WorldWideScience

Sample records for brazing alloys

  1. Brazing with plated alloys

    International Nuclear Information System (INIS)

    The use of braze alloy preforms on complex geometry components is at times a very difficult task requiring extensive handling of the parts or even tack welding of the preform to ensure that it is held in place. One method of overcoming these difficulties is the use of plated braze alloys (i.e., filler metals) applied directly to the braze region. Plating helps to avoid the potential for contamination resulting from handling and also ensures that the braze alloy is located properly. Examples are discussed in which an electroplated silver-copper alloy is used as an alternative to the BAg8 preforms and electroless nickel is used as a replacement for an amorphous Ni-P braze alloy foil. A toroidal cooling plate with helical flow channels was fabricated from oxygen-free high conductivity (OFHC) and brazed using the electroplated silver-copper alloy. The silver-copper braze alloy was applied to the copper substrate in a laminated fashion of alternating layers of silver and copper, which in combination approximated the eutectic composition (72% Ag-28% Cu by weight). Examination of the brazed assemblies indicated that in both cases the advantages of using plated braze alloys are numerous. These advantages include decreased labor, improved cleanliness and exactness of braze alloy placement. The primary disadvantage was an increased tendency for solidification defects presumably resulting from contaminants in the plating baths. This last observation is presently being examined in greater detail. The end results is that the assemblies brazed with the plated alloys were acceptable for the intended application and that the use of plating facilitated the successful assembly of these components

  2. Design of a braze alloy for fast epitaxial brazing of superalloys

    Science.gov (United States)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  3. Design of a braze alloy for fast epitaxial brazing of superalloys

    International Nuclear Information System (INIS)

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  4. Short cycle brazing of an alumina dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    An alumina dispersion strengthened copper alloy (with 0.07 wt, % alumina) has been proposed for several specialized applications in fusion reactors, such as the stabilizer in superconducting magnets and the structural material for divertors and limiters. In this research, brazed joints of the alumina dispersion strengthened copper alloy were developed using resistance heating brazing. The BCuP-3 brazing alloy was chosen based upon its low activation characteristics. Brazing was conducted using a GLEEBLE 1500 system with which time, temperature, and stress were precisely controlled. Butt-brazed joints with different brazing times were evaluated based on tensile and bending fatigue properties. Results from these tests reveal that the optimum braze time is approximately 1 minute at 8000C with a holding stress of 0.5 MPa. Metallography examinations were conducted on both the as brazed structure and the fracture surfaces. In the former, a transition layer (about 10 μm tick) was formed between the braze metal and the base alloy. Microhardness measurements across the braze did not show any hardening or softening effect due to the brazing process. Metallography of the fractured tensile and fatigue samples showed that cracks always penetrated through the interface between the transition layer and the braze metal. Semiquantitative energy dispersive x-ray spectroscopy (EDS) analysis was also performed across the joint. Profiles of P and Ag showed that P diffused very quickly into base metal along grain boundaries. A strong Al peak (associated with the detection of Al2O3) was found that corresponded with the transition layer. The presence of the alumina particles in the transition zone restricts the grain growth process in this region, resulting in relatively fine grain size

  5. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    International Nuclear Information System (INIS)

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time

  6. Braze Process Optimization Involving Conventional Metal/Ceramic Brazing with 50Au-50Cu Alloy

    Energy Technology Data Exchange (ETDEWEB)

    MALIZIA JR.,LOUIS A.; MEREDITH,KEITH W.; APPEL,DANIEL B.; MONROE,SAUNDRA L.; BURCHETT,STEVEN N.; STEPHENS JR.,JOHN J.

    1999-12-15

    Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. Experience with brazing of hermetic vacuum components has identified the following parameters as influencing the outcome of hydrogen furnace brazed Kovar{trademark} to metallized alumina braze joints: (a) Mo-Mn metallization thickness, sinter fire temperature and porosity (b) Nil plate purity, thickness, and sinter firing conditions (c) peak process temperature, time above liquidus and (d) braze alloy washer thickness. ASTM F19 tensile buttons are being used to investigate the above parameters. The F19 geometry permits determination of both joint hermeticity and tensile strength. This presentation will focus on important lessons learned from the tensile button study: (A) the position of the Kovar{trademark} interlayer can influence the joint tensile strength achieved--namely, off-center interlayers can lead to residual stress development in the ceramic and degrade tensile strength values. Finite element analysis has been used to demonstrate the expected magnitude in strength degradation as a function of misalignment. (B) Time above liquidus (TAL) and peak temperature can influence the strength and alloying level of the resulting braze joint. Excessive TAL or peak temperatures can lead to overbraze conditions where all of the Ni plate is dissolved. (C) Metallize sinter fire processes can influence the morphology and strength obtained from the braze joints.

  7. Filler alloys for brazing in power industries

    International Nuclear Information System (INIS)

    The problem is discussed of using nickel-based high-temperature brazing solders in nuclear power engineering. Different types of brazing solders are compared with regard to brazing and mechanical properties and oxidation resistance. The advantages of nickel-based brazing solders include their melting temperature which is higher by 150 to 200 degC than the melting temperatures of common solders. The effects of different additions on melting temperature are discussed. It is advisable to use the above brazing solders under hydrogen reduction atmosphere at a temperature of -40 down to -75 degC or at a pressure of 10-3 down to 10-4 Pa. Currently manufactured nickel-based brazing solders may be used at a temperature of up to 1150 degC. (J.B.)

  8. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  9. Brazing

    International Nuclear Information System (INIS)

    This report is a compilation of published literature on high temperature brazing covering the period 1973-1978. The references are listed alphabetically with regard to the base material or combination of base materials to be brazed. Trade names are treated as base materials. The report contains approximately 1500 references, of which 300 are to patents

  10. Comparison of brazed joints made with BNi-1 and BNi-7 nickel-base brazing alloys

    Directory of Open Access Journals (Sweden)

    Zorc, Borut

    2000-04-01

    Full Text Available Kinetics of the processes are different with different types of brazing alloys. Precipitation processes in the parent metal close to the brazing gap are of great importance. They control the mechanical properties of the joint area when the brittle eutectic has disappeared from the gap. A comparative study of brazed joints on austenitic stainless alloys made with BNi-7 (Ni-P type and BNi-1 (Ni-Si-B type brazing alloys was made. Brazing alloys containing phosphorus behave in a different manner to those containing boron.

    Las aleaciones de níquel se producen mediante tres sistemas de aleación: Ni-P, Ni-Si y Ni-B. Durante las reacciones metalúrgicas con el metal de base, la eutéctica frágil en la separación soldada puede transformarse en la solución dúctil-sólida con todas aleaciones. La cinética del proceso varía según el tipo de aleación. Los procesos de precipitación en el metal de base cerca de la separación soldada son de mucha importancia, ya que controlan las propiedades mecánicas de la área de unión después de desaparecer la eutéctica frágil de la separación. Se ha hecho un análisis comparativo de uniones soldadas en aleaciones austeníticas inoxidables realizadas con aleaciones BNi-7 (tipo Ni-P y BNi-1 (tipo Ni-Si-B. Las aleaciones que contienen fósforo se comportan de una manera diferente, tanto con el cambio de la eutéctica a la solución sólida, como con los procesos de precipitación en el metal de base cerca de la unión soldada.

  11. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  12. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  13. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    Science.gov (United States)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  14. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  15. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    International Nuclear Information System (INIS)

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr7C3 and Cr3C2 formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  16. Reversible brazing process

    Science.gov (United States)

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  17. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  18. The metallographic investigation of brazed joints in nickel base alloys using various techniques for the production of contrast

    International Nuclear Information System (INIS)

    Brazing with high melting point nickel base brazing alloys permits distortion-free, high strength joints to be produced in high temperature, high alloy steel and nickel alloys which cannot easily be welded. This method is used for gas turbine parts subject to high thermal stresses and in nuclear engineering. (orig.)

  19. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  20. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Two brazing alloy samples (C P2 and C P3) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 1011 n/cm2/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 1012 n/cm2/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  1. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    OpenAIRE

    Jean S. Pimenta; Augusto J. A. Buschinelli; Rubens M. do Nascimento; Augusto E. Martinelli; Joseph Remmel

    2013-01-01

    Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the c...

  2. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  3. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  4. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  5. Tensile Creep Properties of the 50Au-50Cu Braze Alloy

    International Nuclear Information System (INIS)

    The 50Au-50CU (wt.%) alloy is a solid-solution strengthened braze alloy used extensively in conventional, hermetic metal/ceramic brazing applications where low vapor pressure is a requirement. Typical metal/ceramic base materials would be KovarTM alloy and metallized and Ni-plated 94% alumina ceramic. The elevated temperature mechanical properties are important for permitting FEA evaluation of residual stresses in metal/ceramic brazes given specific geometries and braze cooldown profiles. For material with an atomic composition of 76.084 at.% CL 23.916 Au (i.e., on the Cu-rich side of Cu3Au) that was annealed for 2 hr. at 750 ampersand deg;C and water quenched a Garofalo sinh equation was found to adequately characterize the minimum strain rate data over the temperature mnge 450-850 ampersand deg;C. At lower temperatures (250 arid 350 ampersand deg;C), a conventional power law equation was found to characterize the data. For samples held long periods of time at 375 ampersand deg;C (96 hrs.) and slowly cooled to room temperature, a slight strengthening reaction was observed: with the stress necessary to reach the same strain rate increasing by about 15% above the baseline annealed and quenched data. X-ray diffiction indicates that the 96 hr at 375 ampersand deg;C + slow cool condition does indeed order. The microhardness of the ordered samples indicates a value of 94.5 VHN, compared to 93.7 VHN for the baseline annealed and quenched (disordered FCC) samples. From a brazing perspective, the relative sluggishness of this ordering reaction does not appear to pose a problem for braze joints cooled at reasonable rates following brazing

  6. Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC–Co alloy

    International Nuclear Information System (INIS)

    Highlights: ► Ti was required in the filler metal for brazing graphite to WC–Co alloy. ► The shear strength of the joint increased with Ti content up to 1.7 mass%. ► Ti concentrated at the interface of graphite/filler metal. ► TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag–Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC–Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC–Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC–Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.

  7. Dissimilar laser brazing of h-BN and WC-Co alloy in Ar atmosphere without evacuation process

    Science.gov (United States)

    Sechi, Y.; Nagatsuka, K.; Nakata, K.

    2012-08-01

    Laser brazing with Ti as an active element in Ag-Cu alloy braze metal has been successfully applied to dissimilar joining of h-BN and WC-Co alloy in Ar (99.999% purity) gas flow atmosphere without any evacuation process. Good wettability of the braze metal with h-BN and WC-Co alloy were confirmed by the observation and structural analysis of the interface by electron probe micro-analysis and scanning acoustic microscopy. The oxidation of titanium was not observed and this showed that the laser brazing with titanium as an active element in braze metal could be performed even in an Ar gas flow atmosphere without an evacuation process using a high-vacuum furnace.

  8. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process

    International Nuclear Information System (INIS)

    Research highlights: → The microstructures of interfacial zones were confirmed in detail by transmission electron microscope (TEM). Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti7Al5Si12 and serration-shaped TiAl3. For the first time, obvious stacking fault structure in intermetallic phase TiAl3 was found when the thickness of the reaction layer was very thin (approximately below 1 μm). → Metallurgical characteristics for laser welding-brazing process in the environment of far from equilibrium was expounded by microstructures of the joints, the characteristics of thermal process and element diffusion behavior. - Abstract: Joining mechanism of Ti/Al dissimilar alloys was investigated during laser welding-brazing process with automated wire feed. The microstructures of fusion welding and brazing zones were analysed in details by transmission electron microscope (TEM). It was found that microstructures of fusion welding zone consist of α-Al grains and ternary near-eutectic structure with α-Al, Si and Mg2Si. Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti7Al5Si12 and serration-shaped TiAl3. For the first time, apparent stacking fault structure in intermetallic phase TiAl3 was found when the thickness of the reaction layer was very thin (approximately less than 1 μm). Furthermore, crystallization behavior of fusion zone and mechanism of interfacial reaction were discussed in details.

  9. Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nagatsuka, Kimiaki, E-mail: nagatuka@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Joining and Welding Research Institute, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Sechi, Yoshihisa, E-mail: sechi@kagoshima-it.go.jp [Kagoshima Prefectural Institute of Industrial Technology, 1445-1 Oda, Hayato-cho, Kirishima, Kagoshima 899-5105 (Japan); Miyamoto, Yoshinari, E-mail: y_miyamoto@toyotanso.co.jp [Toyo Tanso Co., Ltd., 5-7-12 Takeshima, Nishiyodgawa-ku, Osaka 555-0011 (Japan); Nakata, Kazuhiro, E-mail: nakata@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Ti was required in the filler metal for brazing graphite to WC-Co alloy. Black-Right-Pointing-Pointer The shear strength of the joint increased with Ti content up to 1.7 mass%. Black-Right-Pointing-Pointer Ti concentrated at the interface of graphite/filler metal. Black-Right-Pointing-Pointer TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag-Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC-Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC-Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC-Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.

  10. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  11. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  12. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jicai FENG; Heng ZHOU

    2005-01-01

    Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 k J/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

  13. Compound characterization of laser brazed SiC-steel joints using tungsten reinforced SnAgTi-alloys

    Science.gov (United States)

    Südmeyer, I.; Rohde, M.; Fürst, T.

    2010-02-01

    With the help of a CO2-laser (λ = 10.64 μm) Silicon carbide (Trade name: Ekasic-F, Comp: ESK Ceramics) has been brazed to commercial steel (C45E, Matnr. 1.1191) using SnAgTi-filler alloys. The braze pellets were dry pressed based on commercially available powders and polished to a thickness of 300 μm. The SnAgTi-fractions were varied with the objective of improving the compound strength. Furthermore, tungsten reinforced SnAgTi-fillers were examined with regard to the shear strength of the ceramic/steel joints. Polished microsections of SnAgTi-pellets were investigated before brazing in order to evaluate the particle distribution and to detect potential porosities using optical microscopy. The brazing temperature and the influence of the reinforcing particles on the active braze filler were determined by measurements with a differential scanning calorimeter (DSC). After brazing. the ceramic-steel joints were characterized by scanning electron micrographs and EDX-analysis. Finally the mechanical strength of the braze-joints was determined by shear tests.

  14. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  15. Brazing characteristics of a Zr–Ti–Cu–Fe eutectic alloy filler metal for Zircaloy-4

    International Nuclear Information System (INIS)

    A Zr–Ti–Cu–Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr–Cu–Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min

  16. Brazing characteristics of a Zr–Ti–Cu–Fe eutectic alloy filler metal for Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung G.; Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Park, S.S. [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Lee, M.K., E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    A Zr–Ti–Cu–Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr{sub 58}Ti{sub 16}Cu{sub 10}Fe{sub 16} (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr–Cu–Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr{sub 2}Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  17. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W.F. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: dingwf2000@vip.163.com; Xu, J.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Shen, M. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Su, H.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fu, Y.C. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xiao, B. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2006-08-25

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system.

  18. Brazing ZrO2 ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    International Nuclear Information System (INIS)

    Reliable brazing of ZrO2 ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO2/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO2 ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti2Ni, Ti5Si3 and β-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti2Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO2 ceramic and brazing seam or Ti2Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO2/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO2/TiO/Ti2Ni + β-Ti + Ti5Si3/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO2 ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti2Ni + β + Ti5Si3/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO2 ceramic. • The highest joining strength of 284.6MPa was obtained

  19. Interface Behavior of Mg alloy Eutectic Brazing%镁合金共晶钎焊界面行为

    Institute of Scientific and Technical Information of China (English)

    白莉

    2012-01-01

    Magnesium alloy was bonded by eutectic contacting reaction brazing using pure silver interlayer, and the microstructure, interface diffusion behavior of elements of the welded joint was studied. The results from the experiment show that the eutectic contacting reaction brazing can achieve effective connection of magnesium alloy, and the interface has relatively higher content of silver, which has the obvious trend of diffusion for both sides of magnesium alloy.%采用纯银做中间层共晶钎焊工艺对镁合金进行连接,研究了接头微观组织及界面元素扩散行为.结果表明,采用共晶钎焊可以实现镁合金的有效连接,结合界面银元素相对含量较高,有着明显的向两边镁合金扩散的趋势.

  20. Induction brazing of 6063/3 A21 aluminum alloy%6063和3A21铝合金的感应钎焊应用研究

    Institute of Scientific and Technical Information of China (English)

    杨林

    2013-01-01

    介绍了感应钎焊技术在雷达产品常用钎焊铝合金上的应用,通过对铝合金感应加热的感应器优化设计技术和精密温控技术的研究,实现了铝合金感应钎焊的精密控温,进行了管与管、管与法兰异型接头的感应器设计,开展了铝合金的感应硬钎焊工艺研究,分析了铝合金感应钎焊工件的钎焊缝和钎焊圆角、尺寸变形精度、表面氧化和微观组织等.文中实现了铝合金复杂结构的感应钎焊,并应用于铝合金6063法兰和3A21方型波导管接头的钎焊,为此类结构提供一种新的焊接方法.%The application of induction brazing to aluminum alloy composite in radar was introduced. The induction brazing temperature was precisely controlled by the optimization of induction coil and the research on temperature - control technology. The induction coil used in brazing tube/tube or tube/flange joint was design, and the induction brazing process was also studied. The brazed joint, brazing deformation, surface oxidation, and microstructure of the aluminum alloy were analyzed. This study realizes the induction brazing of aluminum alloy composite with complicate structure, and this technology was applied to braze 6063 aluminum alloy flange and 3A21 aluminum alloy rectangle wave guide, which provided a new method to braze aluminum alloy composite with similar structure.

  1. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    International Nuclear Information System (INIS)

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data

  2. The constitutive response of brazing alloys and the residual stresses in ceramic-metal joints

    OpenAIRE

    Galli, Matteo; Botsis, Ioannis

    2008-01-01

    Nowadays the joining of dissimilar materials is often the only solution to fulfill the complex requirements of high technology applications. One of the fields in which the research activity is more intense and promising is that of the brazing of ceramics with metals. The performance of brazed ceramic-metal joints is limited by residual stresses which develop in the bonded assembly as it cools down after brazing. The magnitude and influence of these stresses can be particularly high because of...

  3. The constitutive response of brazing alloys and the residual stresses in ceramic-metal joints

    OpenAIRE

    Galli, Matteo

    2007-01-01

    Nowadays the joining of dissimilar materials is often the only solution to fulfill the complex requirements of high technology applications. One of the fields in which the research activity is more intense and promising is that of the brazing of ceramics with metals. The performance of brazed ceramic-metal joints is limited by residual stresses which develop in the bonded assembly as it cools down after brazing. The magnitude and influence of these stresses can be particularly high because of...

  4. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  5. Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Moo; Glaeser, Andreas M.

    2005-12-19

    The mechanical properties and microstructural evolution ofmetal-ceramic bonds produced using a transient liquid phase (TLP) aredescribed. Alumina (Al2O3) was joined at 500 degrees C, 600 degrees C,and 700 degrees C using a multilayer In/Cusil-ABA (R) (commercialcopper-silver eutectic brazing alloy)/In interlayer. The introduction ofthin In cladding layers allows the system to bond at much lowertemperatures than those typically used for brazing with Cusil-ABA (R),thereby protecting temperature-sensitive components. After chemicalhomogenization, the interlayers retain an operating temperature rangesimilar to that of the brazed joints. TLP bonds made at 500 degrees C,600 degrees C, and 700 degrees C with holding times ranging from as lowas 1.5 h to 24 h had average fracture strengths above 220 MPa. Theeffects of bonding temperature and time on fracture strength aredescribed. Preliminary analysis of the interlayers shows that the Ag-Inor Cu-In intermetallic phases do not form. Considerations unique tosystems with two-phase core layers are discussed. Experiments usingsingle-crystal sapphire indicate rapid formation of a reaction layer at700 degrees C, suggesting the possibility of making strong bonds usinglower temperatures and/or shorter processing times.

  6. Brazing zone structure at active brazing of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.

  7. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  8. Vacuum Brazing of Accelerator Components

    International Nuclear Information System (INIS)

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  9. Effect of bonding time on joint properties of vacuum brazed WC - Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.B.; Jung, S.B. [Sungkyunkwan Univ., Dept. of Advanced Materials Engineering, Suwon, Kyounggi-do (Korea); Kwon, B.D. [Seoul Technical High School, Dept. of Metallurgy, Seoul (Korea)

    2004-11-15

    Hard metal WC - Co and carbon steel were successfully joined using double layered Cu alloy and amorphous Ni alloy as inert metal and an oil cooling method after brazing. Defects such as cracks and voids were not formed near the bonded zone. This result means that double layered insert metals and oil cooling minimised the residual stress near the bonded zone after brazing. The shear strength of the joints decreased with increasing bond time. The reasons why the shear strength decreased as bond time increased could be many, including shape of the interface, formation and growth of brittle intermetallic compounds, and coarsening of WC particles near the bond zone. The maximum shear strength of the joints was 310 MPa under conditions 0.6 ks bond time and 8 wt-%Co content in the WC hard alloy. (Author)

  10. Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy; Influencia de los parametros de soldeo fuerte en la microestructura y propiedades mecanicas de la union de la aleacion base niquel Hastelloy B2

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, J. C.; Gonzalez, M.; Porto, E.

    2014-07-01

    A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes. (Author)

  11. Low-Temperature Interface Reaction between Titanium and the Eutectic Silver-Copper Brazing Alloy

    OpenAIRE

    Andrieux, J; Dezellus, Olivier; Bosselet, F.; Viala, J.C.

    2009-01-01

    Reaction zones formed at 790 °C between solid titanium and liquid Ag-Cu eutectic alloys (pure and Ti-saturated) have been characterized. When pure Ag-Cu eutectic alloy with 40 at.% Cu is used, the interface reaction layer sequence is: alpha-Ti / Ti2Cu / TiCu / Ti3Cu4 / TiCu4 / L. Because of the fast dissolution rate of Ti in the alloy, the reaction zone remains very thin (3-6 µm) whatever the reaction time. When the Ag-Cu eutectic alloy is saturated in titanium, dissolution no longer proceeds...

  12. Influence of technological conditions during vacuum brazing on the aggressive behaviour of nickel brazing filler metal

    International Nuclear Information System (INIS)

    The effect of brazing temperature 1080, 1120 and 11900C and dwell at those temperatures in the range 1, 5, 30 and 180 min. as well as additional annealing at 10500C/120 min. on the degree of erosion and diffusion of 5 types of alloyed steels and also on the character of brazing alloy structure formation with the use of five Ni-based high temperature brazing alloys. On the basis of attained results of experimental investigation the general optimum conditions of vacuum brazing are determined. (orig.)

  13. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    Science.gov (United States)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  14. Analysis on interfacial layer of aluminum alloy and non-coated stainless steel joint made by TIG welding-brazing

    Institute of Scientific and Technical Information of China (English)

    Song Jiaaling; Lin Sanbao; Yang Chunli; Ma Guangchao; Wang Yinjie

    2009-01-01

    Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetaUic compounds (IMCs) in the interfacial layer by optical metalloscope (OM), wanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel surface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 - 7 μm thick and comprises approximately 5 μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfaciallayer and the phases transfer from (Al + FeAl3) in aluminum side to (FeAl3+ Fe2Al5) and (α-Fe + FeAl) in steel side.

  15. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer

    International Nuclear Information System (INIS)

    The electrochemical corrosion properties of Ti–STS dissimilar joints brazed by a 72Ag–28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag–Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance

  16. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K.; Park, J.J.; Lee, J.G., E-mail: jglee88@kaeri.re.kr; Rhee, C.K.

    2013-08-15

    The electrochemical corrosion properties of Ti–STS dissimilar joints brazed by a 72Ag–28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag–Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance.

  17. On the effect of brazing thermal cycle on the properties of niobium and its alloys

    International Nuclear Information System (INIS)

    The effect of the main parameters of the soldering thermal cycle on the properties of Nb and its alloys was studied by heating the samples under modelled conditions of soldering. The studies were made on commercial VN-niobium, alloys of the Nb-Mo-Zr system VN2A, VN2AEHM) and alloys of the Nb-Mo-Zr-C system (VN5AEH,VN5A). The degree of a preliminary plastic deformation of samples 0.3 to 0.8 mm thick made up 60 to 80%. The heating was made in vacuum (10-4 to 5x10-5 mm Hg) or in argon by passing the electric current across the samples. After heating a metallographic study and X-ray electron-probe analysis were made. The studies have shown that the changes in the heating rate result in a proportional change in the recrystallization initiation temperature. At a heating rate 300 deg C/s the recrystallization initiation temperature of commercial Nb is 930 to 960 deg as soon as the heating rate increases up to 900 deg/c the recrystallization initiation temperature rises up to about 1200 deg C. The heating temperature effect on the mechanical characteristics of commercial Nb and alloys VN2, VN2AEH and VN5AEH is shown. It is found that soldered joints of Nb and its alloys could be made of good quality when observing the thermal cycles ensuring the minimum softening of the base material. The main factors affecting the properties of Nb and alloy-VN2 are the heating temperature and the extent of a preliminary cold deformation. In a more deformed material the annealing results in the activation of the recrystallization processes. The production of high-strength soldered joints of commercial Nb is possible at the soldering temperature equal to 1100 deg C, but of Nb-Mo-Zr alloys-at 1200 to 1300 deg C and hold-up periods not exceeding one hour. A heterophase structure of alloys of the Nb-Mo-Zr-C system and the presence of Mo- and Zr-carbide phases in them result in a considerable hardening of the alloys and the increase in their recrystallization temperature. The usage of alloys

  18. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  19. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...... the work piece materials has large influence on the heating time and temperature distribution in induction heating. In order to ensure high and uniform temperature distribution near the interface of a joint between dissimilar materials the precise coil geometry and position is of great importance. The...... present report presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and...

  20. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  1. The effect of different crystal conditions of filler metal on vacuum brazing of TiAl alloy and 42CrMo

    Institute of Scientific and Technical Information of China (English)

    Zhu Ying; Zhang Mo; Wang Guojian; Li Wenyi; Kang Hui; Qu Ping

    2007-01-01

    Ti-based filler metals made by transient solidification and normal crystallization were selected for the vacuum brazing of the TiAl alloy and 42CrMo under different processing parameters. The results show that the tensile strength of the joint of transient solidified filler metal is higher than that of normal crystallized filler metal under the same processing parameters. By the analysis of scanning electron microscope(SEM) and X-ray diffracting (XRD) , it is found that the higher strength maybe caused by the generating of TiAl , TiNi and TiCu at the interface of joint made by transient solidified filler metal.

  2. Vacuum brazing of metals (1961)

    International Nuclear Information System (INIS)

    We have studied brazing in vacuum aiming its application for the making of containers and apparatus meant for high vacuum (p -8 torr). We first define the wettability of a brazing alloy on a metal and we remind the influence of the various parameters which act on this wettability (nature of the solid, of the liquid, geometrical and physicochemical state of the surface, metallurgical reactions occurring at the interface, temperature, time). We give then the results of the tests carried out in order to determine the conditions of wettability in vacuum of some brazing alloys on metals which can be used for the above mentioned apparatus (stainless steel, aluminium, bronze, titanium, zirconium, kovar, nickel, copper). (author)

  3. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  4. Microstructural and Mechanical Evaluation of a Cu-Based Active Braze Alloy to Join Silicon Nitride Ceramics

    Science.gov (United States)

    Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.

    2010-01-01

    Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.

  5. Cold metal transfer welding–brazing of pure titanium TA2 to magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Cao, R., E-mail: caorui@lut.cn; Wang, T.; Wang, C.; Feng, Z.; Lin, Q.; Chen, J.H.

    2014-08-25

    Highlights: • Mg–Ti joints can be successfully performed at suitable welding variables by CMT. • Typical brazing–welding joints can be formed for Mg–Ti joint and Ti–Mg joint. • The brazing interface is mainly composed of Ti{sub 3}Al, Mg{sub 17}Al{sub 12} and Mg{sub 0.97}Zn{sub 0.03}. • Elements Al and Zn are crucial to join successfully Mg and Ti base metals. - Abstract: Pure titanium TA2 was joined to Mg AZ31B by cold metal transfer (CMT) welding–brazing method in the form of two lap-shear joints (Mg–Ti joint and Ti–Mg joint) with Mg AZ61 wire. The microstructure of Ti/Mg CMT joints was identified and characterized by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of various welding parameters were compared and analyzed. Desired Ti/Mg CMT joints with satisfied weld appearances and mechanical properties were achieved at suitable welding variables. The Ti/Mg CMT joints had dual characteristics of a welding joint at the Mg side and a brazing joint at the Ti side. Moreover, for two joints, the brazing interfaces were composed of an intermetallic compounds (IMCs) layer including Ti{sub 3}Al, Mg{sub 17}Al{sub 12} and Mg{sub 0.97}Zn{sub 0.03} phases. Mg–Ti joint had the higher tensile load of 2.10 kN, and Ti–Mg joint had the tensile load of 1.83 kN.

  6. Cold metal transfer welding–brazing of pure titanium TA2 to magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Highlights: • Mg–Ti joints can be successfully performed at suitable welding variables by CMT. • Typical brazing–welding joints can be formed for Mg–Ti joint and Ti–Mg joint. • The brazing interface is mainly composed of Ti3Al, Mg17Al12 and Mg0.97Zn0.03. • Elements Al and Zn are crucial to join successfully Mg and Ti base metals. - Abstract: Pure titanium TA2 was joined to Mg AZ31B by cold metal transfer (CMT) welding–brazing method in the form of two lap-shear joints (Mg–Ti joint and Ti–Mg joint) with Mg AZ61 wire. The microstructure of Ti/Mg CMT joints was identified and characterized by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of various welding parameters were compared and analyzed. Desired Ti/Mg CMT joints with satisfied weld appearances and mechanical properties were achieved at suitable welding variables. The Ti/Mg CMT joints had dual characteristics of a welding joint at the Mg side and a brazing joint at the Ti side. Moreover, for two joints, the brazing interfaces were composed of an intermetallic compounds (IMCs) layer including Ti3Al, Mg17Al12 and Mg0.97Zn0.03 phases. Mg–Ti joint had the higher tensile load of 2.10 kN, and Ti–Mg joint had the tensile load of 1.83 kN

  7. Brazing of inconel 600 and SUS304 stainless steel with used of rapidly solidified nickel-base brazing foil

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Yasuyuki; Ariga, Tadashi (Tokai Univ., Tokyo (Japan))

    1992-05-01

    In this study, the clad material which have been brazed with the nickel-base heat resistant alloy; Inconel 600 on AISI304 stainless steel has been produced by the brazing using three types of nickel-base brazing foils. The three types of nickel-base brazing foils are 7Cr(4.5Si-7.0Cr-3.0B-3.0Fe-Ni bal.), 5Cr(4.5Si-5.0Cr-3.0B-3.0Fe-Ni bal.) and 10Cr(4.5Si-10.0Cr-3.0B-3.0Fe-Ni bal.). Brazing was done in an electrical resistant furnace in an argon gas atmosphere. The brazing temperatures employed in this study were 1050, 1100, 1150, 1200 and 1250degC and the brazing times were 10, 30, 60 and 120 min for all types of brazing foils. The property of the joint was estimated by the mechanical properties, microstructures and distributions of the elements which were investigated by SEM and EPMA. The brazed joint was obtained for all of brazing conditions in this study. The shear strength of the specimen increased with increasing brazing time except at 1050degC. At 1050degC, the shear strength of the specimen was not influenced by brazing time. In this case, the break of the specimen during the shear test occurred in the brazed layer. At 1250degC, the value of 450 MPa was obtained as the maximum shear strength in this study; the break of the specimen occurred in the base metal. The shear strength of the specimen increased with increasing brazing temperature. The shear strength of the specimen increased with increasing chromium content in the brazing foil to 7 mass%. (J.P.N.).

