WorldWideScience

Sample records for brazilian ultra high

  1. Bacillus cereus in Brazilian Ultra High Temperature milk Bacillus cereus em leite UHT brasileiro

    Directory of Open Access Journals (Sweden)

    Cristiana de Paula Pacheco-Sanchez

    2007-01-01

    Full Text Available Brazilian Ultra High Temperature (UHT milk consumption has increased during the last decade from 187 to 4,200 million liters. In the continuous UHT process, milk is submitted for 2-4 s to 130-150ºC, in a continuous flow system with immediate refrigeration and aseptical packing in hermetic packages. This research had the purpose to verify the incidence of B. cereus species from the B. cereus group, in UHT milk. In 1998 high indexes of these organisms were reported, reaching 34.14% of the analyzed samples. Beyond this fact, there was the need to establish methods and processes adjusted for correct identification of B. cereus. Thus, commercial sterility tests of 6,500 UHT milk packages were investigated in two assays, after ten days incubation at 37ºC and 7ºC to germinate all possible spores and/or to recuperate injured vegetative cells followed by pH measurement. Samples (1,300 packages each from five Brazilian UHT plants of whole UHT milk processed by direct steam injection, packaged in carton were investigated for the presence of Bacillus cereus through phenotypic and genetic (PCR tests. Values of pH were different for the samples, ranging between 6.57 and 6.73. After storage of the samples, only four packages with pH measurement below the lower limit of 6.5 were found and analyzed for the presence of B. cereus. This organism was not detected in any of the samples indicating that the five Brazilian UHT milk processors control pathogenic microorganisms and it can be said that the consumption of UHT milk does not present safety problems to consumers. Fourier Transform Infrared Spectroscopy (FTIR and PCR tests were efficient and must be adopted to confirm the biochemical series for B. cereus.O consumo de leite ultra-alta temperatura (UHT brasileiro aumentou, durante a última década, de 187 milhões de litros para 4,200 milhões de litros. No processo contínuo de leite UHT o leite é submetido por 2-4 seg a 130-150ºC, em sistemas de

  2. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  3. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  4. Impact of ultra-processed foods on micronutrient content in the Brazilian diet.

    Science.gov (United States)

    Louzada, Maria Laura da Costa; Martins, Ana Paula Bortoletto; Canella, Daniela Silva; Baraldi, Larissa Galastri; Levy, Renata Bertazzi; Claro, Rafael Moreira; Moubarac, Jean-Claude; Cannon, Geoffrey; Monteiro, Carlos Augusto

    2015-01-01

    OBJECTIVE To evaluate the impact of consuming ultra-processed foods on the micronutrient content of the Brazilian population's diet. METHODS This cross-sectional study was performed using data on individual food consumption from a module of the 2008-2009 Brazilian Household Budget Survey. A representative sample of the Brazilian population aged 10 years or over was assessed (n = 32,898). Food consumption data were collected through two 24-hour food records. Linear regression models were used to assess the association between the nutrient content of the diet and the quintiles of ultra-processed food consumption - crude and adjusted for family income per capita. RESULTS Mean daily energy intake per capita was 1,866 kcal, with 69.5% coming from natural or minimally processed foods, 9.0% from processed foods and 21.5% from ultra-processed foods. For sixteen out of the seventeen evaluated micronutrients, their content was lower in the fraction of the diet composed of ultra-processed foods compared with the fraction of the diet composed of natural or minimally processed foods. The content of 10 micronutrients in ultra-processed foods did not reach half the content level observed in the natural or minimally processed foods. The higher consumption of ultra-processed foods was inversely and significantly associated with the content of vitamins B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The reverse situation was only observed for calcium, thiamin and riboflavin. CONCLUSIONS The findings of this study highlight that reducing the consumption of ultra-processed foods is a natural way to promote healthy eating in Brazil and, therefore, is in line with the recommendations made by the Guia Alimentar para a População Brasileira (Dietary Guidelines for the Brazilian Population) to avoid these foods.

