast cancer (FBC patients, and one that explains most of the hereditary FBC and MBC cases in Iceland. The variation in BRCA2 mutation spectrum between Finnish MBC patients and FBC patients in Finland and breast cancer patients in Iceland suggests that modifying genetic and environmental factors may significantly influence the penetrance of MBC and FBC in individuals carrying germline BRCA2 mutations in some populations.

  2. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    NARCIS (Netherlands)

    Shimelis, Hermela; Mesman, Romy L. S.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne M. G. R.; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M.; Aittomäki, Kristiina; Andrulis, Irene; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Benitez, Javier; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Broeks, Annegien; Brouwers, Barbara; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Cheng, Ching-Yu; Choi, Ji-Yeob; Collée, J. Margriet; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M.; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Glendon, Gord; Guénel, Pascal; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Hartman, Mikael; Hogervorst, Frans B.; Hollestelle, Antoinette; Hopper, John L.; Ito, Hidemi; Jakubowska, Anna; Kang, Daehee; Kosma, Veli-Matti; Kristensen, Vessela; Lai, Kah-Nyin; Lambrechts, Diether; Marchand, Loic Le; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Machackova, Eva; Mannermaa, Arto; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; Miao, Hui; Michailidou, Kyriaki; Milne, Roger L.; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Olson, Janet E.; Olswold, Curtis; Oosterwijk, Jan J. C.; Osorio, Ana; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D. P.; Pylkäs, Katri; Radice, Paolo; Rashid, Muhammad Usman; Rhenius, Valerie; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schoemaker, Minouk J.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shrubsole, Martha; Shu, Xiao-Ou; Slager, Susan; Southey, Melissa C.; Stram, Daniel O.; Swerdlow, Anthony; teo, Soo H.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; van Asperen, Christi J.; van der Kolk, Lizet E.; Wang, Qin; Winqvist, Robert; Wu, Anna H.; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Leary, Jennifer; Walker, Logan; Foretova, Lenka; Fostira, Florentia; Claes, Kathleen B. M.; Varesco, Liliana; Moghadasi, Setareh; Easton, Douglas F.; Spurdle, Amanda; Devilee, Peter; Vrieling, Harry; Monteiro, Alvaro N. A.; Goldgar, David E.; Carreira, Aura; Vreeswijk, Maaike P. G.; Couch, Fergus J.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk

  3. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs....../2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. RESULTS: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P...

  4. Hereditary Breast Cancer: Mutations Within BRCA1 and BRCA2 with Phenotypic Responses

    National Research Council Canada - National Science Library

    Lynch, Henry T

    2000-01-01

    To date we have seventy-three Hereditary Breast/Ovarian Cancer families with identified BRCA1 or BRCA2 genetic mutations, wherein 24 additional cases of slides and tissue blocks have been retrieved...

  5. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    DEFF Research Database (Denmark)

    Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk ......, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR....... were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA...... of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant...

  6. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries

    Science.gov (United States)

    Kwong, Ava; Shin, Vivian Y; Ho, John C W; Kang, Eunyoung; Nakamura, Seigo; Teo, Soo-Hwang; Lee, Ann S G; Sng, Jen-Hwei; Ginsburg, Ophira M; Kurian, Allison W; Weitzel, Jeffrey N; Siu, Man-Ting; Law, Fian B F; Chan, Tsun-Leung; Narod, Steven A; Ford, James M; Ma, Edmond S K; Kim, Sung-Won

    2015-01-01

    Approximately 5%–10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer. PMID:26187060

  7. The BRCA1 and BRCA2 Genes in Early-Onset Breast Cancer Patients.

    Science.gov (United States)

    Saleem, Mohamed; Ghazali, Mohd Bazli; Wahab, Md Azlan Mohamed Abdul; Yusoff, Narazah Mohd; Mahsin, Hakimah; Seng, Ch'ng Ewe; Khalid, Imran Abdul; Rahman, Mohd Nor Gohar; Yahaya, Badrul Hisham

    2018-04-24

    Approximately 5-10% of breast cancers are attributable to genetic susceptibility. Mutations in the BRCA1 and BRCA2 genes are the best known genetic factors to date. The goal of this study was to determine the structure and distribution of haplotypes of the BRCA1 and BRCA2 genes in early-onset breast cancer patients. We enrolled 70 patients diagnosed with early-onset breast cancer. A total of 21 SNPs (11 on BRCA1 and 10 on BRCA2) and 1 dinucleotide deletion on BRCA1 were genotyped using nested allele-specific PCR methods. Linkage disequilibrium (LD) analysis was conducted, and haplotypes were deduced from the genotype data. Two tightly linked LD blocks were observed on each of the BRCA1 and BRCA2 genes. Variant-free haplotypes (TAT-AG for BRCA1 and ATA-AAT for BRCA2) were observed at a frequency of more than 50% on each gene along with variable frequencies of derived haplotypes. The variant 3'-subhaplotype CGC displayed strong LD with 5'-subhaplotypes GA, AA, and GG on BRCA1 gene. Haplotypes ATA-AGT, ATC-AAT, and ATA-AAC were the variant haplotypes frequent on BRCA2 gene. Although the clinical significance of these derived haplotypes has not yet been established, it is expected that some of these haplotypes, especially the less frequent subhaplotypes, eventually will be shown to be indicative of a predisposition to early-onset breast cancer.

  8. Role of BRCA2 mutation status on overall survival among breast cancer patients from Sardinia

    International Nuclear Information System (INIS)

    Budroni, Mario; Palmieri, Giuseppe; Cesaraccio, Rosaria; Coviello, Vincenzo; Sechi, Ornelia; Pirino, Daniela; Cossu, Antonio; Tanda, Francesco; Pisano, Marina; Palomba, Grazia

    2009-01-01

    Germline mutations in BRCA1 or BRCA2 genes have been demonstrated to increase the risk of developing breast cancer. Conversely, the impact of BRCA mutations on prognosis and survival of breast cancer patients is still debated. In this study, we investigated the role of such mutations on breast cancer-specific survival among patients from North Sardinia. Among incident cases during the period 1997–2002, a total of 512 breast cancer patients gave their consent to undergo BRCA mutation screening by DHPLC analysis and automated DNA sequencing. The Hakulinen, Kaplan-Meier, and Cox regression methods were used for both relative survival assessment and statistical analysis. In our series, patients carrying a germline mutation in coding regions and splice boundaries of BRCA1 and BRCA2 genes were 48/512 (9%). Effect on overall survival was evaluated taking into consideration BRCA2 carriers, who represented the vast majority (44/48; 92%) of mutation-positive patients. A lower breast cancer-specific overall survival rate was observed in BRCA2 mutation carriers after the first two years from diagnosis. However, survival rates were similar in both groups after five years from diagnosis. No significant difference was found for age of onset, disease stage, and primary tumour histopathology between the two subsets. In Sardinian breast cancer population, BRCA2 was the most affected gene and the effects of BRCA2 germline mutations on patients' survival were demonstrated to vary within the first two years from diagnosis. After a longer follow-up observation, breast cancer-specific rates of death were instead similar for BRCA2 mutation carriers and non-carriers

  9. BRCA2 hypomorphic missense variants confer moderate risks of breast cancer

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy L.s.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calleja, Fabienne Mgr; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomaki, Kristiina; Andrulis, Irene L.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case–control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ances...

  10. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer.

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy LS; Von, Nicolai Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne MGR; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomäki, Kristiina; Andrulis, Irene

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the $\\textit{BRCA1}$ and $\\textit{BRCA2}$ genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine ...

  11. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary

    NARCIS (Netherlands)

    van Asperen, C. J.; Brohet, R. M.; Meijers-Heijboer, E. J.; Hoogerbrugge, N.; Verhoef, S.; Vasen, H. F. A.; Ausems, M. G. E. M.; Menko, F. H.; Gomez Garcia, E. B.; Klijn, J. G. M.; Hogervorst, F. B. L.; van Houwelingen, J. C.; van't Veer, L. J.; Rookus, M. A.; van Leeuwen, F. E.

    2005-01-01

    In BRCA2 mutation carriers, increased risks have been reported for several cancer sites besides breast and ovary. As most of the families included in earlier reports were selected on the basis of multiple breast/ovarian cancer cases, it is possible that risk estimates may differ in mutation carriers

  12. Functional Analysis of Breast Cancer Susceptibility Gene BRCA2

    National Research Council Canada - National Science Library

    Wang, Yingcai

    1999-01-01

    ...- specific RecA homologue, but not with XRCC2, Rad51D or the replication Protein (RPA). The specific interaction of BRCA2 and hsDMCl suggests that BRCA2 may be involved in DNA recombination and repair both in germ and somatic cells...

  13. Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Jønson, Lars; Albrechtsen, Anders

    2009-01-01

    BRCA1 and BRCA2 germ-line mutations predispose to breast and ovarian cancer. Large genomic rearrangements of BRCA1 account for 0-36% of all disease causing mutations in various populations, while large genomic rearrangements in BRCA2 are more rare. We examined 642 East Danish breast and/or ovaria...

  14. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer.

    Directory of Open Access Journals (Sweden)

    Mia M Gaudet

    2010-10-01

    Full Text Available The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5 and 39 SNPs had p-values<10(-4. These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499 and chromosome 10 (rs16917302. The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR and 95% confidence intervals (CI for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, and for rs311499 was 0.72 (95% CI 0.61-0.85, . FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, . These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.

  15. Prevalance of BRCA1 and BRCA2 mutations in familial breast cancer patients in Lebanon

    Directory of Open Access Journals (Sweden)

    Jalkh Nadine

    2012-06-01

    Full Text Available Abstract Breast cancer is the most prevalent malignancy in women in Western countries, currently accounting for one third of all female cancers. Familial aggregation is thought to account for 5–10 % of all BC cases, and germline mutations in BRCA1 and BRCA2 account for less of the half of these inherited cases. In Lebanon, breast cancer represents the principal death-causing malignancy among women, with 50 % of the cases diagnosed before the age of 50 years. In order to study BRCA1/2 mutation spectra in the Lebanese population, 72 unrelated patients with a reported family history of breast and/or ovarian cancers or with an early onset breast cancer were tested. Fluorescent direct sequencing of the entire coding region and intronic sequences flanking each exon was performed. A total of 38 BRCA1 and 40 BRCA2 sequence variants were found. Seventeen of them were novel. Seven confirmed deleterious mutations were identified in 9 subjects providing a frequency of mutations of 12.5 %. Fifteen variants were considered of unknown clinical significance according to BIC and UMD-BRCA1/BRCA2 databases. In conclusion, this study represents the first evaluation of the deleterious and unclassified genetic variants in the BRCA1/2 genes found in a Lebanese population with a relatively high risk of breast cancer.

  16. Novel de novo BRCA2 mutation in a patient with a family history of breast cancer

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Bisgaard, Marie Luise; Jønson, Lars

    2008-01-01

    whole blood. The paternity was determined by single nucleotide polymorphism (SNP) microarray analysis. Parental origin of the de novo mutation was determined by establishing mutation-SNP haplotypes by variant specific PCR, while de novo and mosaic status was investigated by sequencing of DNA from......BACKGROUND: BRCA2 germ-line mutations predispose to breast and ovarian cancer. Mutations are widespread and unclassified splice variants are frequently encountered. We describe the parental origin and functional characterization of a novel de novo BRCA2 splice site mutation found in a patient...... and synthesis of a truncated BRCA2 protein. The aberrant splicing was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. The mutation was not found in any of the patient's parents or in the mother's carcinoma, showing it is a de novo mutation. Variant specific PCR indicates...

  17. BRCA1 and BRCA2mutations in breast cancer patients from Venezuela

    Directory of Open Access Journals (Sweden)

    Karlena Lara

    2012-01-01

    Full Text Available A sample of 58 familial breast cancer patients from Venezuela were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIM no. 113705 and BRCA2 (MIM no. 600185 genes by using conformation-sensitive gel electrophoresis. Ashkenazi Jewish founder mutations were not found in any of the samples. We identified 6 (10.3% and 4 (6.9% patients carrying germline mutations in BRCA1 and BRCA2, respectively. Four pathogenic mutations were found in BRCA1, one is a novel mutation (c.951_952insA, while the other three had been previously reported (c.1129_1135insA, c.4603G>T and IVS20+1G>A. We also found 4 pathogenic mutations in BRCA2, two novel mutations (c.2732_2733insA and c.3870_3873delG and two that have been already reported (c.3036_3039delACAA and c.6024_6025_delTA. In addition, 17 variants of unknown significance (6 BRCA1 variants and 11 BRCA2 variants, 5 BRCA2 variants with no clinical importance and 22 polymorphisms (12 in BRCA1 and10 in BRCA2 were also identified. This is the first genetic study on BRCA gene mutations conducted in breast cancer patients from Venezuela. The ethnicity of our population, as well as the heterogeneous and broad spectrum of BRCA genes mutations, must be considered to optimize genetic counseling and disease prevention in affected families.

  18. AURKA F31I Polymorphism and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: A CIMBA study

    Science.gov (United States)

    Couch, Fergus J.; Sinilnikova, Olga; Vierkant, Robert A; Pankratz, V. Shane; Fredericksen, Zachary S.; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Hughes, David; Hardouin, Agnès; Berthet, Pascaline; Peock, Susan; Cook, Margaret; Baynes, Caroline; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary E.; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Spurdle, Amanda B.; Schmutzler, Rita; Versmold, Beatrix; Engel, Christoph; Meindl, Alfons; Sutter, Christian; Horst, Jurgen; Schaefer, Dieter; Offit, Kenneth; Kirchhoff, Tomas; Andrulis, Irene L.; Ilyushik, Eduard; Glendon, Gordon; Devilee, Peter; Vreeswijk, Maaike P.G.; Vasen, Hans F.A.; Borg, Ake; Backenhorn, Katja; Struewing, Jeffery P.; Greene, Mark H.; Neuhausen, Susan L.; Rebbeck, Timothy R.; Nathanson, Katherine; Domchek, Susan; Wagner, Theresa; Garber, Judy E.; Szabo, Csilla; Zikan, Michal; Foretova, Lenka; Olson, Janet E.; Sellers, Thomas A.; Lindor, Noralane; Nevanlinna, Heli; Tommiska, Johanna; Aittomaki, Kristiina; Hamann, Ute; Rashid, Muhammad U.; Torres, Diana; Simard, Jacques; Durocher, Francine; Guenard, Frederic; Lynch, Henry T.; Isaacs, Claudine; Weitzel, Jeffrey; Olopade, Olufunmilayo I.; Narod, Steven; Daly, Mary B.; Godwin, Andrew K.; Tomlinson, Gail; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniouon, Antonis C.

    2009-01-01

    The AURKA oncogene is associated with abnormal chromosome segregation and aneuploidy and predisposition to cancer. Amplification of AURKA has been detected at higher frequency in tumors from BRCA1 and BRCA2 mutation carriers than in sporadic breast tumors, suggesting that overexpression of AURKA and inactivation of BRCA1 and BRCA2 co-operate during tumor development and progression. The F31I polymorphism in AURKA has been associated with breast cancer risk in the homozygous state in prior studies. We evaluated whether the AURKA F31I polymorphism modifies breast cancer risk in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). CIMBA was established to provide sufficient statistical power through increased numbers of mutation carriers to identify polymorphisms that act as modifiers of cancer risk and can refine breast cancer risk estimates in BRCA1 and BRCA2 mutation carriers. A total of 4935 BRCA1 and 2241 BRCA2 mutation carriers and 11 individuals carrying both BRCA1 and BRCA2 mutations were genotyped for F31I. Overall, homozygosity for the 31I allele was not significantly associated with breast cancer risk in BRCA1 and BRCA2 carriers combined (HR = 0.91; 95% CI 0.77-1.06). Similarly, no significant association was seen in BRCA1 (HR = 0.90; 95% CI 0.75-1.08) or BRCA2 carriers (HR = 0.93; 95% CI 0.67-1.29) or when assessing the modifying effects of either bilateral prophylactic oophorectomy or menopausal status of BRCA1 and BRCA2 carriers. In summary, the F31I polymorphism in AURKA is not associated with a modified risk of breast cancer in BRCA1 and BRCA2 carriers. PMID:17627006

  19. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers

    NARCIS (Netherlands)

    H.D. Meeks (Huong D.); H. Song (Honglin); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); J. Dennis (Joe); Q. Wang (Qing); D. Barrowdale (Daniel); D. Frost (Debra); L. McGuffog (Lesley); S.D. Ellis (Steve); B. Feng (Bingjian); S.S. Buys (Saundra); J.L. Hopper (John); M.C. Southey (Melissa); A. Tesoriero (Andrea); M. James (Margaret); F. Bruinsma (Fiona); I. Campbell (Ian); A. Broeks (Annegien); M.K. Schmidt (Marjanka); F.B.L. Hogervorst (Frans); M.W. Beckmann (Matthias); P.A. Fasching (Peter); O. Fletcher (Olivia); N. Johnson (Nichola); E.J. Sawyer (Elinor); E. Riboli (Elio); S. Banerjee (Susana); U. Menon (Usha); I. Tomlinson (Ian); B. Burwinkel (Barbara); U. Hamann (Ute); F. Marme (Federick); A. Rudolph (Anja); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); J. Garber (Judy); D. Cramer (Daniel); K.L. Terry (Kathryn); E.M. Poole (Elizabeth); S. Tworoger (Shelley); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); A.K. Godwin (Andrew K.); P. Guénel (Pascal); T. Truong (Thérèse); D. Stoppa-Lyonnet (Dominique); F. Damiola (Francesca); S. Mazoyer (Sylvie); O. Sinilnikova (Olga); C. Isaacs (Claudine); C. Maugard; S.E. Bojesen (Stig); H. Flyger (Henrik); A-M. Gerdes (Anne-Marie); T.V.O. Hansen (Thomas); A. Jensen (Allen); M. Kjaer (Michael); C.K. Høgdall (Claus); E. Høgdall (Estrid); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); J. Benítez (Javier); A. González-Neira (Anna); A. Osorio (Ana); M.D.L. Hoya (Miguel De La); P.P. Segura (Pedro Perez); O. Díez (Orland); C. Lazaro (Conxi); J. Brunet (Joan); H. Anton-Culver (Hoda); L. Eunjung (Lee); E.M. John (Esther); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); D. Castillo (Danielle); J.N. Weitzel (Jeffrey); P.A. Ganz (Patricia A.); R. Nussbaum (Robert); S. Chan (Salina); B.Y. Karlan (Beth Y.); K.J. Lester (Kathryn); A. Wu (Anna); S.A. Gayther (Simon); S.J. Ramus (Susan); W. Sieh (Weiva); A.S. Whittermore (Alice S.); A.N.A. Monteiro (Alvaro N.A.); C. Phelan (Catherine); M.B. Terry (Mary Beth); M. Piedmonte (Marion); K. Offit (Kenneth); M. Robson (Mark); D.A. Levine (Douglas); K.B. Moysich (Kirsten B.); R. Cannioto (Rikki); S.H. Olson (Sara); M.B. Daly (Mary B.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K.H. Lu (Karen); D. Liang (Dong); M.A.T. Hildebrant (Michelle A.T.); R.B. Ness (Roberta); F. Modugno (Francesmary); L. Pearce (Leigh); M.T. Goodman (Marc T.); P.J. Thompson (Pamela J.); H. Brenner (Hermann); K. Butterbach (Katja); A. Meindl (Alfons); E. Hahnen (Eric); B. Wapenschmidt (Barbara); H. Brauch (Hiltrud); T. Brüning (Thomas); C. Blomqvist (Carl); S. Khan (Sofia); H. Nevanlinna (Heli); L.M. Pelttari (Liisa); K. Aittomäki (Kristiina); R. Butzow (Ralf); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); J. Rantala (Johanna); V-M. Kosma (Veli-Matti); A. Mannermaa (Arto); D. Lambrechts (Diether); P. Neven (Patrick); K.B.M. Claes (Kathleen B.M.); T. Van Maerken (Tom); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); P.U. Heitz; R. Varon-Mateeva (Raymonda); P. Peterlongo (Paolo); P. Radice (Paolo); A. Viel (Alessandra); M. Barile (Monica); B. Peissel (Bernard); S. Manoukian (Siranoush); M. Montagna (Marco); C. Oliani (Cristina); A. Peixoto (Ana); P.J. Teixeira; A. Collavoli (Anita); B. Hallberg (Boubou); J.E. Olson (Janet); E.L. Goode (Ellen L.); S.N. Hart (Steven N.); H. Shimelis (Hermela); J.M. Cunningham (Julie); G.G. Giles (Graham); R.L. Milne (Roger); S. Healey (Sue); K. Tucker (Kathy); C.A. Haiman (Christopher A.); B.E. Henderson (Brian); M.S. Goldberg (Mark); M. Tischkowitz (Marc); J. Simard (Jacques); P. Soucy (Penny); D. Eccles (Diana); N. Le (Nhu); A.-L. Borresen-Dale (Anne-Lise); V. Kristensen (Vessela); H.B. Salvesen (Helga); L. Bjorge (Line); E.V. Bandera (Elisa); H. Risch (Harvey); W. Zheng (Wei); A. Beeghly-Fadiel (Alicia); H. Cai (Hui); K. Pykäs (Katri); R.A.E.M. Tollenaar (Rob); A.M.W. van den Ouweland (Ans); I.L. Andrulis (Irene); J.A. Knight (Julia A.); S. Narod (Steven); P. Devilee (Peter); R. Winqvist (Robert); J.D. Figueroa (Jonine); M.H. Greene (Mark H.); P.L. Mai (Phuong); J.T. Loud (Jennifer); M. García-Closas (Montserrat); M. Schoemaker (Minouk); K. Czene (Kamila); H. Darabi (Hatef); I. McNeish (Iain); N. Siddiquil (Nadeem); R. Glasspool (Rosalind); A. Kwong (Ava); S.K. Park (Sue K.); S.-H. Teo (Soo-Hwang); S.-Y. Yoon (Sook-Yee); K. Matsuo (Keitaro); N. Hosono (Naoya); Y.L. Woo (Yin Ling); Y. Gao; L. Foretova (Lenka); C.F. Singer (Christian); C. Rappaport-Feurhauser (Christine); E. Friedman (Eitan); Y. Laitman (Yael); G. Rennert (Gad); E.N. Imyanitov (Evgeny); P.J. Hulick (Peter); O.I. Olopade (Olufunmilayo I.); L. Senter (Leigha); E. Olah (Edith); J.A. Doherty (Jennifer A.); J.M. Schildkraut (Joellen); L.B. Koppert (Lisa); L.A.L.M. Kiemeney (Bart); L.F. Massuger (Leon); L.S. Cook (Linda S.); T. Pejovic (Tanja); J. Li (Jingmei); Å. Borg (Åke); A. Öfverholm (Anna); M.A. Rossing (Mary Anne); N. Wentzensen (N.); K. Henriksson (Karin); A. Cox (Angela); S.S. Cross (Simon); B. Pasini (Barbara); M. Shah (Mitul); M. Kabisch (Maria); D. Torres (Diana); A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); B.A. Agnarsson (Bjarni); J. Kupryjanczyk (Jolanta); J. Moes-Sosnowska (Joanna); F. Fostira (Florentia); I. Konstantopoulou (I.); S. Slager (Susan); M. Jones (Michael); A.C. Antoniou (Antonis C.); A. Berchuck (Andrew); A.J. Swerdlow (Anthony ); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); P.D.P. Pharoah (Paul); P. Hall (Per); D.F. Easton (Douglas F.); F.J. Couch (Fergus); A.B. Spurdle (Amanda); D. Goldgar (David)

    2016-01-01

    textabstractBackground: The K3326X variant in BRCA2 (BRCA2∗c.9976A>T p.Lys3326∗rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association.

  20. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Ainur R. Akilzhanova

    2013-05-01

    Full Text Available Background: A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Kazakhstan women. Aim: To evaluate the role of BRCA1/2 mutations in Kazakhstan women presenting with sporadic breast cancer. Methods: We investigated the distribution and nature of polymorphisms in BRCA1 and BRCA2 entire coding regions in 156 Kazakhstan sporadic breast cancer cases and 112 age-matched controls using automatic direct sequencing. Results: We identified 22 distinct variants, including 16 missense mutations and 6 polymorphisms in BRCA1/2 genes. In BRCA1, 9 missense mutations and 3 synonymous polymorphisms were observed. In BRCA2, 7 missense mutations and 3 polymorphisms were detected. There was a higher prevalence of observed mutations in Caucasian breast cancer cases compared to Asian cases (p<0.05; higher frequencies of sequence variants were observed in Asian controls. No recurrent or founder mutations were observed in BRCA1/2 genes. There were no statistically significant differences in age at diagnosis, tumor histology, size of tumor, and lymph node involvement between women with breast cancer with or without the BRCA sequence alterations. Conclusions: Considering the majority of breast cancer cases are sporadic, the present study will be helpful in the evaluation of the need for the genetic screening of BRCA1/2 mutations and reliable genetic counseling for Kazakhstan sporadic breast cancer patients. Evaluation of common polymorphisms and mutations and breast cancer risk in families with genetic predisposition to breast cancer is ongoing in another current investigation. 

  1. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru.

    Science.gov (United States)

    Abugattas, J; Llacuachaqui, M; Allende, Y Sullcahuaman; Velásquez, A Arias; Velarde, R; Cotrina, J; Garcés, M; León, M; Calderón, G; de la Cruz, M; Mora, P; Royer, R; Herzog, J; Weitzel, J N; Narod, S A

    2015-10-01

    The prevalence of BRCA1 and BRCA2 mutations among breast cancer patients in Peru has not yet been explored. We enrolled 266 women with breast cancer from a National cancer hospital in Lima, Peru, unselected for age or family history. DNA was screened with a panel of 114 recurrent Hispanic BRCA mutations (HISPANEL). Among the 266 cases, 13 deleterious mutations were identified (11 in BRCA1 and 2 in BRCA2), representing 5% of the total. The average age of breast cancer in the mutation-positive cases was 44 years. BRCA1 185delAG represented 7 of 11 mutations in BRCA1. Other mutations detected in BRCA1 included: two 2080delA, one 943ins10, and one 3878delTA. The BRCA2 3036del4 mutation was seen in two patients. Given the relatively low cost of the HISPANEL test, one should consider offering this test to all Peruvian women with breast or ovarian cancer. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Spurdle, Amanda B; Sinilnikova, Olga M

    2008-01-01

    Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorp...

  3. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kirchhoff, Tomas; Green, Todd

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carri...

  4. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kirchhoff, Tomas; Green, Todd

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation...

  5. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs...... arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). METHODS: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1...

  6. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1......, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were...

  7. [Breast cancer genetics. BRCA1 and BRCA2: the main genes for disease predisposition].

    Science.gov (United States)

    Ruiz-Flores, P; Calderón-Garcidueñas, A L; Barrera-Saldaña, H A

    2001-01-01

    Breast cancer is among the most common world cancers. In Mexico this neoplasm has been progressively increasing since 1990 and is expected to continue. The risk factors for this disease are age, some reproductive factors, ionizing radiation, contraceptives, obesity and high fat diets, among other factors. The main risk factor for BC is a positive family history. Several families, in which clustering but no mendelian inheritance exists, the BC is due probably to mutations in low penetrance genes and/or environmental factors. In families with autosomal dominant trait, the BRCA1 and BRCA2 genes are frequently mutated. These genes are the two main BC susceptibility genes. BRCA1 predispose to BC and ovarian cancer, while BRCA2 mutations predispose to BC in men and women. Both are long genes, tumor suppressors, functioning in a cell cycle dependent manner, and it is believed that both switch on the transcription of several genes, and participate in DNA repair. The mutations profile of these genes is known in developed countries, while in Latin America their search has just began. A multidisciplinary group most be responsible of the clinical management of patients with mutations in BRCA1 and BRCA2, and the risk assignment and Genetic counseling most be done carefully.

  8. Breast cancer screening in BRCA1 and BRCA2 mutation carriers after risk reducing salpingo-oophorectomy

    NARCIS (Netherlands)

    Fakkert, I.E.; Jansen, L.; Meijer, K.; Kok, Theo; Oosterwijk, J.C.; Mourits, M.J.E.; de Bock, G.H.

    Breast cancer screening is offered to BRCA1 and BRCA2 mutation carriers from the age of 25 years because of their increased risk of breast cancer. As ovarian cancer screening is not effective, risk-reducing salpingho-oophorectomy (RRSO) is offered after child bearing age. RRSO before menopause

  9. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  10. Two different BRCA2 mutations found in a multigenerational family with a history of breast, prostate, and lung cancers

    Directory of Open Access Journals (Sweden)

    Caporale DA

    2014-06-01

    Full Text Available Diane A Caporale, Erica E SwensonDepartment of Biology, University of Wisconsin – Stevens Point, Stevens Point, WI, USAAbstract: Breast and lung cancer are two of the most common malignancies in the United States, causing approximately 40,000 and 160,000 deaths each year, respectively. Over 80% of hereditary breast cancer cases are due to mutations in two breast cancer predisposition genes, BRCA1 and BRCA2. These are tumor-suppressor genes associated with DNA repair. Since the discovery of these two genes in the mid-1990s, several other breast cancer predisposition genes have been identified, such as the CHEK2 gene encoding a regulator of BRCA1. Recently, studies have begun investigating the roles of BRCA1 and BRCA2 gene expression in lung cancer. We conducted a family-based case study that included a bloodline of Italian heritage with several cases of breast cancer and associated cancers (prostate and stomach through multiple generations and on a nonblood relative of Scottish/Irish descent who was consecutively diagnosed with breast and lung cancer. Cancer history and environmental risk factors were recorded for each family member. To investigate possible genetic risks, we screened for mutations in specific hypervariable regions of the BRCA1, BRCA2, and CHEK2 genes. DNA was extracted and isolated from the individuals' hair follicles and cheek cells. Polymerase chain reaction (PCR, allele-specific PCR, and DNA sequencing were performed to identify and verify the presence or absence of mutations in these regions. Genotypes of several family members were determined and carriers of mutations were identified. Here we report for the first time the occurrence of two different BRCA2 frameshift mutations within the same family. Specifically, three Italian family members were found to be carriers of the BRCA2-c.2808_2811delACAA (3036delACAA mutation, a 4-nucleotide deletion in exon 11, which is a truncated mutation that causes deleterious function of

  11. A novel BRCA2 in frame deletion in a Tunisian woman with early onset sporadic breast cancer.

    Science.gov (United States)

    Hadiji-Abbes, N; Trifa, F; Choura, M; Khabir, A; Sellami-Boudawara, T; Frikha, M; Daoud, J; Mokdad-Gargouri, R

    2015-09-01

    Breast cancer is increasing among young women in Tunisia. Germline mutations in the BRCA1/2 genes are associated with a high risk for breast cancer development. However, the true contribution of BRCA1/2 mutation in sporadic breast cancer is not well documented. Our aim is to identify the BRCA2 mutation spectrum in Tunisian young women with breast cancer. Screening the BRCA2 gene was performed using DHPLC, DNA sequencing and PCR-RFLP. We identified, in a woman diagnosed with early onset breast cancer, and without family history, a novel in frame deletion 5456delGTAGCA in the exon 11 of the BRCA2 gene which causes a loss of two residues Ser1743-Ser1744. The absence of this deletion in the patients' parents suggests that it is a de novo variant. Furthermore, we screened 108 sporadic cases, 50 familial cases, and 60 controls for the identified del6bp using PCR-RFLP. None of them carried this deletion suggesting that this variant is not a benign polymorphism and probably rare in our population. With regards to the position of the Ser1743-1744 in the BRCT domain, sequence alignment revealed that the Ser1743 is conserved among several species, which may reflect its importance in the BRCA2 function. A modeling of the wild-type and mutated BRC5-BRC6 domain revealed that the deletion of the 2 Serine residues might affect the structure of this BRCA2 domain. A novel in frame deletion 5456del6bp in BRCA2 gene was identified in an early onset woman with breast cancer and without family history. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. BRCA1 and BRCA2 germline mutations in Malaysian women with early-onset breast cancer without a family history.

    Directory of Open Access Journals (Sweden)

    Gaik Theng Toh

    Full Text Available BACKGROUND: In Asia, breast cancer is characterised by an early age of onset: In Malaysia, approximately 50% of cases occur in women under the age of 50 years. A proportion of these cases may be attributable, at least in part, to genetic components, but to date, the contribution of genetic components to breast cancer in many of Malaysia's ethnic groups has not been well-characterised. METHODOLOGY: Given that hereditary breast carcinoma is primarily due to germline mutations in one of two breast cancer susceptibility genes, BRCA1 and BRCA2, we have characterised the spectrum of BRCA mutations in a cohort of 37 individuals with early-onset disease (BRCA2 was conducted by full sequencing of all exons and intron-exon junctions. CONCLUSIONS: Here, we report a total of 14 BRCA1 and 17 BRCA2 sequence alterations, of which eight are novel (3 BRCA1 and 5 BRCA2. One deleterious BRCA1 mutation and 2 deleterious BRCA2 mutations, all of which are novel mutations, were identified in 3 of 37 individuals. This represents a prevalence of 2.7% and 5.4% respectively, which is consistent with other studies in other Asian ethnic groups (4-9%.

  13. Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families

    International Nuclear Information System (INIS)

    Pylkäs, Katri; Erkko, Hannele; Nikkilä, Jenni; Sólyom, Szilvia; Winqvist, Robert

    2008-01-01

    BRCA1 and BRCA2 are the two most important genes associated with familial breast and ovarian cancer susceptibility. In addition, PALB2 has recently been identified as a breast cancer susceptibility gene in several populations. Here we have evaluated whether large genomic rearrangement in these genes could explain some of Finnish breast and/or ovarian cancer families. Altogether 61 index patients of Northern Finnish breast and/or ovarian cancer families were analyzed by Multiplex ligation-dependent probe amplification (MLPA) method in order to identify exon deletions and duplications in BRCA1, BRCA2 and PALB2. The families have been comprehensively screened for germline mutation in these genes by conventional methods of mutation analysis and were found negative. We identified one large deletion in BRCA1, deleting the most part of the gene (exon 1A-13) in one family with family history of ovarian cancer. No large genomic rearrangements were identified in either BRCA2 or PALB2. In Finland, women eligible for BRCA1 or BRCA2 mutation screening, when found negative, could benefit from screening for large genomic rearrangements at least in BRCA1. On the contrary, the genomic rearrangements in PALB2 seem not to contribute to the hereditary breast cancer susceptibility

  14. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B; Rudolph, Anja; Schmutzler, Rita K; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A; Easton, Douglas F; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A; Schmidt, Marjanka K; van der Baan, Frederieke H; Spurdle, Amanda B; Walker, Logan C; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B; Olopade, Olufunmilayo I; Nussbaum, Robert L; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K; Miron, Alex; Southey, Melissa C; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Ding, Yuan Chun; Neuhausen, Susan L; Hansen, Thomas V O; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E; Blazer, Kathleen R; Weitzel, Jeffrey N; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D Gareth R; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V; Ellis, Steve; Cole, Trevor; Godwin, Andrew K; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L; Rodriguez, Gustavo C; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A M; Meijers-Heijboer, Hanne E J; van der Hout, Annemarie H; Vreeswijk, Maaike P G; Hoogerbrugge, Nicoline; Ausems, Margreet G E M; van Doorn, Helena C; Collée, J Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R; Olswold, Curtis; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Szabo, Csilla I; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C; Friedman, Eitan

    2015-01-01

    BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes. Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. ©2014 American Association for Cancer Research.

  15. Candidate genetic modifiers for breast and ovarian cancer risk inBRCA1andBRCA2 mutation carriers

    NARCIS (Netherlands)

    P. Peterlongo (Paolo); J. Chang-Claude (Jenny); K.B. Moysich (Kirsten); A. Rudolph (Anja); R.K. Schmutzler (Rita); J. Simard (Jacques); P. Soucy (Penny); R. Eeles (Rosalind); D.F. Easton (Douglas); U. Hamann (Ute); S. Wilkening (Stefan); B. Chen (Bowang); M.A. Rookus (Matti); M.K. Schmidt (Marjanka); F.H. Van Der Baan (Frederieke H.); A.B. Spurdle (Amanda); L.C. Walker (Logan); F. Lose (Felicity); A.-T. Maia (Ana-Teresa); M. Montagna (Marco); L. Matricardi (Laura); J. Lubinski (Jan); A. Jakubowska (Anna); E.B.G. Garcia; O.I. Olopade (Olofunmilayo); R.L. Nussbaum (Robert L.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); B.K. Arun (Banu); B.Y. Karlan (Beth); S. Orsulic (Sandra); K.J. Lester (Kathryn); W.K. Chung (Wendy K.); A. Miron (Alexander); M.C. Southey (Melissa); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); Y.C. Ding (Yuan Chun); S.L. Neuhausen (Susan); T.V.O. Hansen (Thomas); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); L. Jønson (Lars); A. Osorio (Ana); C. Martínez-Bouzas (Cristina); J. Benítez (Javier); E.E. Conway (Edye E.); K.R. Blazer (Kathleen R.); J.N. Weitzel (Jeffrey); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (Daniela); G. Scuvera (Giulietta); M. Barile (Monica); F. Ficarazzi (Filomena); F. Mariette (F.); S. Fortuzzi (S.); A. Viel (Alessandra); G. Giannini (Giuseppe); L. Papi (Laura); A. Martayan (Aline); M.G. Tibiletti (Maria Grazia); P. Radice (Paolo); A. Vratimos (Athanassios); F. Fostira (Florentia); J. Garber (Judy); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); T. Cole (Trevor); A.K. Godwin (Andrew); K.B.M. Claes (Kathleen B.M.); T. Van Maerken (Tom); A. Meindl (Alfons); P.A. Gehrig (Paola A.); C. Sutter (Christian); C. Engel (Christoph); D. Niederacher (Dieter); D. Steinemann (Doris); H. Plendl (Hansjoerg); K. Kast (Karin); K. Rhiem (Kerstin); N. Ditsch (Nina); N. Arnold (Norbert); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); S. Wang-Gohrke (Shan); B. Bressac-de Paillerets (Brigitte); B. Buecher (Bruno); C.D. Delnatte (Capucine); C. Houdayer (Claude); D. Stoppa-Lyonnet (Dominique); F. Damiola (Francesca); I. Coupier (Isabelle); L. Barjhoux (Laure); L. Vénat-Bouvet (Laurence); L. Golmard (Lisa); N. Boutry-Kryza (N.); O. Sinilnikova (Olga); O. Caron (Olivier); P. Pujol (Pascal); S. Mazoyer (Sylvie); M. Belotti (Muriel); M. Piedmonte (Marion); M.L. Friedlander (Michael L.); G. Rodriguez (Gustavo); L.J. Copeland (Larry J.); M. de La Hoya (Miguel); P. Perez-Segura (Pedro); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); T.A.M. van Os (Theo); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); M.P. Vreeswijk (Maaike); N. Hoogerbrugqe (N.); M.G.E.M. Ausems (Margreet); H.C. van Doorn (Helena); J.M. Collée (Margriet); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); C. Lazaro (Conxi); J. Brunet (Joan); L. Feliubadaló (L.); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); G. Sukiennicki (Grzegorz); A. Arason (Adalgeir); J. Chiquette (Jocelyne); P.J. Teixeira; C. Olswold (Curtis); F.J. Couch (Fergus); N.M. Lindor (Noralane); X. Wang (X.); C. Szabo (Csilla); K. Offit (Kenneth); M. Corines (Marina); L. Jacobs (Lauren); M.E. Robson (Mark E.); L. Zhang (Lingling); V. Joseph (Vijai); A. Berger (Andreas); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); G. Glendon (Gord); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); U.B. Jensen; Y. Laitman (Yael); J. Rantala (Johanna); A. von Wachenfeldt (Anna); H. Ehrencrona (Hans); M.S. Askmalm (Marie); Å. Borg (Åke); K.B. Kuchenbaecker (Karoline); L. McGuffog (Lesley); D. Barrowdale (Daniel); S. Healey (Sue); A. Lee (Andrew); P.D.P. Pharoah (Paul D.P.); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); E. Friedman (Eitan)

    2015-01-01

    textabstractBackground: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying

  16. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B

    2015-01-01

    BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In ...

  17. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Peterlongo, P.; Chang-Claude, J.; Moysich, K.B.; Rudolph, A.; Schmutzler, R.K.; Simard, J.; Soucy, P.; Eeles, R.A.; Easton, D.F.; Hamann, U.; Wilkening, S.; Chen, B.; Rookus, M.A.; Schmidt, M.K.; Baan, F.H. van der; Spurdle, A.B.; Walker, L.C.; Lose, F.; Maia, A.T.; Montagna, M.; Matricardi, L.; Lubinski, J.; Jakubowska, A.; Garcia, E.B.; Olopade, O.I.; Nussbaum, R.L.; Nathanson, K.L.; Domchek, S.M.; Rebbeck, T.R.; Arun, B.K.; Karlan, B.Y.; Orsulic, S.; Lester, J.; Chung, W.K.; Miron, A.; Southey, M.C.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Ding, Y.C.; Neuhausen, S.L.; Hansen, T.V.; Gerdes, A.M.; Ejlertsen, B.; Jonson, L.; Osorio, A.; Martinez-Bouzas, C.; Benitez, J.; Conway, E.E.; Blazer, K.R.; Weitzel, J.N.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Barile, M.; Ficarazzi, F.; Mariette, F.; Fortuzzi, S.; Viel, A.; Giannini, G.; Papi, L.; Martayan, A.; Tibiletti, M.G.; Radice, P.; Vratimos, A.; Fostira, F.; Garber, J.E.; Donaldson, A.; Brewer, C.; Foo, C.; Evans, D.G.; Frost, D.; Eccles, D.; Brady, A.; Cook, J.; Tischkowitz, M.; Adlard, J.; Barwell, J.; Izatt, L.; Side, L.E.; Kennedy, M.J.; Rogers, M.T.; Porteous, M.E.; Morrison, P.J.; Platte, R.; Davidson, R.; Hodgson, S.V.; Ellis, S.; Cole, T.; Godwin, A.K.; Claes, K.; Maerken, T. Van; Meindl, A.; Gehrig, A.; Sutter, C.; Engel, C.; Hoogerbrugge, N.; et al.,

    2015-01-01

    BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In

  18. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    Science.gov (United States)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  19. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K.; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J.; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A. M.; Meijers-Heijboer, Hanne E. J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P. G.; Hoogerbrugge, Nicoline; Ausems, Margreet G. E. M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2015-01-01

    BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we

  20. Breast cancer screening, outside the population-screening program, of women from breast cancer families without proven BRCA1/BRCA2 mutations : a simulation study

    NARCIS (Netherlands)

    Jacobi, C.E.; Nagelkerke, N.J.D.; van Houwelingen, J.C.; de Bock, G.H.

    Purpose: We assessed the cost-effectiveness of mammography screening for women under the age of 50, from breast cancer families without proven BRCA1./BRCA2 mutations, because current criteria for screening healthy women from breast cancer families are not evidence-based. Methods: We did simulation

  1. Breast cancer screening, outside the population-screening program, of women from breast cancer families without proven BRCA1/BRCA2 mutations: a simulation study

    NARCIS (Netherlands)

    Jacobi, C.E.; Nagelkerke, N.J.D.; van Houwelingen, J.C.; de Bock, Truuske

    2006-01-01

    Purpose: We assessed the cost-effectiveness of mammography screening for women under the age of 50, from breast cancer families without proven BRCA1./BRCA2 mutations, because current criteria for screening healthy women from breast cancer families are not evidence-based. Methods: We did simulation

  2. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Beesley, Jonathan; McGuffog, Lesley

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs650495...

  3. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Wang, Xianshu; Pankratz, V. Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D. P.; Ponder, Bruce A. J.; Dunning, Alison M.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B. L.; Hooning, Maartje J.; Ligtenberg, Marjolijn J.; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Singer, Christian F.; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I.; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N.; Hunter, David J.; Chanock, Stephen J.; Easton, Douglas F.; Antoniou, Antonis C.; Couch, Fergus J.; Gregory, Helen; Miedzybrodzka, Zosia; Morrison, Patrick; Cole, Trevor; McKeown, Carole; Taylor, Amy; Donaldson, Alan; Paterson, Joan; Murray, Alexandra; Rogers, Mark; McCann, Emma; Kennedy, John; Barton, David; Porteous, Mary; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Davidson, Rosemarie; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Izatt, Louise; Pichert, Gabriella; Langman, Caroline; Dorkins, Huw; Barwell, Julian; Chu, Carol; Bishop, Tim; Miller, Julie; Ellis, Ian; Evans, D. Gareth; Lalloo, Fiona; Holt, Felicity; Male, Alison; Robinson, Anne; Gardiner, Carol; Douglas, Fiona; Claber, Oonagh; Walker, Lisa; McLeod, Diane; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Mitra, Anita; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; Tyler, Emma; McBride, Donna; Bérard, Léon; Sinilnikova, Olga; Barjhoux, Laure; Giraud, Sophie; Léone, Mélanie; Gauthier-Villars, Marion; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Bourdon, Violaine; Eisinger, Françoise; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Payrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Longy, Michel; Sevenet, Nicolas; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélèn; Rebischung, Christine; Cassini, Cécile; Olivier-Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Frénay, Marc; Vénat-Bouvet, Laurence; Lynch, Henry T.; Hogervorst, Frans; Vernhoef, Senno; Pijpe, Anouk; van 't Veer, Laura; van Leeuwen, Flora; Rookus, Matti; Collée, Margriet; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; van Asperen, Christi; Wijnen, Juul; Vreeswijk, Maaike; Tollenaar, Rob; Devilee, Peter; Ligtenberg, Marjolijn; Hoogerbrugge, Nicoline; Ausems, Margreet; van der Luijt, Rob; Aalfs, Cora; van Os, Theo; Gille, Hans; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Gomez-Garcia, Encarna; van Roozendaal, Kees; Blok, Marinus; Oosterwijk, Jan; van der Hout, Annemieke; Mourits, Marian; Vasen, Hans; Szabo, Csilla; Pohlreich, Petr; Kleibl, Zdenek; Machackova, Eva; Lukesova, Miroslava; de Leeneer, Kim; Poppe, Bruce; de Paepe, Anne

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs),

  4. BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast cancer.

    Science.gov (United States)

    El Saghir, Nagi S; Zgheib, Nathalie K; Assi, Hussein A; Khoury, Katia E; Bidet, Yannick; Jaber, Sara M; Charara, Raghid N; Farhat, Rania A; Kreidieh, Firas Y; Decousus, Stephanie; Romero, Pierre; Nemer, Georges M; Salem, Ziad; Shamseddine, Ali; Tfayli, Arafat; Abbas, Jaber; Jamali, Faek; Seoud, Muhieddine; Armstrong, Deborah K; Bignon, Yves-Jean; Uhrhammer, Nancy

    2015-04-01

    Breast cancer is the most common malignancy among women in Lebanon and in Arab countries, with 50% of cases presenting before the age of 50 years. Between 2009 and 2012, 250 Lebanese women with breast cancer who were considered to be at high risk of carrying BRCA1 or BRCA2 mutations because of presentation at young age and/or positive family history (FH) of breast or ovarian cancer were recruited. Clinical data were analyzed statistically. Coding exons and intron-exon boundaries of BRCA1 and BRCA2 were sequenced from peripheral blood DNA. All patients were tested for BRCA1 rearrangements using multiplex ligation-dependent probe amplification (MLPA). BRCA2 MLPA was done in selected cases. Overall, 14 of 250 patients (5.6%) carried a deleterious BRCA mutation (7 BRCA1, 7 BRCA2) and 31 (12.4%) carried a variant of uncertain significance. Eight of 74 patients (10.8%) aged ≤40 years with positive FH and only 1 of 74 patients (1.4%) aged ≤40 years without FH had a mutated BRCA. Four of 75 patients (5.3%) aged 41-50 years with FH had a deleterious mutation. Only 1 of 27 patients aged >50 years at diagnosis had a BRCA mutation. All seven patients with BRCA1 mutations had grade 3 infiltrating ductal carcinoma and triple-negative breast cancer. Nine BRCA1 and 17 BRCA2 common haplotypes were observed. Prevalence of deleterious BRCA mutations is lower than expected and does not support the hypothesis that BRCA mutations alone cause the observed high percentage of breast cancer in young women of Lebanese and Arab descent. Studies to search for other genetic mutations are recommended. ©AlphaMed Press.

  5. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most...... studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.......1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...

  6. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A; Milne, R L; Pita, G

    2009-01-01

    Background:In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.Methods:We have geno...

  7. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    NARCIS (Netherlands)

    Osorio, A.; Milne, R. L.; Pita, G.; Peterlongo, P.; Heikkinen, T.; Simard, J.; Chenevix-Trench, G.; Spurdle, A. B.; Beesley, J.; Chen, X.; Healey, S.; Neuhausen, S. L.; Ding, Y. C.; Couch, F. J.; Wang, X.; Lindor, N.; Manoukian, S.; Barile, M.; Viel, A.; Tizzoni, L.; Szabo, C. I.; Foretova, L.; Zikan, M.; Claes, K.; Greene, M. H.; Mai, P.; Rennert, G.; Lejbkowicz, F.; Barnett-Griness, O.; Andrulis, I. L.; Ozcelik, H.; Weerasooriya, N.; Gerdes, A.-M.; Thomassen, M.; Cruger, D. G.; Caligo, M. A.; Friedman, E.; Kaufman, B.; Laitman, Y.; Cohen, S.; Kontorovich, T.; Gershoni-Baruch, R.; Dagan, E.; Jernström, H.; Askmalm, M. S.; Arver, B.; Malmer, B.; Domchek, S. M.; Nathanson, K. L.; Brunet, J.; Ramón Y Cajal, T.; Yannoukakos, D.; Hamann, U.; Hogervorst, F. B. L.; Verhoef, S.; Gómez García, E. B.; Wijnen, J. T.; van den Ouweland, A.; Easton, D. F.; Peock, S.; Cook, M.; Oliver, C. T.; Frost, D.; Luccarini, C.; Evans, D. G.; Lalloo, F.; Eeles, R.; Pichert, G.; Cook, J.; Hodgson, S.; Morrison, P. J.; Douglas, F.; Godwin, A. K.; Sinilnikova, O. M.; Barjhoux, L.; Stoppa-Lyonnet, D.; Moncoutier, V.; Giraud, S.; Cassini, C.; Olivier-Faivre, L.; Révillion, F.; Peyrat, J.-P.; Muller, D.; Fricker, J.-P.; Lynch, H. T.; John, E. M.; Buys, S.; Daly, M.; Hopper, J. L.; Terry, M. B.; Miron, A.; Yassin, Y.; Goldgar, D.; Singer, C. F.; Gschwantler-Kaulich, D.; Pfeiler, G.; Spiess, A.-C.; Hansen, Thomas V. O.; Johannsson, O. T.; Kirchhoff, T.; Offit, K.; Kosarin, K.; Piedmonte, M.; Rodriguez, G. C.; Wakeley, K.; Boggess, J. F.; Basil, J.; Schwartz, P. E.; Blank, S. V.; Toland, A. E.; Montagna, M.; Casella, C.; Imyanitov, E. N.; Allavena, A.; Schmutzler, R. K.; Versmold, B.; Engel, C.; Meindl, A.; Ditsch, N.; Arnold, N.; Niederacher, D.; Deissler, H.; Fiebig, B.; Varon-Mateeva, R.; Schaefer, D.; Froster, U. G.; Caldes, T.; de la Hoya, M.; McGuffog, L.; Antoniou, A. C.; Nevanlinna, H.; Radice, P.; Benítez, J.; Simard, Jacques; Durocher, Francine; Laframboise, Rachel; Plante, Marie; Bridge, Peter; Parboosingh, Jilian; Chiquette, Jocelyne; Lesperance, Bernard; Karlsson, Per; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Liedgren, Sigrun; Borg, Ake; Loman, Niklas; Olsson, Hakan; Kristoffersson, Ulf; Jernstrom, Helena; Harbst, Katja; Henriksson, Karin; Lindblom, Annika; Arver, Brita; von Wachenfeldt, Anna; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Malmer, Beatrice; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Brandell, Richard Rosenquist; Dahl, Niklas; Hogervorst, Frans; Verhoef, Senno; Pijpe, Anouk; van 't Veer, Laura; van Leeuwen, Flora; Rookus, Matti; Collée, Margriet; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; Tollenaar, Rob; van Asperen, Christi; Wijnen, Juul; Vreeswijk, Maaike; Devilee, Peter; Hoogerbrugge, Nicoline; Ligtenberg, Marjolijn; Ausems, Margreet; van der Luijt, Rob; Aalfs, Cora; van Os, Theo; Meijers-Heijboer, Hanne; Gille, Hans; Gomez-Garcia, Encarna; Blok, Rien; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Cole, Trevor; McKeown, Carole; Taylor, Amy; Donaldson, Alan; Paterson, Joan; Murray, Alexandra; Rogers, Mark; McCann, Emma; Kennedy, John; Barton, David; Porteous, Mary; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Davidson, Rosemarie; Murday, Murday; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Izatt, Louise; Pichert, Gabriella; Langman, Caroline; Dorkins, Huw; Barwell, Julian; Chu, Carol; Bishop, Tim; Miller, Julie; Ellis, Ian; Evans, D. Gareth; Lalloo, Fiona; Holt, Felicity; Male, Alison; Robinson, Anne; Gardiner, Carol; Douglas, Fiona; Claber, Oonagh; Walker, Lisa; Durell, Sarah; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancrof, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Mitra, Anita; Wiggins, Jennifer; Castro, Elena; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; Tyler, Emma; McBride, Donna; Sinilnikova, Olga; Barjhoux, Laure; Giraud, Sophie; Léone, Mélanie; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Gauthier-Villars, Marion; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bourdon, Violaine; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Longy, Michel; Sevenet, Nicolas; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Cassini, Cécile; Olivier-Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Frénay, Marc; Lynch, Henry T.