  8. Brazing of inconel 600 and SUS304 stainless steel with used of rapidly solidified nickel-base brazing foil

    International Nuclear Information System (INIS)

    In this study, the clad material which have been brazed with the nickel-base heat resistant alloy; Inconel 600 on AISI304 stainless steel has been produced by the brazing using three types of nickel-base brazing foils. The three types of nickel-base brazing foils are 7Cr(4.5Si-7.0Cr-3.0B-3.0Fe-Ni bal.), 5Cr(4.5Si-5.0Cr-3.0B-3.0Fe-Ni bal.) and 10Cr(4.5Si-10.0Cr-3.0B-3.0Fe-Ni bal.). Brazing was done in an electrical resistant furnace in an argon gas atmosphere. The brazing temperatures employed in this study were 1050, 1100, 1150, 1200 and 1250degC and the brazing times were 10, 30, 60 and 120 min for all types of brazing foils. The property of the joint was estimated by the mechanical properties, microstructures and distributions of the elements which were investigated by SEM and EPMA. The brazed joint was obtained for all of brazing conditions in this study. The shear strength of the specimen increased with increasing brazing time except at 1050degC. At 1050degC, the shear strength of the specimen was not influenced by brazing time. In this case, the break of the specimen during the shear test occurred in the brazed layer. At 1250degC, the value of 450 MPa was obtained as the maximum shear strength in this study; the break of the specimen occurred in the base metal. The shear strength of the specimen increased with increasing brazing temperature. The shear strength of the specimen increased with increasing chromium content in the brazing foil to 7 mass%. (J.P.N.)

  9. Brazing of photocathode RF gun structures in Hydrogen atmosphere: Process qualification, effect of brazing on RF properties and vacuum compatibility

    International Nuclear Information System (INIS)

    In this paper, we report on the development of a brazing process for an ultra-high vacuum (UHV) compatible photocathode RF gun structure developed at our Centre. The choice of brazing alloy and its form, brazing clearance between parts to be joined and the brazing cycle adopted have been qualified through metallographic examination of identical joints on an OFE copper prototype that was cut open after brazing. The quality of brazed joint not only affects the UHV compatibility of the gun, but also influences the RF parameters finally achieved. A 2-D electromagnetic code, SUPERFISH, was used to predict the variation in RF parameters before and after brazing considering actual brazing clearances provided between the parts to be joined. Results obtained from low power RF measurements on the brazed gun structure confirm the integrity of the brazed joints and show good agreement with those predicted by electromagnetic simulations. The brazed gun structure has been leak-tested and pumped down to a vacuum level limited by the vacuum compatibility of the flange-fittings employed in the setup.

  10. Brazing of photocathode RF gun structures in Hydrogen atmosphere: Process qualification, effect of brazing on RF properties and vacuum compatibility

    Science.gov (United States)

    Kak, Ajay; Kulshreshtha, P.; Lal, Shankar; Kaul, Rakesh; Ganesh, P.; Pant, K. K.; Abhinandan, Lala

    2012-11-01

    In this paper, we report on the development of a brazing process for an ultra-high vacuum (UHV) compatible photocathode RF gun structure developed at our Centre. The choice of brazing alloy and its form, brazing clearance between parts to be joined and the brazing cycle adopted have been qualified through metallographic examination of identical joints on an OFE copper prototype that was cut open after brazing. The quality of brazed joint not only affects the UHV compatibility of the gun, but also influences the RF parameters finally achieved. A 2-D electromagnetic code, SUPERFISH, was used to predict the variation in RF parameters before and after brazing considering actual brazing clearances provided between the parts to be joined. Results obtained from low power RF measurements on the brazed gun structure confirm the integrity of the brazed joints and show good agreement with those predicted by electromagnetic simulations. The brazed gun structure has been leak-tested and pumped down to a vacuum level limited by the vacuum compatibility of the flange-fittings employed in the setup.

  11. Theory and modeling of active brazing.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  12. Development of brazing technique for a 1.6 cell BNL/SLAC/UCLA type photocathode guns by hydrogen brazing

    International Nuclear Information System (INIS)

    Two prototypes of a 1.6 cell BNL/SLAC/UCLA type RF photocathode gun, a precision machined RF structure capable of supporting gradients in excess of 80 MV/m, have been successfully brazed and leak rates of 10-10 mbar l/s have been achieved. Brazing, is carried out in two steps in a hydrogen furnace, it involves joining of two RF cavities, 6 cylindrical ports, one rectangular waveguide and one seal plate. The cavities and waveguide are made of copper and the ports and seal plate are of stainless steel. Fixtures were designed and fabricated indigenously to maintain the required assembly tolerances during brazing. This was important for brazing of ports, two of which are brazed to one cavity at an angle of 22.50 at diametrically opposite locations, and the remaining four are brazed to the other cavity in mutually perpendicular orientations. All joints were brazed using copper-silver eutectic (72-28) alloy in foil and wire forms. This paper discusses the brazing requirement, design of fixtures, and the procedure adopted for brazing of the photocathode gun. The paper also discusses results of the tests carried out to qualify the brazed joints. (author)

  13. A study on brazing of Glidcop® to OFE Cu for application in Photon Absorbers of Indus-2

    International Nuclear Information System (INIS)

    The paper describes an experimental study aimed at standardizing brazing procedure for joining Glidcop to OFE Cu for its application in upgraded photon absorbers of 2.5 GeV synchrotron radiation source, Indus-2. Two different brazing routes, involving brazing with silver base (BVAg-8) and gold base (50Au/50Cu) alloys, were studied to join Glidcop to OFE Cu. Brazing with both alloys yielded helium leak tight and bakeable joints with acceptable shear strengths.

  14. Mg/Cu异种材料共晶反应钎焊连接研究%Dissimilar Metals Between Copper and Magnesium Alloy in Eutectic Contacting Reaction Brazing

    Institute of Scientific and Technical Information of China (English)

    王怀建; 袁苗达; 白莉

    2012-01-01

    Magnesium alloy (AZ31B) and Copper (T2) were bonded by eutectic contacting reaction brazing. The microstructural features and mechanical properties of the welded joint was studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS). The results show that when the welding process is at 500 °C for 5 min, under the pressure of 2MPa, the tensile strength of the welded joint reaches 42MPa.%采用共晶钎焊工艺对Mg/Cu异种材料进行连接,焊后利用扫描电镜和EDS对焊接接头的微观组织及元素扩散行为进行了研究.在焊接温度为500℃,焊接时间为5min,焊接压力为2MPa的工艺下,焊接接头最高抗拉强度为42 MPa.

  15. Study on vacuum brazing of high purity alumina for application in proton synchrotron

    International Nuclear Information System (INIS)

    Highlights: • Study compares Mo–Mn metallization and active brazing routes for joining alumina. • Targeted application: UHV chamber of proton synchrotron. • Both kinds of joints were UHV compatible with helium leak rate <1.1 × 10−10 mbar l/s. • Active brazed joints met tensile and flexural strength design requirement (>50 MPa). • Active brazing is a simpler and economical route for joining high purity alumina. - Abstract: The paper describes an experimental study to evaluate two different vacuum brazing processes to obtain high purity alumina (99.7%) joints suitable for application in rapid cycle proton synchrotron. Two different brazing routes, adopted for making alumina–alumina brazed joints, included (i) multi-step Mo–Mn metallization, followed by brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA® alloy. Both the brazing routes yielded helium leak tight and ultra-high vacuum (pressure < 10−9 mbar) compatible joints. Active-brazed specimens exhibited tensile and mean flexural strengths of 62 and 110 MPa, respectively. Metallized-brazed specimens, although associated with relatively lower tensile strength (35 MPa) than the targeted value (>50 MPa), displayed higher mean flexural strength of 149 MPa. The results of the study demonstrated that active brazing is a simple and cost effective alternative to conventional multi-step metallization route for producing quality joints of high purity alumina for application in rapid cycle proton synchrotron machine

  16. Microwave-assisted brazing of alumina ceramics for electron tube applications

    Indian Academy of Sciences (India)

    2016-04-01

    Alumina was joined with alumina using microwave-assisted and conventional brazing methods at 960$^{\\circ}$C for 15 min using TiCuSil (68.8Ag–26.7Cu–4.5Ti in wt.%) as the brazing alloy. The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of the microwave and conventionally brazed joints. The elemental compositions at the joint cross-section were determined by energy dispersive X-ray analysis. Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during actual application in an electron tube. Brazing strength measurement and helium leak test provided the evidence forgood alumina-alumina joint formation.

  17. Active brazed diamond and cubic boron nitride interfacial nanostructure and application

    International Nuclear Information System (INIS)

    Active brazing is an effective technique for joining diamond or cBN grit onto metallic substrates. Current use of this technique is being made for super abrasive, high performance tools. The lecture will give an overview over different aspects such as (i) tool performance in selected applications, (ii) interfacial nanostructure between super abrasive grit and brazing alloys matrix, (iii) attempts to computer model such interface reactions and (iv) recent improvements of the abrasion resistance of the brazing alloy itself. Super abrasive tools with outstanding performance in applications such as grinding, honing or stone cutting can be manufactured by a single-layer of brazed diamond or cBN grit. A method to obtain regular grit patterns will be presented. Examples of prototype tools and their performance in different applications will be shown. The investigation of interface reactions between diamond and active brazing alloys plays an important role to further improve the brazing process and resulting tool performance. The interfacial nanostructure is characterised by a thin reaction layer of Ti with diamond and cBN, respectively. Results for Ag- and Cu-based brazing alloys will be presented and discussed in view of the influence of brazing process parameters and brazing alloy matrix. Computer modelling of the thermodynamics and kinetics of the interface reactions may allow optimising the process parameters. This requires reliable databases currently being built up. The potential of such methods in ceramic to metal joining will be described. The abrasion resistance of brazing alloys itself plays an important role for tool performance. A new method to achieve a dispersion of nano sized TiC precipitates in the alloy matrix by addition of an organic binder, decomposing during brazing will be presented. In an outlook further applications of brazed diamond grit, such as thermal management materials will be discussed. (author)

  18. Brazing of AM-350 stainless steel LWBR fuel rod support grids (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Ebejer, L.P.

    1979-02-01

    A brazing process has been developed wherein several hundred stamped AM-350 stainless steel sheet metal components, wire components and machined bar components were simultaneously joined together to fabricate about 400 grids of different sizes for the LWBR fuel rod support system. High temperature (2110F +- 20F) vacuum brazing was employed using Ni--Cr--Si braze alloy filler metal in the form of paste. Techniques employed in the assembly, braze alloy application and fixturing of grids to achieve adequate dimensional control are discussed in detail. The brazing thermal cycle as related to the complex metallurgical process of both AM-350 stainless steel and the Ni--Cr--Si braze alloy is also discussed.

  19. Experimental study of W-Eurofer laser brazing for divertor application

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J., E-mail: claudio.munez@urjc.es [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Garrido, M.A. [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Rams, J.; Urena, A. [Dept. de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain)

    2011-11-15

    Highlights: > Laser brazing system as a suitable technique to joint W and Eurofer alloys. > High residual stresses at the bonding were produced. > Laser brazing of powder metallurgy W alloys added porosity in the solidified pool. > The CSM methodology as a suitable technique to discriminate zones of welding joints. - Abstract: This work can be considered as a preliminary evaluation of the potential of laser brazing for joining tungsten based alloys to reduced activation ferritic-martensitic steels (Eurofer). Brazing of tungsten and EUROFER alloys using a 55Ni-45Ti alloy as a brazer and a high power diode laser (HPDL) as a power source has been investigated. The brazed joints showed solidified pools with good superficial aspect and a high degree of wettability with the both parent sheets, presumably because of the active effect of titanium. Metallurgical brazeability was investigated and nanoindentation measurements were done to evaluate local hardening and stiffness effects associated to dilution phenomena.

  20. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB2 powder mixture and Mo--49V--15MoB2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  1. The experiment progress of bracket brazing to SSMIC for the ITER ELM prototype coil

    International Nuclear Information System (INIS)

    Highlights: • In this study, the experimental research of brackets brazing to stainless steel jacketed, Mineral Insulated Conductor (SSMIC) of the first Edge Localized Modes (ELMs) prototype coil for ITER has been made. • The technology for controlling the fluidity of silver-based brazing alloy is developed to meet the bracket brazing. • Brazing experiments to find the reason for cracks are carried out and the improved brazing technologies to restrain the cracks in the Inconel 625 jacket with silver-based alloy are developed. - Abstract: The first Edge Localized Modes (ELMs) prototype coil for International Thermonuclear Experimental Reactor (ITER) has been manufactured in the Institute of Plasma Physics, CAS (ASIPP) at 2014. The all 19 brackets need to braze to the stainless steel jacketed, Mineral Insulated Conductor (SSMIC) for transporting the nuclear heating in the brackets to the water-cooled SSMIC. Silver-based alloy is the only candidate brazing filler for the bracket brazing due to the limitation from melting point temperature and strength. In this paper, firstly, the experimental study for controlling the fluidity of silver-based brazing alloy is developed. And then, the brazing experiment of prototype bracket is introduced to develop the brazing process and some cracks in the Inconel 625 jackets surface appeared unexpectedly. The microstructures and tensile performance study of the cracked Inconel 625 jacket were made to explore the reason for cracks and the improved brazing technologies to suppress the cracks are developed. Finally, the bracket brazing experiment for the first ELM prototype coil is carried out, In spite of this, some cracks also appear in the Inconel 625 jackets

  2. 高硅铝合金真空钎焊接头组织与性能测试研究%Microstructure and Properties" Testing of Hypereutectic Si-A1 Alloy Vacuum Brazed Joint

    Institute of Scientific and Technical Information of China (English)

    陈潇潇; 侯玲; 徐道荣

    2012-01-01

    选用Cu箔、Zn及BA188SiMg片状钎料作为填充金属,采用真空加热方法进行高硅铝合金的钎焊连接,并对接头进行光学金相、显微硬度、扫描电子显微等测试、分析、研究。结果表明:3种钎料钎焊高硅铝合金,通过凝固、结晶等过程形成冶金结合,生成共晶体和固溶体组织,形成可靠的连接接头,外观良好。%Hypereutectic Si A1 Alloys were connected by vacuum soldering with the filler of BAI88SiMg, pure copper and zinc, and the joints of brazing were analyzed and researched by optical microscope,Vickers and scanning electron microscopy. The results show that hypereutectic Si-A1 alloys can be connected hard with the solid solution and eutectic by the process of solidification and crystallization with three brazing filler metals, and reliable joints with good surface are formed.

  3. Brazing of Mo to a CuZr alloy for the production of bimetallic raw materials for the CLIC accelerating structures

    CERN Document Server

    Salvo, M; Heikkinen, Samuli; Salvo, Milena; Casalegno, Valentina; Sgobba, Stefano; Rizzo, Stefano; Izquierdo, Gonzalo Arnau; Taborelli, Mauro

    2010-01-01

    Future linear accelerators, as CLIC (Compact Linear Collider), are extremely demanding in terms of material properties. Traditionally accelerating structure is made of brazed OFE copper parts. For the high conducting regions submitted to mechanical fatigue, CuZr would represent an improved selection than pure copper while for regions where the highest electric field is applied a refractory metal, i.e. Mo, could result in a better performance. The feasibility of joining such materials, namely CuZr (UNS C15000) and pure Mo has been investigated. The joining method developed and investigated here consists in a vacuum brazing process exploiting a Cu-based brazing filler applied under appropriate vacuum conditions. Apparent shear strength (adapted from ASTM B898) on the joined samples was about 200 MPa. (C) 2010 Elsevier B.V. All rights reserved.

  4. Direct brazing of ceramics, graphite, and refractory metals

    International Nuclear Information System (INIS)

    ORNL has been instrumental in the development of brazing filler metals for joining ceramics, graphite, and refractory metals for application at temperatures above 10000C. The philosophy and techniques employed in the development of these alloys are presented. A number of compositions are discussed that have been satisfactorily used to braze ceramics, graphite, and refractory metals without a prior surface treatment. One alloy, Ti--25 percent Cr--21 percent V, has wet and flowed on aluminum oxide and graphite. Further, it has been utilized in making brazes between different combinations of the three subject materials. The excellent flowability of this alloy and alloys from the Ti--Zr--Ge system is evidenced by the presence of filler metal in the minute pores of the graphite and ceramics

  5. Microstructural characteristics of WC-Co and tool steel brazed joint

    Energy Technology Data Exchange (ETDEWEB)

    Young-Sub, K.; Sook-Hwan, K. [Reliability Assessment Team, Research Institute of Industrial Science and Technology, Pohang (Korea)

    2001-07-01

    The current study used Ni base alloys, which reveals the excellent high temperature properties, as filler metals for brazing of WC-Co and tool steel to get the solid joint strength. The strength and the microstructures of brazed joints for different filler metals were examined. The optimum brazing condition and heat treatment condition were obtained through precipitation reaction and microstructural characteristics at the joints. (orig.)

  6. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  7. 单层钎焊CBN成型砂轮磨削钛合金的温度研究%Temperature research of profile grinding on titanium alloy by monolayer brazed CBN forming grinding wheels

    Institute of Scientific and Technical Information of China (English)

    白永明; 童圣亭

    2014-01-01

    Because of its special properties , titanium alloy has been widely used in the aerospace field , but how to efficiently process is a difficult problem in current research .Designed a monolayer brazing CBN forming grinding wheel , and using it in straight groove grinding of titanium alloy TC 4 material .Through a series of temperature tests by different grinding conditions ,stud-ying the grinding characteristics of the wheel in grinding TC 4 titanium alloy materials .%钛合金因其具备的特殊性能而使其在航空航天领域得到了广泛的应用,但是钛合金的高效加工一直是当前研究的难点。设计一种单层钎焊CBN成型砂轮,用于TC4钛合金材料的直槽磨削加工。通过开展一系列不同磨削条件下的温度试验,研究所设计的砂轮磨削TC4钛合金材料的磨削性能。

  8. Scanning Kelvin probe force microscopy as a means of predicting the electrochemical characteristics of the surface of a modified AA4xxx/AA3xxx (Al alloys) brazing sheet

    International Nuclear Information System (INIS)

    Highlights: ► Macro- and micro-electrochemical surface properties of an aluminium brazing sheet were investigated. ► Electrochemical surface properties before and after brazing were studied and compared. ► Scanning Kelvin probe force microscopy and potentiodynamic polarization measurements were performed. ► The electrochemical responses were correlated to the pre- and post-brazing treatment microstructure. -- Abstract: Macro- and micro-electrochemical properties of clad and core surfaces of a modified AA4xxx/AA3xxx brazing sheet material, before and after brazing, have been evaluated and compared. By scanning Kelvin probe force microscopy (SKPFM), the Volta potential distribution over the brazed and non-brazed clad surfaces was measured. The changes in the Volta potential maps were correlated to the macro-electrochemical responses of the surfaces and the microstructural features that evolve as a result of brazing. By performing potentiodynamic polarization experiments and microscopic analysis of the corroded surfaces and cross sections, the suitability of SKPFM analysis for corrosion performance prediction of the aluminium brazing sheet material in a sea water acidified accelerated test (SWAAT) environment was confirmed. Considering the purity of Si phase in the structures of both brazed and non-brazed material, it is suggested that Si can be applied as a reliable local reference in both structures to compare the changes in Volta potential differences as the result of different heat treatments of aluminium brazing sheet. Increasing the copper content of the re-solidified clad material as a result of brazing treatment was found to increase the Volta potential of the matrix which in turn reduces the cathodic protection power of the re-solidified clad material towards the core material

  9. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by th

  10. Field installed brazed thermocouple feedthroughs for high vacuum experiments

    Science.gov (United States)

    Anderson, P. M.; Messick, C.

    1983-12-01

    In order to reduce the occurrence of vacuum leaks and to increase the availability of the DIII vacuum vessel for experimental operation, effort was applied to developing a vacuum-tight brazed feedthrough system for sheathed thermocouples, stainless steel sheathed conductor cables and tubes for cooling fluids. This brazed technique is a replacement for elastomer O ring sealed feedthroughs that have proven vulnerable to leaks caused by thermal cycling, etc. To date, about 200 feedthroughs were used. Up to 91 were grouped on a single conflat flange mounted in a bulkhead connector configuration which facilitates installation and removal. Investigation was required to select a suitable braze alloy, flux and installation procedure. Braze alloy selection was challenging since the alloy was required to have: (1) melting temperature in excess of the 250 C (482 F) bakeout temperature; (2) no high vapor pressure elements; (3) good wetting properties when used in air with acceptable flux; and (4) good wettability to 300 series stainless steel and Inconel.

  11. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other......, or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of...... the work piece materials has large influence on the heating time and temperature distribution in induction heating. In order to ensure high and uniform temperature distribution near the interface of a joint between dissimilar materials the precise coil geometry and position is of great importance. The...

  12. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  13. Wetting evaluation of silver based braze alloys onto zirconia metalized with reactive elements for application in oil well drill bots; Avaliacao do molhamento de ligas de adicao a base de prata sobre zirconia polida e metalizada com elementos ativos para aplicacao em brocas de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C.; Silva, J.M.; Santos, P.R.F.; Nascimento, R.M.; Martinelli, A.E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais], Email: jocabuzo@gmail.com; Pimenta, J.S. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Drill bits with hard ceramic inserts are often used on drilling operations. The cutting and crushing action of rocks will produce failures in the tricone bits, which are related to wear; total or partial rupture of the drill bit body or even the inserts; thermal shock and corrosion. The research of better drill bits with ceramic inserts thermally more stable and mechanically stronger, will lead to an increase of their lifetime, and so reducing costs of substitution and maintenance. In the present work, some silver based braze alloys were melted onto zirconia YSZ substrates metallized or not with active metals. inside a furnace with vacuum of 10{sup -5} mbar to evaluate the wetting behavior. The system with AgCuTi and the non metallized YSZ ceramic, showed low contact angles and stable interfaces, which may be appropriate for brazing metal/ceramic parts. (author)

  14. Experimental Investigation on Induction Brazing of Monolayer Diamond Grinding Wheel with Ni-CrAlloy under vacuum Atmosphere%真空感应钎焊单层金刚石砂轮的实验研究

    Institute of Scientific and Technical Information of China (English)

    武志斌; 肖冰; 徐鸿钧

    2001-01-01

    An experimental investigation is made on induction brazing ofmonolayer diamond grinding wheel with Ni-Cr alloy as solder under vacuum atmosphere.As a result,the strong bonding between diamond and steel is obtained,while the filled intermediate layer material is reactive Ni-Cr alloy slice.With the observation by scanning microscope,the composition analysis by X-ray energy spectrum and the structure analysis by X-ray diffractometer,it is shown that it is the continuous stable chromium carbide film formed on the interface between the diamond and the filled intermediate layer,and the (FexCry) C layer on the interface between steel surface and the filled intermediate layer that cause the better bonding strength.Finally,a grinding test proves the correctness of the investigation result.%在真空条件下用Ni-Cr合金做钎料进行了钎焊单层金刚石砂轮的实验研究,实现了金刚石与钢基体间的牢固化学冶金结合。通过扫描电镜X射线能谱,结合X射线衍射结构分析,发现Ni-Cr合金中的Cr原子与金刚石表面的碳原子反应生成稳定连续的Cr3C2膜,在钢基体结合界面上生成(FexCry)C,这是实现合金层与金刚石及钢基体之间都有较高结合强度的主要因素。通过磨削实验验证了金刚石确实有较高的把持强度。

  15. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10-5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  16. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    Science.gov (United States)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  17. Tensile fracture characterization of braze joined copper-to-CFC coupon assemblies

    Science.gov (United States)

    Trester, P. W.; Valentine, P. G.; Johnson, W. R.; Chin, E.; Reis, E. E.; Colleraine, A. P.

    1996-10-01

    A vacuum brazing process was used to join a broad spectrum of carbon-fiber reinforced carbon matrix composite (CFC) materials, machined into cylindrical coupons, between coupons of oxygen-free copper, the braze alloy was a copper-base alloy which contained only low activation elements (Al, Si, and Ti) relative to a titanium baseline specification. This demonstration was of particular importance for plasma facing components (PFCs) under design for use in the Tokamak Physics Experiment (TPX); the braze investigation was conducted by General Atomics for the Princeton Plasma Physics Laboratory. A tensile test of each brazed assembly was conducted. The results from the braze processing, testing, and fracture characterization studies of this reporting support the use of CFC's of varied fiber architecture and matrix processing in PFC designs for TPX. Further, the copper braze alloy investigated is now considered to be a viable candidate for a low-activation bond design. The prediction of plasma disruption-induced loads on the PFCs in TPX requires that joint strength between CFC tiles and their copper substrate be considered in design analysis and CFC selection.

  18. Brasagem da zircônia metalizada com titânio à liga Ti-6Al-4V Brazing of metalized zirconia with titanium to Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    J. S. Pimenta

    2012-06-01

    Full Text Available Zircônia tetragonal estabilizada com ítria foi mecanicamente metalizada com titânio e a condição de molhamento avaliada com as ligas convencionais Ag-28Cu e Au-18Ni. Estas dissolveram o revestimento de titânio para uma completa distribuição deste metal ativo na superfície cerâmica, gerando uma liga ativa in situ e possibilitando adequadas ligações químicas ao metal base na temperatura de união. Os melhores resultados de molhamento foram selecionados para brasagem indireta em forno de alto-vácuo nas juntas ZrO2/Ti-6Al-4V. Testes de detecção de vazamento de gás hélio foram realizados na interface de união das juntas; amostras removidas na seção transversal de juntas estanques foram examinadas por técnicas de análise microestrutural. Formou-se uma camada escura adjacente à cerâmica metalizada, responsável pelo molhamento ocasionado pela liga Ag-28Cu. Entretanto, o uso da liga Au-18Ni resultou em precipitação de intermetálicos e microtrincamento interfacial. Perfis de microdureza através da interface resultante até onde a zircônia mostrou típico escurecimento não indicaram alternância significativa entre medições consecutivas; os resultados dos ensaios de resistência mecânica à flexão-3p foram considerados satisfatórios.Yttria tetragonal zirconia polycrystal was mechanically metallized with titanium and the wetting behavior on the ceramic surface was analyzed using the conventional fillers Ag-28Cu and Au-18Ni. These alloys had dissolved the active metal coating, which acts to zirconia reduction on its surface and promoting suitable chemical bonding to the metallic member. Better wetting results were selected for indirect brazing in a high-vacuum furnace for ZrO2/Ti-6Al-4V simple butt joints. Helium gas leak detection was made at the joints interface; samples were removed from the tight joints cross-section and examined by microstructural analysis techniques and EDX analysis. There was formation of a dark

  19. Development of Ag-Cu-Zn-Sn brazing filler metals with a 1 0 weight-% reduction of silver and same liquidus temperature

    Institute of Scientific and Technical Information of China (English)

    Daniel Schnee; Gunther Wiehl; Sebastian Starck; Chen Kevin

    2014-01-01

    With BrazeTec BlueBraze the manufacturers in HVACR industry have an alternative filler metal with 10 weight-%less silver but same brazing temperatures.The performance of these new alloys has been evaluated in several tests.The evaluation included wetting investigations,metallographic examinations,joint strength at different temperatures and pulsation and corrosion resistance.The results ofthese tests will be presented in this paper.

  20. Active metal brazing of different metals to aluminium nitride ceramics

    International Nuclear Information System (INIS)

    During recent years aluminium nitride ceramics for substrates, coolers and components have found more applications in micro- and power electronics. Aluminium nitride ceramic with high thermal conductivity, small CTE and good thermal shock resistance is used in aeronautical equipment as well as in drive systems of undergrounds and high speed trains. Different metals and alloys can be bonded to AIN by the so-called 'AMB-process'. The bonding mechanism is based on the use of so-called active metals like Ti, Zr, Hf. Copper conductor lines can be brazed onto AIN-substrates and components, resistor sheets can be applied on ceramic water coolers and a couple of other metals and alloys like tantalium, titanium, KOVAR and steel can be attached to AIN-ceramics by active brazing. Processing, analytical aspects and some special applications will be discussed. (author)

  1. Brazing and inertia welding of dissimilar metal tubing

    International Nuclear Information System (INIS)

    A movable pump limiter is currently being built for the Tore Supra tokamak in Cadarace, France. Part of the assembly has dispersion-strengthened Cu cooling tubes joined to an AISI 316L stainless steel transition sleeve. The steel sleeve is subsequently welded into a 315L manifold. This study was made to evaluate the feasibility of brazing or inertia welding the dissimilar metal, tubing-sleeve transition. An alumina-strengthened copper alloy (DSCu) was selected for the module cooling tubes. The 316L transition pieces varied in diameter from the same nominal size as the DSCu pieces when inertial welding, to a 12.7 mm (1/2 in.) O.D. to accommodate a lap joint when brazing. The wall thickness of the inertia welded 316L pieces was varied to determine the overlap effect on the weld quality. Ag-28Cu, Ag-27.6Cu-4.5Ti, Au-37Cu-3In, and Au-18Ni (wt%) filler metals were chosen for brazing and the braze microstructures and strengths were evaluated. The best wetting was achieved with the Au based filler metals. All of the brazed joints were hydrostatically pressure tested to 10.34 MPa (1500 psi) without a failure. In all cases, an excellent metallurgical bond with a relatively small cold worked region was produced. The inertia welded samples were also pressure and tensile tested under the same test conditions that were used to evaluate the brazed samples. The welds passed the 10.34 MPa hydrostatic pressure inspection and failed under a tensile load in the DSCu piece away form the weld interface. Brazing and inertia welding were successfully used to join DSCu to 316L. The Au-based filler metals produced the best brazes with joint strengths of 480 MPa. The inertia welds had slightly higher strengths, but both failed away from the joint in the DSCu tube. All of these samples passed a 10.34 MPa hydrostatic pressure test. These processes allow flexibility in designing and fabricating a dissimilar metal transition joint

  2. Structure and stresses in high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2012-02-01

    concentration gradients of alloying components and intermetallic phases creation and factors reducing stresses which may occur during vacuum brazing of The PM Fe-TiC and PM WC-Co and corrosion resistance steel.