  5. Impact of ultra-processed foods on micronutrient content in the Brazilian diet

    Directory of Open Access Journals (Sweden)

    Maria Laura da Costa Louzada

    2015-01-01

    Full Text Available OBJECTIVE To evaluate the impact of consuming ultra-processed foods on the micronutrient content of the Brazilian population’s diet. METHODS This cross-sectional study was performed using data on individual food consumption from a module of the 2008-2009 Brazilian Household Budget Survey. A representative sample of the Brazilian population aged 10 years or over was assessed (n = 32,898. Food consumption data were collected through two 24-hour food records. Linear regression models were used to assess the association between the nutrient content of the diet and the quintiles of ultra-processed food consumption – crude and adjusted for family income per capita. RESULTS Mean daily energy intake per capita was 1,866 kcal, with 69.5% coming from natural or minimally processed foods, 9.0% from processed foods and 21.5% from ultra-processed foods. For sixteen out of the seventeen evaluated micronutrients, their content was lower in the fraction of the diet composed of ultra-processed foods compared with the fraction of the diet composed of natural or minimally processed foods. The content of 10 micronutrients in ultra-processed foods did not reach half the content level observed in the natural or minimally processed foods. The higher consumption of ultra-processed foods was inversely and significantly associated with the content of vitamins B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The reverse situation was only observed for calcium, thiamin and riboflavin. CONCLUSIONS The findings of this study highlight that reducing the consumption of ultra-processed foods is a natural way to promote healthy eating in Brazil and, therefore, is in line with the recommendations made by the Guia Alimentar para a População Brasileira (Dietary Guidelines for the Brazilian Population to avoid these foods.

  6. Impact of ultra-processed foods on micronutrient content in the Brazilian diet

    Science.gov (United States)

    Louzada, Maria Laura da Costa; Martins, Ana Paula Bortoletto; Canella, Daniela Silva; Baraldi, Larissa Galastri; Levy, Renata Bertazzi; Claro, Rafael Moreira; Moubarac, Jean-Claude; Cannon, Geoffrey; Monteiro, Carlos Augusto

    2015-01-01

    OBJECTIVE To evaluate the impact of consuming ultra-processed foods on the micronutrient content of the Brazilian population’s diet. METHODS This cross-sectional study was performed using data on individual food consumption from a module of the 2008-2009 Brazilian Household Budget Survey. A representative sample of the Brazilian population aged 10 years or over was assessed (n = 32,898). Food consumption data were collected through two 24-hour food records. Linear regression models were used to assess the association between the nutrient content of the diet and the quintiles of ultra-processed food consumption – crude and adjusted for family income per capita. RESULTS Mean daily energy intake per capita was 1,866 kcal, with 69.5% coming from natural or minimally processed foods, 9.0% from processed foods and 21.5% from ultra-processed foods. For sixteen out of the seventeen evaluated micronutrients, their content was lower in the fraction of the diet composed of ultra-processed foods compared with the fraction of the diet composed of natural or minimally processed foods. The content of 10 micronutrients in ultra-processed foods did not reach half the content level observed in the natural or minimally processed foods. The higher consumption of ultra-processed foods was inversely and significantly associated with the content of vitamins B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The reverse situation was only observed for calcium, thiamin and riboflavin. CONCLUSIONS The findings of this study highlight that reducing the consumption of ultra-processed foods is a natural way to promote healthy eating in Brazil and, therefore, is in line with the recommendations made by the Guia Alimentar para a População Brasileira (Dietary Guidelines for the Brazilian Population) to avoid these foods. PMID:26270019

  7. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  8. Ultra-Processed Food Products and Obesity in Brazilian Households (2008–2009)

    Science.gov (United States)

    Canella, Daniela Silva; Levy, Renata Bertazzi; Martins, Ana Paula Bortoletto; Claro, Rafael Moreira; Moubarac, Jean-Claude; Baraldi, Larissa Galastri; Cannon, Geoffrey; Monteiro, Carlos Augusto

    2014-01-01

    Background Production and consumption of industrially processed food and drink products have risen in parallel with the global increase in overweight and obesity and related chronic non-communicable diseases. The objective of this study was to analyze the relationship between household availability of processed and ultra-processed products and the prevalence of excess weight (overweight plus obesity) and obesity in Brazil. Methods The study was based on data from the 2008–2009 Household Budget Survey involving a probabilistic sample of 55,970 Brazilian households. The units of study were household aggregates (strata), geographically and socioeconomically homogeneous. Multiple linear regression models were used to assess the relationship between the availability of processed and ultra-processed products and the average of Body Mass Index (BMI) and the percentage of individuals with excess weight and obesity in the strata, controlling for potential confounders (socio-demographic characteristics, percentage of expenditure on eating out of home, and dietary energy other than that provided by processed and ultra-processed products). Predictive values for prevalence of excess weight and obesity were estimated according to quartiles of the household availability of dietary energy from processed and ultra-processed products. Results The mean contribution of processed and ultra-processed products to total dietary energy availability ranged from 15.4% (lower quartile) to 39.4% (upper quartile). Adjusted linear regression coefficients indicated that household availability of ultra-processed products was positively associated with both the average BMI and the prevalence of excess weight and obesity, whereas processed products were not associated with these outcomes. In addition, people in the upper quartile of household consumption of ultra-processed products, compared with those in the lower quartile, were 37% more likely to be obese. Conclusion Greater household