    2009-01-01

    In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. We have genotyped rs744154 in

  8. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic ...... risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management....

  9. Novel mutations in the BRCA1 and BRCA2 genes in Iranian women with early-onset breast cancer

    International Nuclear Information System (INIS)

    Yassaee, Vahid R; Zeinali, Sirous; Harirchi, Iraj; Jarvandi, Soghra; Mohagheghi, Mohammad A; Hornby, David P; Dalton, Ann

    2002-01-01

    Breast cancer is the most common female malignancy and a major cause of death in middle-aged women. So far, germline mutations in the BRCA1 and BRCA2 genes in patients with early-onset breast and/or ovarian cancer have not been identified within the Iranian population. With the collaboration of two main centres for cancer in Iran, we obtained clinical information, family history and peripheral blood from 83 women under the age of 45 with early-onset breast cancer for scanning of germline mutations in the BRCA1 and BRCA2 genes. We analysed BRCA1 exons 11 and BRCA2 exons 10 and 11 by the protein truncation test, and BRCA1 exons 2, 3, 5, 13 and 20 and BRCA2 exons 9, 17, 18 and 23 with the single-strand conformation polymorphism assay on genomic DNA amplified by polymerase chain reaction. Ten sequence variants were identified: five frameshifts (putative mutations – four novel); three missense changes of unknown significance and two polymorphisms, one seen commonly in both Iranian and British populations. Identification of these novel mutations suggests that any given population should develop a mutation database for its programme of breast cancer screening. The pattern of mutations seen in the BRCA genes seems not to differ from other populations studied. Early-onset breast cancer (less than 45 years) and a limited family history is sufficient to justify mutation screening with a detection rate of over 25% in this group, whereas sporadic early-onset breast cancer (detection rate less than 5%) is unlikely to be cost-effective

  10. Relationship Between Mutations In BRCA1 And BRCA2 Genes And Breast Cancer Prevalence Among Egyptian Women

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.K.

    2009-01-01

    Breast cancer represents the most common cancer of women in the world and it is a biologically heterogeneous disease influenced by complex interactions between multiple genetic and environmental risk factors. In Egypt, breast cancer is classified as the first rank cancer case among women. The present study included 55 patients with breast cancer from Upper Egypt of which 40 patients had sporadic and 15 had familial breast cancers. Mutations in DNA of exons 10 and 11 of BRCA1 and BRCA2 were detected by single strand conformation polymorphisms (SSCPs) and sequencing. Moreover, BRCA1 protein expression was detected by immunostaining technique and correlation between risk factors and incidence rate of breast cancer. The results revealed 5 mutations (unclassified variants); three mutations (60%) were recorded internationally in Breast Information Cancer (BIC), one of them was 1767 C→T(550 Asn→His) and previously recorded in the Arabic world and the other 2 novel mutations were 1663 T→ C(479 Asp→Gly) and del AG 6079. The results obtained in the present study also demonstrated that the increase of the negative immunostaining of ''BRCA1'' protein in the tumour cells of BRCA1 mutation carriers was comparable to familial and sporadic breast cancer non-carrier. Accurate estimation of the relative frequency of BRCA1 and BRCA2 mutations in Egyptian breast cancer patients could not be deduced from the results of this relatively small pilot study. More studies with larger numbers of patients are needed to clarify the relation between BRCA1 and BRCA2 gene mutations and the prediction of breast cancer in Egypt.

  11. A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Tanda, Francesco; Farris, Antonio; Orrù, Sandra; Floris, Carlo; Pisano, Marina; Lovicu, Mario; Santona, Maria Cristina; Landriscina, Gennaro; Crisponi, Laura; Palmieri, Giuseppe; Loi, Angela; Monne, Maria; Uras, Antonella; Fancello, Patrizia; Piras, Giovanna; Gabbas, Attilio; Cossu, Antonio; Budroni, Mario; Contu, Antonio

    2009-01-01

    In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764-8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations

  12. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B.; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C.; Hansen, Thomas vO; Osorio, Ana; Benitez, Javier; Conejero, Raquel Andrés; Segota, Ena; Weitzel, Jeffrey N.; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L.; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Tischkowitz, Marc; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K.; Isaacs, Claudine; Claes, Kathleen; de Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K.; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cédrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Hélène; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valérie; Sornin, Valérie; Bignon, Yves-Jean; Carter, Jonathan; van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A.; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Jager, Agnes; van den Ouweland, Ans Mw; Kets, Carolien M.; Aalfs, Cora M.; van Leeuwen, Flora E.; Hogervorst, Frans Bl; Meijers-Heijboer, Hanne Ej; Oosterwijk, Jan C.; van Roozendaal, Kees Ep; Rookus, Matti A.; Devilee, Peter; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Teulé, Alex; Lazaro, Conxi; Blanco, Ignacio; del Valle, Jesús; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A.; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R.; Spurdle, Amanda B.; Foulkes, William; Olswold, Curtis; Lindor, Noralane M.; Pankratz, Vernon S.; Szabo, Csilla I.; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; tea, Muy-Kheng; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Imyanitov, Evgeny N.; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L.; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Ramus, Susan J.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Mitchell, Gillian; Karlan, Beth Y.; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Mazoyer, Sylvie; Phelan, Catherine M.; Sinilnikova, Olga M.; Cox, David G.

    2015-01-01

    Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria.

  13. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B.; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C.; Hansen, Thomas V. O.; Osorio, Ana; Benitez, Javier; Andres Conejero, Raquel; Segota, Ena; Weitzel, Jeffrey N.; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L.; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Tischkowitz, Marc; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K.; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K.; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cedrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Helene; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valerie; Sornin, Valerie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A.; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Jager, Agnes; van den Ouweland, Ans M. W.; Kets, Carolien M.; Aalfs, Cora M.; van Leeuwen, Flora E.; Hogervorst, Frans B. L.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; van Roozendaal, Kees E. P.; Rookus, Matti A.; Devilee, Peter; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Teule, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesus; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A.; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R.; Spurdle, Amanda B.; Foulkes, William; Olswold, Curtis; Lindor, Noralane M.; Pankratz, Vernon S.; Szabo, Csilla I.; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Imyanitov, Evgeny N.; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L.; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Ramus, Susan J.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Mitchell, Gillian; Karlan, Beth Y.; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Mazoyer, Sylvie; Phelan, Catherine M.; Sinilnikova, Olga M.; Cox, David G.

    2015-01-01

    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are

  14. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    S. Blein (Sophie); C. Bardel (Claire); V. Danjean (Vincent); L. McGuffog (Lesley); S. Healey (Sue); D. Barrowdale (Daniel); A. Lee (Andrew); J. Dennis (Joe); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); M.B. Terry (Mary Beth); W. Chung (Wendy); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); A-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); F. Nielsen (Finn); T.V.O. Hansen (Thomas); A. Osorio (Ana); J. Benítez (Javier); R.A. Conejero (Raquel Andrés); E. Segota (Ena); J.N. Weitzel (Jeffrey); M. Thelander (Margo); P. Peterlongo (Paolo); P. Radice (Paolo); V. Pensotti (Valeria); R. Dolcetti (Riccardo); B. Bonnani (Bernardo); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); S. Manoukian (Siranoush); L. Varesco (Liliana); G.L. Capone (Gabriele L.); L. Papi (Laura); L. Ottini (Laura); D. Yannoukakos (Drakoulis); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); A. Brady (A.); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); J. Cook (Jackie); L. Adlard; J. Barwell (Julian); L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M. Tischkowitz (Marc); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); T.J. Cole (Trevor); A.K. Godwin (Andrew); C. Isaacs (Claudine); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); A. Meindl (Alfons); P.A. Gehrig (Paola A.); B. Wapenschmidt (Barbara); C. Sutter (Christian); C. Engel (Christoph); D. Niederacher (Dieter); D. Steinemann (Doris); H. Plendl (Hansjoerg); K. Kast (Karin); K. Rhiem (Kerstin); N. Ditsch (Nina); N. Arnold (Norbert); R. Varon-Mateeva (Raymonda); R.K. Schmutzler (Rita); S. Preisler-Adams (Sabine); N.B. Markov (Nadja Bogdanova); S. Wang-Gohrke (Shan); A. de Pauw (Antoine); C. Lefol (Cédrick); C. Lasset (Christine); D. Leroux (Dominique); E. Rouleau (Etienne); F. Damiola (Francesca); H. Dreyfus (Hélène); L. Barjhoux (Laure); L. Golmard (Lisa); N. Uhrhammer (Nancy); V. Bonadona (Valérie); V. Sornin (Valérie); Y.-J. Bignon (Yves-Jean); J. Carter (Jonathan); L. van Le (Linda); M. Piedmonte (Marion); P. DiSilvestro (Paul); M. de La Hoya (Miguel); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A. Jager (Agnes); A.M.W. van den Ouweland (Ans); C.M. Kets; C.M. Aalfs (Cora); F.E. van Leeuwen (F.); F.B.L. Hogervorst (Frans); E.J. Meijers-Heijboer (Hanne); J.C. Oosterwijk (Jan); K.E. van Roozendaal (Kees); M.A. Rookus (M.); P. Devilee (Peter); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); A. Teulé (A.); C. Lazaro (Conxi); I. Blanco (Ignacio); J. Del Valle (Jesús); A. Jakubowska (Anna); G. Sukiennicki (Grzegorz); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); B.A. Agnarsson (Bjarni); C. Maugard; A. Amadori (Alberto); M. Montagna (Marco); P.J. Teixeira; A.B. Spurdle (Amanda); W.D. Foulkes (William); C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); C. Szabo (Csilla); A. Lincoln (Anne); L. Jacobs (Lauren); M. Corines (Marina); M. Robson (Mark); J. Vijai (Joseph); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); E.N. Imyanitov (Evgeny); A.M. Mulligan (Anna Marie); G. Glendon (Gord); I.L. Andrulis (Irene); S. Tchatchou (Sandrine); A.E. Toland (Amanda); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); J. Zidan (Jamal); Y. Laitman (Yael); A. Lindblom (Annika); B. Melin (Beatrice); B. Arver (Brita Wasteson); N. Loman (Niklas); R. Rosenquist (R.); O.I. Olopade (Olofunmilayo); R. Nussbaum (Robert); S.J. Ramus (Susan); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); B.K. Arun (Banu); G. Mitchell (Gillian); B.Y. Karlan (Beth); K.J. Lester (Kathryn); S. Orsulic (Sandra); D. Stoppa-Lyonnet (Dominique); G. Thomas (Gilles); J. Simard (Jacques); F.J. Couch (Fergus); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); S. Mazoyer (Sylvie); C. Phelan (Catherine); O. Sinilnikova (Olga); D.G. Cox (David)

    2015-01-01

    textabstractIntroduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of

  15. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Blein, S.; Bardel, C.; Danjean, V.; McGuffog, L.; Healey, S.; Barrowdale, D.; Lee, A.; Dennis, J.; Kuchenbaecker, K.B.; Soucy, P.; Terry, M.B.; Chung, W.K.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Gerdes, A.M.; Ejlertsen, B.; Nielsen, F.C.; Hansen, T.V.; Osorio, A.; Benitez, J.; Conejero, R.A.; Segota, E.; Weitzel, J.N.; Thelander, M.; Peterlongo, P.; Radice, P.; Pensotti, V.; Dolcetti, R.; Bonanni, B.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Manoukian, S.; Varesco, L.; Capone, G.L.; Papi, L.; Ottini, L.; Yannoukakos, D.; Konstantopoulou, I.; Garber, J.; Hamann, U.; Donaldson, A.; Brady, A.; Brewer, C.; Foo, C.; Evans, D.G.; Frost, D.; Eccles, D.; Douglas, F.; Cook, J.; Adlard, J.; Barwell, J.; Walker, L.; Izatt, L.; Side, L.E.; Kennedy, M.J.; Tischkowitz, M.; Rogers, M.T.; Porteous, M.E.; Morrison, P.J.; Platte, R.; Eeles, R.; Davidson, R.; Hodgson, S.; Cole, T.; Godwin, A.K.; Isaacs, C.; Claes, K.; Leeneer, K. De; Meindl, A.; Gehrig, A.; Wappenschmidt, B.; Sutter, C.; Engel, C.; Niederacher, D.; Steinemann, D.; Plendl, H.; Kast, K.; Rhiem, K.; Ditsch, N.; Arnold, N.; Varon-Mateeva, R.; Schmutzler, R.K.; Preisler-Adams, S.; Markov, N.B.; Wang-Gohrke, S.; Pauw, A. de; Lefol, C.; Lasset, C.; Leroux, D.; Rouleau, E.; Damiola, F.; Dreyfus, H.; Barjhoux, L.; Golmard, L.; Uhrhammer, N.; Bonadona, V.; Sornin, V.; Bignon, Y.J.; Carter, J.; Le, L; Piedmonte, M.; DiSilvestro, P.A.; Hoya, M. de la; Caldes, T.; Nevanlinna, H.; Aittomaki, K.; Jager, A.; Ouweland, A.M. van den; Kets, C.M.; Aalfs, C.M.; Leeuwen, F.E. van; Hogervorst, F.B.; Meijers-Heijboer, H.E.; Oosterwijk, J.C.; Roozendaal, K.E. van; Rookus, M.A.; Devilee, P.; Luijt, R.B. van der; Olah, E.; Diez, O.; Teule, A.; Lazaro, C.; Blanco, I.; Valle, J.; Jakubowska, A.; Sukiennicki, G.; Gronwald, J.; Lubinski, J.; Durda, K.; Jaworska-Bieniek, K.; Agnarsson, B.A.; Maugard, C.; Amadori, A.; Montagna, M.; Teixeira, M.R.; Spurdle, A.B.; Foulkes, W.; Olswold, C.; Lindor, N.M.; Pankratz, V.S.; Szabo, C.I.; Lincoln, A.; Jacobs, L.; Corines, M.; Robson, M.; Vijai, J.; Berger, A.; Fink-Retter, A.; Singer, C.F.; Rappaport, C.; Kaulich, D.G.; Pfeiler, G.; Tea, M.K.; Greene, M.H.; Mai, P.L.; Rennert, G.; Imyanitov, E.N.; Mulligan, A.M.; Glendon, G.; Andrulis, I.L.; Tchatchou, S.; Toland, A.E.; Pedersen, I.S.; Thomassen, M.; Kruse, T.A.; Jensen, U.B.; Caligo, M.A.; Friedman, E.; Zidan, J.; Laitman, Y.; Lindblom, A.; Melin, B.; Arver, B.; Loman, N.; Rosenquist, R.; Olopade, O.I.; Nussbaum, R.L.; Ramus, S.J.; Nathanson, K.L.; Domchek, S.M.; Rebbeck, T.R.; Arun, B.K.; Mitchell, G.; Karlan, B.Y.; Lester, J.; Orsulic, S.; Stoppa-Lyonnet, D.; Thomas, G; Simard, J.; Couch, F.J.; Offit, K.; Easton, D.F.; Chenevix-Trench, G.; Antoniou, A.C.; Mazoyer, S.; Phelan, C.M.; Sinilnikova, O.M.; Cox, D.G.

    2015-01-01

    INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are

  16. Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families

    International Nuclear Information System (INIS)

    Eerola, Hannaleena; Heikkilä, Päivi; Tamminen, Anitta; Aittomäki, Kristiina; Blomqvist, Carl; Nevanlinna, Heli

    2005-01-01

    Histopathological features of BRCA1 and BRCA2 tumours have previously been characterised and compared with unselected breast tumours; however, familial non-BRCA1/2 tumours are less well known. The aim of this study was to characterise familial non-BRCA1/2 tumours and to evaluate routine immunohistochemical and pathological markers that could help us to further distinguish families carrying BRCA1/2 mutations from other breast cancer families. Breast cancer tissue specimens (n = 262) from 25 BRCA1, 20 BRCA2 and 74 non-BRCA1/2 families were studied on a tumour tissue microarray. Immunohistochemical staining of oestrogen receptor (ER), progesterone receptor (PgR) and p53 as well as the histology and grade of these three groups were compared with each other and with the respective information on 862 unselected control patients from the archives of the Pathology Department of Helsinki University Central Hospital. Immunohistochemical staining of erbB2 was also performed among familial cases. BRCA1-associated cancers were diagnosed younger and were more ER-negative and PgR-negative, p53-positive and of higher grade than the other tumours. However, in multivariate analysis the independent factors compared with non-BRCA1/2 tumours were age, grade and PgR negativity. BRCA2 cases did not have such distinctive features compared with non-BRCA1/2 tumours or with unselected control tumours. Familial cases without BRCA1/2 mutations had tumours of lower grade than the other groups. BRCA1 families differed from mutation-negative families by age, grade and PgR status, whereas ER status was not an independent marker

  17. Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kuchenbaecker, Karoline B; Vijai, Joseph

    2013-01-01

    of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer...... carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part...

  18. Chemotherapy-induced amenorrhea in patients with breast cancer with a BRCA1 or BRCA2 mutation.

    Science.gov (United States)

    Valentini, Adriana; Finch, Amy; Lubinski, Jan; Byrski, Tomasz; Ghadirian, Parviz; Kim-Sing, Charmaine; Lynch, Henry T; Ainsworth, Peter J; Neuhausen, Susan L; Greenblatt, Ellen; Singer, Christian; Sun, Ping; Narod, Steven A

    2013-11-01

    To determine the likelihood of long-term amenorrhea after treatment with chemotherapy in women with breast cancer who carry a BRCA1 or BRCA2 mutation. We conducted a multicenter survey of 1,954 young women with a BRCA1 or BRCA2 mutation who were treated for breast cancer. We included premenopausal women who were diagnosed with invasive breast cancer between 26 and 47 years of age. We determined the age of onset of amenorrhea after breast cancer for women who were and were not treated with chemotherapy, alone or with tamoxifen. We considered chemotherapy-induced amenorrhea to have occurred when the patient experienced ≥ 2 years of amenorrhea, commencing within 2 years of initiating chemotherapy, with no resumption of menses. Of the 1,426 women who received chemotherapy, 35% experienced long-term amenorrhea. Of the 528 women who did not receive chemotherapy, 5.3% developed long-term amenorrhea. The probabilities of chemotherapy-induced amenorrhea were 7.2% for women diagnosed before age 30 years, 33% for women age 31 to 44 years, and 79% for women diagnosed after age 45 years (P trend amenorrhea was higher for women who received tamoxifen than for those who did not (52% v 29%; P amenorrhea in women who carry a BRCA1 or BRCA2 mutation. The risk of induced long-term amenorrhea does not seem to be greater among mutation carriers than among women who do not carry a mutation.

  19. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...... and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most...... significant SNP rs228595 p = 7 × 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1...

  20. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.L. Neuhausen (Susan); M. Robson (Mark); D. Barrowdale (Daniel); L. McGuffog (Lesley); A.M. Mulligan (Anna Marie); I.L. Andrulis (Irene); A.B. Spurdle (Amanda); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); C. Engel (Christoph); B. Wapenschmidt (Barbara); H. Nevanlinna (Heli); M. Thomassen (Mads); M.C. Southey (Melissa); P. Radice (Paolo); S.J. Ramus (Susan); S.M. Domchek (Susan); K.L. Nathanson (Katherine); A. Lee (Andrew); S. Healey (Sue); R. Nussbaum (Robert); R. Rebbeck (Timothy); B.K. Arun (Banu); M. James (Margaret); B.Y. Karlan (Beth); K.J. Lester (Kathryn); I. Cass (Ilana); M.B. Terry (Mary Beth); M.J. Daly (Mark); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); T. v O Hansen (Thomas); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); F. Nielsen (Finn); J. Dennis (Joe); J.M. Cunningham (Julie); S. Hart (Stewart); S. Slager (Susan); A. Osorio (Ana); J. Benítez (Javier); M. Duran (Mercedes); J.N. Weitzel (Jeffrey); I. Tafur (Isaac); M. Hander (Mary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); G. Roversi (Gaia); G. Scuvera (Giulietta); B. Bonnani (Bernardo); P. Mariani (Paolo); S. Volorio (Sara); R. Dolcetti (Riccardo); L. Varesco (Liliana); L. Papi (Laura); M.G. Tibiletti (Maria Grazia); G. Giannini (Giuseppe); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); K. Ong; L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); A.K. Godwin (Andrew); K. Rhiem (Kerstin); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); D. Steinemann (Doris); N. Bogdanova-Markov (Nadja); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S. Wang-Gohrke (Shan); P.A. Gehrig (Paola A.); B. Markiefka (Birgid); B. Buecher (Bruno); C. Lefol (Cédrick); D. Stoppa-Lyonnet (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); L. Barjhoux (Laure); L. Faivre (Laurence); M. Longy (Michel); N. Sevenet (Nicolas); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); V. Bonadona (Valérie); V. Caux-Moncoutier (Virginie); C. Isaacs (Claudine); T. Van Maerken (Tom); K.B.M. Claes (Kathleen B.M.); M. Piedmonte (Marion); L. Andrews (Lesley); J. Hays (John); G.C. Rodriguez (Gustavo); T. Caldes (Trinidad); M. de La Hoya (Miguel); S. Khan (Sofia); F.B.L. Hogervorst (Frans); C.M. Aalfs (Cora); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); J.T. Wijnen (Juul); K.E. van Roozendaal (Kees); A.R. Mensenkamp (Arjen); A.M.W. van den Ouweland (Ans); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); C. Lazaro (Conxi); I. Blanco (Ignacio); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); J. Lubinski (Jan); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Arason (Adalgeir); C. Maugard; P. Soucy (Penny); M. Montagna (Marco); S. Agata (Simona); P.J. Teixeira; C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); B. Hallberg (Boubou); X. Wang (Xianshu); C. Szabo (Csilla); J. Vijai (Joseph); L. Jacobs (Lauren); M. Corines (Marina); A. Lincoln (Anne); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); E.N. Imyanitov (Evgeny); G. Glendon (Gord); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); R. Berger (Raanan); Y. Laitman (Yael); J. Rantala (Johanna); B. Arver (Brita Wasteson); N. Loman (Niklas); Å. Borg (Åke); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); CIMBA; EMBRACE Study; Breast Cancer Family; GEMO Study Collaborators; HEBON; KConFab Investigators

    2014-01-01

    textabstractIntroduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2

  1. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Kuchenbaecker, Karoline B.; Neuhausen, Susan L.; Robson, Mark; Barrowdale, Daniel; McGuffog, Lesley; Mulligan, Anna Marie; Andrulis, Irene L.; Spurdle, Amanda B.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Engel, Christoph; Wappenschmidt, Barbara; Nevanlinna, Heli; Thomassen, Mads; Southey, Melissa; Radice, Paolo; Ramus, Susan J.; Domchek, Susan M.; Nathanson, Katherine L.; Lee, Andrew; Healey, Sue; Nussbaum, Robert L.; Rebbeck, Timothy R.; Arun, Banu K.; James, Paul; Karlan, Beth Y.; Lester, Jenny; Cass, Ilana; Terry, Mary Beth; Daly, Mary B.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; v O Hansen, Thomas; Ejlertsen, Bent; Gerdes, Anne-Marie; Nielsen, Finn C.; Dennis, Joe; Cunningham, Julie; Hart, Steven; Slager, Susan; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Weitzel, Jeffrey N.; Tafur, Isaac; Hander, Mary; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Roversi, Gaia; Scuvera, Giulietta; Bonanni, Bernardo; Mariani, Paolo; Volorio, Sara; Dolcetti, Riccardo; Varesco, Liliana; Papi, Laura; Tibiletti, Maria Grazia; Giannini, Giuseppe; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Ong, Kai-Ren; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Ellis, Steve; Godwin, Andrew K.; Rhiem, Kerstin; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg; Niederacher, Dieter; Sutter, Christian; Steinemann, Doris; Bogdanova-Markov, Nadja; Kast, Karin; Varon-Mateeva, Raymonda; Wang-Gohrke, Shan; Gehrig, Andrea; Markiefka, Birgid; Buecher, Bruno; Lefol, Cédrick; Stoppa-Lyonnet, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Barjhoux, Laure; Faivre, Laurence; Longy, Michel; Sevenet, Nicolas; Sinilnikova, Olga M.; Mazoyer, Sylvie; Bonadona, Valérie; Caux-Moncoutier, Virginie; Isaacs, Claudine; van Maerken, Tom; Claes, Kathleen; Piedmonte, Marion; Andrews, Lesley; Hays, John; Rodriguez, Gustavo C.; Caldes, Trinidad; de la Hoya, Miguel; Khan, Sofia; Hogervorst, Frans B. L.; Aalfs, Cora M.; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, Annemarie H.; Wijnen, Juul T.; van Roozendaal, K. E. P.; Mensenkamp, Arjen R.; van den Ouweland, Ans M. W.; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Lazaro, Conxi; Blanco, Ignacio; Teulé, Alex; Menendez, Mireia; Jakubowska, Anna; Lubinski, Jan; Cybulski, Cezary; Gronwald, Jacek; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Arason, Adalgeir; Maugard, Christine; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R.; Olswold, Curtis; Lindor, Noralane; Pankratz, Vernon S.; Hallberg, Emily; Wang, Xianshu; Szabo, Csilla I.; Vijai, Joseph; Jacobs, Lauren; Corines, Marina; Lincoln, Anne; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Gschwantler; Pfeiler, Georg; tea, Muy-Kheng; Phelan, Catherine M.; Mai, Phuong L.; Greene, Mark H.; Rennert, Gad; Imyanitov, Evgeny N.; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Berger, Raanan; Laitman, Yael; Rantala, Johanna; Arver, Brita; Loman, Niklas; Borg, Ake; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Simard, Jacques; Easton, Douglas F.; Chenevix-Trench, Georgia; Offit, Kenneth; Couch, Fergus J.; Antoniou, Antonis C.; Perkins, Jo; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; Hoffman, Jonathan; James, Margaret; Paterson, Joan; Downing, Sarah; Taylor, Amy; Murray, Alexandra; McCann, Emma; Barton, David; Porteous, Mary; Drummond, Sarah; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Jacobs, Chris; Langman, Caroline; Dorkins, Huw; Serra-Feliu, Gemma; Ellis, Ian; Lalloo, Fiona; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Claber, Oonagh; Jobson, Irene; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Quarrell, Oliver; Bardsley, Cathryn; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Weaver, Joellen; Bove, Betsy; Sinilnikova, Olga; Verny-Pierre, Carole; Calender, Alain; Giraud, Sophie; Léone, Mélanie; Gauthier-Villars, Marion; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; Tirapo, Carole; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Caron, Olivier; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Handallo, Sandrine; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Remenieras, Audrey; Eisinger, François; Coupier, Isabelle; Pujol, Pascal; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Magalie; Coron, Fanny; Lebrun, Marine; Kientz, Caroline; Ferrer, Sandra Fert; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Mortemousque, Isabelle; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Sokolowska, Johanna; Bronner, Myriam; Collonge-Rame, Marie-Agnès; Damette, Alexandre; Lynch, Henry T.; Snyder, Carrie L.; Coene, Ilse; Crombez, Brecht; Segura, Pedro Perez; Romero, Atocha; Diaque, Paula; Aittomäki, Kristiina; Blomqvist, Carl; Aaltonen, Kirsimari; Muranen, Taru A.; Erkkilä, Irja; Palola, Virpi; Rookus, M. A.; Hogervorst, F. B. L.; van Leeuwen, F. E.; Verhoef, S.; Schmidt, M. K.; Wijnands, R.; Collée, J. M.; van den Ouweland, A. M. W.; Hooning, M. J.; Seynaeve, C.; van Deurzen, C. H. M.; Obdeijn, I. M.; van Asperen, C. J.; Wijnen, J. T.; Tollenaar, R. A. E. M.; Devilee, P.; van Cronenburg, T. C. T. E. F.; Kets, C. M.; Mensenkamp, A. R.; Ausems, M. G. E. M.; van der Luijt, R. B.; van Os, T. A. M.; Gille, J. J. P.; Waisfisz, Q.; Gómez-Garcia, E. B.; Blok, M. J.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; de Bock, G. H.; Vasen, H. F.; Siesling, S.; Overbeek, L. I. H.; Papp, Janos; Vaszko, Tibor; Bozsik, Aniko; Pocza, Timea; Franko, Judit; Balogh, Maria; Domokos, Gabriella; Ferenczi, Judit; Balmaña, J.; Capella, Gabriel; Dumont, Martine; Tranchant, Martine

    2014-01-01

    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation

  2. BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers

    DEFF Research Database (Denmark)

    Meeks, Huong D; Song, Honglin; Michailidou, Kyriaki

    2016-01-01

    3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1...... and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.......43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. CONCLUSIONS: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2...

  3. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    Science.gov (United States)

    Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Soucy, Penny; Healey, Sue; Dennis, Joe; Lush, Michael; Robson, Mark; Spurdle, Amanda B.; Ramus, Susan J.; Mavaddat, Nasim; Terry, Mary Beth; Neuhausen, Susan L.; Hamann, Ute; Southey, Melissa; John, Esther M.; Chung, Wendy K.; Daly, Mary B.; Buys, Saundra S.; Goldgar, David E.; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Ejlertsen, Bent; Gerdes, Anne-Marie; Hansen, Thomas V. O.; Slager, Susan; Hallberg, Emily; Benitez, Javier; Osorio, Ana; Cohen, Nancy; Lawler, William; Weitzel, Jeffrey N.; Peterlongo, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Barile, Monica; Bonanni, Bernardo; Azzollini, Jacopo; Manoukian, Siranoush; Peissel, Bernard; Radice, Paolo; Savarese, Antonella; Papi, Laura; Giannini, Giuseppe; Fostira, Florentia; Konstantopoulou, Irene; Adlard, Julian; Brewer, Carole; Cook, Jackie; Davidson, Rosemarie; Eccles, Diana; Eeles, Ros; Ellis, Steve; Frost, Debra; Hodgson, Shirley; Izatt, Louise; Lalloo, Fiona; Ong, Kai-ren; Godwin, Andrew K.; Arnold, Norbert; Dworniczak, Bernd; Engel, Christoph; Gehrig, Andrea; Hahnen, Eric; Hauke, Jan; Kast, Karin; Meindl, Alfons; Niederacher, Dieter; Schmutzler, Rita Katharina; Varon-Mateeva, Raymonda; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Barjhoux, Laure; Collonge-Rame, Marie-Agnès; Elan, Camille; Golmard, Lisa; Barouk-Simonet, Emmanuelle; Lesueur, Fabienne; Mazoyer, Sylvie; Sokolowska, Joanna; Stoppa-Lyonnet, Dominique; Isaacs, Claudine; Claes, Kathleen B. M.; Poppe, Bruce; de la Hoya, Miguel; Garcia-Barberan, Vanesa; Aittomäki, Kristiina; Nevanlinna, Heli; Ausems, Margreet G. E. M.; de Lange, J. L.; Gómez Garcia, Encarna B.; Hogervorst, Frans B. L.; Kets, Carolien M.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; Rookus, Matti A.; van Asperen, Christi J.; van den Ouweland, Ans M. W.; van Doorn, Helena C.; van Os, Theo A. M.; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Lazaro, Conxi; Teulé, Alex; Gronwald, Jacek; Jakubowska, Anna; Kaczmarek, Katarzyna; Lubinski, Jan; Sukiennicki, Grzegorz; Barkardottir, Rosa B.; Chiquette, Jocelyne; Agata, Simona; Montagna, Marco; Teixeira, Manuel R.; Park, Sue Kyung; Olswold, Curtis; Tischkowitz, Marc; Foretova, Lenka; Gaddam, Pragna; Vijai, Joseph; Pfeiler, Georg; Rappaport-Fuerhauser, Christine; Singer, Christian F.; Tea, Muy-Kheng M.; Greene, Mark H.; Loud, Jennifer T.; Rennert, Gad; Imyanitov, Evgeny N.; Hulick, Peter J.; Hays, John L.; Piedmonte, Marion; Rodriguez, Gustavo C.; Martyn, Julie; Glendon, Gord; Mulligan, Anna Marie; Andrulis, Irene L.; Toland, Amanda Ewart; Jensen, Uffe Birk; Kruse, Torben A.; Pedersen, Inge Sokilde; Thomassen, Mads; Caligo, Maria A.; Teo, Soo-Hwang; Berger, Raanan; Friedman, Eitan; Laitman, Yael; Arver, Brita; Borg, Ake; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I.; Ganz, Patricia A.; Nussbaum, Robert L.; Bradbury, Angela R.; Domchek, Susan M.; Nathanson, Katherine L.; Arun, Banu K.; James, Paul; Karlan, Beth Y.; Lester, Jenny; Simard, Jacques; Pharoah, Paul D. P.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Easton, Douglas F.

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]–positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2×10−53). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2×10−20). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management. PMID

  4. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

    Science.gov (United States)

    Mavaddat, Nasim; Barrowdale, Daniel; Andrulis, Irene L.; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Spurdle, Amanda; Robson, Mark; Sherman, Mark; Mulligan, Anna Marie; Couch, Fergus J.; Engel, Christoph; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Southey, Melissa C.; Terry, Mary Beth; Goldgar, David; O’Malley, Frances; John, Esther M.; Janavicius, Ramunas; Tihomirova, Laima; Hansen, Thomas v O; Nielsen, Finn C.; Osorio, Ana; Stavropoulou, Alexandra; Benítez, Javier; Manoukian, Siranoush; Peissel, Bernard; Barile, Monica; Volorio, Sara; Pasini, Barbara; Dolcetti, Riccardo; Putignano, Anna Laura; Ottini, Laura; Radice, Paolo; Hamann, Ute; Rashid, Muhammad U.; Hogervorst, Frans B.; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Brewer, Carole; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Houghton, Catherine; Weaver, JoEllen; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Kast, Karin; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Doroteha; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schönbuchner, Ines; Gevensleben, Heidrun; Stoppa-Lyonnet, Dominique; Belotti, Muriel; Barjhoux, Laure; Isaacs, Claudine; Peshkin, Beth N.; Caldes, Trinidad; de al Hoya, Miguel; Cañadas, Carmen; Heikkinen, Tuomas; Heikkilä, Päivi; Aittomäki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Agnarsson, Bjarni A.; Arason, Adalgeir; Barkardottir, Rosa B.; Dumont, Martine; Simard, Jacques; Montagna, Marco; Agata, Simona; D’Andrea, Emma; Yan, Max; Fox, Stephen; Rebbeck, Timothy R.; Rubinstein, Wendy; Tung, Nadine; Garber, Judy E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia M.; Singer, Christian F.; Tea, Muy-Kheng; Rappaport, Christine; Mai, Phuong L.; Greene, Mark H.; Sokolenko, Anna; Imyanitov, Evgeny; Toland, Amanda Ewart; Senter, Leigha; Sweet, Kevin; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben; Caligo, Maria; Aretini, Paolo; Rantala, Johanna; von Wachenfeld, Anna; Henriksson, Karin; Steele, Linda; Neuhausen, Susan L.; Nussbaum, Bob; Beattie, Mary; Odunsi, Kunle; Sucheston, Lara; Gayther, Simon A; Nathanson, Kate; Gross, Jenny; Walsh, Christine; Karlan, Beth; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Previous small studies found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization. Methods We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the pathology of invasive breast, ovarian and contralateral breast cancers. Results There was strong evidence that the proportion of estrogen receptor (ER)-negative breast tumors decreased with age at diagnosis among BRCA1 (p-trend=1.2×10−5) but increased with age at diagnosis among BRCA2 carriers (p-trend=6.8×10−6). The proportion of triple negative tumors decreased with age at diagnosis in BRCA1 carriers but increased with age at diagnosis of BRCA2 carriers. In both BRCA1 and BRCA2 carriers, ER-negative tumors were of higher histological grade than ER-positive tumors (Grade 3 vs. Grade 1, p=1.2×10−13 for BRCA1 and p=0.001 for BRCA2). ER and progesterone receptor (PR) expression were independently associated with mutation carrier status (ER-positive odds ratio (OR) for BRCA2=9.4, 95%CI:7.0-12.6 and PR-positive OR=1.7, 95%CI:1.3-2.3, under joint analysis). Lobular tumors were more likely to be BRCA2-related (OR for BRCA2=3.3, 95%CI:2.4-4.4, p=4.4×10−14), and medullary tumors BRCA1-related (OR for BRCA2=0.25, 95%CI:0.18-0.35, p=2.3×10−15). ER-status of the first breast cancer was predictive of ER-status of asynchronous contralateral breast cancer (p=0.0004 for BRCA1; p=0.002 for BRCA2). There were no significant differences in ovarian cancer morphology between BRCA1 and BRCA2 carriers (serous:67%; mucinous:1%; endometriod:12%; clear-cell:2%). Conclusions/Impact Pathology characteristics of BRCA1 and BRCA2 tumors may be useful for improving risk prediction algorithms and informing clinical strategies for screening and prophylaxis. PMID:22144499

  5. Evaluation of chromosome 6p22 as a breast cancer risk modifier locus in a follow-up study of BRCA2 mutation carriers

    Science.gov (United States)

    Stevens, Kristen N.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Greene, Mark H.; Andrulis, Irene L.; Thomassen, Mads; Caligo, Maria; Nathanson, Katherine L.; Jakubowska, Anna; Osorio, Ana; Hamann, Ute; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Southey, Melissa; Buys, Saundra S.; Singer, Christian F.; Hansen, Thomas V.O.; Arason, Adalgeir; Offit, Kenneth; Piedmonte, Marion; Montagna, Marco; Imyanitov, Evgeny; Tihomirova, Laima; Sucheston, Lara; Beattie, Mary; Neuhausen, Susan L.; Szabo, Csilla I.; Simard, Jacques; Spurdle, Amanda B.; Healey, Sue; Chen, Xiaoqing; Rebbeck, Timothy R.; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C; Couch, Fergus J.

    2012-01-01

    Several common germline variants identified through genome-wide association studies of breast cancer risk in the general population have recently been shown to be associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. When combined, these variants can identify marked differences in the absolute risk of developing breast cancer for mutation carriers, suggesting that additional modifier loci may further enhance individual risk assessment for BRCA1 and BRCA2 mutation carriers. Recently, a common variant on 6p22 (rs9393597) was found to be associated with increased breast cancer risk for BRCA2 mutation carriers [Hazard ratio (HR)=1.55, 95% CI 1.25–1.92, p=6.0×10−5]. This observation was based on data from GWAS studies in which, despite statistical correction for multiple comparisons, the possibility of false discovery remains a concern. Here we report on an analysis of this variant in an additional 6,165 BRCA1 and 3,900 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). In this replication analysis, rs9393597 was not associated with breast cancer risk for BRCA2 mutation carriers [HR=1.09, 95% CI 0.96–1.24, p=0.18]. No association with ovarian cancer risk for BRCA1 or BRCA2 mutation carriers or with breast cancer risk for BRCA1 mutation carriers was observed. This follow-up study suggests that, contrary to our initial report, this variant is not associated with breast cancer risk among individuals with germline BRCA2 mutations. PMID:23011509

  6. Analysis of 6174delT Mutation in BRCA2 Gene by Mutagenically Separated PCR Among Libyan Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Lamia Elfandi

    2016-03-01

    Full Text Available Background: Breast cancer is the most common malignancy among women. It is estimated that 1 in 10 women worldwide is affected by breast cancer during their lifetime. In 5 to 10% of breast cancer patients, the disease results from a hereditary predisposition, which can be attributable to mutations in either of two tumor suppressor genes, BRCA1 and BRCA2 to a large extent. BRCA2 6174delT mutation constitutes the common mutant alleles which predispose to hereditary breast cancer in the Ashkenazi population with a reported carrier frequency of 1.52%. In this study, we investigated the presence of the 6174delT mutation of the BRCA2 gene in Libyan woman affected with breast cancer and compared the results with those of other population groups.Methods: Eighty- five Libyan women with breast cancer in additions to 5 relatives of the patients (healthy individuals were recruited to this study. We obtained clinical information, family history, and peripheral blood for DNA extraction and analyzed the data using multiplex mutagenic polymerase chain reaction (MS-PCR for detection of 6174delT mutation in the BRCA2 gene. Results: The 6174delT of the BRCA2 gene was not detected either in the 85 patients with breast cancer (18 with familial breast cancer and 67 with sporadic breast cancer nor in the 5 healthy individuals. Conclusions: The present study showed that the 6174delT of the BRCA2 gene was not detectable using mutagenic PCR in the Libyan patients with breast cancer and can be considered to be exceedingly rare

  7. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    Mulligan, Anna Marie; Couch, Fergus J.; Barrowdale, Daniel; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Robson, Mark; Sherman, Mark; Spurdle, Amanda B.; Wappenschmidt, Barbara; Lee, Andrew; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Janavicius, Ramunas; Hansen, Thomas vO; Nielsen, Finn C.; Ejlertsen, Bent; Osorio, Ana; Muñoz-Repeto, Iván; Durán, Mercedes; Godino, Javier; Pertesi, Maroulio; Benítez, Javier; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Bonanni, Bernardo; Viel, Alessandra; Pasini, Barbara; Papi, Laura; Ottini, Laura; Savarese, Antonella; Bernard, Loris; Radice, Paolo; Hamann, Ute; Verheus, Martijn; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Gómez García, Encarna B.; Nelen, Marcel R.; Kets, C. Marleen; Seynaeve, Caroline; Tilanus-Linthorst, Madeleine M. A.; van der Luijt, Rob B.; van Os, Theo; Rookus, Matti; Frost, Debra; Jones, J. Louise; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Cook, Jackie; Donaldson, Alan; Dorkins, Huw; Gregory, Helen; Eason, Jacqueline; Houghton, Catherine; Barwell, Julian; Side, Lucy E.; McCann, Emma; Murray, Alex; Peock, Susan; Godwin, Andrew K.; Schmutzler, Rita K.; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Kast, Karin; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schoenbuchner, Ines; Fiebig, Britta; Heinritz, Wolfram; Schäfer, Dieter; Gevensleben, Heidrun; Caux-Moncoutier, Virginie; Fassy-Colcombet, Marion; Cornelis, François; Mazoyer, Sylvie; Léoné, Mélanie; Boutry-Kryza, Nadia; Hardouin, Agnès; Berthet, Pascaline; Muller, Danièle; Fricker, Jean-Pierre; Mortemousque, Isabelle; Pujol, Pascal; Coupier, Isabelle; Lebrun, Marine; Kientz, Caroline; Longy, Michel; Sevenet, Nicolas; Stoppa-Lyonnet, Dominique; Isaacs, Claudine; Caldes, Trinidad; de la Hoya, Miguel; Heikkinen, Tuomas; Aittomäki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Barkardottir, Rosa B.; Soucy, Penny; Dumont, Martine; Simard, Jacques; Montagna, Marco; Tognazzo, Silvia; D'Andrea, Emma; Fox, Stephen; Yan, Max; Rebbeck, Tim; Olopade, Olufunmilayo; Weitzel, Jeffrey N.; Lynch, Henry T.; Ganz, Patricia A.; Tomlinson, Gail E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia; Bhatia, Jasmine; Kauff, Noah; Singer, Christian F.; tea, Muy-Kheng; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Mai, Phuong L.; Greene, Mark H.; Imyanitov, Evgeny; O'Malley, Frances P.; Ozcelik, Hilmi; Glendon, Gordon; Toland, Amanda E.; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Soller, Maria; Henriksson, Karin; Wachenfeldt, von Anna; Arver, Brita; Stenmark-Askmalm, Marie; Karlsson, Per; Ding, Yuan Chun; Neuhausen, Susan L.; Beattie, Mary; Pharoah, Paul D. P.; Moysich, Kirsten B.; Nathanson, Katherine L.; Karlan, Beth Y.; Gross, Jenny; John, Esther M.; Daly, Mary B.; Buys, Saundra M.; Southey, Melissa C.; Hopper, John L.; Terry, Mary Beth; Chung, Wendy; Miron, Alexander F.; Goldgar, David; Chenevix-Trench, Georgia; Easton, Douglas F.; Andrulis, Irene L.; Antoniou, Antonis C.; Ellis, Steve; Fineberg, Elena; Platte, Radka; Miedzybrodzka, Zosia; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; Ong, Kai-Ren; Hoffman, Jonathan; James, Margaret; Paterson, Joan; Downing, Sarah; Taylor, Amy; Rogers, T.; Kennedy, John M.; Barton, David; Porteous, Mary; Drummond, Sarah; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Jacobs, Chris; Langman, Caroline; Whaite, Anna; Chu, Carol; Miller, Julie; Ellis, Ian; Taylor, Jane; Male, Alison; Berlin, Cheryl; Collier, Rebecca; Douglas, Fiona; Claber, Oonagh; Jobson, Irene; Walker, Lisa; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Barjhoux, Laure; Verny-Pierre, Carole; Giraud, Sophie; Gauthier-Villars, Marion; Buecher, Bruno; Houdayer, Claude; Belotti, Muriel; Tirapo, Carole; de Pauw, Antoine; Roussy, Gustave; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Bérard, Léon; Lasset, Christine; Bonadona, Valérie; Baclesse, François; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Magalie; Coron, Fanny; Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Lacassagne, Antoine; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Snyder, Carrie L.; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van 't Veer, L. J.; van Leeuwen, F. E.; Collée, M.; van den Ouweland, A. M. W.; Jager, A.; Hooning, M. J.; van Asperen, C. J.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; Aalfs, C. M.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Liedgren, Sigrun; Borg, Åke; Loman, Niklas; Olsson, Håkan; Kristoffersson, Ulf; Jernström, Helena; Harbst, Katja; Lindblom, Annika; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Melin, Beatrice; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist, Richard; Dahl, Niklas

    2011-01-01

    Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2

  8. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A.; Milne, R.L.; Pita, G.

    2009-01-01

    BACKGROUND: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. METHODS: We have...... genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. RESULTS: We found no evidence of association with breast cancer risk...... for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P = 0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P = 0.5) mutation carriers. CONCLUSION: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out Udgivelsesdato: 2009/12/15...

  9. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; Hopper, John L; Barnes, Daniel R

    2017-01-01

    for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P

  10. Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Novakovic, Srdjan; Stegel, Vida; Jereb, Berta

    2011-01-01

    Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer. Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes. Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer

  11. A non-synonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    Science.gov (United States)

    Ding, Yuan C.; McGuffog, Lesley; Healey, Sue; Friedman, Eitan; Laitman, Yael; Shani-Shimon–Paluch; Kaufman, Bella; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Gronwald, Jacek; Huzarski, Tomasz; Cybulski, Cezary; Byrski, Tomasz; Osorio, Ana; Cajal, Teresa Ramóny; Stavropoulou, Alexandra V; Benítez, Javier; Hamann, Ute; Rookus, Matti; Aalfs, Cora M.; de Lange, Judith L.; Meijers-Heijboer, Hanne E.J.; Oosterwijk, Jan C.; van Asperen, Christi J.; García, Encarna B. Gómez; Hoogerbrugge, Nicoline; Jager, Agnes; van der Luijt, Rob B.; Easton, Douglas F.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Tischkowitz, Marc; Godwin, Andrew K.; Pathak, Harsh; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Barjhoux, Laure; Léoné, Mélanie; Gauthier-Villars, Marion; Caux-Moncoutier, Virginie; de Pauw, Antoine; Hardouin, Agnès; Berthet, Pascaline; Dreyfus, Hélène; Ferrer, Sandra Fert; Collonge-Rame, Marie-Agnès; Sokolowska, Johanna; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Maria, Muy-Kheng Tea; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Hansen, Thomas v. O.; Ejlertsen, Bent; Johannsson, Oskar Th.; Offit, Kenneth; Sarrel, Kara; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion R; Andrews, Lesley; Cohn, David; DeMars, Leslie R.; DiSilvestro, Paul; Rodriguez, Gustavo; Toland, Amanda Ewart; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Ramus, Susan J; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Ganz, Patricia A.; Beattie, Mary S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Tomlinson, Gail E.; Weitzel, Jeffrey; Garber, Judy E.; Olopade, Olufunmilayo I.; Rubinstein, Wendy S.; Tung, Nadine; Blum, Joanne L.; Narod, Steven A.; Brummel, Sean; Gillen, Daniel L.; Lindor, Noralane; Fredericksen, Zachary; Pankratz, Vernon S.; Couch, Fergus J.; Radice, Paolo; Peterlongo, Paolo; Greene, Mark H.; Loud, Jennifer T.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Gerdes, Anne-Marie; Thomassen, Mads; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Lee, Andrew; Chenevix-Trench, Georgia; Antoniou, Antonis C; Neuhausen, Susan L.

    2012-01-01

    Background We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers. Methods IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers. Results Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 [Hazard ratio (HR) = 1.43; 95% CI: 1.06–1.92; p = 0.019] and BRCA2 mutation carriers (HR=2.21; 95% CI: 1.39–3.52, p=0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class 2 mutations than class 1 (mutations (class 2 HR=1.86, 95% CI: 1.28–2.70; class 1 HR=0.86, 95%CI:0.69–1.09; p-for difference=0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class 2 mutation carriers (HR = 2.42; p = 0.03). Conclusion The IRS1 Gly972Arg SNP, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class 2 mutation carriers. Impact These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers. PMID:22729394

  12. Evaluation of chromosome 6p22 as a breast cancer risk modifier locus in a follow-up study of BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Stevens, Kristen N; Wang, Xianshu; Fredericksen, Zachary

    2012-01-01

    Several common germline variants identified through genome-wide association studies of breast cancer risk in the general population have recently been shown to be associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. When combined, these variants can identify marked differe...

  13. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    OpenAIRE

    Andrulis, IL; Mulligan, AM; Schmutzler, RK; Barrowdale, D; McGuffog, L; Robson, M; Schmidt, MK; Spurdle, AB; Neuhausen, SL; Kuchenbaecker, KB

    2014-01-01

    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRC...

  14. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases.

    Directory of Open Access Journals (Sweden)

    Ana Blanco

    Full Text Available BACKGROUND: The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3-4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer. METHODS: 132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification. RESULTS: Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop previously reported, and c.3362del (p.Gly1121ValfsX3 which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%. CONCLUSIONS: The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s involved in the development of breast/pancreatic cancer families is required.

  15. Clinical and pathologic differences between BRCA1-, BRCA2-, and non-BRCA-associated breast cancers in a multiracial developing country.

    Science.gov (United States)

    Yip, Cheng-Har; Taib, N A; Choo, W Y; Rampal, S; Thong, M K; Teo, S H

    2009-10-01

    Mutations in BRCA1 and BRCA2 confer an increased risk to breast and other cancers, but to date there have only been limited numbers of studies of BRCA1- and BRCA2-associated cancers among Asians. Malaysia is a multiracial country with three main races: Malays, Chinese, Indians. We determined whether tumor pathologic features and clinical features differ in patients with and without BRCA mutations in this Asian population. We conducted a retrospective review of the medical records of 152 women with breast cancer who underwent genetic testing for BRCA mutations. The patients self-reported ethnicity, age at onset, and clinical stage at diagnosis and tumor pathology were reviewed. A total of 31 patients carried germline deleterious mutations (16 BRCA1, 15 BRCA2). We found that tumors in BRCA1 carriers were more likely to be estrogen receptor (ER)-negative and progesterone receptor (PR)-negative. HER2 was more likely to be negative in both BRCA1 and BRCA2 subjects compared with non-BRCA subjects. We found a strong association between triple-negative status and BRCA1 carriers. In addition, tumors in BRCA1 carriers were more likely to be higher grade than those in BRCA2 and non-BRCA carriers; but the difference was not statistically significant. These results suggest that tumors associated with BRCA1 mutations are distinct from those of BRCA2-associated and non-BRCA-associated breast cancers, and that the tumors associated with BRCA2 mutations are similar to the non-BRCA-associated breast cancers. Further studies are required to determine if the prognosis is different in each of these groups and the best management strategy for each group.

  16. Recurrent mutation testing of BRCA1 and BRCA2 in Asian breast cancer patients identify carriers in those with presumed low risk by family history.

    Science.gov (United States)

    Kang, Peter Choon Eng; Phuah, Sze Yee; Sivanandan, Kavitta; Kang, In Nee; Thirthagiri, Eswary; Liu, Jian Jun; Hassan, Norhashimah; Yoon, Sook-Yee; Thong, Meow Keong; Hui, Miao; Hartman, Mikael; Yip, Cheng Har; Mohd Taib, Nur Aishah; Teo, Soo Hwang

    2014-04-01

    Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics.