  3. New hermetic sealing material for vacuum brazing of stainless steels

    Science.gov (United States)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  4. An unconventional set-up for fluxless brazing of aluminium

    CERN Document Server

    Loos, Robert

    1999-01-01

    In order to successfully braze aluminium alloy assemblies without the use of oxide-removing fluxes, an evironment with very low contaminant level is mandatory. This is mostly achieved by using a vacuum furnace. Brazing under inert gas of sufficient purity is also possible. The method reported upon here makes use of a stainless steel bag which can enter a traditional air furnace. The bag is evacuated, giving a well distributed mechanical pressure on the parts to join. The intrinsic handicap of poor vacuum is compensated by regular inert gas flushing, even at high temperatures. The set-up works rather well, and the idea is believed to yield a valuable strategic and economic option, for the realization of special equipment as well as for prototyping work. We intend to use the principle for the CMS Preshower cooling screens.

  5. Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, O.C. [Instituto Superior de Engenharia do Porto (ISEP), Rua Dr. Antonio Bernardino de Almeida 431, 4200-072 Porto (Portugal)], E-mail: omp@isep.ipp.pt; Barbosa, M.A. [Instituto de Engenharia Biomedica (INEB), Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias s/n, 4200-465 Porto (Portugal)

    2008-05-15

    The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag-26.5Cu-3Ti and Ag-34.5Cu-1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 deg. C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag-26.5Cu-3Ti brazing alloy and a brazing temperature of 850 deg. C, produces the best results in terms of bond strength, 234 {+-} 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag-34.5Cu-1.5Ti brazing alloy and a brazing temperature of 850 deg. C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 {+-} 0.21 {mu}A cm{sup -2}. Nevertheless, the joints produced at 850 deg. C using a Ag-26.5Cu-3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 {+-} 18 MPa and 1.26 {+-} 0.58 {mu}A cm{sup -2}, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the

  6. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  7. Strength of vacuum brazed joints for repair; Haallfasthet hos reparationer utfoerda med vakuumloedning

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Leif [Siemens Industrial Turbomachinery AB, Finspaang (Sweden)

    2005-04-01

    Strength data are missing for braze joints. Repaired components cannot fully make use of the strength of the braze, and lifetime will be underestimated. The goal of the project was to generate material data to be able to prolong the lifetime of the components. Two different material combinations were tested, 12% Chromium steel brazed with BNi-2, and a nickel base alloy, IN792 brazed with BNi-5. Tensile testing at room temperature and elevated temperature was performed in the project. Target group is purchasers and suppliers of repaired components. A tensile test specimen with butt joint was developed in the project. The used test specimen worked well for the 12% Chromium steel. The results from testing show that proof stress and tensile strength are strongly depending on the joint gap, particularly at room temperature. High strength, close to base material strength, was achieved with joint gaps smaller than 50{mu}m. For wider joint gaps, strength was lower. Strength was approximately 25% of base material strength for joint gaps over 100{mu}m. The results can be explained by changes in microstructure. Joint gaps wider than 50{mu}m showed evidence of two-phase structure. At 500 deg C, the results also showed a connection between joint gap, microstructure and strength. The generated strength data can be used for calculations of lifetime for repaired components. Two different process errors were discovered in the manufacturing process of the brazed IN792 test specimens. The generated material data are therefor erroneous. The reason for this was two manufacturing errors. The tack welding was done with too high heat input. The surfaces of the joint gap became oxidised and the oxide hindered wetting of the braze. The second reason was that the brazing was done without the prescribed hold time at maximum temperature. The melting of the braze was therefor not completed when cooling started. As a result, the strength of the IN792 specimens was low at both temperatures.

  8. Diffusion barriers in modified air brazes

    Science.gov (United States)

    Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung

    2013-04-23

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  9. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  10. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  11. METHODS FOR BRAZING UNUSUAL METAL COMBINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bertossa, Robert C.

    1963-10-15

    A method for vacuum pressure braze cladding is described. Application of the method to Mo-OFHC Cu-type 316L stainlcss steel, Ta cladding on OFHC Cu, Nb with Ni, Ti and Zr on steels, and pure Be brazing to austenitic stalnless steel are discussed. The advantages of vacuumpressure bonding are also discussed. (P.C.H.)

  12. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    International Nuclear Information System (INIS)

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected. (paper)

  13. Effects of Different Braze Materials and Composite Substrates on Composite/Ti Joints

    Science.gov (United States)

    Morscher, Gregory N.; Singh, Mrityunjay; Asthana, Rajiv; Shpargel, Tarah

    2007-01-01

    An ever increasing number of applications require robust joining technologies of dissimilar materials. In this study, three types of ceramic composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the Cusil-ABA (63 Ag - 35.5 Cu - 1.75 Ti) active metal braze alloy. The study also compared composite specimens as-fabricated and after surface grinding/polishing. A butt-strap tensile shear strength test was used to evaluate the joined structures at room temperature, 270 and 500 C. The elevated temperatures represent possible use temperatures for some heat rejection type applications. Joint strength will be discussed in light of braze wetting and spreading properties, composite properties, and test temperature.

  14. A Compendium of Brazed Microstructures For Fission Power Systems Applications

    Science.gov (United States)

    Locci, Ivan E.; Bowman, Cheryl L.

    2012-01-01

    NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.

  15. Direct metal brazing to cermet feedthroughs

    International Nuclear Information System (INIS)

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces

  16. Effects of processing parameters on microstructure and mechanical behavior of SiO2/Ti-6Al-4V joint brazed with AgCu/Ni interlayer

    International Nuclear Information System (INIS)

    SiO2 glass ceramic has been successfully joined to Ti-6Al-4V alloy with AgCu/Ni composite interlayer. The brazing temperature varies from 950 deg. C to 980 deg. C, with the holding time ranging from 1 min to 45 min. AgCu eutectic foil melted first, followed by the Ti-Cu-Ni ternary eutectic reaction, then Ti reacted to SiO2 glass ceramic. All of Ti atoms came from Ti-6Al-4V alloy but not from braze alloy. The effects of brazing temperature and dwelling time on interface structure and joint strength were investigated in the present work. The largest shear strength of brazed joint could reach 110 MPa when the brazing temperature was 970 deg. C, holding time was 10 min, and fracture occurred in the SiO2 glass ceramic part. While the thin reaction layer at SiO2 side is the weak part of the joint when the brazing parameter is not appropriate.

  17. 超声时间和预留间隙对超声波辅助钎焊镁合金钎料填缝性能的影响%Influence of ultrasonic time and pre-clearance on gap-filling behavior of filler metal during ultrasonic-assisted brazing of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    李红; 耿园月; 闫久春; 栗卓新

    2013-01-01

    In order to investigate the influence of ultrasonic on flow behavior of filler metal when the filler metal propagates on the solid/liquid surface in brazing process, the gap-filling behavior of the molten filler metal during ultrasonic-assisted brazing of magnesium alloy was in-situ observed by high-speed video camera. Besides, the gap-filling behavior in unparalleled gaps and brazed joint properties were investigated. When the filler metal fills the gap in the direction parallel to the ultrasonic energy propagation, the dynamic curve of filling-gap distance appears linear relation with the ultrasonic time. And it shows that at the same ultrasonic time, good pre-clearance results in low filling velocity. Along the filler flow direction, the thickness of brazed joint decreases gradually. The filling-gap distance decreases as ultrasonic time increases when filler metal is placed at large gap side. The compactness of the joint is general. The filling-gap distance increases firstly and then decreases with the ultrasonic time increasing when the filler metal is placed at small gap side. In this case, the defects appear in the whole joint. The analysis indicates that the flow behavior of filler metal in unparalleled clearance is influenced by the combined effect of ultrasonic induced gap-filling action and capillary action.%采用高速摄影对超声波辅助钎焊镁合金过程熔态钎料的填缝行为进行了实时观察,并研究了不等间隙中钎料的填缝行为及接头性能.结果表明,超声波在钎焊固/液界面传播对钎料填缝行为有显著的影响.钎料在平行于超声波能量传播方向上填缝,填缝长度和超声时间的动力学曲线呈直线型.超声时间相同时,预留间隙越大,钎料的填缝速度越低.在大间隙端加钎料,随超声时间增加,填缝长度减小,钎缝致密性较好;小间隙端加钎料,随超声时间增加,填缝长度先增大后减小,整个钎缝均存在缺陷.认为钎料在不等

  18. Bonding of Al2O3 ceramic and Nb using transient liquid phase brazing

    Institute of Scientific and Technical Information of China (English)

    于治水; 梁超; 李瑞峰; 吴铭方; 祁凯

    2004-01-01

    The brazing of Al2O3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni-5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 423 - 1 573 K for 1-120 min. The results show that the shear strength of the joint first increases and then decreases with increasing holding time and brazing temperature. The joint interface microstructure and elements distribution were investigated. It can be concluded that a composite structure, in which the base metals are solid solution Nb(V) and Nb(Ti)reinforced by Ni2Ti, is formed when the brazing temperature is 1 473 K and holding time 15 min, and a satisfactory joint strength can be achieved. The interaction of Ti foil and Ni-5V foil leads to the formation of liquid eutectic phase with low melting point, at the same time the combination of Ti come from the interlayer with O atoms from Al2O3 results in the bonding of Al2 O3 and Nb.

  19. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    Science.gov (United States)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  20. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  1. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    Science.gov (United States)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  2. Fabrication and Characterization of Brazed Joints for SiC-Metallic Systems Utilizing Refractory Metals

    Science.gov (United States)

    Coddington, Bryan; Asthana, Rajiv; Halbig, Michael C.; Singh, M.

    2011-01-01

    Metal to ceramic joining plays a key role for the integration of ceramics into many nuclear, ground and aero based technologies. In order to facilitate these technologies, the active metal brazing of silicon carbide (CVD beta-SiC, 1.1 mm thick, and hot-pressed alpha-SiC, 3 mm thick) to the refractory metals molybdenum and tungsten using active braze alloys was studied. The joint microstructure, composition, and microhardness were evaluated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Knoop hardness testing. The braze alloys, Cusil-ABA, Ticusil and Copper-ABA, all formed sound joints with excellent wetting and chemical bonding with the SiC substrate. Despite the close thermal expansion match between the metal substrates and SiC, hairline cracks formed in alpha-SiC while beta-SiC showed no signs of residual stress cracking. The use of ductile interlayers to reduce the effect from residual stresses was investigated and joints formed with copper as an interlayer produced crack free systems utilizing both CVD and hot-pressed SiC.

  3. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  4. Topological dependence of mechanical responses of solidification microstructures in aluminum brazed joints

    Institute of Scientific and Technical Information of China (English)

    GAO Feng(高峰); QIAN Yi-yu(钱乙余); D.P.Sekulic; MA Xin(马鑫); F.Yoshida

    2003-01-01

    The main objective is to provide an evidence of spatial dependence of mechanical responses of a heterogeneous aluminum brazed joint re-solidified clad,and to confirm a sufficient sensitivity of a nano-indentation--load curve method for identifying the dependence.Topological features of a network of solidification microstructures(αphase and eutectic),formed during quench in a brazing process of aluminum alloy,influence significantly dynamic mechanical responses of resulting heterogeneous material.Nano/micro indentation depth vs load characteristics of differing phases suggest a spatially sensitive mechanical response of a re-solidified fillet in the joint zone.Hence,a spatial distribution,pattern formations and other morphological characteristics of microstructures have a direct impact on an ultimate joint integrity.Topology-induced variations of indentation-load curves was presented.A hypothesis involving microstructures'spatial distribution vs mechanical response was formulated.

  5. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  6. Silicon high vacuum brazing study and microstructural analysis of the joint formation; Estudo da brasagem de silicio em alto vacuo e analise microestructural da juncao

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.C.A. [Universidade Estadual Paulista - UNESP, Campus de Guaratingueta, SP (Brazil); Francisco, F.R.; Bagnato, O.R. [Laboratorio Nacional de Luz Sincrotron - LNLS, Campinas, SP (Brazil)], e-mail: erika.santana@lnls.br

    2010-07-01

    On the project of Synchrotron Light Source, silicon-crystal are often used as monochromator and mirrors, to reflect the electrons beam. Silicon is known as a very fragile material, and its optical elements must be designed carefully. Usually, it is bonded in a cooling support made by copper. Thermal contact between the crystal plate and cooling support is made of In-Ga liquid alloy. Due to the difficult of this bonding, brazing tests are being taken with Fe-Ni alloy, in order to improve the silicon mirrors application and performance. Wet ability tests were performed between the silicon plate and commercial fillers. A brazing test was made of silicon and Al12Si, as filler, with Fe-Ni, as base material. Results of microstructure analysis indicated that the braze of a silicon plate is quite promissory. (author)

  7. Application of Be-free Zr-based amorphous sputter coatings as a brazing filler metal in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Amorphous sputter coatings of Be-free multi-component Zr-based alloys were applied as a novel brazing filler metal for Zircaloy-4 brazing. By applying the homogeneous and amorphous-structured layers coated by sputtering the crystalline targets, the highly reliable joints were obtained with the formation of predominantly grown α-Zr grains owing to a complete isothermal solidification, exhibiting high tensile and fatigue strengths as well as excellent corrosion resistance, which were comparable to those of Zircaloy-4 base metal. The present investigation showed that Be-free and Zr-based multi-component amorphous sputter coatings can offer great potential for brazing Zr alloys and manufacturing fuel rods in CANDU fuel bundle system. (author)

  8. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint

    International Nuclear Information System (INIS)

    Ag–Cu/Cu/Ag–Cu–Ti composite interlayer was successfully designed to braze Invar alloy and SiO2–BN ceramic. The effect of Cu-foil thickness on the microstructure and mechanical properties of the brazed joints was investigated. The results showed that, compared with single Ag–Cu–Ti brazing foil, the formation of brittle Fe2Ti and Ni3Ti compounds detrimental to the joint strength was greatly inhibited by using composite interlayer. The active Ti atoms in the liquid filler reacted with SiO2–BN ceramic to form a TiN–TiB2 fine-grain layer. The desired interfacial microstructure composed of layered Ag- and Cu-based solid solutions was obtained, which was beneficial for the joint strength. The shear strength of brazed joints was 207% higher than the joints brazed with single Ag–Cu–Ti foil when a 100 μm thick Cu interlayer was used. The inhibition of brittle compounds formation was attributed to the control of reaction sequences during brazing and to the addition of Cu barrier layer

  9. Reactive air brazing for sealing mixed ionic electronic conducting hollow fibre membranes

    International Nuclear Information System (INIS)

    Mixed ionic–electronic conducting (MIEC) ceramic membranes and high-temperature alloys are candidate materials for applications in high-temperature gas separation systems and solid oxide fuel cells (SOFCs). Ensuring a gas-tight seal between the components is of paramount importance in the operation of such devices. This paper investigates the wettability and joining of representative ceramic-to-ceramic and ceramic-to-metal components by reactive air brazing (RAB) using Ag–Cu alloys. The correlation of the interfacial reaction (including wettability) to the hermeticity of the joints has been demonstrated by elemental mapping using Electron Probe Micro-Analysis with wavelength dispersive spectrometry (EPMA-WDS). The wettability studies described herein demonstrate that RAB is a reliable method to achieve strong, gas-tight bonding between the dissimilar materials. These are the first reported results of successful air-brazed joints between La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and BaCo0.4Fe0.4Zr0.2O3-δ (BCFZ) hollow fibre membranes to FeCrAlloy components using a 4 mol.% Cu in Ag filler metal composition which delivered an impressive runtime of up to 2000 h (for LSCF). It has been demonstrated that these RAB joints are hermetic and resistant to thermal ageing, making them suitable for membrane-based gas-separation applications. Post-operation EPMA-WDS analysis of the microstructures and compositional distribution of the brazed seals has revealed that their performance is largely dependent upon a reaction zone and an interfacial oxide layer adherent to the FeCrAlloy surface

  10. Microstructure and mechanical properties of MoSi2–MoSi2 joints brazed by Ag–Cu–Zr interlayer

    International Nuclear Information System (INIS)

    Highlights: ► Brazing of MoSi2–MoSi2 using Ag–Cu–Zr interlayer at different temperatures. ► Investigation of shear strength and microstructure of the joint by SEM and XRD. ► Formation of Ag-rich solid solution and various Cu–Zr–Si intermetallic compounds. ► Maximum shear strength for the sample with 830 °C brazing temperature. ► Various fracture path and morphology at different brazing temperatures. - Abstract: The present work investigates joining of two MoSi2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Cu–Ag alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged from 800 to 930 °C while the operation lasted for 60 min. Evaluation of joints strength through shear loading identified the maximum strength 60.31 MPa for the brazed sample at 830 °C. Interfacial microstructure was studied by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques. Applying the temperature of 830 °C was led to a uniform dense joint consisting of various phases with excellent bonding within the interfaces. XRD and EDS results revealed different phases such as Mo5Si3, Ag-rich solid solution and Cu10Zr7 at the interface. At higher brazing temperatures the amount of intemetallic compounds and residual stresses increased and therefore, mechanical properties of the joint degraded. The fracture analysis by SEM revealed various fracture path and morphology for different brazing temperatures

  11. Properties of active-brazed HPSN-steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Wippel, V. [Technische Univ., Graz (Austria). Abt. fuer Werkstoffe und Schweisstechnik; Holzner, G. [Technische Univ., Graz (Austria). Abt. fuer Werkstoffe und Schweisstechnik; Cerjak, H. [Technische Univ., Graz (Austria). Abt. fuer Werkstoffe und Schweisstechnik

    1995-12-31

    In this paper, the creation of very strong HPSN-ceramic compounds with HPSN and steel by active-brazing is described. The brazin-partners are hot-pressed silicon-nitride (HPSN) and the metallic part is the martensite steel X23 CrNi17. As active-braze commercially available silver and silver-copper brazes were used. (orig./MM)

  12. Brazing of sensors for high-temperature steam instrumentation systems

    International Nuclear Information System (INIS)

    Procedures are developed for brazing a ceramic-to-metal seal and for laser welding of sensor subassemblies into tube walls, induction brazing thermocouples through a tube wall, and furnace brazing triaxial cables, thermocouples, and a vent tube to a guide tube study three-dimensional phenomena in the upper plenum and core of a pressurized water reactor during the reflood stage of a loss-of-coolant accident. 8 refs

  13. Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium

    International Nuclear Information System (INIS)

    Highlights: → Interfacial reaction nonhomogeneity of laser welding-brazing was improved. → The process window was extended by rectangular spot combined with V-shaped groove. → Mechanical property and its stability of Ti/Al dissimilar joint were enhanced. -- Abstract: Heterogeneous interfacial reactions were easily found along the Ti/Al interface due to high temperature gradient during laser welding-brazing of Ti/Al dissimilar alloys. To improve the nonhomogeneity, relative uniform energy distribution of laser beam and appropriate groove were attempted. The effects of these attempts on the nonhomogeneity of interfacial reactions were investigated by finite element method (FEM) numerical simulation and experimental validation. The results indicate that the V-shaped groove can make the interface roughly parallel to the isotherm of the temperature field. Moreover, the rectangular spot laser can further improve homogenization of the interfacial reaction along the interface in comparison with circular spot laser. Tensile test results show that the combination of rectangular spot laser welding-brazing and V-shaped groove can effectively control the fracture of Ti/Al joints in the seam in a wide processing parameters window, and the average tensile strength reaches 278 MPa.

  14. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  15. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  16. Copper phosphorus brazing for copper tubing. Dohaikan no rindo rozuke

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, A. (Industrial Research Institute of Kanagawa Prefecture, Kanagawa (Japan))

    1993-04-01

    This paper explains copper phosphorus torch brazing for copper tubing used in construction facilities as the main object of discussion. Copper phosphorus brazing requires no flux in brazing copper with copper and copper with bronze because of self-fluxing action of phosphorus. Jointing steel tubing with copper tubing is impossible. Brazing is possible even at temperatures below the liquid-phase line where good beads can be obtained. It allows larger tolerance for clearance than soldering and silver brazing. In the working process, the final clean surface turns to bright copper while producing flux, Cu3P, slag and gas P2O5. According to void prediction based on the relation of clearance between a copper tube and a joint with capillary rising height, a brazed joint without a defect can be obtained if the nominal diameter is 32A or less. Six kinds of copper phosphorus brazing fillers are specified in JIS, the best filler being BCuP-3. The suitable temperature for brazing is in high temperature zones of about 800[degree]C, but a work is performed preferably while watching fillet being formed at about 700[degree]C. The minimum required penetration depth should be twice as much as the steel tube wall thickness, while the minimum bonding area should be quadruple as much. 10 figs., 1 tab.

  17. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    International Nuclear Information System (INIS)

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg17Al12, Mg2Al3, FeAl and Fe4Al13. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe4Al13 was a result of the complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe4Al13 was associated with the interfacial reaction

  18. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang; Wu, Bintao

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of the complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.

  19. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    Science.gov (United States)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  20. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  1. Improved Assembly for Gas Shielding During Welding or Brazing

    Science.gov (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  2. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    OpenAIRE

    S. Muthuraman

    2013-01-01

    - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs) were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressur...

  3. Response to high heat fluxes and metallurgical examination of a brazed carbon-fiber-composite/refractory-metal divertor mock-up

    International Nuclear Information System (INIS)

    As a feasibility-study an actively cooled divertor mock-up has been subjected to high heat flux loading in electron beam simulation. The divertor design concept is based on a carbon-fiber-composite material (Aerolor 05) brazed onto a TZM/Mo41Re heat sink. The plasma facing carbon armor is divided in seven tiles to allow variable loading parameters - and repeated destructive tests. The mock-up has survived high heat flux loading up to about 12 MW/m2 surface heat flux in steady-state conditions. One armor tile showed no change in the thermal response even after 500 s at ∝14 MW/m2. To estimate the general thermal response of the mock-up design, numerical methods were applied. The predicted behavior was confirmed by the experimental results. The loading experiments were followed by a detailed metallurgical investigation of the loaded sample regions and the braze joints. The typical damages after high heat flux testing and cycling were failure (i.e. detachment) in the Zr brazed carbon/TZM joint, and failure in the CuPd bonded TZM/TZM joint due to an excess of the melting temperature of the brazes. The microstructural changes in the braze regions and the recrystallization behavior of the refractory alloys are discussed. Only in one case the loaded surface of the carbon armor shows considerable erosion, caused by a partial detachment along a braze joint and thus loss of the good thermal contact during the last applied loading shots. The thermal analyses and high heat flux performance of the Aerolor-05 armored mock-up are compared to the thermal response of a previously tested mock-up of corresponding geometry with armor tiles of isotropic graphite. (orig.)

  4. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    International Nuclear Information System (INIS)

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides

  5. Preliminary Process Design of ITER ELM Coil Bracket Brazing

    Science.gov (United States)

    LI, Xiangbin; SHI, Yi

    2015-03-01

    With the technical requirement of the International Thermonuclear Experimental Reactor (ITER) project, the manufacture and assembly technology of the mid Edge Localized Modes (ELM) coil was developed by the Institute of Plasma Physics, Chinese Academy of Science (ASIPP). As the gap between the bracket and the Stainless Steel jacketed and Mineral Insulated Conductor (SSMIC) can be larger than 0.5 mm instead of 0.01 mm to 0.1 mm as in normal industrial cases, the process of mid ELM coil bracket brazing to the SSMICT becomes quiet challenging, from a technical viewpoint. This paper described the preliminary design of ELM coil bracket brazing to the SSMIC process, the optimal bracket brazing curve and the thermal simulation of the bracket furnace brazing method developed by ANSYS. BAg-6 foil (Bag50Cu34Zn16) plus BAg-1a paste (Bag45CuZnCd) solders were chosen as the brazing filler. By testing an SSMICT prototype, it is shown that the average gap between the bracket and the SSMIC could be controlled to 0.2-0.3 mm, and that there were few voids in the brazing surface. The results also verified that the preliminary design had a favorable heat conducting performance in the bracket.

  6. Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Asthana, R.

    2007-01-01

    Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.

  7. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    Science.gov (United States)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  8. Characterisation of Ga-coated and Ga-brazed aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, E. [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France); Christien, F., E-mail: frederic.christien@univ-nantes.fr [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France); Barnier, V. [Ecole Nationale Superieure des Mines, MPI, CNRS UMR5146, Centre SMS, 158 Cours Fauriel, 42023 Saint Etienne (France); Paillard, P. [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France)

    2012-05-15

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples shows that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.

  9. Deformation of ductile braze layer in a joint element under cyclic thermal loads

    International Nuclear Information System (INIS)

    The structural lifetime of a brazed joint is affected by the plastic behavior of ductile filler metal. In this work, elastoplastic analysis is performed on a CFC/Cu/TZM bonded joint for different thermal loading cases. The evolution of strains in the braze layer during the brazing process is analyzed. It is shown that the temperature dependence of the flow curves exerts considerable influence on the deformation behavior of the filler metal interlayer. The deformation characteristics of the braze layer under thermal cycling are investigated. The effect of thermal gradient on the plastic deformation of the braze is discussed. The fatigue lifetime of the copper braze layer is estimated. High heat flux (HHF) cycling tests are conducted on a CFC/Cu/TZM brazed joint in an electron beam facility. The microstructure of the deformed copper braze is presented. The flow morphologies and corresponding slip mechanisms are discussed. (orig.)

  10. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  11. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing

    International Nuclear Information System (INIS)

    Research highlights: → Al2O3 ceramic and TC4 alloy were successfully brazed by Ag-Cu-Ti-B mixed powder. → TiBw was in situ synthesized during the brazing process. → TiBw not only refined the microstructure of the joint but also alleviated the joint stress. → The effect of the volume fraction of in situ TiBw on the microstructure of joints was studied. → The effect of the volume fraction of in situ TiBw on the shear strength of joints was researched. - Abstract: Al2O3 ceramic has been successfully joined to Ti-6Al-4V alloy with Ag-Cu-Ti-B mixed powder. The TiB whiskers in the brazing layer were in situ synthesized during brazing. The effects of B content in reactant on the phase composition, microstructure and shear strength of the joints were investigated using SEM, EDS, and shear test. Results indicate that B content in the filler has a great impact upon the microstructure of the joints via exerting an influence on the volume fraction of in situ synthesized TiB whiskers. When the TiB content is 40 vol.%, the shear strength reaches the maximum value of 77.9 MPa. The higher content of TiB (≥40 vol.%) depresses the shear strength of the joints due to the interfacial thermal stress cannot be relaxed. Reaction phases (Ti3Cu2AlO, Ti2Cu, Ti2(Cu, Al), Ti(Cu, Al) and Ti3Al) appear in the joint, moreover, as the volume fraction of TiB increase, Ag (s.s) and Ti(Cu, Al) distribute more uniform and fine in the brazing layer, as well as TiB whiskers mainly distribute in them. Eventually, Ti3Cu2AlO, TiB and TiB2 firstly generate based on the thermodynamic analysis, and in excessive Ti circumstances, TiB whiskers remain in the brazing alloy.

  12. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  13. Brazed boron-silicon carbide/aluminum structural panels

    Science.gov (United States)

    Arnold, W. E., Jr.; Bales, T. T.; Brooks, T. G.; Lawson, A. G.; Mitchell, P. D.; Royster, D. M.; Wiant, R.

    1978-01-01

    Fluxless brazing process minimizes degradation of mechanical properties composite material of silicon carbide coated boron fibers in an aluminum matrix. Process is being used to fabricate full-scale Boron-Silicon Carbide/Aluminum-Titanium honeycomb core panels for flight testing and ground testing.

  14. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  15. Research on Treatment of Diamond Surface by Film Deposition and Induction Brazing%金刚石表面的膜层沉积处理及其感应钎焊的研究

    Institute of Scientific and Technical Information of China (English)

    马伯江; 蔡啸; 于庆先

    2012-01-01

    Diamond grits were deposited by hot filament chemical vapor deposition (HFCVD) and they were used to fabricate the brazed diamond tools by induction brazing. The gas ratio (H2/CH4) used was 100 : 1.5(standard cubic--centimetres per minute), the total gas pressure was maintained at about 2.0 kPa, and the substrate temperature was heated to 700℃ for 45 minutes during HFCVD. As a result, amorphous carbon film is deposited on the diamond surface. The diamond edges exposed out of the filler alloy keeps good sharpness after induction brazing of HFCVD deposited diamond. Chro- mium- carbides with uniform porosity and irregular shapes were formed on the diamond grits im mersed into the brazing filler alloy. The liquid brazing filler metal filled in porosity can enhance the bonding strength between the brazing filler metal and the diamond grits. The heavy--load grinding tests of the brazed diamond wheels fabricated by three kinds of diamond grits show that there is a low percentage of pullout from matrix and whole grain fracture for the deposited diamond grits brazed by induction heating.%将热丝化学气相沉积(HFCVD)处理的金刚石作为磨料感应钎焊制作金刚石工具。HFCVD处理试验中,混合气为H2和CH4(体积流量比为100∶1.5),炉内压力为2.0kPa,700℃下处理45min后,在金刚石表面沉积了一层非晶碳膜。感应钎焊HFCVD处理的金刚石显示,出露部分的金刚石棱边能保持良好的锋利性;浸没在钎料层下面的金刚石表面形成了有均匀孔隙且形状不规则的铬碳化合物,液态钎料充填这些化合物孔隙之间,能够增强钎料对金刚石的把持强度。3种金刚石磨料感应钎焊制作的金刚石磨盘的高效重负荷石材磨削试验显示,HFCVD处理的金刚石的整体破碎率和脱落率最低。

  16. Ni-Cr-B-Si+Cu-P-Sn复合钎料真空钎焊金刚石%Vacuum brazing diamond with Ni-Cr-B-Si+Cu-P-Sn composite filler metal

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 刘磊; 李华

    2016-01-01

    采用在镍基钎料中分别添加3%、5%和7%(质量分数)Cu-P-Sn组成新型复合钎料,并进行金刚石磨粒的钎焊实验,利用SEM、EDS和XRD对金刚石焊后的界面碳化物形貌及钎料组织进行测试分析。结果表明:添加5%Cu-P-Sn的复合钎料进行金刚石钎焊时,钎焊温度有所下降,金刚石表面碳化物较规整,并且数量有所下降,降低金刚石的热损伤。新型钎料中形成树枝晶α-Ni基固溶体和枝晶间Ni 31 Si 12、Cr 7 C 3等化合物的组织,不同含量Cu-P-Sn与Ni-Cr-B-Si合金可以较大程度互溶,可以实现钎料性能的调控,降低金刚石的热损伤。%A series of new composite brazing fillers metal were got by adding 3%, 5% or 7% (mass fraction) Cu-P-Sn in the primary brazing filler metal Ni-Cr-B-Si, respectively, then, they were used to braze diamond particles. The interface morphology of diamond carbide and the microstructure of brazing filler metal were tested by SEM, EDS and XRD. The results show that, when the composite brazing filler metal containing 5% Cu-P-Sn alloy, the carbide on the surface of the diamond is more regular and less with brazing temperature decreases, which decreases the thermal damage to the diamond. In the brazing filler alloy, the microstructures, such as dentrite included solid solution of Ni with some carbides like Ni31Si12 and Cr7C3, are formed. As the added component, Cu-P-Sn at different proportions can be dissolved into the primary brazing filler Ni-Cr-B-Si in large degree, which can adjust the properties of the filler and reduce the heat damage to the diamond.