  9. Ultra-processed food products and obesity in Brazilian households (2008-2009.

    Directory of Open Access Journals (Sweden)

    Daniela Silva Canella

    Full Text Available BACKGROUND: Production and consumption of industrially processed food and drink products have risen in parallel with the global increase in overweight and obesity and related chronic non-communicable diseases. The objective of this study was to analyze the relationship between household availability of processed and ultra-processed products and the prevalence of excess weight (overweight plus obesity and obesity in Brazil. METHODS: The study was based on data from the 2008-2009 Household Budget Survey involving a probabilistic sample of 55,970 Brazilian households. The units of study were household aggregates (strata, geographically and socioeconomically homogeneous. Multiple linear regression models were used to assess the relationship between the availability of processed and ultra-processed products and the average of Body Mass Index (BMI and the percentage of individuals with excess weight and obesity in the strata, controlling for potential confounders (socio-demographic characteristics, percentage of expenditure on eating out of home, and dietary energy other than that provided by processed and ultra-processed products. Predictive values for prevalence of excess weight and obesity were estimated according to quartiles of the household availability of dietary energy from processed and ultra-processed products. RESULTS: The mean contribution of processed and ultra-processed products to total dietary energy availability ranged from 15.4% (lower quartile to 39.4% (upper quartile. Adjusted linear regression coefficients indicated that household availability of ultra-processed products was positively associated with both the average BMI and the prevalence of excess weight and obesity, whereas processed products were not associated with these outcomes. In addition, people in the upper quartile of household consumption of ultra-processed products, compared with those in the lower quartile, were 37% more likely to be obese. CONCLUSION: Greater

  10. ULTRA HIGH POWER TRANSMISSION LINE TECHNIQUES

    Science.gov (United States)

    The ultra-high power transmission line techniques including both failure mechanisms and component design are discussed. Failures resulting from...a waveguide. In view of the many advantages of the low loss mode in circular waveguide for ultra-high power levels, a mode transducer and a two...percent of the peak power of a standard rectangular wave guide. Water cooling is provided for high average power operation. Analysis of mode sup pression

  11. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut

  12. Multi-Scale Porous Ultra High Temperature Ceramics

    Science.gov (United States)

    2015-01-08

    Final 3. DATES COVERED (From - To) 28-Mar-2013 - 27-Sep-2015 4. TITLE AND SUBTITLE Multi-Scale Porous Ultra High Temperature Ceramics ...report summarizes the main outcomes of research to develop multi-scale porosity Ultra High Temperature Ceramic materials. Processing conditions were...flights. 15. SUBJECT TERMS Ultra High Temperature Ceramics , Colloidal Powder Processing, Multi-scale Porous Materials, Lattice Monte

  13. Cosmic absorption of ultra high energy particles

    Science.gov (United States)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  14. Springback analysis of ultra high strength steel

    Science.gov (United States)

    Tenma, Kenji; Kina, Futoshi; Suzuki, Wataru

    2013-12-01

    It is an inevitable trend in the automotive industry to apply more and more high strength steels and even ultra-high strength steels. Even though these materials are more difficult to process the development time of forming tools must be reduced. In order to keep the development time under control, simulation tools are used to verify the forming process in advance. At Aoi Machine Industry a project has been executed to accurately simulate springback of ultra-high strength steels in order to reduce the tool tryout time. In the first phase of the project the simulation settings were optimized based on B-Pillar model A made of Dual Phase 980. In the second phase, it was verified with B-Pillar model B whether these simulation settings were usable as general setting. Results showed that with the right settings it is very well possible to accurately simulate springback of ultra-high strength steels. In the third phase the project the stamping of a B-Pillar of Dual Phase 1180 was studied.

  15. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  16. Ultra High Temperature Ceramics for aerospace applications

    OpenAIRE

    Jankowiak, A.; Justin, J.F.