  17. Preferences for breast cancer risk reduction among BRCA1/BRCA2 mutation carriers: a discrete-choice experiment.

    Science.gov (United States)

    Liede, Alexander; Mansfield, Carol A; Metcalfe, Kelly A; Price, Melanie A; Snyder, Carrie; Lynch, Henry T; Friedman, Sue; Amelio, Justyna; Posner, Joshua; Narod, Steven A; Lindeman, Geoffrey J; Evans, D Gareth

    2017-09-01

    Unaffected women who carry BRCA1 or BRCA2 mutations face difficult choices about reducing their breast cancer risk. Understanding their treatment preferences could help us improve patient counseling and inform drug trials. The objective was to explore preferences for various risk-reducing options among women with germline BRCA1/2 mutations using a discrete-choice experiment survey and to compare expressed preferences with actual behaviors. A discrete-choice experiment survey was designed wherein women choose between hypothetical treatments to reduce breast cancer risk. The hypothetical treatments were characterized by the extent of breast cancer risk reduction, treatment duration, impact on fertility, hormone levels, risk of uterine cancer, and ease and mode of administration. Data were analyzed using a random-parameters logit model. Women were also asked to express their preference between surgical and chemoprevention options and to report on their actual risk-reduction actions. Women aged 25-55 years with germline BRCA1/2 mutations who were unaffected with breast or ovarian cancer were recruited through research registries at five clinics and a patient advocacy group. Between January 2015 and March 2016, 622 women completed the survey. Breast cancer risk reduction was the most important consideration expressed, followed by maintaining fertility. Among the subset of women who wished to have children in future, the ability to maintain fertility was the most important factor, followed by the extent of risk reduction. Many more women said they would take a chemoprevention drug than had actually taken chemoprevention. Women with BRCA1/2 mutations indicated strong preferences for breast cancer risk reduction and maintaining fertility. The expressed desire to have a safe chemoprevention drug available to them was not met by current chemoprevention options.

  18. BRCA1 and BRCA2 gene mutations in breast cancer among west ...

    African Journals Online (AJOL)

    There is an increase in the prevalence of cancer in Africa, while cancer was previously related to the industrialized countries. In fact, until today studies are scanty in all the African regions to find out more about the reality of the disease. However, in West Africa, there are few reports on the genetic factors of breast cancer.

  19. A prospective investigation of predictive and modifiable risk factors for breast cancer in unaffected BRCA1 and BRCA2 gene carriers

    International Nuclear Information System (INIS)

    Guinan, Emer M; Hussey, Juliette; McGarrigle, Sarah A; Healy, Laura A; O’Sullivan, Jacintha N; Bennett, Kathleen; Connolly, Elizabeth M

    2013-01-01

    Breast cancer is the most common female cancer worldwide. The lifetime risk of a woman being diagnosed with breast cancer is approximately 12.5%. For women who carry the deleterious mutation in either of the BRCA genes, BRCA1 or BRCA2, the risk of developing breast or ovarian cancer is significantly increased. In recent years there has been increased penetrance of BRCA1 and BRCA2 associated breast cancer, prompting investigation into the role of modifiable risk factors in this group. Previous investigations into this topic have relied on participants recalling lifetime weight changes and subjective methods of recording physical activity. The influence of obesity-related biomarkers, which may explain the link between obesity, physical activity and breast cancer risk, has not been investigated prospectively in this group. This paper describes the design of a prospective cohort study investigating the role of predictive and modifiable risk factors for breast cancer in unaffected BRCA1 and BRCA2 gene mutation carriers. Participants will be recruited from breast cancer family risk clinics and genetics clinics. Lifestyle risk factors that will be investigated will include body composition, metabolic syndrome and its components, physical activity and dietary intake. PBMC telomere length will be measured as a potential predictor of breast cancer occurrence. Measurements will be completed on entry to the study and repeated at two years and five years. Participants will also be followed annually by questionnaire to track changes in risk factor status and to record cancer occurrence. Data will be analysed using multiple regression models. The study has an accrual target of 352 participants. The results from this study will provide valuable information regarding the role of modifiable lifestyle risk factors for breast cancer in women with a deleterious mutation in the BRCA gene. Additionally, the study will attempt to identify potential blood biomarkers which may be predictive

  20. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores.

    Science.gov (United States)

    Lecarpentier, Julie; Silvestri, Valentina; Kuchenbaecker, Karoline B; Barrowdale, Daniel; Dennis, Joe; McGuffog, Lesley; Soucy, Penny; Leslie, Goska; Rizzolo, Piera; Navazio, Anna Sara; Valentini, Virginia; Zelli, Veronica; Lee, Andrew; Amin Al Olama, Ali; Tyrer, Jonathan P; Southey, Melissa; John, Esther M; Conner, Thomas A; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Steele, Linda; Ding, Yuan Chun; Neuhausen, Susan L; Hansen, Thomas V O; Osorio, Ana; Weitzel, Jeffrey N; Toss, Angela; Medici, Veronica; Cortesi, Laura; Zanna, Ines; Palli, Domenico; Radice, Paolo; Manoukian, Siranoush; Peissel, Bernard; Azzollini, Jacopo; Viel, Alessandra; Cini, Giulia; Damante, Giuseppe; Tommasi, Stefania; Peterlongo, Paolo; Fostira, Florentia; Hamann, Ute; Evans, D Gareth; Henderson, Alex; Brewer, Carole; Eccles, Diana; Cook, Jackie; Ong, Kai-Ren; Walker, Lisa; Side, Lucy E; Porteous, Mary E; Davidson, Rosemarie; Hodgson, Shirley; Frost, Debra; Adlard, Julian; Izatt, Louise; Eeles, Ros; Ellis, Steve; Tischkowitz, Marc; Godwin, Andrew K; Meindl, Alfons; Gehrig, Andrea; Dworniczak, Bernd; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Hahnen, Eric; Hauke, Jan; Rhiem, Kerstin; Kast, Karin; Arnold, Norbert; Ditsch, Nina; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Wand, Dorothea; Lasset, Christine; Stoppa-Lyonnet, Dominique; Belotti, Muriel; Damiola, Francesca; Barjhoux, Laure; Mazoyer, Sylvie; Van Heetvelde, Mattias; Poppe, Bruce; De Leeneer, Kim; Claes, Kathleen B M; de la Hoya, Miguel; Garcia-Barberan, Vanesa; Caldes, Trinidad; Perez Segura, Pedro; Kiiski, Johanna I; Aittomäki, Kristiina; Khan, Sofia; Nevanlinna, Heli; van Asperen, Christi J; Vaszko, Tibor; Kasler, Miklos; Olah, Edith; Balmaña, Judith; Gutiérrez-Enríquez, Sara; Diez, Orland; Teulé, Alex; Izquierdo, Angel; Darder, Esther; Brunet, Joan; Del Valle, Jesús; Feliubadalo, Lidia; Pujana, Miquel Angel; Lazaro, Conxi; Arason, Adalgeir; Agnarsson, Bjarni A; Johannsson, Oskar Th; Barkardottir, Rosa B; Alducci, Elisa; Tognazzo, Silvia; Montagna, Marco; Teixeira, Manuel R; Pinto, Pedro; Spurdle, Amanda B; Holland, Helene; Lee, Jong Won; Lee, Min Hyuk; Lee, Jihyoun; Kim, Sung-Won; Kang, Eunyoung; Kim, Zisun; Sharma, Priyanka; Rebbeck, Timothy R; Vijai, Joseph; Robson, Mark; Lincoln, Anne; Musinsky, Jacob; Gaddam, Pragna; Tan, Yen Y; Berger, Andreas; Singer, Christian F; Loud, Jennifer T; Greene, Mark H; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L; Toland, Amanda Ewart; Senter, Leigha; Bojesen, Anders; Nielsen, Henriette Roed; Skytte, Anne-Bine; Sunde, Lone; Jensen, Uffe Birk; Pedersen, Inge Sokilde; Krogh, Lotte; Kruse, Torben A; Caligo, Maria A; Yoon, Sook-Yee; Teo, Soo-Hwang; von Wachenfeldt, Anna; Huo, Dezheng; Nielsen, Sarah M; Olopade, Olufunmilayo I; Nathanson, Katherine L; Domchek, Susan M; Lorenchick, Christa; Jankowitz, Rachel C; Campbell, Ian; James, Paul; Mitchell, Gillian; Orr, Nick; Park, Sue Kyung; Thomassen, Mads; Offit, Kenneth; Couch, Fergus J; Simard, Jacques; Easton, Douglas F; Chenevix-Trench, Georgia; Schmutzler, Rita K; Antoniou, Antonis C; Ottini, Laura

    2017-07-10

    Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10 -6 ). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10 -9 ). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.

  1. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer.

    Science.gov (United States)

    Ma, Jing; Yang, Jichun; Jian, Wenjing; Wang, Xianming; Xiao, Deyong; Xia, Wenjun; Xiong, Likuan; Ma, Duan

    2017-04-01

    Breast cancer is the most frequent female malignancy worldwide. Among them, some cases have hereditary susceptibility in two leading genes, BRCA1 and BRCA2. Heterozygous germ line mutations in them are related with increased risk of breast, ovarian and other cancer, following autosomal dominant inheritance mode. For purpose of early finding, early diagnosis and early treatment, mutation detecting of BRCA1/2 genes was performed in unselected 300 breast or ovarian patients and unaffected women using next-generation sequencing and then confirmed by Sanger sequencing. A non-previously reported heterozygous mutation c.8946_8947delAG (p.D2983FfsX34) of BRCA2 gene was identified in an unaffected Chinese woman with family history of breast cancer (her breast cancer mother, also carrying this mutation). The BRCA2-truncated protein resulted from the frame shift mutation was found to lose two putative nuclear localization signals and a Rad51-binding motif in the extreme C-terminal region by bioinformatic prediction. And then in vitro experiments showed that nearly all the mutant protein was unable to translocate to the nucleus to perform DNA repair activity. This novel mutant BRCA2 protein is dysfunction. We classify the mutation into disease causing and conclude that it is the risk factor for breast cancer in this family. So, conducting the same mutation test and providing genetic counseling for this family is practically meaningful and significant. Meanwhile, the identification of this new mutation enriches the Breast Cancer Information Core database, especially in China.

  2. Durable Clinical Benefit of Pertuzumab in a Young Patient with BRCA2 Mutation and HER2-Overexpressing Breast Cancer Involving the Brain

    Directory of Open Access Journals (Sweden)

    Anna Koumarianou

    2016-01-01

    Full Text Available Patients with HER2-positive breast cancer and brain metastases have limited treatment options, and, as a result of their poor performance status and worse prognosis, they are underrepresented in clinical trials. Not surprisingly, these patients may not be fit enough to receive any active treatment and are offered supportive therapy. BRCA2 mutations are reported to be rarely associated with HER2-overexpressing advanced breast cancer and even more rarely with brain metastases at diagnosis. We report on a BRCA2-positive breast cancer patient with metastatic disease in multiple sites, including the brain, and poor performance status who exhibited an extraordinary clinical and imaging response to the novel anti-HER2 therapy pertuzumab after multiple lines of therapy including anti-HER2 targeting. To our knowledge, the clinicopathologic and therapeutic characteristics of this patient point to a unique case and an urgent need for further investigation of pertuzumab in patients with brain metastases.

  3. Association of Type and Location of BRCA1 and BRCA2 Mutations With Risk of Breast and Ovarian Cancer

    NARCIS (Netherlands)

    Rebbeck, Timothy R.; Mitra, Nandita; Wan, Fei; Sinilnikova, Olga M.; Healey, Sue; McGuffog, Lesley; Mazoyer, Sylvie; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.; Nathanson, Katherine L.; Laitman, Yael; Kushnir, Anya; Paluch-Shimon, Shani; Berger, Raanan; Zidan, Jamal; Friedman, Eitan; Ehrencrona, Hans; Stenmark-Askmalm, Marie; Einbeigi, Zakaria; Loman, Niklas; Harbst, Katja; Rantala, Johanna; Melin, Beatrice; Huo, Dezheng; Olopade, Olufunmilayo I.; Seldon, Joyce; Ganz, Patricia A.; Nussbaum, Robert L.; Chan, Salina B.; Odunsi, Kunle; Gayther, Simon A.; Domchek, Susan M.; Arun, Banu K.; Lu, Karen H.; Mitchell, Gillian; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Godwin, Andrew K.; Pathak, Harsh; Ross, Eric; Daly, Mary B.; Whittemore, Alice S.; John, Esther M.; Miron, Alexander; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Ejlertsen, Bent; Gerdes, Anne-Marie; Hansen, Thomas v O.; Ramón Y Cajal, Teresa; Osorio, Ana; Benitez, Javier; Godino, Javier; Tejada, Maria-Isabel; Duran, Mercedes; Weitzel, Jeffrey N.; Bobolis, Kristie A.; Sand, Sharon R.; Fontaine, Annette; Savarese, Antonella; Pasini, Barbara; Peissel, Bernard; Bonanni, Bernardo; Zaffaroni, Daniela; Vignolo-Lutati, Francesca; Scuvera, Giulietta; Giannini, Giuseppe; Bernard, Loris; Genuardi, Maurizio; Radice, Paolo; Dolcetti, Riccardo; Manoukian, Siranoush; Pensotti, Valeria; Gismondi, Viviana; Yannoukakos, Drakoulis; Fostira, Florentia; Garber, Judy; Torres, Diana; Rashid, Muhammad Usman; Hamann, Ute; Peock, Susan; Frost, Debra; Platte, Radka; Evans, D. Gareth; Eeles, Rosalind; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Izatt, Louise; Adlard, Julian; Donaldson, Alan; Ellis, Steve; Sharma, Priyanka; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Becker, Alexandra; Rhiem, Kerstin; Hahnen, Eric; Engel, Christoph; Meindl, Alfons; Engert, Stefanie; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Mundhenke, Christoph; Niederacher, Dieter; Fleisch, Markus; Sutter, Christian; Bartram, C. R.; Dikow, Nicola; Wang-Gohrke, Shan; Gadzicki, Dorothea; Steinemann, Doris; Kast, Karin; Beer, Marit; Varon-Mateeva, Raymonda; Gehrig, Andrea; Weber, Bernhard H.; Stoppa-Lyonnet, Dominique; Houdayer, Claude; Belotti, Muriel; Gauthier-Villars, Marion; Damiola, Francesca; Boutry-Kryza, Nadia; Lasset, Christine; Sobol, Hagay; Peyrat, Jean-Philippe; Muller, Danièle; Fricker, Jean-Pierre; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Nogues, Catherine; Rouleau, Etienne; Isaacs, Claudine; de Paepe, Anne; Poppe, Bruce; Claes, Kathleen; de Leeneer, Kim; Piedmonte, Marion; Rodriguez, Gustavo; Wakely, Katie; Boggess, John; Blank, Stephanie V.; Basil, Jack; Azodi, Masoud; Phillips, Kelly-Anne; Caldes, Trinidad; de la Hoya, Miguel; Romero, Atocha; Nevanlinna, Heli; Aittomäki, Kristiina; van der Hout, Annemarie H.; Hogervorst, Frans B. L.; Verhoef, Senno; Collée, J. Margriet; Seynaeve, Caroline; Oosterwijk, Jan C.; Gille, Johannes J. P.; Wijnen, Juul T.; Gómez Garcia, Encarna B.; Kets, Carolien M.; Ausems, Margreet G. E. M.; Aalfs, Cora M.; Devilee, Peter; Mensenkamp, Arjen R.; Kwong, Ava; Olah, Edith; Papp, Janos; Diez, Orland; Lazaro, Conxi; Darder, Esther; Blanco, Ignacio; Salinas, Mónica; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Złowocka-Perłowska, Elżbieta; Menkiszak, Janusz; Arason, Adalgeir; Barkardottir, Rosa B.; Simard, Jacques; Laframboise, Rachel; Montagna, Marco; Agata, Simona; Alducci, Elisa; Peixoto, Ana; Teixeira, Manuel R.; Spurdle, Amanda B.; Lee, Min Hyuk; Park, Sue K.; Kim, Sung-Won; Friebel, Tara M.; Couch, Fergus J.; Lindor, Noralane M.; Pankratz, Vernon S.; Guidugli, Lucia; Wang, Xianshu; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Robson, Mark; Rau-Murthy, Rohini; Kauff, Noah; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; tea, Muy-Kheng; Berger, Andreas; Greene, Mark H.; Mai, Phuong L.; Imyanitov, Evgeny N.; Toland, Amanda Ewart; Senter, Leigha; Bojesen, Anders; Pedersen, Inge Sokilde; Skytte, Anne-Bine; Sunde, Lone; Thomassen, Mads; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria Adelaide; Aretini, Paolo; teo, Soo-Hwang; Selkirk, Christina G.; Hulick, Peter J.; Andrulis, Irene

    2015-01-01

    IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained

  4. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    NARCIS (Netherlands)

    R. Rebbeck (Timothy); N. Mitra (Nandita); F. Wan (Fei); O. Sinilnikova (Olga); S. Healey (Sue); L. McGuffog (Lesley); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); A.C. Antoniou (Antonis C.); K.L. Nathanson (Katherine); Y. Laitman (Yael); A. Kushnir (Anya); S. Paluch-Shimon (Shani); R. Berger (Raanan); J. Zidan (Jamal); E. Friedman (Eitan); H. Ehrencrona (Hans); M. Stenmark-Askmalm (Marie); Z. Einbeigi (Zakaria); N. Loman (Niklas); K. Harbst (Katja); J. Rantala (Johanna); B. Melin (Beatrice); D. Huo (Dezheng); O.I. Olopade (Olofunmilayo); J.L. Seldon (Joyce); P.A. Ganz (Patricia); R.L. Nussbaum (Robert L.); S. Chan (Salina); K. Odunsi (Kunle); S.A. Gayther (Simon); S.M. Domchek (Susan); B.K. Arun (Banu); K.H. Lu (Karen); G. Mitchell (Gillian); B.Y. Karlan (Beth); C.S. Walsh (Christine); K.J. Lester (Kathryn); A.K. Godwin (Andrew); S.S. Pathak; E.B. Ross (Eric); M.J. Daly (Mark); A.S. Whittemore (Alice); E.M. John (Esther); A. Miron (Alexander); M.B. Terry (Mary Beth); W.K. Chung (Wendy K.); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); T.V.O. Hansen (Thomas); T. Ramon Y Cajal; A. Osorio (Ana); J. Benítez (Javier); J. Godino (Javier); M.I. Tejada; M. Duran (Mercedes); J.N. Weitzel (Jeffrey); K.A. Bobolis (Kristie A.); S.R. Sand (Sharon); A. Fontaine (Annette); A. Savarese (Antonella); B. Pasini (Barbara); B. Peissel (Bernard); B. Bonnani (Bernardo); D. Zaffaroni (Daniela); F. Vignolo-Lutati (Francesca); G. Scuvera (Giulietta); G. Giannini (Giuseppe); L. Bernard (Loris); M. Genuardi (Maurizio); P. Radice (Paolo); R. Dolcetti (Riccardo); S. Manoukian (Siranoush); V. Pensotti (Valeria); V. Gismondi (Viviana); D. Yannoukakos (Drakoulis); F. Fostira (Florentia); J. Garber (Judy); D. Torres (Diana); M.U. Rashid (Muhammad); U. Hamann (Ute); S. Peock (Susan); D. Frost (Debra); R. Platte (Radka); D.G. Evans (Gareth); R. Eeles (Rosalind); R. Davidson (Rosemarie); D. Eccles (Diana); T. Cole (Trevor); J. Cook (Jackie); C. Brewer (Carole); S. Hodgson (Shirley); P.J. Morrison (Patrick); L.J. Walker (Lisa); M.E. Porteous (Mary); M.J. Kennedy (John); L. Izatt (Louise); L. Adlard; A. Donaldson (Alan); S.D. Ellis (Steve); P. Sharma (Priyanka); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); A. Becker (Alexandra); K. Rhiem (Kerstin); E. Hahnen (Eric); C.W. Engel (Christoph); A. Meindl (Alfons); S. Engert (Stefanie); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); C. Mundhenke (Christoph); D. Niederacher (Dieter); M.C. Fleisch (Markus); C. Sutter (Christian); C.R. Bartram (Claus); N. Dikow (Nicola); S. Wang-Gohrke (Shan); D. Gadzicki (Dorothea); D. Steinemann (Doris); K. Kast (Karin); M. Beer (Marit); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); B.H.F. Weber (Bernhard); D. Stoppa-Lyonnet (Dominique); M. Belotti (Muriel); M. Gauthier-Villars (Marion); F. Damiola (Francesca); N. Boutry-Kryza (N.); C. Lasset (Christine); H. Sobol (Hagay); J.-P. Peyrat; D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); M.-A. Collonge-Rame; I. Mortemousque (Isabelle); C. Nogues (Catherine); E. Rouleau (Etienne); C. Isaacs (Claudine); A. de Paepe (Anne); B. Poppe (Bruce); K. Claes (Kathleen); K. De Leeneer (Kim); M. Piedmonte (Marion); G. Rodriguez (Gustavo); K. Wakely (Katie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); K.-A. Phillips (Kelly-Anne); T. Caldes (Trinidad); M. de La Hoya (Miguel); A. Romero (Atocha); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A.H. van der Hout (Annemarie); F.B.L. Hogervorst (Frans); S. Verhoef; J.M. Collée (Margriet); C.M. Seynaeve (Caroline); J.C. Oosterwijk (Jan); J.J. Gille (Johan); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); C.M. Kets; M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); P. Devilee (Peter); A.R. Mensenkamp (Arjen); A. Kwong (Ava); E. Olah; J. Papp (Janos); O. Díez (Orland); C. Lazaro (Conxi); E. Darder (Esther); I. Blanco (Ignacio); M. Salinas; A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); G. Sukiennicki (Grzegorz); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); A. Toloczko-Grabarek (Aleksandra); E. Złowocka-Perłowska (Elzbieta); J. Menkiszak (Janusz); A. Arason (Adalgeir); R.B. Barkardottir (Rosa); J. Simard (Jacques); R. Laframboise (Rachel); M. Montagna (Marco); S. Agata (Simona); E. Alducci (Elisa); A. Peixoto (Ana); P.J. Teixeira; A.B. Spurdle (Amanda); M.H. Lee (Min Hyuk); S.K. Park (Sue); S.-W. Kim (Sung-Won); M.O.W. Friebel (Mark ); F.J. Couch (Fergus); N.M. Lindor (Noralane); V.S. Pankratz (Shane); L. Guidugli (Lucia); X. Wang (Xianshu); M. Tischkowitz (Marc); L. Foretova (Lenka); J. Vijai (Joseph); K. Offit (Kenneth); M. Robson (Mark); R. Rau-Murthy (Rohini); N. Kauff (Noah); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; A. Berger (Andreas); M.H. Greene (Mark); P.L. Mai (Phuong); E.N. Imyanitov (Evgeny); A.E. Toland (Amanda); L. Senter (Leigha); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); A.-B. Skytte (Anne-Bine); L. Sunde (Lone); M. Thomassen (Mads); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; M.A. Caligo (Maria); P. Aretini (Paolo); S.-H. Teo (Soo-Hwang); C.G. Selkirk (Christina); P.J. Hulick (Peter); I.L. Andrulis (Irene)

    2015-01-01

    textabstractImportance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2. Design, Setting, and Participants: Observational study ofwomen whowere

  5. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    NARCIS (Netherlands)

    Rebbeck, T.R.; Mitra, N.; Wan, F.; Sinilnikova, O.M.; Healey, S.; McGuffog, L.; Mazoyer, S.; Chenevix-Trench, G.; Easton, D.F.; Antoniou, A.C.; Nathanson, K.L.; Laitman, Y.; Kushnir, A.; Paluch-Shimon, S.; Berger, R.; Zidan, J.; Friedman, E.; Ehrencrona, H.; Stenmark-Askmalm, M.; Einbeigi, Z.; Loman, N.; Harbst, K.; Rantala, J.; Melin, B.; Huo, D.; Olopade, O.I.; Seldon, J.; Ganz, P.A.; Nussbaum, R.L.; Chan, S.B.; Odunsi, K.; Gayther, S.A.; Domchek, S.M.; Arun, B.K.; Lu, K.H.; Mitchell, G.; Karlan, B.Y.; Walsh, C.; Lester, J.; Godwin, A.K.; Pathak, H.; Ross, E.; Daly, M.B.; Whittemore, A.S.; John, E.M.; Miron, A.; Terry, M.B.; Chung, W.K.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; Rensburg, E.J. van; Steele, L.; Neuhausen, S.L.; Ding, Y.C.; Ejlertsen, B.; Gerdes, A.M.; Hansen, T.; Ramon Y Cajal, T.; Osorio, A.; Benitez, J.; Godino, J.; Tejada, M.I.; Duran, M.; Weitzel, J.N.; Bobolis, K.A.; Sand, S.R.; Fontaine, A.; Savarese, A.; Pasini, B.; Peissel, B.; Bonanni, B.; Zaffaroni, D.; Vignolo-Lutati, F.; Scuvera, G.; Giannini, G.; Bernard, L.; Genuardi, M.; Radice, P.; Dolcetti, R.; Manoukian, S.; Pensotti, V.; Gismondi, V.; Yannoukakos, D.; Fostira, F.; Garber, J.; Torres, D.; Rashid, M.U.; Hamann, U.; Peock, S.; Frost, D.; Platte, R.; Evans, D.G.; Eeles, R.; Davidson, R.; Eccles, D.; Cole, T.; Kets, M.; Mensenkamp, A.R.; et al.,

    2015-01-01

    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained

  6. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    DEFF Research Database (Denmark)

    Rebbeck, Timothy R; Mitra, Nandita; Wan, Fei

    2015-01-01

    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained...

  7. High-resolution melting (HRM) assay for the detection of recurrent BRCA1/BRCA2 germline mutations in Tunisian breast/ovarian cancer families.

    Science.gov (United States)

    Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba

    2014-12-01

    Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.

  8. Comparison of risk assessment models of BRCA1 and BRCA2 mutation carrier in patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Rybchenko L.A.

    2013-12-01

    Full Text Available Analysis of efficiency of the algorithm BOADICEA using and Manchester scoring system to predict the carrier of BRCA1 and BRCA2 mutations in Ukranian patients with breast cancer was performed. Materials for this study were the results of clinical, imunogistological, pathogistological, genealogical, molecular genetic researches of 146 patients with breast cancer. Calculations of mutations risk were performed using BOADICEA algorithm and Manchester scoring system. In the total group of patients the area under the curve while predicting BRCA1 mutations with algorithm BOADICEA was 0.86, with Manchester scoring system - 0.84, and in calculation of the combined risk of BRCA mutations - 0.83 and 0.84, respectively. However, statistical difference between the areas of algorithms has not been established (p> 0.05, it indicates to the same discriminatory power of the test models. Better sensitivity, specificity, positive and negative predictive value of results of BOADICEA algorithm was reached in 6% of BRCA1 probability and in 8% threshold of BRCA1/2 mutations. The Manchester scoring system has showed the best operating characteristics with 6 and 13-point probability of BRCA1 and BRCA1/2 mutations respectively. Patients with probability of mutations with such thresholds may be offered molecular study of pathogenic alleles.

  9. Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context

    OpenAIRE

    Ella R. Thompson; Kylie L. Gorringe; Simone M. Rowley; Na Li; Simone McInerny; Michelle W. Wong-Brown; Lisa Devereux; Jason Li; Alison H. Trainer; Gillian Mitchell; Rodney J. Scott; Paul A. James; Ian G. Campbell

    2015-01-01

    The breast cancer predisposition gene, BRCA2, has a large number of genetic variants of unknown effect. The variant rs11571833, an A > T transversion in the final exon of the gene that leads to the creation of a stop codon 93 amino acids early (K3326*), is reported as a neutral polymorphism but there is some evidence to suggest an association with an increased risk of breast cancer. We assessed whether this variant was enriched in a cohort of breast cancer cases ascertained through familial c...

  10. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    International Nuclear Information System (INIS)

    Campbell, Ian G; Choong, David; Chenevix-Trench, Georgia

    2004-01-01

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  11. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    International Nuclear Information System (INIS)

    Holstege, Henne; Wessels, Lodewyk FA; Nederlof, Petra M; Jonkers, Jos; Beers, Erik van; Velds, Arno; Liu, Xiaoling; Joosse, Simon A; Klarenbeek, Sjoerd; Schut, Eva; Kerkhoven, Ron; Klijn, Christiaan N

    2010-01-01

    Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1 Δ/Δ ;p53 Δ/Δ , Brca2 Δ/Δ ;p53 Δ/Δ and p53 Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2 Δ/Δ ;p53 Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. The selection of the oncogenome during

  12. Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    F.J. Couch (Fergus); M.M. Gaudet (Mia); A.C. Antoniou (Antonis); S.J. Ramus (Susan); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); J. Beesley (Jonathan); X. Chen (Xiaoqing); X. Wang (Xing); T. Kircchoff (Tomas); L. McGuffog (Lesley); D. Barrowdale (Daniel); A. Lee (Andrew); S. Healey (Sue); O. Sinilnikova (Olga); I.L. Andrulis (Irene); H. Ozcelik (Hilmi); A.M. Mulligan (Anna Marie); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); U.B. Jensen; A.-B. Skytte (Anne-Bine); T.A. Kruse (Torben); M.A. Caligo (Maria); A. von Wachenfeldt (Anna); G. Barbany-Bustinza (Gisela); N. Loman (Niklas); M. Soller (Maria); H. Ehrencrona (Hans); P. Karlsson (Per); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); K. Durda (Katarzyna); E. Zołwocka (Elzbieta); T. Huzarski (Tomasz); T. Byrski (Tomasz); J. Gronwald (Jacek); C. Cybulski (Cezary); B. Górski (Bohdan); A. Osorio (Ana); M. Durán (Mercedes); M.I. Tejada; J. Benítez (Javier); U. Hamann (Ute); F.B.L. Hogervorst (Frans); T.A.M. van Os (Theo); F.E. van Leeuwen (Flora); E.J. Meijers-Heijboer (Hanne); J.T. Wijnen (Juul); M.J. Blok (Marinus); C.M. Kets; M.J. Hooning (Maartje); R.A. Oldenburg (Rogier); M.G.E.M. Ausems (Margreet); S. Peock (Susan); D. Frost (Debra); S.D. Ellis (Steve); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); C. Jacobs (Chris); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); D. Eccles (Diana); T.J. Cole (Trevor); J. Cook (Jackie); J. Paterson (Joan); C. Brewer (Carole); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L.J. Walker (Lisa); M.E. Porteous (Mary); M.J. Kennedy (John); L. Side (Lucy); B. Bove (B.); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); M. Fassy-Colcombet (Marion); L. Castera (Laurent); F. Cornelis (Franco̧is); S. Mazoyer (Sylvie); M. Léone (Mélanie); N. Boutry-Kryza (N.); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); P. Pujol (Pascal); I. Coupier (Isabelle); C.D. Delnatte (Capucine); L. Akloul (Linda); H. Lynch (Henry); C.L. Snyder (Carrie); S.S. Buys (Saundra); M.B. Daly (Mary); M.-B. Terry (Mary-Beth); W. Chung (Wendy); E.M. John (Esther); A. Miron (Alexander); M.C. Southey (Melissa); J.L. Hopper (John); D. Goldgar (David); C.F. Singer (Christian); C. Rappaport (Christine); M.-K. Tea; A. Fink-Retter (Anneliese); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); A. Arason (Adalgeir); J. Vijai (Joseph); S. Shah (Sonia); K. Sarrel (Kara); M. Robson (Mark); M. Piedmonte (Marion); K. Phillips (Kelly); J. Basil (Jack); W.S. Rubinstein (Wendy); J.F. Boggess (John); K. Wakeley (Katie); A. Ewart-Toland (Amanda); M. Montagna (Marco); S. Agata (Simona); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); L. Feliubadaló (L.); J. Brunet (Joan); S.A. Gayther (Simon); P.D.P. Pharoah (Paul); K. Odunsi (Kunle); B.Y. Karlan (Beth); C.S. Walsh (Christine); E. Olah; S.-H. Teo (Soo-Hwang); P.A. Ganz (Patricia); M.S. Beattie (Mary); E.J. van Rensburg (Elizabeth); C.M. Dorfling (Cecelia); O. Diez (Orland); A. Kwong (Ava); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C.W. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); S. Heidemann (Simone); D. Niederacher (Dieter); S. Preisler-Adams (Sabine); D. Gadzicki (Dorothea); R. Varon-Mateeva (Raymonda); H. Deissler (Helmut); P.A. Gehrig (Paola A.); C. Sutter (Christian); K. Kast (Karin); B. Fiebig (Britta); W. Heinritz (Wolfram); T. Caldes (Trinidad); M. de La Hoya (Miguel); T.A. Muranen (Taru); H. Nevanlinna (Heli); M. Tischkowitz (Marc); A.B. Spurdle (Amanda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); N.M. Lindor (Noralane); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); M. Barile (Monica); L. Bernard (Loris); A. Viel (Alessandra); G. Giannini (Giuseppe); L. Varesco (Liliana); P. Radice (Paolo); M.H. Greene (Mark); P.L. Mai (Phuong); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); J. Simard (Jacques)

    2012-01-01

    textabstractBackground: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for

  13. Common Variants at the 19p13.1 and ZNF365 Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Couch, Fergus J.; Gaudet, Mia M.; Antoniou, Antonis C.; Ramus, Susan J.; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; Wang, Xianshu; Kirchhoff, Tomas; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Healey, Sue; Sinilnikova, Olga M.; Andrulis, Irene L.; Ozcelik, Hilmi; Mulligan, Anna Marie; Thomassen, Mads; Gerdes, Anne-Marie; Jensen, Uffe Birk; Skytte, Anne-Bine; Kruse, Torben A.; Caligo, Maria A.; von Wachenfeldt, Anna; Barbany-Bustinza, Gisela; Loman, Niklas; Soller, Maria; Ehrencrona, Hans; Karlsson, Per; Nathanson, Katherine L.; Rebbeck, Timothy R.; Domchek, Susan M.; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Zlowocka, Elzbieta; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Cybulski, Cezary; Górski, Bohdan; Osorio, Ana; Durán, Mercedes; Tejada, María Isabel; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B. L.; van Os, Theo A.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Blok, Marinus J.; Kets, Marleen; Hooning, Maartje J.; Oldenburg, Rogier A.; Ausems, Margreet G. E. M.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Jacobs, Chris; Eeles, Rosalind A.; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana M.; Cole, Trevor; Cook, Jackie; Paterson, Joan; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley V.; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Side, Lucy E.; Bove, Betsy; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Fassy-Colcombet, Marion; Castera, Laurent; Cornelis, François; Mazoyer, Sylvie; Léoné, Mélanie; Boutry-Kryza, Nadia; Bressac-de Paillerets, Brigitte; Caron, Olivier; Pujol, Pascal; Coupier, Isabelle; Delnatte, Capucine; Akloul, Linda; Lynch, Henry T.; Snyder, Carrie L.; Buys, Saundra S.; Daly, Mary B.; Terry, Marybeth; Chung, Wendy K.; John, Esther M.; Miron, Alexander; Southey, Melissa C.; Hopper, John L.; Goldgar, David E.; Singer, Christian F.; Rappaport, Christine; tea, Muy-Kheng M.; Fink-Retter, Anneliese; Hansen, Thomas V. O.; Nielsen, Finn C.; Arason, Aðalgeir; Vijai, Joseph; Shah, Sohela; Sarrel, Kara; Robson, Mark E.; Piedmonte, Marion; Phillips, Kelly; Basil, Jack; Rubinstein, Wendy S.; Boggess, John; Wakeley, Katie; Ewart-Toland, Amanda; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny N.; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Feliubadalo, Lidia; Brunet, Joan; Gayther, Simon A.; Pharoah, Paul P. D.; Odunsi, Kunle O.; Karlan, Beth Y.; Walsh, Christine S.; Olah, Edith; teo, Soo Hwang; Ganz, Patricia A.; Beattie, Mary S.; van Rensburg, Elizabeth J.; Dorfling, Cecelia M.; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorothea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Heinritz, Wolfram; Caldes, Trinidad; de la Hoya, Miguel; Muranen, Taru A.; Nevanlinna, Heli; Tischkowitz, Marc D.; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Lindor, Noralane M.; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Barile, Monica; Bernard, Loris; Viel, Alessandra; Giannini, Giuseppe; Varesco, Liliana; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Easton, Douglas F.; Chenevix-Trench, Georgia; Offit, Kenneth; Simard, Jacques

    2012-01-01

    Background: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these

  14. Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Couch, Fergus J; Gaudet, Mia M; Antoniou, Antonis C

    2012-01-01

    Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these variants in mut...

  15. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22% [7 in BRCA1 (13%, 4 in BRCA2 (7% and one in TP53 (2% gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes. Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.

  16. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    A.M. Mulligan (Anna Marie); F.J. Couch (Fergus); D. Barrowdale (Daniel); S.M. Domchek (Susan); D. Eccles (Diana); H. Nevanlinna (Heli); S.J. Ramus (Susan); M. Robson (Mark); M.E. Sherman (Mark); A.B. Spurdle (Amanda); B. Wapenschmidt (Barbara); A. Lee (Andrew); L. McGuffog (Lesley); S. Healey (Sue); O. Sinilnikova (Olga); R. Janavicius (Ramunas); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); B. Ejlertsen (Bent); A. Osorio (Ana); I. Muñoz-Repeto (Iván); M. Durán (Mercedes); J. Godino (Javier); M. Pertesi (Maroulio); J. Benítez (Javier); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); B. Bonnani (Bernardo); A. Viel (Alessandra); B. Pasini (Barbara); L. Papi (Laura); L. Ottini (Laura); A. Savarese (Antonella); L. Bernard (Loris); P. Radice (Paolo); U. Hamann (Ute); M. Verheus (Martijn); E.J. Meijers-Heijboer (Hanne); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); M.R. Nelen (Marcel); C.M. Kets; C.M. Seynaeve (Caroline); M.M.A. Tilanus-Linthorst (Madeleine); R.B. van der Luijt (Rob); T.V. Os (Theo); M.A. Rookus (Matti); D. Frost (Debra); J.L. Jones (J Louise); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); J.W. Adlard (Julian); R. Davidson (Rosemarie); J. Cook (Jackie); A. Donaldson (Alan); H. Dorkins (Huw); H. Gregory (Helen); J. Eason (Jacqueline); C. Houghton (Catherine); J. Barwell (Julian); L. Side (Lucy); E. McCann (Emma); A. Murray (Alexandra); S. Peock (Susan); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); K. Rhiem (Kerstin); C.W. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); N. Arnold (Norbert); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); K. Kast (Karin); S. Preisler-Adams (Sabine); R. Varon-Mateeva (Raymonda); I. Schoenbuchner (Ines); B. Fiebig (Britta); W. Heinritz (Wolfram); D. Schäfer (Dieter); H. Gevensleben (Heidrun); V. Caux-Moncoutier (Virginie); M. Fassy-Colcombet (Marion); F. Cornelis (Franco̧is); S. Mazoyer (Sylvie); M. Léone (Mélanie); N. Boutry-Kryza (N.); A. Hardouin (Agnès); P. Berthet (Pascaline); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); I. Mortemousque (Isabelle); P. Pujol (Pascal); I. Coupier (Isabelle); M. Lebrun (Marine); C. Kientz (Caroline); M. Longy (Michel); N. Sevenet (Nicolas); D. Stoppa-Lyonnet (Dominique); C. Isaacs (Claudine); T. Caldes (Trinidad); M. de La Hoya (Miguel); T. Heikinen (Tuomas); K. Aittomäki (Kristiina); I. Blanco (Ignacio); C. Lazaro (Conxi); R.B. Barkardottir (Rosa); P. Soucy (Penny); M. Dumont (Martine); J. Simard (Jacques); M. Montagna (Marco); S. Tognazzo (Silvia); E. D'Andrea (Emma); S.B. Fox (Stephen); M. Yan (Max); R. Rebbeck (Timothy); O.I. Olopade (Olofunmilayo); J.N. Weitzel (Jeffrey); H. Lynch (Henry); P.A. Ganz (Patricia); G. Tomlinson (Gail); X. Wang (Xing); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); N.M. Lindor (Noralane); C. Szabo (Csilla); K. Offit (Kenneth); R. Sakr (Rita); M.M. Gaudet (Mia); K.P. Bhatia (Kailash); N. Kauff (Noah); C.F. Singer (Christian); M.-K. Tea; D. Gschwantler-Kaulich (Daphne); A. Fink-Retter (Anneliese); P.L. Mai (Phuong); M.H. Greene (Mark); E.N. Imyanitov (Evgeny); F.P. O'Malley (Frances); H. Ozcelik (Hilmi); G. Glendon (Gord); A.E. Toland (Amanda); A-M. Gerdes (Anne-Marie); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; A.-B. Skytte (Anne-Bine); M.A. Caligo (Maria); M. Soller (Maria); K. Henriksson (Karin); A. von Wachenfeldt (Anna); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); P. Karlsson (Per); Y.C. Ding (Yuan); S.L. Neuhausen (Susan); M.S. Beattie (Mary); P.D.P. Pharoah (Paul); K.B. Moysich (Kirsten); K.L. Nathanson (Katherine); B.Y. Karlan (Beth); J. Gross (Jenny); E.M. John (Esther); M.B. Daly (Mary); S.S. Buys (Saundra); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); W. Chung (Wendy); A. Miron (Alexander); D. Goldgar (David); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); I.L. Andrulis (Irene); A.C. Antoniou (Antonis)

    2011-01-01

    textabstractIntroduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes

  17. Clinical follow up of mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes.

    Science.gov (United States)

    Calderón-Garcidueñas, Ana Laura; Ruiz-Flores, Pablo; Cerda-Flores, Ricardo M; Barrera-Saldaña, Hugo A

    2005-01-01

    This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC). A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA). The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1) a mutation screening by heteroduplex analysis (HA) of BRCA1 and BRCA2 genes and 2) a sequence analysis. Of 22 patients, 14 (63.6%) showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCAI (exon 11, 3587delT) and the other in the BRCA2 gene (exon 11, 2664InsA). These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.

  18. Effect of decision aid for breast cancer prevention on decisional conflict in women with a BRCA1 or BRCA2 mutation: a multisite, randomized, controlled trial.

    Science.gov (United States)

    Metcalfe, Kelly A; Dennis, Cindy-Lee; Poll, Aletta; Armel, Susan; Demsky, Rochelle; Carlsson, Lindsay; Nanda, Sonia; Kiss, Alexander; Narod, Steven A

    2017-03-01

    Women with a BRCA1 or BRCA2 mutation are at high risk for breast cancer and must make important decisions about breast cancer prevention and screening. In the current study, we report a multisite, randomized, controlled trial evaluating the effectiveness of a decision aid for breast cancer prevention in women with a BRCA mutation with no previous diagnosis of cancer. Within 1 month of receiving a positive BRCA result, women were randomized to receive either usual care (control group) or decision aid (intervention group). Participants were followed at 3, 6, and 12 months; were asked about preventive measures; and completed standardized questionnaires assessing decision making and psychosocial functioning. One hundred fifty women were randomized. Mean cancer-related distress scores were significantly lower in the intervention group compared with the control group at 6 months (P = 0.01) and at 12 months postrandomization (P = 0.05). Decisional conflict scores declined over time for both groups and at no time were there statistical differences between the two groups. The decision aid for breast cancer prevention in women with a BRCA1 or BRCA2 mutation is effective in significantly decreasing cancer-related distress within the year following receipt of positive genetic test results.Genet Med 19 3, 330-336.

  19. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations.

    Science.gov (United States)

    Jara, Lilian; Morales, Sebastian; de Mayo, Tomas; Gonzalez-Hormazabal, Patricio; Carrasco, Valentina; Godoy, Raul

    2017-10-06

    Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understanding of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specific moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribution and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as compared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.

  20. Selected Aspects of Molecular Diagnostics of Constitutional Alterations in BRCA1 and BRCA2 Genes Associated with Increased Risk of Breast Cancer in the Polish Population

    Directory of Open Access Journals (Sweden)

    Górski Bohdan

    2006-08-01

    Full Text Available Abstract Objectives This study was undertaken to determine: 1 Type and prevalence of founder mutations BRCA1 and BRCA2 genes in Polish families with strong aggregation of breast and/or ovarian cancer. 2 Risk of breast and/or ovarian cancer depending on type of BRCA1 gene mutation. 3 Prevalence of BRCA1 mutation and of other alleles presumably linked with predisposition to breast cancer in unselected Polish patients with breast cancer. 4 Risk of breast cancer in patients with 5972C/T polymorphism that alters the BRCA2 protein structure. Summary of the results 1. Among 66 families from several regions in Poland with a strong aggregation of breast/ovarian cancer, founder mutation of the BRCA1 gene were disclosed in 34 families and of the BRCA2 gene in on family. Altogether, seven different mutations were disclosed. Five mutations were found in at least two families in this group. The most frequent mutation was 5382insC (18 families, followed by C61G (7 families and 4153delA (4 families. 2. Among 200 families representative for Poland with strong aggregation of breast/ovarian cancer, mutation of the BRCA1 gene were found in 122 families (61% and of the BRCA2 gene in seven families (3,5%. 119 out of 122 mutations of the BRCA1 gene (97,5% were repeatable. Three recurrent mutations of the BRCA1 gene (5382insC, C61G, 4153delA characteristic for the Polish population were disclosed in 111 families representing 86% of all pathogenic sequences of this gene. 3. The risk of ovarian cancer in carriers of the three most frequent recurrent mutation of the BRCA1 gene in Poland is similar (OR 43.6 for 5382insC and 50 for 4153delA. The risk of breast cancer is significantly different for 4153delA (OR 1 and for other mutations (OR 10.9. 4. Among 2012 unselected breast cancers diagnosed in hospitals of nine Polish cities, mutations of the BRCA1 gene (5382insC, C61G, 4153delA were disclosed in 2.9% patients. CHEK2 alternation (1100delC, IVS2+1G>A, I157T was

  1. Pathology of Breast and Ovarian Cancers among BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

    DEFF Research Database (Denmark)

    Mavaddat, Nasim; Barrowdale, Daniel; Andrulis, Irene L

    2011-01-01

    BACKGROUND: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization.METHODS: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the patho...

  2. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    Science.gov (United States)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C; Hansen, Thomas Vo; Osorio, Ana; Benitez, Javier; Conejero, Raquel Andrés; Segota, Ena; Weitzel, Jeffrey N; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Tischkowitz, Marc; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cédrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Hélène; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valérie; Sornin, Valérie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Jager, Agnes; van den Ouweland, Ans Mw; Kets, Carolien M; Aalfs, Cora M; van Leeuwen, Flora E; Hogervorst, Frans Bl; Meijers-Heijboer, Hanne Ej; Oosterwijk, Jan C; van Roozendaal, Kees Ep; Rookus, Matti A; Devilee, Peter; van der Luijt, Rob B; Olah, Edith; Diez, Orland; Teulé, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesús; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R; Spurdle, Amanda B; Foulkes, William; Olswold, Curtis; Lindor, Noralane M; Pankratz, Vernon S; Szabo, Csilla I; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Caligo, Maria A; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I; Nussbaum, Robert L; Ramus, Susan J; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J; Offit, Kenneth; Easton, Douglas F; Chenevix-Trench, Georgia; Antoniou, Antonis C; Mazoyer, Sylvie; Phelan, Catherine M; Sinilnikova, Olga M; Cox, David G

    2015-04-25

    Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

  3. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia

    NARCIS (Netherlands)

    A.B. Spurdle (Amanda); F.J. Couch (Fergus); M. Parsons (Marilyn); L. McGuffog (Lesley); D. Barrowdale (Daniel); M.K. Bolla (Manjeet); Q. Wang (Qing); S. Healey (Sue); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); K. Rhiem (Kerstin); E. Hahnen (Eric); C.W. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); S. Wang-Gohrke (Shan); D. Steinemann (Doris); S. Preisler-Adams (Sabine); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S.D. Ellis (Steve); D. Frost (Debra); R. Platte (Radka); J. Perkins (Jo); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); L. Adlard; R. Davidson (Rosemarie); T.J. Cole (Trevor); G. Scuvera (Giulietta); S. Manoukian (Siranoush); B. Bonnani (Bernardo); F. Mariette (F.); S. Fortuzzi (S.); A. Viel (Alessandra); B. Pasini (Barbara); L. Papi (Laura); L. Varesco (Liliana); R. Balleine (Rosemary); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K. Offitt (Kenneth); A. Jakubowska (Anna); N.M. Lindor (Noralane); M. Thomassen (Mads); U.B. Jensen; J. Rantala (Johanna); Å. Borg (Åke); I.L. Andrulis (Irene); A. Miron (Alexander); T.V.O. Hansen (Thomas); T. Caldes (Trinidad); S.L. Neuhausen (Susan); A.E. Toland (Amanda); H. Nevanlinna (Heli); M. Montagna (Marco); J. Garber (Judy); A.K. Godwin (Andrew); A. Osorio (Ana); R.E. Factor (Rachel E.); M.B. Terry (Mary B.); R. Rebbeck (Timothy); B.Y. Karlan (Beth); M.C. Southey (Melissa); M.U. Rashid (Muhammad); N. Tung (Nadine); P.D.P. Pharoah (Paul); F. Blows (Fiona); A.M. Dunning (Alison); E. Provenzano (Elena); P. Hall (Per); K. Czene (Kamila); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Cornelissen (Sten); S. Verhoef; P.A. Fasching (Peter); M.W. Beckmann (Matthias); A.B. Ekici (Arif); D.J. Slamon (Dennis); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); P. Seibold (Petra); K. Aittomäki (Kristiina); T.A. Muranen (Taru); P. Heikkilä (Päivi); C. Blomqvist (Carl); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); L.A. Brinton (Louise); J. Lissowska (Jolanta); J.E. Olson (Janet); V.S. Pankratz (Shane); E.M. John (Esther); A.S. Whittemore (Alice); D. van West; U. Hamann (Ute); D. Torres (Diana); H.U. Ulmer (Hans); T. Rud̈iger (Thomas); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); D. Eccles (Diana); W. Tapper (William); L. Durcan (Lorraine); L. Jones (Louise); J. Peto (Julian); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); N. Johnson (Nichola); M. Dwek (Miriam); R. Swann (Ruth); A.L. Bane (Anita L.); G. Glendon (Gord); A.M. Mulligan (Anna Marie); G.G. Giles (Graham); R.L. Milne (Roger); L. Baglietto (Laura); C.A. McLean (Catriona Ann); J. Carpenter (Jane); C. Clarke (Christine); R.J. Scott (Rodney); H. Brauch (Hiltrud); T. Brüning (Thomas); Y-D. Ko (Yon-Dschun); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); J. Gronwald (Jacek); T. Dörk (Thilo); N.V. Bogdanova (Natalia); T.-W. Park-Simon; P. Hillemanns (Peter); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); B. Burwinkel (Barbara); F. Marme (Federick); H. Surovy (Harald); R. Yang (Rongxi); H. Anton-Culver (Hoda); A. Ziogas (Argyrios); M.J. Hooning (Maartje); J.M. Collée (Margriet); J.W.M. Martens (John); M.M.A. Tilanus-Linthorst (Madeleine); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); A. Lindblom (Annika); S. Margolin (Sara); V. Joseph (Vijai); M. Robson (Mark); R. Rau-Murthy (Rohini); A. González-Neira (Anna); J.I. Arias Pérez (José Ignacio); P. Zamora (Pilar); J. Benítez (Javier); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Peterlongo (Paolo); D. Zaffaroni (D.); M. Barile (Monica); F. Capra (Fabio); P. Radice (Paolo); S.-H. Teo (Soo-Hwang); D.F. Easton (Douglas); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia); D. Goldgar (David)

    2014-01-01

    textabstractIntroduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical

  4. Autoimmune response to PARP and BRCA1/BRCA2 in cancer

    Science.gov (United States)

    Zhu, Qing; Han, Su-Xia; Zhou, Cong-Ya; Cai, Meng-Jiao; Dai, Li-Ping; Zhang, Jian-Ying

    2015-01-01

    Purpose To determine the role of autoantibodies to PARP1 and BRCA1/BRCA2 which were involved in the synthetic lethal interaction in cancer. Methods Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect autoantibodies to PARP1 and BRCA1/BRCA2 in 618 serum samples including 131 from breast cancer, 94 from lung cancer, 34 from ovarian cancer, 107 from prostate cancer, 76 from liver cancer, 41 from pancreatic cancer and 135 from normal individuals. The positive sera with ELISA were confirmed by Western blot. Immunohistochemistry was used to examine the expression of PARP1 and BRCA1/BRCA2 in breast cancer. Results Autoantibody frequency to PARP1, BRCA1, and BRCA2 in cancer varied from 0% to 50%. When the sera from cancer patients were tested for the presence of autoantibodies to PARP1 and BRCA1/BRCA2, the autoantibody responses slightly decreased and the positive autoantibody reactions varied from 0% to 50.0%. This was significantly higher autoantibody responses to PARP1 and BRCA1/BRCA2 (especially to PARP1 and BRCA1) in ovarian cancer and breast cancer compared to normal control sera (P cancer was different (P cancers have different profiles of autoantibodies. The autoantibodies to proteins involving the synthetic lethal interactions would be novel serological biomarker in some selective cancers. PMID:25865228

  5. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores

    DEFF Research Database (Denmark)

    Lecarpentier, Julie; Silvestri, Valentina; Kuchenbaecker, Karoline B.

    2017-01-01

    Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks...

  6. Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families : high cancer incidence at older age

    NARCIS (Netherlands)

    van der Kolk, Dorina M.; de Bock, Geertruida H.; Leegte, Beike K.; Schaapveld, Michael; Mourits, Marian J. E.; de Vries, J; van der Hout, Annemieke H.; Oosterwijk, Jan C.