  17. High-strength alloy with resistance to hydrogen-environment embrittlement

    Science.gov (United States)

    Mcnamara, T. G.

    1975-01-01

    Alloy is precipitation-hardened, high-strength, and low-thermal-expansion materials. It is iron-based and contains nickel and chromium at lower levels than high-strength alloys. It is readily welded and brazed and has good oxidation resistance. Tests indicated there was no reduction of notched or smooth strength.

  18. Active metal brazing of titanium to high-conductivity carbon-based sandwich structures

    International Nuclear Information System (INIS)

    Reactive brazing technology was developed and processing parameters were optimized for the bonding of titanium tubes, graphite foam, and high-conductivity carbon-carbon composite face sheets using the active braze Cusil-ABA paste and foils. The microstructure and composition of the joints, examined using scanning electron microscopy coupled with energy-dispersive spectroscopy, showed good bonding and braze penetration in all systems when braze paste was used. The hardness values of the brazed joints were consistent for the different specimen stacking configurations. Mechanical testing of Ti tube/foam/C-C composite structures both in tension and shear showed that failure always occurred in the foam material demonstrating that the brazed joint was sufficient for these types of sandwich structures

  19. Ultrasonic testing technology development for pressure retaining Ti alloy-stainless steel dissimilar metal joint of SMART steam generator

    International Nuclear Information System (INIS)

    The steam generator for the Integral reactor SMART has module feed water (FW) pipe and module steam pipe which consist of Ti-alloy and STS321 called dissimilar metal joint. These brazed joints are classified as a class 1 boundary component being needed inservice inspection according to ASME Sec. XI. But inspecting the thread part of brazed joint is really difficult due to geometrical condition. For this reason, various NDT methods have been investigated. In this paper, the ultrasonic inspection was recommended to evaluate the integrity of brazed dissimilar metal joint, and representative UT results of specimens are presented

  20. Effect of Heat Treatment on High Temperature Stress Rupture Strength of Brazing Seam for Nickel-base Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to enhance the high-temperature stress rupture strength of brazing seam by heat treatment, it was diffusion treated, then solution heat treated, and finally aging treated. The microstructure of brazing seam especially morphology of phase and boride was observed and the strength of brazing seam was measured in this process. The results show that heat treatment can enhance high-temperature stress rupture strength by improving the microstructure of brazing seam. The strength of brazing seam after solution heat treatment decreases in comparison with that only after diffusion treatment while aging treatment after solution heat treatment increases the strength of brazing seam.

  1. Welding and brazing of the JET machine components

    International Nuclear Information System (INIS)

    The report covers the techniques used for joining the various parts of the machine. The difficulties encountered during the welding and brazing of similar and dissimilar metals are underlined and the solutions adopted to solve them are indicated. The vast experience gained by those involved in the processes of joining the various parts of the JET machine components, and the lessons learnt are summarized in this report. (author)

  2. Thermovision researches of temperature fields distribution in GMA brazed joints of solar collectors

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2008-05-01

    Full Text Available Purpose: of this study was to investigate of temperature fields distribution during GMA brazing of solar collectors.Design/methodology/approach: IR-pictures were recorded with 50 Hz frequency. After recording, thermovision pictures were analyzed in Irbis software module. This software permit to matching recording parameters, identification of temperature values in arbitrary picture points, assign temperature profiles.Findings: distribution of temperature fields in the GMA brazed joints in the function of GMA brazing parameters and brazing techniques was established.Research limitations/implications: basic information about distribution of temperature fields in the GMA brazed joints is the background of the researches of GMA brazing parameters providing highest quality joints.Practical implications: results of this paper are the data of the temperature fields distribution during GMA brazing of solar collectors joints recorded by IR-camera. This data are important to set an optimal brazing parameters.Originality/value: the researches were provided using newest filler material for GMA brazing of solar collectors parts using IR recording equipment.

  3. A corrosion study on vacuum brazed joints of LINAC

    International Nuclear Information System (INIS)

    A 10 MeV, S-band electron linac has been developed at RRCAT for industrial applications. At present, the in-house fabricated accelerating structure, is under continuous operation and has been tested at beam power more than 4.2 kW. The accelerating structure of electron linac comprises RF couplers, buncher section and regular section. The accelerating structure is made of OFE copper and is fabricated by vacuum brazing of cavities and coupler components using BVAg-8 and Palcusil-5 as braze filler metals (BFM). During accelerator operation, RF power is dissipated on cavities surface and the resultant heat is removed by circulating low conductivity water (LCW) in cooling jackets built around the accelerating structure whose inner part is maintained under vacuum. Corrosion characteristics of OFE copper brazed joints in LCW environment is of utmost importance towards development of reliable industrial linac. Therefore, a study has been undertaken to investigate corrosion possibilities in the cooling circuit which can limit the life of accelerating structures

  4. Interface microstructure of the brazed zirconia and Ti-6Al-4V using Ti-based amorphous filler

    OpenAIRE

    Liu Y; Hu J; Zhang Y; Guo Z

    2013-01-01

    The polycrystalline ZrO2−3mol.%Y2O3 was brazed to Ti-6Al-4V using a Ti47Zr28Cu14Ni11 (at.%) amorphous ribbon at 1123 K in a high vacuum. The microstructure of the interface and evolution mechanism of the joint was investigated. The experimental result showed that the typical interfacial microstructures of the joints consisted of ZrO2/TiO+TiO2+Cu2Ti4O+Ni2Ti4O/α-Ti+(Ti,Zr)2(Cu,Ni) eutectic/(Ti,Zr)2(Cu,Ni)/acicular Widmanstäten structure/Ti-6Al-4V alloy. ...

  5. Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper

    International Nuclear Information System (INIS)

    Highlights: • New brazing process parameters corresponding to the greatest shear strength have been developed. • An effective interaction of brazing filler metal (BFM) and base metal was observed at the interface for the sample brazed at 650 °C/5 min. • The possibility of formation of hard intermetallic compounds of Cu, Sn, and P have been justified in view of high-strength braze joint. • The surface roughness with an average Ra value of around 0.20 μm was found to be the most appropriate for brazing of copper conducted at the specified process parameters. - Abstract: Brazing experiments on commercially-pure copper plates, using brazing filler metal (MBF-2005), are conducted at temperatures in the range of 650–750 °C for time-durations in the range of 5–15 min. Shear tests for braze-joints involved use of a universal testing machine. Based on the shear-test results, a new brazing cycle has been developed that corresponds to the greatest shear strength of the braze-joint. The brazing cycle has been performed under a controlled dry-argon atmosphere in a tube furnace. Microscopic observations were made by use of both optical and electron microscopes; whereas surface roughness measurements were made by using a TR100 Surface Roughness Tester. It is found that successful brazing and good wetting can be achieved by the least voids by using an average surface roughness (Ra value) for the base material

  6. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-09-01

    Full Text Available Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic NiTi and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to assess the type of fracture and the capability of achieving bonding and involved mechanisms are discussed.

  7. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quintino, L., E-mail: lquirino@ist.utl.pt [Universidade Tecnica de Lisboa (IST/UTL) (Portugal). Instituto Superior Tecnico. Dept. de Engenharia Mecanica; Liu, L., E-mail: ray.plasma@gmail.com [Tsinghua Univ., Beijing (China). Dept. of Mechanical Engineering; Hu, A.; Zhou, Y., E-mail: anming.hu@uwaterloo.ca, E-mail: nzhou@uwaterloo.ca [University of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering; Miranda, R.M., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa (UNIDEMI), Caparica (Portugal). Dept. de Engenharia Mecanica e Industrial

    2013-07-15

    Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic Ni Ti and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to asses the type of fracture and the capability of achieving bonding and involved mechanisms are discussed. (author)

  8. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    International Nuclear Information System (INIS)

    Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic Ni Ti and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to asses the type of fracture and the capability of achieving bonding and involved mechanisms are discussed. (author)

  9. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    Science.gov (United States)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-03-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  10. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    International Nuclear Information System (INIS)

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance

  11. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.Y. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Cheng, F.T. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: apaftche@polyu.edu.hk; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-10-25

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance.

  12. Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al Si La Sr filler

    International Nuclear Information System (INIS)

    It has been mainly studied in this paper on brazing of Cu to Al using Al.Si filler metal. The optimized scanning rate of 2.5 mm/s is first obtained through simulating the temperature field of Cu Al brazing process based on ANSYS software. Then the brazing of Cu C11000 to Al 3003 using Al.Si.La.Sr filler is carried out by torch brazing technology. It is found that the brazing seam region is mainly consisted of α Al solid solution and CuAl2 IMC. Further experimental results also show that the rare earth element La in filler metal can not only refine the grain, but also promote the dispersion of intermetallic compounds into the brazing seam, which significantly improves the brazing seam microstructure and mechanical properties of the joints

  13. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  14. A contribution to the study of metal-ceramic bonding by direct vacuum brazing with reactive metals

    International Nuclear Information System (INIS)

    Wettability and bonding tests were utilized to evaluate the behaviour of various specials alloys, for work at high temperature under vacuum, for the inter-bonding of silicon carbide, alumina ceramic, graphite (for electrical applications) and petroleum coke and their joining with themselves as the metals titanium, molybdenum, nickel and copper. The joints exhibiting effective bonding were investigated by means of optical microscopy, scanning electron microscopy and X-rays diffraction. Elemental mapping of the constituents and quantitative chemical microanalysis were also undertaken, via the energy dispersive analysis of X-rays (SEM/EDS). On the basis of the results the possible mechanisms of bond-formation have been discussed. It was verified that: a) of the filler metals studied, those which exhibited effective wettability on all the above materials were: 49Cu-49Ti-2Be, Zircaloy4-5Be and a commercial alloy Ticusil, which consisted of a Cu-Ag eutectic with a small addition of pure Ti, of nominal composition 26.7Cu-68.8Ag-4.5Ti; b) the alloys with high levels of reactive metals such as Ti and Zr tended to form low ductility bonds due to the formation of hard, brittle phases; c) the copper suffered pronounced erosion when in direct contact with alloys of high Ti and Zr contents, due to the formation of phases whose melting points were below the brazing temperature of those materials; e) the compounds detected as reaction products were identified as, TiC in the samples rich in carbon, such as the SiC ceramic and graphite joints, or the oxides Cu2Ti2O5 and Cu3TiO4 in the bonding of alumina to alloys including Ti in their composition or in that of the filler metal, proving that the effectiveness of the bond is dependent upon an initial and indispensable chemical bonding. (author)

  15. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    International Nuclear Information System (INIS)

    Highlights: • We created brazed joints between tungsten and EUROFER 97, Cu and SS316L with Au80Cu19Fe1 filler. • No elemental transitions were detected between the W and the AuCuFe filler in either direction. • Transition regions between filler to EUROFER97/316L showed similar elastic modulus and hardness to the filler. • Smooth elemental and mechanical properties transition were detected between the filler and Cu. - Abstract: In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported

  16. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    International Nuclear Information System (INIS)

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium

  17. Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Kwok, Kawai;

    2016-01-01

    The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability/reactivity and their the......The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability...

  18. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  19. Evaluation of the adhesion strength of diamond films brazed on K-10 type hard metal

    Directory of Open Access Journals (Sweden)

    Sérgio Ivan dos Santos

    2004-06-01

    Full Text Available The coating of cutting tools with diamond films considerably increases the tool performance due to the combination of the unique tribological properties of diamond with the bulk properties of the substrate (toughness. The tool performance, however, is strongly related to the adhesion strength between the film and the substrate. In this work our main goal was to propose and to test a procedure, based on a tensile strength test, to evaluate the adhesion strength of a diamond wafer brazed on a hard metal substrate, taking into account the effect of the brazing temperature and time. The temperature range studied was from 800 to 980 °C and the brazing time ranged from 3 to 40 min. The obtained results could be used to optimize the costs and time required to the production of high performance cutting tools with brazed diamond wafers.

  20. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test

  1. An Investigation on Corrosion Behavior of a Multi-layer Modified Aluminum Brazing Sheet

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2016-01-01

    Full Text Available The corrosion behavior of a multi-layer modified aluminum brazing sheet (AA4045/3003Mod./AA7072/AA4045 was investigated. The results shows that, the existence of BDP, which forms at the interface between clad and core layer during brazing, changes the corrosion form of the air side of the material from inter-granular corrosion to local exfoliation corrosion. The addition of anti-corrosion layer makes the corrosion form of the water side from inter-granular corrosion into uniform exfoliation corrosion. Compared to the normal triple-layer brazing sheet at the same thickness, the time to perforation of the modified four-layer brazing sheet is increased by more than 200%.

  2. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  3. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MRi is proposing, with its partner, Exotherm Corp (Camden, NJ) to demonstrate the feasibility of using exothermic brazing to join RCC (or C:SiC) composites to...

  4. Interface structure and mechanical property of aluminum cooler vacuum brazing joint

    Institute of Scientific and Technical Information of China (English)

    FENG Tao; LOU Song-nian; WU Lu-hai; LI Ya-jiang

    2006-01-01

    A kind of aluminum cooler was manufactured by means of vacuum brazing technique, and the cooler was examined by hydraulic pressure test. The result indicates that the test pressure of the cooler can reach 15 MPa. The fracture of the brazing joint belongs to the mixture type. There are secondary cracks, dimples, cleavage plane and grain-boundary features on the failure surface.The cracking process of aluminum cooler is as follows. The cracks are initiated on the interface, then expand under sub-critical state.When the stress on the remained zone reaches the maximum notch tensile strength of the brazing joint or the crack length reaches the critical value that the brazing joint fracture toughness property permits, the cooler will break sharply.

  5. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  6. Brazing of 14-5 PH steel and WC-Co sinterson considerable dimension surfaces

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2007-03-01

    Full Text Available Purpose: of this paper is study of structure properties of considerable surfaces vacuum brazed joints of WC-Co sinters and precipitation hardened stainless steel of 14-5 PH using copper and silver-copper as the brazing filler metal.Design/methodology/approach: the joints are used in large dimension spinning nozzles of a die for polyethylene granulation, in that considerable strength and ductility of the joints are required. Structure and mechanical properties of joints have been described. Shear strength Rt and tensile strength Rm of the joints have been defined.Findings: to have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC-Co ISO K05 sinter – Cu or Ag-Cu brazing filler metal – 14-5 PH steel joints are diffusive processes leading to exchange of elements of cermets and the brazing filler metal and creation of intermetalics in the joint. It can have an unfavourable influence on ductility of sinters and quality of joint. As a result of brazing tests the influence of means and parameters of the brazing on quality of a joint was determined.Research limitations/implications: as a result of the experiments scheme of the joint structure WC-Co ISO K05 sinter – Cu brazing filler metal – 14-5 PH steel joint and WC-Co ISO K05 sinter – Cu brazing filler metal – 14-5 PH have been described.Practical implications: as a result of conducted experiments a production of spinning nozzle of a die for polyethylene granulation with a vacuum-brazed with a WC-Co ISO K05 sinters plates cutting surface of large surfaces on precipitation hardened stainless steel 14-5 PH have been worked out and industrial applied.Originality/value: the basic factors decreasing quality of the joint, which can occur while vacuum brazing of stainless steels and cermets have been determined.

  7. THERMAL FIELD MODELING IN THE MIG / MAG - CMT BRAZE-WELDING PROCESS OF GALVANIZED SHEETS

    OpenAIRE

    GHEORGHE SIMA; ELENA STELA MUNCUT

    2013-01-01

    This paper deals with some technical aspects of the optimization process braze-welding of galvanized steel sheet with a thickness of 0.7-1.5 mm. The braze-welding process is presented systemic, highlighting the input and output variables (of the zinc layer and intermetallic layer characteristics). It is presented the test for statistical analysis performed on a four-level factorial experiment aimed at studying the influence of the main simultaneously welding parameters of the welding technolo...

  8. The characteristics of brazed plate heat exchangers with different chevron angles

    OpenAIRE

    M. Amala Justus Selvam; Senthil Kumar P.; S. Muthuraman

    2009-01-01

    Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs) were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45_, 35_, and 20_ were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure ...

  9. The metallurgy, mechanics, modelling and assessment of dissimilar material brazed joints

    International Nuclear Information System (INIS)

    At the heart of any procedure for modelling and assessing the design or failure of dissimilar material brazed joints there must be a basic understanding of the metallurgy and mechanics of the joint. This paper is about developing this understanding and addressing the issues faced with modelling and predicting failure in real dissimilar material brazed joints and the challenges still to be overcome in many cases. An understanding of the key metallurgical features of such joints in relation to finite element modelling is presented in addition to a study of the mechanics and stress state at an abrupt interface between two materials. A discussion is also presented on why elastic singularities do not exist based on a consideration of the assumption of an abrupt change in material properties and plasticity in the vicinity of the joint. In terms of modelling real dissimilar material brazed joints; there are several barriers to accurately capturing the stress state in the region of the joint and across the brazed layer and these are discussed in relation to a metallurgical study of a real dissimilar material brazed joint. However, this does not preclude using a simplified modelling approach with a representative braze layer in design and failure assessment away from the interface. In addition modelling strategies and techniques for assessing the various failure mechanisms of dissimilar material brazed joints are discussed. The findings from this paper are applicable to dissimilar material brazed joints found in a range of applications; however the references listed are primarily focussed on work in fusion research and development.

  10. Brazing of 14-5 PH steel and WC-Co sinterson considerable dimension surfaces

    OpenAIRE

    J. Nowacki

    2007-01-01

    Purpose: of this paper is study of structure properties of considerable surfaces vacuum brazed joints of WC-Co sinters and precipitation hardened stainless steel of 14-5 PH using copper and silver-copper as the brazing filler metal.Design/methodology/approach: the joints are used in large dimension spinning nozzles of a die for polyethylene granulation, in that considerable strength and ductility of the joints are required. Structure and mechanical properties of joi...

  11. Study on cold metal transfer welding–brazing of titanium to copper

    International Nuclear Information System (INIS)

    Highlights: • Cold metal transfer welding–brazing of titanium to copper was performed. • Increasing wire feed speed or groove angle will get satisfied Ti/Cu joint. • Increasing wire feed speed or groove angle will increase tensile load. • Ti/Cu CMT butt joint has dual characteristics of fusion welding and brazing. - Abstract: 3 mm Pure titanium TA2 was joined to 3 mm pure copper T2 by Cold Metal Transfer (CMT) welding–brazing process in the form of butt joint with a 1.2 mm diameter ERCuNiAl copper wire. The welding–brazing joint between Ti and Cu base metals is composed of Cu–Cu welding joint and Cu–Ti brazing joint. Cu–Cu welding joint can be formed between the Cu weld metal and the Cu groove surface, and the Cu–Ti brazing interface can be formed between Cu weld metal and Ti groove surface. The microstructure and the intermetallic compounds distribution were observed and analyzed in details. Interfacial reaction layers of brazing joint were composed of Ti2Cu, TiCu and AlCu2Ti. Furthermore, crystallization behavior of welding joint and bonding mechanism of brazing interfacial reaction were also discussed. The effects of wire feed speed and groove angle on the joint features and mechanical properties of the joints were investigated. Three different fracture modes were observed: at the Cu interface, the Ti interface, and the Cu heat affected zone (HAZ). The joints fractured at the Cu HAZ had higher tensile load than the others. The lower tensile load fractured at the Cu interface or Ti interface was attributed to the weaker bonding degree at the Cu interface or Ti interface

  12. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    Science.gov (United States)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-06-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  13. Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al2O3 braze joints

    International Nuclear Information System (INIS)

    Alumina ceramics with different levels of purity have been joined to themselves using an active braze alloy (ABA) Ag–35.3Cu–1.8Ti wt.% and brazing cycles that peak at temperatures between 815 °C and 875 °C for 2 to 300 min. The microstructures of the joints have been studied using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. A limited number of joints prepared with the ABA Ag–26.7Cu–4.5Ti wt.% have also been studied. In terms of characterising the interfacial phases, efforts were made to understand the interfacial reactions, and to determine the influence of various brazing parameters, such as the peak temperature (Tp) and time at Tp (τ), on the microstructure. In addition, the extent to which impurities in the alumina affect the interfacial microstructure has been determined. Ti3Cu3O has been identified as the main product of the reactions at the ABA/alumina interfaces. At the shortest joining time used, this phase was observed in the form of a micron-size continuous layer in contact with the ABA, alongside a nanometre-size layer on the alumina that was mostly composed of γ-TiO grains. Occasionally, single grains of Ti3O2 were observed in the thin layer on alumina. In the joints prepared with Ag–35.3Cu–1.8Ti wt.%, the interfacial structure evolved considerably with joining time, eventually leading to a high degree of inhomogeneity across the length of the joint at the highest Tp. The level of purity of alumina was not found to affect the overall interfacial microstructure, which is attributed to the formation of various solid solutions. It is suggested that Ti3Cu3O forms initially on the alumina. Diffusion of Ti occurs subsequently to form titanium oxide at the Ti3Cu3O/alumina interface

  14. Microstructure and characteristics of high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2009-12-01

    Full Text Available Purpose: In the article a state of the question concerning stresses in brazing joints of different physical and mechanical properties was appraised as well as possibility of their decrease due to use of different techniques from technological experiments to numerical methods. Evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC – Co and Ferro Titanit Nicro 128 sinters and precipitation hardened stainless steel of 14 –5 PH (X5CrNiMoCuNb14-5 using copper and silver – copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope (SEM were performed to establish microstructure and diffusion influences on creation of intermetallic phases in the joint. Shear strength Rt and tensile strength Rm of the joints have been defined. It have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC - Co ISO K05 sinter – Cu or Ag - Cu brazing filler metal – 14 -5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements and creation of intermetallic in the joint. It can have an unfavourable influence on ductility and quality of the joint.Findings: Results of numerical calculations of two-dimensional models of brazed joints for different sizes of surfaces brazed at a constant width of solder gap are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces.Results of the investigate proved that joints microstructure and mechanical properties depend on filler and parent materials, diffusion process during brazing, leading to exchange of the cermets components and filler metal as well as joint geometry (mainly gap thickness.Practical implications: The results have been applied in surfaces are used in large dimension spinning nozzles of a die for polyethylene granulation, in that

  15. Neutron irradiation test of copper alloy/stainless steel joint materials

    OpenAIRE

    山田 弘一; 河村 弘

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al2O3-dispersed strengthened copper or CuCrZr was joined to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The avera...

  16. Joining of yttria-tetragonal zirconia polycrystal with an aluminum-zirconium alloy

    International Nuclear Information System (INIS)

    Specimens of yttria-tetragonal zirconia polycrystal (Y-TZP) have been joined with an Al-5.8 wt% Zr alloy at temperatures of 900 degrees C and above. The braze alloy contained large needlelike precipitates of the intermetallic phase Al3Sr. It is shown that these large precipitates can aid in strengthening of the joint, especially if they are close to the interface. With decreasing layer thickness, the strengths increased with values as high as 420 MPa

  17. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

    Science.gov (United States)

    Tillmann, Wolfgang; Pfeiffer, Jan; Wojarski, Lukas

    2015-08-01

    Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

  18. Bonding between Carbon Fiver/Carbon composite and copper alloy

    International Nuclear Information System (INIS)

    In order to develop material for Divertor of Nuclear Fusion Reactor, we investigated bonding method between C-C material (Carbon Fiber/Carbon composite) and three kinds of heat sink materials, the microstructure of the bonding layer, shearing strength, thermal shock resistance temperature and analysis of thermal stress. C-C material was manufactured with carbon fiber oriented in one direction. Thermal conductivity of C-C is 570 W/m·k along this orientation. For heat sink material, three kinds of material, Cu, Cr-Cu alloy and W-Cu alloy were used. Results are summarized below; (1) As a brazing filler metal for bonding between C-C and copper alloy, ten kinds of brazing filler metals were investigated. As a result 2Ti-AgCu paste filler metal was selected. The brazing filler metal is excellent in wettability and as high shearing strength as a bonding layer. (2) Shearing strengths of the C-C/copper and copper alloy joints with 2Ti-AgCu paste brazing filler metal decrease in the order of C-C/Cu, C-C/Cr-Cu, C-C/W-Cu. Hardness of the bonding layer decrease in the order of C-C/W-Cu, C-C/Cr-Cu and C-C/Cu. Therefore, the shearing strength of the bonding layer increase with decreasing hardness. (3) By using a copper plate of 2-5 mm in thickness as a bonding layer between of C-C/Cr-Cu and C-C/W-Cu joints, shearing strength and thermal shock resistance temperature are improved to those of the C-C/Cu joint. Through thermal stress analysis, the thermal stress relief of the copper plate was confirmed. (author)

  19. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  20. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Cadmium (CD) is considered a metal of the 20th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta2- microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m3).(1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  1. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-03-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  2. The Integration of Vacuum Brazing into Heat Treatment - A Progressive Combined Process

    Institute of Scientific and Technical Information of China (English)

    Ingo Reinkensmeier; Henkjan Buursen

    2004-01-01

    The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance.The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.

  3. 75 FR 52037 - Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-08-24

    ... Order No. 5-2007 (67 FR 31160). Signed at Washington, DC, on August 16, 2010. David Michaels, Assistant... Occupational Safety and Health Administration Welding, Cutting and Brazing Standard; Extension of the Office of... the information collection requirements contained in the Welding, Cutting and Brazing Standard (29...

  4. Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil

    International Nuclear Information System (INIS)

    The microstructure and bonding strength of vacuum-brazed C/C composite and C/C composite with AgCuTi foil are studied. The interface structure of the brazed joint is C/C composite–TiC–eutectic structure of AgCu–TiC–C/C composite. The maximum shear strength of the joint is about 20 MPa and TiC formed at the edge of C/C composite plays a key role in the brazing process. It improves the wettability of the C/C composite and inhibits diffusion of the Ag and Cu atoms in the filler metal and C atoms in the C/C composite. The fracture mode of the brazing joint is brittle. The interface evolution in the brazing process and associated mechanism are discussed

  5. Interfacial structure and joint strengthening in arc brazed galvanized steels with copper based filler

    Institute of Scientific and Technical Information of China (English)

    LI Rui-feng; YU Zhi-shui; QI Kai

    2006-01-01

    Galvanized steel sheets were joined by tungsten inert gas(TIG) and metal inert gas(MIG) brazing process using copper based filler. The results show that the joint zone hardness is higher than that of the base material or copper filler from the microhardness tests of TIG brazing specimens, and the fracture spot is at the base materials zone from the tensile tests of MIG brazing specimens. Examination using energy dispersive X-ray analysis reveals the presence of intermetallic compound Fe5Si3(Cu) in the joint. The dispersal of fine Fe5Si3(Cu) particles is the main strengthening factor for the joint. The Fe5Si3(Cu) particles are determined to arise from three sources, namely, spot micro-melt, whisker-like fragmentation and dissolve-separation actions.

  6. Design and construction of a 33 GHz brazed accelerator waveguide for high gradient operation

    International Nuclear Information System (INIS)

    This paper discusses design and construction features of a precision machined and brazed traveling wave structure for use as a high gradient 33.3 GHz electron linear accelerator test section in a Two Beam Accelerator. Design emphasis was directed at meeting an RF filling time requirement of 12F<16ns, and at fabricating a test structure that would provide guidelines for demonstrating average accelerating fields of approximately 300 MV/m (maximum surface fields of 650 MV/m). Microwave measurement data, obtained during construction, are described and include a phase dispersion simple cold test technique for accurately predicting the structure filling time. A companion paper discusses plans for high power testing of both this brazed structure and a hybrid brazed/electroformed structure, using the Electron Laser Facility ELF at LLNL

  7. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    Science.gov (United States)

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  8. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    Science.gov (United States)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  9. THERMAL FIELD MODELING IN THE MIG / MAG - CMT BRAZE-WELDING PROCESS OF GALVANIZED SHEETS

    Directory of Open Access Journals (Sweden)

    GHEORGHE SIMA

    2013-10-01

    Full Text Available This paper deals with some technical aspects of the optimization process braze-welding of galvanized steel sheet with a thickness of 0.7-1.5 mm. The braze-welding process is presented systemic, highlighting the input and output variables (of the zinc layer and intermetallic layer characteristics. It is presented the test for statistical analysis performed on a four-level factorial experiment aimed at studying the influence of the main simultaneously welding parameters of the welding technology CMT (Cold Metal Transfer: determining an optimal welding current IS, welding speed vS, boos current Ina and arc length correction factor l0.

  10. Laser hybrid brazing of oxide ceramics for high temperature gas sensing applications in (V)HTRS

    International Nuclear Information System (INIS)

    It has been shown that the use of halogen lamps to assist laser brazing reduces total energy and joining time. For parts with specific geometries not suitable for a rotation process, an assistive heating with halogen lamps might be even more beneficial, to alleviate temperature gradients and transients. Forsterite-based ceramics are highly suitable as a joining partner for ZrO2, especially in a laser brazing process based on volume heating. By adding Fe2O3 to the raw powder mixture, the absorptivity of the forsterite ceramic can be tuned with an optimum at 0.1 wt.% Fe, reducing the necessary laser energy input even more. (orig.)

  11. Ultrasonic inspection of the brazed joint and explosive welds used to repair the PFR evaporators

    International Nuclear Information System (INIS)

    A small number of in-service failures associated with the steam-tube to tube-plate welds of the PFR evaporators led to the decision to protect the welds by sleeving. The philosophy was to insert a sleeve through the tube-plate and into the steam tube, thus bridging the existing weld. The top portion of the sleeve was to be explosively welded to the zone adjacent to the top face of the tube-plate and the lower portion brazed into the steam tube. This paper deals with the development and use of ultrasonics to test both the brazed and explosively welded joints

  12. Assessing braze quality in the actively cooled Tore Supra Phase III outboard pump limiter

    International Nuclear Information System (INIS)

    The quality of brazing of pyrolytic graphite armor brazed to copper tubes in Tore Supra's Phase III Outboard Pump Limiter was assessed through pre-service qualification testing of individual copper/tile assemblies. The evaluation used non-destructive, hot water transient heating tests performed in the high-temperature, high-pressure flow loop at Sandia's Plasma Materials Test Facility. Surface temperatures of tiles were monitored with an infrared camera as water at 120 degrees C at about 2.07 MPa (300 psi) passed through a tube assembly initially at 30 degrees C. For tiles with braze voids or cracks, the surface temperatures tagged behind those of adjacent well-bonded tiles. Temperature tags were correlated with flaw sizes observed during repairs based upon a detailed 2-D heat transfer analyses. open-quotes Badclose quotes tiles, i.e., temperature tags of 10-20 degrees C depending upon tile's size, were easy to detect and, when removed, revealed braze voids of roughly 50% of the joint area. Eleven of the 14 tubes were rebrazed after bad tiles were detected and removed. Three tubes were rebrazed twice

  13. Gaseous Shielding Gas Additives as Flux Substitute for TIG Arc Brazing

    Directory of Open Access Journals (Sweden)

    Uwe Reisgen

    2015-09-01

    Full Text Available Abstract Brazing is one of the key technologies in the field of joining of metal components. To improve the wetting of brazing material and work-piece surface, it is often required to fall back on the use of flux. The application of these substances requires accuracy and is often connected with considerable expenditure and it is, just as the removal of flux residues, often an additional working step which has to be carried out manually. Within the framework of a DFG research project it has been investigated to which degree gaseous substances as addition to the shielding gas may replace conventional flux in TIG arc brazing. To this end, investigations have been carried out using different combinations of base and filler materials. Mainly monosilane as a gaseous flux substitute has been added in low concentrations to the shielding gas volume flow. The resulting brazed joints have been quantified with regard to their geometry, their fusion conditions and their chemical compositions. These qualities were then correlated and evaluated with the provided quantity of monosilane in order to identify dependencies.

  14. Non destructive determination of the mechanical strength of a brazed joint with electrical potential measurements

    International Nuclear Information System (INIS)

    A method is described which allows the evaluation of the mechanical strength of a brazed joint by measuring the surface voltage when a current runs through the joint. The results are discussed and compared with those obtained from traditionnal destructive tests

  15. Penetrating behavior of eutectic liquid during Al/Cu contact reactive brazing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The behavior of eutectic liquid penetrating into the Al base during Al/Cu contact reactive brazing process was studied. Analysis results show that the eutectic liquid prefers to expand along the grain boundary in the depth direction. Meanwhile, dissolution of solid Al and Cu into the eutectic liquid promotes the eutectic reaction and the continuously formed eutectic liquid leads to the reactive penetrating.

  16. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Science.gov (United States)

    2010-10-01

    ... not exceed 1/8 inch per minute during yield strength determination. (k) Elongation. Physical test... other side. Strength of longitudinal seam: Copper brazed longitudinal seam must have strength at least 3/2 times the strength of the steel wall. (2) Welding procedures and operators must be qualified...

  17. Effect of holding time on vacuum brazing for a stainless steel plate-fin structure

    International Nuclear Information System (INIS)

    This paper presents a vacuum brazing of 304 stainless steel plate-fin structures with nickel-based BNi-2 filler metal. The effect of brazing holding time on tensile strength and microstructure has been investigated, aiming to obtain the optimal brazing holding time. The microstructure in brazing joint consists of diffusion-affected zone (DAZ), interface reaction zone (IRZ), isothermally solidified zone (ISZ) and athermally solidified zone (ASZ). The structure in the fillet is composed of solid solution, nickel silicon, nickel boron compound and a mixture with nickel silicon and nickel boron. The tensile strength increases along with the increase of holding time, but decreases when the holding time is over 25 min. A maximum tensile strength of 65.1 MPa is obtained with 25 min holding time. Too short holding time will make boron diffuse insufficiently and generate a great deal of brittle boride components, and too long holding time will make the base metal dissolve into the filler metal excessively and creates more corrosion voids.

  18. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  19. Joining Strength and Microstructure of Sintered SiC/SiC Joints Prepared by Active Brazing Process

    OpenAIRE

    LIU Yan,HUANG Zheng-Ren,LIU Xue-Jian,YUAN Ming

    2009-01-01

    Sintered SiC ceramics were brazed with itself by ternary Ag-Cu-Ti filler metal foil. Effects of brazing parameters such as temperature, holding time on joining strength, together with interface microstructure and reaction products were investigated. Experimental results indicate that joining strength has peak value with the increasing of brazing temperature and holding time, and the max fourª²point bending strength of SiC/SiC joints reaches 342MPa. The joining strength increases first with th...

  20. Irradiation-induced softening of Ni3P and (Ni, Fe, Cr)3P alloys

    International Nuclear Information System (INIS)

    Production of amorphous alloys by solid state reactions (SSR) has attracted much interest during the last few years. One of the methods to induce such a reaction is the irradiation of suitable crystalline alloys by fast particles. Examination of this kind of SSR in M3P type of brazing alloys (M: Metal) is attractive because of the following reason: In brazed joints of candidate structural materials like 316L stainless steel for applications in fusion reactors, crystalline intermetallic phases have been detected which are unstable relative to the amorphous state when irradiated at moderate temperatures with fast particles. It is expected that the transition to the amorphous state is accompanied by changes of the mechanical properties, which are of fundamental interest in this context. Until now, only a few studies on the evolution of mechanical properties during amorphization have been performed. Measurements of microhardness of the crystalline and the corresponding amorphous phase do not exist to the authors knowledge. In this communication, the authors present results on changes of microhardness, due to amorphization by fast ions. The measurements have been performed on a model alloy Ni3P and on the brazed joint of stainless steel 316L, containing M3P (M: Ni, Fe, Cr) as one of the phases. Though microhardness is not a fundamental property of materials, it is a manifestation of several related properties, such as yield stress, ductility, work-hardening, elastic modulus and residual stress states. It represents a resistance for indentation and is, therefore, appropriate for comparative purposes

  1. Experimental investigation on both low cycle fatigue and fracture behavior of DZ125 base metal and the brazed joint at elevated temperature

    International Nuclear Information System (INIS)

    Highlights: → Mechanical properties of DZ125 base metal and brazed joint were investigated at 850 deg. C. → The brazed joint has the obvious softening phenomenon at stress range above 640 MPa. → The brazed joint shows lower fatigue life compared with the base metal. → All the brazed joints are fractured in the brazing seam. → The differences of fracture phenomena between two types of specimens were observed. - Abstract: Due to the different low cycle fatigue (LCF) properties and fatigue fracture behavior between DZ125 base metal and the brazed joint, the LCF tests are carried out systematically using tension cycling under stress amplitude control conditions (stress ratio R = 0) at elevated temperature in laboratory air. The present paper sets out to investigate the cyclic deformation response of DZ125 base metal and the brazed joint in two aspects, i.e. fatigue life and fatigue fracture behavior, with the comparative method. Furthermore, the comparative method on the typical fatigue fracture surface features (including fatigue source zone, crack propagation zone and fatigue fracture zone) of DZ125 base metal and the brazed joint cycled to failure is conducted in detail. Based on both the macro mechanical behavior and macro and micro fracture observations, experimental results show that: (1) for the brazed joint, the softening is not obvious at lower stress ranges. But from 640 to 720 MPa, it is very significant; (2) under the same test condition, the brazed joint shows lower fatigue life compared with DZ125 base metal and all brazed joints are fractured in the brazing seam observed by the Scanning Electron Microscope (SEM); and (3) there are many distinctive differences of the fracture phenomena between DZ125 base metal and the brazed joint as follows: (1) the crack initiation mode; (2) the crack propagation behavior; and (3) the morphology of dimple pattern at the fatigue fracture zone.

  2. Effect of the joint clearance in the welding properties of austenitic stainless steel brazed at high temperature

    International Nuclear Information System (INIS)

    By metallographic, microhardening and tension tests, the effects of joint clearance in the precipitation of fragile phases, and its relation with the mechanical properties of the brazed joints at the temperature of 10100C, are investigated. (E.G.)

  3. Pre-qualification of brazed plasma facing components of divertor target elements for ITER like tokamak application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.P., E-mail: kpsingh@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Pandya, Santosh P.; Khirwadkar, S.S.; Patel, Alpesh; Patil, Y.; Buch, J.J.U.; Khan, M.S.; Tripathi, Sudhir; Pandya, Shwetang; Govindrajan, J. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Jaman, P.M.; Rathore, Devendra; Rangaraj, L.; Divakar, C. [Materials Science Division, National Aerospace Laboratories, CSIR, Bangalore, Karnataka (India)

    2011-10-15

    Qualification of tungsten (W) and graphite (C) based brazed plasma facing components (PFCs) is an important R and D area in fusion research. Pre-qualification tests for brazed joints between W-CuCrZr and C-CuCrZr using NDT (IR thermography and ultrasonic test) and thermal fatigue test are attempted. Mockups having good quality brazed joints of W and C based PFCs were identified using NDT. Subsequently, thermal fatigue test was performed on the identified mockups. All brazed tiles of W based PFC mockups could withstand thermal fatigue test, however, few tiles of C based PFC mockup were found detached. Thermal analyses of mockups are performed using finite element analysis (ANSYS) software to simulate the thermal hydraulic condition with 10 MW/m{sup 2} uniform heat flux. Details about experimental and computational work are presented here.

  4. Interfacial reaction product and mechanical properties of the electron beam brazed K465 Ni-based superalloy joints

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Zhang Binggang; He Jingshan; Feng Jicai; Wu Yingjie

    2008-01-01

    Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni-based γ solid solution, Ni3Al (γ′), Ni3B, WB, CrB, and a small quantity of WC, NbC. The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.

  5. Tensile, Fatigue and Creep Properties of Aluminum Heat Exhanger Tube Alloys for Temperatures from 293 K to 573 K (20°C to 300°C)

    OpenAIRE

    Kahl, Sören; Ekström, Hans-Erik; Mendoza, Jesus

    2014-01-01

    Since automotive heat exchangers are operated at varying temperatures and under varying pressures, both static and dynamic mechanical properties should be known at different temperatures. Tubes are the most critical part of the most heat exchangers made from aluminum brazing sheet. We present tensile test, stress amplitude-fatigue life, and creep–rupture data of six AA3XXX series tube alloys after simulated brazing for temperatures ranging from 293 K to 573 K (20 °C to 300 °C). While correlat...

  6. 焊料在电子器件中的应用%Application of the Brazing Materials for Electronic Devices

    Institute of Scientific and Technical Information of China (English)

    王恭年; 高陇桥

    2001-01-01

    The compositions and properties of commonly used brazing materials for electonic devices are reviewed in this paper.The problems of the brazing materials at present and its research and development direction are also proposed.%综述了目前在电子器件中常用焊料的组分和性能,指出了该类焊料存在的问题及其今后的研究、发展方向。

  7. Microstructure characteristic of SS304/BNi-2/SS304 butt joint by high temperature brazing%SS304/BNi-2/SS304高温钎焊对接接头微观结构特征

    Institute of Scientific and Technical Information of China (English)

    竺国荣; 陈虎; 祝金丹; 巩建鸣

    2011-01-01

    通过试验手段研究了SS304/BNi-2/SS304钎焊对接接头微观结构特征,使用能谱分析结合合金三元相图研究了接头区域典型的微观结构形貌和特征相变化规律,讨论了降熔元素在接头等温凝固连接过程中所起的关键作用。结果表明,在钎焊温度时,B从液相钎料向固相母材的快速扩散控制了接头的等温凝固过程,也因此决定了接头的微观结构相特征;钎焊接头通常会存在4种典型的相特征区域;钎角质量对于整个钎焊接头性能有重要影响。%The microstructure characteristic of SS304/Bni -2/SS304 butt joint was analyzed by high temperature brazing through the experimental research. Some typical microstructural morphologies and phase transition feature of the butt joint were studied by using ternary phase diagrams and EDS analysis. The critical effect of element diffusion on isothermal solidification of brazed joint was also discussed by analyzing the microstructural evolution. The results showed that the quick diffusing of boron from the liquid filler alloy into solid base metal controlled the isothermal solidification process as well as the joint microstructure. Four typical characteristic zones could be observed for the whole brazed joint. The fillet quality played a very important role in the whole joint performance.

  8. Mechanical and microstructural behavior of brazed aluminum / stainless steel mixed joints

    Science.gov (United States)

    Fedorov, V.; Weis, S.; Wagner, G.

    2016-03-01

    There is a requirement to combine different materials such as aluminum and stainless steel in industrial applications like automotive heat exchangers. Brazing offers the possibility to reduce the joining temperature in comparison to welding due to the lower liquidus temperature of the fillers. In the present work, the mechanical and microstructural behavior of aluminum / stainless steel mixed joints is investigated. The specimens are produced by induction brazing using an AlSi10filler and a non-corrosive flux. To evaluate the mechanical properties of the joints, tensile tests at elevated temperatures are carried out. Additionally, long-term thermal exposure experiments are done in order to investigate the changes in the microstructure.

  9. Evaluation of the adhesion strength of diamond films brazed on K-10 type hard metal

    OpenAIRE

    Sérgio Ivan dos Santos; Carlos Alberto Medeiros Casanova; Cleiton Rodrigues Teixeira; Naira Maria Balzaretti; João Alziro Herz da Jornada

    2004-01-01

    The coating of cutting tools with diamond films considerably increases the tool performance due to the combination of the unique tribological properties of diamond with the bulk properties of the substrate (toughness). The tool performance, however, is strongly related to the adhesion strength between the film and the substrate. In this work our main goal was to propose and to test a procedure, based on a tensile strength test, to evaluate the adhesion strength of a diamond wafer brazed on a ...

  10. Novel high chromium containing braze filler metals for heat exchanger applications

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, S.; Fortuna, D. [Sulzer Metco, Troy (United States)

    2007-07-01

    A new family of boron-free, high chromium containing braze filler metal compositions were developed (Amdry 105, Amdry 108, Amdry 805). Filler metal properties including metallurgical phases, melting range, flow, corrosion resistance and high temperature oxidation resistance are reported. Additionally, the technical and economical advantages of using these new filler metals in fabricating flat plate type of heat exchangers and metallic catalytic converters is discussed. (orig.)

  11. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  12. Preparation of W/CuCrZr monoblock test mock-up using vacuum brazing technique

    International Nuclear Information System (INIS)

    Development of the joining for W/CuCrZr monoblock PFC test mock-up is an interest area in Fusion R and D. W/Cu bimetallic material has prepared using OFHC copper casting approach on the radial surface of W monoblock tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970 °C for 10 mins using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixtures were used for OFHC copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr monoblock mock-up on W/Cu and Cu-CuCrZr has been checked using ultrasonic immersion technique. Micro-structural examination and Spot-wise elemental analysis have been carried out using HR-SEM and EDAX. The results of the experimental work will be discussed in the paper. (author)

  13. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  14. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-06-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  15. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    Science.gov (United States)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

  16. 保温时间对Mg/Cu共晶反应钎焊连接的影响%Effects of Holding Time on Eutectic Contacting Reaction Brazing of Mg/Cu

    Institute of Scientific and Technical Information of China (English)

    王怀建; 白莉

    2012-01-01

    Magnesium alloy and copper were bonded by eutectic contacting reaction brazing, and the effects of holding time on the microstructure and tensile properties were studied. The results from the experiment show that when the welding process is 500℃ keeping for 30 min, welding pressure is 2MPa, the tensile strength can reach 54MPa.%采用共晶钎焊工艺对Mg/Cu异种材料进行连接,研究了不同保温时间对接头微观组织及力学性能的影响.结果表明,在焊接温度为500℃、保温时间为30 min、焊接压力为2MPa的工艺下,焊接接头最高抗拉强度为54 MPa.

  17. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    Science.gov (United States)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  18. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  19. Brazing of Sealing for Instrumentation Feed through of high Pressure Vessel

    International Nuclear Information System (INIS)

    Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. It is composed of an In-Pile test Section(IPS) and an Out- Pile System(OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that could safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has loaded IP-1 hole in HANARO has a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants and the same temperature, pressure and flow conditions. Sensors installed on the inside of IPS to send a signal transmission MI-Cables to the outside for instrumentation is through the pressure boundary. Therefore, pressure boundary should be maintained in the sealing performance. Brazing is typically lower than the melting point of material without melting the material almost would be like welding when it is necessary to use. It is commonly used to use BAg(ASME II SFA-5.8 UNS-P07563) filler metal, but corrosion occurs containing a large quantity of copper in Bag, and when contact with the coolant, the coolant water quality is influenced. Therefore, using BNi-2(ASME II SFA-5.8 UNS-N99620) filler metal is considered. Brazing at the Sealing Plug in the top of IPS was considered for Mi-cable's integrity and to maintain the pressure boundary. After brazing is performed, brazing the Mi-cable integrity and pressure boundary sealing performance was tested

  20. Effect of interlayer on the mechanical properties of YG8 hard carbide/40Cr steel brazed joints

    Institute of Scientific and Technical Information of China (English)

    Wu Mingfang; Pu Juan; Chen Jian

    2009-01-01

    The effects of Cu foil and Ni foil on the mechanical properties of YG8 hard carbide/4OCr steel brazed joints were investigated. The results show that both Cu foil and Ni foil were beneficial to decrease the residual stress and enhance the joint strength. Moreover, Ni foil exhibited the better impact on enhancing the joint strength relative to Cu foil. When Cu foil was used as interlayer material, the key factor to restrain the joint strength was the massive and quick dissolution of Cu. Therefore, in order to prevent the excessive dissolution of Cu foil, the process parameter should be controlled strictly in the brazing process.

  1. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar{trademark}) alloy leads

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.J.; Greulich, F.A.; Beavis, L.C.

    1993-12-31

    One important application for the Fe-29Ni-17Co (Kovar{trademark}) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100{degrees}C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000{degrees}C prior to the Cu brazing operation. Two approaches have been used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800--1100{degrees}C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900{degrees}C in order to avoid excessive grain growth. A second study has characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550--700{degrees}C. This study indicates the parabolic growth law applies for this material, and between 550 and 700{degrees}C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures ({ge}750{degrees}C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790{degrees}C. Quantitative point analyses of the oxide scale formed at 600{degrees}C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe{sub 2}O{sub 3}-type oxide.

  2. Quality evaluations of the fuel bundle welds and brazed joints by acoustic microscopy

    International Nuclear Information System (INIS)

    For more than 20 years, the quality control of the end-cap, end-plates welds and of the brazed appendage joints is made by destructive methods (metallographic examinations or mechanical tests) on specimens sampled from production. Having a very limited statistics, these destructive methods are useful only to indicate 'trends' of the production quality, not for detecting infrequent single defect events. It is recognized that nondestructive examination techniques are required to achieve sufficient evidence of the production quality, at a statistically significant sampling rate. For this reason, the INR-Ultraacoustics R and D Lab has develop a family of equipments for high resolution ultrasonic imaging, at performances close to the Acoustic Microscopy domain. The paper make a presentation of the examination methods and of the experimental results obtained on characteristic welds and brazed joints samples. Detailed off-line evaluations of the C-scan and B-scan ultrasonic images are made and comparative analyses with metallography are performed. Also, in the case of end-cap welds, numerical stress analysis are made, in order to establish the influence of flaws on the weld strength. (author)

  3. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    Science.gov (United States)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-05-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  4. Review Article: recent advances in metal-ceramic brazing Artigo Revisão: avanços recentes em brasagem metal-cerâmica

    Directory of Open Access Journals (Sweden)

    R. M. do Nascimento

    2003-12-01

    Full Text Available Metal-ceramic joining has slowly but steadily become an important manufacturing step. The evolution of joining processes has allowed ceramics to be used in combination with metals in a number of hybrid devices from traditional light bulbs and seals to improved cutting tools and modern monitoring and measuring electronic devices. New joining methods and newer approaches to conventional methods have been developed aiming at joints characterized by improved reliability, and interfaces capable of withstanding high-temperature resistance with minimum residual stresses. A summary of recent improvements on alternative approaches to ceramic-metal joining as well as new developments on brazing are presented herein. The present review also focuses on recent advances towards brazing metallized ceramics and the selection of filler alloys, since in a scenario that includes joining by laser and direct bonding with liquid transient phases, brazing continues to be by far the most widely used approach to joining as a result of its low-cost and possibility to join intricate geometries for large-scale production. Finally, methods to evaluate the mechanical strength and residual thermal stresses are presented in addition to alternative approaches to minimize residual stresses and, consequently, improve joint reliability.O interesse no estudo de métodos de junção-cerâmica para aplicações industriais tem crescido gradativamente ao longo dos anos. A evolução dos processos de união tem permitido a utilização de cerâmicas em conjunto com metais na fabricação de diversos componentes híbridos incluindo lâmpadas tradicionais, juntas para vácuo, ferramentas de corte de alto desempenho e modernos dispositivos eletrônicos de medição e monitoramento. Novos métodos de união e aprimoramentos de métodos convencionais têm sido estudados com o intuito de produzir-se juntas com alta confiabilidade e interfaces capazes de suportar altas temperaturas de

  5. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-04-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  6. 78 FR 53159 - Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's...

    Science.gov (United States)

    2013-08-28

    ... Paperwork Reduction Act of 1995 (44 U.S.C. 3506 et seq.) and Secretary of Labor's Order No. 1-2012 (77 FR... Occupational Safety and Health Administration Standard for Welding, Cutting, and Brazing; Extension of the... Budget's (OMB) approval of the information collection requirements contained in the Standard for...

  7. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  8. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    Science.gov (United States)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  9. Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be

    International Nuclear Information System (INIS)

    Carbon fiber reinforced SiC (Cf/SiC) was successfully joined to 304 stainless steel with Ti–Zr–Be filler metal by vacuum brazing. The interfacial microstructure was investigated by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), auger electron energy spectroscopy (AES) and X-diffraction (XRD). The mechanical properties of the brazed joints were measured by a mechanical testing machine. The results show that Ti and Zr elements in the interlayer can react with the brazed materials, the brazed joint mainly consists of Ti5Si3, TiSi, TiBe, TiFe and Zr(s,s) reaction products. The 304 stainless steel constantly dissolved and Ti, Be diffused into 304 stainless steel, which formed the diffusion layers between interlayer and 304 stainless steel. Ti and Be elements have an effect on promoting the formation of α-Fe layer. The maximum shear strength of 109.13±2.55 MPa is obtained at 950 °C with 60 min holding time

  10. Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal

    Institute of Scientific and Technical Information of China (English)

    LI Li-qun; FENG Xiao-song; CHEN Yan-bin

    2008-01-01

    The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes. The microstructures and element distributions of joint interface were investigated by SEM and EDS. The results show that there is no obvious interface layer with the circular individual beam heating and lamellar Fe-Si intermetallic compound layer is found with dual-beam laser spot heating. With the irradiation of rectangular laser spot, the joint interface layer is also formed. The layer thickness is larger than that of dual-beam brazing and the layer shape is fiat so that intermetallic compounds trend to grow into cellular crystals. Moreover, the interface layer shape also depends on its position in the joint. Under the high heat input, dendritic or granular intermetallic compounds dispersively distribute in brazing seam adjacent to the interface, which is caused by the melting or dissolving of the base metal. According to the results, the brazing quality can be controlled by laser heating mode and processing parameters.

  11. Development and heat load experiments of graphite brazed to stainless steel for the first wall structure of FER

    International Nuclear Information System (INIS)

    A guard limiter concept with graphite brazed to a stainless steel base plate has been proposed in FER. The bonding of graphite and stainless steel was successfully done by vacuum brazing with an interlayer material of Mo or Cu. Mechanical strengths were measured by tensile and shear tests. Fatigue test up to approximately 107 cycles were done. Heat load experiments were performed with electron beam equipment. Brazed materials with a Mo interlayer were subjected to a heat load up to 60 MJ/m2 (6 kJ/cm2). No complete failures were observed in every condition, but cracks were generated by heat loads greater than 40 MJ/m2 (4 kJ/cm2). The failures were generated in graphite near to the interface. Mechanical strength and thermal shock resistance were improved by the change from 1 to 3 mm in thickness of Mo interlayer. Residual stresses due to brazing and cool-down were analyzed with an FEM code, and the results were compared with strain measurements on the test specimen. A comparison study on interlayer materials is continuing, and heat load cycle tests are now underway for 10 MJ/m2 (1 kJ/cm2), which is a target value based on the FER design. (orig.)

  12. A combined electron probe micro analysis and scanning Kelvin probe force microscopy study of a modified AA4xxx/AA3xxx aluminium brazing sheet

    International Nuclear Information System (INIS)

    Highlights: • SKPFM and FE-EPMA for a modified aluminium brazing sheet were performed. • Cross-sectional electrochemical properties of the material were measured. • Cross-sectional variation of microstructural chemistry was investigated. • The electrochemical responses were correlated to the microstructural features. • A solution for corrosion protection enhancement of the material was proposed. -- Abstract: The electrochemical and microstructural properties of the clad and core from a modified AA3xxx/AA4xxx brazing sheet were investigated before and after brazing. For this, scanning Kelvin probe force microscopy (SKPFM) and field emission electron probe micro analysis (FE-EPMA) were used. The Volta potential difference (VPD) was measured as a function of depth for the brazed and non-brazed sheets. This was correlated with the cross-sectional variation of chemistry and microstructure that result from brazing. Furthermore, potentiodynamic polarization experiments and subsequent microscopic analysis of the corroded samples were used to explore the corrosion mechanism of the modified brazed sheet. The investigation revealed that the major consequences of brazing for the microstructure are: an increase in the Si content of the matrix in the heat affected zone (HAZ); a non-uniform distribution of Cu in the HAZ; an accumulation of Cu in Al–Si eutectics and around the grain boundaries, including α-Al(Mn,Fe)Si and Al2Cu intermetallics; the presence of some continuous grain boundaries in both the clad and core of the sheet; and the non-uniform precipitation of intermetallics at Al–Si eutectic phases. The impact of these microstructural changes on the corrosion behaviour of the brazed sheet was: to increase the VPD of the re-solidified clad matrix; to introduce localized corrosion susceptibility on the brazed clad and core structures; and to reduce the cathodic protection power of the re-solidified clad material. As a result of the correlation between

  13. Low-Temperature Forming of Beta Titanium Alloys

    Science.gov (United States)

    Kaneko, R. S.; Woods, C. A.

    1983-01-01

    Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.

  14. ON FABRICATION AND BRAZING OF 15A, 120 keV CONTINUOUS DUTY ACCELERATOR GRID ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, L.A.; Koehler, G.W.; Paterson, J.A.

    1980-05-01

    The development of high intensity neutral beam injectors at the Lawrence Berkeley Laboratory has progressed from relatively low duty cycle, low energy devices to the next generation of continuous duty high energy units. The earlier pulsed versions were designed with edge cooled grid structures described ·in a previous publication. The prerequisites set by the higher duty cycle devices no longer allow the edge cooling methods to be employed. Hollow molybdenum grid rails with deionized cooling water flowing at pressures of approximately 1.73 x 10{sup 6}Pa (250 PSI) at from 1.135 to 1.89 liters per minute (.3 to .5 GPM) are brazed to Type 304L stainless steel rail holders.

  15. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.;

    2012-01-01

    Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion...... potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1wt% NaCl solution at pH 2.8 were...... susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion...

  16. Nonlinear thermal and structural analysis of a brazed solar-central-receiver panel

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, L.M. Jr.; Kanouff, M.P.

    1981-07-01

    One part of the evaluation program for a molten sodium central receiver was to be a test of a reduced-scale panel at Sandia's Central Receiver Test Facility in Albuquerque. The panel incorporates a new way of joining tubes - brazing to intermediate filler strips - which can affect the panel's lifetime. To calculate the stresses and strains for the worst-case section of the experimental panel, we have done a nonlinear elastic-plastic analysis with the MARC finite element computer code, which takes the temperature dependence of the material properties into account. From the results, tube design lifetimes are predicted. The analysis shows that concerns for cracking and reduction in lifetime are warranted, but a more detailed fracture analysis is necessary to determine whether there is a stable-crack-growth problem.

  17. Ion-irradiation hardening of brazed joints of tungsten and oxide dispersion strengthened (ODS) ferritic steel

    International Nuclear Information System (INIS)

    Irradiation hardening and microstructural change of the brazed-joint of W and oxide dispersion strengthened ferritic steel (ODS-FS) was investigated by nano-indentation hardness test and transmission electron microscopy after ion irradiation with 6.4 MeV Fe3+ ions at 500°C up to 10 dpa. Dual-beam irradiation of Fe3+ ions and energy-degraded 1 MeV He+ ion was also carried out. A considerable irradiation hardening occurred in the W base metal where dislocation loops and nano-scaled voids or He-bubbles were observed. Dual-beam irradiation enhanced the hardening. No significant hardening was observed in ODS-FS. The hardness of insert material was reduced after irradiation, which is due to the recovery of dislocations generated during joining process. (author)

  18. Brazing of 14-5 PH steel and Fe - TiC composite using AWS BNi2 filler metal

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2007-01-01

    Full Text Available Purpose: Purpose of this paper is description of influence of the parameters of the 14-5 PH steel and cermets - PMFe-TiC composite plates brazing using nickel based brazing filler metal BNi2 structure and properties of joints.Design/methodology/approach: Brazing was done in vacuum according to a special thermal cycle programme.Metallographic, X Ray analysis, microanalysis, hardness and tensile strength, as well quality investigations ofproduced joints have been done.Findings: It was shown that The joint has a eutectic multilayer structure with a zone of intermetallic compoundsin the steel – soldier and soldier – PM Fe-TiC composite - Ferro – Titanit plates boundary. Intermetalliccompounds zone differ clearly on account of a chemical composition, microstructure, and hardness from abrazing filler metal matrix.Research limitations/implications: It was shown that the diffusive zone from the PM Fe-TiC composite side isrich in titanium, molybdenum and iron, in the joint axis there is a zone rich in silicon, and in a boundary fillermetal – steel rich in iron and nickel. In the rich in nickel and iron filler metal matrix, there are intermetallicphases rich in chromium, which consist several percent of nickel, iron and molybdenum. The diffusive zonesare characterized by hardness higher than the filler metal matrix.Practical implications: As a result of conducted experiments a production of spinning nozzle of a die forpolyethylene granulation with a vacuum-brazed with a PM Fe-TiC composite plates cutting surface have beenworked out and applied in industry.Originality/value: An original value of the paper is to prove the propensity of concentration gradients ofalloying components and intermetallic phases creation.