    Accurate estimations of lifetime risks of breast and ovarian cancer are crucial for counselling women from BRCA1/2 families. We therefore determined breast and ovarian cancer penetrance in BRCA1/2 mutation families in the northern Netherlands and compared them with the incidence of cancers in the

  7. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  8. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    Science.gov (United States)

    2012-01-01

    Introduction Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers. PMID:22348646

  9. Clinical follow up of Mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes Estudio de seguimiento clínico de mujeres mexicanas con cáncer de mama de inicio temprano y mutaciones en los genes BRCA1 y BRCA2

    Directory of Open Access Journals (Sweden)

    Ana Laura Calderón-Garcidueñas

    2005-04-01

    Full Text Available OBJECTIVE: This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC. MATERIAL AND METHODS: A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA. The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1 a mutation screening by heteroduplex analysis (HA of BRCA1 and BRCA2 genes and 2 a sequence analysis. RESULTS: Of 22 patients, 14 (63.6% showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCA1 (exon 11, 3587delT and the other in the BRCA2 gene (exon 11, 2664InsA. CONCLUSIONS: These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.OBJETIVO: Describir la presencia de mutaciones en los genes BRCA1 y BRCA2 y la evolución clínica de un grupo de mujeres con carcinoma mamario de inicio temprano (CMIT. MATERIAL Y MÉTODOS: Se realizó un estudio hospitalario, prospectivo, en una muestra de 22 pacientes con CMIT (siete en etapa clínica IIA, ocho en la IIB y siete en etapa IIIA. Las pacientes fueron atendidas en un hospital del noreste de México en 1997 y se realizó un seguimiento clínico durante cinco años. El análisis molecular incluyó: 1 análisis heterodúplex (AH para detectar bandas variantes en la secuencia de ADN de los genes BRCA1 y BRCA2, y 2 análisis de secuenciación. RESULTADOS: De 22 pacientes, 14 (63.6% mostraron banda variante por AH en los genes BRCA1 y BRCA2: ocho polimorfismos, cuatro mutaciones de significado incierto y dos mutaciones noveles con proteína truncada, una en BRCA1 (exón 11, 3587delT y otra en BRCA2 (exón 11, 2664Ins

  10. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy

    NARCIS (Netherlands)

    Vollebergh, Marieke A.; Lips, Esther H.; Nederlof, Petra M.; Wessels, Lodewyk F. A.; Wesseling, Jelle; Vd Vijver, Marc J.; de Vries, Elisabeth G. E.; van Tinteren, Harm; Jonkers, Jos; Hauptmann, Michael; Rodenhuis, Sjoerd; Linn, Sabine C.

    2014-01-01

    BRCA-mutated breast cancer cells lack the DNA-repair mechanism homologous recombination that is required for error-free DNA double-strand break (DSB) repair. Homologous recombination deficiency (HRD) may cause hypersensitivity to DNA DSB-inducing agents, such as bifunctional alkylating agents and

  11. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy

    NARCIS (Netherlands)

    Vollebergh, Marieke A.; Lips, Esther H.; Nederlof, Petra M.; Wessels, Lodewyk F. A.; Wesseling, Jelle; Vijver, Marc J. vd; de Vries, Elisabeth G. E.; van Tinteren, Harm; Jonkers, Jos; Hauptmann, Michael; Rodenhuis, Sjoerd; Linn, Sabine C.

    2014-01-01

    Introduction: BRCA-mutated breast cancer cells lack the DNA-repair mechanism homologous recombination that is required for error-free DNA double-strand break (DSB) repair. Homologous recombination deficiency (HRD) may cause hypersensitivity to DNA DSB-inducing agents, such as bifunctional alkylating

  12. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil

    Directory of Open Access Journals (Sweden)

    Edenir Inêz Palmero

    2016-01-01

    Full Text Available Abstract In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA. If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.

  13. High frequency of the recurrent c.1310_1313delAAGA BRCA2 mutation in the North-East of Morocco and implication for hereditary breast-ovarian cancer prevention and control.

    Science.gov (United States)

    Laarabi, Fatima-Zahra; Ratbi, Ilham; Elalaoui, Siham Chafai; Mezzouar, Loubna; Doubaj, Yassamine; Bouguenouch, Laila; Ouldim, Karim; Benjaafar, Noureddine; Sefiani, Abdelaziz

    2017-06-02

    To date, a limited number of BRCA1/2 germline mutations have been reported in hereditary breast and/or ovarian cancer in the Moroccan population. Less than 20 different mutations of these two genes have been identified in Moroccan patients, and recently we reported a further BRCA2 mutation (c.1310_1313delAAGA; p.Lys437IlefsX22) in three unrelated patients, all from the North-East of the country. We aimed in this study to evaluate the frequency and geographic distribution of this BRCA2 frameshift mutation, in order to access its use as the first-line BRCA genetic testing strategy for Moroccan patients. We enrolled in this study 122 patients from different regions of Morocco, with suggestive inherited predisposition to breast and ovarian cancers. All subjects gave written informed consent to BRCA1/2 genetic testing. According to available resources of our lab and enrolled families, 51 patients were analyzed by the conventional individual exon-by-exon Sanger sequencing, 23 patients were able to benefit from a BRCA next generation sequencing and a target screening for exon 10 of BRCA2 gene was performed in 48 patients. Overall, and among the 122 patients analyzed for at least the exon 10 of the BRCA2 gene, the c.1310_1313delAAGA frameshift mutation was found in 14 patients. Genealogic investigation revealed that all carriers of this mutation shared the same geographic origin and were descendants of the North-East of Morocco. In this study, we highlighted that c.1310_1313delAAGA mutation of BRCA2 gene is recurrent with high frequency in patients from the North-East region of Morocco. Therefore, we propose to use, in public health strategies, the detection of this mutation as the first-line screening tests in patients with breast and ovarian cancer originated from this region.

  14. Mutations in BRCA1 and BRCA2 Uruguayan families with breast / ovarian

    International Nuclear Information System (INIS)

    Delgado, L.; Fernández, G.; González, A.; Cataldi, S.; Castillo, C.; Heguaburu, M.; Lluberas, N.; Sabini, G.; Roca, R.; Musé, I.; Bressac-de Paillerets, B.; Bombled, J.

    2004-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with susceptibility hereditary to breast (CM) and ovarian cancer (OC). The proportion of high risk families carrying mutations in BRCA1 / 2 (20% -70%) and the spectrum of mutations are variable and dependent on the location and type of families studied. In this communication we update our results on the frequency and type of mutations in BRCA1 / 2 families in Uruguayan breast / ovarian cancer. Patients and methods. 39 selected families were included in the study from patients referred to the Unit of the Hospital de Clinicas Oncogene tics for genetic risk assessment and who had at least 3 cases of CM (at least one diagnosed before age 50) or 2 cases with any of the following sub: Parental transmittance, bilateral breast cancer, breast cancer male, ovarian cancer. Results. 8 8 families different mutations (20%), 6 were identified in BRCA1 and BRCA2 2, all resulting in premature termination codon. Regarding family history, 33 families had history of CM and 6 remaining history of CM and CO. Among the first 6 mutations diagnosed (Five in BRCA1 and one in BRCA2) and between the latter 2 mutations (1 in BRCA1 and 1 in BRCA2). Regarding the index cases, all BRCA2 mutations were detected in patients in whom the disease was diagnosed before the 50, 5 of them carrying CM and CO. The BRCA1 were found in a patient with CO diagnosed at age 55 and a patient with CM diagnosed before 50 years. Conclusions. The proportion of flamilies with BRCA1 / 2 is of agreement with that reported in previous studies involving selected families based on similar criteria, but the relative frequency of engagement

  15. Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    BRCA1 carriers, SNP rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele HR for ER-positive=1.35, 95%CI:1.17-1.56 vs HR=0.91, 95%CI:0.85-0.98 for ER-negative, P-heterogeneity=6.5e-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER...... in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumor. METHODS: We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumor......, to assess the associations of twelve loci with breast cancer tumor characteristics. Associations were evaluated using a retrospective cohort approach. RESULTS: The results suggested stronger associations with ER-positive breast cancer than ER-negative for eleven loci in both BRCA1 and BRCA2 carriers. Among...

  16. Variation in breast cancer risk associated with factors related to pregnancies according to truncating mutation location, in the French National BRCA1 and BRCA2 mutations carrier cohort (GENEPSO).

    Science.gov (United States)

    Lecarpentier, Julie; Noguès, Catherine; Mouret-Fourme, Emmanuelle; Gauthier-Villars, Marion; Lasset, Christine; Fricker, Jean-Pierre; Caron, Olivier; Stoppa-Lyonnet, Dominique; Berthet, Pascaline; Faivre, Laurence; Bonadona, Valérie; Buecher, Bruno; Coupier, Isabelle; Gladieff, Laurence; Gesta, Paul; Eisinger, François; Frénay, Marc; Luporsi, Elisabeth; Lortholary, Alain; Colas, Chrystelle; Dugast, Catherine; Longy, Michel; Pujol, Pascal; Tinat, Julie; Lidereau, Rosette; Andrieu, Nadine

    2012-07-03

    Mutations in BRCA1 and BRCA2 confer a high risk of breast cancer (BC), but the magnitude of this risk seems to vary according to the study and various factors. Although controversial, there are data to support the hypothesis of allelic risk heterogeneity. We assessed variation in BC risk according to factors related to pregnancies by location of mutation in the homogeneous risk region of BRCA1 and BRCA2 in 990 women in the French study GENEPSO by using a weighted Cox regression model. Our results confirm the existence of the protective effect of an increasing number of full-term pregnancies (FTPs) toward BC among BRCA1 and BRCA2 mutation carriers (≥3 versus 0 FTPs: hazard ratio (HR) = 0.51, 95% confidence interval (CI) = 0.33 to 0.81). Additionally, the HR shows an association between incomplete pregnancies and a higher BC risk, which reached 2.39 (95% CI = 1.28 to 4.45) among women who had at least three incomplete pregnancies when compared with women with zero incomplete pregnancies. This increased risk appeared to be restricted to incomplete pregnancies occurring before the first FTP (HR = 1.77, 95% CI = 1.19 to 2.63). We defined the TMAP score (defined as the Time of Breast Mitotic Activity during Pregnancies) to take into account simultaneously the opposite effect of full-term and interrupted pregnancies. Compared with women with a TMAP score of less than 0.35, an increasing TMAP score was associated with a statistically significant increase in the risk of BC (P trend = 0.02) which reached 1.97 (95% CI = 1.19 to 3.29) for a TMAP score >0.5 (versus TMAP ≤0.35). All these results appeared to be similar in BRCA1 and BRCA2. Nevertheless, our results suggest a variation in BC risk associated with parity according to the location of the mutation in BRCA1. Indeed, parity seems to be associated with a significantly decreased risk of BC only among women with a mutation in the central region of BRCA1 (low-risk region) (≥1 versus 0 FTP: HR = 0.27, 95% CI = 0.13 to

  17. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility....

  18. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-w...

  19. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Bancroft, Elizabeth K; Page, Elizabeth C; Castro, Elena

    2014-01-01

    AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng......BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening....../ml were offered prostate biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. RESULTS AND LIMITATIONS: We...

  20. A DGGE system for comprehensive mutation screening of BRCA1 and BRCA2 : Application in a Dutch cancer clinic setting

    NARCIS (Netherlands)

    van der Hout, Annemarie H.; van den Ouweland, AMW; van der Luijt, RB; Gille, HJP; Bodmer, D; Bruggenwirth, H; Mulder, IM; van der Vlies, P; Elfferich, P; Huisman, Maarten T.; ten Berge, Annelies M.; Kromosoeto, J; Jansen, RPM; van Zon, PHA; Vriesman, T; Arts, N; Lange, MBD; Oosterwijk, Jan C.; Meijers-Heijboer, H; Ausems, MGEM; Hoogerbrugge, N; Verhoef, S; Halley, DJJ; Vos, Yvonne J.; Hogervorst, F; Ligtenberg, M; Hofstra, Robert M.W.

    Rapid and reliable identification of deleterious changes in the breast cancer genes BRCA1 and BRCA2 has become one of the major issues in most DNA services laboratories. To rapidly detect all possible changes within the coding and splice site determining sequences of the breast cancer genes, we

  1. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers ...

  2. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Ramus, Susan J.; Antoniou, Antonis C.; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E.; Aalfs, Cora M.; Meijers-Heijboer, Hanne E. J.; van Asperen, Christi J.; van Roozendaal, K. E. P.; Hoogerbrugge, Nicoline; Collée, J. Margriet; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Pathak, Harsh; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K.; John, Esther M.; Southey, Melissa; Goldgar, David; Singer, Christian F.; tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v O.; Ejlertsen, Bent; Johannsson, Oskar Th; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; van Le, Linda; Hoffman, James S.; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Issacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Iganacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Olah, Edith; Vaszko, Tibor; teo, Soo-Hwang; Ganz, Patricia A.; Beattie, Mary S.; Dorfling, Cecelia M.; van Rensburg, Elizabeth J.; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D. P.; Gayther, Simon A.; Simard, Jacques; Easton, Douglas F.; Couch, Fergus J.; Chenevix-Trench, Georgia; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Ong, Kai-Ren; Hoffman, Jonathan; Donaldson, Alan; James, Margaret; Downing, Sarah; Taylor, Amy; Murray, Alexandra; Rogers, Mark T.; McCann, Emma; Barton, David; Porteous, Mary; Drummond, Sarah; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Izatt, Louise; Langman, Caroline; Whaite, Anna; Dorkins, Huw; Barwell, Julian; Serra-Feliu, Gemma; Ellis, Ian; Houghton, Catherine; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Claber, Oonagh; Jobson, Irene; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Quarrell, Oliver; Bardsley, Cathryn; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Sinilnikova, Olga; Barjhoux, Laure; Verny-Pierre, Carole; Giraud, Sophie; Léone, Mélanie; Buecher, Bruno; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; Tirapo, Carole; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrede, Véronique; Caron, Olivier; Lenoir, Gilbert; Urhammer, Nancy; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Pujol, Pascal; Peyrat, Jean-Philippe; Fournier, Joëlle; Révilliion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Sevenet, Nicolas; Longy, Michel; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Megalie; Coron, Fanny; Prieur, Fabienne; Lebrun, Marine; Kientz, Caroline; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Mortemousque, Isabelle; Lynch, Henry T.; Snyder, Carrie L.; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van't Veer, L. J.; van Leeuwen, F. E.; Collée, M.; van den Ouweland, A. M. W.; Jager, A.; Hooning, M. J.; Tilanus-Linthorst, M. M. A.; Seynaeve, C.; van Asperen, C. J.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; van der Luijt, R. B.; van Os, T. A.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Thorne, Heather; Niedermayr, Eveline; Gill, Mona; Collins, Lucine; Gokgoz, Nalan; Selander, Teresa; Weerasooriya, Nayana; Karlsson, Per; Nordlilng, Margareta; Bergman, Annika; Einbeigi, Zakaria; Liedgren, Sigrun; Borg, Åke; Loman, Niklas; Soller, Maria; Jernström, Helena; Harbst, Katja; Henriksson, Karin; Arver, Brita; von Wachenfeldt, Anna; Barbany-Bustinza, Gisela; Rantala, Johanna; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist, Richard; Dahl, Niklas

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of

  3. BRCA1 and BRCA2: Cancer Risk and Genetic Testing

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... the breast cancer cells do not have estrogen receptors, progesterone receptors, or large amounts of HER2/neu ...

  4. Screening for BRCA1 and BRCA2 mutations in breast cancer patients from mexico: the public health perspective Tamizaje de BRCA1 y BRCA2 en pacientes con cáncerde mama en méxico: perspectiva de la salud pública

    Directory of Open Access Journals (Sweden)

    Steven A Narod

    2009-01-01

    Full Text Available Genetic testing for mutations in BRCA1 and BRCA2 has potentially important public health implications. Through judicious testing of women believed to be at high risk for early-onset breast cancer and for ovarian cancer, it is possible to identify highly-predisposed women prior to the development of cancer. Current preventive options include preventive mastectomy, preventive oophorectomy, tamoxifen and oral contraceptives. The ability to offer genetic testing in Mexico on a widespread level is enhanced if the common founder mutations in the two genes can be discovered or if the cost of genetic sequencing is reduced. It is important that a genetic testing service be a multi-disciplinary effort with co-ordinated follow-up.Los exámenes genéticos para las mutaciones en el BRCA 1 y el BRCA 2 tienen potencialmente una importante implicación en materia de salud pública. A través de exámenes juiciosos en mujeres en las que se cree que tienen un riesgo alto de padecer cáncer de mama y de ovario de inicio temprano, es posible identificar mujeres con una alta predisposición antes de que éstas desarrollen el cáncer de mama. Dentro de las medidas preventivas actuales se incluyen la mastectomía, la ooforectomía, el tamoxifen y los anticonceptivos orales. En México, la habilidad para ofrecer exámenes genéticos a nivel poblacional se vería favorecida si se pudiesen descubrir las mutaciones fundadoras en los dos genes o si el costo del secuenciamiento genético fuese reducido. Es muy importante que el servicio de los exámenes genéticos sea el resultado de un esfuerzo multidisciplinario con seguimiento coordinado de los pacientes.

  5. A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ding, Yuan C; McGuffog, Lesley; Healey, Sue

    2012-01-01

    We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated wit...

  6. A Nonsynonymous Polymorphism in IRS1 Modifies Risk of Developing Breast and Ovarian Cancers in BRCA1 and Ovarian Cancer in BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Ding, Yuan C.; McGuffog, Lesley; Healey, Sue; Friedman, Eitan; Laitman, Yael; Paluch-Shimon, Shani-; Kaufman, Bella; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Gronwald, Jacek; Huzarski, Tomasz; Cybulski, Cezary; Byrski, Tomasz; Osorio, Ana; Cajal, Teresa Ramóny; Stavropoulou, Alexandra V.; Benítez, Javier; Hamann, Ute; Rookus, Matti; Aalfs, Cora M.; de Lange, Judith L.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; van Asperen, Christi J.; Gómez García, Encarna B.; Hoogerbrugge, Nicoline; Jager, Agnes; van der Luijt, Rob B.; Easton, Douglas F.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Tischkowitz, Marc; Godwin, Andrew K.; Pathak, Harsh; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Barjhoux, Laure; Léoné, Mélanie; Gauthier-Villars, Marion; Caux-Moncoutier, Virginie; de Pauw, Antoine; Hardouin, Agnès; Berthet, Pascaline; Dreyfus, Hélène; Ferrer, Sandra Fert; Collonge-Rame, Marie-Agnès; Sokolowska, Johanna; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy; John, Esther M.; Southey, Melissa; Goldgar, David; Singer, Christian F.; tea, Muy-Kheng Maria; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Hansen, Thomas V. O.; Ejlertsen, Bent; Johannsson, Oskar T.; Offit, Kenneth; Sarrel, Kara; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion R.; Andrews, Lesley; Cohn, David; DeMars, Leslie R.; DiSilvestro, Paul; Rodriguez, Gustavo; Toland, Amanda Ewart; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Ramus, Susan J.; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Ganz, Patricia A.; Beattie, Mary S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Tomlinson, Gail E.; Weitzel, Jeffrey; Garber, Judy E.; Olopade, Olufunmilayo I.; Rubinstein, Wendy S.; Tung, Nadine; Blum, Joanne L.; Narod, Steven A.; Brummel, Sean; Gillen, Daniel L.; Lindor, Noralane; Fredericksen, Zachary; Pankratz, Vernon S.; Couch, Fergus J.; Radice, Paolo; Peterlongo, Paolo; Greene, Mark H.; Loud, Jennifer T.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Gerdes, Anne-Marie; Thomassen, Mads; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Lee, Andrew; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Neuhausen, Susan L.

    2012-01-01

    Background: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were

  7. A Nonsynonymous Polymorphism in IRS1 Modifies Risk of Developing Breast and Ovarian Cancers in BRCA1 and Ovarian Cancer in BRCA2 Mutation Carriers.

    NARCIS (Netherlands)

    Ding, Y.C.; McGuffog, L.; Healey, S.; Friedman, E.; Laitman, Y.; Paluch-Shimon, S.; Kaufman, B.; Liljegren, A.; Lindblom, A.; Olsson, H.; Kristoffersson, U.; Stenmark-Askmalm, M.; Melin, B.; Domchek, S.M.; Nathanson, K.L.; Rebbeck, T.R.; Jakubowska, A.; Lubinski, J.; Jaworska, K.; Durda, K.; Gronwald, J.; Huzarski, T.; Cybulski, C.; Byrski, T.; Osorio, A.; Cajal, T.R.; Stavropoulou, A.V.; Benitez, J.; Hamann, U.; Rookus, M.; Aalfs, C.M.; Lange, J.L. de; Meijers-Heijboer, H.E.; Oosterwijk, J.C.; Asperen, C.J. van; Gomez Garcia, E.B.; Hoogerbrugge, N.; Jager, A.; Luijt, R.B. van der; Easton, D.F.; Peock, S.; Frost, D.; Ellis, S.D.; Platte, R.; Fineberg, E.; Evans, D.G.; Lalloo, F.; Izatt, L.; Eeles, R.; Adlard, J.; Davidson, R.; Eccles, D.; Cole, T.; Cook, J.; Brewer, C.; Tischkowitz, M.; Godwin, A.K.; Pathak, H.; Stoppa-Lyonnet, D.; Sinilnikova, O.M.; Mazoyer, S.; Barjhoux, L.; Leone, M.; Gauthier-Villars, M.; Caux-Moncoutier, V.; Pauw, A. de; Hardouin, A.; Berthet, P.; Dreyfus, H.; Ferrer, S.F.; Collonge-Rame, M.A.; Sokolowska, J.; Buys, S.; Daly, M.; Miron, A.; Terry, M.B.; Chung, W.; John, E.M.; Southey, M.; Goldgar, D.; Singer, C.F.; Tea, M.K.; Gschwantler-Kaulich, D.; Fink-Retter, A.; Hansen, T.V.; Ejlertsen, B.; Johannsson, O.T.; Offit, K.; Sarrel, K.; Gaudet, M.M.; Vijai, J.; Robson, M.; Piedmonte, M.R.; Andrews, L.; Cohn, D.; Demars, L.R.; Disilvestro, P.; Rodriguez, G.; Toland, A.E.; Montagna, M.; Agata, S.; Imyanitov, E.; Isaacs, C.; Janavicius, R.; Lazaro, C.; Blanco, I.; Ramus, S.J.; Sucheston, L.; Karlan, B.Y.; Gross, J.; Ganz, P.A.; Beattie, M.S.; Schmutzler, R.K.; Wappenschmidt, B.; Meindl, A.; Arnold, N.; Niederacher, D.; Preisler-Adams, S.; Gadzicki, D.; Varon-Mateeva, R.; Deissler, H.; Gehrig, A.; Sutter, C.; Kast, K.; Nevanlinna, H.; Aittomaki, K.; Simard, J.; Spurdle, A.B.; Beesley, J.; Chen, X.; Tomlinson, G.E.; Weitzel, J.; Garber, J.E.; Olopade, O.I.; Rubinstein, W.S.; Tung, N.; Blum, J.L.; Narod, S.A.; Brummel, S.; Gillen, D.L.; Lindor, N.; Fredericksen, Z.; Pankratz, V.S.; Couch, F.J.; Radice, P.; Peterlongo, P.; Greene, M.H.; Loud, J.T.; Mai, P.L.; Andrulis, I.L.; Glendon, G.; Ozcelik, H.; Gerdes, A.M.; Thomassen, M.; Jensen, U.B.; Skytte, A.B.; Caligo, M.A.; Lee, A.; Chenevix-Trench, G.; Antoniou, A.C.; Neuhausen, S.L.

    2012-01-01

    BACKGROUND: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were

  8. A Nonsynonymous Polymorphism in IRS1 Modifies Risk of Developing Breast and Ovarian Cancers in BRCA1 and Ovarian Cancer in BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Ding, Yuan C.; McGuffog, Lesley; Healey, Sue; Friedman, Eitan; Laitman, Yael; Shani-Paluch-Shimon, [No Value; Kaufman, Bella; Liljegren, Annelie; Lindblom, Annika; Olsson, Hakan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Gronwald, Jacek; Huzarski, Tomasz; Cybulski, Cezary; Byrski, Tomasz; Osorio, Ana; Ramony Cajal, Teresa; Stavropoulou, Alexandra V.; Benitez, Javier; Hamann, Ute; Rookus, Matti; Aalfs, Cora M.; de Lange, Judith L.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; van Asperen, Christi J.; Garcia, Encarna B. Gomez; Hoogerbrugge, Nicoline; Jager, Agnes; van der Luijt, Rob B.; Easton, Douglas F.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian

    Background: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were

  9. A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Y.C. Ding (Yuan); L. McGuffog (Lesley); S. Healey (Sue); E. Friedman (Eitan); Y. Laitman (Yael); S.-P. Shimon (Shani-Paluch); B. Kaufman (Bella); A. Liljegren (Annelie); A. Lindblom (Annika); H. Olsson; U. Kristoffersson (Ulf); M. Stenmark-Askmalm (M.); B. Melin (Beatrice); S.M. Domchek (Susan); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); K. Durda (Katarzyna); J. Gronwald (Jacek); T. Huzarski (Tomasz); C. Cybulski (Cezary); T. Byrski (Tomasz); A. Osorio (Ana); T.R. Cajal; A. Stavropoulou (Alexandra); J. Benítez (Javier); U. Hamann (Ute); M.A. Rookus (Matti); C.M. Aalfs (Cora); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); J.C. Oosterwijk (Jan); C.J. van Asperen (Christi); E.B. Gómez García (Encarna); N. Hoogerbrugge (Nicoline); A. Jager (Agnes); R.B. van der Luijt (Rob); D.F. Easton (Douglas); S. Peock (Susan); D. Frost (Debra); S.D. Ellis (Steve); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); F. Lalloo (Fiona); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); D. Eccles (Diana); T.J. Cole (Trevor); J. Cook (Jackie); C. Brewer (Carole); M. Tischkowitz (Marc); A.K. Godwin (Andrew); S.S. Pathak; D. Stoppa-Lyonnet (Dominique); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); L. Barjhoux (Laure); M. Léone (Mélanie); M. Gauthier-Villars (Marion); V. Caux-Moncoutier (Virginie); A. de Pauw (Antoine); A. Hardouin (Agnès); P. Berthet (Pascaline); H. Dreyfus (Hélène); S.F. Ferrer; M.-A. Collonge-Rame; J. Sokolowska (Johanna); S.S. Buys (Saundra); M.B. Daly (Mary); A. Miron (Alexander); M.-B. Terry (Mary-Beth); W. Chung (Wendy); E.M. John (Esther); M.C. Southey (Melissa); D. Goldgar (David); C.F. Singer (Christian); M.-K. Tea; D. Gschwantler-Kaulich (Daphne); A. Fink-Retter (Anneliese); T.V.O. Hansen (Thomas); B. Ejlertsen (Bent); O.T. Johannson (Oskar); K. Offit (Kenneth); K. Sarrel (Kara); M.M. Gaudet (Mia); J. Vijai (Joseph); M. Robson (Mark); M. Piedmonte (Marion); L. Andrews (Lesley); D.E. Cohn (David); L.R. DeMars (Leslie); P. DiSilvestro (Paul); G.C. Rodriguez (Gustavo); A.E. Toland (Amanda); M. Montagna (Marco); S. Agata (Simona); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); S.J. Ramus (Susan); L. Sucheston (Lara); B.Y. Karlan (Beth); J. Gross (Jenny); P.A. Ganz (Patricia); M.S. Beattie (Mary); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); A. Meindl (Alfons); N. Arnold (Norbert); D. Niederacher (Dieter); S. Preisler-Adams (Sabine); D. Gadzicki (Dorothea); R. Varon-Mateeva (Raymonda); H. Deissler (Helmut); P.A. Gehrig (Paola A.); C. Sutter (Christian); K. Kast (Karin); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); J. Simard (Jacques); A.B. Spurdle (Amanda); J. Beesley (Jonathan); X. Chen (Xiaoqing); G. Tomlinson (Gail); J.N. Weitzel (Jeffrey); J. Garber; O.I. Olopade (Olofunmilayo); W.S. Rubinstein (Wendy); N. Tung (Nadine); J.L. Blum (Joanne); S. Narod (Steven); S. Brummel (Sean); D.L. Gillen (Daniel); N.M. Lindor (Noralane); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); F.J. Couch (Fergus); P. Radice (Paolo); P. Peterlongo (Paolo); M.H. Greene (Mark); J.T. Loud (Jennifer); P.L. Mai (Phuong); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); A-M. Gerdes (Anne-Marie); M. Thomassen (Mads); U.B. Jensen; A.-B. Skytte (Anne-Bine); M.A. Caligo (Maria); A. Lee (Andrew); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); S.L. Neuhausen (Susan)

    2012-01-01

    textabstractBackground: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk inwomen carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and

  10. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Sinilnikova, Olga M; McGuffog, Lesley

    2009-01-01

    Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 an...

  11. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs...

  12. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs...... to a better understanding of the biology of tumour development in these women....

  13. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); C. Kartsonaki (Christiana); O. Sinilnikova (Olga); P. Soucy (Penny); L. McGuffog (Lesley); S. Healey (Sue); A. Lee (Andrew); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); M. Barile (Monica); V. Pensotti (Valeria); B. Pasini (Barbara); R. Dolcetti (Riccardo); G. Giannini (Giuseppe); A.L. Putignano; L. Varesco (Liliana); P. Radice (Paolo); P.L. Mai (Phuong); M.H. Greene (Mark); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); T.A. Kruse (Torben); U.B. Jensen; D. Cruger (Dorthe); M.A. Caligo (Maria); Y. Laitman (Yael); R. Milgrom (Roni); B. Kaufman (Bella); S. Paluch-Shimon (Shani); E. Friedman (Eitan); N. Loman (Niklas); K. Harbst (Katja); A. Lindblom (Annika); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); B. Górski (Bohdan); A. Osorio (Ana); T.R. Cajal; F. Fostira (Florentia); R. Andres (Raquel); J. Benitez (Javier); U. Hamann (Ute); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M.J. Hooning (Maartje); M.R. Nelen (Marcel); R.B. van der Luijt (Rob); T.A.M. van Os (Theo); C.J. van Asperen (Christi); P. Devilee (Peter); H. Meijers-Heijboer (Hanne); E.B.G. Garcia; S. Peock (Susan); M. Cook (Margaret); D. Frost; R. Platte (Radka); J. Leyland (Jean); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); R. Davidson (Rosemarie); D. Eccles (Diana); K.-R. Ong; F. Douglas (Fiona); J. Paterson (Joan); M.J. Kennedy (John); Z. Miedzybrodzka (Zosia); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); M. Belotti (Muriel); C. Tirapo (Carole); S. Mazoyer (Sylvie); L. Barjhoux (Laure); C. Lasset (Christine); D. Leroux (Dominique); L. Faivre (Laurence); M. Bronner (Myriam); F. Prieur (Fabienne); C. Nogues (Catherine); E. Rouleau (Etienne); P. Pujol (Pascal); I. Coupier (Isabelle); M. Frenay (Marc); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); M.-K. Tea; G. Pfeiler (Georg); C. Dressler (Catherina); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); R.B. Barkardottir (Rosa); T. Kircchoff (Tomas); K. Offit (Kenneth); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); L. Small (Laurie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); A.E. Toland (Amanda); M. Montagna (Marco); S. Tognazzo (Silvia); S. Agata (Simona); E.N. Imyanitov (Evgeny); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); P.D.P. Pharoah (Paul); L. Sucheston (Lara); B.Y. Karlan (Beth); C.S. Walsh (Christine); E. Olah (Edith); A. Bozsik (Aniko); S.-H. Teo (Soo-Hwang); J.L. Seldon (Joyce); M.S. Beattie (Mary); E.J. van Rensburg (Elizabeth); M.D. Sluiter (Michelle); O. Diez (Orland); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); R. Varon-Mateeva (Raymonda); K. Kast (Karin); H. Deissler (Helmut); D. Niederacher (Dieter); N. Arnold (Norbert); D. Gadzicki (Dorothea); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M. Dumont (Martine); J. Chiquette (Jocelyne); M. Tischkowitz (Marc); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); A.B. Spurdle (Amanda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); Z. Fredericksen (Zachary); X. Wang (Xing); V.S. Pankratz (Shane); F.J. Couch (Fergus); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); P. Karlsson (Per); M. Nordling (Margareta); A. Bergman (Annika); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (M.); S. Liedgren (Sigrun); Å. Borg (Åke); H. Olsson (Hans); U. Kristoffersson (Ulf); H. Jernström (H.); K. Henriksson (Karin); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); G. Barbany-Bustinza (Gisela); J. Rantala (Johanna); H. Grönberg (Henrik); E.-L. Stattin; M. Emanuelsson (Monica); R.R. Brandell; N. Dahl (Niklas); S. Verhoef; M. Verheus (Martijn); L.J. van 't Veer (Laura); F.E. van Leeuwen; J.M. Collée (Margriet); A.M.W. van den Ouweland (Ans); A. Jager (Agnes); M.M.A. Tilanus-Linthorst (Madeleine); C.M. Seynaeve (Caroline); J.T. Wijnen (Juul); M.P. Vreeswijk (Maaike); R.A.E.M. Tollenaar (Rob); M.J. Ligtenberg (Marjolijn); N. Hoogerbrugge (Nicoline); M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); J.J.P. Gille (Jan); Q. Waisfisz (Quinten); E.B. Gómez García (Encarna); C.E. van Roozendaal (Cees); M.J. Blok (Marinus); B. Caanen; J.C. Oosterwijk; A.H. van der Hout (Annemarie); M.J. Mourits; H.F. Vasen (Hans); H. Gregory (Helen); P.J. Morrison (Patrick); L. Jeffers (Lisa); T.J. Cole (Trevor); C. McKeown (Carole); J. Hoffman (Jonathan); A. Donaldson (Alan); S. Downing (Sarah); A. Taylor (Amy); A. Murray (Alexandra); M.T. Rogers (Mark); E. McCann (Emma); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); K. Hill (Kathryn); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); C. Jacobs (Chris); C. Langman (Caroline); A. Whaite (Anna); H. Dorkins (Huw); J. Barwell (Julian); C. Chu (Chengbin); J. Miller (Julie); I.O. Ellis (Ian); C. Houghton (Catherine); L. Side (Lucy); A. Male (Alison); C. Berlin (Cheryl); J. Eason (Jacqueline); R. Collier (Rebecca); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); E.K. Bancroft (Elizabeth); L. D'Mello (Lucia); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); A. Mitra (Anita); L. Robertson (Lisa); O. Quarrell (Oliver); C. Bardsley (Cathryn); H. Ehrencrona (Hans); S.V. Hodgson (Shirley); D.E. Barton (David); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lucassen (Anneke); G. Crawford (Gillian); D. McBride (Donna); S. Smalley (Sarah); J.W. Adlard (Julian); B. Arver (Brita Wasteson)

    2011-01-01

    textabstractTwo single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility

  14. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Kartsonaki, Christiana; Sinilnikova, Olga M.; Soucy, Penny; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Barile, Monica; Pensotti, Valeria; Pasini, Barbara; Dolcetti, Riccardo; Giannini, Giuseppe; Putignano, Anna Laura; Varesco, Liliana; Radice, Paolo; Mai, Phuong L.; Greene, Mark H.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Birk Jensen, Uffe; Crüger, Dorthe G.; Caligo, Maria A.; Laitman, Yael; Milgrom, Roni; Kaufman, Bella; Paluch-Shimon, Shani; Friedman, Eitan; Loman, Niklas; Harbst, Katja; Lindblom, Annika; Arver, Brita; Ehrencrona, Hans; Melin, Beatrice; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy; Jakubowska, Ania; Lubinski, Jan; van Os, Theo A. M.; Meijers-Heijboer, Hanne E. J.; Aalfs, C. M.

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants:

  15. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Sinilnikova, Olga M.; McGuffog, Lesley; Healey, Sue; Nevanlinna, Heli; Heikkinen, Tuomas; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Peissel, Bernard; Bonanni, Bernardo; Viel, Alessandra; Bernard, Loris; Radice, Paolo; Szabo, Csilla I.; Foretova, Lenka; Zikan, Michal; Claes, Kathleen; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L.; Ozcelik, Hilmi; Glendon, Gord; Gerdes, Anne-Marie; Thomassen, Mads; Sunde, Lone; Caligo, Maria A.; Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Kaufman, Bella; Dagan, Efrat; Baruch, Ruth Gershoni; Friedman, Eitan; Harbst, Katja; Barbany-Bustinza, Gisela; Rantala, Johanna; Ehrencrona, Hans; Karlsson, Per; Domchek, Susan M.; Nathanson, Katherine L.; Osorio, Ana; Blanco, Ignacio; Lasa, Adriana; Beniez, Javier; Hamann, Ute; Hogervorst, Frans B. L.; Rookus, Matti A.; Collee, J. Margriet; Devilee, Peter; Ligtenberg, Marjolijn J.; van der Luijt, Rob B.; Aalfs, Cora M.; Waisfisz, Quinten; Wijnen, Juul; van Roozendaal, Cornelis E. P.; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Davidson, Rosemarie; Chu, Carol; Eccles, Diana; Cole, Trevor; Hodgson, Shirley; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Buecher, Bruno; Leone, Melanie; Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Caron, Olivier; Lenoir, Gilbert M.; Sevenet, Nicolas; Longy, Michel; Ferrer, Sandra Fert; Prieur, Fabienne; Goldgar, David; Miron, Alexander; John, Esther M.; Buys, Saundra S.; Daly, Mary B.; Hopper, John L.; Terry, Mary Beth; Yassin, Yosuf; Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine; Hansen, Thomas v O.; Barkardottir, Rosa Bjork; Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth; Piedmonte, Marion; Rodriguez, Gustavo C.; Wakeley, Katie; Boggess, John F.; Basil, Jack; Schwartz, Peter E.; Blank, Stephanie V.; Toland, Amanda E.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Allavena, Anna; Schmutzler, Rita K.; Versmold, Beatrix; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Deissler, Helmut; Fiebig, Britta; Suttner, Christian; Schoenuchner, Ines; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Pooley, Karen A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Gill, Mona; Collins, Lucine; Gokgoz, Nalan; Selander, Teresa; Weerasooriya, Nayana; H, F. B. L.; Verhoef, Senno; Pijpe, Anouk; van 't Veer, Laura; van Leeuwen, Flora; R, M. A.; C, J. M.; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; Tollenaar, Rob; van Asperen, Christi; W, J.; Vreeswijk, Maaike; Hoogerbrugge, Nicoline; L, M. J.; Ausems, Margreet; v d L, R.; A, C. M.; van Os, Theo; Meijers-Heijboer, Hanne; Gille, Hans; Gomez-Garcia, Encarna; Blok, Rien; P, S.; C, M.; O, C.; F, D.; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; C, T.; McKeown, Carole; Burgess, Lucy; Donaldson, Alan; Paterson, Joan; Murray, Alexandra; Rogers, Mark; McCann, Emma; Kennedy, John; Barton, David; Porteous, Mary; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; D, R.; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; I, L.; Pichert, Gabriella; Langman, Caroline; Dorkins, Huw; Barwell, Julian; C, C.; Bishop, Tim; Miller, Julie; Ellis, Ian; E, D. G.; L, F.; Holt, Felicity; Male, Alison; Robinson, Anne; Gardiner, Carol; Douglas, Fiona; Walker, Lisa; Durell, Sarah; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Mitra, Anita; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; H, S.; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Crawford, Gillian; Tyler, Emma; McBride, Donna; Lucassen, Anneke; S, O. M.; Barjhoux, Laure; Giraud, Sophie; Mazoyer, Sylvie; S-L, D.; Gauthier-Villars, Marion; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; B-d-P, B.; R, A.; Byrde, Veronque; Capoulade, Corinne; L, G. M.; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valeri; Hardouin, Agnes; Berthet, Pascaline; Sobol, Hagay; Bourdon, Violaine; Eisinger, Francos; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Peyrat, Jean-Philippe; Fournier, Joelle; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Daniel; Fricker, Jean-Pierre; L, M.; S, N.; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Helene; Rebischung, Christine; Olivier-Faivre, Laurence; P, F.; Frena, Marc; Lynch, Henry T.; G, A. K.; S, R. K.; S, J.; Durocher, Francine; Laframboise, Rachel; Plante, Marie; Bridge, Peter; Parboosingh, Jilian; Chiquette, Jocelyne; Lesperance, Bernard; S, C. I.; F, L.; Eva, Machakova; Miroslava, Lukesova; de Paepe, Anne; Poppe, Bruce; K, P.; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Liedgren, Sigrun; Borg, Ake; Loman, Niklas; Olsson, Hakan; Kristoffersson, Ulf; Jernstrom, Helena; H, K.; Henrisson, Karin; Lindblom, Annika; Arver, Brita; von Wachenfeldt, Anna; Liljegren, Annelie; B-B, G.; R, J.; A, A.

    2009-01-01

    Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and

  16. Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2

    National Research Council Canada - National Science Library

    Kauff, Noah D

    2006-01-01

    .... This plan included 1) conduct of a prospective study examining modifiers of the efficacy of risk-reducing salpingo-oophorectomy for the prevention of breast and ovarian cancer in carriers of BRCA mutations; and 2...

  17. Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations

    National Research Council Canada - National Science Library

    Kauff, Noah

    2004-01-01

    .... This plan included 1) conduct of a prospective study examining modifiers of the efficacy of risk-reducing salpingo-oophorectomy for the prevention of breast and ovarian cancer in carriers of BRCA mutations; and 2...

  18. Evaluation of BRCA1 and BRCA2 mutation prevalence, risk prediction models and a multistep testing approach in French‐Canadian families with high risk of breast and ovarian cancer

    Science.gov (United States)

    Simard, Jacques; Dumont, Martine; Moisan, Anne‐Marie; Gaborieau, Valérie; Vézina, Hélène; Durocher, Francine; Chiquette, Jocelyne; Plante, Marie; Avard, Denise; Bessette, Paul; Brousseau, Claire; Dorval, Michel; Godard, Béatrice; Houde, Louis; Joly, Yann; Lajoie, Marie‐Andrée; Leblanc, Gilles; Lépine, Jean; Lespérance, Bernard; Malouin, Hélène; Parboosingh, Jillian; Pichette, Roxane; Provencher, Louise; Rhéaume, Josée; Sinnett, Daniel; Samson, Carolle; Simard, Jean‐Claude; Tranchant, Martine; Voyer, Patricia; BRCAs, INHERIT; Easton, Douglas; Tavtigian, Sean V; Knoppers, Bartha‐Maria; Laframboise, Rachel; Bridge, Peter; Goldgar, David

    2007-01-01

    Background and objective In clinical settings with fixed resources allocated to predictive genetic testing for high‐risk cancer predisposition genes, optimal strategies for mutation screening programmes are critically important. These depend on the mutation spectrum found in the population under consideration and the frequency of mutations detected as a function of the personal and family history of cancer, which are both affected by the presence of founder mutations and demographic characteristics of the underlying population. The results of multistep genetic testing for mutations in BRCA1 or BRCA2 in a large series of families with breast cancer in the French‐Canadian population of Quebec, Canada are reported. Methods A total of 256 high‐risk families were ascertained from regional familial cancer clinics throughout the province of Quebec. Initially, families were tested for a panel of specific mutations known to occur in this population. Families in which no mutation was identified were then comprehensively tested. Three algorithms to predict the presence of mutations were evaluated, including the prevalence tables provided by Myriad Genetics Laboratories, the Manchester Scoring System and a logistic regression approach based on the data from this study. Results 8 of the 15 distinct mutations found in 62 BRCA1/BRCA2‐positive families had never been previously reported in this population, whereas 82% carried 1 of the 4 mutations currently observed in ⩾2 families. In the subset of 191 families in which at least 1 affected individual was tested, 29% carried a mutation. Of these 27 BRCA1‐positive and 29 BRCA2‐positive families, 48 (86%) were found to harbour a mutation detected by the initial test. Among the remaining 143 inconclusive families, all 8 families found to have a mutation after complete sequencing had Manchester Scores ⩾18. The logistic regression and Manchester Scores provided equal predictive power, and both were significantly better

  19. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  20. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    International Nuclear Information System (INIS)

    Bodvarsdottir, Sigridur K.; Steinarsdottir, Margret; Bjarnason, Hordur; Eyfjord, Jorunn E.

    2012-01-01

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  1. Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study

    NARCIS (Netherlands)

    Bancroft, Elizabeth K.; Page, Elizabeth C.; Castro, Elena; Lilja, Hans; Vickers, Andrew; Sjoberg, Daniel; Assel, Melissa; Foster, Christopher S.; Mitchell, Gillian; Drew, Kate; Mæhle, Lovise; Axcrona, Karol; Evans, D. Gareth; Bulman, Barbara; Eccles, Diana; McBride, Donna; van Asperen, Christi; Vasen, Hans; Kiemeney, Lambertus A.; Ringelberg, Janneke; Cybulski, Cezary; Wokolorczyk, Dominika; Selkirk, Christina; Hulick, Peter J.; Bojesen, Anders; Skytte, Anne-Bine; Lam, Jimmy; Taylor, Louise; Oldenburg, Rogier; Cremers, Ruben; Verhaegh, Gerald; van Zelst-Stams, Wendy A.; Oosterwijk, Jan C.; Blanco, Ignacio; Salinas, Monica; Cook, Jackie; Rosario, Derek J.; Buys, Saundra; Conner, Tom; Ausems, Margreet G.; Ong, Kai-Ren; Hoffman, Jonathan; Domchek, Susan; Powers, Jacquelyn; Teixeira, Manuel R.; Maia, Sofia; Foulkes, William D.; Taherian, Nassim; Ruijs, Marielle; van Os, Theo

    2014-01-01

    Background: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in

  2. Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers : Results from the Initial Screening Round of the IMPACT Study

    NARCIS (Netherlands)

    Bancroft, Elizabeth K.; Page, Elizabeth C.; Castro, Elena; Lilja, Hans; Vickers, Andrew; Sjoberg, Daniel; Assel, Melissa; Foster, Christopher S.; Mitchell, Gillian; Drew, Kate; Maehle, Lovise; Axcrona, Karol; Evans, D. Gareth; Bulman, Barbara; Eccles, Diana; McBride, Donna; van Asperen, Christi; Vasen, Hans; Kiemeney, Lambertus A.; Ringelberg, Janneke; Cybulski, Cezary; Wokolorczyk, Dominika; Selkirk, Christina; Hulick, Peter J.; Bojesen, Anders; Skytte, Anne-Bine; Lam, Jimmy; Taylor, Louise; Oldenburg, Rogier; Cremers, Ruben; Verhaegh, Gerald; van Zelst-Stams, Wendy A.; Oosterwijk, Jan C.; Blanco, Ignacio; Salinas, Monica; Cook, Jackie; Rosario, Derek J.; Buys, Saundra; Conner, Tom; Ausems, Margreet G.; Ong, Kai-ren; Hoffman, Jonathan; Domchek, Susan; Powers, Jacquelyn; Teixeira, Manuel R.; Maia, Sofia; Foulkes, William D.; Taherian, Nassim; Ruijs, Marielle; Helderman-van den Enden, Apollonia T.

    Background: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in

  3. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  4. The association between smoking and cancer incidence in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Ko, Kwang-Pil; Kim, Shana J; Huzarski, Tomasz; Gronwald, Jacek; Lubinski, Jan; Lynch, Henry T; Armel, Susan; Park, Sue K; Karlan, Beth; Singer, Christian F; Neuhausen, Susan L; Narod, Steven A; Kotsopoulos, Joanne

    2018-06-01

    Tobacco smoke is an established carcinogen, but the association between tobacco smoking and cancer risk in BRCA mutation carriers is not clear. The aim of this study was to evaluate prospectively the association between tobacco smoking and cancer incidence in a cohort of BRCA1 and BRCA2 mutation carriers. The study population consisted of unaffected BRCA mutation carriers. Information on lifestyle including smoking histories, reproductive factors, and past medical histories was obtained through questionnaires. Incident cancers were updated biennially via follow-up questionnaires. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using time-dependent Cox regression models. There were 700 incident cancers diagnosed over 26,711 person-years of follow-up. The most frequent cancers seen in BRCA mutation carriers were breast (n = 428; 61%) and ovarian (n = 109; 15%) cancer. Compared to nonsmokers, (ever) smoking was associated with a modest increased risk of all cancers combined (HR = 1.17; 95%CI 1.01-1.37). Women in the highest group of total pack-years (4.3-9.8) had an increased risk of developing any cancer (HR = 1.27; 95%CI 1.04-1.56), breast cancer (HR = 1.33, 95%CI 1.02-1.75), and ovarian cancer (HR = 1.68; 95%CI 1.06-2.67) compared to never smokers. The associations between tobacco smoking and cancer did not differ by BRCA mutation type or by age at diagnosis. This prospective study suggests that tobacco smoking is associated with a modest increase in the risks of breast and ovarian cancer among women with BRCA1 or BRCA2 mutation. © 2018 UICC.

  5. Immunophenotyping of hereditary breast cancer

    NARCIS (Netherlands)

    van der Groep, P.

    2009-01-01

    Hereditary breast cancer runs in families where several family members in different generations are affected. Most of these breast cancers are caused by mutations in the high penetrance genes BRCA1 and BRCA2 which account for about 5% of all breast cancers. However, mutations in BRCA1 and BRCA2 may

  6. Evidence That BRCA1- or BRCA2-Associated Cancers Are Not Inevitable

    Science.gov (United States)

    Levin, Bess; Lech, Denise; Friedenson, Bernard

    2012-01-01

    Inheriting a BRCA1 or BRCA2 gene mutation can cause a deficiency in repairing complex DNA damage. This step leads to genomic instability and probably contributes to an inherited predisposition to breast and ovarian cancer. Complex DNA damage has been viewed as an integral part of DNA replication before cell division. It causes temporary replication blocks, replication fork collapse, chromosome breaks and sister chromatid exchanges (SCEs). Chemical modification of DNA may also occur spontaneously as a byproduct of normal processes. Pathways containing BRCA1 and BRCA2 gene products are essential to repair spontaneous complex DNA damage or to carry out SCEs if repair is not possible. This scenario creates a theoretical limit that effectively means there are spontaneous BRCA1/2-associated cancers that cannot be prevented or delayed. However, much evidence for high rates of spontaneous DNA mutation is based on measuring SCEs by using bromodeoxyuridine (BrdU). Here we find that the routine use of BrdU has probably led to overestimating spontaneous DNA damage and SCEs because BrdU is itself a mutagen. Evidence based on spontaneous chromosome abnormalities and epidemiologic data indicates strong effects from exogenous mutagens and does not support the inevitability of cancer in all BRCA1/2 mutation carriers. We therefore remove a theoretical argument that has limited efforts to develop chemoprevention strategies to delay or prevent cancers in BRCA1/2 mutation carriers. PMID:22972572

  7. Cycling with BRCA2 from DNA repair to mitosis

    International Nuclear Information System (INIS)

    Lee, Hyunsook

    2014-01-01

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis

  8. Cycling with BRCA2 from DNA repair to mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    2014-11-15

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.

  9. BRCA1 and BRCA2 mutational profile and prevalence in hereditary breast and ovarian cancer (HBOC probands from Southern Brazil: Are international testing criteria appropriate for this specific population?

    Directory of Open Access Journals (Sweden)

    Bárbara Alemar

    Full Text Available Germline pathogenic variants in BRCA1 and BRCA2 (BRCA are the main cause of Hereditary Breast and Ovarian Cancer syndrome (HBOC.In this study we evaluated the mutational profile and prevalence of BRCA pathogenic/likely pathogenic variants among probands fulfilling the NCCN HBOC testing criteria. We characterized the clinical profile of these individuals and explored the performance of international testing criteria.A pathogenic/likely pathogenic variant was detected in 19.1% of 418 probands, including seven novel frameshift variants. Variants of uncertain significance were found in 5.7% of individuals. We evaluated 50 testing criteria and mutation probability algorithms. There was a significant odds-ratio (OR for mutation prediction (p ≤ 0.05 for 25 criteria; 14 of these had p ≤ 0.001. Using a cutoff point of four criteria, the sensitivity is 83.8%, and the specificity is 53.5% for being a carrier. The prevalence of pathogenic/likely pathogenic variants for each criterion ranged from 22.1% to 55.6%, and criteria with the highest ORs were those related to triple-negative breast cancer or ovarian cancer.This is the largest study of comprehensive BRCA testing among Brazilians to date, and the first to analyze clinical criteria for genetic testing. Several criteria that are not included in the NCCN achieved a higher predictive value. Identification of the most informative criteria for each population will assist in the development of a rational approach to genetic testing, and will enable the prioritization of high-risk individuals as a first step towards offering testing in low-income countries.