  19. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  20. Microstructure and properties of diffusion bonded Ti-6Al-4V parts using brazing-assisted hot isostatic pressing

    International Nuclear Information System (INIS)

    Highlights: → A low cost method of diffusion bonding has been developed for complex-shaped components of Ti6Al4V. → Vacuum brazing has been used to seal the periphery to allow encapsulation-free HIPping. → The tensile properties of the bonds are comparable with those of the bulk material, but the fatigue life was slightly reduced. - Abstract: Ti-6Al-4V couples have been diffusion bonded by hot isostatic pressing (HIPping) after vacuum brazing was used to seal the periphery of the bonding samples so that no encapsulation was required during HIPping. Analytical scanning electron microscopy was used to assess the microstructure of the HIPped interface and tensile and fatigue properties of bonded samples were compared with those of the bulk starting material. The tensile properties of the bonds were shown to be comparable with those of the bulk material, but the fatigue life was slightly downgraded. The fatigue fractures were initiated by inclusions on the bonding interface, caused by contamination before bonding, but the fatigue cracks did not propagate along the bonding interface indicating a strong bond. It is concluded that this technique of vacuum brazing plus HIPping could be used for encapsulation-free HIPping to produce complex-shaped components.

  1. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al2O3-dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 1024n/m2(E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  2. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 (72Ag/28Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  3. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  4. 铝/镀锌钢薄板异种金属CMT熔钎焊接头组织与力学性能%Microstructure and Mechanical Properties of CMT Welding-brazing Joint for Dissimilar Materials between Aluminums and Galvanized Steels

    Institute of Scientific and Technical Information of China (English)

    余刚; 曹睿; 陈剑虹

    2012-01-01

    The dissimilar materials, aluminum alloys and galvanized steels were joined by CMT welding -brazing method. Analyzing the macro feature of cross -section, microstructure, the defects and mechanical properties of welding-brazing joints with SEM, EDAX, tension text, it is shown that the lap joints with better properties and better weld appearance are formed between the aluminum alloys and galvanized steels. From the microstructure and formation of weld metal, the cross-section of the joint can be divided into four zones; weld metal, middle interface, transitional interface and zinc - rich zone. There is a continuous and compact inter -metallic compound layers with a thickness of 3~4μm, which is formed in the brazing interface zone between the weld metal and the galvanized steel sheet. The main components of the layer are Fe3 Al, FeAl2, Fe2 Al5 and FeAl3,then, the zinc-rich zone is mainly composed of aluminum -rich solid solution and residue of Zn. Tensile strength tests show that the joint is fractured in the aluminum heat affect zone, and the joint strength with 204MPa is obtained.%采用冷金属过渡方法对铝合金和镀锌钢板进行了熔钎焊连接,使用扫描电镜、能谱分析和拉伸试验分析了接头的截面形貌、组织特征、焊接缺陷及力学性能.试验结果表明,铝合金和镀锌钢能得到成形美观、性能良好的搭接接头.对焊缝金属的组织特征分析表明,焊接接头由熔化区、中心界面区、过渡界面区和富锌区组成,在焊缝金属和镀锌板的界面区形成厚度为3~4μm的金属间化合物层(主要成分为Fe3Al、FeAl2、Fe2Al5和FeAl3),富锌区由富铝的固溶体和残留的锌组成.在进行拉伸试验时,断裂发生在热影响区,接头强度为204MPa.

  5. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  6. Mg/Cu共晶反应钎焊微观组织及力学特性分析%Microstructure and properties of welded joints of Mg/Cu by eutectic reaction brazing

    Institute of Scientific and Technical Information of China (English)

    王怀建; 白莉

    2013-01-01

    Magnesium alloy (AZ31B) and copper (T2) were bonded by eutectic reaction brazing technology, and effects of temperature on microstructures, tensile properties were studied. The microstructures of joints were investigated using scanning electron microscopy (SEM). And tensile strength test was performed on universal tensile testing machine. Results from the experiment show that when the welding temperature is 500 °C , its tensile strength can reach the maximum of 54 MPa, and the joint shows. brittle fracture.%采用共晶反应钎焊连接工艺对Mg/Cu异种材料进行连接,研究不同温度对接头微观组织及力学特性的影响.采用扫描电镜对焊接接头的微观组织进行研究,采用拉伸试验机研究接头的力学特性.研究表明:在焊接温度为500℃,焊接接头强度最高,最高抗拉强度为54 MPa,断口呈现脆性断裂特性.

  7. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Ian G [ORNL; Tatlock, Gordon J [ORNL; Badairy, H. [University of Liverpool; Chen, C-L. [University of Liverpool

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potential for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.

  8. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  9. Multiple-unit implant frames: one-piece casting vs. laser welding and brazing Sobre estruturas de implantes múltiplos: fundição em monobloco versus soldagem a laser e brasagem

    Directory of Open Access Journals (Sweden)

    Elza Maria Valadares da Costa

    2004-09-01

    Full Text Available The linear distortion of prostheses over implants, one-piece casting and cast in sections followed by laser welding by laser and brazing was evaluated in an edentulous mandibular model with five parallel abutments, with a distance of 10mm from center to center. Seventy five gold cylinders were tightened with screws on the abutments with 10Ncm torque. The cylinder/analogue assemblies were measured by microscopic examination (0.001mm accuracy and the obtained results were compared with the GC (control group. Fifteen metal frames were waxed and cast in a gold alloy (Stabilor, Degussa Hulls, Brazil and divided into three groups with five elements each, as followed: GM (one-piece casting, GB (section and brazing and GL (section and laser welding. In all groups, measurements were taken at the right, left, buccal and lingual sides of the cylinder/analogue interface and the results were submitted to analysis of variance (ANOVA and to the Tukey test (5%. The smallest amount of distortion was seen in the laser group (GL with a mean value of 13.58, followed by the brazing group (GB with a mean value of 24.33 and one-piece (GM with a mean value of 40.00. The greatest distortion was found in the one-piece group (GM.A distorção linear das próteses sobre implantes, fundidas em monobloco e fundidas em secções e soldadas a laser e por brasagem foi avaliada em um modelo de uma mandíbula edêntula com cinco análogos de pilares de implantes, paralelos entre si com distância de 10mm medidos de centro a centro. Sobre estes foram parafusados novos cilindros de ouro, com torque de 10N/cm. Então foram executadas 15 sobre-estruturas metálicas que foram divididas: GC - Adaptação passiva dos cilindros de ouro; GM - monobloco, GB - segmentos soldados por brasagem e, GL - segmentos soldados a laser. Observaram-se as estruturas fixadas com parafusos novos sob microscópio de mensuração. A medição foi realizada na vestibular direita e esquerda e da mesma forma

  10. Design, fabrication, and performance of brazed, graphite electrode, multistage depressed collectors with 500-W, continuous wave, 4.8- to 9.6-GHz traveling-wave tubes

    Science.gov (United States)

    Ramins, Peter; Ebihara, Ben

    1989-01-01

    A small, isotropic graphite electrode, multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W, continuous wave (CW), 4.8- to 9.6-GHz traveling-wave tube (TWT). The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The brazing technique, which used copper braze filler metal, is compatible with both vacuum and the more commonly available hydrogen atmosphere brazing furnaces. The TWT and graphite electrode MCC bakeout, processing, and outgassing characteristics were evaluated and found to be comparable to TWT's equipped with copper electrode MDC's. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average radiofrequency (RF), overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-hr CW test, conducted without the use of an appendage ion pump, showed no gas buildup and excellent stability of the electrode surfaces.

  11. Brazing of aluminium assemblies under nitrogen convection in a charge furnace; Brasage d'assemblages en aluminium sous convection d'azote dans un four a charge

    Energy Technology Data Exchange (ETDEWEB)

    Faure, D.; Perez, G. [BMI Fours Industriels, 38 - Saint Quentin Fallavier (France)

    2006-03-15

    The research of a weight saving has led to the use of aluminium in the automotive industry, which has been innovation instigator for a lot of industries. The brazing under vacuum of aluminium, even if it presents a lot of advantages, is inadequate to the mass production because it is too difficult for the quality of the preliminary assembly to the brazing. It is rather reserved to the advance technology industries such as the aeronautics or the power electronics. A lot of aluminium heat exchangers are mass manufactured and brazed by the Nocolok process. (O.M.)

  12. 中国古青铜器表面富锡铜鎏镀及鎏焊的工艺探索第三部分——鎏焊%Technological study on amalgam coating and brazing of tin-rich copper on surface of bronze wares of ancient China——Part Ⅲ.Amalgam brazing

    Institute of Scientific and Technical Information of China (English)

    吴元康; 储荣邦

    2012-01-01

    Amalgam brazing is derived from amalgam coating. The definition, characteristics, application, and significance of amalgam brazing were expatiated. A process of amalgam brazing for producing combined bronze wares was developed. The compositions of brazing material and flux were given. The operations of pretreatment, mercury removal by heating, and post-treatment were described. The implementation of amalgam coating and brazing processes was introduced taking the Western Han Dynasty's bronze cowry container with tribute-paying figures excavated in Yunnan as an example. The method for distinguishing whether an antique bronze ware is produced by cast welding after lost-wax casting or by copper brazing with separated small cast parts was presented.%鎏焊是从鎏镀衍生而来的.阐述了鎏焊的定义、特点、应用和意义.设计了用于制作组合青铜器的鎏焊工艺,给出了焊料、焊剂配方,说明了前处理、加热驱汞及后处理的操作方法.以西汉云南纳贡场面青铜贮贝器为例,介绍了鎏镀与鎏焊工艺的具体实施过程.提出了鉴别古青铜器是由失蜡铸造后铸焊而成还是由分铸小件铜焊而成的方法.

  13. 多元平行流式冷凝器炉中钎焊工艺研究%Study on Brazing Process for Condenser in Controlled Atmosphere Brazing Furnace

    Institute of Scientific and Technical Information of China (English)

    郭艳; 凌泽民; 李金阁

    2011-01-01

    The optimum technological parameters of brazing condenser in controlled atmosphere brazing(CAB) furnace were obtained by simulating 3-D temperature distribution of micro-joint between fin and flat tube of the condenser using ANSYS software. The process experiment, temperature measurement and properties testing were carried out. The results show that the real thermal cycle curve fits well with the initial simulation one. The morphology of the welded joint has no defects and the microstructure is dense and mainly a(Al)+Al-Si. The leaking has no slightly leaking. It can be obtained that it is a meaningful method to put FEM employ into the process design.%采用ANSYS软件,通过对温度场的模拟,确定了较佳的工艺参数,并进行了工艺实验、温度检测及相关性能测试.温度检测结果表明,模拟曲线与实测曲线吻合较好,说明模拟的温度场是正确的.通过对钎焊接头显微组织分析表明,接头无缺陷,组织致密,显微组织主要以a(Al)+Al-Si共晶组织为主;相关性能测试表明,接头无微漏,达到了使用要求.说明采用有限元软件进行工艺指导是可行的.

  14. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila;

    2016-01-01

    as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates......, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (−0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating...

  15. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  16. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    International Nuclear Information System (INIS)

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  17. Vanadium alloys: development strategy

    International Nuclear Information System (INIS)

    A strategy for the development of vanadium alloys for use in radiation environments is outlined. An attractive reference alloy (V-15Cr-5Ti) has been identified. The critical issues in developing vanadium base alloys are summarized

  18. High-temperature brazing of X5CrNi18 10 and NiCr20TiAl using the atmospherically plasma-sprayed L-Ni2 filler metal

    International Nuclear Information System (INIS)

    The hybrid-technological combination of the atmospheric plasma spraying for the application of a high-temperature filler metal followed by a brazing process was analyzed in terms of structure and mechanical properties of X5CrNi18 10 and NiCr20TiAl brazing joints. The thickness of the filler metal layer was minimized at <50μm by optimization of the atmospheric plasma spraying process. The brazing seam is hence partly free from brittle phases and yields a increased ultimate tensile strength of brazed and heat-treated joints at different temperatures (room temperature, 500degC and 700degC). Additional information concerning the mechanical properties of the brazing joints was derived from the results of the fractographic examinations of the fracture surfaces and from the characteristic strength values of the long-period creep tests. It was also attempted to apply the results of inductively brazed, cylindrical samples to complex (overlapping joints) and large-surface components produced under practical conditions in the vacuum furnace. (orig.)

  19. Evaluation of hardness of the interfacial reaction products at the alumina-stainless steel brazed interface by modeling of nanoindentation results

    International Nuclear Information System (INIS)

    We have analyzed the 304 stainless steel (SS)-(Ag-Cu-Ti)-alumina brazed interface using scanning electron microscopy, electron probe microanalysis and nanoindentation. The SS interface exhibits increased bond strength and a larger diffusion zone compared to the alumina interface. In order to explain the nature of variation in hardness, we have fitted a second-degree Hermite polynomial-based model to the experimental observations of the nanoindentation results, across the reaction product zone of both interfaces

  20. Evaluation of hardness of the interfacial reaction products at the alumina-stainless steel brazed interface by modeling of nanoindentation results

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Abhijit [Material Science and Technology Division, National Metallurgical Laboratory (CSIR), Jamshedpur 831 007 (India); Department of Chemistry, Jadavpur University, Kolkata 700032 (India)], E-mail: chatrak130@yahoo.co.in; Chaudhuri, Sanjay [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore); Sen, Pratik K. [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Ray, Ajoy Kumar [Material Science and Technology Division, National Metallurgical Laboratory (CSIR), Jamshedpur 831 007 (India)

    2007-11-15

    We have analyzed the 304 stainless steel (SS)-(Ag-Cu-Ti)-alumina brazed interface using scanning electron microscopy, electron probe microanalysis and nanoindentation. The SS interface exhibits increased bond strength and a larger diffusion zone compared to the alumina interface. In order to explain the nature of variation in hardness, we have fitted a second-degree Hermite polynomial-based model to the experimental observations of the nanoindentation results, across the reaction product zone of both interfaces.

  1. Fatigue properties of laser-brazed joints of Dual Phase and TRansformation Induced Plasticity steel with a copper-aluminium consumable

    International Nuclear Information System (INIS)

    High strength steels combine good formability with excellent mechanical properties and have developed continuously in recent years. Joining these materials is however increasingly difficult as fusion joining processes destroy the carefully constructed microstructure. To counteract this problem, joining processes which require less heat input have been investigated. Laser brazing is a relatively new technique and a potential candidate which has found application in the automotive industry. In this paper the fatigue lifetime properties of laser-brazed Dual Phase (DP600) and TRansformation Induced Plasticity (TRIP700) steel joints made with a copper-aluminium consumable are reported. Joints created with DP600 steel showed fracture through the steel due to a brass present in the stress concentration region at the edge of the reinforcement. TRIP700 steels show similar results if the applied maximum stress is in excess of 280 MPa. However, at maximum stresses of 230 MPa, failure occurred across the interface between the braze metal and the steel. A basic fatigue crack path model is presented for the two competing failure mechanisms.

  2. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  3. Mechanism of laser welding on dissimilar metals between stainless steel and W-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    Kai Chen; Zhiyong Wang; Rongshi Xiao; Tiechuan Zuo

    2006-01-01

    @@ CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.

  4. Problems Associated with Attaching Strain Gages to Titanium Alloy Ti-61-4V

    Science.gov (United States)

    Jenkins, J. M.; Lemcoe, M. M.

    1977-01-01

    Weldable strain gages have shown excellent high temperature characteristics for supersonic cruise aircraft application. The spotwelding attachment method, however, has resulted in serious reductions in the fatigue life of titanium alloy (Ti-6Al-4V) fatigue specimens. The reduction is so severe that the use of weldable strain gages on operational aircraft must be prohibited. The cause of the fatigue problem is thought to be a combination of the microstructure changes in the material caused by spotwelding and the presence of the flange of the stain gage. Brazing, plating, and plasma spraying were investigated as substitutes for spotwelding. The attachment of a flangeless gage by plasma spraying provided the most improvement in the fatigue life of the titanium.

  5. Alloyed steel

    International Nuclear Information System (INIS)

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  6. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing.

    Science.gov (United States)

    Wang, R R; Welsch, G E

    1995-11-01

    Titanium has a number of desirable properties for dental applications that include low density, excellent biocompatibility, and corrosion resistance. However, joining titanium is one of the practical problems with the use of titanium prostheses. Dissolved oxygen and hydrogen may cause severe embrittlement in titanium materials. Therefore the conventional dental soldering methods that use oxygen flame or air torch are not indicated for joining titanium materials. This study compared laser, tungsten inert gas, and infrared radiation heating methods for joining both pure titanium and Ti-6Al-4V alloy. Original rods that were not subjected to joining procedures were used as a control method. Mechanical tests and microstructure analysis were used to evaluate joined samples. Mechanical tests included Vickers microhardness and uniaxial tensile testing of the strength of the joints and percentage elongation. Two-way analysis of variance and Duncan's multiple range test were used to compare mean values of tensile strength and elongation for significant differences (p < or = 0.05). Tensile rupture occurred in the joint region of all specimens by cohesive failure. Ti-6Al-4V samples exhibited significantly greater tensile strength than pure titanium samples. Samples prepared by the three joining methods had markedly lower tensile elongation than the control titanium and Ti-6Al-4V rods. The changes in microstructure and microhardness were studied in the heat-affected and unaffected zones. Microhardness values increased in the heat-affected zone for all the specimens tested. PMID:8809260

  7. Proceedings of the 2. workshop on vanadium alloy development for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Osch, E.V. van [ed.

    1996-10-01

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.).

  8. Proceedings of the 2. workshop on vanadium alloy development for fusion

    International Nuclear Information System (INIS)

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.)

  9. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  10. Terbium base alloy

    International Nuclear Information System (INIS)

    Composition of terbium-5-7 % gadolinium alloy with high magnetostriction sensitivity (180x10-8 Oe) is suggested. The alloy is designed for usage under cryogenic temperature within 500-1500 Oe fields. Magnetostriction sensitivity of the suggested alloy is by 2-2.5 times higher, than that of well-known before one. 1 tab

  11. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  12. Mechanical properties of SiC/BraSiC/SiC brazed assemblies and design criterion for failure

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) based structures are widely used in space industry and energy conversion thanks to mechanical and thermal properties of this material and to its chemical stability. Brazing currently seems the most appropriate to allow the production of very large elements. The procedure called BraSiC uses SiC combined with a metal component, the bonding is made at high temperature, impregnation is achieved by gravity/capillarity. In a first step, the elastic properties and the toughness of the various constituents (substrates and solder) were characterized using ultrasonic methods and micro and nano-indentation. An extensive 4-point bending test campaign on bars assembled end-to-end was conducted to obtain measurements of the tensile strength. It led to analyze the role of different parameters: thickness of the butt joint (20 to 200 μm), temperature (from -196 to 1000 C), atmosphere (air, helium). Some additional tests have been initiated to understand the effect of a pre-existing notch or a lack of solder. This experimental work was accompanied by a theoretical model based on the use of a failure mixed criterion. This approach was used initially to assess the feasibility of an axisymmetric bending test on a disk-disk. It was then exploited to highlight the role of the thickness of the solder joint in tests on bars, resulting in a very simple formula, in perfect agreement with the experimental results: the most important parameter is the inverse of the square root of the solder joint thickness. (author)

  13. Brazing of Ti- Ni Coated Diamonds%复合镀覆Ti-Ni金刚石的钎焊应用

    Institute of Scientific and Technical Information of China (English)

    王艳辉; 臧建兵; 王明智

    2001-01-01

    Latest developments of coating technology show that, when diamond crystal or PCD is coated with Ti or W by vacuum slow vapor deposition process, it can be further coated with Ni, Co or Cr by electroless plating or electroplating so as to form a composite coating on its surface. Due to the strong metallurgical adhesion between diamond and coating, diamond is easily brazed onto different metal substrate. Composite-coated diamond is mainly used for making surface-set tool to obrain high protrusion height of diamond grit and strong interface adhesion. Thus tool's lifetime and efficiency are improved greatly.%镀覆技术的研究进展表明:经过真空微蒸发镀钛、钨的金刚石单晶或聚晶,可以采用化学镀或电镀的方法在钛或钨镀层上进一步镀覆镍、钴、铬等金属,这种复合镀层与金刚石界面强力冶金结合,并且可以采用各种钎焊方法实现金刚石与多种金属基体的焊接。复合镀覆的金刚石可用于各类表镶工具的制造,获得高出刃、高磨粒结合强度,使金刚石表镶工具的使用寿命和加工效率大幅度提高。

  14. The quality evaluation of the end-plate welds and brazed joints for CANDU nuclear fuel by an ultrasonic imaging method

    International Nuclear Information System (INIS)

    This paper describes a method for the quality evaluation of spot welds and brazed joints by analysing ultrasonic images (C-scan). A present, the quality control for these joints is made by destructive methods. The authors present the most frequent types of flaw met in their investigations. They have attempted to obtain a dependence of torsion moment, measured by a destructive method against the polar inertia moment, obtained from parameters measured on ultrasound images. The ultrasonic images were analysed off-line using a dedicated software. (author)

  15. Microstructures characteristics and properties of solidified aluminum alloy brazed joint%铝合金钎焊凝固接头的组织特征和性能

    Institute of Scientific and Technical Information of China (English)

    高峰; 钱乙余; D.P.Sekulic; 马鑫; F.Yoshida

    2003-01-01

    研究了钎焊温度对钎焊接头微观组织的影响, 并利用图像软件Image-Pro Plus确定了不同初始凝固温度下α-(Al)相在钎焊接头中的体积分数. 结果表明: 随着初始凝固温度增加, α-(Al)相所占的比例增大. 通过成分分析(EPMA)和硬度测试, 分析了硅扩散层的特征. 压痕法测试结果表明: 不同初始凝固温度下获得的同种组织, 其力学和物理等综合性能不同, 从而造成整个钎焊接头力学性能的差异.

  16. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  17. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  18. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  19. Active brazing of ceramic inlays for the application in wear critical areas of forging dies; Aktivloeten von keramischen Segmenten fuer den Einsatz in verschleisskritischen Bereichen von Schmiedegesenken

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Fr.W.; Doege, E.; Kutlu, I.; Huskic, A. [Institut fuer Umformtechnik und Umformmaschinen, Universitaet Hannover, Welfengarten 1A, 30167 Hannover (Germany)

    2002-11-01

    The use of reinforcing ceramic segments in forging tools is investigated and has been successfully tested with model of dies recently. With reinforcing ceramic segments, however, the thermal widening of the steel tool is a major problem for forging dies. Further, only rotationally symmetrical ceramic inserts can be used as reinforcements which restricts the shape capabilities in tool design significantly. A considerably greater design flexibility is possible if the ceramic segments are brazed into the die body material. To this end, reactively brazed ceramic-metal composites are to be developed and tested for feasibility in the forging process. (Abstract Copyright [2002], Wiley Periodicals, Inc.) [German] Der Einsatz durch thermisches Schrumpfen gefuegter keramischer Segmente in Schmiedewerkzeugen wird seit einiger Zeit untersucht und erfolgreich an Modellgesenken erprobt. Hier zeigt sich die Gefahr der thermischen Aufweitung des Schrumpfverbandes als Hauptproblem bei Schmiedegesenken mit eingeschrumpften keramischen Segmenten. Weiterhin lassen sich nur rotationssymmetrische keramische Segmente einschrumpfen, was eine erhebliche Einschraenkung der Gestaltungsmoeglichkeiten in der Werkzeugkonstruktion bedeutet. Deutlich groessere Gestaltungsmoeglichkeiten bietet das Aktivloeten keramischer Segmente in Gesenkgrundkoerper. Hierfuer sollen aktivgeloetete Keramik-Metall-Verbunde entwickelt und auf Einsatzfaehigkeit im Schmiedeprozess ueberprueft werden. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. The DynAlloy Visualizer

    OpenAIRE

    Bendersky, Pablo; Galeotti, Juan Pablo; Garbervetsky, Diego

    2014-01-01

    We present an extension to the DynAlloy tool to navigate DynAlloy counterexamples: the DynAlloy Visualizer. The user interface mimics the functionality of a programming language debugger. Without this tool, a DynAlloy user is forced to deal with the internals of the Alloy intermediate representation in order to debug a flaw in her model.

  1. Interfacial microstructure and mechanical property of resistance spot welded joint of high strength steel and aluminium alloy with 4047 AlSi12 interlayer

    International Nuclear Information System (INIS)

    Highlights: • Steel and aluminium alloy were resistance spot welded with interlayer successfully. • Welded joint of steel and aluminium alloy with 4047 interlayer was a brazed joint. • Fe2(Al,Si)5 and Fe4(Al,Si)13 were formed at the steel/aluminium interface. • Reaction diffusion at the interface was inhibited by introduction of silicon atoms. • Welded joint property was improved greatly with the interlayer thickness of 300 μm. - Abstract: Dissimilar materials of H220YD galvanised high strength steel and 6008-T66 aluminium alloy were welded by means of median frequency direct current resistance spot welding with employment of 4047 AlSi12 interlayer. Effects of interlayer thickness on microstructure and mechanical property of the welded joints were studied. The welded joint with interlayer employed could be recognised as a brazed joint. The nugget diameter had a decreased tendency with increasing thickness of interlayer under optimised welding parameters. An intermetallic compound layer composed of Fe2(Al,Si)5 and Fe4(Al,Si)13 was formed at the interfacial zone in the welded joint, the thickness and morphology of which varying with the increase of interlayer thickness. Reaction diffusion at the steel/aluminium interface was inhibited by introduction of silicon atoms, which restricted growth of Fe2(Al,Si)5. Tensile shear load of welded joints experienced an increased tendency with increasing interlayer thickness from 100 to 300 μm, and the maximum tensile shear load of 6.2 kN was obtained with interlayer thickness of 300 μm, the fractured welded joint of which exhibiting a nugget pullout failure mode

  2. Superplasticity in titanium alloys

    OpenAIRE

    J. Sieniawski; Motyka, M.

    2007-01-01

    Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications.Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology.Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was consider...

  3. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  4. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  5. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  6. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  7. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  8. Alloys in energy development

    International Nuclear Information System (INIS)

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems

  9. Study of Process on Brazing Diamond/CBN Grinding Wheel Matrix Technology%钎焊金刚石/CBN砂轮基体工艺方法初探

    Institute of Scientific and Technical Information of China (English)

    袁建新; 王永强; 马家稑

    2012-01-01

    According to several process methods on manufacturing the brazing diamond/CBN grinding wheel in the domestic market currently, the advantages and disadvantages of these methods are analyzed. In accordance with the actual problem occurred during factory tests: the welding temperature affects severely hardness of the grinding wheel matrix, and accordingly affects the accuracy consistency, a method for finding out a suitable matrix material is presented in this thesis, and thus a better sample is offered to solve the effect problem of the high - temperature brazing on the matrix. The conclusion is; to meet the dynamic performance requirements of CBN/diamond grinding wheel matrix, the 40Mn2 material is recommended for a grinding wheel matrix, its hardness can reach around HRC38 after temper at a temperature of around 700℃ , and thus can meet the requirements of high - speed grinding and high - precision grinding.%针对目前国内制作钎焊金刚石/CBN砂轮的几种工艺方法,分析了存在的优缺点.根据工厂试验中出现的实际问题,指出了寻找到合适基体材料的方法,为解决高温钎焊对基体的影响提供了一个较好的样本.为了满足CBN/金刚石砂轮基体的力学性能需要,建议砂轮基体采用40Mn2这种材料,在700℃左右回火,其硬度可以达到38HRC左右,能够满足高速磨削和高精度磨削的要求.

  10. Comparison of Microstructure and Mechanical Properties of Induction and Vacuume Brazed Joint of Titanium Via Copper and Ag-Cu Eutectic Filler Metal / Mikrostruktura I Właściwości Mechaniczne Połączeń Tytanu Lutowanych Indukcyjnie I Próżniowo Z Użyciem Spoiwa Miedzianego I Eutektycznego Ag-Cu

    Directory of Open Access Journals (Sweden)

    Różański M.

    2015-12-01

    Full Text Available This study presents the basic physico-chemical properties and describes the brazeability of titanium. The work contains the results of macro and microscopic metallographic examination as well as the results of strength-related tests of vacuum and induction brazed joints made of Grade 2 technical titanium using the Cu 0.99 and Ag 272 filler metal interlayers and F60T flux intended for titanium brazing in the air atmosphere.

  11. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  12. Refractory alloy component fabrication

    International Nuclear Information System (INIS)

    Purpose of this report is to describe joining procedures, primarily welding techniques, which were developed to construct reliable refractory alloy components and systems for advanced space power systems. Two systems, the Nb-1Zr Brayton Cycle Heat Receiver and the T-111 Alloy Potassium Boiler Development Program, are used to illustrate typical systems and components. Particular emphasis is given to specific problems which were eliminated during the development efforts. Finally, some thoughts on application of more recent joining technology are presented. 78 figures

  13. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei; Skriver, Hans Lomholt; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    2003-01-01

    cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....

  14. 铝制冷却器真空钎焊接头界面结构及断口分析%Interface Structure and Fracture Analysis of Aluminum Cooler Vacuum Brazing Joint

    Institute of Scientific and Technical Information of China (English)

    许敬年; 曹秀丽; 冯涛

    2012-01-01

    采用真空钎焊技术研制了一种用于高级轿车的铝制冷却器.采用LT-3铝复合板材进行了焊接试验,分析了钎焊接头的组织,并对所试制的铝制板翅式冷却器进行了水压试验及其断口分析.结果表明,钎焊接头中生成了网状共晶组织,接头中生成了金属间化合物.焊接完成的板翅式冷却器水压试验压力可达到15 kg/cm2以上,钎焊接头断口属于混合断裂,断口表面分布有二次裂纹、韧窝、解理面、沿晶断裂等断裂特征.%A kind of aluminum cooler used for advanced car by adopting vacuum brazing technology was developed. Welding test was conducted by Utilizing LT-3 aluminum composite plate. The structure of brazing joint was analyzed, and hydrostatic test and fracture analysis on fin type cooler of trial produced aluminum composite plate were carried out. The results showed that there are some reticular eutectic structures and intermetallic compound in the brazing joint. The hydrostatic test pressure of fine type cooler can reach more than 15 kg/cm2, the fracture type of the brazing joint is mixed fracture, and secondary cracks, dimples, cleavage planes and intergranular fracture etc. distribute on the surface of the fracture.

  15. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  16. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO2 dissolves in Nb2O5 to form 6HfO-Nb2O5. This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 24000F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 24000F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  17. Titanium alloys. Advances in alloys, processes, products and applications

    OpenAIRE

    Blenkinsop, P.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in "older" alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments ...

  18. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan; Schiøtz, Jakob

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  19. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  20. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  1. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  2. Productive Machining of Titanium Alloys

    OpenAIRE

    Čejka, Libor

    2013-01-01

    This diploma thesis is focused on a productive machining of titanium alloys. At the beginning it deals about titanium and its alloys. It describes chip generation mechanism, tool blunting and surface quality. Further it contains modern strategies of efficient titanium alloys machining. Then it analyzes contemporary manufacturing technology of hinge made of titanium alloy Ti-6Al-4V in Frentech Aerospace s.r.o. company, and at the end finds possibility of savings by inovation of roughing process.

  3. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  4. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 5000C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 1500C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  5. Welding of refractory alloys

    International Nuclear Information System (INIS)

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  6. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  7. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  8. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  9. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    Science.gov (United States)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  10. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Science.gov (United States)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  11. Interfacial microstructure and strength of diffusion brazed joint between Al2O3–TiC and 9Cr1MoV steel

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang; S A Gerasimov

    2007-08-01

    Joining of composite, Al2O3–TiC, with heat-resistant 9Cr1MoV steel, was carried out by diffusion brazing technology, using a combination of Ti, Cu and Ti as multi-interlayer. The interfacial strength was measured by shear testing and the result was explained by the fracture morphology. Microstructural characterization of the Al2O3–TiC/9Cr1MoV joint was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM) with energy-dispersion spectroscopy (EDS). The results indicate that a Al2O3–TiC/9Cr1MoV joint with a shear strength of 122 MPa can be obtained by controlling heating temperature at 1130°C for 60 min with a pressure of 12 MPa. Multi-interlayer Ti/Cu/Ti was fused fully and diffusion occurred to produce interfacial layer between Al2O3–TiC and 9Cr1MoV steel. The total thickness of the interfacial layer is about 100 m and Ti3AlC2, TiC, Cu and Fe2Ti are found to occur in the interface layer.

  12. Machining of Titanium Alloys

    OpenAIRE

    Karásek, Jan

    2008-01-01

    The main goal of this work is the analysis of manufacturing costs for the component of wheel´s blower. Followed by setting up the size of specific cutting force for milling operation of the titanium alloy Ti-Al6-Mo2-Cr2-Fe-Si, the used tool was a milling cutter which is made out of sintered carbide with conical and spherical face. The final values which are at intervals of 1500 to 1800 MPa were compared with the values of the Sandvik Coromant firm kc = 1690 MPa, for titanium alloy with the st...

  13. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  14. Soldering of aluminium alloys

    International Nuclear Information System (INIS)

    A literature survey about soldering in general and aluminium alloys soldering in particular is presented. The existing methods of soldering aluminium alloys are described. These include soldering with flux, soldering after preliminary plating, vacuum brazipressure and temperature (NTP), sample age calculation based on 14C half life of 5570 and 5730 years, age correction for NTP, dendrochronological corrections and the relative radiocarbon concentration. All results are given with one standard deviation. Input data test (Chauvenet's criterion), gas purity test, standard deviation test and test of the data processor are also included in the program. (author)

  15. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  16. Hydrogen embrittlement of vanadium alloys

    International Nuclear Information System (INIS)

    The mechanical properties of several vanadium alloys were measured with the hydrogen concentration high up to 113 mg/kg. The results showed that the alloys with low mechanical strength had better properties against hydrogen embrittlement. Oxygen in the alloy, especially that in the alloys with high strength, could enhance the hydrogen embrittlement. Mechanism analysis was given to show that the brittle fracture was mainly caused by intergranular failure. The effects of oxygen concentration and the strength of the alloy were both resulted from their contributions to the grain strength and the grain boundary strength

  17. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  18. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  19. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  20. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  1. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  2. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  3. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  4. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  5. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically

  6. Research of Electrochemical Corrosive Characteristics of Zn-Al Solders for Cu/Al Brazing%铜/铝钎焊用Zn-Al钎料的电化学腐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    王凯; 刘正林; 杨凯珍

    2011-01-01

    Zn-Al solders used for Cu/Al brazing were prepared by ingot metallurgy method in high frequency induction furnace. The anti-corrosive properties of Zn-Al solders added with Mg were evaluated and analyzed by immersion tests, electrochemical corrosion measurements, and the corrosive mechanism was discussed. The results show that the electrode potential of the solders substrates can be significantly improved by the addition of Mg to greatly improve the anti-corrosive properties of solders, while it will not significantly reduce the shear strength of welding joint. Using the Zn-Al solder added with Mg and CsF-AlF3 flux, Al and Cu tubes can be brazed by high frequency brazing method without air leaking at high air pressure even after immersion tests.%采用铸锭冶金法,在高频感应炉中制备了铜/铝钎焊用Zn-22Al钎料,通过浸泡腐蚀试验、电化学腐蚀试验对添加Mg元素的钎料的耐蚀性能进行了评价分析,并探讨了其腐蚀机理.研究结果表明,添加Mg元素可显著提高钎料基体的电极电位,从而显著提高钎料本身的耐腐蚀性能,并不会显著降低铜/铝接头的强度.加入Mg元素的Zn-22Al钎料,配合CsF-AlF3无腐蚀中温钎剂,采用高频感应加热钎焊连接铜/铝管,通过浸泡腐蚀试验后,仍可获得高剪切强度的接头.

  7. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  8. Rare earth ferrosilicon alloy

    International Nuclear Information System (INIS)

    In order to obtain RE ferrosilicon alloy with good quality and competitive price, it is essential that proper choice of raw materials, processing technology and equipments should be made based on the characteristics of Bai-Yun-Ebo mineral deposits. Experimental work and actual production practice indicate that pyrometallurgical method is suitable for the extraction and isolation of the rare earths and comprehensive utilization of the metal values contained in the feed material is capable of reducing cost of production of RE ferrosilicon alloy. In the Bai-Yun-Ebo deposit, the fluorite type medium lean ore (with respect to iron content) makes a reserve of considerable size. The average content of the chief constituents are given

  9. Thermodynamic Database for Zirconium Alloys

    OpenAIRE

    Jerlerud Pérez, Rosa

    2006-01-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason for using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is useful to support material desi...

  10. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  11. Structure of ordered alloys

    International Nuclear Information System (INIS)

    Recent progress in studying ordered alloys by lattice fringe imaging is reviewed. Firstly the optimum experimental conditions for producing images suitable for interpretation are outlined. Secondly lattice and conventional imaging are compared and the advantages of the former for obtaining atomic level detail and compositional estimates are described. Finally some important results from this program are discussed, particularly the evidence for a microdomain model of short-range order and the fine structure of various ordered lattice defects

  12. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  14. Amorphous yttrium-iron alloys

    International Nuclear Information System (INIS)

    The magnetic properties of amorphous yttrium-iron alloys Ysub(1-x)Fesub(x) have been studied over a wide concentration range 0.32 2Fe17 alloys, lead in the amorphous state to spin-glass behaviour and asperomagnetic order. The dominant positive interactions produce short-range ferromagnetic correlations which persist up to room temperature. However magnetic saturation cannot be achieved for any of the alloys in applied fields of up to 180 kOe, indicating that strong negative interactions are also present. Exchange interactions become increasingly positive with increasing x, and the magnetic properties of iron-rich alloys approach those of a normal ferromagnet. (author)

  15. Titanium and titanium alloy forgings

    International Nuclear Information System (INIS)

    The specification covers nine grades of annealed titanium and titanium alloy forgings as follows: Grade F-1, F-2, F-3, and F-4 unalloyed titanium; Grade F-5 titanium alloy (6% aluminum, 4% vanadium); Grade F-6 titanium alloy (5% aluminum, 2.5% tin); Grade F-7 and F-11 unalloyed titanium plus palladium; Grade F-12 titanium alloy (0.3% molybdenum, 0.8% nickel). The specification includes ordering information, manufacture, chemical requirements, mechanical requirements, nondestructive tests, dimensions and permissible variations, finish, certification, packaging, and marking

  16. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  17. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  18. Glass formation in eutectic alloys

    International Nuclear Information System (INIS)

    We have analyzed the glass forming ability around eutectic composition in terms of the competitive growth/formation of primary dendrites, eutectic and glass. It is concluded that the glass forming ability of a eutectic alloy system depends on the type of the eutectics, i.e. symmetric or asymmetric eutectic coupled zone. For the alloy systems with symmetric eutectic coupled zone, the best glass forming alloys should be at or very close to the eutectic composition. For the alloys with asymmetric eutectic coupled zone, which is associated with the irregular eutectic, the best glass forming alloys should be at off-eutectic compositions, probably towards the side of the faceted phase with a high entropy in the phase diagram. (orig.)

  19. Alloyed pleasures: Multimetallic cocktails

    OpenAIRE

    Ranganathan, S

    2003-01-01

    The English language insists on unalloyed pleasures, thereby implying that the sensation of pleasure must be pure and not admixed with other emotions. Exactly the opposite rules in metallurgy, where pure metals have few uses and can always be improved upon by alloying. It is true that the civilizational journey of mankind began with the discovery of native metals such as gold and copper as pure metals. In fact this love at first sight of gold several millennia ago has persisted till this day ...

  20. Heating uranium alloy billets

    International Nuclear Information System (INIS)

    Data were obtained for the surface heat transfer coefficient of uranium and the alloys of uranium-0.75 wt percent titanium, uranium-6 wt percent niobium, and uranium-7.5 wt percent niobium-2.5 wt percent zirconium. Samples were heated to 8500C in both a molten salt bath and an argon-purged air furnace, then the samples were cooled in air. Surface heat transfer coefficients were calculated from the experimental data for both heating and cooling of the metals. 4 fig, 4 tables

  1. 不锈钢真空钎焊管板连接微观特征及残余应力有限元分析%Microstructure Characteristics and Finite Element Analysis for Welding Residual Stress of Vacuum Brazed of Stainless Steel Tube Sheet Joint

    Institute of Scientific and Technical Information of China (English)

    吕彪; 熊缨

    2011-01-01

    采用拉伸试验机对304不锈钢管板结构真空钎焊强度进行了试验,运用金相和EDS方法分析了钎焊接头的微观组织特征.运用有限元ANSYS软件对微小尺寸不锈钢管板结构在真空钎焊过程中产生的残余应力进行了模拟.结果表明,应力集中出现在管板连接钎焊接头处,有限元分析获得了该处的残余应力分布规律.%The intensity of vacuum brazed of 304 stainless steel tube sheet structure has been tested with the tensile testing machine. This paper presented the microstructure characters of brazed joint with metallographic analysis and EDS analysis,studied the residual stress of vacuum brazed of the small size stainless steel tube sheet structure with finite element software ANSYS. The experimental results show that the stress concentration occurs at the joint of the brazed tube sheet, finite element analysis obtains the distribution of the residual stress. [ Ch,7 fig. 4 tab. 10 ref.

  2. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  3. Stable palladium alloys for diffusion of hydrogen

    Science.gov (United States)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  4. Sputter target

    Science.gov (United States)

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  5. Effects of Gap Width and Groove on the Mechanical Properties of Butt Joint Between Aluminum Alloy and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Honggang DONG; Chuanqing LIAO

    2013-01-01

    Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%,the same below) and Zn-15%Al flux-cored filler wires.The effects of gap width and groove in steel side on the microstructure and tensile strength of the resultant joints were investigated.For the joint made with 0 mm-wide gap and without groove in steel side,severe incomplete brazing zone occurred along the steel side and bottom surfaces,and consequently seriously deteriorated the joint strength.However,presetting 1.5 mm-wide gap or with groove in steel side could promote the wetting of molten filler metal on the faying surfaces,and then significantly enhance the resultant joint strength.Moreover,post-weld heat treatment could further improve the tensile strength of the joints.During tensile testing,the specimens from the joints made with Al-12%Si flux-cored filler wire fractured through the weld or interfacial layer,but those from the heat-treated joints made with Zn-15%Al flux-cored filler wire fractured in the aluminum base metal.

  6. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132464

  7. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132470

  8. Oxidation resistant alloys, method for producing oxidation resistant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  9. Mechanical alloying of aluminium-lithium-magnesium alloy powders

    International Nuclear Information System (INIS)

    The production of high-purity aluminium-lithium-magnesium alloy powders, by mechanical alloying through grinding in a vibratory mill under high vacuum at room temperature, is described in details. The source materials for the grinding mixture were: aluminium-lithium alloy powder obtained by thermal vacuum-dehydrogenization of AlLiH4 hydride; magnesium metal powder; and chemically deoxidized aluminium metal powder. The implications which arose from the high reactivity of the component elements are discussed, and the measures taken to overcome them are described. The procedures used for the chemical analysis and powder characterization are given. (orig.)

  10. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  11. Improvement factors for steam generator tubing alloys

    International Nuclear Information System (INIS)

    Predictions of reliability gains associated with the use of advanced alloys have been made in the past through the use of improvement factors. Improvement factors for thermally treated Alloy 600 (Alloy 600TT) and thermally treated Alloy 690 (Alloy 690TT) steam generator tubing were previously developed and have been used in the most recent revision of the EPRI Secondary Water Chemistry Guidelines. However, due to the long expected failure times relative to field experience, field-experience-based estimates of these improvement factors continue to be overly conservative (as shown by the absence of wide spread in-service cracking of these materials). A recent study updated the previously developed improvement factors associated with the use of advanced alloys. This paper will discuss the development of relative improvement factors for Alloy 600TT, Alloy 690TT, and Alloy 800 nuclear grade (Alloy 800NG) with respect to mill annealed Alloy 600 (Alloy 600MA) steam generator tubing. The various uses which are appropriate for these improvement factors will be discussed. This presentation focuses on primary side tube degradation (PWSCC), although this project also addressed secondary side tube degradation (ODSCC). The following four techniques were used to assess the performance of the Alloy 600TT, Alloy 690TT, and Alloy 800NG relative to that of Alloy 600MA: Field data on tube degradation were evaluated using statistical techniques, based on plant population Weibull/Weibayes analyses, similar to those employed in the past and reviewed by industry experts as part of the EPRI guidelines revision process. This paper presents updated improvement factors based on further accumulation of operating experience with Alloy 600TT, Alloy 800NG, and Alloy 690TT; Field data on tube degradation were evaluated using alternative statistical techniques which are not as overly conservative as those used in the past; Field data on tube plug cracking were evaluated to compare the performance

  12. Characterization of copper base alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    The micro and nano structure of mechanical alloys of Cu-Al, Cu-V and Cu-Ti obtained by reactive milling, using an Attritor mill, was analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). In order to study the evolution of the alloys during the manufacturing process and during the period of service, the DSC and XRD were done before the mechanical milling, after 30 hours of milling and after hot extrusion of the alloyed powders. Using the Williamson-Hall and Klug-Alexander methods the size of the crystallites and the density of the dislocations in the prepared alloys were evaluated. In all the milled powder cases, the grain and crystallite size was found to be nanometric, the dispersoids were also nanometric and there was texture in the copper planes (220), in the cases of the milled Cu- Ti and Cu-V powders (au)

  13. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  14. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  15. Dislocation Formation in Alloys

    Science.gov (United States)

    Minami, Akihiko; Onuki, Akira

    2006-05-01

    An interaction between dislocations and phase transitions is studied by a phase field model both in two and three dimensional systems. Our theory is a simple extension of the traditional linear elastic theory, and the elastic energy is a periodic function of local strains which is reflecting the periodicity of crystals. We find that the dislocations are spontaneously formed by quenching. Dislocations are formed from the interface of binary alloys, and slips are preferentially gliding into the soft metals. In three dimensional systems, formation of dislocations under applied strain is studied in two phase state. We find that the dislocation loops are created from the surface of hard metals. We also studied the phase separation above the coexisting temperature which is called as the Cottrell atmosphere. Clouds of metals cannot catch up with the motion of dislocations at highly strained state.

  16. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  17. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  18. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  19. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  20. Friction surfacing of aluminium alloys

    OpenAIRE

    Pereira, Diogo Jorge O. A.

    2012-01-01

    Friction surfacing is a solid state joining process that has attracted much interest in the past decades. This technology allows joining dissimilar metallic materials while avoiding the brittle intermetallic formations, involving temperatures bellow melting point and producing like forged metal structures. Much research using different steels has been made but the same does not happen with aluminium alloys, specially using different aluminium alloys. Friction surface coatings using cons...

  1. TEM microstructure investigations of aluminium alloys used for laser alloying

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available Purpose: In this paper there are presented results of Transmission Electron Microscope investigation concerning the structure of the AlSi7Cu4 cast aluminium alloy using for alloying and remelting with the high power diode laser (HPDL. There are also presented the results of the thermo-derivative analysis performed using the UMSA (Universal Metallurgical Simulator and Analyser device, allowing to determine the specific points of the solidifying alloy, what is helpful for phase determination occurred in this alloy. In this work especially the changes of the precipitation type, size and shape were determined.Design/methodology/approach: The investigations were performed using electron microscopy for the microstructure and phases determination. By mind of the transmission electron microscopy, especially selected area diffraction method appliance it was possible to determine the phases occurred in the alloy in the as cast state. The morphology and size of the Mg2Si was also possible to determine as well the lattice parameters for this phase.Findings: : The reason of this work was also to present the laser treatment technology, which will be used for further alloying and remelting with ceramic powders – especially carbides and oxides. Particularly the overview will be directed on the laser power to achieve good layer hardness for protection of this hot work tool steel from losing their work stability and to make the tool surface more resistant to action in external conditions. The structure of the surface laser tray changes in a way, that there are very high roughness of the surface zone and the flatness or geometry changes in an important manner, crucial for further investigation.Research limitations/implications: The aluminium samples were examined metallographically using transmission electron microscope with different image techniques.Practical implications: Developing of new technology with appliance of Al alloys, High Power Diode Laser and

  2. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  3. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion a...... hydrogen uptake points of view, to the above-mentioned alloys. This alloy is of particular interest because the addition of MgO leads to no neutron penalty and the dispersion-strengthening entails the possibility of tailoring an alloy with the desired mechanical properties....

  4. 钒合金与钢异种材料焊接研究现状分析%Research status analysis on welding technology of vanadium alloy to steel

    Institute of Scientific and Technical Information of China (English)

    王亚荣; 滕文华; 杨家林; 余洋

    2012-01-01

    The research status of welding technology of vanadium alloy to steel was summarized by taking the brazing, pressure welding and fusion welding as the main study body. The present results show that the oxidation film on the material surface and the brittle intermetallic compounds formed in the welding process are the key factors to influence the joint properties. The effective solution methods were proposed. It was found that the proper filler materials such as Au -Ni, V, Nd, and so on exhibit good wettability with vanadium alloy on stainless steel, which help to improve the weld quality. The metallurgical bonded joints were developed by several solid - state joining, such as explosive welding or friction welding. In order to minimize the formation of intermetallics, the reaction between liquid metal and solid metal can be precisely controlled by brazing the stainless steel with the lower melting point to the vanadium alloy with higher melting point.%以钎焊、压焊和熔焊为研究主体,综述了钒合金与钢的连接技术研究进展.现有的研究成果表明,钒合金与钢的连接存在着很大的难度,材料表面氧化膜、结合界面形成的脆性金属间化合物是影响接头性能的关键.解决的有效途径是:选择合适的中间层材料,如Au-Ni,V,Nb等,可以很好地润湿钒合金与钢以提高接头性能;采用爆炸焊或摩擦焊的固相连接手段,避免金属的熔化;采用熔化低熔点金属润湿-钎接高熔点金属的方法精确控制材料之间的反应,将产生金属间化合物的可能性降至最低,以实现异种金属间的可靠连接.

  5. Compensative alloying of Cr-Si low-alloyed steels

    International Nuclear Information System (INIS)

    The principle of choosing alloy elements in order to suppress the embrittlement of solid solution strengthening is proposed. In the case of Cr-Si low-alloyed steels, the effects of compensative alloying are studied. The ultimate tensile strength and impact toughness of Cr-Si steels microalloyed with Mo, V, and Ti are determined to prove the aspects. The structure of these steels is studied using optical and transmission electron microscopy techniques after applying the optimum heat treatment. The kinetics of phase transformation after quenching and tempering have been examined by means of measurements of specific electrical resistance and magnetic parameters. It is shown that at the Si-content of about 1 wt% high values of tensile strength and impact toughness are simultaneously obtained. It is established by calculations that, for the indicated steel, long-range distortions of the crystal lattice become close to zero at the Si-content of about 1 wt%.

  6. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle. PMID:26023135

  7. Machining of high alloy steels and heat resistant alloys

    International Nuclear Information System (INIS)

    The peculiarities of machining high alloy steels and heat resistant alloys on the base of nickel by cutting are described. The factors worsening the machining of heat resistant materials, namely, the low heat conductivity, strong reverting and high wearing capability, are pointed out. The resign and materials of cutting instruments, providing for high quality machining of heat resistant steels and alloys, are considered. The necessity of regulating thermal processes during cutting with cutting fluids and other coolants (e.g. air with a negative temperature) is noted. The recommended modes of cutting are presented. The efficiency of the conveyer-type method for sawing products and forged intermediate articles is demonstrated by the example of 5KhNM steel

  8. The comparison of corrosion resistance between Baosteel's alloy 690 tube and foreign alloy 690 tube

    International Nuclear Information System (INIS)

    Alloy 690 having excellent corrosion resistance is widely used for SG tubes. The intergranular corrosion and pitting corrosion resistance of Baosteel's alloy 690 tube, Country A alloy 690 tube and Country B alloy 690 tube have been analysed by comparison. It shows that: The intergranular corrosion of Baosteel's alloy 690 tube tested complied with ASTM G28 Standard could satisfy the technical requirement. However.some of Baosteel's alloy 690 tube in intergranular corrosion resistance had less performance than Country A. In addition, pitting corrosion tested with ASTM G48 Standard shown the Baosteel's alloy 690 tube better than Country B. (authors)

  9. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  10. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  11. Quasicrystal-reinforced Mg alloys

    International Nuclear Information System (INIS)

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. (review)

  12. Design optimization of shape memory alloy structures

    OpenAIRE

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory alloys are e.g. miniaturized medical instruments with embedded actuation, as well as microsystem components. However, designing effective shape memory alloy structures is a challenging task, due t...

  13. Grain refinement efficiency of a new oxide-containing master alloy for aluminium casting alloys

    OpenAIRE

    Sreekumar, VM; Babu, NH; Eskin, DG; Fan, ZY

    2014-01-01

    In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4 was demonstrated on an A357 alloy. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. A higher addition of master alloy was found to be not benificial in further reducing the grain size.

  14. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  15. Materials data handbook, aluminum alloy 6061

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  16. Filler metal development for hastelloy alloy XR

    International Nuclear Information System (INIS)

    A method of alloy designing has been proposed and validated to develop the filler metal for Hastelloy alloy XR(nuclear reactor grade of Hastelloy alloy X), which is the candidate material for high temperature structure of High-Temperature Engineering Test Reactor (HTTR). In the filler metal development for Hastelloy alloy XR, materials of two heats were melted and fabricated with special emphasis placed on manufacturing process. One is the trial products (alloy termed 'C') designed by using multiple regression analysis in the range of the chemical composition specified as Hastelloy alloy X. The other is filler metal (alloy termed 'D') with optimum boron content in the same chemical composition as Hastelloy alloy XR. The results of the tests on several key items may be summarized as follows: (1) Weldments with alloy'C' showed higher strength and ductility at elevated temperatures than those of alloy'D'. (2) Weldments with alloy'D' had more excellent strength characteristics at elevated temperatures than those of the other conventional filler metals. (3) As for weldability, the crater cracks were slightly observed in the FISCO cracking test, but those were out of the problem in the degree of cracking from the viewpoint of practical application. The results of qualification tests on weldability showed good performance for all welding conditions of the present experiments. On the other hand, the mechanism of hot cracking initiation and the controlling factors in hot cracking susceptibility with relation to boron content have been clarified for Hastelloy alloy XR base metal. (author)

  17. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author)

  18. Alloy phase stability and design

    International Nuclear Information System (INIS)

    At the level of basic quantum theory the papers in this symposium reflect the great progress that has been made in understanding the physical properties of both ordered and disordered alloys based on Density Functional Theory (DFT). DFT provides a quantitative parameter-free (often referred to as first principles) theory of the ground state properties of these systems. This general approach has also been used in combination with classical elasticity and dislocation theory to provide the first quantitative understanding of some of the mechanical properties of intermetallic alloys. Recent advances have built on DFT theory to provide the first glimpses of a theory of the finite temperature phase stability of alloys. It is the strength of these first principles theories that the understanding of materials properties is in terms of the underlying electronic structure. At the level of atomistic simulation, based on semi-empirical potentials, again much progress has been made in understanding the properties of extended defects such as grain boundaries and dislocations. On the experimental front increasingly sophisticated tools are being brought to bear in order to understand both the underlying electronic structure and detailed atomic arrangements. This information, together with input from theory, is playing an increasing role in guiding alloy design efforts. At the more practical level a number of these sophisticated alloy design efforts have in recent years produced impressive results across a broad front. The properties of existing materials are continually being improved and new ones developed. Often this progress is based on a deeper understanding of the properties at the atomistic and electronic level. The design of new ordered intermetallic alloys that have reached or are reaching commercialization represents one of the major achievements of this investment of intellectual resources

  19. Moving Dislocations in Disordered Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Marian, J; Caro, A

    2006-11-18

    Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed study of the mobility function as a function of stress, temperature and alloy composition. We analyze the results in terms of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable agreement between the location of the cusps in the {sigma}-v relation and the velocity of waves propagating in the direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character.

  20. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  1. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  2. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  3. Current research situation of titanium alloys in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Titanium and its alloys possess excellent comprehensive properties, and they are widely used in many fields. China pays great attentions to the research on new titanium alloys. This paper mainly reviews the research on new Ti alloys in China, for example, high strength and high toughness Ti alloys, burn resistant Tialloys, high temperature Ti alloys, low cost Ti alloys and so on.New basic theories on Ti alloys developed in China in recent years are also reviewed.

  4. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  5. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  6. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  7. Crystallization behavior of Ti61.67Zr17.15Ni14.80Cu6.38 glass-forming alloy

    Institute of Scientific and Technical Information of China (English)

    范金铎; 高逸群; 黎仕增

    2004-01-01

    Ti61.67 Zr17.15 Ni14.80 Cu6.38 (atom fraction,%) metallic glass has applications in brazing. Using the hammer-and-anvil technique, Ti61.67 Zr17.15 Ni14.80 Cu6.38 metallic glass was prepared. The crystallization behavior for this metallic glass was investigated by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy(TEM). Th ere are three stages in DSC curves of crystallization. The reduced glass temperature Trg is 0.42. The kinetic parameters of crystallization were calculated by a set of equations of the maximum crystallization rate. The crystalline phase formed in the MSI(Metastable stage Ⅰ) is Zr2Cu, in the MSⅡ is α-Ti and in the MSⅢ is Ti2 Ni. This kind of alloy has lower glass forming ability, and the Ti61.67 Zr17. 15 Ni14. 80 Cu6.38 metallic glass has lower thermal stability.

  8. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  9. Investigating aluminum alloy reinforced by graphene nanoflakes

    International Nuclear Information System (INIS)

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs

  10. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  11. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  12. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  13. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    Energy Technology Data Exchange (ETDEWEB)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raj, Baldev [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-11-15

    Highlights: > Alloy 690 and Alloy 693, both possess good corrosion resistance in simulated HLW. > SEM and EDS confirms the presence of Cr rich precipitates for both the alloys. > Passive film stability of Alloy 690 was found to be higher than Alloy 693. > Both alloys possess few micro pits even at a concentration of 100 ppm Cl{sup -} ion. - Abstract: Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO{sub 3}, 3 M HNO{sub 3} containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO{sub 3} and 3 M HNO{sub 3} with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  14. Influence of silica on stress corrosion cracking of Alloy 600 and Alloy 690

    International Nuclear Information System (INIS)

    Silicate is a major constituent of sludge on the tubesheet region of PWR steam generators, where stress corrosion cracking (SCC) of the steam generator tubing generally occurs in nuclear power plants. In this work, the effects of silicate on SCC of Alloy 600 and Alloy 690 have been studied in 10 % NaOH and 40 % NaOH with and without 2 g/l SiO2 at 315 degC. The experiments were performed using C-ring specimens at 200 mV above the corrosion potential. The stress at the apex of the C-ring specimen ranged from about 300 MPa to about 600 MPa. Polarization behaviors of Alloy 600 and Alloy 690 were also studied. High temperature mill annealed Alloy 600, sensitized Alloy 600, thermally treated Alloy 600 and thermally treated Alloy 690 were used for the SCC and polarization test. Composition profiles of the deposit layer on Alloy 600 and Alloy 690 were examined with an Auger electron microscope. The degree of sensitization was evaluated with a modified Huey test and TEM-EDX. Effects of silica on SCC of Alloy 600 and Alloy 690 are discussed in terms of polarization behavior and the oxide layer composition. (author) Key Words: stress corrosion cracking, Alloy 600, Alloy 690, polarization curves, AES, TEM, NaOH, silica

  15. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed. PMID:9524484

  16. Creep of Mg-alloys

    Czech Academy of Sciences Publication Activity Database

    Blum, W.; Eisenlohr, P.; Zeng, X. H.; Milička, Karel

    Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2006 - (Pekguleryuz, M.; Mackenzie, L.), s. 633-645 ISBN 1-894475-66-6. [Magnesium Technology in the Global Age. Montreal (CA), 01.10.2006-04.10.2006] Institutional research plan: CEZ:AV0Z20410507 Keywords : creep * magnesium alloys * creep mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Introduction to hydrogen in alloys

    International Nuclear Information System (INIS)

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented

  18. Fiber reinforced titanium alloy composites

    International Nuclear Information System (INIS)

    The more important titanium matrix composites studied to date are composed of titanium alloy matrices, such as Ti 6Al--4V, reinforced with filaments of boron, silicon carbide, or sapphire, as well as with wires of beryllium or refractory metal alloys. The primary fabrication techniques for these materials involve vacuum hot pressing at 1300 to 16000F, alternate layers of titanium alloy matrix foils, and suitably aligned filament mats. The more ductile reinforcements such as beryllium, have been incorporated into titanium matrix composites by coextrusion. Fabrication of composite gas turbine engine fan blades from both boron (SiC coated) and beryllium reinforced Ti 6Al--4V alloy is described. Feasibility studies have been made in the fabrication of Boron/Ti 6Al--4V composite rings for possible gas turbine engine disc applications. Mechanical properties of various titanium matrix composite systems are presented and demonstrate the attractive elevated temperature properties of some systems to 10000F. (35 fig, 6 tables) (U.S.)