  10. BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers.

    Science.gov (United States)

    Wang, Gui-Hua; Zhao, Chun-Mei; Huang, Ying; Wang, Wei; Zhang, Shu; Wang, Xudong

    2018-01-01

    The role of BRCA1 and BRCA2 genes is mainly to maintain genome integrity in response to DNA damage through different mechanisms. Deregulation of BRCA1 and BRCA2 is associated with the development of tumor and altered sensitivity to chemotherapeutic agents. In this study, we determined protein expression of BRCA1 and BRCA2 in 4 digestive system cancers (gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer) by immunohistochemistry on tissue microarrays. A total of 1546 samples of 4 types of cancer tissues, their matched adjacent nontumor tissues, and corresponding benign tissues were studied, respectively. Immunohistochemistry expression patterns of the 2 proteins and their correlation with patients' clinical parameters and overall survival were analyzed. The results showed that low expression of cytoplasmic BRCA1 and BRCA2 was commonly associated with advanced tumor-lymph node-metastasis stage, whereas high expression of nuclear BRCA1 was generally correlated with advanced tumor stages in these cancers. High expression of cytoplasmic BRCA1 and BRCA2 had significantly favorable overall survival in digestive system cancers; in contrast, BRCA1 nuclear expression usually predicted poor outcomes. We conclude that BRCA1 and BRCA2 could be used as clinicopathological biomarkers to evaluate the prognosis of digestive system cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent

    2015-01-01

    of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected......, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. CONCLUSIONS: This study illustrates how...... original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects....

  12. Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI

    International Nuclear Information System (INIS)

    Veltman, J.; Mann, R.; Blickman, J.G.; Boetes, C.; Kok, T.; Obdeijn, I.M.; Hoogerbrugge, N.

    2008-01-01

    The appearance of malignant lesions in BRCA1 and BRCA2 mutation carriers (BRCA-MCs) on mammography and magnetic resonance imaging (MRI) was evaluated. Thus, 29 BRCA-MCs with breast cancer were retrospectively evaluated and the results compared with an age, tumor size and tumor type matched control group of 29 sporadic breast cancer cases. Detection rates on both modalities were evaluated. Tumors were analyzed on morphology, density (mammography), enhancement pattern and kinetics (MRI). Overall detection was significantly better with MRI than with mammography (55/58 vs 44/57, P = 0.021). On mammography, lesions in the BRCA-MC group were significantly more described as rounded (12//19 vs 3/13, P = 0.036) and with sharp margins (9/19 vs 1/13, P 0.024). On MRI lesions in the BRCA-MC group were significantly more described as rounded (16/27 vs 7/28, P = 0.010), with sharp margins (20/27 vs 7/28, P < 0.001) and with rim enhancement (7/27 vs 1/28, P = 0.025). No significant difference was found for enhancement kinetics (P = 0.667). Malignant lesions in BRCA-MC frequently have morphological characteristics commonly seen in benign lesions, like a rounded shape or sharp margins. This applies for both mammography and MRI. However the possibility of MRI to evaluate the enhancement pattern and kinetics enables the detection of characteristics suggestive for a malignancy. (orig.)

  13. Ovarian Cancer Susceptibility Alleles and Risk of Ovarian Cancer in BRCA1 and BRCA2 Mutation Carriers

    Science.gov (United States)

    Ramus, Susan J.; Antoniou, Antonis C; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E.; Aalfs, Cora M.; Meijers-Heijboer, Hanne E.J.; van Asperen, Christi J.; van Roozendaal, K.E.P.; Hoogerbrugge, Nicoline; Collée, J. Margriet; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Pathak, Harsh; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K.; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v. O.; Ejlertsen, Bent; Johannsson, Oskar Th.; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; Van Le, Linda; Hoffman, James S; Toland, Amanda Ewart; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Olah, Edith; Vaszko, Tibor; Teo, Soo-Hwang; Ganz, Patricia A.; Beattie, Mary S.; Dorfling, Cecelia M; van Rensburg, Elizabeth J; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D.P.; Gayther, Simon A.; Simard, Jacques; Easton, Douglas F.; Couch, Fergus J.; Chenevix-Trench, Georgia

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67–0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21–1.83) P-trend = 1.8 × 10−4, rs717852 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.6 × 10−4, rs9303542 HR = 1.16 (95% CI: 1.02–1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81–0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.1 × 10−4. The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer. PMID:22253144

  14. The Role of BRCA2 Mutation Status as Diagnostic, Predictive, and Prognosis Biomarker for Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Useros

    2016-01-01

    Full Text Available Pancreatic cancer is one of the deadliest cancers worldwide, and life expectancy after diagnosis is often short. Most pancreatic tumours appear sporadically and have been highly related to habits such as cigarette smoking, high alcohol intake, high carbohydrate, and sugar consumption. Other observational studies have suggested the association between pancreatic cancer and exposure to arsenic, lead, or cadmium. Aside from these factors, chronic pancreatitis and diabetes have also come to be considered as risk factors for these kinds of tumours. Studies have found that 10% of pancreatic cancer cases arise from an inherited syndrome related to some genetic alterations. One of these alterations includes mutation in BRCA2 gene. BRCA2 mutations impair DNA damage response and homologous recombination by direct regulation of RAD51. In light of these findings that link genetic factors to tumour development, DNA damage agents have been proposed as target therapies for pancreatic cancer patients carrying BRCA2 mutations. Some of these drugs include platinum-based agents and PARP inhibitors. However, the acquired resistance to PARP inhibitors has created a need for new chemotherapeutic strategies to target BRCA2. The present systematic review collects and analyses the role of BRCA2 alterations to be used in early diagnosis of an inherited syndrome associated with familiar cancer and as a prognostic and predictive biomarker for the management of pancreatic cancer patients.

  15. Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers:

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Rookus, Matti; Andrieu, Nadine

    2009-01-01

    carriers seemed to be greater among more recent users. Tubal ligation was associated with a reduced risk of ovarian cancer for BRCA1 carriers (hazard ratio, 0.42; 95% confidence intervals, 0.22-0.80; P = 0.008). The number of ovarian cancer cases in BRCA2 mutation carriers was too small to draw definitive...

  16. BRCA1 and BRCA2 germline mutation analysis among Indian ...

    Indian Academy of Sciences (India)

    Prakash

    specific association between BRCA1 or BRCA2 mutations with cancer type was seen, ... Materials and methods ..... KS is a Wellcome Trust International Senior Research .... of BRCA1/2 associated breast cancer: a systematic qualitative.

  17. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3

    NARCIS (Netherlands)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B; Pastinen, Tomi; Droit, Arnaud; Lemaçon, Audrey; Adlard, Julian; Aittomäki, Kristiina; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Azzollini, Jacopo; Bane, Anita; Barjhoux, Laure; Barrowdale, Daniel; Benitez, Javier; Berthet, Pascaline; Blok, Marinus J; Bobolis, Kristie; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caligo, Maria A; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; De la Hoya, Miguel; De Leeneer, Kim; Diez, Orland; Ding, Yuan Chun; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Eccles, Diana; Eeles, Ros; Einbeigi, Zakaria; Ejlertsen, Bent; Engel, Christoph; Gareth Evans, D; Feliubadalo, Lidia; Foretova, Lenka; Fostira, Florentia; Foulkes, William D; Fountzilas, George; Friedman, Eitan; Frost, Debra; Ganschow, Pamela; Ganz, Patricia A; Garber, Judy; Gayther, Simon A; Gerdes, Anne-Marie; Glendon, Gord; Godwin, Andrew K; Goldgar, David E; Greene, Mark H; Gronwald, Jacek; Hahnen, Eric; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Hays, John L; Hogervorst, Frans B L; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Joseph, Vijai; Just, Walter; Kaczmarek, Katarzyna; Karlan, Beth Y; Kets, Carolien M; Kirk, Judy; Kriege, Mieke; Laitman, Yael; Laurent, Maïté; Lazaro, Conxi; Leslie, Goska; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Loman, Niklas; Loud, Jennifer T; Manoukian, Siranoush; Mariani, Milena; Mazoyer, Sylvie; McGuffog, Lesley; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Miller, Austin; Montagna, Marco; Mulligan, Anna Marie; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nussbaum, Robert L; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Oosterwijk, Jan C; Osorio, Ana; Papi, Laura; Park, Sue Kyung; Pedersen, Inge Sokilde; Peissel, Bernard; Segura, Pedro Perez; Peterlongo, Paolo; Phelan, Catherine M; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C; Rookus, Matti A; Schmutzler, Rita Katharina; Sevenet, Nicolas; Shah, Payal D; Singer, Christian F; Slavin, Thomas P; Snape, Katie; Sokolowska, Johanna; Sønderstrup, Ida Marie Heeholm; Southey, Melissa; Spurdle, Amanda B; Stadler, Zsofia; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Tan, Yen; Tea, Muy-Kheng; Teixeira, Manuel R; Teulé, Alex; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tihomirova, Laima; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tung, Nadine; van den Ouweland, Ans M W; van der Luijt, Rob B; van Engelen, Klaartje; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wijnen, Juul T; Rebbeck, Timothy; Chenevix-Trench, Georgia; Offit, Kenneth; Couch, Fergus J; Nord, Silje; Easton, Douglas F; Antoniou, Antonis C; Simard, Jacques

    PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1

  18. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3

    NARCIS (Netherlands)

    Y. Hamdi (Yosr); Soucy, P. (Penny); Kuchenbaeker, K.B. (Karoline B.); Pastinen, T. (Tomi); A. Droit (Arnaud); Lemaçon, A. (Audrey); J.W. Adlard (Julian); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); A. Arason (Adalgeir); N. Arnold (Norbert); B.K. Arun (Banu); J. Azzollini; A.L. Bane (Anita L.); Barjhoux, L. (Laure); D. Barrowdale (Daniel); J. Benítez (Javier); P. Berthet (Pascaline); M.J. Blok (Marinus); K.A. Bobolis (Kristie A.); V. Bonadona (Valérie); B. Bonnani (Bernardo); Bradbury, A.R. (Angela R.); C. Brewer (Carole); B. Buecher (Bruno); Buys, S.S. (Saundra S.); M.A. Caligo (Maria); Chiquette, J. (Jocelyne); W. Chung (Wendy); K.B.M. Claes (Kathleen B.M.); Daly, M.B. (Mary B.); F. Damiola (Francesca); R. Davidson (Rosemarie); M. de La Hoya (Miguel); K. De Leeneer (Kim); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); D. Eccles (Diana); R. Eeles (Ros); Z. Einbeigi (Zakaria); B. Ejlertsen (Bent); EMBRACE; C. Engel (Christoph); Gareth Evans, D.; L. Feliubadaló (L.); L. Foretova (Lenka); F. Fostira (Florentia); Foulkes, W.D. (William D.); G. Fountzilas (George); E. Friedman (Eitan); D. Frost (Debra); P. Ganschow (Pamela); P.A. Ganz (Patricia A.); J. Garber (Judy); S.A. Gayther (Simon); GEMO Study Collaborators; A-M. Gerdes (Anne-Marie); G. Glendon (Gord); A.K. Godwin (Andrew K.); D. Goldgar (David); M.H. Greene (Mark H.); J. Gronwald (Jacek); E. Hahnen (Eric); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); J. Hays (John); HEBON; F.B.L. Hogervorst (Frans); P.J. Hulick (Peter); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); L. Izatt (Louise); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); V. Joseph (Vijai); Just, W. (Walter); Kaczmarek, K. (Katarzyna); Karlan, B.Y. (Beth Y.); KConFab Investigators; C.M. Kets; J. Kirk (Judy); Kriege, M. (Mieke); Y. Laitman (Yael); Laurent, M. (Maïté); C. Lazaro (Conxi); Leslie, G. (Goska); K.J. Lester (Kathryn); F. Lesueur (Fabienne); A. Liljegren (Annelie); N. Loman (Niklas); J.T. Loud (Jennifer); S. Manoukian (Siranoush); Mariani, M. (Milena); S. Mazoyer (Sylvie); L. McGuffog (Lesley); E.J. Meijers-Heijboer (Hanne); A. Meindl (Alfons); A. Miller (Austin); M. Montagna (Marco); A.-M. Mulligan (Anna-Marie); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); R.L. Nussbaum (Robert L.); Olah, E. (Edith); O.I. Olopade (Olufunmilayo I.); K.-R. Ong (Kai-Ren); J.C. Oosterwijk (Jan); A. Osorio (Ana); L. Papi (Laura); S.K. Park (Sue K.); Pedersen, I.S. (Inge Sokilde); B. Peissel (Bernard); P.P. Segura (Pedro Perez); P. Peterlongo (Paolo); C. Phelan (Catherine); P. Radice (Paolo); J. Rantala (Johanna); Rappaport-Fuerhauser, C. (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); G.C. Rodriguez (Gustavo); M.A. Rookus (Matti); R.K. Schmutzler (Rita); N. Sevenet (Nicolas); Shah, P.D. (Payal D.); C.F. Singer (Christian); Slavin, T.P. (Thomas P.); Snape, K. (Katie); J. Sokolowska (Johanna); Sønderstrup, I.M.H. (Ida Marie Heeholm); M.C. Southey (Melissa); A.B. Spurdle (Amanda); Stadler, Z. (Zsofia); D. Stoppa-Lyonnet (Dominique); G. Sukiennicki (Grzegorz); C. Sutter (Christian); Tan, Y. (Yen); M.-K. Tea; P.J. Teixeira; A. Teulé (A.); S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); M. Thomassen (Mads); L. Tihomirova (Laima); M. Tischkowitz (Marc); S. Tognazzo (Silvia); A.E. Toland (Amanda); N. Tung (Nadine); A.M.W. van den Ouweland (Ans); R.B. van der Luijt (Rob); K. van Engelen (Klaartje); E.J. van Rensburg (Elizabeth); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); J.T. Wijnen (Juul); R. Rebbeck (Timothy); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); Couch, F.J. (Fergus J.); S. Nord (Silje); D.F. Easton (Douglas F.); A.C. Antoniou (Antonis C.); Simard, J. (Jacques)

    2016-01-01

    textabstractPurpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility

  19. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  20. Pathology of ovarian cancers in BRCA1 and BRCA2 carriers

    NARCIS (Netherlands)

    Lakhani, Sunil R.; Manek, Sanjiv; Penault-Llorca, Frederique; Flanagan, Adrienne; Arnout, Laurent; Merrett, Samantha; McGuffog, Lesley; Steele, Dawn; Devilee, Peter; Klijn, Jan G. M.; Meijers-Heijboer, Hanne; Radice, Paolo; Pilotti, Silvana; Nevanlinna, Heli; Butzow, Ralf; Sobol, Hagay; Jacquemier, Jocylyne; Lyonet, Dominique Stoppa; Neuhausen, Susan L.; Weber, Barbara; Wagner, Teresa; Winqvist, Robert; Bignon, Yves-Jean; Monti, Franco; Schmitt, Fernando; Lenoir, Gilbert; Seitz, Susanne; Hamman, Ute; Pharoah, Paul; Lane, Geoff; Ponder, Bruce; Bishop, D. Timothy; Easton, Douglas F.

    2004-01-01

    Germline mutations in the BRCA1 and BRCA2 genes confer increased susceptibility to ovarian cancer. There is evidence that tumors in carriers may exhibit a distinct distribution of pathological features, but previous studies on the pathology of such tumors have been small. Our aim was to evaluate the

  1. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bolton, Kelly L; Chenevix-Trench, Georgia; Goh, Cindy

    2012-01-01

    Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear....

  2. Novel nonsense mutation of BRCA2 gene in a Moroccan man with ...

    African Journals Online (AJOL)

    Background: Breast cancer is the most common cancer in women worldwide. About 5 to 10% of cases are due to an inherited predisposition in two major genes, BRCA1 and BRCA2, transmitted as an autosomal dominant form. Male breast cancer is rare and is mainly due to BRCA2 than BRCA1 germline mutations.

  3. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  4. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ana Osorio

    2014-04-01

    Full Text Available Single Nucleotide Polymorphisms (SNPs in genes involved in the DNA Base Excision Repair (BER pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase, and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2 gene (HR: 1.09, 95% CI (1.03-1.16, p = 2.7 × 10(-3 for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3. DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  5. Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.

    Science.gov (United States)

    Bancroft, Elizabeth K; Saya, Sibel; Page, Elizabeth C; Myhill, Kathryn; Thomas, Sarah; Pope, Jennifer; Chamberlain, Anthony; Hart, Rachel; Glover, Wayne; Cook, Jackie; Rosario, Derek J; Helfand, Brian T; Hutten Selkirk, Christina; Davidson, Rosemarie; Longmuir, Mark; Eccles, Diana M; Gadea, Neus; Brewer, Carole; Barwell, Julian; Salinas, Monica; Greenhalgh, Lynn; Tischkowitz, Marc; Henderson, Alex; Evans, David Gareth; Buys, Saundra S; Eeles, Rosalind A; Aaronson, Neil K

    2018-05-26

    To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening. © 2018 The Authors BJU

  6. Understanding Endogenous c-Myc Function in Human Breast Cancer Development

    National Research Council Canada - National Science Library

    Xia, Bing

    2003-01-01

    My research is focused on BRCA2, whose mutation has been implicated in the development of breast, ovarian, prostate, pancreatic cancers and Fanconi anemia BRCA2 is an extremely large protein that is challenging% to study...

  7. Genetics of Breast and Gynecologic Cancers (PDQ®)—Health Professional Version

    Science.gov (United States)

    Genetics of Breast and Gynecologic Cancers includes information on BRCA1 and BRCA2 variants (breast and ovarian cancer) and Lynch syndrome (endometrial cancer). Get more information about hereditary breast and gynecologic cancer syndromes in this clinician summary.

  8. Hereditary breast and ovarian cancer

    DEFF Research Database (Denmark)

    Nielsen, Finn Cilius; Hansen, Thomas van Overeem; Sørensen, Claus Storgaard

    2016-01-01

    Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among...... of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making....

  9. LOS GENES BRCA1 y BRCA2. ESTUDIO MOLECULAR

    Directory of Open Access Journals (Sweden)

    N. Alonso

    2006-11-01

    Full Text Available RESUMENEn los últimos años, se realizaron numerosos estudios para establecer la predisposición hereditaria al cáncer y las alteraciones mutacionales a nivel de genes susceptibles de originar cáncer de mama y ovario. En 1994 se identificaron los genes BRCA1 (Breast Cancer Gene 1 y BRCA2 (Breast Cancer Gene 2 como susceptibles de cáncer de mama y ovario. En la actualidad se sabe que las mutaciones en BRCA1 y BRCA2 están lejos de explicar la totalidad de los casos de cáncer de mama y/o ovario, y a pesar de que se postulan alteraciones mutacionales en otros genes como CHEK2, TP53 y PTEN, el BRCA1 y BRCA2, siguen teniendo su importancia y utilidad en la valoración del riesgo de predisposición hereditaria. Aunque las cifras son variables según los distintos estudios y autores, se trata en cualquier caso de porcentajes importantes. Entre el 15 y el 85% de las mujeres portadoras de mutación BRCA 1 o BRCA 2 tienen riesgo de desarrollar un cáncer de mama y entre un 10 y 60% de desarrollar un cáncer de ovario. ABSTRACT:In the last years, numerous studies were made to establish the hereditary predisposition to the cancer and the mutationals alterations at level of genes susceptible to originate breast and ovarian cancers. In 1994 genes BRCA1 (Breast Cancer Gene 1 and BRCA2 were identified (Breast Cancer Gene 2 as susceptible of both of breast and ovarian cancers. At the present time, it is knows that the mutations in BRCA 1 and BRCA 2 are far from explaining the totality of the cases of breast cancer and/or ovary, and although mutationals alterations in other genes like CHEK2, TP53 and PTEN, the BRCA1 and BRCA2 are postulated, they continue having his importance and utility in the valuation of the risk of hereditary predisposition. Correlations between both BRCA1 and BRCA2 levels with tumour grade metastasis and prognostic accuracy. Between 15 and 85% of the carrying women of mutation BRCA 1 or BRCA 2 have risk of developing a cancer of breast

  10. BRCA1 and BRCA2 heterozygosity and repair of X-ray-induced DNA damage

    NARCIS (Netherlands)

    Nieuwenhuis, B.; Van Assen-Bolt, AJ; van Waarde-Verhagen, Maria; Sijmons, R.J.; van der Hout, A.H.; Bauch, T; Streffer, C; Kampinga, H.H.

    Purpose: Up to 90% of hereditary breast cancer cases are linked to germ-line mutations in one of the two copies of the BRCA1 or BRCA2 genes. Brca1 and Brca2 proteins are both involved in the cellular defence against DNA damage, although the precise function of the proteins is still not known. Some

  11. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  12. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Vigorito, E.; Kuchenbaecker, K.B.; Beesley, J.; Adlard, J.; Agnarsson, B.A.; Andrulis, I.L.; Arun, B.K.; Barjhoux, L.; Belotti, M.; Benitez, J.; Berger, A.; Bojesen, A.; Bonanni, B.; Brewer, C.; Caldes, T.; Caligo, M.A.; Campbell, I.; Chan, S.B.; Claes, K.B.; Cohn, D.E.; Cook, J.; Daly, M.B.; Damiola, F.; Davidson, R.; Pauw, A. de; Delnatte, C.; Diez, O.; Domchek, S.M.; Dumont, M.; Durda, K.; Dworniczak, B.; Easton, D.F.; Eccles, D.; Edwinsdotter Ardnor, C.; Eeles, R.; Ejlertsen, B.; Ellis, S.; Evans, D.G.; Feliubadalo, L.; Fostira, F.; Foulkes, W.D.; Friedman, E.; Frost, D.; Gaddam, P.; Ganz, P.A.; Garber, J.; Garcia-Barberan, V.; Gauthier-Villars, M.; Gehrig, A.; Gerdes, A.M.; Giraud, S.; Godwin, A.K.; Goldgar, D.E.; Hake, C.R.; Hansen, T.V.; Healey, S.; Hodgson, S.; Hogervorst, F.B.; Houdayer, C.; Hulick, P.J.; Imyanitov, E.N.; Isaacs, C.; Izatt, L.; Izquierdo, A.; Jacobs, L; Jakubowska, A.; Janavicius, R.; Jaworska-Bieniek, K.; Jensen, U.B.; John, E.M.; Vijai, J.; Karlan, B.Y.; Kast, K.; Khan, S.; Kwong, A.; Laitman, Y.; Lester, J.; Lesueur, F.; Liljegren, A.; Lubinski, J.; Mai, P.L.; Manoukian, S.; Mazoyer, S.; Meindl, A.; Mensenkamp, A.R.; Montagna, M.; Nathanson, K.L.; Neuhausen, S.L.; Nevanlinna, H.; Niederacher, D.; Olah, E.; Olopade, O.I.; Ong, K.R.; Osorio, A.; Park, S.K.; Paulsson-Karlsson, Y.; Pedersen, I.S.; Peissel, B.; Peterlongo, P.; et al.,

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2

  13. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  14. Germline mutation in BRCA1 or BRCA2 and ten-year survival for women diagnosed with epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Candido-dos-Reis, Francisco J; Song, Honglin; Goode, Ellen L

    2015-01-01

    greater than one at 4.8 years. For BRCA2, the HR was 0.42 at time zero and increased over time (predicted to become greater than 1 at 10.5 years). The results were similar when restricted to 3,202 patients with high-grade serous tumors and to ovarian cancer-specific mortality. CONCLUSIONS: BRCA1...

  15. Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    BRCA1 carriers, SNP rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele HR for ER-positive=1.35, 95%CI:1.17-1.56 vs HR=0.91, 95%CI:0.85-0.98 for ER-negative, P-heterogeneity=6.5e-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER...... subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers....

  16. IMPLICATION DE CERTAINES MUTATIONS DANS LES GENES BRCA1 ET BRCA2 SUR LA PRÉDISPOSITION AU CANCER DU SEIN ET AU CANCER OVARIEN

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2007-08-01

    Full Text Available Le cancer du sein, ainsi que celui ovarien, est une maladie fréquente chez les femmes, ayant un traitement assez difficile et, malheureusement, de sérieuses répercutions sur le physique ; c’est pourquoi il s’avère essentiel que la maladie soit dépistée dès les phases précoces. La prédisposition génétique est responsable de 5% des cancers et de 25% des cas apparus avant l’age de 30 ans [Breast Cancer Linkage Consortium, 1997]. Nous présentons ici l’implication des gènes suppresseurs des tumeurs BRCA1 et BRCA2 sur cette prédisposition.

  17. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer

    DEFF Research Database (Denmark)

    Hollestelle, Antoinette; van der Baan, Frederieke H; Berchuck, Andrew

    2015-01-01

    ,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). RESULTS: We found no association with risk of ovarian cancer (OR=0...

  18. Prophylactic procedures in women with gene mutations BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    Bella, V.

    2012-01-01

    Breast cancer is the most common oncologic disease in the female population. Besides the sporadic occurrence, it occurs in the familial or hereditary form. Genetic testing for mutation BRCA1 and BRCA2 helps to identify women, who are at increased risk of developing breast and ovarian cancer. Women with the hereditary form of breast cancer occurs in 5 -10%. Women with mutations BRCA1 and BRCA2 have to be classified to intensive dispensaration, and may consider several options for breast cancer prevention, as prophylactic mastectomy, prophylactic salpingo-oophorectomy or chemo prevention. (author)

  19. Psychological impact of receiving a BRCA1/BRCA2 test result

    NARCIS (Netherlands)

    Lodder, L.; Frets, P. G.; Trijsburg, R. W.; Meijers-Heijboer, E. J.; Klijn, J. G.; Duivenvoorden, H. J.; Tibben, A.; Wagner, A.; van der Meer, C. A.; van den Ouweland, A. M.; Niermeijer, M. F.

    2001-01-01

    Mutation analysis for autosomal dominant hereditary breast/ovarian cancer genes (BRCA1/BRCA2) became an important technique for women at risk of carrying these mutations. Healthy female mutation carriers have a high lifetime risk for breast and/or ovarian cancer and may opt for frequent breast and

  20. Surveillance of Women with the BRCA1 or BRCA2 Mutation by Using Biannual Automated Breast US, MR Imaging, and Mammography

    NARCIS (Netherlands)

    Zelst, J.C.M. van; Mus, R.D.M.; Woldringh, G.H.; Rutten, M.; Bult, P.; Vreemann, S.; Jong, M de; Karssemeijer, N.; Hoogerbrugge, N.; Mann, R.M.

    2017-01-01

    Purpose To evaluate a multimodal surveillance regimen including yearly full-field digital (FFD) mammography, dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging, and biannual automated breast (AB) ultrasonography (US) in women with BRCA1 and BRCA2 mutations. Materials and Methods

  1. BRCA1 and BRCA2 mutations in central and southern Italian patients

    International Nuclear Information System (INIS)

    Ottini, Laura; Carlini, Sandro; Guadagni, Fiorella; Bianco, Angelo Raffaele; Frati, Luigi; Contegiacomo, Alma; Mariani-Costantini, Renato; D'Amico, Cristina; Noviello, Cristiana; Lauro, Salvatore; Lalle, Maurizio; Fornarini, Giuseppe; Colantuoni, Orsola Anna; Pizzi, Claudia; Cortesi, Enrico

    2000-01-01

    Protein truncation test (PTT) and single-strand conformation polymorphism (SSCP) assay were used to scan the BRCA1 and BRCA2 genes in 136 unrelated Italian breast/ovarian cancer patients. In the sample tested, BRCA1 and BRCA2 equally contributed to site-specific breast cancer patients who reported one to two breast cancer-affected first-/ second-degree relative(s) or who were diagnosed before age 40 years in the absence of a family history of breast/ovarian cancer. BRCA1 and BRCA2 mutations were mostly found in patients with disease diagnosis before and after age 50 years, respectively. Moreover, in cases with familial clustering of site-specific breast cancer, BRCA1 mostly accounted for tumours diagnosed before age 40 years and BRCA2 for tumours diagnosed after age 50 years. The BRCA1 and BRCA2 mutation spectrum was consistent with a lack of significant founder effects in the sample of patients studied. Germline BRCA1 and BRCA2 mutations account for most hereditary breast/ovarian cancers and are associated with male breast cancer. Furthermore, constitutional mutations in these genes may occur in breast/ovarian cancer patients that do not meet stringent criteria of autosomal-dominant predisposition. The relevance of BRCA1 and BRCA2 mutations in such patients is still debated. We sought to determine the impact of BRCA1 and BRCA2 mutations in a population of patients from central and southern Italy. We analyzed the BRCA1 and BRCA2 coding regions in 136 unrelated probands: 117 females with breast/ovarian cancer and 19 males with breast cancer. This population of patients was mostly representative of cases who are at risk for hereditary susceptibility, but who do not meet stringent criteria of autosomal-dominant predisposition. Probands, subclassified as follows, were consecutively recruited depending on informed consent from patients attending breast cancer clinics in Rome and Naples. Selection criteria for females were as follows: breast cancer with breast cancer

  2. Roles of brca2 (fancd1 in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2011-03-01

    Full Text Available Mild mutations in BRCA2 (FANCD1 cause Fanconi anemia (FA when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53 rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.

  3. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study

    DEFF Research Database (Denmark)

    Mitra, Anita V; Bancroft, Elizabeth K; Barbachano, Yolanda

    2011-01-01

    mutations were offered annual prostate specific antigen (PSA) testing, and those with PSA >3 ng/mL, were offered a prostate biopsy. Controls were men age-matched (± 5 years) who were negative for the familial mutation. RESULTS: In total, 300 men were recruited (205 mutation carriers; 89 BRCA1, 116 BRCA2......Study Type - Diagnostic (validating cohort)
Level of Evidence 1b OBJECTIVES: To evaluate the role of targeted prostate cancer screening in men with BRCA1 or BRCA2 mutations, an international study, IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening...... in BRCA1/2 mutation carriers and controls), was established. This is the first multicentre screening study targeted at men with a known genetic predisposition to prostate cancer. A preliminary analysis of the data is reported. MATERIALS AND METHODS: Men aged 40-69 years from families with BRCA1 or BRCA2...

  4. BRCA1 and BRCA2 protein expressions in an ovotestis of a 46, XX true hermaphrodite

    International Nuclear Information System (INIS)

    Bernard-Gallon, Dominique J; Déchelotte, Pierre; Vissac, Cécile; Aunoble, Bénédicte; Cravello, Laetitia; Malpuech, Georges; Bignon, Yves-Jean

    2001-01-01

    BRCA1 and BRCA2 breast cancer susceptibility genes encode proteins, the normal cellular functions of which are complex and multiple, and germ-line mutations in individuals predispose both to breast and to ovarian cancer. There is nevertheless substantial evidence linking BRCA1 and BRCA2 to homologous recombination and DNA repair, to transcriptional control and to tissue proliferation. There is controversy regarding the localization of BRCA1 and BRCA2 proteins to either nucleus or cytoplasm and whether the expression is present in premeiotic germ cells or can still be expressed in mitotic spermatogonia. We report herein an immunohistochemical study of BRCA1 and BRCA2 distribution in a rather unsual tissue (an ovotestis), which addresses this issue

  5. Low frequency of large genomic rearrangements of BRCA1 and BRCA2 in western Denmark

    DEFF Research Database (Denmark)

    Thomassen, Mads; Gerdes, Anne-Marie; Cruger, Dorthe

    2006-01-01

    Germline mutations in BRCA1 and BRCA2 predispose female carriers to breast and ovarian cancer. The majority of mutations identified are small deletions or insertions or are nonsense mutations. Large genomic rearrangements in BRCA1 are found with varying frequencies in different populations......, but BRCA2 rearrangements have not been investigated thoroughly. The objective in this study was to determine the frequency of large genomic rearrangements in BRCA1 and BRCA2 in a large group of Danish families with increased risk of breast and ovarian cancer. A total of 617 families previously tested...... negative for mutations involving few bases were screened with multiplex ligation-dependent probe amplification (MLPA). Two deletions in BRCA1 were identified in three families; no large rearrangements were detected in BRCA2. The large deletions constitute 3.8% of the BRCA1 mutations identified, which...

  6. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2...... mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively...... of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest...

  7. Prevention of breast cancer.

    Science.gov (United States)

    Olver, Ian N

    2016-11-21

    Modifiable lifestyle factors may reduce the risk of developing breast cancer. Obesity is associated particularly with post-menopausal breast cancer. Diet is important, and exercise equivalent to running for up to 8 hours each week reduces the risk of breast cancer, both in its own right and through reducing obesity. Alcohol consumption may be responsible for 5.8% of breast cancers in Australia and it is recommended to reduce this to two standard drinks per day. Drinking alcohol and smoking increases the risk for breast cancer and, therefore, it is important to quit tobacco smoking. Prolonged use of combined oestrogen and progesterone hormone replacement therapy and oral contraceptives may increase breast cancer risk and this must be factored into individual decisions about their use. Ionising radiation, either from diagnostic or therapeutic radiation or through occupational exposure, is associated with a high incidence of breast cancer and exposure may be reduced in some cases. Tamoxifen chemoprevention may reduce the incidence of oestrogen receptor positive cancer in 51% of women with high risk of breast cancer. Uncommon but serious side effects include thromboembolism and uterine cancer. Raloxifene, which can also reduce osteoporosis, can be used in post-menopausal women and is not associated with the development of uterine cancer. Surgical prophylaxis with bilateral mastectomy and salpingo-oophorectomy can reduce the risk of breast cancer in patients carrying BRCA1 or BRCA2 mutations. For preventive treatments, mammographic screening can identify other women at high risk.

  8. Smoking and physical inactivity increase cancer prevalence in BRCA-1 and BRCA-2 mutation carriers: results from a retrospective observational analysis.

    Science.gov (United States)

    Grill, Sabine; Yahiaoui-Doktor, Maryam; Dukatz, Ricarda; Lammert, Jacqueline; Ullrich, Mirjam; Engel, Christoph; Pfeifer, Katharina; Basrai, Maryam; Siniatchkin, Michael; Schmidt, Thorsten; Weisser, Burkhard; Rhiem, Kerstin; Ditsch, Nina; Schmutzler, Rita; Bischoff, Stephan C; Halle, Martin; Kiechle, Marion

    2017-12-01

    The aim of this analysis in a pilot study population was to investigate whether we can verify seemingly harmful lifestyle factors such as nicotine and alcohol indulgence, obesity, and physical inactivity, as well as a low socioeconomic status for increased cancer prevalence in a cohort of BRCA 1 and 2 mutation carriers. The analysis data are derived from 68 participants of the lifestyle intervention study LIBRE-1, a randomized, prospective trial that aimed to test the feasibility of a lifestyle modification in BRCA 1 and 2 mutation carriers. At study entry, factors such as medical history, lifestyle behavior, and socioeconomic status were retrospectively documented by interview and the current BMI was determined by clinical examination. The baseline measurements were compared within the cohort, and presented alongside reference values for the German population. Study participants indicating a higher physical activity during their adolescence showed a significantly lower cancer prevalence (p = 0.019). A significant difference in cancer occurrence was observed in those who smoked prior to the disease, and those who did not smoke (p physical activity level than diseased mutation carriers (p = 0.046). The present data in this small cohort of 68 mutation carriers suggest that smoking and low physical activity during adolescence are risk factors for developing breast cancer in women with BRCA1 or BRCA2 mutation. Further data of the ongoing LIBRE 2 study are necessary to confirm these findings in a larger cohort of 600 mutation carriers.

  9. Refined histopathological predictors of BRCA1 and BRCA2 mutation status

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Couch, Fergus J; Parsons, Michael T

    2014-01-01

    INTRODUCTION: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess...... pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation...... status, and provide robust likelihood ratio (LR) estimates for statistical modeling. METHODS: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation...

  10. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation...... to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary...... or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events...

  11. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    Directory of Open Access Journals (Sweden)

    Elena Vigorito

    Full Text Available Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases BRCA1 and 8,211 (631 ovarian cancer cases BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16. These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6. The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  12. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype

    NARCIS (Netherlands)

    Lakhani, Sunil R.; Reis-Filho, Jorge S.; Fulford, Laura; Penault-Llorca, Frederique; van der Vijver, Marc; Parry, Suzanne; Bishop, Timothy; Benitez, Javier; Rivas, Carmen; Bignon, Yves-Jean; Chang-Claude, Jenny; Hamann, Ute; Cornelisse, Cees J.; Devilee, Peter; Beckmann, Matthias W.; Nestle-Krämling, Carolin; Daly, Peter A.; Haites, Neva; Varley, Jenny; Lalloo, Fiona; Evans, Gareth; Maugard, Christine; Meijers-Heijboer, Hanne; Klijn, Jan G. M.; Olah, Edith; Gusterson, Barry A.; Pilotti, Silvana; Radice, Paolo; Scherneck, Siegfried; Sobol, Hagay; Jacquemier, Jocelyne; Wagner, Teresa; Peto, Julian; Stratton, Michael R.; McGuffog, Lesley; Easton, Douglas F.

    2005-01-01

    To investigate the proportion of breast cancers arising in patients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and

  13. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of th...

  14. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    A. Osorio (Ana); R.L. Milne (Roger); K.B. Kuchenbaecker (Karoline); T. Vaclová (Tereza); G. Pita (Guillermo); R. Alonso (Rosario); P. Peterlongo (Paolo); I. Blanco (Ignacio); M. de La Hoya (Miguel); M. Durán (Mercedes); O. Díez (Orland); T. Ramon Y Cajal; I. Konstantopoulou (I.); C. Martínez-Bouzas (Cristina); R. Andrés Conejero (Raquel); P. Soucy (Penny); L. McGuffog (Lesley); D. Barrowdale (Daniel); A. Lee (Andrew); B. Arver (Brita Wasteson); J. Rantala (Johanna); N. Loman (Niklas); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); M.S. Beattie (Mary); S.M. Domchek (Susan); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); B.K. Arun (Banu); B.Y. Karlan (Beth); C.S. Walsh (Christine); K.J. Lester (Kathryn); E.M. John (Esther); A.S. Whittemore (Alice); M.B. Daly (Mary); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); J. Infante (Jon); B. Herráez (Belén); L.T. Moreno (Leticia Thais); J.N. Weitzel (Jeffrey); J. Herzog (Josef); K. Weeman (Kisa); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); B. Bonnani (Bernardo); F. Mariette (F.); S. Volorio (Sara); A. Viel (Alessandra); L. Varesco (Liliana); L. Papi (Laura); L. Ottini (Laura); M.G. Tibiletti (Maria Grazia); P. Radice (Paolo); D. Yannoukakos (Drakoulis); J. Garber; S.D. Ellis (Steve); D. Frost (Debra); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); F. Lalloo (Fiona); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); T.J. Cole (Trevor); D. Eccles (Diana); J. Cook (Jackie); S.V. Hodgson (Shirley); C. Brewer (Carole); M. Tischkowitz (Marc); F. Douglas (Fiona); M.E. Porteous (Mary); L. Side (Lucy); L.J. Walker (Lisa); P.J. Morrison (Patrick); A. Donaldson (Alan); J. Kennedy (John); C. Foo (Claire); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); K. Rhiem (Kerstin); C.W. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); S. Wang-Gohrke (Shan); D. Steinemann (Doris); S. Preisler-Adams (Sabine); K. Kast (Karin); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); D. Stoppa-Lyonnet (Dominique); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); F. Damiola (Francesca); B. Poppe (Bruce); K. Claes (Kathleen); M. Piedmonte (Marion); K. Tucker (Kathryn); F.J. Backes (Floor); P.M. Rodríguez; W. Brewster (Wendy); K. Wakeley (Katie); T. Rutherford (Thomas); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M.A. Rookus (Matti); T.A.M. van Os (Theo); L. van der Kolk (Lizet); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); C.J. van Asperen (Christi); E.B. Gómez García (Encarna); N. Hoogerbrugge (Nicoline); J.M. Collée (Margriet); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); P. Devilee (Peter); E. Olah (Edith); C. Lazaro (Conxi); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); C. Cybulski (Cezary); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); O.T. Johannson (Oskar); C. Maugard; M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; S. Healey (Sue); C. Olswold (Curtis); L. Guidugli (Lucia); N.M. Lindor (Noralane); S. Slager (Susan); C. Szabo (Csilla); J. Vijai (Joseph); M. Robson (Mark); N. Kauff (Noah); L. Zhang (Lingling); R. Rau-Murthy (Rohini); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D. Geschwantler Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; A. Berger (Annemarie); C. Phelan (Catherine); M.H. Greene (Mark); P.L. Mai (Phuong); F. Lejbkowicz (Flavio); I.L. Andrulis (Irene); A.M. Mulligan (Anna Marie); G. Glendon (Gord); A.E. Toland (Amanda); S.E. Bojesen (Stig); I.S. Pedersen (Inge Sokilde); L. Sunde (Lone); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; E. Friedman (Eitan); Y. Laitman (Yael); S.P. Shimon (Shani Paluch); J. Simard (Jacques); D.F. Easton (Douglas); K. Offit (Kenneth); F.J. Couch (Fergus); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); J. Benítez (Javier)

    2014-01-01

    textabstractSingle Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between

  15. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Osorio, A.; Milne, R.L.; Kuchenbaecker, K.; Vaclova, T.; Pita, G.; Alonso, R.; Peterlongo, P.; Blanco, I.; Hoya, M. de la; Duran, M.; Diez, O.; Ramon, Y.C.T.; Konstantopoulou, I.; Martinez-Bouzas, C.; Conejero, R. Andres; Soucy, P.; McGuffog, L.; Barrowdale, D.; Lee, A.; Swe, B.; Arver, B.; Rantala, J.; Loman, N.; Ehrencrona, H.; Olopade, O.I.; Beattie, M.S.; Domchek, S.M.; Nathanson, K.; Rebbeck, T.R.; Arun, B.K.; Karlan, B.Y.; Walsh, C.; Lester, J.; John, E.M.; Whittemore, A.S.; Daly, M.B.; Southey, M.; Hopper, J.; Terry, M.B.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Steele, L.; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Ejlertsen, B.; Gerdes, A.M.; Infante, M.; Herraez, B.; Moreno, L.T.; Weitzel, J.N.; Herzog, J.; Weeman, K.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Bonanni, B.; Mariette, F.; Volorio, S.; Viel, A.; Varesco, L.; Papi, L.; Ottini, L.; Tibiletti, M.G.; Radice, P.; Yannoukakos, D.; Garber, J.; Ellis, S.; Frost, D.; Platte, R.; Fineberg, E.; Evans, G.; Lalloo, F.; Izatt, L.; Eeles, R.; Adlard, J.; Davidson, R.; Cole, T.; Eccles, D.; Cook, J; Hodgson, S.; Brewer, C.; Tischkowitz, M.; Douglas, F.; Porteous, M.; Side, L.; Walker, L.; Morrison, P.; Donaldson, A.; Kennedy, J.; Foo, C.; Godwin, A.K.; Schmutzler, R.K.; Wappenschmidt, B.; Rhiem, K.; Engel, C.; Hoogerbrugge-van der Linden, N.; et al.,

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the

  16. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1.

    Science.gov (United States)

    Hussain, Shobbir; Witt, Emily; Huber, Pia A J; Medhurst, Annette L; Ashworth, Alan; Mathew, Christopher G

    2003-10-01

    Fanconi anaemia (FA) is an autosomal recessive genetic disorder characterized by progressive bone marrow failure, multiple congenital abnormalities, and an increased risk of cancer. FA cells are characterized by chromosomal instability and hypersensitivity to DNA interstrand crosslinking agents. At least eight complementation groups exist (FA-A to G), and the genes for all of these except FA-B have been cloned. Functional linkage between the FA pathway and genes involved in susceptibility to breast cancer has been demonstrated by the interaction of the FANCA and FANCD2 proteins with BRCA1, and the discovery that the FANCD1 gene is identical to BRCA2. Here we have used the yeast two-hybrid system to test for direct interaction between BRCA2 or its effector RAD51 and the FANCA, FANCC and FANCG proteins. We found that FANCG was capable of binding to two separate sites in the BRCA2 protein, located either side of the BRC repeats. Furthermore, FANCG could be co-immunoprecipitated with BRCA2 from human cells, and FANCG co-localized in nuclear foci with both BRCA2 and RAD51 following DNA damage with mitomycin C. These results demonstrate that BRCA2 is directly connected to a pathway that is deficient in interstrand crosslink repair, and that at least one other FA protein is closely associated with the homologous recombination DNA repair machinery.

  17. Hereditary forms of breast cancer

    International Nuclear Information System (INIS)

    Bella, V.

    2009-01-01

    Breast cancer is the most common oncologic disease in the female population. Besides the sporadic occurrence it occurs in the familial and hereditary form. Persons with the occurrence of positive family anamnesis of breast cancer should be actively investigated. In the indicated cases it is necessary to send the woman to genetic examination. In case that the hereditary form of breast cancer is affirmed it is necessary to examine her family relatives. Women with the hereditary form of breast cancer occur in about 5 – 10 % portion from all women diagnosed with breast cancer. Nowadays we already know that 80 % of hereditary breast cancers are due to germ mutations in BRCA 1 and BRCA 2 gene. Persons with detected gene mutations must be dispensarized in the centres intended for it. (author)

  18. Hereditary breast cancer

    DEFF Research Database (Denmark)

    Larsen, Martin J; Thomassen, Mads; Gerdes, Anne-Marie

    2014-01-01

    Pathogenic mutations in BRCA1 or BRCA2 are only detected in 25% of families with a strong history of breast cancer, though hereditary factors are expected to be involved in the remaining families with no recognized mutation. Molecular characterization is expected to provide new insight...... into the tumor biology to guide the search of new high-risk alleles and provide better classification of the growing number of BRCA1/2 variants of unknown significance (VUS). In this review, we provide an overview of hereditary breast cancer, its genetic background, and clinical implications, before focusing...... on the pathologically and molecular features associated with the disease. Recent transcriptome and genome profiling studies of tumor series from BRCA1/2 mutation carriers as well as familial non-BRCA1/2 will be discussed. Special attention is paid to its association with molecular breast cancer subtypes as well...

  19. Brca2 C-terminus interacts with Rad51 and contributes to nuclear forcus formation in double-strand break repair of DNA

    International Nuclear Information System (INIS)

    Ochiai, Kazuhiko; Morimatsu, Masami; Yoshikawa, Yasunaga; Syuto, Bunei; Hashizume, Kazuyoshi

    2004-01-01

    In humans and mice, the interaction between the breast cancer susceptibility protein, Brca2, and Rad51 recombinase is essential for DNA repair by homologous recombination, the failure of this process can predispose to cancer. Cells with mutated Brca2 are hypersensitive to ionizing radiation (IR) and exhibit defective DNA repair. Using yeast and mammalian two-hybrid assays, we demonstrate that canine Rad51 protein interacts specifically with the C-terminus of canine Brca2. In support of the biological significance of this interaction, we found that radiation-induced focus formation of Rad51 in COS-7 cells was compromised by forced expression of the C-terminus of canine Brca2. A similar result was obtained for the murine C-terminus. These data suggest that the C-terminal domain of canine Brca2 functions to bind Rad51 and that this domain contributes to the IR-induced assembly of the Rad51 complex in vivo. (author)

  20. Prostate Cancer

    Science.gov (United States)

    ... breast cancer (BRCA1 or BRCA2) or a very strong family history of breast cancer, your risk of prostate cancer may be higher. Obesity. Obese men diagnosed with prostate cancer may be more likely ...

  1. Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Im, Kate M.; Kirchhoff, Tomas; Wang, Xianshu; Green, Todd; Chow, Clement Y.; Vijai, Joseph; Korn, Joshua; Gaudet, Mia M.; Fredericksen, Zachary; Shane Pankratz, V.; Guiducci, Candace; Crenshaw, Andrew; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Mai, Phuong L.; Greene, Mark H.; Piedmonte, Marion; Rubinstein, Wendy S.; Hogervorst, Frans B.; Rookus, Matti A.; Collée, J. Margriet; Hoogerbrugge, Nicoline; van Asperen, Christi J.; Meijers-Heijboer, Hanne E. J.; van Roozendaal, Cees E.; Caldes, Trinidad; Perez-Segura, Pedro; Jakubowska, Anna; Lubinski, Jan; Huzarski, Tomasz; Blecharz, Paweł; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Barkardottir, Rosa B.; Montagna, Marco; D'Andrea, Emma; Devilee, Peter; Olopade, Olufunmilayo I.; Neuhausen, Susan L.; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Singer, Christian F.; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda Ewart; Caligo, Maria Adelaide; Beattie, Mary S.; Chan, Salina; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Phelan, Catherine; Narod, Steven; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary-Beth; Tung, Nadine; Hansen, Thomas V. O.; Osorio, Ana; Benitez, Javier; Durán, Mercedes; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare T.; Frost, Debra; Platte, Radka; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Paterson, Joan; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Laitman, Yael; Meindl, Alfons; Deissler, Helmut; Varon-Mateeva, Raymonda; Preisler-Adams, Sabine; Kast, Karin; Venat-Bouvet, Laurence; Stoppa-Lyonnet, Dominique; Chenevix-Trench, Georgia; Easton, Douglas F.; Klein, Robert J.; Daly, Mark J.; Friedman, Eitan; Dean, Michael; Clark, Andrew G.; Altshuler, David M.; Antoniou, Antonis C.; Couch, Fergus J.; Offit, Kenneth; Gold, Bert; Gauthier-Villars, Marion; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Longy, Michel; Sevenet, Nicolas; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Cassini, Cécile; Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Frénay, Marc; Vénat-Bouvet, Laurence; Lynch, Henry T.; Thorne, Heather; Niedermayr, Eveline; Pierotti, Marco; Manoukian, Siranoush; Zaffaroni, Daniela; Ripamonti, Carla B.; Radice, Paolo; Barile, Monica; Bernard, Loris; Karlsson, Per; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Liedgren, Sigrun; Borg, Åke; Loman, Niklas; Olsson, Håkan; Kristoffersson, Ulf; Jernström, Helena; Harbst, Katja; Henriksson, Karin; Lindblom, Annika; Arver, Brita; von Wachenfeldt, Anna; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Melin, Beatrice; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Brandell, Richard Rosenquist; Dahl, Niklas; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van 't Veer, L. J.; van Leeuwen, F. E.; Rookus, M. A.; Collée, M.; van den Ouweland, A. M. W.; Jager, A.; Hooning, M. J.; Tilanus-Linthorst, M. M. A.; Seynaeve, C.; van Asperen, C. J.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; van der Luijt, R. B.; Aalfs, C. M.; van Os, T. A.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; Ong, Kai-Ren; Hoffman, Jonathan; Donaldson, Alan; James, Margaret; Downing, Sarah; Taylor, Amy; Murray, Alexandra; McCann, Emma; Kennedy, M. John; Barton, David; Drummond, Sarah; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Davidson, Rosemarie; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Jacobs, Chris; Langman, Caroline; Whaite, Anna; Dorkins, Huw; Randhawa, Kashmir; Barwell, Julian; Patel, Nafisa; Adlard, Julian; Chu, Carol; Miller, Julie; Ellis, Ian; Houghton, Catherine; Lalloo, Fiona; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Douglas, Fiona; Claber, Oonagh; Jobson, Irene; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah

    2011-01-01

    Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele

  2. An international survey of surveillance schemes for unaffected BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Madorsky-Feldman, Dana; Sklair-Levy, Miri; Perri, Tamar

    2016-01-01

    Female BRCA1/BRCA2 mutation carriers are at substantially increased risk for developing breast and/or ovarian cancer, and are offered enhanced surveillance including screening from a young age and risk-reducing surgery (RRS)-mastectomy (RRM) and/or salpingo-oophorectomy (RRSO). While there are es...

  3. Rapid genetic counseling and testing in newly diagnosed breast cancer : Surgical and psychosocial implications

    NARCIS (Netherlands)

    Wevers, M.R.

    2018-01-01

    Genetic counseling and testing for breast cancer have traditionally been offered to eligible patients after completion of their primary treatment. Women with hereditary breast cancer, caused by a germline mutation in the BRCA1 or BRCA2 gene, have an increased risk of contralateral breast cancer and

  4. The pathology of familial breast cancer: Morphological aspects

    International Nuclear Information System (INIS)

    Lakhani, Sunil R

    1999-01-01

    A small proportion of breast cancers are due to a heritable predisposition. Recently, two predisposition genes, BRCA1 and BRCA2, have been identified and cloned. The morphological features of tumours from patients harbouring mutations in the BRCA1 and BRCA2 genes differ from each other and from sporadic breast cancers. Both are of higher grade than are sporadic cases. An excess of medullary/atypical medullary carcinoma has been reported in patients with BRCA1 mutations. Multifactorial analysis, however, shows that the only features independently associated with BRCA1 mutations are a high mitotic count, pushing tumour margins and a lymphocytic infiltrate. For BRCA2 mutation, an association with tubular/lobular carcinoma has been suggested, but not substantiated in a larger Breast Cancer Linkage Consortium study. In multifactorial analysis, the independent features were a lack of tubule formation and pushing tumour margins only. The morphological analysis has implications for clinical management of patients

  5. Exome mutation burden predicts clinical outcome in ovarian cancer carrying mutated BRCA1 and BRCA2 genes

    DEFF Research Database (Denmark)

    Birkbak, Nicolai Juul; Kochupurakkal, Bose; Gonzalez-Izarzugaza, Jose Maria

    2013-01-01

    drugs and relative to non-mutation carriers present a favorable clinical outcome following therapy. Genome sequencing studies have shown a high number of mutations in the tumor genome in patients carrying BRCA1 or BRCA2 mutations (mBRCA). The present study used exome-sequencing and SNP 6 array data...... between low Nmut and shorter PFS and OS in mBRCA HGSOC by Cox regression and Kaplan-Meier analyses. The association was also significant when the analysis was limited to germline BRCA1 or BRCA2 mutated patients with SNP array-determined loss of heterozygosity of the BRCA1 or BRCA2 locus in the tumors....... In the mBRCA HGSOC tumors, Nmut was correlated with the genome fraction with loss of heterozygosity and with number of telomeric allelic imbalance, genomic measures evaluating chromosomal instability. However, no significant association between Nmut and PFS or OS was found in HGSOC carrying wild-type BRCA1...