  19. Introduction to hydrogen in alloys

    Energy Technology Data Exchange (ETDEWEB)

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented.

  20. Water atomised aluminium alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Neikov, O.D.; Vasilieva, G.I.; Sameljuk, A.V.; Krajnikov, A.V

    2004-10-10

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions.

  1. Water atomised aluminium alloy powders

    International Nuclear Information System (INIS)

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions

  2. Potentiodynamic study of Zn + 0.5% Al alloy alloyed by thallium

    International Nuclear Information System (INIS)

    Present article is devoted to potentiodynamic study of Zn + 0.5% Al alloy alloyed by thallium. The studies results of potentiodynamic study of Zn + 0.5% Al alloy alloyed by thallium in the medium of NaCl electrolyte were considered. The influence of thallium additives on corrosion-electrochemical properties of Zn + 0.5% Al alloy in the medium of NaCl electrolyte of different concentration was studied. Based on carried out researches it was defined that thallium additives have a positive influence of corrosion-electrochemical behaviour of Zn + 0.5% Al alloy.

  3. MIG Arc Brazing of Dissimilar Metals between Pure Aluminum and Zinc-Coated Steel%纯铝与镀锌钢板MIG熔-钎焊工艺研究

    Institute of Scientific and Technical Information of China (English)

    国旭明; 汪建梅; 徐荣正

    2013-01-01

    MIG arc brazing of dissimilar metals between pure aluminum and zinc-coated steel in a lap joint was investigated using Al-Mg,Al-Si filler wires.The interface structure and the mechanical properties of the fusion-brazing joint were characterized.The results show that the high quality welded joint is successfully achieved with Al-Mg,Al-Si filler wire in the suitable welding parameters.The intermetallic compound layer (IMC) is composed of θ-Al3Fe,η-Al5Fe2 and AlFeSi phases by using Al-Si filler wire.It is thinner and denser than that obtained by using Al-Mg filler wire.The growth of IMC layer is suppressed due to the addition of Si element.The shear strength of welded joint nearly reaches that of pure aluminum.The cracking position occurs in weld zone.%采用Al-Mg,Al-Si两种填充焊丝,研究了纯铝与镀锌钢板异种金属材料的MIG熔-钎焊工艺,分析了焊接接头的界面结构特征及其力学性能.研究结果表明:在合适的焊接参数下,选用两种填充焊丝可以实现纯铝板(1060)与镀锌钢板的MIG熔-钎焊.与添加Al-Mg焊丝相比,填充Al-Si焊丝,界面反应层由θ-Al3 Fe,η-Al5 Fe2和AlFeSi相组成,且反应层较薄,焊缝中加入Si元素有效地抑制了金属间化合物层的生长,此时所获得的拉剪强度较大,接近纯铝板(1060)的抗拉强度,接头断裂发生在焊缝位置.

  4. Nickel-base alloys combat corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, D.C. [VDM Technologies Corp., Houston, TX (United States); Herda, W. [Krupp-VDM GmbH, Werdohl (Germany)

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  5. Alloy substantially free of dendrites and method of forming the same

    Science.gov (United States)

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  6. First principles theory of disordered alloys and alloy phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A. [and others

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  7. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    Science.gov (United States)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  8. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kad, Bimal [University of California, San Diego; Dryepondt, Sebastien N [ORNL; Jones, Andy R. [University of Liverpool; Vito, Cedro III [National Energy Technology Laboratory (NETL); Tatlock, Gordon J [ORNL; Pint, Bruce A [ORNL; Tortorelli, Peter F [ORNL; Rawls, Patricia A. [National Energy Technology Laboratory (NETL)

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  9. Alloying effect on the titanium alloys tendency to the salt corrosion

    International Nuclear Information System (INIS)

    Salt corrosion tendency of commercial titanium alloys, such as OT4, 0T4-1 (the Ti-Al-Mn system); VT14, VT16 (the Ti-Al-Mo-V system) and VT30 (the Ti-Mo-Sn-Zr system) is compared with the intensity of salt corrosion of VT1-0 titanium and experimental alloys of the Ti-Al and Ti-Mo systems. It is established that the salt corrosion tendency of alloys of the Ti-Al system increases when they are alloyed with manganese and decreases when they are alloyed with vanadium and molybdenum in combination. Alloys of the Ti-Mo system have no tendency to salt corrosion. Alloying with zirconium and tin brings about the propagation of salt corrosion in the alloys

  10. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  11. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.; Leil, T.A.; Kainer, K.U.; Liu, Yi-Lin

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements on the...... creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  12. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  13. A lightweight shape-memory magnesium alloy

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  14. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  15. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  16. Advantages of reduced heat input during ChopArc-welding and brazing for coated and combined metals for light weight vehicles; Vorteile des waermearmen ChopArc-Schweissens und - Loetens bei beschichteten und artverschiedenen Blechen fuer Leichtfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, L.; Goecke, S.F. [Inst. fuer Werkzeugmaschinen und Fabrikbetrieb, TU-Berlin (Germany)

    2001-07-01

    In conventional MAG-short-arc-welding the arc burns after ignition non-defined with continuously energy input until the next short circuit. Thereby, stochastically process fluctuations are caused by the non controlled melting of the electrode tip. In the recently developed ChopArc process, after a defined extinguishing a non arcing phase follows without any energy input until the next short circuiting on the controlled melting of the electrode tip. Hence, with the ChopArc it is possible to realize a sticky melt for thin sheet, root pass and out-of-position welding, as well as a low melt viscosity for sufficient capillary effect in MAG-brazing. (orig.) [German] Beim herkoemmlichen MAG-Kurzlichtbogen-Schweissen brennt der Lichtbogen nach seiner Zuendung bis zum naechsten Kurzschluss undefiniert mit einem kontinuierlichen Energieeintrag weiter. Aus dem dabei unkontrollierten Aufschmelzen der Elektrodenspitze resultieren stochastische Prozessschwankungen. Dagegen folgt beim neuen ChopArc-Verfahren einem gesteuerten Aufschmelzen des Elektrodendrahtes in der Brennphase mit definierter Abschaltung des Lichtbogens eine Unterbrechungsphase ohne Energieeintrag bis zum naechsten Kurzschlusseintritt. Mit dem ChopArc ist es nun moeglich, sowohl eine zaehe Schmelze fuer Duennblech-, Wurzel- oder Zwangslagenschweissen, als auch eine niedrige Schmelzbadviskositaet fuer eine gute Kapillarwirkung des Lotes beim MAG-Loeten zu erzielen. (orig.)

  17. Study of No Corrosion Aluminum Fluxes on Brazing Aluminum Heat Exchanger%钎焊铝制热交换器用无腐蚀铝钎剂的研究

    Institute of Scientific and Technical Information of China (English)

    刘宏江; 曾燕; 蔡志红; 蔡沛沛; 贺军四; 胡泽宇; 李世婕; 黄烨

    2014-01-01

    Based on the AlF3 -KF eutectic compound fluxes, under the circumstances of not changing the non-corrosive nature, by adding additives, the eutectic compound fluxes are modified. By adding inorganic additives, the abilities of removing the oxide film and solderability are improved;And through adding organic additives, the settling property in water is improved, the purpose of efficient use in brazing aluminum heat exchanger is achieved.%以AlF3-KF共晶化合物钎剂为基础,在不改变其无腐蚀性质的情况下,通过添加助剂,对其进行改性。添加无机助剂,提高了钎剂的去膜能力和助焊性;添加有机助剂,提高了钎剂在水中的抗沉降性能,从而达到能高效应用于钎焊铝制热交换器的目的。

  18. Constitution and magnetism of iron and its alloys

    International Nuclear Information System (INIS)

    The following topics are covered: structure of iron, magnetism of iron, thermal properties (heat capacity and enthalpy), substitutional alloys of iron, interstitial Fe alloys and compounds, influence of magnetism on the physical properties of Fe alloys (WL)

  19. Copper and nickel adherently electroplated on titanium alloy

    Science.gov (United States)

    Brown, E. E.

    1967-01-01

    Anodic treatment of titanium alloy enables electroplating of tightly adherent coatings of copper and nickel on the alloy. The alloy is treated in a solution of hydrofluoric and acetic acids, followed by the electroplating process.

  20. [Microbial corrosion of dental alloy].

    Science.gov (United States)

    Li, Lele; Liu, Li

    2004-10-01

    There is a very complicated electrolytical environment in oral cavity with plenty of microorganisms existing there. Various forms of corrosion would develop when metallic prosthesis functions in mouth. One important corrosive form is microbial corrosion. The metabolic products, including organic acid and inorganic acid, will affect the pH of the surface or interface of metallic prosthesis and make a change in composition of the medium, thus influencing the electron-chemical reaction and promoting the development of corrosion. The problem of develpoment of microbial corrosion on dental alloy in the oral environment lies in the primary condition that the bacteria adhere to the surface of alloy and form a relatively independent environment that promotes corrosion. PMID:15553877

  1. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  2. Surface Bond Strength in Nickel Based Alloys

    OpenAIRE

    Ramesh, Ganesh; Padmanabhan, T. V.; Ariga, Padma; Joshi, Shalini; Bhuminathan, S.; Vijayaraghavan, Vasantha

    2012-01-01

    Bonding of ceramic to the alloy is essential for the longevity of porcelain fused to metal restorations. Imported alloys used now a days in processing them are not economical. So this study was conducted to evaluate and compare the bond strength of ceramic material to nickel based cost effective Nonferrous Materials Technology Development Center (NFTDC), Hyderabad and Heraenium S, Heraeus Kulzer alloy. An Instron testing machine, which has three-point loading system for the application of loa...

  3. Microstructure and Slip Character in Titanium Alloys

    OpenAIRE

    Banerjee, D.; Williams, J. C.

    1986-01-01

    Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha) and body centred cubic (bita) phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist...

  4. A bidirectional shape memory alloy folding actuator

    OpenAIRE

    Paik, Jamie; Wood, Robert J.

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso-and microscale systems. Despite the advantages of shape memory alloys-high strain, silent operation, and mechanical simplicity-their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180 degrees motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the foldin...

  5. Aluminium-lithium alloys with scandium

    International Nuclear Information System (INIS)

    The influence of scandium on phase composition and properties of Al-Li alloys is considered. It is shown that the alloying with scandium increases strength properties, improves the weldability and affects the character and the velocity of decomposition of a supersaturated solid solution. The best compromise between strength and plastic properties is stated to be provided by combined introduction of Sc and Zr to Al-Li alloys

  6. Mapping between Alloy specifications and database implementations

    OpenAIRE

    Cunha, Alcino; Pacheco, Hugo

    2009-01-01

    The emergence of lightweight formal methods tools such as Alloy improves the software design process, by encouraging developers to model and verify their systems before engaging in hideous implementation details. However, an abstract Alloy specification is far from an actual implementation, and manually refining the former into the latter is unfortunately a non-trivial task. This paper identifies a subset of the Alloy language that is equivalent to a relational database schema with the most c...

  7. Microduplex structure in commercial ageing alloys

    International Nuclear Information System (INIS)

    Regimes of mechanical thermal treatment of ageing alloys providing the formation of fine-dispersed two-phase structure have been developed using the 36NKhTYu alloy. It has been shown that fine-dispersed two-phase structure (microduplex) is formed in the process of high-temperature recrystallyzation of heavy deformed alloys containing particles of γ'-phase in the deformed lattice

  8. Metal Dusting of Heat-Resistant Alloys

    OpenAIRE

    Al-Meshari, Abdulaziz I.

    2008-01-01

    Metal dusting leads to disintegration of such alloys as iron and nickel-based into a ?dust? of particulate metal, metal carbide, carbon, and/or oxide. It occurs in strongly carburising environments at 400-900?C. Literature survey has shown that alloys behave differently in metal dusting conditions based on their composition and the environment. Metal dusting mechanisms for iron and nickel-based alloys have been proposed but, nevertheless, have not been agreed upon and numerous modifications t...

  9. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  10. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  11. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  12. Microstructural characterization of EXCEL alloy

    International Nuclear Information System (INIS)

    The microstructure of Excel alloy was studied by optical and scanning electron microscopy. X-ray diffraction was used to analyze the present phases. Characteristic peaks of α-Zr (HCP), β-Zr (BCC) and δhydride (FCC) were identified. The high relatives intensities of certain peaks suggest that samples are textured. Basal poles were dominant in radial-longitudinal planes and prismatic poles have the highest concentration in radial-tangential planes (author)

  13. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  14. Superplastic properties of magnesium alloys

    Directory of Open Access Journals (Sweden)

    M. Greger

    2007-06-01

    Full Text Available Purpose: The paper summarises results of experiments aimed at development of structure of modified Mg-Al-Zn alloys at hot deformation.Design/methodology/approach: Methods ARB and ECAP were used in the described experiment. It was proved that hardly forming materials could achieve very high plastics properties.Findings: After making plastics deformation, the using materials of alloys AZ61 and AZ91 analysed superplastics behaviour, it was certified by obtaining results, when ductility to rupture of alloy AZ91 was 418 %, it is demostrated at conclusion of the article.Research limitations/implications: The experiment proved big influence of previous plastics deformation to ending values of mechanical properties. It was verified that better results are at rolling in more steps compared to rolling in one pass.Practical implications: The low submission temperature at last pass through die it causes obtaining higher final properties.Originality/value: It was obtained the material about grain size d ≈ 0,7μm during using the technology of ECAP. Abreast of it the technology ARB enabled to get material of grain size in interval d ≈ 1-10 μm. The sekond technology brings higher strength properties. Only 3 cycles were sufficient to lower original grain size under limit 10 μm

  15. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  16. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  17. Alloy NASA-HR-1

    Science.gov (United States)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  18. Characterization of a NIMONIC TYPE super alloy

    International Nuclear Information System (INIS)

    Mechanical properties of strength and thermofluence of a NIMONIC type super alloy under thermal treatment was determined. The relationship between microstructure, phases and precipitates was also studied. (author)

  19. Radiation enhanced diffusion in fcc alloys

    International Nuclear Information System (INIS)

    Diffusion mechanisms in fcc materials during irradiation with high energy particles due to vacancies, interstitials, di-interstitials, and dynamic crowdions are discussed. It is shown that in most alloys an increase in the degree of order is obtained by migration vacancies and interstitials, and only in α-copper-zinc alloys mainly interstitials and in nickel-chromium alloy mainly vacancies are able to increase the degree of order during irradiation. the migration activation energies of interstitials and of vacancies for these two alloys are derived. Mass transport also by channeling and by dynamic crowdions is shown for Ni63 in nickel irradiated with 1.85 MeV electrons

  20. CVD of refractory amorphous metal alloys

    International Nuclear Information System (INIS)

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known

  1. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  2. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  3. Surfacing of drawplates by compound alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myshko, Y.D.; Gladchenko, A.N.; Gonchak, N.E.; Matkovskii, N.V.; Nechiporenko, V.G.

    1984-01-01

    Hard alloy sleeves fixed by soldering them with silver solder to drawplates of pelletizing heads in machinery used for processing plastic materials does not provide the required strength. A technology for surfacing the drawplates with wear-resistant alloys type VK8+MNMts by thermal impregnation has been developed. The strength of the compound alloy tested depends on the wetting of the solid phase by the matrix alloy-binder. The systems studied possessed high wettability and a stable bond between the phases. Surfaces drawplates have been successfully tested.

  4. Hydrogen embrittlement in lean uranium alloys

    International Nuclear Information System (INIS)

    This paper reports on internal hydrogen embrittlement characterized for U-0.8Ti alloy and U-2.3Nb alloy (where the number represents weight percent alloying element) in terms of the decrease in tensile ductility, the decrease in dimple rupture size, and the increase in the extent of quasi-cleavage with increasing hydrogen content below the one parts-per-million by weight level. Severe moisture corrosion at 21 degrees C for 42 Ms did not result in the penetration of hydrogen through the alloy to the extent of 3 mm sufficient to affect tensile ductility

  5. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  6. Activation analysis for different structural alloys considered for ITER

    International Nuclear Information System (INIS)

    Activation calculations have been made for the austentic steel 316SS, the ferritic alloy HT-9, the titanium alloy Ti6A14V, and the vanadium alloy V5Cr5Ti in a liquid metal (Na) design suggested recently for ITER. The calculations show that the vanadium alloy has the minimum short and long-term radioactivity and BHP. It also has the minimum decay heat at all the time. The titanium alloy has less radioactivity than the austenitic and this ferritic alloys. However, the decay heat of this alloy could exceed that of the conventional alloys

  7. Study of Alpha-Sigma Phase Transformation in Mechanically Alloyed Fe-Cr-Sn Alloys

    OpenAIRE

    Costa, B. F. O.; Caër, G. Le; Campos, N. Ayres de

    2001-01-01

    The solubility of tin is significantly extended by mechanical alloying in near equiatomic Fe-Cr alloys. The influences of Sn concentration and of grain size on the kinetics of formation of the sigma-phase have been studied using different techniques. The sigma-phase formation is much faster for as-milled alloys than it is for conventional alloys. The sigma-phase formation rate decreases with the increase of Sn concentration in alloys with nanometer-sized grains as it does in coarse-grained al...

  8. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    OpenAIRE

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneo...

  9. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  10. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  11. Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap

    Institute of Scientific and Technical Information of China (English)

    Sun Zhenqi; Huang Minghui

    2013-01-01

    A new type of aluminum lithium alloy (A1-Li alloy) Al-Li-S-4 was investigated by test in this paper.Alloy plate of 400 mm × 140 mm × 6 mm with single edge notch was made into samples bonded with Ti-6Al-4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was treated.Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of 0.1 and load amplitude constant.The results show that Al-Li alloy plate bonded with Ti alloy strap could retard fatigue crack propagation.Retardation effect is related with width and thickness of strap.Flaws have an observable effect on crack propagation direction.

  12. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  13. Lattice image studies of ordered alloys

    International Nuclear Information System (INIS)

    Lattice imaging in electron microscopy was successfully applied to the study of ordering in alloys. The approach included computer simulation (Mg3Cd), study of atomic arrangements near ordered lattice defects (Ni4Mo), fringe changes during phase transformation, and identification of fringe periodicities in alloys quenched from above the critical ordering temperature. (U.S.)

  14. Electroplating Zn-Al Alloy Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of controlling separating anode and separating power source was used to perform orthogonal optimization for the parameters in electroplating Zn-Al alloy.The electroplating Zn-Al alloy technology was decided, in which the content of Al is about 12%-15%.

  15. Solidification shrinkage of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Feng [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China); Yang Renhui [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China)]. E-mail: yangrh2004@21cn.com; Fang Liang [Department of Applied Physics, Chongqing University, No. 174 Shazhong Road, Shapingba, Chongqing 400044 (China); Zhang Chi [Materials Interfacial Physical-Chemistry Research Institute, Chongqing Institute of Technology, No. 4 Xingsheng Road, Yangjiaping, Chongqing 400050 (China)

    2006-07-25

    Ni-Cr superalloy is widely used in casting of critical components in gas-turbine engines. Because of the significant change in density of alloy in mushy state, porosity is likely to arise in the alloy parts due to the solidification shrinkage. On the other hand, because Ni-Cr alloy is very hard and difficult to be machined, the net-shape casting of the alloy is a cheap process. Therefore, it is essential to measure the solidification shrinkage of mushy alloy for obtaining low-cost net-shape casting ingot without inner porosity. However, there have been a few reports on the solidification shrinkage of the liquid Ni-Cr alloy. In this work, the solidification shrinkage of Ni-Cr alloy was calculated by measuring its density using modified sessile drop method. It has been found that, for Ni-(0-24.53)% Cr alloys, the solidification shrinkage value fluctuates in the range of 0.91-2.02% and it tends to increase with increasing Cr concentration in 0-10% Cr. However, for Cr concentration more than 10%, the solidification shrinkage holds on a certain value of 2.00%.

  16. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...

  17. Review of tantalum and niobium alloy production

    International Nuclear Information System (INIS)

    This paper concentrates on the current state of niobium- and tantalum-base alloy production. The materials requirements, alloy compositions of interest, and production status are discussed. Finally, a list of developments needed to support the SP-100 program will be identified. A bibliography is included

  18. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  19. Alloys oxidation of aluminium-scandium system

    International Nuclear Information System (INIS)

    Alloys and compounds of rare earth metals with aluminium thanks to their high corrosion stability, durability and small specific weight find to apply in various new techniques. On the base of carried out investigation it could be recommend as de oxidizing and alloying compositions containing 15-50 % of scandium as in possession of minimal oxidation

  20. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  1. Passivation of alloys on titanium base

    International Nuclear Information System (INIS)

    Results of passivation studies on Ti-base alloys show that the inhibition of anodic processes on these alloys is determined not by the total thickness of passive film, but by its barrier layer. The protective properties of the barrier layer increase if the passive film is formed at anodic potentials more positive than +1.4V. They were determined not by chemical stability of barrier layer, but by an inhibition which is produced by this layer for ionic current along the anodic direction. The protective properties are related to character defectiveness and semiconductor properties of the barrier layer. Additions of Al, V, Mo, Zr, and Nb to titanium increase the anodic current in the passive state. Additions of Cr and Mn decrease this current, and Sn does not influence it. The direct electrochemical transition of titanium ions into solution (as TiO2+) is a main anodic process of titanium dissolution and its low alloyed alloys in the passive state. Double phase titanium alloys (after tempering) have a lower corrosion resistance than those in the homogeneous single phase state (after hardening). The less passive phase of double phase alloys dissolves perferentially. The less passive phases are: in the active state, α-phase; in transpassive state for Ti--Mo alloys, β-phase, containing in a high Mo percentage; and for Ti--Cr alloys, γ-phase, having more chromium. (U.S.)

  2. Materials data handbook: Aluminum alloy 2219

    Science.gov (United States)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  3. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  4. Phase transformations on Zr-Nb alloys

    International Nuclear Information System (INIS)

    This research intended the laboratory scale experimental development of Zr-Nb alloys with adequate characteristics for use as fuel element cladding or for the making of irradiation capsules. Zr-Nb alloys with different Nb contents were melted and the resulting material was characterised. The following metallurgical aspects were considered: preparation of Zr-Nb alloys with various Nb contents; heat and thermomechanical treatments; microstructural characterization; mechanical properties; oxidation properties. The influence of the heat treatment and thermomechanical treatment, on the out-of-pile mechanical and oxidation properties of the Zr-Nb alloys were studied. It was found that the alloy microhardness increases with the Nb content and/or with the thermomechanical treatment. Mechanical properties such as yield and ultimate tensile strength as well as elongation were determined by means of compression tests. The results showed that the alloy yield stress increases with the Nb content and with the thermomechanical treatment, while its elongation decreases. Thermogravimetric analysis determined the alloy oxidation kinetics, in the 400 - 800 deg C interval, at 1 atm. oxygen pressure. The results showed that the alloy oxidation rate increases with the temperature and Nb content. It was also observed that the oxidation rate increases considerably for temperatures higher than 600 deg C.(author)

  5. Sputtered Clusters from Niobium-Vanadium Alloys

    DEFF Research Database (Denmark)

    Schou, Jørgen; Hofer, W. O.

    1982-01-01

    A series of Nb&z.sbnd;V alloys have been irradiated by 6 keV argon ions. Homonuclear and heteronuclear clusters emitted from these alloys have been studied by means of post-ionization and/or secondary ion mass spectrometry. The intensity of clusters of atomic masses up to approximately 300 amu wa...

  6. Methods for Electrodepositing Composition-Modulated Alloys

    DEFF Research Database (Denmark)

    Leisner, Peter; Nielsen, Christian Bergenstof; Tang, Peter Torben; Dörge, Tommy C.; Møller, Per

    1996-01-01

    Materials exhibiting unique mechanical, physical and chemical properties can be obtained by combining thin layers of different metals or alloys forming a multilayered structure. Two general techniques exist for electrodepositing composition-modulated alloy (CMA) materials; dual-bath and single...

  7. Zirconium alloys produced by recycling zircaloy tunings

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, N.S. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Carbajal-Ramos, I.A. [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina); Ulla, M.A.; Pierini, B.T. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Gennari, F.C., E-mail: gennari@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-25

    Highlights: •Zr–Ti alloys were successfully produced by two-step procedure. •Zircaloy tunings were used as a valuable source of Zr. •Zircaloy tunings and Ti powders was milled under hydrogen to produce hydride powders. •Hydride powders were decomposed by heating at 900 °C to synthesize the Zr-based alloy. •The procedure could be extended to the production of other Zr-based alloys. -- Abstract: Zircaloy chips were recycled to successfully produce Zr–Ti alloys with bcc structure and different compositions. The procedure developed involves two steps. First, the reactive mechanical alloying (RMA) of the zircaloy tunings and Ti powders was performed to produce metal hydride powders, with a high refinement of the microstructure and a Zr–Ti homogeneous composition. Second, the metal hydride powders were thermally decomposed by heating up to 900 °C to synthesize the Zr-based alloy with a selected composition. The change in the nature of the powders from ductile to brittle during milling avoids both cold working phenomena between the metals and the use of a control agent. A minimum milling time is necessary to produce the solid solution with the selected composition. The microstructure and structure of the final alloys obtained was studied. The present procedure could be extended to the production of Zr-based alloys with the addition of other metals different from Ti.

  8. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  9. Small angle neutron scattering in invar alloys

    International Nuclear Information System (INIS)

    Some results of low angle neutron scattering on 70-30 and 65-35 FeNi alloys are presented showing the existence of chemical small clusters associated with a magnetization inhomogeneity. A noticeable result is the appearance of a pseudo-periodical magnetization static fluctuation in a 65-35 FeNi alloy after irradiation with 2 MeV electrons

  10. New zirconium alloys for nuclear application

    International Nuclear Information System (INIS)

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions (∼ 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  11. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  12. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  13. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  14. Study on hardening mechanisms in aluminium alloys

    Directory of Open Access Journals (Sweden)

    P. K. Mandal

    2016-01-01

    Full Text Available The Al-Zn-Mg alloys are most commonly used age-hardenable aluminium alloys. The hardening mechanism is further enhanced in addition of Sc. Sc additions to aluminium alloys are more promising. Due to the heterogeneous distribution of nano-sized Al3Sc precipitates hardening effect can be accelerated. Mainly, highlight on hardening mechanism in Al-Zn-Mg alloys with Sc effect is to study. In addition, several characterisations have been done to age-hardening measurements at elevated temperatures from 120oC to 180 oC. The ageing kinetics has also been calculated from Arrhenius equation. Furthermore, friction stir processing (FSP can be introduced to surface modification process and hardened the cast aluminium alloys. In this study, hardening mechanism can be evaluated by Vicker’s hardness measurement and mechanical testing is present task.

  15. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  16. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  17. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  18. 金刚石/铜基钎料粉末注射成型工艺参数的优化%Optimization of Parameters in Diamonds/Copper Based Brazing Filler Metal Powders Injection Molding Process

    Institute of Scientific and Technical Information of China (English)

    伍俏平; 邓朝晖; 潘占; 张荣辉; 张正

    2012-01-01

    通过正交试验对金刚石/铜基钎料粉末小型薄壁件的注射成型工艺参数进行了优化。结果表明:当模具温度为40℃,注射压力为12MPa,注射温度为150℃,注射流量为20cm^3·S^-1,为最佳工艺参数组合,能获得表面光整、组织均匀的注射生坯;随着注射压力的增大,注射生坯密度增大;注射温度升高,生坯密度降低;注射流量增大,生坯密度先升后降。%Optimization of parameters in the injection molding process of diamonds/copper based brazing niter metal powders was investigated by orthogonal experiments. Results indicate that the optimized combination of parameters was given as following: the mould temperature was 40 ℃; injection pressure was 12 MPa; injection temperature was 150 ℃ and injection flow rate was 20 cm^3 . s 1. And a molded specimen with a smooth surface, uniform microstructure could be achieved under the optimized condition. The density of molded specimens increased with increase of injection pressure, but decreased with increase of injection temperature, and the density increased first and decreased afterwards when the iniection flow rate increased.

  19. Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.C.; Mao, Y.F.; Li, Y.L.; Li, J.J.; Yuan, M. [Key Laboratory of Low Di-mensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Faculty of Material and Optical-Electronic Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Lin, J.G., E-mail: lin_j_g@xtu.edu.cn [Key Laboratory of Low Di-mensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Faculty of Material and Optical-Electronic Physics, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2013-01-01

    The effect of ternary alloying elements (X=Ta, Fe, Zr, Mo, Sn and Si) on the microstructure, the mechanical properties and the superelasticity of Ti--22Nb-X alloys were investigated. The 1% addition of a ternary alloying element (X=Ta, Fe, Zr, Mo, Sn and Si) has a slight influence on the microstructure of the Ti-22Nb alloy. All the alloys after solution-treatment at 1073 K for 1.8 ks contain {beta} and {alpha} Double-Prime phases. The elements of Sn, Si, Fe and Ta with a high number of valence electrons or a small atomic size have a strong solid-solution strengthening effect to the {beta} phases in the alloys and the alloys with high Md{sup Macron} and low Bo{sup Macron} exhibit low elastic moduli. All the alloying elements improve the superelasticity of Ti-22Nb-X alloys. The elements, Fe, Mo, Sn and Si, which are with a high number of valence electrons and a small atomic size, strongly increase {sigma}{sub SIM} of the Ti-22Nb alloy.

  20. Effect of ternary alloying elements on microstructure and superelastictity of Ti–Nb alloys

    International Nuclear Information System (INIS)

    The effect of ternary alloying elements (X=Ta, Fe, Zr, Mo, Sn and Si) on the microstructure, the mechanical properties and the superelasticity of Ti–-22Nb–X alloys were investigated. The 1% addition of a ternary alloying element (X=Ta, Fe, Zr, Mo, Sn and Si) has a slight influence on the microstructure of the Ti–22Nb alloy. All the alloys after solution-treatment at 1073 K for 1.8 ks contain β and α″ phases. The elements of Sn, Si, Fe and Ta with a high number of valence electrons or a small atomic size have a strong solid–solution strengthening effect to the β phases in the alloys and the alloys with high Md¯ and low Bo¯ exhibit low elastic moduli. All the alloying elements improve the superelasticity of Ti–22Nb–X alloys. The elements, Fe, Mo, Sn and Si, which are with a high number of valence electrons and a small atomic size, strongly increase σSIM of the Ti–22Nb alloy.