  6. Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer

    Science.gov (United States)

    2014-07-01

    Columbia, Vancouver, British Columbia V6K 2P5, Canada 9Institute of Biomembranes and Bioenergetics, National Research Council (C.N.R.), Bari, Italy ...Jacquotte A, Polsky D, Ferrara J, Perez-Soler R, Cordon-Cardo C, Pagano M and Osman I. Altered expression of p27 and Skp2 proteins in prostate cancer of

  7. A BRCA2 mutation incorrectly mapped in the original BRCA2 reference sequence, is a common West Danish founder mutation disrupting mRNA splicing

    DEFF Research Database (Denmark)

    Thomassen, Mads; Pedersen, Inge Søkilde; Vogel, Ida

    2011-01-01

    Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose carriers to breast and ovarian cancer. The authors have identified a mutation in BRCA2, 7845+1G>A (c.7617+1G>A), not previously regarded as deleterious because of incorrect mapping of the splice junction in the originally...... published genomic reference sequence. This reference sequence is generally used in many laboratories and it maps the mutation 16 base pairs inside intron 15. However, according to the recent reference sequences the mutation is located in the consensus donor splice sequence. By reverse transcriptase analysis......, loss of exon 15 in the final transcript interrupting the open reading frame was demonstrated. Furthermore, the mutation segregates with a cancer phenotype in 18 Danish families. By genetic analysis of more than 3,500 Danish breast/ovarian cancer risk families, the mutation was identified as the most...

  8. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  9. Molecular genetics of breast cancer

    International Nuclear Information System (INIS)

    Radice, P.; Pierotti, M. A.

    1997-01-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention

  10. Presymptomatic testing for BRCA1 and BRCA2: how distressing are the pre-test weeks? Rotterdam/Leiden Genetics Working Group

    NARCIS (Netherlands)

    L.N. Lodder; P. Devilee (Peter); M.F. Niermeijer (Martinus); C.J. Cornelisse (Cees); P.G. Frets; R.W. Trijsburg (Wim); E.J. Meijers-Heijboer (Hanne); J.G.M. Klijn (Jan); H.J. Duivenvoorden (Hugo); A. Tibben (Arend); A. Wagner (Anja); C.A. van der Meer

    1999-01-01

    textabstractPresymptomatic DNA testing for autosomal dominant hereditary breast/ovarian cancer (HBOC) became an option after the identification of the BRCA1 and BRCA2 genes in 1994-1995. Healthy female mutation carriers have a high lifetime risk for breast cancer

  11. Higher occurrence of childhood cancer in families with germline mutations in BRCA2, MMR and CDKN2A genes

    DEFF Research Database (Denmark)

    Magnusson, S.; Borg, A.; Kristoffersson, U.

    2008-01-01

    The contribution of hereditary factors for development of childhood tumors is limited to some few known syndromes associated with predominance of tumors in childhood. Occurrence of childhood tumors in hereditary cancer syndromes such as BRCA1/2 associated breast and ovarian cancer, DNA-mismatch r......-mismatch repair (MMR) genes associated hereditary non polyposis colorectal cancer and CDKN2A associated familial malignant melanoma are very little studied. Herein we report the prevalence of childhood tumors (diagnosed...

  12. Treatment of infertility does not increase the risk of ovarian cancer among women with a BRCA1 or BRCA2 mutation.

    Science.gov (United States)

    Gronwald, Jacek; Glass, Karen; Rosen, Barry; Karlan, Beth; Tung, Nadine; Neuhausen, Susan L; Moller, Pal; Ainsworth, Peter; Sun, Ping; Narod, Steven A; Lubinski, Jan; Kotsopoulos, Joanne

    2016-03-01

    To evaluate the relationship between use of fertility medication (i.e., selective estrogen receptor [ER] modulator, gonadotropin, or other) or infertility treatment (i.e., IVF or IUI) and the risk of ovarian cancer among women with a BRCA1 or BRCA2 mutation. A matched case-control study of 941 pairs of BRCA1 or BRCA2 mutation carriers with and without a diagnosis of ovarian cancer. Genetic clinics. Detailed information regarding treatment of infertility was collected from a routinely administered questionnaire. None. Conditional logistic regression was used to estimate odds ratios and 95% confidence intervals associated with fertility treatment. There was no significant relationship between the use of any fertility medication or IVF treatment (odds ratio, 0.66; 95% confidence interval 0.18-2.33) and the subsequent risk of ovarian cancer. Our findings suggest that treatment for infertility does not significantly increase the risk of ovarian cancer among women with a BRCA mutation. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.

  13. Hereditary breast cancer: from molecular pathology to tailored therapies.

    Science.gov (United States)

    Tan, D S P; Marchiò, C; Reis-Filho, J S

    2008-10-01

    Hereditary breast cancer accounts for up to 5-10% of all breast carcinomas. Recent studies have demonstrated that mutations in two high-penetrance genes, namely BRCA1 and BRCA2, are responsible for about 16% of the familial risk of breast cancer. Even though subsequent studies have failed to find another high-penetrance breast cancer susceptibility gene, several genes that confer a moderate to low risk of breast cancer development have been identified; moreover, hereditary breast cancer can be part of multiple cancer syndromes. In this review we will focus on the hereditary breast carcinomas caused by mutations in BRCA1, BRCA2, Fanconi anaemia (FANC) genes, CHK2 and ATM tumour suppressor genes. We describe the hallmark histological features of these carcinomas compared with non-hereditary breast cancers and show how an accurate histopathological diagnosis may help improve the identification of patients to be screened for mutations. Finally, novel therapeutic approaches to treat patients with BRCA1 and BRCA2 germ line mutations, including cross-linking agents and PARP inhibitors, are discussed.

  14. Breast cancer

    Science.gov (United States)

    ... can help you know how to prevent breast cancer. Breast implants, using antiperspirants, and wearing underwire bras do not increase the risk for breast cancer. There is also no evidence of a direct ...

  15. Bexarotene in Preventing Breast Cancer in Patients at High Risk for Breast Cancer

    Science.gov (United States)

    2018-03-02

    Atypical Ductal Breast Hyperplasia; Atypical Lobular Breast Hyperplasia; BRCA1 Gene Mutation; BRCA2 Gene Mutation; Ductal Breast Carcinoma In Situ; Invasive Breast Carcinoma; Lobular Breast Carcinoma In Situ; No Evidence of Disease

  16. Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling

    DEFF Research Database (Denmark)

    Larsen, Martin J; Kruse, Torben A; Tan, Qihua

    2013-01-01

    Pathogenic germline mutations in BRCA1 or BRCA2 are detected in less than one third of families with a strong history of breast cancer. It is therefore expected that mutations still remain undetected by currently used screening methods. In addition, a growing number of BRCA1/2 sequence variants...... of unclear pathogen significance are found in the families, constituting an increasing clinical challenge. New methods are therefore needed to improve the detection rate and aid the interpretation of the clinically uncertain variants. In this study we analyzed a series of 33 BRCA1, 22 BRCA2, and 128 sporadic...... tumors by RNA profiling to investigate the classification potential of RNA profiles to predict BRCA1/2 mutation status. We found that breast tumors from BRCA1 and BRCA2 mutation carriers display characteristic RNA expression patterns, allowing them to be distinguished from sporadic tumors. The majority...

  17. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2.

    Science.gov (United States)

    Hussain, Shobbir; Wilson, James B; Blom, Eric; Thompson, Larry H; Sung, Patrick; Gordon, Susan M; Kupfer, Gary M; Joenje, Hans; Mathew, Christopher G; Jones, Nigel J

    2006-05-10

    Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.

  18. Parity and the risk of breast and ovarian cancer in and mutation carriers

    OpenAIRE

    Milne , Roger L.; Osorio , Ana; Ramón Y Cajal , Teresa; Baiget , Montserrat; Lasa , Adriana; Diaz-Rubio , Eduardo; Hoya , Miguel; Caldés , Trinidad; Teulé , Alex; Lázaro , Conxi; Blanco , Ignacio; Balmaña , Judith; Sánchez-Ollé , Gessamí; Vega , Ana; Blanco , Ana

    2009-01-01

    Abstract Environmental or lifestyle factors are likely to explain part of the heterogeneity in breast and ovarian cancer risk among BRCA1 and BRCA2 mutation carriers. We assessed parity as a risk modifier in 515 and 503 Spanish female carriers of mutations in BRCA1 and BRCA2, respectively. Hazard ratios (HR) and their corresponding 95% confidence intervals (CI) were estimated using weighted Cox proportional hazards regression, adjusted for year of birth and study centre. The result...

  19. Olaparib Approved for Breast Cancers with BRCA Gene Mutations

    Science.gov (United States)

    The Food and Drug Administration has approved olaparib (Lynparza®) to treat metastatic breast cancers that have inherited mutations in the BRCA1 or BRCA2 genes as well as a companion diagnostic test for selecting candidates for the therapy.

  20. Breast cancer

    African Journals Online (AJOL)

    A collaborative article gives an overview of breast cancer in LICs, ... approach to the problem; therefore they are published as two separate ... attached to the diagnosis of breast cancer. ... Their founding statement in its early form is included.

  1. Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Marple, Teresa [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207 (United States); Kim, Tae Moon [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207 (United States); Hasty, Paul [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207 (United States)]. E-mail: hastye@uthscsa.edu

    2006-12-01

    The breast cancer susceptibility protein, Brca2 and the RecQ helicase, Blm (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through homologous recombination (HR). Brca2 facilitates HR by interacting with Rad51 in multiple regions, the BRC motifs encoded by exon 11 and a single domain encoded by exon 27; however, the exact importance of these regions is not fully understood. Blm also interacts with Rad51 and appears to suppress HR in most circumstances; however, its yeast homologue Sgs1 facilitates HR in response to some genotoxins. To better understand the biological importance of these two proteins, we performed a genotoxic screen on mouse embryonic stem (ES) cells impaired for either Brca2 or Blm to establish their genotoxic profiles (a cellular dose-response to a wide range of agents). This is the first side-by-side comparison of these two proteins in an identical genetic background. We compared cells deleted for Brca2 exon 27 to cells reduced for Blm expression and find that the Brca2- and Blm-impaired cells exhibit genotoxic profiles that reflect opposing activities during HR. Cells deleted for Brca2 exon 27 are hypersensitive to {gamma}-radiation, streptonigrin, mitomycin C and camptothecin and mildly resistant to ICRF-193 which is similar to HR defective cells null for Rad54. By contrast, Blm-impaired cells are hypersensitive to ICRF-193, mildly resistant to camptothecin and mitomycin C and more strongly resistant to hydroxyurea. These divergent profiles support the notion that Brca2 and Blm perform opposing functions during HR in mouse ES cells.

  2. Breast Cancer

    Science.gov (United States)

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  3. Factors implicated to radioresistance of breast cancer and their possible roles

    International Nuclear Information System (INIS)

    Yan Weili; Huang Gang

    2006-01-01

    Radiotherapy plays an important role in the management of breast cancer. The recurrence of breast cancer after radiotherapy is considered to be related with radioresistance in breast cancer cells. Various factors, extranuclear and intranuclear, such as insulin-like growth factor-1 receptor, phosphatidylinositol 3-kinase pathway, epidermal growth factor, human epidermal growth factor receptors, p53, c-erb B2, Bcl-2, BRCA1, BRCA2, telomeres and gene expression signature, that have been implicated to influence the radiation response. (authors)

  4. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  5. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2016-05-01

    25 other candidate genes in the Fanconi anemia-BRCA pathway: ATR, BABAM1, BAP1, BLM, BRCC3, BRE, CHEK1, ERCC1, ERCC4 (FANCQ), FANCA , FANCB, FANCC...AWARD NUMBER: W81XWH-13-1-0484 TITLE: Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and...DNA repair genes on small core biopsy specimens iv) begun accessioning samples from the phase 2 rucaparib trial (Ariel 2, NCT01891344). 15

  6. Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry.

    Directory of Open Access Journals (Sweden)

    Cameron M Scott

    Full Text Available DNA methylation can mimic the effects of both germline and somatic mutations for cancer predisposition genes such as BRCA1 and p16INK4a. Constitutional DNA methylation of the BRCA1 promoter has been well described and is associated with an increased risk of early-onset breast cancers that have BRCA1-mutation associated histological features. The role of methylation in the context of other breast cancer predisposition genes has been less well studied and often with conflicting or ambiguous outcomes. We examined the role of methylation in known breast cancer susceptibility genes in breast cancer predisposition and tumor development. We applied the Infinium HumanMethylation450 Beadchip (HM450K array to blood and tumor-derived DNA from 43 women diagnosed with breast cancer before the age of 40 years and measured the methylation profiles across promoter regions of BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. Prior genetic testing had demonstrated that these women did not carry a germline mutation in BRCA1, ATM, CHEK2, PALB2, TP53, BRCA2, CDH1 or FANCM. In addition to the BRCA1 promoter region, this work identified regions with variable methylation at multiple breast cancer susceptibility genes including PALB2 and MLH1. Methylation at the region of MLH1 in these breast cancers was not associated with microsatellite instability. This work informs future studies of the role of methylation in breast cancer susceptibility gene silencing.

  7. The Potential Contribution of BRCA Mutations to Early Onset and Familial Breast Cancer in Uzbekistan.

    Science.gov (United States)

    Abdikhakimov, Abdulla; Tukhtaboeva, Mukaddas; Adilov, Bakhtiyar; Turdikulova, Shahlo

    2016-01-01

    Breast cancer is the most common malignancy in women and affects approximately 1 out of 8 females in the US. Risk of developing breast cancer is strongly influenced by genetic factors. Germ-line mutations in BRCA1 and BRCA2 genes are associated with 5-10% of breast cancer incidence. To reduce the risk of developing cancer and to increase the likelihood of early detection, carriers of BRCA1 or BRCA2 mutations are offered surveillance programs and effective preventive medical interventions. Identification of founder mutations of BRCA1/2 in high risk communities can have a significant impact on the management of hereditary cancer at the level of the national healthcare systems, making genetic testing more affordable and cost-effective. BRCA1 and BRCA2 mutations in breast cancer patients have not been characterized in the Uzbek population. This pilot study aimed to investigate the contribution of BRCA1 and BRCA2 mutation to early onset and familial cases of breast cancer in Uzbekistan. A total of 67 patients with breast cancer and 103 age-matched disease free controls were included in this study. Utilizing SYBR Green based real-time allele-specific PCR, we have analyzed DNA samples of patients with breast cancer and disease free controls to identify the following BRCA1 and BRCA2 mutations: BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT. Three unrelated samples (4.5%) were found to be positive for the heterozygous 5382insCBRCA1 mutation, representing a possible founder mutation in the Uzbek population, supporting the need for larger studies examining the contribution of this mutation to breast cancer incidence in Uzbekistan. We did not find BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, and BRCA2 6174delT mutations. This preliminary evidence suggests a potential contribution of BRCA1 5382insC mutation to breast cancer development in Uzbek population. Taking into account a high disease penetrance in carriers of BRCA1 mutation, it seems

  8. Genetic anticipation in BRCA1/BRCA2 families after controlling for ascertainment bias and cohort effect.

    Science.gov (United States)

    Guindalini, Rodrigo Santa Cruz; Song, Andrew; Fackenthal, James D; Olopade, Olufunmilayo I; Huo, Dezheng

    2016-06-15

    Genetic anticipation, the earlier onset of disease in successive generations, has been reported in hereditary breast and ovarian cancer syndrome (HBOC), but little is known about its underlying mechanisms. Ascertainment bias has been suggested as a reason in previous studies. Likewise, cohort effect, which may be caused by environmental factors, can be misinterpreted as genetic anticipation. The authors reviewed the pedigrees of 176 kindreds, segregating those with deleterious mutations in breast cancer genes 1 and 2 (BRCA1/BRCA2) who had at least 2 consecutive generations of the same cancer (breast or ovarian). By using mutation probabilities as analytical weights in weighted random-effect models, generational differences in the age at onset of breast/ovarian cancer were calculated. The analyses were further controlled for ascertainment bias by excluding probands and adjusting for birth-cohort effect in the anticipation models. The mean age at the onset of breast cancer for the probands' generation was 41.9 years, which was 6.8 years and 9.8 years earlier than the parents' and grandparents' generations, respectively. The anticipation effect for breast cancer remained significant after excluding the probands. There was a birth-cohort effect: patients who were born in 1930s and 1940s had breast cancer 5.0 years and 7.6 years earlier than patients who were born before 1920. The difference in breast cancer age of onset across generations was no longer significant after adjusting for birth-cohort effect. The observed anticipation effect was driven mainly by a decrease in age of onset across birth cohorts, underscoring the need for risk-reducing interventions that target changing environmental/lifestyle factors in BRCA1/BRCA2 carriers. Cancer 2016;122:1913-20. © 2016 American Cancer Society. © 2016 American Cancer Society.

  9. Increased Chromosomal Radiosensitivity in Women Carrying BRCA1/BRCA2 Mutations Assessed With the G2 Assay

    International Nuclear Information System (INIS)

    Ernestos, Beroukas; Nikolaos, Pandis; Koulis, Giannoukakos; Eleni, Rizou; Konstantinos, Beroukas; Alexandra, Giatromanolaki; Michael, Koukourakis

    2010-01-01

    Purpose: Several in vitro studies suggest that BRCA1 and BRCA2 mutation carriers present increased sensitivity to ionizing radiation. Different assays for the assessment of deoxyribonucleic acid double-strand break repair capacity have been used, but results are rather inconsistent. Given the concerns about the possible risks of breast screening with mammography in mutation carrier women and the potentially damaging effects of radiotherapy, the purpose of this study was to further investigate the radiosensitivity of this population. Methods and Materials: The G2 chromosomal radiosensitivity assay was used to assess chromosomal breaks in lymphocyte cultures after exposure to 1 Gy. A group of familiar breast cancer patients carrying a mutation in the BRCA1 or BRCA2 gene (n = 15) and a group of healthy mutation carriers (n = 5) were investigated and compared with a reference group of healthy women carrying no mutation (n = 21). Results: BRCA1 and BRCA2 mutation carriers had a significantly higher number of mean chromatid breaks per cell (p = 0.006) and a higher maximum number of breaks (p = 0.0001) as compared with their matched controls. Both healthy carriers and carriers with a cancer history were more radiosensitive than controls (p = 0.002 and p = 0.025, respectively). Age was not associated with increased radiosensitivity (p = 0.868). Conclusions: Our results indicate that BRCA1 and BRCA2 mutation carriers show enhanced radiosensitivity, presumably because of the involvement of the BRCA genes in deoxyribonucleic acid repair and cell cycle control mechanisms.

  10. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...

  11. Breast Cancer Prevention

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... from starting. Risk-reducing surgery . General Information About Breast Cancer Key Points Breast cancer is a disease in ...

  12. Cancer Risks Associated With Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2017-05-01

    swishere@uw.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...their relatives to better understand the genetic contribution to ovarian cancer and will focus on exome sequencing 30 families in year 3. 15. SUBJECT...BRCA1/2) account for about 15% of OC. Inherited loss of function mutations in other related genes account for another 5-6% of cases, but less is

  13. Variation in mutation spectrum partly explains regional differences in the breast cancer risk of female BRCA mutation carriers in the Netherlands.

    Science.gov (United States)

    Vos, Janet R; Teixeira, Natalia; van der Kolk, Dorina M; Mourits, Marian J E; Rookus, Matti A; van Leeuwen, Flora E; Collée, Margriet; van Asperen, Christi J; Mensenkamp, Arjen R; Ausems, Margreet G E M; van Os, Theo A M; Meijers-Heijboer, Hanne E J; Gómez-Garcia, Encarna B; Vasen, Hans F; Brohet, Richard M; van der Hout, Annemarie H; Jansen, Liesbeth; Oosterwijk, Jan C; de Bock, Geertruida H

    2014-11-01

    We aimed to quantify previously observed relatively high cancer risks in BRCA2 mutation carriers (BRCA2 carriers) older than 60 in the Northern Netherlands, and to analyze whether these could be explained by mutation spectrum or population background risk. This consecutive cohort study included all known pathogenic BRCA1/2 carriers in the Northern Netherlands (N = 1,050). Carrier and general reference populations were: BRCA1/2 carriers in the rest of the Netherlands (N = 2,013) and the general population in both regions. Regional differences were assessed with HRs and ORs. HRs were adjusted for birth year and mutation spectrum. All BRCA1 carriers and BRCA2 carriers younger than 60 had a significantly lower breast cancer risk in the Northern Netherlands; HRs were 0.66 and 0.64, respectively. Above age 60, the breast cancer risk in BRCA2 carriers in the Northern Netherlands was higher than in the rest of the Netherlands [HR, 3.99; 95% confidence interval (CI), 1.11-14.35]. Adjustment for mutational spectrum changed the HRs for BRCA1, BRCA2 <60, and BRCA2 ≥60 years by -3%, +32%, and +11% to 0.75, 0.50, and 2.61, respectively. There was no difference in background breast cancer incidence between the two regions (OR, 1.03; 95% CI, 0.97-1.09). Differences in mutation spectrum only partly explain the regional differences in breast cancer risk in BRCA2 carriers, and for an even smaller part in BRCA1 carriers. The increased risk in BRCA2 carriers older than 60 may warrant extension of intensive breast screening beyond age 60. ©2014 American Association for Cancer Research.

  14. Breast cancer

    OpenAIRE

    Gablerová, Pavlína

    2010-01-01

    In this work the topic of breast cancer treated more generally and mainly focused on risk factors for the development. The theoretical part describes the general knowledge about breast cancer as a stage or treatment. The practical part is to have clarified the risk factors that have some bearing on the diagnosis of breast cancer. What level are involved in the probability of occurrence? Can we eliminate them? As a comparison of risk factors examined in the Czech Republic, England, Australia a...

  15. Breast Cancer: Treatment Options

    Science.gov (United States)

    ... Breast Cancer > Breast Cancer: Treatment Options Request Permissions Breast Cancer: Treatment Options Approved by the Cancer.Net Editorial ... can be addressed as quickly as possible. Recurrent breast cancer If the cancer does return after treatment for ...

  16. The Effect of Reproductive Factors on Breast Cancer Presentation in Women Who Are BRCA Mutation Carrier.

    Science.gov (United States)

    Kim, Ju-Yeon; Moon, Hyeong-Gon; Kang, Young-Joon; Han, Wonshik; Noh, Woo-Chul; Jung, Yongsik; Moon, Byung-In; Kang, Eunyoung; Park, Sung-Shin; Lee, Min Hyuk; Park, Bo Young; Lee, Jong Won; Noh, Dong-Young

    2017-09-01

    Germline mutations in the BRCA1 and BRCA2 genes confer increased risks for breast cancers. However, the clinical presentation of breast cancer among women who are carriers of the BRCA1 or BRCA2 ( BRCA1/2 carriers) mutations is heterogenous. We aimed to identify the effects of the reproductive histories of women with the BRCA1/2 mutations on the clinical presentation of breast cancer. We retrospectively analyzed clinical data on women with proven BRCA1 and BRCA2 mutations who were recruited to the Korean Hereditary Breast Cancer study, from 2007 to 2014. Among the 736 women who were BRCA1/2 mutation carriers, a total of 483 women had breast cancers. Breast cancer diagnosis occurred at significantly younger ages in women who experienced menarche at ≤14 years of age, compared to those who experienced menarche at >14 years of age (37.38±7.60 and 43.30±10.11, respectively, p women with the BRCA2 mutation. The prevalence of advanced stages (stage II or III vs. stage I) of disease in parous women was higher than in nulliparous women (68.5% vs. 55.2%, p =0.043). This association was more pronounced in women with the BRCA2 mutation (hazard ratio, 2.67; p =0.014). Our results suggest that reproductive factors, such as the age of onset of menarche and the presence of parity, are associated with the clinical presentation patterns of breast cancer in BRCA1/2 mutation carriers.

  17. Prevention and Screening in Hereditary Breast and Ovarian Cancer.

    Science.gov (United States)

    Zeichner, Simon B; Stanislaw, Christine; Meisel, Jane L

    2016-10-15

    In recent years, we have learned a great deal about pathogenic mutations that increase the risk of breast and ovarian cancer, particularly mutations in the BRCA1 and BRCA2 genes. Here we review current guidelines on breast and ovarian cancer screening, prophylactic surgery, and other risk-reduction strategies in patients with these mutations, and we detail the data that drive these recommendations. We also discuss guidelines on screening and management for other cancers associated with BRCA1 and BRCA2, such as male breast cancer, pancreatic cancer, and prostate cancer. Discussions about genetic testing have become more complex with the advent of panel testing, which often allows for testing of a more comprehensive panel of genes than traditional BRCA1 and BRCA2 testing, but which is also associated with a higher likelihood of obtaining results with less clear data to inform management. It is difficult to come to a consensus on how best to address the varied and potentially challenging situations that may arise from genetic testing. The complexity inherent in managing these cases makes a multidisciplinary team-including medical oncologists, surgical oncologists, genetic counselors, reproductive endocrinologists, and medical ethicists-critical to optimization of care.

  18. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... is performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  19. Stages of Breast Cancer

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer Go to Health Professional Version Key Points Breast ...

  20. Breast Cancer Treatment

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer Go to Health Professional Version Key Points Breast ...

  1. BRCA1/2 associated hereditary breast cancer

    Institute of Scientific and Technical Information of China (English)

    Li-song TENG; Yi ZHENG; Hao-hao WANG

    2008-01-01

    Breast cancer is one of the leading causes of death in women today. Some of the patients are hereditary, with a large proportion characterized by mutation in BRCA1 and/or BRCA2 genes. In this review, we provide an overview of these two genes,focusing on their relationship with hereditary breast cancers. BRCA1/2 associated hereditary breast cancers have unique features that differ from the general breast cancers, including alterations in cellular molecules, pathological bases, biological behavior, and a different prevention strategy. But the outcome of BRCA1/2 associated hereditary breast cancers still remains controversial;further studies are needed to elucidate the nature of BRCA1/2 associated hereditary breast cancers.

  2. Breast cancer

    International Nuclear Information System (INIS)

    Tokunaga, Masayoshi

    1992-01-01

    More than 20-year follow-up of A-bomb survivors in Hiroshima and Nagasaki has a crucial role in determining the relationship of radiation to the occurrence of breast cancer. In 1967, Wanebo et al have first reported 27 cases of breast cancer during the period 1950-1966 among the Adult Health Study population of A-bomb survivors. Since then, follow-up surveys for breast cancer have been made using the Life Span Study (LSS) cohort, and the incidence of breast cancer has increased year by year; that is breast cancer was identified in 231 cases by the first LSS series (1950-1969), 360 cases by the second LSS series (1950-1974), 564 cases by the third LSS series (1950-1980), and 816 cases in the fourth LSS series (1950-1085). The third LSS series have revealed a high risk for radiation-induced breast cancer in women aged 10 or less at the time of exposure (ATE). Both relative and absolute risks are found to be decreased with increasing ages ATE. Based on the above-mentioned findings and other studies on persons exposed medical radiation, radiation-induced breast cancer is characterized by the following: (1) the incidence of breast cancer is linearly increased with increasing radiation doses; (2) both relative and absolute risks for breast cancer are high in younger persons ATE; (3) age distribution of breast cancer in proximally exposed A-bomb survivors is the same as that in both distally A-bomb survivors and non-exposed persons, and there is no difference in histology between the former and latter groups. Thus, immature mammary gland cells before the age of puberty are found to be most radiosensitive. (N.K.)

  3. The pathology of familial breast cancer: Immunohistochemistry and molecular analysis

    International Nuclear Information System (INIS)

    Osin, Pinchas P; Lakhani, Sunil R

    1999-01-01

    Extensive studies of BRCA1- and BRCA2-associated breast tumours have been carried out in the few years since the identification of these familial breast cancer predisposing genes. The morphological studies suggest that BRCA1 tumours differ from BRCA2 tumours and from sporadic breast cancers. Recent progress in immunohistochemistry and molecular biology techniques has enabled in-depth investigation of molecular pathology of these tumours. Studies to date have investigated issues such as steroid hormone receptor expression, mutation status of tumour suppressor genes TP53 and c-erbB2, and expression profiles of cell cycle proteins p21, p27 and cyclin D 1 . Despite relative paucity of data, strong evidence of unique biological characteristics of BRCA1-associated breast cancer is accumulating. BRCA1-associated tumours appear to show an increased frequency of TP53 mutations, frequent p53 protein stabilization and absence of imunoreactivity for steroid hormone receptors. Further studies of larger number of samples of both BRCA1- and BRCA2-associated tumours are necessary to clarify and confirm these observations

  4. Common breast cancer risk variants in the post-COGS era: a comprehensive review

    OpenAIRE

    Maxwell, Kara N; Nathanson, Katherine L

    2013-01-01

    Breast cancer has a strong heritable component, with approximately 15% of cases exhibiting a family history of the disease. Mutations in genes such as BRCA1, BRCA2 and TP53 lead to autosomal dominant inherited cancer susceptibility and confer a high lifetime risk of breast cancers. Identification of mutations in these genes through clinical genetic testing enables patients to undergo screening and prevention strategies, some of which provide overall survival benefit. In addition, a number of ...

  5. Skp2 is a Promising Therapeutic Target in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiwei; Fukushima, Hidefumi; Inuzuka, Hiroyuki; Wan, Lixin; Liu, Pengda; Gao, Daming [Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States); Sarkar, Fazlul H. [Department of Pathology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI (United States); Wei, Wenyi, E-mail: wwei2@bidmc.harvard.edu [Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States)

    2012-01-04

    Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, human epidermal growth factor receptor 2, PI3K/Akt, BRCA1, and BRCA2. Emerging evidence has shown that the F-box protein S-phase kinase associated protein 2 (Skp2) also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural “chemopreventive agents” as targeted approach for the prevention and/or treatment of breast cancer.

  6. Age and Geographical Distribution in Families with BRCA1/BRCA2 Mutations in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Ciernikova Sona

    2006-12-01

    Full Text Available Abstract Molecular diagnostics of hereditary breast and/or ovarian cancer is mainly based on detection of BRCA1 and BRCA2 germline mutations in suspected families. The aim of the study was to determine the frequency, age and geographical distribution in 130 Slovak hereditary breast and ovarian cancer (HBOC families diagnosed within the years 2000-2004. Mutation screening was performed by single-strand conformation polymorphism (SSCP, heteroduplex analysis (HDA and sequencing of PCR products showing an abnormal migration pattern. Twenty of 130 (15.6% HBOC suspected families were found to carry mutations in BRCA1 or BRCA2 genes. The glossary data from the National Cancer Registry of Slovakia (NCRS were compared with the results from HBOC suspected kindreds. Age distribution of breast cancer onset in our study group showed the highest proportion of onset in HBC families within the 5th decade of life, while NCRS reports at least a ten year later onset. These findings confirmed that cases of breast cancer under 50 years of age can be used as one of the principal criteria to assign a family as a hereditary breast and/or ovarian cancer kindred. In contrast with unselected ovarian cancer cases, about 75% of all HOC index cases were diagnosed between 40 and 49 years of age. To study the geographical distribution of hereditary breast and/or ovarian cancer, Slovakia was divided into three parts. The distribution of HBOC suspected families approximately follows this division, with an increasing number in the western area of the country.

  7. Clinical and molecular characterization of BRCA-associated breast cancer

    DEFF Research Database (Denmark)

    Soenderstrup, I. M.H.; Laenkholm, A. V.; Jensen, M. B.

    2018-01-01

    Background: In breast cancer (BC) patients a cancer predisposing BRCA1/2 mutation is associated with adverse tumor characteristics, risk assessment and treatment allocation. We aimed to estimate overall- (OS) and disease-free survival (DFS) according to tumor characteristics and treatment among...... women who within two years of definitive surgery for primary BC were shown to carry a mutation in BRCA1/2 . Material and methods: From the clinical database of the Danish Breast Cancer Group we included 141 BRCA1 and 96 BRCA2 BC patients. Estrogen receptor and HER2 status were centrally reviewed......–81). Ten-year OS and DFS for BRCA2 BC were 88% (95% CI 78–94) and 84% (95% CI 74–91). BRCA1 BC patients as compared to BRCA2 BC patients had a higher risk of BC relapse or non-breast cancer within ten years of follow-up, independent of ER status (adjusted HR 2.78 95% CI 1.28–6.05, p = .01), but BRCA...

  8. Effects and Costs of Breast Cancer screening in women with a familial or genetic predisposition

    NARCIS (Netherlands)

    A.J. Rijnsburger (Rian)

    2005-01-01

    textabstract"Women with a BRCA1 or BRCA2 mutation, who have a considerable increased risk of developing breast cancer, now face the choice of intensive screening, prophylactic surgery or chemoprevention. The efficacy of the various medical options and the durability of its effects are of major

  9. Breast cancer

    CERN Multimedia

    2002-01-01

    "Cancer specialists will soon be able to compare mammograms with computerized images of breast cancer from across Europe, in a bid to improve diagnosis and treatment....The new project, known as MammoGrid, brings together computer and medical imaging experts, cancer specialists, radiologists and epidemiologists from Bristol, Oxford, Cambridge, France and Italy" (1 page).

  10. Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Im, Kate M; Kirchhoff, Tomas; Wang, Xianshu

    2011-01-01

    Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele...... the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long......-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography...

  11. Haplotype analysis of TP53 polymorphisms, Arg72Pro and Ins16, in BRCA1 and BRCA2 mutation carriers of French Canadian descent

    International Nuclear Information System (INIS)

    Cavallone, Luca; Arcand, Suzanna L; Maugard, Christine; Ghadirian, Parviz; Mes-Masson, Anne-Marie; Provencher, Diane; Tonin, Patricia N

    2008-01-01

    The TP53 polymorphisms Arg72Pro (Ex4+199 G>C) and Ins16 (IVS3+24 ins16) have been proposed to modify risk of breast cancer associated with germline BRCA1 and BRCA2 mutations. Allele frequencies of these polymorphisms were investigated to determine if they modify risk in BRCA mutation carriers in breast cancer cases drawn from French Canadian cancer families, a population shown to exhibit strong founder effects. The frequencies of the TP53 alleles, genotypes and haplotypes of 157 index breast cancer cases comprised of 42 BRCA1 mutation carriers, 57 BRCA2 mutation carriers, and 58 BRCA mutation-negative cases, where each case was drawn from independently ascertained families were compared. The effect of TP53 variants on the age of diagnosis was also investigated for these groups. The TP53 polymorphisms were also investigated in 112 women of French Canadian descent with no personal history of cancer. The BRCA mutation-positive groups had the highest frequency of homozygous carriers of the 72Pro allele compared with mutation-negative group. The TP53 polymorphisms exhibited linkage disequilibrium (p < 0.001), where the 72Arg and Ins16minus alleles occurred in strong disequilibrium. The highest frequency of carriers of Ins16minus-72Arg haplotype occurred in the BRCA mutation-negative groups. The BRCA1 mutation carriers homozygous for the 72Pro allele had the youngest ages of diagnosis of breast cancer. However none of these observations were statistically significant. In contrast, the BRCA2 mutation carriers homozygous for the 72Pro allele had a significantly older age of diagnosis of breast cancer (p = 0.018). Moreover, in this group, the mean age of diagnosis of breast cancer in carriers of the Ins16minus-72Arg haplotype was significantly younger than that of the individuals who did not this carry this haplotype (p = 0.009). We observed no significant association of breast cancer risk with TP53 genetic variants based on BRCA1/2 mutation carrier status. Although the

  12. 6 Common Cancers - Breast Cancer

    Science.gov (United States)

    ... Home Current Issue Past Issues 6 Common Cancers - Breast Cancer Past Issues / Spring 2007 Table of Contents For ... slow her down. Photo: AP Photo/Brett Flashnick Breast Cancer Breast cancer is a malignant (cancerous) growth that ...

  13. Breast cancer

    International Nuclear Information System (INIS)

    Delgado, L.; Krygier, G.; Castillo, C.

    2009-01-01

    This article is about the diagnosis, treatment and monitoring of breast cancer. Positive diagnosis is based on clinical mammary exam, mammography, mammary ultrasonography, and histological study. Before the chemotherapy and radiotherapy treatment are evaluated the risks

  14. Breast Cancer

    Science.gov (United States)

    ... modulators and aromatase inhibitors, reduce the risk of breast cancer in women with a high risk of the disease. These medications carry a risk of side effects, so doctors reserve these medications for women who ...

  15. Functional assays for analysis of variants of uncertain significance in BRCA2

    DEFF Research Database (Denmark)

    Guidugli, Lucia; Carreira, Aura; Caputo, Sandrine M

    2014-01-01

    Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may...... of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant...

  16. [The clinical study of familial breast cancer - now and the problems].

    Science.gov (United States)

    Nomizu, Tadashi; Matsuzaki, Masami; Katagata, Naoto; Watanabe, Fumiaki; Akama, Yoshinori

    2012-04-01

    The clinical features of familial breast cancer are characterized by early onset, high frequency of bilateral breast cancer, and multiple malignancies of other organs. It is strongly suggested that genetic factors contribute to familial breast cancer. The causative genes now identified are BRCA1 and BRCA2. This disease is called hereditary breast ovarian cancer syndrome (HBOC)because breast cancer and ovarian cancer are clustered in the kindred confirmed BRCA mutation. As for BRCA related breast cancer, early onset and highly frequent bilateral breast cancer are characteristic. In addition, the histological grade is high and the positive rate of estrogen receptors is low in BRCA1-related breast cancer. Gene diagnosis of BRCA is useful when choosing a surgical method, chemotherapy, or a surveillance of mutation carriers. The problem in Japan is that the treatment is very expensive, with poor understanding of HBOC of by clinicians and as yet immature genetic counseling system.

  17. An integrated in silico approach to analyze the involvement of single amino acid polymorphisms in FANCD1/BRCA2-PALB2 and FANCD1/BRCA2-RAD51 complex.

    Science.gov (United States)

    Doss, C George Priya; Nagasundaram, N

    2014-11-01

    Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD

  18. Inflammatory Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... white women. Inflammatory breast tumors are frequently hormone receptor negative, which means they cannot be treated with ...

  19. Breast Cancer Overview

    Science.gov (United States)

    ... are here Home > Types of Cancer > Breast Cancer Breast Cancer This is Cancer.Net’s Guide to Breast Cancer. Use the menu below to choose the Overview/ ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer Introduction Statistics Medical Illustrations Risk Factors and Prevention ...

  20. Breast Cancer -- Male

    Science.gov (United States)

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Introduction Statistics Risk Factors and Prevention ...

  1. Breast Cancer

    Science.gov (United States)

    ... right away. He or she will do a physical exam. They will ask you about your health history and your family’s history of breast cancer. ... and Wellness Staying Healthy Healthy Living Travel Occupational Health First Aid and ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food ...

  2. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    NARCIS (Netherlands)

    Klauke, M.L.; Hoogerbrugge-van der Linden, N.; Budczies, J.; Bult, P.; Prinzler, J.; Radke, C.; van Krieken, J.H.; Dietel, M.; Denkert, C.; Muller, B.M.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic

  3. Polymorphic variations in the FANCA gene in high‐risk non‐BRCA1/2 breast cancer individuals from the French Canadian population

    OpenAIRE

    Litim, Nadhir; Labrie, Yvan; Desjardins, Sylvie; Ouellette, Geneviève; Plourde, Karine; Belleau, Pascal; Durocher, Francine

    2012-01-01

    The majority of genes associated with breast cancer susceptibility, including BRCA1 and BRCA2 genes, are involved in DNA repair mechanisms. Moreover, among the genes recently associated with an increased susceptibility to breast cancer, four are Fanconi Anemia (FA) genes: FANCD1/BRCA2, FANCJ/BACH1/BRIP1, FANCN/PALB2 and FANCO/RAD51C. FANCA is implicated in DNA repair and has been shown to interact directly with BRCA1. It has been proposed that the formation of FANCA/G (dependent upon the phos...

  4. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer

    International Nuclear Information System (INIS)

    Young, SR; DeSai, Damini; Zandvakili, Inuk; Royer, Robert; Li, Song; Narod, Steven A; Pilarski, Robert T; Donenberg, Talia; Shapiro, Charles; Hammond, Lyn S; Miller, Judith; Brooks, Karen A; Cohen, Stephanie; Tenenholz, Beverly

    2009-01-01

    Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer. We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT) and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE). All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing. Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%). Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer

  5. Male Breast Cancer

    Science.gov (United States)

    Although breast cancer is much more common in women, men can get it too. It happens most often to men between ... 60 and 70. Breast lumps usually aren't cancer. However, most men with breast cancer have lumps. ...

  6. Male Breast Cancer

    Science.gov (United States)

    ... types of breast cancer that can occur in men include Paget's disease of the nipple and inflammatory breast cancer. Inherited genes that increase breast cancer risk Some men inherit abnormal (mutated) genes from their parents that ...

  7. BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression.

    Directory of Open Access Journals (Sweden)

    Nic Waddell

    2008-05-01

    Full Text Available The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases. 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS. BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%, poor for BRCAX with an LCS (40-50%, and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%. This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.

  8. Breast Cancer Surgery

    Science.gov (United States)

    FACTS FOR LIFE Breast Cancer Surgery The goal of breast cancer surgery is to remove the whole tumor from the breast. Some lymph nodes ... might still be in the body. Types of breast cancer surgery There are two types of breast cancer ...

  9. Integrated screening concept in women with genetic predisposition for breast cancer

    International Nuclear Information System (INIS)

    Bick, U.

    1997-01-01

    Breast cancer is in 5% of cases due to a genetic disposition. BRCA1 and BRCA2 are by far the most common breast cancer susceptibility genes. For a woman with a genetic predisposition, the individual risk of developing breast cancer sometime in her life is between 70 and 90%. Compared to the spontaneous forms of breast cancer, woman with a genetic predisposition often develop breast cancer at a much younger age. This is why conventional screening programs on the basis of mammography alone cannot be applied without modification to this high-risk group. In this article, an integrated screening concept for women with genetic prodisposition for breast cancer using breast self-examination, clinical examination, ultrasound, mammography and magnetic resonance imaging is introduced. (orig.) [de

  10. Clinical Characteristics in Patients with Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Janet Yeh

    2017-01-01

    Full Text Available Purpose. The purpose of this study was to compare and contrast the clinical characteristics of the triple negative breast cancer (TNBC and non-TNBC patients, with a particular focus on genetic susceptibility and risk factors prior to diagnosis. Methods. Our institutional database was queried for all patients diagnosed with invasive breast cancer between January 2010 and May 2016. Results. Out of a total of 1964 patients, 190 (10% patients had TNBC. The median age for both TNBC and non-TNBC was 59 years. There was a significantly higher proportion of African American and Asian patients with TNBC (p=0.0003 compared to patients with non-TNBC. BRCA1 and BRCA2 were significantly associated with TNBC (p<0.0001, p=0.0007. A prior history of breast cancer was significantly associated with TNBC (p=0.0003. There was no relationship observed between TNBC and a history of chemoprevention or patients who had a history of AH or LCIS. Conclusions. We found that having Asian ancestry, a prior history of breast cancer, and a BRCA1 or BRCA2 mutation all appear to be positively associated with TNBC. In order to develop more effective treatments, better surveillance, and improved prevention strategies, it is necessary to improve our understanding of the population at risk for TNBC.

  11. Predictive Factors for BRCA1 and BRCA2 Genetic Testing in an Asian Clinic-Based Population.

    Directory of Open Access Journals (Sweden)

    Edward S Y Wong

    Full Text Available The National Comprehensive Cancer Network (NCCN has proposed guidelines for the genetic testing of the BRCA1 and BRCA2 genes, based on studies in western populations. This current study assessed potential predictive factors for BRCA mutation probability, in an Asian population.A total of 359 breast cancer patients, who presented with either a family history (FH of breast and/or ovarian cancer or early onset breast cancer, were accrued at the National Cancer Center Singapore (NCCS. The relationships between clinico-pathological features and mutational status were calculated using the Chi-squared test and binary logistic regression analysis.Of 359 patients, 45 (12.5% had deleterious or damaging missense mutations in BRCA1 and/or BRCA2. BRCA1 mutations were more likely to be found in ER-negative than ER-positive breast cancer patients (P=0.01. Moreover, ER-negative patients with BRCA mutations were diagnosed at an earlier age (40 vs. 48 years, P=0.008. Similarly, triple-negative breast cancer (TNBC patients were more likely to have BRCA1 mutations (P=0.001 and that these patients were diagnosed at a relatively younger age than non-TNBC patients (38 vs. 46 years, P=0.028. Our analysis has confirmed that ER-negative status, TNBC status and a FH of hereditary breast and ovarian cancer (HBOC are strong factors predicting the likelihood of having BRCA mutations.Our study provides evidence that TNBC or ER-negative patients may benefit from BRCA genetic testing, particularly younger patients (<40 years or those with a strong FH of HBOC, in Asian patients.

  12. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations.

    Science.gov (United States)

    Phillips, Kelly-Anne; Collins, Ian M; Milne, Roger L; McLachlan, Sue Anne; Friedlander, Michael; Hickey, Martha; Stern, Catharyn; Hopper, John L; Fisher, Richard; Kannemeyer, Gordon; Picken, Sandra; Smith, Charmaine D; Kelsey, Thomas W; Anderson, Richard A

    2016-05-01

    Do women with ITALIC! BRCA1 or ITALIC! BRCA2 mutations have reduced ovarian reserve, as measured by circulating anti-Müllerian hormone (AMH) concentration? Women with a germline mutation in ITALIC! BRCA1 have reduced ovarian reserve as measured by AMH. The DNA repair enzymes encoded by ITALIC! BRCA1 and ITALIC! BRCA2 are implicated in reproductive aging. Circulating AMH is a biomarker of ovarian reserve and hence reproductive lifespan. This was a cross-sectional study of AMH concentrations of 693 women at the time of enrolment into the Kathleen Cuningham Foundation Consortium for research in the Familial Breast Cancer (kConFab) cohort study (recruitment from 19 August 1997 until 18 September 2012). AMH was measured on stored plasma samples between November 2014 and January 2015 using an electrochemiluminescence immunoassay platform. Eligible women were from families segregating ITALIC! BRCA1 or ITALIC! BRCA2 mutations and had known mutation status. Participants were aged 25-45 years, had no personal history of cancer, retained both ovaries and were not pregnant or breastfeeding at the time of plasma storage. Circulating AMH was measured for 172 carriers and 216 non-carriers from families carrying ITALIC! BRCA1 mutations, and 147 carriers and 158 non-carriers from families carrying ITALIC! BRCA2 mutations. Associations between plasma AMH concentration and carrier status were tested by linear regression, adjusted for age at plasma storage, oral contraceptive use, body mass index and cigarette smoking. Mean AMH concentration was negatively associated with age ( ITALIC! P earnings from Melbourne IVF outside the submitted work. The remaining authors have nothing to declare and no conflicts of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  13. Breast Cancer in Men

    Science.gov (United States)

    ... ultrasound or a breast MRI cannot rule out breast cancer then you will need a biopsy to confirm diagnosis. If diagnosed When first diagnosed with breast cancer, many men are in shock. After all, ...

  14. Breast Cancer Disparities

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  15. Changes in classification of genetic variants in BRCA1 and BRCA2.

    Science.gov (United States)

    Kast, Karin; Wimberger, Pauline; Arnold, Norbert

    2018-02-01

    Classification of variants of unknown significance (VUS) in the breast cancer genes BRCA1 and BRCA2 changes with accumulating evidence for clinical relevance. In most cases down-staging towards neutral variants without clinical significance is possible. We searched the database of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for changes in classification of genetic variants as an update to our earlier publication on genetic variants in the Centre of Dresden. Changes between 2015 and 2017 were recorded. In the group of variants of unclassified significance (VUS, Class 3, uncertain), only changes of classification towards neutral genetic variants were noted. In BRCA1, 25% of the Class 3 variants (n = 2/8) changed to Class 2 (likely benign) and Class 1 (benign). In BRCA2, in 50% of the Class 3 variants (n = 16/32), a change to Class 2 (n = 10/16) or Class 1 (n = 6/16) was observed. No change in classification was noted in Class 4 (likely pathogenic) and Class 5 (pathogenic) genetic variants in both genes. No up-staging from Class 1, Class 2 or Class 3 to more clinical significance was observed. All variants with a change in classification in our cohort were down-staged towards no clinical significance by a panel of experts of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevention in families with Class 3 variants should be based on pedigree based risks and should not be guided by the presence of a VUS.

  16. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    DEFF Research Database (Denmark)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement...... individuals requesting predictive testing living in France and in the USA, all being Portuguese immigrants. After performing an extensive haplotype study in carrier families, we estimate that this founder mutation occurred 558 ± 215 years ago. We further demonstrate significant quantitative differences...... HBOC families from Portugal or with Portuguese ancestry are specifically tested for this rearrangement....

  17. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    DEFF Research Database (Denmark)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement...... individuals requesting predictive testing living in France and in the USA, all being Portuguese immigrants. After performing an extensive haplotype study in carrier families, we estimate that this founder mutation occurred 558 +/- 215 years ago. We further demonstrate significant quantitative differences...... HBOC families from Portugal or with Portuguese ancestry are specifically tested for this rearrangement....

  18. Molecular genetics analysis of hereditary breast and ovarian cancer patients in India

    OpenAIRE

    Soumittra, Nagasamy; Meenakumari, Balaiah; Parija, Tithi; Sridevi, Veluswami; Nancy, Karunakaran N; Swaminathan, Rajaraman; Rajalekshmy, Kamalalayam R; Majhi, Urmila; Rajkumar, Thangarajan

    2009-01-01

    Abstract Background Hereditary cancers account for 5–10% of cancers. In this study BRCA1, BRCA2 and CHEK2*(1100delC) were analyzed for mutations in 91 HBOC/HBC/HOC families and early onset breast and early onset ovarian cancer cases. Methods PCR-DHPLC was used for mutation screening followed by DNA sequencing for identification and confirmation of mutations. Kaplan-Meier survival probabilities were computed for five-year survival data on Breast and Ovarian cancer cases separately, and differe...

  19. Breast cancer in men

    Science.gov (United States)

    ... in situ - male; Intraductal carcinoma - male; Inflammatory breast cancer - male; Paget disease of the nipple - male; Breast cancer - male ... The cause of breast cancer in men is not clear. But there are risk factors that make breast cancer more likely in men: Exposure to ...

  20. Characterization of BRCA1/2 mutations in patients with family history of breast cancer in Armenia [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sofi Atshemyan

    2017-01-01

    Full Text Available Background. Breast cancer is one of the most common cancers in women worldwide. The germline mutations of the BRCA1 and BRCA2 genes are the most significant and well characterized genetic risk factors for hereditary breast cancer. Intensive research in the last decades has demonstrated that the incidence of mutations varies widely among different populations. In this study we attempted to perform a pilot study for identification and characterization of mutations in BRCA1 and BRCA2 genes among Armenian patients with family history of breast cancer and their healthy relatives. Methods. We performed targeted exome sequencing for BRCA1 and BRCA2 genes in 6 patients and their healthy relatives. After alignment of short reads to the reference genome, germline single nucleotide variation and indel discovery was performed using GATK software. Functional implications of identified variants were assessed using ENSEMBL Variant Effect Predictor tool. Results. In total, 39 single nucleotide variations and 4 indels were identified, from which 15 SNPs and 3 indels were novel. No known pathogenic mutations were identified, but 2 SNPs causing missense amino acid mutations had significantly increased frequencies in the study group compared to the 1000 Genome populations. Conclusions. Our results demonstrate the importance of screening of BRCA1 and BRCA2 gene variants in the Armenian population in order to identity specifics of mutation spectrum and frequencies and enable accurate risk assessment of hereditary breast cancers.

  1. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer.

    Science.gov (United States)

    Polak, Paz; Kim, Jaegil; Braunstein, Lior Z; Karlic, Rosa; Haradhavala, Nicholas J; Tiao, Grace; Rosebrock, Daniel; Livitz, Dimitri; Kübler, Kirsten; Mouw, Kent W; Kamburov, Atanas; Maruvka, Yosef E; Leshchiner, Ignaty; Lander, Eric S; Golub, Todd R; Zick, Aviad; Orthwein, Alexandre; Lawrence, Michael S; Batra, Rajbir N; Caldas, Carlos; Haber, Daniel A; Laird, Peter W; Shen, Hui; Ellisen, Leif W; D'Andrea, Alan D; Chanock, Stephen J; Foulkes, William D; Getz, Gad

    2017-10-01

    Biallelic inactivation of BRCA1 or BRCA2 is associated with a pattern of genome-wide mutations known as signature 3. By analyzing ∼1,000 breast cancer samples, we confirmed this association and established that germline nonsense and frameshift variants in PALB2, but not in ATM or CHEK2, can also give rise to the same signature. We were able to accurately classify missense BRCA1 or BRCA2 variants known to impair homologous recombination (HR) on the basis of this signature. Finally, we show that epigenetic silencing of RAD51C and BRCA1 by promoter methylation is strongly associated with signature 3 and, in our data set, was highly enriched in basal-like breast cancers in young individuals of African descent.

  2. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Buul, Paul P.W. van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Jaspers, Nicolaas G.J. [Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam (Netherlands); Elghalbzouri-Maghrani, Elhaam [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Duijn-Goedhart, Annemarie van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N.Copernicus University, Bydgoszcz (Poland)]. E-mail: M.Z.Zdzienicka@LUMC.nl

    2006-10-10

    Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (Canada), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.

  3. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2

    International Nuclear Information System (INIS)

    Godthelp, Barbara C.; Buul, Paul P.W. van; Jaspers, Nicolaas G.J.; Elghalbzouri-Maghrani, Elhaam; Duijn-Goedhart, Annemarie van; Arwert, Fre; Joenje, Hans; Zdzienicka, Malgorzata Z.

    2006-01-01

    Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (Canada), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway

  4. The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity

    NARCIS (Netherlands)

    Colombo, M. (Mara); Lòpez-Perolio, I. (Irene); H.D. Meeks (Huong D.); Caleca, L. (Laura); M. Parsons (Marilyn); Li, H. (Hongyan); De Vecchi, G. (Giovanna); Tudini, E. (Emma); Foglia, C. (Claudia); Mondini, P. (Patrizia); S. Manoukian (Siranoush); Behar, R. (Raquel); E.B.G. Garcia; A. Meindl (Alfons); Montagna, M. (Marco); D. Niederacher (Dieter); Schmidt, A.Y. (Ane Y.); L. Varesco (Liliana); Wappenschmidt, B. (Barbara); Bolla, M.K. (Manjeet K.); J. Dennis (Joe); Michailidou, K. (Kyriaki); Wang, Q. (Qin); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Arndt, V. (Volker); M.W. Beckmann (Matthias); Beeghly-Fadel, A. (Alicia); J. Benítez (Javier); Boeckx, B. (Bram); Bogdanova, N.V. (Natalia V.); S.E. Bojesen (Stig); B. Bonnani (Bernardo); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); J. Chang-Claude (Jenny); Conroy, D.M. (Don M.); Couch, F.J. (Fergus J.); Cox, A. (Angela); S.S. Cross (Simon); K. Czene (Kamila); P. Devilee (Peter); Dörk, T. (Thilo); M. Eriksson (Mats); P.A. Fasching (Peter); J.D. Figueroa (Jonine); O. Fletcher (Olivia); Flyger, H. (Henrik); M. Gabrielson (Marike); M. García-Closas (Montserrat); Giles, G.G. (Graham G.); A. González-Neira (Anna); P. Guénel (Pascal); C.A. Haiman (Christopher); P. Hall (Per); U. Hamann (Ute); Hartman, M. (Mikael); Hauke, J. (Jan); Hollestelle, A. (Antoinette); J.L. Hopper (John); A. Jakubowska (Anna); Jung, A. (Audrey); Kosma, V.-M. (Veli-Matti); Lambrechts, D. (Diether); Le Marchand, L. (Loid); A. Lindblom (Annika); J. Lubinski (Jan); A. Mannermaa (Arto); Margolin, S. (Sara); Miao, H. (Hui); R.L. Milne (Roger); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); J.E. Olson (Janet); P. Peterlongo (Paolo); J. Peto (Julian); Pylkäs, K. (Katri); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); A. Schneeweiss (Andreas); M.J. Schoemaker (Minouk J.); See, M.H. (Mee Hoong); Southey, M.C. (Melissa C.); A.J. Swerdlow (Anthony ); Teo, S.H. (Soo H.); Toland, A.E. (Amanda E.); I.P. Tomlinson (Ian); Truong, T. (Thérèse); van Asperen, C.J. (Christi J.); A.M.W. van den Ouweland (Ans); L. van der Kolk (Lizet); R. Winqvist (Robert); Yannoukakos, D. (Drakoulis); Zheng, W. (Wei); A.M. Dunning (Alison); D.F. Easton (Douglas); Henderson, A. (Alex); Hogervorst, F.B. (Frans B.L.); L. Izatt (Louise); K. Offitt (Kenneth); L. Side (Lucy); E.J. van Rensburg (Elizabeth); L. McGuffog (Lesley); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia); A.B. Spurdle (Amanda); Goldgar, D.E. (David E.); Hoya, M.d.l. (Miguel de la); P. Radice (Paolo)

    2018-01-01

    textabstractAlthough the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition,

  5. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features.

    Science.gov (United States)

    Barroso, E; Pita, G; Arias, J I; Menendez, P; Zamora, P; Blanco, M; Benitez, J; Ribas, G

    2009-12-01

    Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/PALB2 and FANCJ/BRIP1 explain 2% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous case-control association study analysing FANCA, FANCD2 and FANCL, we reported an association between FANCD2 and sporadic breast cancer (BC) risk (OR = 1.35). In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER- and PR-). A total of 61 SNPs in ten FA genes (FANC-B, -C, -D1, -E, -F, -G, -I, -J, -M, -N) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/BRIP1 and FANCN/PALB2 and PR- status.

  6. The Prevention of Hereditary Breast and Ovarian Cancer: A Personal View

    Directory of Open Access Journals (Sweden)

    Narod Steven

    2004-02-01

    Full Text Available Abstract Options for the prevention of hereditary breast and ovarian cancer include screening, preventive surgery and chemoprevention. Screening studies with magnetic resonance imaging of the breast are promising but the technology is not widespread and MRI is unlikely to be available as a screening tool in the near future. Prophylactic oophorectomy and mastectomy are effective preventive measures and are gaining in acceptance by patients and physicians. Preventive mastectomy is effective against both primary and contralateral breast cancer. Oophorectomy prevents ovarian cancer, and if done prior to menopause, will prevent breast cancer as well. Tamoxifen has been shown to prevent contralateral breast cancers in BRCA1 and BRCA2 carriers but is not widely accepted as a means of primary prevention. Oral contraceptives and tubal ligation will reduce the risk of hereditary ovarian cancer and should be considered in women who wish to retain ovarian function.

  7. Stages of Male Breast Cancer

    Science.gov (United States)

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast Cancer Go to Health Professional Version Key Points Male ...

  8. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    Coleman, C.N.

    1999-01-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  9. BRCA1 and BRCA2 Germline Mutations in Asian and European Populations

    Directory of Open Access Journals (Sweden)

    Ute Hamann

    2017-02-01

    Full Text Available Women who carry a pathogenic mutation in the breast cancer susceptibility genes BRCA1 or BRCA2 (BRCA have markedly increased risks of developing breast and ovarian cancers during their lifetime. It has been estimated that their breast and ovarian cancer risks are in the range of 46-87% and 15-68%, respectively. Therefore it is of utmost clinical importance to identify BRCA mutation carriers in order to target unaffected women for prevention and/or close surveillance and to help affected women choose the best chemotherapy regimen. Genetic testing for BRCA germline mutations is expanding in clinical oncology centers worldwide. Given the high costs of complete BRCA gene screens, a lot of effort has been expended on deciding upon whom to test. Relevant issues involved in decision making include the prior probability of a woman having a BRCA mutation, which is a function of her age and her disease status, her ethnic group, and her family history of breast or ovarian cancer. The frequency and spectrum of mutations in these genes show considerable variation by ethnic groups and by geographic regions. Most studies have been conducted in European and North American populations, while studies in Asian, Hispanic, and African populations are fewer. In most populations, many BRCA mutations were identified, which were distributed all over the genes. However, in some populations, a relatively small number of specific BRCA mutations are recurrent and account for the majority of all mutations in that population. Many of the recurrent mutations are founder mutations, which were derived from a common ancestor. Founder mutations are present in Ashkenazi Jewish, European, and Islander (Faroe, Easter, and Pitcairn populations. Such mutations have also been identified in patients from several Asian, South American, and African countries. Population-specific genetic risk assessment and genetic mutation screening have been facilitated at low costs. Given that mutations

  10. Synchronous Onset of Breast and Pancreatic Cancers: Results of Germline and Somatic Genetic Analysis

    Directory of Open Access Journals (Sweden)

    Michael Castro

    2016-07-01

    Full Text Available Background: Synchronous cancers have occasionally been detected at initial diagnosis among patients with breast and ovarian cancer. However, simultaneous coexistence and diagnosis of breast and pancreas cancer has not previously been reported. Case Report: Paternal transmission of a germline BRCA2 mutation to a patient who was diagnosed at age 40 with locally advanced breast and pancreas cancer is presented. Somatic genomic analysis of both cancers with next-generation DNA sequencing confirmed the germline result and reported a variety of variants of unknown significance alterations, of which two were present in both the breast and pancreas cancers. Discussion: The possibility that genomic alterations could have been responsible for modulating the phenotypic or clinical expression of this rare presentation is considered. The authors call attention to the practice of privatizing the clinicogenetic information gained from genetic testing and call for health policy that will facilitate sharing in order to advance the outcomes of patients diagnosed with hereditary cancers.

  11. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... sensitive breast cancer cells contain proteins called hormone receptors that become activated when hormones bind to them. ...

  12. Inhibition of BRCA2 and Thymidylate Synthase Creates Multidrug Sensitive Tumor Cells via the Induction of Combined “Complementary Lethality”

    OpenAIRE

    Mateusz Rytelewski; Peter J Ferguson; Saman Maleki Vareki; Rene Figueredo; Mark Vincent; James Koropatnick

    2013-01-01

    A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient pro...

  13. Molecular genetics analysis of hereditary breast and ovarian cancer patients in India

    Science.gov (United States)

    Soumittra, Nagasamy; Meenakumari, Balaiah; Parija, Tithi; Sridevi, Veluswami; Nancy, Karunakaran N; Swaminathan, Rajaraman; Rajalekshmy, Kamalalayam R; Majhi, Urmila; Rajkumar, Thangarajan

    2009-01-01

    Background Hereditary cancers account for 5–10% of cancers. In this study BRCA1, BRCA2 and CHEK2*(1100delC) were analyzed for mutations in 91 HBOC/HBC/HOC families and early onset breast and early onset ovarian cancer cases. Methods PCR-DHPLC was used for mutation screening followed by DNA sequencing for identification and confirmation of mutations. Kaplan-Meier survival probabilities were computed for five-year survival data on Breast and Ovarian cancer cases separately, and differences were tested using the Log-rank test. Results Fifteen (16%) pathogenic mutations (12 in BRCA1 and 3 in BRCA2), of which six were novel BRCA1 mutations were identified. None of the cases showed CHEK2*1100delC mutation. Many reported polymorphisms in the exonic and intronic regions of BRCA1 and BRCA2 were also seen. The mutation status and the polymorphisms were analyzed for association with the clinico-pathological features like age, stage, grade, histology, disease status, survival (overall and disease free) and with prognostic molecular markers (ER, PR, c-erbB2 and p53). Conclusion The stage of the disease at diagnosis was the only statistically significant (p < 0.0035) prognostic parameter. The mutation frequency and the polymorphisms were similar to reports on other ethnic populations. The lack of association between the clinico-pathological variables, mutation status and the disease status is likely to be due to the small numbers. PMID:19656415

  14. Molecular genetics analysis of hereditary breast and ovarian cancer patients in India

    Directory of Open Access Journals (Sweden)

    Soumittra Nagasamy

    2009-08-01

    Full Text Available Abstract Background Hereditary cancers account for 5–10% of cancers. In this study BRCA1, BRCA2 and CHEK2*(1100delC were analyzed for mutations in 91 HBOC/HBC/HOC families and early onset breast and early onset ovarian cancer cases. Methods PCR-DHPLC was used for mutation screening followed by DNA sequencing for identification and confirmation of mutations. Kaplan-Meier survival probabilities were computed for five-year survival data on Breast and Ovarian cancer cases separately, and differences were tested using the Log-rank test. Results Fifteen (16% pathogenic mutations (12 in BRCA1 and 3 in BRCA2, of which six were novel BRCA1 mutations were identified. None of the cases showed CHEK2*1100delC mutation. Many reported polymorphisms in the exonic and intronic regions of BRCA1 and BRCA2 were also seen. The mutation status and the polymorphisms were analyzed for association with the clinico-pathological features like age, stage, grade, histology, disease status, survival (overall and disease free and with prognostic molecular markers (ER, PR, c-erbB2 and p53. Conclusion The stage of the disease at diagnosis was the only statistically significant (p

  15. Breast cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  16. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer

    Science.gov (United States)

    Hollestelle, Antoinette; van der Baan, Frederieke H.; Berchuck, Andrew; Johnatty, Sharon E.; Aben, Katja K.; Agnarsson, Bjarni A.; Aittomäki, Kristiina; Alducci, Elisa; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia N.; Antoniou, Antonis C.; Apicella, Carmel; Arndt, Volker; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Ashworth, Alan; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V.; Barrowdale, Daniel; Bean, Yukie T.; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Berger, Andreas; Berger, Raanan; Beuselinck, Benoit; Bisogna, Maria; Bjorge, Line; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Anders; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brand, Judith S.; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Brüning, Thomas; Budzilowska, Agnieszka; Bunker, Clareann H.; Burwinkel, Barbara; Butzow, Ralf; Buys, Saundra S.; Caligo, Maria A.; Campbell, Ian; Carter, Jonathan; Chang-Claude, Jenny; Chanock, Stephen J.; Claes, Kathleen B.M.; Collée, J. Margriet; Cook, Linda S.; Couch, Fergus J.; Cox, Angela; Cramer, Daniel; Cross, Simon S.; Cunningham, Julie M.; Cybulski, Cezary; Czene, Kamila; Damiola, Francesca; Dansonka-Mieszkowska, Agnieszka; Darabi, Hatef; de la Hoya, Miguel; deFazio, Anna; Dennis, Joseph; Devilee, Peter; Dicks, Ed M.; Diez, Orland; Doherty, Jennifer A.; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Santos Silva, Isabel Dos; du Bois, Andreas; Dumont, Martine; Dunning, Alison M.; Duran, Mercedes; Easton, Douglas F.; Eccles, Diana; Edwards, Robert P.; Ehrencrona, Hans; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve D.; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A.; Feliubadalo, Lidia; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Fontaine, Annette; Fortuzzi, Stefano; Fostira, Florentia; Fridley, Brooke L.; Friebel, Tara; Friedman, Eitan; Friel, Grace; Frost, Debra; Garber, Judy; García-Closas, Montserrat; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goodman, Marc T.; Gore, Martin; Greene, Mark H.; Grip, Mervi; Gronwald, Jacek; Kaulich, Daphne Gschwantler; Guénel, Pascal; Guzman, Starr R.; Haeberle, Lothar; Haiman, Christopher A.; Hall, Per; Halverson, Sandra L.; Hamann, Ute; Hansen, Thomas V.O.; Harter, Philipp; Hartikainen, Jaana M.; Healey, Sue; Hein, Alexander; Heitz, Florian; Henderson, Brian E.; Herzog, Josef; Hildebrandt, Michelle A. T.; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B.L.; Hopper, John L.; Humphreys, Keith; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; Janavicius, Ramunas; Jaworska, Katarzyna; Jensen, Allan; Jensen, Uffe Birk; Johnson, Nichola; Jukkola-Vuorinen, Arja; Kabisch, Maria; Karlan, Beth Y.; Kataja, Vesa; Kauff, Noah; Kelemen, Linda E.; Kerin, Michael J.; Kiemeney, Lambertus A.; Kjaer, Susanne K.; Knight, Julia A.; Knol-Bout, Jacoba P.; Konstantopoulou, Irene; Kosma, Veli-Matti; Krakstad, Camilla; Kristensen, Vessela; Kuchenbaecker, Karoline B.; Kupryjanczyk, Jolanta; Laitman, Yael; Lambrechts, Diether; Lambrechts, Sandrina; Larson, Melissa C.; Lasa, Aadriana; Laurent-Puig, Pierre; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Li, Jingmei; Liang, Dong; Lindblom, Annika; Lindor, Noralane; Lissowska, Jolanta; Long, Jirong; Lu, Karen H.; Lubinski, Jan; Lundvall, Lene; Lurie, Galina; Mai, Phuong L.; Mannermaa, Arto; Margolin, Sara; Mariette, Frederique; Marme, Frederik; Martens, John W.M.; Massuger, Leon F.A.G.; Maugard, Christine; Mazoyer, Sylvie; McGuffog, Lesley; McGuire, Valerie; McLean, Catriona; McNeish, Iain; Meindl, Alfons; Menegaux, Florence; Menéndez, Primitiva; Menkiszak, Janusz; Menon, Usha; Mensenkamp, Arjen R.; Miller, Nicola; Milne, Roger L.; Modugno, Francesmary; Montagna, Marco; Moysich, Kirsten B.; Müller, Heiko; Mulligan, Anna Marie; Muranen, Taru A.; Narod, Steven A.; Nathanson, Katherine L.; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Nielsen, Finn C.; Nielsen, Sune F.; Nordestgaard, Børge G.; Nussbaum, Robert L.; Odunsi, Kunle; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Olson, Sara H.; Oosterwijk, Jan C.; Orlow, Irene; Orr, Nick; Orsulic, Sandra; Osorio, Ana; Ottini, Laura; Paul, James; Pearce, Celeste L.; Pedersen, Inge Sokilde; Peissel, Bernard; Pejovic, Tanja; Pelttari, Liisa M.; Perkins, Jo; Permuth-Wey, Jenny; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Platte, Radka; Plisiecka-Halasa, Joanna; Poole, Elizabeth M.; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Ramus, Susan J.; Rebbeck, Timothy R.; Reed, Malcolm W.R.; Rennert, Gad; Risch, Harvey A.; Robson, Mark; Rodriguez, Gustavo C.; Romero, Atocha; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo; Salani, Ritu; Salvesen, Helga B.; Sawyer, Elinor J.; Schildkraut, Joellen M.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schneeweiss, Andreas; Schoemaker, Minouk J.; Schrauder, Michael G.; Schumacher, Fredrick; Schwaab, Ira; Scuvera, Giulietta; Sellers, Thomas A.; Severi, Gianluca; Seynaeve, Caroline M.; Shah, Mitul; Shrubsole, Martha; Siddiqui, Nadeem; Sieh, Weiva; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Smeets, Dominiek; Sohn, Christof; Soller, Maria; Song, Honglin; Soucy, Penny; Southey, Melissa C.; Stegmaier, Christa; Stoppa-Lyonnet, Dominique; Sucheston, Lara; Swerdlow, Anthony; Tangen, Ingvild L.; Tea, Muy-Kheng; Teixeira, Manuel R.; Terry, Kathryn L.; Terry, Mary Beth; Thomassen, Madas; Thompson, Pamela J.; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda Ewart; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Tsimiklis, Helen; Tung, Nadine; Tworoger, Shelley S.; Tyrer, Jonathan P.; Vachon, Celine M.; Van 't Veer, Laura J.; van Altena, Anne M.; Van Asperen, C.J.; van den Berg, David; van den Ouweland, Ans M.W.; van Doorn, Helena C.; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vergote, Ignace; Verhoef, Senno; Vierkant, Robert A.; Vijai, Joseph; Vitonis, Allison F.; von Wachenfeldt, Anna; Walsh, Christine; Wang, Qin; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weischer, Maren; Weitzel, Jeffrey N.; Weltens, Caroline; Wentzensen, Nicolas; Whittemore, Alice S.; Wilkens, Lynne R.; Winqvist, Robert; Wu, Anna H.; Wu, Xifeng; Yang, Hannah P.; Zaffaroni, Daniela; Zamora, M. Pilar; Zheng, Wei; Ziogas, Argyrios; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Rookus, Matti A.; Hooning, Maartje J.; Goode, Ellen L.

    2015-01-01

    Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR= 0.99, 95% CI 0.94–1.04,p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94–1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97–1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97–1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71–1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94–1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83–1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87–1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers. PMID:25940428

  17. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

    Science.gov (United States)

    Hollestelle, Antoinette; van der Baan, Frederieke H; Berchuck, Andrew; Johnatty, Sharon E; Aben, Katja K; Agnarsson, Bjarni A; Aittomäki, Kristiina; Alducci, Elisa; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia N; Antoniou, Antonis C; Apicella, Carmel; Arndt, Volker; Arnold, Norbert; Arun, Banu K; Arver, Brita; Ashworth, Alan; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Barrowdale, Daniel; Bean, Yukie T; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Berger, Andreas; Berger, Raanan; Beuselinck, Benoit; Bisogna, Maria; Bjorge, Line; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Anders; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Brinton, Louise; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Brüning, Thomas; Budzilowska, Agnieszka; Bunker, Clareann H; Burwinkel, Barbara; Butzow, Ralf; Buys, Saundra S; Caligo, Maria A; Campbell, Ian; Carter, Jonathan; Chang-Claude, Jenny; Chanock, Stephen J; Claes, Kathleen B M; Collée, J Margriet; Cook, Linda S; Couch, Fergus J; Cox, Angela; Cramer, Daniel; Cross, Simon S; Cunningham, Julie M; Cybulski, Cezary; Czene, Kamila; Damiola, Francesca; Dansonka-Mieszkowska, Agnieszka; Darabi, Hatef; de la Hoya, Miguel; deFazio, Anna; Dennis, Joseph; Devilee, Peter; Dicks, Ed M; Diez, Orland; Doherty, Jennifer A; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; Silva, Isabel Dos Santos; du Bois, Andreas; Dumont, Martine; Dunning, Alison M; Duran, Mercedes; Easton, Douglas F; Eccles, Diana; Edwards, Robert P; Ehrencrona, Hans; Ejlertsen, Bent; Ekici, Arif B; Ellis, Steve D; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Feliubadalo, Lidia; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Fontaine, Annette; Fortuzzi, Stefano; Fostira, Florentia; Fridley, Brooke L; Friebel, Tara; Friedman, Eitan; Friel, Grace; Frost, Debra; Garber, Judy; García-Closas, Montserrat; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K; Goodman, Marc T; Gore, Martin; Greene, Mark H; Grip, Mervi; Gronwald, Jacek; Gschwantler Kaulich, Daphne; Guénel, Pascal; Guzman, Starr R; Haeberle, Lothar; Haiman, Christopher A; Hall, Per; Halverson, Sandra L; Hamann, Ute; Hansen, Thomas V O; Harter, Philipp; Hartikainen, Jaana M; Healey, Sue; Hein, Alexander; Heitz, Florian; Henderson, Brian E; Herzog, Josef; T Hildebrandt, Michelle A; Høgdall, Claus K; Høgdall, Estrid; Hogervorst, Frans B L; Hopper, John L; Humphreys, Keith; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; Janavicius, Ramunas; Jaworska, Katarzyna; Jensen, Allan; Jensen, Uffe Birk; Johnson, Nichola; Jukkola-Vuorinen, Arja; Kabisch, Maria; Karlan, Beth Y; Kataja, Vesa; Kauff, Noah; Kelemen, Linda E; Kerin, Michael J; Kiemeney, Lambertus A; Kjaer, Susanne K; Knight, Julia A; Knol-Bout, Jacoba P; Konstantopoulou, Irene; Kosma, Veli-Matti; Krakstad, Camilla; Kristensen, Vessela; Kuchenbaecker, Karoline B; Kupryjanczyk, Jolanta; Laitman, Yael; Lambrechts, Diether; Lambrechts, Sandrina; Larson, Melissa C; Lasa, Adriana; Laurent-Puig, Pierre; Lazaro, Conxi; Le, Nhu D; Le Marchand, Loic; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Li, Jingmei; Liang, Dong; Lindblom, Annika; Lindor, Noralane; Lissowska, Jolanta; Long, Jirong; Lu, Karen H; Lubinski, Jan; Lundvall, Lene; Lurie, Galina; Mai, Phuong L; Mannermaa, Arto; Margolin, Sara; Mariette, Frederique; Marme, Frederik; Martens, John W M; Massuger, Leon F A G; Maugard, Christine; Mazoyer, Sylvie; McGuffog, Lesley; McGuire, Valerie; McLean, Catriona; McNeish, Iain; Meindl, Alfons; Menegaux, Florence; Menéndez, Primitiva; Menkiszak, Janusz; Menon, Usha; Mensenkamp, Arjen R; Miller, Nicola; Milne, Roger L; Modugno, Francesmary; Montagna, Marco; Moysich, Kirsten B; Müller, Heiko; Mulligan, Anna Marie; Muranen, Taru A; Narod, Steven A; Nathanson, Katherine L; Ness, Roberta B; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Finn C; Nielsen, Sune F; Nordestgaard, Børge G; Nussbaum, Robert L; Odunsi, Kunle; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Olson, Sara H; Oosterwijk, Jan C; Orlow, Irene; Orr, Nick; Orsulic, Sandra; Osorio, Ana; Ottini, Laura; Paul, James; Pearce, Celeste L; Pedersen, Inge Sokilde; Peissel, Bernard; Pejovic, Tanja; Pelttari, Liisa M; Perkins, Jo; Permuth-Wey, Jenny; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C; Platte, Radka; Plisiecka-Halasa, Joanna; Poole, Elizabeth M; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Ramus, Susan J; Rebbeck, Timothy R; Reed, Malcolm W R; Rennert, Gad; Risch, Harvey A; Robson, Mark; Rodriguez, Gustavo C; Romero, Atocha; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo; Salani, Ritu; Salvesen, Helga B; Sawyer, Elinor J; Schildkraut, Joellen M; Schmidt, Marjanka K; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schrauder, Michael G; Schumacher, Fredrick; Schwaab, Ira; Scuvera, Giulietta; Sellers, Thomas A; Severi, Gianluca; Seynaeve, Caroline M; Shah, Mitul; Shrubsole, Martha; Siddiqui, Nadeem; Sieh, Weiva; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Smeets, Dominiek; Sohn, Christof; Soller, Maria; Song, Honglin; Soucy, Penny; Southey, Melissa C; Stegmaier, Christa; Stoppa-Lyonnet, Dominique; Sucheston, Lara; Swerdlow, Anthony; Tangen, Ingvild L; Tea, Muy-Kheng; Teixeira, Manuel R; Terry, Kathryn L; Terry, Mary Beth; Thomassen, Mads; Thompson, Pamela J; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda Ewart; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Tsimiklis, Helen; Tung, Nadine; Tworoger, Shelley S; Tyrer, Jonathan P; Vachon, Celine M; Van 't Veer, Laura J; van Altena, Anne M; Van Asperen, C J; van den Berg, David; van den Ouweland, Ans M W; van Doorn, Helena C; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J; Vergote, Ignace; Verhoef, Senno; Vierkant, Robert A; Vijai, Joseph; Vitonis, Allison F; von Wachenfeldt, Anna; Walsh, Christine; Wang, Qin; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weischer, Maren; Weitzel, Jeffrey N; Weltens, Caroline; Wentzensen, Nicolas; Whittemore, Alice S; Wilkens, Lynne R; Winqvist, Robert; Wu, Anna H; Wu, Xifeng; Yang, Hannah P; Zaffaroni, Daniela; Pilar Zamora, M; Zheng, Wei; Ziogas, Argyrios; Chenevix-Trench, Georgia; Pharoah, Paul D P; Rookus, Matti A; Hooning, Maartje J; Goode, Ellen L

    2016-05-01

    Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Breast Cancer (For Kids)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Breast Cancer KidsHealth / For Kids / Breast Cancer What's in this ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  19. Treatment Option Overview (Breast Cancer)

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... only hormone therapy after a hysterectomy . Selective estrogen receptor modulators (SERMs). Aromatase inhibitors . Less exposure of breast ...

  20. Prostate screening uptake in Australian BRCA1 and BRCA2 carriers

    Directory of Open Access Journals (Sweden)

    McKinley Joanne M

    2007-09-01

    Full Text Available Abstract Men who carry mutations in BRCA1 or BRCA2 are at increased risk for prostate cancer. However the efficacy of prostate screening in this setting is uncertain and limited data exists on the uptake of prostate screening by mutation carriers. This study prospectively evaluated uptake of prostate cancer screening in a multi-institutional cohort of mutation carriers. Subjects were unaffected male BRCA1 and BRCA2 mutation carriers, aged 40–69 years, enrolled in the Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab and who had completed a mailed, self-report follow-up questionnaire 3 yearly after study entry. Of the 75 male carriers in this study, only 26 (35% had elected to receive their mutation result. Overall, 51 (68% did not recall having received a recommendation to have prostate screening because of their family history, but 41 (55% had undergone a prostate specific antigen (PSA test and 32 (43% a digital rectal examination (DRE in the previous 3 years. Those who were aware of their mutation result were more likely to have received a recommendation for prostate screening (43 vs. 6%, p = 0.0001, and to have had a PSA test (77 vs. 43%, p = 0.005 and a DRE (69 vs. 29%, p = 0.001 in the previous 3 years. The majority of unaffected males enrolled in kConFab with a BRCA1/2 mutation have not sought out their mutation result. However, of those aware of their positive mutation status, most have undergone at least one round of prostate screening in the previous 3 years.

  1. Breast asymmetry and predisposition to breast cancer

    OpenAIRE

    Scutt, Diane; Lancaster, Gillian A; Manning, John T

    2006-01-01

    INTRODUCTION: It has been shown in our previous work that breast asymmetry is related to several of the known risk factors for breast cancer, and that patients with diagnosed breast cancer have more breast volume asymmetry, as measured from mammograms, than age-matched healthy women. METHODS: In the present study, we compared the breast asymmetry of women who were free of breast disease at time of mammography, but who had subsequently developed breast cancer, with that of age-matched healthy ...

  2. Genetics of breast cancer: Applications to the Mexican population

    Directory of Open Access Journals (Sweden)

    Elad Ziv

    2011-10-01

    Full Text Available Breast cancer research has yielded several important results including the strong susceptibility genes,BRCA1 and BRCA2 and more recently 19 genes and genetic loci that confer a more moderate risk.The pace of discovery is accelerating as genetic technology and computational methods improve. These discoveries will change the way that breast cancer risk is understood in Mexico over the next few decades.La investigación en cáncer de mama ha dado varios resultados importantes incluyendo los genes fuertemente susceptibles, BRCA1 y BRCA2, y más recientemente 19 genes y loci genéticos que confieren un riesgo moderado. El ritmo de los descubrimientos se acelera conforme mejora la tecnología y métodos computacionales.Estosdescubrimientoscambiarán la forma en que la investigación del cáncer es comprendida en México en las próximas décadas.

  3. Prevalence of PALB2 mutations in breast cancer patients in multi-ethnic Asian population in Malaysia and Singapore.

    Science.gov (United States)

    Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang

    2013-01-01

    The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.

  4. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  5. Breast Cancer Rates by State

    Science.gov (United States)

    ... Associated Lung Ovarian Prostate Skin Uterine Cancer Home Breast Cancer Rates by State Language: English (US) Español (Spanish) ... from breast cancer each year. Rates of Getting Breast Cancer by State The number of people who get ...

  6. Prevalence and spectrum of germline rare variants in BRCA1/2 and PALB2 among breast cancer cases in Sarawak, Malaysia.

    Science.gov (United States)

    Yang, Xiaohong R; Devi, Beena C R; Sung, Hyuna; Guida, Jennifer; Mucaki, Eliseos J; Xiao, Yanzi; Best, Ana; Garland, Lisa; Xie, Yi; Hu, Nan; Rodriguez-Herrera, Maria; Wang, Chaoyu; Jones, Kristine; Luo, Wen; Hicks, Belynda; Tang, Tieng Swee; Moitra, Karobi; Rogan, Peter K; Dean, Michael

    2017-10-01

    To characterize the spectrum of germline mutations in BRCA1, BRCA2, and PALB2 in population-based unselected breast cancer cases in an Asian population. Germline DNA from 467 breast cancer patients in Sarawak General Hospital, Malaysia, where 93% of the breast cancer patients in Sarawak are treated, was sequenced for the entire coding region of BRCA1; BRCA2; PALB2; Exons 6, 7, and 8 of TP53; and Exons 7 and 8 of PTEN. Pathogenic variants included known pathogenic variants in ClinVar, loss of function variants, and variants that disrupt splice site. We found 27 pathogenic variants (11 BRCA1, 10 BRCA2, 4 PALB2, and 2 TP53) in 34 patients, which gave a prevalence of germline mutations of 2.8, 3.23, and 0.86% for BRCA1, BRCA2, and PALB2, respectively. Compared to mutation non-carriers, BRCA1 mutation carriers were more likely to have an earlier age at onset, triple-negative subtype, and lower body mass index, whereas BRCA2 mutation carriers were more likely to have a positive family history. Mutation carrier cases had worse survival compared to non-carriers; however, the association was mostly driven by stage and tumor subtype. We also identified 19 variants of unknown significance, and some of them were predicted to alter splicing or transcription factor binding sites. Our data provide insight into the genetics of breast cancer in this understudied group and suggest the need for modifying genetic testing guidelines for this population with a much younger age at diagnosis and more limited resources compared with Caucasian populations.

  7. Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting.

    Science.gov (United States)

    Dougherty, Brian A; Lai, Zhongwu; Hodgson, Darren R; Orr, Maria C M; Hawryluk, Matthew; Sun, James; Yelensky, Roman; Spencer, Stuart K; Robertson, Jane D; Ho, Tony W; Fielding, Anitra; Ledermann, Jonathan A; Barrett, J Carl

    2017-07-04

    To gain a better understanding of the role of somatic mutations in olaparib response, next-generation sequencing (NGS) of BRCA1 and BRCA2 was performed as part of a planned retrospective analysis of tumors from a randomized, double-blind, Phase II trial (Study 19; D0810C00019; NCT00753545) in 265 patients with platinum-sensitive high-grade serous ovarian cancer. BRCA1/2 loss-of-function mutations were found in 55% (114/209) of tumors, were mutually exclusive, and demonstrated high concordance with Sanger-sequenced germline mutations in matched blood samples, confirming the accuracy (97%) of tumor BRCA1/2 NGS testing. Additionally, NGS identified somatic mutations absent from germline testing in 10% (20/209) of the patients. Somatic mutations had >80% biallelic inactivation frequency and were predominantly clonal, suggesting that BRCA1/2 loss occurs early in the development of these cancers. Clinical outcomes between placebo- and olaparib-treated patients with somatic BRCA1/2 mutations were similar to those with germline BRCA1/2 mutations, indicating that patients with somatic BRCA1/2 mutations benefit from treatment with olaparib.

  8. BRCA2 Variants and cardiovascular disease in a multi-ethnic study

    Directory of Open Access Journals (Sweden)

    Zbuk Kevin

    2012-07-01

    Full Text Available Abstract Background Germline mutations of BRCA1/2 are associated with hereditary breast and ovarian cancer. Recent data suggests excess mortality in mutation carriers beyond that conferred by neoplasia, and recent in vivo and in vitro studies suggest a modulatory role for BRCA proteins in endothelial and cardiomyocyte function. We therefore tested the association of BRCA2 variants with clinical cardiovascular disease (CVD. Methods Using data from 1,170 individuals included in two multi-ethnic population-based studies (SHARE and SHARE-AP, the association between BRCA2 variants and CVD was evaluated. 15 SNPs in BRCA2 with minor allele frequencies (MAF > 0.01 had been previously genotyped using the cardiovascular gene-centric 50 k SNP array. 115 individuals (9.8% reported a CVD event, defined as myocardial infarction (MI, angina, silent MI, stroke, and angioplasty or coronary artery bypass surgery. Analyses were adjusted for age and sex. The SNPs rs11571836 and rs1799943 were subsequently genotyped using the MassARRAY platform in 1,045 cases of incident MI and 1,135 controls from the South Asian subset of an international case-control study of acute MI (INTERHEART, and rs11571836 was imputed in 4,686 cases and 4500 controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS. Results Two BRCA2 SNPs, rs11571836 and rs1799943, both located in untranslated regions, were associated with lower risk of CVD (OR 0.47 p = 0.01 and OR 0.56 p = 0.03 respectively in the SHARE studies. Analysis by specific ethnicities demonstrated an association with CVD for both SNPs in Aboriginal People, and for rs11571836 only in South Asians. No association was observed in the European and Chinese subgroups. A non-significant trend towards an association between rs11571836 and lower risk of MI was observed in South Asians from INTERHEART [OR = 0.87 (95% CI: 0.75-1.01 p = 0.068], but was not evident in PROMIS [OR = 0.96 (95% CI: 0

  9. Breast cancer risk and 6q22.33

    DEFF Research Database (Denmark)

    Kirchhoff, Tomas; Gaudet, Mia M; Antoniou, Antonis C

    2012-01-01

    Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication...... analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers...... in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00-1.06, p = 0.023). There was evidence for heterogeneity in the ORs...

  10. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor

    NARCIS (Netherlands)

    van der Heijden, Michiel S.; Brody, Jonathan R.; Dezentje, David A.; Gallmeier, Eike; Cunningham, Steven C.; Swartz, Michael J.; DeMarzo, Angelo M.; Offerhaus, G. Johan A.; Isacoff, William H.; Hruban, Ralph H.; Kern, Scott E.

    2005-01-01

    Purpose: BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Experimental

  11. Breast cancer prevention.

    Science.gov (United States)

    Euhus, David M; Diaz, Jennifer

    2015-01-01

    Breast cancer is the most common cancer in women with 232,670 new cases estimated in the USA for 2014. Approaches for reducing breast cancer risk include lifestyle modification, chemoprevention, and prophylactic surgery. Lifestyle modification has a variety of health benefits with few associated risks and is appropriate for all women regardless of breast cancer risk. Chemoprevention options have expanded rapidly, but most are directed at estrogen receptor positive breast cancer and uptake is low. Prophylactic surgery introduces significant additional risks of its own and is generally reserved for the highest risk women. © 2014 Wiley Periodicals, Inc.

  12. The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay.

    Directory of Open Access Journals (Sweden)

    Hansook Kim Chong

    Full Text Available Breast cancer is the most commonly diagnosed cancer in women, with 10% of disease attributed to hereditary factors. Although BRCA1 and BRCA2 account for a high percentage of hereditary cases, there are more than 25 susceptibility genes that differentially impact the risk for breast cancer. Traditionally, germline testing for breast cancer was performed by Sanger dideoxy terminator sequencing in a reflexive manner, beginning with BRCA1 and BRCA2. The introduction of next-generation sequencing (NGS has enabled the simultaneous testing of all genes implicated in breast cancer resulting in diagnostic labs offering large, comprehensive gene panels. However, some physicians prefer to only test for those genes in which established surveillance and treatment protocol exists. The NGS based BRCAplus test utilizes a custom tiled PCR based target enrichment design and bioinformatics pipeline coupled with array comparative genomic hybridization (aCGH to identify mutations in the six high-risk genes: BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11. Validation of the assay with 250 previously characterized samples resulted in 100% detection of 3,025 known variants and analytical specificity of 99.99%. Analysis of the clinical performance of the first 3,000 BRCAplus samples referred for testing revealed an average coverage greater than 9,000X per target base pair resulting in excellent specificity and the sensitivity to detect low level mosaicism and allele-drop out. The unique design of the assay enabled the detection of pathogenic mutations missed by previous testing. With the abundance of NGS diagnostic tests being released, it is essential that clinicians understand the advantages and limitations of different test designs.

  13. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  14. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  15. Breast Cancer Risk in American Women

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Risk in American Women On This Page What ... risk of developing the disease. Personal history of breast cancer : Women who have had breast cancer are more ...

  16. The BARD1 Cys557Ser variant and breast cancer risk in Iceland.

    Directory of Open Access Journals (Sweden)

    Simon N Stacey

    2006-07-01

    Full Text Available Most, if not all, of the cellular functions of the BRCA1 protein are mediated through heterodimeric complexes composed of BRCA1 and a related protein, BARD1. Some breast-cancer-associated BRCA1 missense mutations disrupt the function of the BRCA1/BARD1 complex. It is therefore pertinent to determine whether variants of BARD1 confer susceptibility to breast cancer. Recently, a missense BARD1 variant, Cys557Ser, was reported to be at increased frequencies in breast cancer families. We investigated the role of the BARD1 Cys557Ser variant in a population-based cohort of 1,090 Icelandic patients with invasive breast cancer and 703 controls. We then used a computerized genealogy of the Icelandic population to study the relationships between the Cys557Ser variant and familial clustering of breast cancer.The Cys557Ser allele was present at a frequency of 0.028 in patients with invasive breast cancer and 0.016 in controls (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.11-3.01, p = 0.014. The alleleic frequency was 0.037 in a high-predisposition group of cases defined by having a family history of breast cancer, early onset of breast cancer, or multiple primary breast cancers (OR = 2.41, 95% CI 1.22-4.75, p = 0.015. Carriers of the common Icelandic BRCA2 999del5 mutation were found to have their risk of breast cancer further increased if they also carried the BARD1 variant: the frequency of the BARD1 variant allele was 0.047 (OR = 3.11, 95% CI 1.16-8.40, p = 0.046 in 999del5 carriers with breast cancer. This suggests that the lifetime probability of a BARD1 Cys557Ser/BRCA2 999del5 double carrier developing breast cancer could approach certainty. Cys557Ser carriers, with or without the BRCA2 mutation, had an increased risk of subsequent primary breast tumors after the first breast cancer diagnosis compared to non-carriers. Lobular and medullary breast carcinomas were overrepresented amongst Cys557Ser carriers. We found that an excess of ancestors

  17. Characterizing a Rat Brca2 Knockout Model

    Science.gov (United States)

    2007-05-01

    Brca2 was tested in various tumor inducing experimental settings [49,52] * activated form Hs = Homo sapiens ; Rn = Rattus norvegicus; MMTV...sequencing gDNA from a wild-type 2 SD rat over a region of intron 21 that contains the splicing branch site 2 (underlined). ( el The same sequence from the...from the El pups at 1 week of age for macromolecule isolation. We also visually checked all Fk pups for gross abnormalities in physi- cal

  18. Genetics Home Reference: breast cancer

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Breast cancer Breast cancer Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Breast cancer is a disease in which certain cells in ...

  19. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Menopause Map Featured Resource Find an Endocrinologist Search Breast Cancer and Bone Loss July 2010 Download PDFs English ... G. Komen Foundation What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  20. Breast Cancer Screening

    International Nuclear Information System (INIS)

    Altaf, Fadwa J.

    2004-01-01

    Breast cancer is a very common health problem in Saudi females that can be reduced by early detection through introducing breast cancer screening. Literature review reveals significant reduction in breast cancer incidence and outcome after the beginning of breast cancer screening. The objectives of this article are to highlight the significance of breast cancer screening in different international societies and to write the major guidelines of breast cancer screening in relation to other departments involved with more emphasis on the Pathology Department guidelines in tissue handling, diagnostic criteria and significance of the diagnosis. This article summaries and acknowledges major work carried out before, and recommends similar modified work in order to meet the requirement for the Saudi society. (author)

  1. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  2. Genetic bases of the radiosensitivity of breast cancer

    International Nuclear Information System (INIS)

    Delaloge, S.; Marsiglia, H.

    2005-01-01

    Local-regional radiation therapy is one of the major therapeutic means in the management of breast cancer. Three questions however arise from the important advances, achieved in this domain in the past years. The first question concerns the possibilities to identify and overcome the radioresistance of a subset of tumours. The second question is how to recognize women likely to benefit from adjuvant radiation therapy, and therefore to diminish treatment indications in other groups. Finally, the third question is how to identify subjects at high risk for long term injury following breast irradiation, in order to adapt techniques and indications in such populations. The major advances of breast cancer molecular genetics in the past years should provide clinicians with tools to answer these important questions. In this paper, we review the molecular germ line (BRCA1, BRCA2, ATM,...) and somatic (p53, tyrosine kinase receptors, as well as actors of cell cycle, signal transduction, apoptosis, DNA repair...) main bases of breast cancer radiosensitivity. Recent methods of exploration of the genetic background of both the host and the tumours (gene and protein expression profiles) are also reviewed as major tools of breast cancer management in the next few years. (author)

  3. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    Directory of Open Access Journals (Sweden)

    Fernández-Rodríguez Juana

    2012-03-01

    Full Text Available Abstract Background Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes in a set of controls (138 women and 146 men did not detect seven of them. Conclusions Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.

  4. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, Juana; Schindler, Detlev; Capellá, Gabriel; Brunet, Joan; Lázaro, Conxi; Pujana, Miguel Angel; Quiles, Francisco; Blanco, Ignacio; Teulé, Alex; Feliubadaló, Lídia; Valle, Jesús del; Salinas, Mónica; Izquierdo, Àngel; Darder, Esther

    2012-01-01

    Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease

  5. Breast cancer imaging

    International Nuclear Information System (INIS)

    Funke, M.; Villena, C.

    2008-01-01

    Advances in female breast imaging have substantially influenced the diagnosis, therapy, and prognosis of breast cancer in the past few years. Mammography using conventional or digital technique is considered the gold standard for the early detection of breast cancer. Other modalities such as breast ultrasound and contrast-enhanced magnetic resonance imaging of the breast play an important role in diagnostic imaging, staging, and follow-up of breast cancer. Percutaneous needle biopsy is a faster, less invasive, and more cost-effective method than surgical biopsy for verifying the histological diagnosis. New methods such as breast tomosynthesis, contrast-enhanced mammography, and positron emission tomography promise to further improve breast imaging. Further studies are mandatory to adapt these new methods to clinical needs and to evaluate their performance in clinical practice. (orig.) [de

  6. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.

    Science.gov (United States)

    van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E

    2005-10-15

    BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.

  7. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ignacio Blanco

    Full Text Available While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR = 1.10, 95% confidence interval (CI 1.04-1.15, p = 1.9 x 10(-4 (false discovery rate (FDR-adjusted p = 0.043. Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045. Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05 for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  8. Breast cancer statistics, 2011.

    Science.gov (United States)

    DeSantis, Carol; Siegel, Rebecca; Bandi, Priti; Jemal, Ahmedin

    2011-01-01

    In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including trends in incidence, mortality, survival, and screening. Approximately 230,480 new cases of invasive breast cancer and 39,520 breast cancer deaths are expected to occur among US women in 2011. Breast cancer incidence rates were stable among all racial/ethnic groups from 2004 to 2008. Breast cancer death rates have been declining since the early 1990s for all women except American Indians/Alaska Natives, among whom rates have remained stable. Disparities in breast cancer death rates are evident by state, socioeconomic status, and race/ethnicity. While significant declines in mortality rates were observed for 36 states and the District of Columbia over the past 10 years, rates for 14 states remained level. Analyses by county-level poverty rates showed that the decrease in mortality rates began later and was slower among women residing in poor areas. As a result, the highest breast cancer death rates shifted from the affluent areas to the poor areas in the early 1990s. Screening rates continue to be lower in poor women compared with non-poor women, despite much progress in increasing mammography utilization. In 2008, 51.4% of poor women had undergone a screening mammogram in the past 2 years compared with 72.8% of non-poor women. Encouraging patients aged 40 years and older to have annual mammography and a clinical breast examination is the single most important step that clinicians can take to reduce suffering and death from breast cancer. Clinicians should also ensure that patients at high risk of breast cancer are identified and offered appropriate screening and follow-up. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high-quality screening, diagnosis, and treatment to all segments of the population. Copyright © 2011 American Cancer Society, Inc.

  9. DIAGNOSIS OF MUCINOUS BREAST CANCER

    Directory of Open Access Journals (Sweden)

    E. К. Saribekyan

    2014-01-01

    Full Text Available The paper presents the diagnostic results of 27 patients with mucinous breast cancer, which is a rare type of invasive ductal breast cancer accounting for less than 2% of all breast cancers. The role of radiological, histological and cytological examination in the diagnosis of mucinous breast cancer is evaluated. In cases with large tumors, it was difficult to differentiate mucinous breast cancer from fibrocystic and other benign breast lesions.

  10. A Study on BRCA1/2 Mutations, Hormone Status and HER-2 Status in Korean Women with Early-onset Breast Cancer

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Jin, So Young; Lee, Dong Wha; Kim, Eun Seog; Kim, Yong Ho

    2008-01-01

    Women with breast cancer diagnosed at an age of 40 years or younger have a greater prevalence of germline BRCA1 and BRCA2 mutations than the prevalence of women with breast cancer diagnosed at older ages. Several immunohistochemical characteristics have been identified in breast cancers from studies of Caucasian women with BRCA1/2 mutations having familial or early-onset breast cancers. The aim of this study is to determine whether early-onset breast cancer in BRCA1 or BRCA2 mutation carriers, who were not selected from a family history, could be distinguished by the use of immunohistochemical methods and could be distinguished from breast cancer in women of a similar age without a germline BRCA1 or BRCA2 mutation. We also analyzed the prognostic difference between BRCA1/2 related and BRCA1/2 non-related patients by the use of univariate and multivariate analysis. Breast cancer tissue specimens from Korean women with early-onset breast cancers were studied using a tumor tissue microarray. Immunohistochemical staining of estrogen receptor (ER), progesterone receptor (PR) and HER-2, as well as the histology and grade of these specimens, were compared. The prognostic impact of immunohistochemical and histological factors as well as the BRCA1/2 mutation status was investigated separately. There were 14 cases and 16 deleterious BRCA1/2 mutations among 101 patients tested. A family history (4/14) and bilateral breast cancers (3/9) were high risk factors for BRCA1/2 mutations. BRCA1/2- associated cancers demonstrated more expression of ER-negative (19.4% versus 5.1%, p=0.038) and HER-2 negative than BRCA1/2 negative tumors, especially for tumors with BRCA1 tumors The BRCA1/2 mutation rate for patients with triple negative tumors (negative expression of ER, PR and HER-2) was 24.2%. Tumor size, nodal status, and HER-2 expression status were significantly associated with disease free survival, as determined by univariate and multivariate analysis, but the BRCA1/2 status was

  11. Increasing Breast Cancer Surveillance among African American Breast Cancer Survivors

    National Research Council Canada - National Science Library

    Thompson, Hayley

    2005-01-01

    ...; they also are at considerable risk for breast cancer recurrence. According to the American Society of Clinical Oncology, survivors should undergo careful breast cancer surveillance, including annual mammography and breast self-exam...

  12. Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH): study protocol

    International Nuclear Information System (INIS)

    Eccles, Diana; Gerty, Sue; Simmonds, Peter; Hammond, Victoria; Ennis, Sarah; Altman, Douglas G

    2007-01-01

    Young women presenting with breast cancer are more likely to have a genetic predisposition to the disease than breast cancer patients in general. A genetic predisposition is known to increase the risk of new primary breast (and other) cancers. It is unclear from the literature whether genetic status should be taken into consideration when planning adjuvant treatment in a young woman presenting with a first primary breast cancer. The primary aim of the POSH study is to establish whether genetic status influences the prognosis of primary breast cancer independently of known prognostic factors. The study is a prospective cohort study recruiting 3,000 women aged 40 years or younger at breast cancer diagnosis; the recruiting period covers 1 st June 2001 to 31 st December 2007. Written informed consent is obtained at study entry. Family history and known epidemiological risk data are collected by questionnaire. Clinical information about diagnosis, treatment and clinical course is collected and blood is stored. Follow up data are collected annually after the first year. An additional recruitment category includes women aged 41 to 50 years who are found to be BRCA1 or BRCA2 gene carriers and were diagnosed with their first breast cancer during the study recruiting period. Power estimates were based on 10% of the cohort carrying a BRCA1 gene mutation. Preliminary BRCA1 and BRCA2 mutation analysis in a pilot set of study participants confirms we should have 97% power to detect a difference of 10% in event rates between gene carriers and sporadic young onset cases. Most of the recruited patients (>80%) receive an anthracycline containing adjuvant chemotherapy regimen making planned analyses more straightforward

  13. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families.

    Directory of Open Access Journals (Sweden)

    Jessica Clague

    Full Text Available BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001. Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.

  14. Contralateral breast cancer risk

    International Nuclear Information System (INIS)

    Unnithan, Jaya; Macklis, Roger M.

    2001-01-01

    The use of breast-conserving treatment approaches for breast cancer has now become a standard option for early stage disease. Numerous randomized studies have shown medical equivalence when mastectomy is compared to lumpectomy followed by radiotherapy for the local management of this common problem. With an increased emphasis on patient involvement in the therapeutic decision making process, it is important to identify and quantify any unforeseen risks of the conservation approach. One concern that has been raised is the question of radiation- related contralateral breast cancer after breast radiotherapy. Although most studies do not show statistically significant evidence that patients treated with breast radiotherapy are at increased risk of developing contralateral breast cancer when compared to control groups treated with mastectomy alone, there are clear data showing the amount of scattered radiation absorbed by the contralateral breast during a routine course of breast radiotherapy is considerable (several Gy) and is therefore within the range where one might be concerned about radiogenic contralateral tumors. While radiation related risks of contralateral breast cancer appear to be small enough to be statistically insignificant for the majority of patients, there may exist a smaller subset which, for genetic or environmental reasons, is at special risk for scatter related second tumors. If such a group could be predicted, it would seem appropriate to offer either special counselling or special prevention procedures aimed at mitigating this second tumor risk. The use of genetic testing, detailed analysis of breast cancer family history, and the identification of patients who acquired their first breast cancer at a very early age may all be candidate screening procedures useful in identifying such at- risk groups. Since some risk mitigation strategies are convenient and easy to utilize, it makes sense to follow the classic 'ALARA' (as low as reasonably

  15. PET scan for breast cancer

    Science.gov (United States)

    ... radioactive substance (called a tracer) to look for breast cancer. This tracer can help identify areas of cancer ... only after a woman has been diagnosed with breast cancer. It is done to see if the cancer ...

  16. Breast cancer and HIV

    African Journals Online (AJOL)

    Intuition might dictate that the outcome of both surgical and adjuvant treatment of breast cancer in these patients would be poor because of the effect on immunity. We recently published a prospective cohort study which compared the treatment outcomes of breast cancer in HIV- infected and -uninfected patients.3 This was ...

  17. Male breast cancer

    DEFF Research Database (Denmark)

    Lautrup, Marianne D; Thorup, Signe S; Jensen, Vibeke

    2018-01-01

    OBJECTIVE: Describe prognostic parameters of Danish male breast cancer patients (MBCP) diagnosed from 1980-2009. Determine all-cause mortality compared to the general male population and analyze survival/mortality compared with Danish female breast cancer patients (FBCP) in the same period...

  18. CDC Vital Signs: Breast Cancer

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  19. Genotypic and phenotypic analysis of familial male breast cancer shows under representation of the HER2 and basal subtypes in BRCA-associated carcinomas

    International Nuclear Information System (INIS)

    Deb, Siddhartha; Jene, Nicholas; Fox, Stephen B

    2012-01-01

    Male breast cancer (MBC) is an uncommon and relatively uncharacterised disease accounting for <1% of all breast cancers. A significant proportion occurs in families with a history of breast cancer and in particular those carrying BRCA2 mutations. Here we describe clinicopathological features and genomic BRCA1 and BRCA2 mutation status in a large cohort of familial MBCs. Cases (n=60) included 3 BRCA1 and 25 BRCA2 mutation carries, and 32 non-BRCA1/2 (BRCAX) carriers with strong family histories of breast cancer. The cohort was examined with respect to mutation status, clinicopathological parameters including TNM staging, grade, histological subtype and intrinsic phenotype. Compared to the general population, MBC incidence was higher in all subgroups. In contrast to female breast cancer (FBC) there was greater representation of BRCA2 tumours (41.7% vs 8.3%, p=0.0008) and underrepresentation of BRCA1 tumours (5.0% vs 14.4%, p=0.0001). There was no correlation between mutation status and age of onset, disease specific survival (DSS) or other clincopathological factors. Comparison with sporadic MBC studies showed similar clinicopathological features. Prognostic variables affecting DSS included primary tumour size (p=0.003, HR:4.26 95%CI 1.63-11.11), age (p=0.002, HR:4.09 95%CI 1.65-10.12), lymphovascular (p=0.019, HR:3.25 95%CI 1.21-8.74) and perineural invasion (p=0.027, HR:2.82 95%CI 1.13-7.06). Unlike familial FBC, the histological subtypes seen in familial MBC were more similar to those seen in sporadic MBC with 46 (76.7%) pure invasive ductal carcinoma of no special type (IDC-NST), 2 (3.3%) invasive lobular carcinomas and 4 (6.7%) invasive papillary carcinoma. A further 8 (13.3%) IDC-NST had foci of micropapillary differentiation, with a strong trend for co-occurrence in BRCA2 carriers (p=0.058). Most tumours were of the luminal phenotype (89.7%), with infrequent HER2 (8.6%) and basal (1.7%) phenotype tumours seen. MBC in BRCA1/2 carriers and BRCAX families is

  20. [Fibrocystic breast disease--breast cancer sequence].

    Science.gov (United States)

    Habor, V; Habor, A; Copotoiu, C; Panţîru, A

    2010-01-01

    Fibrocystic breast disease has developed a major issue: the breast cancer sequence. Its involvement regarding the increse of breast cancer risk has 2 aspects: it may be either the marker of a prone tissue or a premalignant hystological deffect. Difficult differential diagnosis of benign proliferative breast lession and carcinoma led to the idea of sequency between the two: cancer does not initiate on normal mammary epithelia; it takes several proliferative stages for it to occur. In our series we analized a number of 677 breast surgical procedures where the pathologic examination reveals 115 cases (17%) of coexistence between cancer and fibrocystic breast disease. This aspect has proved to be related to earlier debut of breast cancer, suggesting that epithelial hyperplasia is a risk factor for breast cancer.

  1. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    Science.gov (United States)

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy. © 2016 UICC.

  2. Compensatory functions and interdependency of the DNA-binding domain of BRCA2 with the BRCA1-PALB2-BRCA2 complex.

    Science.gov (United States)

    Al Abo, Muthana; Dejsuphong, Donniphat; Hirota, Kouji; Yonetani, Yasukazu; Yamazoe, Mitsuyoshi; Kurumizaka, Hitoshi; Takeda, Shunichi

    2014-02-01

    BRCA1, BRCA2, and PALB2 are key players in cellular tolerance to chemotherapeutic agents, including camptothecin, cisplatin, and PARP inhibitor. The N-terminal segment of BRCA2 interacts with PALB2, thus contributing to the formation of the BRCA1-PALB2-BRCA2 complex. To understand the role played by BRCA2 in this complex, we deleted its N-terminal segment and generated BRCA2(Δ)(N) mutant cells. Although previous studies have suggested that BRCA1-PALB2 plays a role in the recruitment of BRCA2 to DNA-damage sites, BRCA2(Δ)(N) mutant cells displayed a considerably milder phenotype than did BRCA2(-/-) null-deficient cells. We hypothesized that the DNA-binding domain (DBD) of BRCA2 might compensate for a defect in BRCA2(ΔN) that prevented stable interaction with PALB2. To test this hypothesis, we disrupted the DBD of BRCA2 in wild-type and BRCA2(Δ)(N) cells. Remarkably, although the resulting BRCA2(Δ)(DBD) cells displayed a moderate phenotype, the BRCA2(Δ)(N+ΔDBD) cells displayed a very severe phenotype, as did the BRCA2(-/-) cells, suggesting that the N-terminal segment and the DBD play a substantially overlapping role in the functionality of BRCA2. We also showed that the formation of both the BRCA1-PALB2-BRCA2 complex and the DBD is required for efficient recruitment of BRCA2 to DNA-damage sites. Our study revealed the essential role played by both the BRCA1-PALB2-BRCA2 complex and the DBD in the functionality of BRCA2, as each can compensate for the other in the recruitment of BRCA2 to DNA-damage sites. This knowledge adds to our ability to accurately predict the efficacy of antimalignant therapies for patients carrying mutations in the BRCA2 gene.

  3. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    Science.gov (United States)

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  4. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets, and laptops at night.

    Science.gov (United States)

    Mortazavi, Seyed Ali Reza; Mortazavi, Seyed Mohammad Javad

    2018-02-01

    Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure to different levels of radiofrequency electromagnetic fields (RF-EMFs) such as mobile phones, mobile base stations, mobile phone jammers, laptop computers, and radars. Moreover, over the past several years, we investigated the health effects of exposure to the short wavelength visible light in the blue region emitted from digital screens. The reduction of melatonin secretion after exposure to blue light emitted from smartphone's screen has been reported to be associated with the negative impact of smartphone use at night on sleep. We have shown that both the blue light and RF-EMFs generated by mobile phones are linked to the disruption of the circadian rhythm in people who use their phones at night. Therefore, if women with hereditary breast cancer predispositions use their smartphones, tablets and laptops at night, disrupted circadian rhythms (suppression of melatonin caused by exposure to blue light emitted from the digital screens), amplifies the risk of breast cancer. It can be concluded that women who carry mutated BRCA1 or BRCA2, or women with family history of breast cancer should avoid using their smartphones, tablets and laptops at night. Using sunglasses with amber lenses, or smartphone applications which decrease the users' exposure to blue light before sleep, at least to some extent, can decrease the risk of circadian rhythm disruption and breast cancer.

  5. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night

    Directory of Open Access Journals (Sweden)

    Seyed Ali Reza Mortazavi

    2018-02-01

    Full Text Available Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure to different levels of radiofrequency electromagnetic fields (RF-EMFs such as mobile phones, mobile base stations, mobile phone jammers, laptop computers, and radars. Moreover, over the past several years, we investigated the health effects of exposure to the short wavelength visible light in the blue region emitted from digital screens. The reduction of melatonin secretion after exposure to blue light emitted from smartphone’s screen has been reported to be associated with the negative impact of smartphone use at night on sleep. We have shown that both the blue light and RF-EMFs generated by mobile phones are linked to the disruption of the circadian rhythm in people who use their phones at night. Therefore, if women with hereditary breast cancer predispositions use their smartphones, tablets and laptops at night, disrupted circadian rhythms (suppression of melatonin caused by exposure to blue light emitted from the digital screens, amplifies the risk of breast cancer. It can be concluded that women who carry mutated BRCA1 or BRCA2, or women with family history of breast cancer should avoid using their smartphones, tablets and laptops at night. Using sunglasses with amber lenses, or smartphone applications which decrease the users’ exposure to blue light before sleep, at least to some extent, can decrease the risk of circadian rhythm disruption and breast cancer.

  6. Docosahexaenoic Acid in Preventing Recurrence in Breast Cancer Survivors

    Science.gov (United States)

    2016-06-20

    Benign Breast Neoplasm; Ductal Breast Carcinoma In Situ; Invasive Breast Carcinoma; Lobular Breast Carcinoma In Situ; Paget Disease of the Breast; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  7. Drugs Approved for Breast Cancer

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Breast Cancer This page lists cancer drugs approved by the ... are not listed here. Drugs Approved to Prevent Breast Cancer Evista (Raloxifene Hydrochloride) Raloxifene Hydrochloride Tamoxifen Citrate Drugs ...

  8. Broccoli Sprout Extract in Treating Patients With Breast Cancer

    Science.gov (United States)

    2018-06-04

    Ductal Breast Carcinoma; Ductal Breast Carcinoma In Situ; Estrogen Receptor Negative; Estrogen Receptor Positive; Invasive Breast Carcinoma; Lobular Breast Carcinoma; Postmenopausal; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer

  9. Frequency of the ATM IVS10-6T→G variant in Australian multiple-case breast cancer families

    International Nuclear Information System (INIS)

    Lindeman, Geoffrey J; Suthers, Graeme; Kirk, Judy; Hiew, Melody; Visvader, Jane E; Leary, Jennifer; Field, Michael; Gaff, Clara L; Gardner, RJ McKinlay; Trainor, Kevin; Cheetham, Glenice

    2004-01-01

    Germline mutations in the genes BRCA1 and BRCA2 account for only a proportion of hereditary breast cancer, suggesting that additional genes contribute to hereditary breast cancer. Recently a heterozygous variant in the ataxia–telangiectasia mutated (ATM) gene, IVS10-6T→G, was reported by an Australian multiple-case breast cancer family cohort study (the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer) to confer a substantial breast cancer risk. Although this variant can result in a truncated ATM product, its clinical significance as a high-penetrance breast cancer allele or its role as a low-penetrance risk-modifier is controversial. We determined the frequency of ATM IVS10-6T→G variants in a cohort of individuals affected by breast and/or ovarian cancer who underwent BRCA1 and BRCA2 genetic testing at four major Australian familial cancer clinics. Seven of 495 patients (1.4%) were heterozygous for the IVS10-6T→G variant; the carrier rate in unselected Australian women with no family history of breast cancer is reported to be 6 of 725 (0.83%) (P = 0.4). Two of the seven probands also harboured a pathogenic BRCA1 mutation and one patient had a BRCA1 unclassified variant of uncertain significance. These findings indicate that the ATM IVS10-6T→G variant does not seem to occur at a significantly higher frequency in affected individuals from high-risk families than in the general population. A role for this variant as a low-penetrance allele or as a modifying gene in association with other genes (such as BRCA1) remains possible. Routine testing for ATM IVS10-6T→G is not warranted in mutation screening of affected individuals from high-risk families

  10. Lobular breast cancer: incidence and genetic and non-genetic risk factors.

    Science.gov (United States)

    Dossus, Laure; Benusiglio, Patrick R

    2015-03-13

    While most invasive breast cancers consist of carcinomas of the ductal type, about 10% are invasive lobular carcinomas. Invasive lobular and ductal carcinomas differ with respect to risk factors. Invasive lobular carcinoma is more strongly associated with exposure to female hormones, and therefore its incidence is more subject to variation. This is illustrated by US figures during the 1987 to 2004 period: after 12 years of increases, breast cancer incidence declined steadily from 1999 to 2004, reflecting among other causes the decreasing use of menopausal hormone therapy, and these variations were stronger for invasive lobular than for invasive ductal carcinoma. Similarly, invasive lobular carcinoma is more strongly associated with early menarche, late menopause and late age at first birth. As for genetic risk factors, four high-penetrance genes are tested in clinical practice when genetic susceptibility to breast cancer is suspected, BRCA1, BRCA2, TP53 and CDH1. Germline mutations in BRCA1 and TP53 are predominantly associated with invasive ductal carcinoma, while BRCA2 mutations are associated with both ductal and lobular cancers. CDH1, the gene coding for the E-cadherin adhesion protein, is of special interest as mutations are associated with invasive lobular carcinoma, but never with ductal carcinoma. It was initially known as the main susceptibility gene for gastric cancer of the diffuse type, but the excess of breast cancers of the lobular type in CDH1 families led researchers to identify it also as a susceptibility gene for invasive lobular carcinoma. The risk of invasive lobular carcinoma is high in female mutation carriers, as about 50% are expected to develop the disease. Carriers must therefore undergo intensive breast cancer screening, with, for example, yearly magnetic resonance imaging and mammogram starting at age 30 years.

  11. Early breast cancer

    International Nuclear Information System (INIS)

    Dongen, J.A. van

    1989-01-01

    The therapy of early breast cancer has been changing during the last decennium. It requires a multi-disciplinary approach and in each of these disciplines improvements have been implemented. The result is that treatment schedules can now be adapted to specific subgroups. In this review early breast cancer is defined as operable disease, using the criteria set out by Haagensen. Emphasis is given to describing the new developments in prognostic criteria, since these form the basis for creating subgroups for specific treatment schedules. Distinction is made between the factors relating to growth rate and those relating to metastatic potential. Data on screening promises a beneficial effect of the implementation of screening in national health care programs. Important shifts are seen in treatment schedules; the place of postoperative radiotherapy after classic ablative treatment is being challenged, whereas it plays a major role in the new breast conserving therapy schedules. The data mentioned in the review suggest that a large proportion of 'operable' cases can be treated with breast conservation but details in the technique of breast conserving therapy are still under investigation. They form a major part of the coming prospective studies in breast cancer. Improvements in reconstruction techniques, creating better cosmetic results, make reconstruction more competitive with breast conserving therapy. The use of chemotherapy and endocrine manipulation in early breast cancer has now been clearly confirmed by the overview technique by the Peto-group, thanks to all efforts of individual trialists together. (orig.)

  12. Obesity and Breast Cancer.

    Science.gov (United States)

    Fortner, Renée T; Katzke, Verena; Kühn, Tilman; Kaaks, Rudolf

    The relationship between adiposity and breast cancer risk and prognosis is complex, with associations that differ depending on when body size is assessed (e.g., pre- vs. postmenopausal obesity) and when breast cancer is diagnosed (i.e., pre- vs. postmenopausal disease). Further, the impact of obesity on risk differs by tumor hormone receptor status (e.g., estrogen (ER) and progesterone (PR) receptor) and, among postmenopausal women, use of exogenous hormones (i.e., hormone replacement therapy (HRT)). In the context of these complexities, this review focuses on associations between childhood and adolescent adiposity, general adiposity, weight changes (i.e., loss and gain), abdominal adiposity, and breast cancer risk and survival. Finally, we discuss potential mechanisms linking adiposity to breast cancer.

  13. Preeclampsia and breast cancer

    DEFF Research Database (Denmark)

    Pacheco, Nadja Livia Pekkola; Andersen, Anne-Marie Nybo; Kamper-Jørgensen, Mads

    2015-01-01

    BACKGROUND: In parous women preeclampsia has been associated with reduced risk of developing breast cancer. Characteristics of births following preeclamptic pregnancies may help understand mechanisms involved in the breast cancer risk reduction inferred by preeclampsia. METHODS: We conducted...... a register-based cohort study of all Danish women giving birth during 1978-2010 (n = 778,701). The association between preeclampsia and breast cancer was evaluated overall and according to birth characteristics by means of incidence rate ratios (IRR) estimated in Poisson regression models. RESULTS: Compared...... with women with non-preeclamptic pregnancies only, women with one or more preeclamptic pregnancies were 19% significantly less likely to develop breast cancer (IRR = 0.81 [95% CI 0.72-0.93]). We found some indication of greater risk reduction in women with term births, one or more previous births...

  14. Learning about Breast Cancer

    Science.gov (United States)

    Skip to main content Learning About Breast Cancer Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  15. Breast cancer screening

    International Nuclear Information System (INIS)

    Vandenbroucke, A.

    1987-01-01

    Many studies have shown that breast cancer screening is able to reduce breast cancer mortality, including the HIP study, the Swedish Trial and the Netherlands studies. Mammography is considered as the most effective method for breast cancer screening but it might be unfeasible for some reasons: - the population acceptability of the method might be low. Indeed, most populations of the South of Europe are less compliant to mass screening than populations of the North of Europe; - the medical equipment and personnel - radiologists and pathologists - might be insufficient; - it might be too costly for the National Health Service, specially where the incidence rate of breast cancer is relatively low (i.e. Greece, Portugal). The validity of screening tests is judged by their sensitivity and their specificity

  16. 14. Breast cancer prevention.

    Science.gov (United States)

    Salih, A K; Fentiman, I S

    2002-05-01

    Increased risk of breast cancer may result from potentially modifiable causes such as endogenous hormone levels, obesity, HRT, and non-lactation, or non-modifiable factors including genetic susceptibility and increasing age. The Gail model, based on known factors, may be useful for estimating lifetime risk in some individuals, but those risk factors that are easier to modify may have a limited impact on the totality of breast cancer. Tamoxifen prevention still remains contentious, with a significant reduction in risk of breast cancer in women given tamoxifen in the NSABP P1 study but no effect in the Italian and Royal Marsden trials. Raloxifene, tested in the MORE trial, reduced the incidence of breast cancer by 65% but this was restricted to oestrogen receptor positive tumours. Lifestyle factors such as diet, obesity, exercise and age at first full term pregnancy and number of pregnancies have a mild to moderate impact on risk, so may have little effect on the incidence of breast cancer. Reduction of alcohol intake could lead to a modest reduction in the risk of breast cancer but possibly adversely affect other diseases. Fat reduction and GnRH analogue reduce mammographic density but have not yet been shown to affect risk. For women with BRCA1/2 mutation, options include unproven surveillance and prophylactic mastectomy with an unquantified risk reduction. Interesting new candidates for chemoprevention include aromatase inhibitors, new generation SERMs, demethylating agents, non-selective COX inhibitors, tyrosine kinase inhibitors and polyamine synthetic inhibitors.

  17. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations.

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D; Eeles, Rosalind A; Chatterjee, Nilanjan; Schumacher, Fredrick R; Schildkraut, Joellen M; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Amin Al Olama, Ali; Berndt, Sonja I; Giovannucci, Edward L; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J; Stevens, Victoria L; Wiklund, Fredrik; Willett, Walter C; Goode, Ellen L; Permuth, Jennifer B; Risch, Harvey A; Reid, Brett M; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T; Chang-Claude, Jenny; Hudson, Thomas J; Kocarnik, Jonathan K; Newcomb, Polly A; Schoen, Robert E; Slattery, Martha L; White, Emily; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-Silva, Isabel; Eliassen, A Heather; Figueroa, Jonine D; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A; Nevanlinna, Heli; Peeters, Petra H; Peto, Julian; Prentice, Ross L; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F; Schmutzler, Rita K; Southey, Melissa C; Tamimi, Rulla; Travis, Ruth C; Turnbull, Clare; Uitterlinden, Andre G; Wang, Zhaoming; Whittemore, Alice S; Yang, Xiaohong R; Zheng, Wei; Buchanan, Daniel D; Casey, Graham; Conti, David V; Edlund, Christopher K; Gallinger, Steven; Haile, Robert W; Jenkins, Mark; Le Marchand, Loïc; Li, Li; Lindor, Noralene M; Schmit, Stephanie L; Thibodeau, Stephen N; Woods, Michael O; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N; Stefansson, Kari; Sulem, Patrick; Chen, Y Ann; Tyrer, Jonathan P; Christiani, David C; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J; Gong, Jian; Peters, Ulrike; Gruber, Stephen B; Amos, Christopher I; Sellers, Thomas A; Easton, Douglas F; Hunter, David J; Haiman, Christopher A; Henderson, Brian E; Hung, Rayjean J

    2016-09-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Reproductive History and Breast Cancer Risk

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... 4 ). This risk reduction is limited to hormone receptor –positive breast cancer; age at first full-term ...

  19. Human Breast Cancer Histoid

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R.; Ingram, Marylou

    2011-01-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue. PMID:22034518

  20. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...... from several 100 kb, including large flanking regions, to rearrangements, allowing convenient design...

  1. Decision-making process of women carrying a BRCA1 or BRCA2 mutation who have chosen prophylactic mastectomy.

    Science.gov (United States)

    McQuirter, Megan; Castiglia, Luisa Luciani; Loiselle, Carmen G; Wong, Nora

    2010-05-01

    To explore the decision-making process of women with a BRCA1 or BRCA2 gene mutation who have chosen to undergo prophylactic mastectomy. Cross-sectional, qualitative, descriptive design. Participants were recruited from an outpatient cancer prevention center in the oncology and medical genetics departments of a large university-affiliated hospital in Montreal, Quebec, Canada. 10 women carrying a BRCA1 or BRCA2 mutation; 8 previously had had a prophylactic mastectomy and 2 were scheduled for surgery at the time of study. Semistructured, in-depth interviews were conducted. Field notes were written and audiotapes were transcribed verbatim. The textual data were coded and analyzed. Decision-making process for prophylactic mastectomy. Two broad findings emerged. First, several intrapersonal and contextual factors interacted throughout the process to move women either closer to choosing a prophylactic mastectomy or further from the decision. Second, all women reported experiencing a "pivotal point," an emotionally charged event when the decision to have a prophylactic mastectomy became definitive. Pivotal points for patients included either receiving a positive result for a genetic mutation or a breast cancer diagnosis for herself or a family member in the context of positive mutation status. Decision making about prophylactic mastectomy was an affective and intuitive process incorporating contexts and their relations rather than a rational, straight-forward process of weighing pros and cons. Supportive interventions for women in this population should explicitly address the individual and the inter-relationships of contextual factors that shape decision making about prophylactic mastectomy while recognizing important affective components involved.

  2. Common breast cancer risk variants in the post-COGS era: a comprehensive review.

    Science.gov (United States)

    Maxwell, Kara N; Nathanson, Katherine L

    2013-12-20

    Breast cancer has a strong heritable component, with approximately 15% of cases exhibiting a family history of the disease. Mutations in genes such as BRCA1, BRCA2 and TP53 lead to autosomal dominant inherited cancer susceptibility and confer a high lifetime risk of breast cancers. Identification of mutations in these genes through clinical genetic testing enables patients to undergo screening and prevention strategies, some of which provide overall survival benefit. In addition, a number of mutant alleles have been identified in genes such as CHEK2, PALB2, ATM and BRIP1, which often display incomplete penetrance and confer moderate lifetime risks of breast cancer. Studies are underway to determine how to use the identification of mutations in these genes to guide clinical practice. Altogether, however, mutations in high and moderate penetrance genes probably account for approximately 25% of familial breast cancer risk; the remainder may be due to mutations in as yet unidentified genes or lower penetrance variants. Common low penetrance alleles, which have been mainly identified through genome-wide association studies (GWAS), are generally present at 10 to 50% population frequencies and confer less than 1.5-fold increases in breast cancer risk. A number of single nucleotide polymorphisms (SNPs) have been identified and risk associations extensively replicated in populations of European ancestry, the number of which has substantially increased as a result of GWAS performed by the Collaborative Oncological Gene-environment Study consortium. It is now estimated that 28% of familial breast cancer risk is explained by common breast cancer susceptibility loci. In some cases, SNP associations may be specific to different subsets of women with breast cancer, as defined by ethnicity or estrogen receptor status. Although not yet clinically established, it is hoped that identification of common risk variants may eventually allow identification of women at higher risk of

  3. Viruses and Breast Cancer

    Science.gov (United States)

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  4. Viruses and Breast Cancer

    International Nuclear Information System (INIS)

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix

  5. Viruses and Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, James S., E-mail: james.lawson@unsw.edu.au; Heng, Benjamin [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney (Australia)

    2010-04-30

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix.

  6. Expression of the breast cancer resistance protein in breast cancer

    NARCIS (Netherlands)

    Faneyte, Ian F.; Kristel, Petra M. P.; Maliepaard, Marc; Scheffer, George L.; Scheper, Rik J.; Schellens, Jan H. M.; van de Vijver, Marc J.

    2002-01-01

    PURPOSE: The breast cancer resistance protein (BCRP) is involved in in vitro multidrug resistance and was first identified in the breast cancer cell line MCF7/AdrVp. The aim of this study was to investigate the role of BCRP in resistance of breast cancer to anthracycline treatment. EXPERIMENTAL

  7. SNP-SNP interactions in breast cancer susceptibility

    International Nuclear Information System (INIS)

    Onay, Venüs Ümmiye; Ozcelik, Hilmi; Briollais, Laurent; Knight, Julia A; Shi, Ellen; Wang, Yuanyuan; Wells, Sean; Li, Hong; Rajendram, Isaac; Andrulis, Irene L

    2006-01-01

    Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described

  8. SNP-SNP interactions in breast cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Wang Yuanyuan

    2006-05-01

    Full Text Available Abstract Background Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2 are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. Methods In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR principle. Results None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082A], cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val], cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln], and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val] pathways. Conclusion The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their

  9. Effect of BRCA germline mutations on breast cancer prognosis

    Science.gov (United States)

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  10. Assessment of SLX4 Mutations in Hereditary Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Sohela Shah

    Full Text Available SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose polymerase (PARP inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA, FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823* mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF1%], of which 22 (5 novel and 17 rare were predicted to be damaging by Polyphen2 (score = 0.65-1. We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC, campthothecin (CPT, and PARP inhibitor (Olaparib the p.W823* SLX4 mutant failed to do so.Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.

  11. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  12. Vitamin D and Breast Cancer

    National Research Council Canada - National Science Library

    Janowsky, Esther

    1997-01-01

    The purpose of our current work is to determine whether there are differences in blood levels of 1,25-dihydroxy- vitamin D between women with breast cancer and two control groups of women without breast cancer...

  13. Vitamin D and Breast Cancer

    OpenAIRE

    Shao, Theresa; Klein, Paula; Grossbard, Michael L.

    2012-01-01

    Vitamin D metabolism and its mechanism of action, the current evidence on the relationship between vitamin D and breast cancer, and the optimal dosing of vitamin D for breast cancer prevention are summarized.

  14. Risks of Breast Cancer Screening

    Science.gov (United States)

    ... is small. Different factors increase or decrease the risk of breast cancer. Anything that increases your chance ... magnetic resonance imaging) in women with a high risk of breast cancer MRI is a procedure that ...

  15. "Guys Don't Have Breasts": The Lived Experience of Men Who Have BRCA Gene Mutations and Are at Risk for Male Breast Cancer.

    Science.gov (United States)

    Skop, Michelle; Lorentz, Justin; Jassi, Mobin; Vesprini, Danny; Einstein, Gillian

    2018-02-01

    Men with BRCA1 or BRCA2 gene mutations are at increased risk of developing breast cancer and may have an indication for breast cancer screening using mammography. Since breast cancer is often viewed as a woman's disease, visibilizing and understanding men's experience of having a BRCA mutation and specifically, of screening for breast cancer through mammography, were the objectives of this research study. The theoretical framework of interpretive phenomenology guided the process of data collection, coding, and analysis. Phenomenology is both a philosophy and research method which focuses on understanding the nature of experience from the perspectives of people experiencing a phenomenon, the essence of and commonalities among people's experiences, and the ways in which people experience the world through their bodies. Data were collected via in-depth interviews with a purposive sample of 15 male participants recruited from the Male Oncology Research and Education (MORE) Program. This article reports findings about participants' use of gender-specific language to describe their breasts, awareness of the ways in which their bodies changed overtime, and experiences of undergoing mammograms. This study is the first to describe men with BRCA's perceptions of their breasts and experiences of mammography in a high-risk cancer screening clinic. This study sheds light on an under-researched area-breasts and masculinities-and could potentially lead to improved clinical understanding of men's embodied experiences of BRCA, as well as suggestions for improving the delivery of male breast cancer screening services.

  16. The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity

    OpenAIRE

    Colombo, M. (Mara); Lòpez-Perolio, I. (Irene); Meeks, Huong D.; Caleca, L. (Laura); Parsons, Marilyn; Li, H. (Hongyan); De Vecchi, G. (Giovanna); Tudini, E. (Emma); Foglia, C. (Claudia); Mondini, P. (Patrizia); Manoukian, Siranoush; Behar, R. (Raquel); Garcia, E.B.G.; Meindl, Alfons; Montagna, M. (Marco)

    2018-01-01

    textabstractAlthough the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-oc...

  17. BREAST RECONSTRUCTIONS AFTER BREAST CANCER TREATING

    Directory of Open Access Journals (Sweden)

    Erik Vrabič

    2018-02-01

    Full Text Available Background. Breasts are an important symbol of physical beauty, feminity, mothering and sexual desire through the entire history of mankind. Lost of the whole or part of the breast is functional and aesthetic disturbance for woman. It is understandable, that the woman, who is concerned over breast loss, is as appropriate as another person´s concern over the loss of a limb or other body part. Before the 1960, breast reconstruction was considered as a dangerous procedure and it was almost prohibited. Considering the psychological importance of the breast in modern society, the possibility of breast reconstruction for the woman about to undergo a mastectomy is a comforting alternative. We can perform breast reconstruction with autologous tissue (autologous reconstruction, with breast implants and combination of both methods. For autologous reconstruction we can use local tissue (local flaps, or tissue from distant parts of the body (free vascular tissue transfer. Tissue expansion must be performed first, in many cases of breast reconstructions with breast implants. Conclusions. Possibility of breast reconstruction made a big progress last 3 decades. Today we are able to reconstruct almost every defect of the breast and the entire breast. Breast reconstruction rise the quality of life for breast cancer patients. Breast reconstruction is a team work of experts from many medicine specialites. In Slovenia we can offer breast reconstruction for breast cancer patients in Ljubljana, where plastic surgeons from Clinical Department for Plastic Surgery and Burns cooperate with oncologic surgeons. Ten years ago a similar cooperation between plastic surgeons and surgeons of the Centre for Breast Diseases was established in Maribor.

  18. Breast Cancer Basics and You

    Science.gov (United States)

    ... page please turn JavaScript on. Feature: Screening For Breast Cancer Breast Cancer Basics and You Past Issues / Summer 2014 Table ... more than 232,670 new cases of female breast cancer in the United States in 2014. More than ...

  19. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement.

    Science.gov (United States)

    Siu, Albert L

    2016-02-16

    Update of the 2009 U.S. Preventive Services Task Force (USPSTF) recommendation on screening for breast cancer. The USPSTF reviewed the evidence on the following: effectiveness of breast cancer screening in reducing breast cancer-specific and all-cause mortality, as well as the incidence of advanced breast cancer and treatment-related morbidity; harms of breast cancer screening; test performance characteristics of digital breast tomosynthesis as a primary screening strategy; and adjunctive screening in women with increased breast density. In addition, the USPSTF reviewed comparative decision models on optimal starting and stopping ages and intervals for screening mammography; how breast density, breast cancer risk, and comorbidity level affect the balance of benefit and harms of screening mammography; and the number of radiation-induced breast cancer cases and deaths associated with different screening mammography strategies over the course of a woman's lifetime. This recommendation applies to asymptomatic women aged 40 years or older who do not have preexisting breast cancer or a previously diagnosed high-risk breast lesion and who are not at high risk for breast cancer because of a known underlying genetic mutation (such as a BRCA1 or BRCA2 gene mutation or other familial breast cancer syndrome) or a history of chest radiation at a young age. The USPSTF recommends biennial screening mammography for women aged 50 to 74 years. (B recommendation) The decision to start screening mammography in women prior to age 50 years should be an individual one. Women who place a higher value on the potential benefit than the potential harms may choose to begin biennial screening between the ages of 40 and 49 years. (C recommendation) The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening mammography in women aged 75 years or older. (I statement) The USPSTF concludes that the current evidence is insufficient to

  20. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fred; Schildkraut, Joellen; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Olama, Ali Amin Al; Berndt, Sonja I; Giovannucci, Edward; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter; Goode, Ellen L.; Permuth, Jennifer; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma’en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. PMID:27197191

  1. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families

    Directory of Open Access Journals (Sweden)

    Novakovic Srdjan

    2008-09-01

    Full Text Available Abstract Background Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations. The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families. Methods The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i probands with at least two first degree relatives with breast and ovarian cancer; (ii probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family. Results Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%. Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene. The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of

  2. Predictive value of BRCA1/2 mRNA expression for response to neoadjuvant chemotherapy in BRCA-negative breast cancers.

    Science.gov (United States)

    Xu, Ye; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-01-01

    It is well known that BRCA1 and BRCA2 play a central role in DNA repair, but the relationship between BRCA1 and BRCA2 mRNA expression and response to neoadjuvant chemotherapy in sporadic breast cancer patients has not been well established. Here, we investigate the association between BRCA1 or BRCA2 mRNA expression levels and pathological response in 674 BRCA1/2 mutation-negative breast cancer patients who received neoadjuvant chemotherapy. BRCA1 and BRCA2 mRNA expression were assessed using quantitative real-time polymerase chain reaction in core biopsy breast cancer tissue obtained prior to the initiation of neoadjuvant chemotherapy. A total 129 patients (19.1%) achieved pathological complete response (pCR) after neoadjuvant chemotherapy. Among patients treated with anthracycline-based chemotherapy (n = 531), BRCA1 mRNA low expression patients had a significantly higher pCR rate than intermediate or high BRCA1 mRNA expression groups (24.6% vs 16.8% or 14.0%, P = .031) and retained borderline significance (OR = 1.54, 95% CI = 0.93-2.56, P = .094) in multivariate analysis. Among the 129 patients who received a taxane-based regimen, pCR rate showed no differences in BRCA1 low, intermediate, and high mRNA level subgroups (19.6%, 26.8% and 21.4%, respectively; P = .71). BRCA2 mRNA level was not associated with pCR rate in the anthracyline-based treated subgroup (P = .60) or the taxane-based regimen subgroup (P = .82). Taken together, our findings suggested that BRCA1 mRNA expression could be used as a predictive marker in BRCA1/2 mutation-negative breast cancer patients who received neoadjuvant anthracycline-based treatment. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Breast cancer in systemic lupus

    DEFF Research Database (Denmark)

    Bernatsky, S.; Ramsey-Goldman, R.; Petri, M.

    2017-01-01

    Objective There is a decreased breast cancer risk in systemic lupus erythematosus (SLE) versus the general population. We assessed a large sample of SLE patients, evaluating demographic and clinical characteristics and breast cancer risk. Methods We performed case-cohort analyses within a multi......-center international SLE sample. We calculated the breast cancer hazard ratio (HR) in female SLE patients, relative to demographics, reproductive history, family history of breast cancer, and time-dependent measures of anti-dsDNA positivity, cumulative disease activity, and drugs, adjusted for SLE duration. Results...... There were 86 SLE breast cancers and 4498 female SLE cancer-free controls. Patients were followed on average for 7.6 years. Versus controls, SLE breast cancer cases tended to be white and older. Breast cancer cases were similar to controls regarding anti-dsDNA positivity, disease activity, and most drug...

  4. Inheritance of proliferative breast disease in breast cancer kindreds

    International Nuclear Information System (INIS)

    Skolnick, M.H.; Cannon-Albright, L.A.; Goldgar, D.E.; Ward, J.H.; Marshall, C.J.; Schumann, G.B.; Hogle, H.; McWhorter, W.P.; Wright, E.C.; Tran, T.D.; Bishop, D.T.; Kushner, J.P.; Eyre, H.J.

    1990-01-01

    Previous studies have emphasized that genetic susceptibility to breast cancer is rare and is expressed primarily as premenopausal breast cancer, bilateral breast cancer, or both. Proliferative breast disease (PBD) is a significant risk factor for the development of breast cancer and appears to be a precursor lesion. PBD and breast cancer were studied in 103 women from 20 kindreds that were selected for the presence of two first degree relatives with breast cancer and in 31 control women. Physical examination, screening mammography, and four-quadrant fine-needle breast aspirates were performed. Cytologic analysis of breast aspirates revealed PBD in 35% of clinically normal female first degree relatives of breast cancer cases and in 13% of controls. Genetic analysis suggests that genetic susceptibility causes both PBD and breast cancer in these kindreds. This study supports the hypothesis that this susceptibility is responsible for a considerable portion of breast cancer, including unilateral and postmenopausal breast cancer

  5. Accelerated Radiation Therapy After Surgery in Treating Patients With Breast Cancer

    Science.gov (United States)

    2017-11-15

    Inflammatory Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Tubular Ductal Breast Carcinoma

  6. Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

    Directory of Open Access Journals (Sweden)

    Irene Catucci

    Full Text Available Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population.

  7. Tailor-made diagnosis and therapy of breast cancer for familial predisposed women

    International Nuclear Information System (INIS)

    Frankenberg-Schwager, M.

    2003-01-01

    Familial predisposed women heterozygous for an inherited mutation in a tumor suppressor gene (such as BRCA1+/- or BRCA2+/-) are at a higher risk for loss of tumor suppressor gene function than normal women and may develop breast cancer (BRCA-/-). For early detection of breast cancer these women are advised to start mammography screening at an early age and at annual intervals. Mammography X-rays were shown to enhance neoplastic transformation and mutation in human cell lines. Based on the mutation data it is estimated that a single mammogram confers loss of BRCA function (BRCA-/-) in at least several thousand breast epithelial target cells of a predisposed woman. BRCA1 and BRCA2 genes belong to a group of genes required for the error-free repair of DNA double-strand breaks (DSBs) by homologous recombination. This pathway is impaired in BRCA1-/- or BRCA2-/- cells and DSBs are channeled into potentially error-prone pathways such as non-homologous end joining (NHEJ) and single-strand annealing (SSA). BRCA-deficient cells show a mutator phenotype characterized by an increasing genetic instability. This seems to be the mechanistic explanation for the enhanced risk of breast cancer in predisposed women. Consequently, for the recommended early and frequent screening of predisposed women the induction of DSBs by mammography X-rays should be avoided. Instead, a diagnostic tool not associated with radiation, such as NM imaging, is preferable, which also provides a significantly higher accuracy than conventional imaging to detect breast cancer in high-risk women. BRCA-deficient cells are extremely sensitive to DNA-DNA crosslinking agents. Experimental evidence suggests that repair of DNA interstrand crosslinks occurs in the S-phase of the cell cycle and DSBs are formed as repair intermediates. These can be repaired by homologous recombination between sister chromatids in normal but not in BRCA-deficient cells. Consequently, DNA crosslinking agents appear to be the tailor

  8. Breast cancer screening with digital breast tomosynthesis.

    Science.gov (United States)

    Skaane, Per

    2017-01-01

    To give an overview of studies comparing full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) in breast cancer screening. The implementation of tomosynthesis in breast imaging is rapidly increasing world-wide. Experimental clinical studies of relevance for DBT screening have shown that tomosynthesis might have a great potential in breast cancer screening, although most of these retrospective reading studies are based on small populations, so that final conclusions are difficult to draw from individual reports. Several retrospective studies and three prospective trials on tomosynthesis in breast cancer screening have been published so far, confirming the great potential of DBT in mammography screening. The main results of these screening studies are presented. The retrospective screening studies from USA have all shown a significant decrease in the recall rate using DBT as adjunct to mammography. Most of these studies have also shown an increase in the cancer detection rate, and the non-significant results in some studies might be explained by a lack of statistical power. All the three prospective European trials have shown a significant increase in the cancer detection rate. The retrospective and the prospective screening studies comparing FFDM and DBT have all demonstrated that tomosynthesis has a great potential for improving breast cancer screening. DBT should be regarded as a better mammogram that could improve or overcome limitations of the conventional mammography, and tomosynthesis might be considered as the new technique in the next future of breast cancer screening.

  9. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.

    Science.gov (United States)

    Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik

    2016-11-30

    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.

  10. breast cancer screening in

    African Journals Online (AJOL)

    impact of the increasing incidence and mortality due to breast cancer. ... ported to be increasing in sub-Saharan Africa. ... A lump with more than three quarters of its margin being .... accounted for 36.8% of the false negative cases rate. The.

  11. Breast Cancer - Early Diagnosis

    Centers for Disease Control (CDC) Podcasts

    2011-04-28

    This podcast answers a listener's question about how to tell if she has breast cancer.  Created: 4/28/2011 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 4/28/2011.

  12. Regulation of Rad51-Mediated Homologous Recombination by BRCA2, DSS1 and RAD52

    DEFF Research Database (Denmark)

    Rants, Louise Olthaver Juhl

    Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR is homolog......Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR...... is homologous strand exchange directed by the RecA-related recombinase Rad51. BRCA2 participates in HR by mediating Rad51 homology-directed repair. Both BRCA2 and Rad51 are essential for HR, DNA repair, and the maintenance of genome stability. In the present study, we seek to understand the mechanism of BRCA2...... with RAD52-mediated repair at sites of CPT-induced DNA damage. The synthetic lethality approach using RAD52 small molecule inhibitors in brca-deficient cancers is a promising therapeutic strategy for cancer treatment....

  13. Early diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Semiglazov, V.F.

    1989-01-01

    Modern data are presentd on epidemology etiopathogensis and statistics of breast cancer. Home and international clinical and histological classifications is given. Much attention is paid to the methods for early diagnosis of pretumor diseases and breast cancer: clinical roentgenomammography, thrmography and computerized tomomammography. The role of self-examination in cancer early detection has been analyzed. Special attention is paid to system of detection of minimal and unpalpable form of breast cancer, screening of these tumors. 113 refs.; 60 figs.; 6 tabs

  14. No difference in the frequency of locus-specific methylation in the peripheral blood DNA of women diagnosed with breast cancer and age-matched controls

    DEFF Research Database (Denmark)

    Wojdacz, Tomasz K; Thestrup, Britta Boserup; Cold, Søren

    2011-01-01

    with no signs of breast cancer. No significant differences in the frequency of methylation of the above genes were found between cases and controls in our study. Hence, testing for the presence of methylation of cancer-related genes in PBL DNA from women diagnosed with sporadic breast cancer and classified...... might predispose for cancer development. Here, we have used the methlyation-sensitive high-resolution melting approach to examine the methylation status of the BRCA1, BRCA2, APC, RASSF1A and RARβ2 genes in PBLs of a group of women diagnosed with breast cancer, and an age-matched control group......, to the pathology of different diseases, remains open. Recently, a number of studies addressed the question of the prevalence of aberrant methylation of cancer-related genes in peripheral blood leukocyte (PBL) DNA and indicated a strong possibility that the presence of constitutional methylation of different genes...

  15. Opioids and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2015-01-01

    BACKGROUND: Opioids may alter immune function, thereby potentially affecting cancer recurrence. The authors investigated the association between postdiagnosis opioid use and breast cancer recurrence. METHODS: Patients with incident, early stage breast cancer who were diagnosed during 1996 through...... 2008 in Denmark were identified from the Danish Breast Cancer Cooperative Group Registry. Opioid prescriptions were ascertained from the Danish National Prescription Registry. Follow-up began on the date of primary surgery for breast cancer and continued until breast cancer recurrence, death......, emigration, 10 years, or July 31, 2013, whichever occurred first. Cox regression models were used to compute hazard ratios and 95% confidence intervals associating breast cancer recurrence with opioid prescription use overall and by opioid type and strength, immunosuppressive effect, chronic use (≥6 months...

  16. Breast cancer risk and 6q22.33: combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2.

    Directory of Open Access Journals (Sweden)

    Tomas Kirchhoff

    Full Text Available Recently, a locus on chromosome 6q22.33 (rs2180341 was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC. In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA. Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR = 1.03, 95% CI 1.00-1.06, p = 0.023. There was evidence for heterogeneity in the ORs among studies (I(2 = 49.3%; p = <0.004. In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80-1.00, p = 0.048, indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.

  17. Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2

    Science.gov (United States)

    Antoniou, Antonis C.; McGuffog, Lesley; Humphreys, Manjeet K.; Dunning, Alison M.; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Dork, Thilo; Schürmann, Peter; Karstens, Johann H.; Hillemanns, Peter; Couch, Fergus J.; Olson, Janet; Vachon, Celine; Wang, Xianshu; Cox, Angela; Brock, Ian; Elliott, Graeme; Reed, Malcolm W.R.; Burwinkel, Barbara; Meindl, Alfons; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Broeks, Annegien; Schmidt, Marjanka K.; Van ‘t Veer, Laura J.; Braaf, Linde M.; Johnson, Nichola; Fletcher, Olivia; Gibson, Lorna; Peto, Julian; Turnbull, Clare; Seal, Sheila; Renwick, Anthony; Rahman, Nazneen; Wu, Pei-Ei; Yu, Jyh-Cherng; Hsiung, Chia-Ni; Shen, Chen-Yang; Southey, Melissa C.; Hopper, John L.; Hammet, Fleur; Van Dorpe, Thijs; Dieudonne, Anne-Sophie; Hatse, Sigrid; Lambrechts, Diether; Andrulis, Irene L.; Bogdanova, Natalia; Antonenkova, Natalia; Rogov, Juri I.; Prokofieva, Daria; Bermisheva, Marina; Khusnutdinova, Elza; van Asperen, Christi J.; Tollenaar, Robert A.E.M.; Hooning, Maartje J.; Devilee, Peter; Margolin, Sara; Lindblom, Annika; Milne, Roger L.; Arias, José Ignacio; Zamora, M. Pilar; Benítez, Javier; Severi, Gianluca; Baglietto, Laura; Giles, Graham G.; kConFab; Group, AOCS Study; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Holland, Helene; Healey, Sue; Wang-Gohrke, Shan; Chang-Claude, Jenny; Mannermaa, Arto; Kosma, Veli-Matti; Kauppinen, Jaana; Kataja, Vesa; Agnarsson, Bjarni A.; Caligo, Maria A.; Godwin, Andrew K.; Nevanlinna, Heli; Heikkinen, Tuomas; Fredericksen, Zachary; Lindor, Noralane; Nathanson, Katherine L.; Domchek, Susan M.; SWE-BRCA; Loman, Niklas; Karlsson, Per; Askmalm, Marie Stenmark; Melin, Beatrice; von Wachenfeldt, Anna; HEBON; Hogervorst, Frans B. L.; Verheus, Martijn; Rookus, Matti A.; Seynaeve, Caroline; Oldenburg, Rogier A.; Ligtenberg, Marjolijn J.; Ausems, Margreet G.E.M.; Aalfs, Cora M.; Gille, Hans J.P.; Wijnen, Juul T.; Gómez García, Encarna B.; EMBRACE; Peock, Susan; Cook, Margaret; Oliver, Clare T.; Frost, Debra; Luccarini, Craig; Pichert, Gabriella; Davidson, Rosemarie; Chu, Carol; Eccles, Diana; Ong, Kai-Ren; Cook, Jackie; Douglas, Fiona; Hodgson, Shirley; Evans, D. Gareth; Eeles, Rosalind; Gold, Bert; Pharoah, Paul D.P.; Offit, Kenneth; Chenevix-Trench, Georgia; Easton, Douglas F.

    2012-01-01

    Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00–1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I2 = 49.3%; p = <0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80–1.00, p = 0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk. PMID:22768030

  18. Mastopathy and breast cancer

    International Nuclear Information System (INIS)

    Herman, K.

    2007-01-01

    Mastopathy (mastopathia fibroso-cystica) and breast cancer are two major epidemiologic, economic and medical problems of women. In Poland, annually, 0.2 - 1.6 billion Polish zlotys is spent on diagnosis and treatment of mastopathy; half of that sum is spent improperly. Many papers suggest relationships between these two diseases, however, it is not certain, whether, or how much, mastopathy increases breast cancer incidence. The available papers from the recent years indicate increased risk, but the methodology of these data is not perfect. It is not excluded that fibrocystic diseases of the breast increase breast cancer incidence. If such an influence exists, independent of other well-know factors, it is probably very small. Moreover, due to the diversity of medical information there is a lack of diagnostic and therapeutic standards in mastopathy. Different types of scans, hormonal, biochemical and immunohistochemical examinations are performed improperly, and there has been no genetic analysis of mastopathy. Therefore, there is a strong need of well planned, prospective trials in this field. (author)

  19. Cutaneous manifestations of breast cancer

    OpenAIRE

    Agnieszka B. Owczarczyk-Saczonek; Dawid Sigorski; Paweł Różanowski; Agnieszka Markiewicz; Waldemar J. Placek

    2017-01-01

    Breast cancer is the most common malignant neoplasm among women in Poland and in the European Union. According to most recent data of the Polish National Cancer Registry, in 2014 breast cancer was diagnosed in over 17,000 women. Based on the National Health Fund records, it is estimated that there are about 55,000–60,000 women in Poland who have a history of breast cancer diagnosis and are potentially at a risk of relapse. The most common sign of breast cancer is the presence of a nodule, how...

  20. Breast-Conserving Surgery Followed by Radiation Therapy With MRI-Detected Stage I or Stage II Breast Cancer

    Science.gov (United States)

    2011-12-07

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Male Breast Cancer; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Stage I Breast Cancer; Stage II Breast Cancer; Tubular Ductal Breast Carcinoma

  1. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Wiegant, Wouter W. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Waisfisz, Quinten [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Medhurst, Annette L. [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N. Copernicus University, Bydgoszcz (Poland)]. E-mail: m.z.zdzienicka@lumc.nl

    2006-02-22

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.

  2. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    International Nuclear Information System (INIS)

    Godthelp, Barbara C.; Wiegant, Wouter W.; Waisfisz, Quinten; Medhurst, Annette L.; Arwert, Fre; Joenje, Hans; Zdzienicka, Malgorzata Z.

    2006-01-01

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination

  3. Getting free of breast cancer

    DEFF Research Database (Denmark)

    Halttunen, Arja; Hietanen, P; Jallinoja, P

    1992-01-01

    Twenty-two breast cancer patients who were relapse-free and had no need for cancer-related treatment were interviewed 8 years after mastectomy in order to evaluate their feelings of getting free of breast cancer and the meaning of breast cancer in their lives. The study is a part of an intervention...... and follow-up study of 57 breast cancer patients. Half of the 22 patients still had frequent or occasional thoughts of recurrence and over two-thirds still thought they had not been 'cured' of cancer. More than half of the patients admitted that going through breast cancer had made them more mature. Women...... who had less thoughts of recurrence belonged to a group that had gone through an eight-week group psychotherapy intervention, were less depressed and had more other illnesses. Women who felt 'cured' had less limitations and restrictions due to cancer and belonged more often to higher social classes...

  4. Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis.

    Science.gov (United States)

    Lee, Eun-Ha; Park, Sue K; Park, Boyoung; Kim, Sung-Won; Lee, Min Hyuk; Ahn, Sei Hyun; Son, Byung Ho; Yoo, Keun-Young; Kang, Daehee

    2010-07-01

    Reports of BRCA genetic mutations and risk of death or recurrence are inconsistent. This study aimed to compare overall and disease-free breast cancer survival rates between BRCA1/2 mutation carriers and non-carriers for short-term and long-term outcomes separately. We searched the PUBMED and EMBASE databases and retrieved 452 articles using keywords that included breast cancer, BRCA mutation, and survival. Seventeen articles were selected for systematic review and among them 11 were included in our meta-analysis. We used the random-effects model to calculate the summary hazard ratio and corresponding 95% confidence interval. BRCA1 mutation carriers had significantly lower short-term and long-term overall survival rates (OSR) relative to non-carriers (HR = 1.92 [95% CI = 1.45-2.53]; 1.33 [1.12-1.58], respectively), while both short-term and long-term OSR of BRCA2 carriers did not differ from non-carriers (HR = 1.30 [95% CI = 0.95-1.76]; 1.12 [95% CI = 0.86-1.45], respectively). For short-term progression-free survival rate (PFSR), BRCA1 mutation carriers had a significantly lower rate than non-carriers (HR = 1.54 [95% CI = 1.12-2.12]), while BRCA2 mutation carriers had a similar PFSR (HR = 1.23 [95% CI = 0.96-1.58]). For long-term PFSRs, we found no significant results. Our results suggest that BRCA1 mutation decreases short-term and long-term OSRs and short-term PFSR, however, BRCA2 mutation does not affect either short-term or long-term survival rate, which is attributed to the different carcinogenic pathways for BRCA1 and BRCA2.

  5. Progesterone in Breast Cancer Angiogenesis

    OpenAIRE

    Botelho, Monica C.; Soares, Raquel; Alves, Helena

    2015-01-01

    The involvement of steroid hormones in breast carcinogenesis is well established. Recent evidence suggests that angiogenesis can be regulated by hormones. Both oestrogen and progesterone have been implicated in the angiogenic process of hormone-dependent cancers, such as breast cancer. Vascular Endothelial Growth Factor (VEGF) is a growth factor involved in angiogenesis in breast cancer that is up-regulated by estrogens. In our study we evaluated the role of progesterone in the expression of ...

  6. Male breast cancer

    International Nuclear Information System (INIS)

    Ferrando, F.; Vidal, M.A.; Caballero, A.J.; Martinez, A.; Lluch, A.

    1997-01-01

    To analyze the radiological and ultrasonographic signs that cont