    2014-01-01

    Après relecture une erreur est apparue dans le document et doit être retiré; International audience; The Ultra High Temperature Ceramics (UHTCs) are of great interest for different engineering sectors and notably the aerospace industry. Indeed, hypersonic flights, re-entry vehicles, propulsion applications and so on, require new materials that can perform in oxidizing or corrosive atmospheres at temperatures higher than 2000°C and sometimes, for long life-time. To fulfil these requirements, U...

  17. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Sangeeta Hambir; J P Jog

    2000-06-01

    Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical resistance etc. It is used in shipbuilding, textile industries and also in biomedical applications. UHMWPE is processed by powder processing technique because of its high melt viscosity at the processing temperature. Powder processing technique involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  18. Analogies in high school Brazilian chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Rosária Justi

    2000-05-01

    Full Text Available This paper presents and discusses an analysis of the analogies presented by Brazilian chemistry textbooks for the medium level. The main aim of the analysis is to discuss whether such analogies can be said good teaching models. From the results, some aspects concerning with teachers' role are discussed. Finally, some new research questions are emphasised.

  19. Do ultra-orphan medicinal products warrant ultra-high prices? A review

    Directory of Open Access Journals (Sweden)

    Picavet E

    2013-06-01

    Full Text Available Eline Picavet,1 David Cassiman,2 Steven Simoens1 1Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; 2Department of Hepatology, University Hospital Leuven, Leuven, Belgium Abstract: Ultra-orphan medicinal products (ultra-OMPs are intended for the treatment, prevention, or diagnosis of ultra-rare diseases, ie, life-threatening or chronically debilitating diseases that affect less than one per 50,000 individuals. Recently, high prices for ultra-OMPs have given rise to debate on the sustainability and justification of these prices. The aim of this article is to review the international scientific literature on the pricing of ultra-OMPs and to provide an overview of the current knowledge on the drivers of ultra-OMP pricing. The pricing process of ultra-OMPs is a complex and nontransparent issue. Evidence in the literature seems to indicate that ultra-OMPs are priced according to rarity and what the manufacturer believes the market will bear. Additionally, there appears to be a trend between the price of an ultra-OMP and the number of available alternatives. Patients, third-party payers, and pharmaceutical companies could benefit from more transparent pricing strategies. With a view to containing health care costs, it is likely that cost-sharing strategies, such as performance-based risk sharing arrangements, will become increasingly more important. However, it is vital that any measures for price control are consistent with the intended goals of the incentives to promote the development of new OMPs. Ideally, a balance must be struck between attaining affordable prices for ultra-OMPs and securing a realistic return on investment for the pharmaceutical industry. Keywords: ultra-orphan medicinal product, ultra-rare disease, pricing

  20. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M T

    2015-01-01

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  1. The Bendability of Ultra High strength Steels

    Science.gov (United States)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  2. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. Tau Air-Showers Signature of Ultra High Energy Neutrinos

    CERN Document Server

    Fargion, D

    2001-01-01

    The discover of Ultra High Energy Neutrino of astrophysical nature may be already reached. Indeed upward and horizontal tau Air-showers emerging from the Earth crust or mountain chains offer the best and most powerful signal of Ultra High Energy UHE neutrinos nu_tau}, bar\

  4. Tensile and Flexural Properties of Ultra High Toughness Cemontious Composite

    Institute of Scientific and Technical Information of China (English)

    LI Hedong; XU Shilang; Christopher K Y Leung

    2009-01-01

    The tensile and flexural properties of polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composite(UHTCC)were investigated.The composite,tested at the age of 14 d,28 d and 56 d,shows extremely remarkable pseudo strain hardening behavior,saturated mul-tiple cracking and ultra high ultimate strain capacity above 4%under uniaxial loading.Also,the cor-responding crack widths are controlled under 50 μm even at 56 days age.In the third point bending tests on thin plate specimens,the composite shows ultra high flexural ductility and multiple cracking on the tension surface.The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC.SEM observation on fracture surfaces provides in-direct evidence of optimal design for the composite.

  5. Preliminary evaluation of ultra-high pitch computed tomography enterography

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, Andrew D.; Horst, Nicole D.; Mayes, Nicholas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston (United States)], E-mail: andrewdhardie@gmail.com

    2012-12-15

    Background. CT enterography (CTE) is a valuable tool in the management of patients with inflammatory bowel disease. Reducing imaging time, reduced motion artifacts, and decreased radiation exposure are important goals for optimizing CTE examinations. Purpose. To assess the potential impact of new CT technology (ultra-high pitch CTE) for the ability to reduce scan time and also potentially reduce radiation exposure while maintaining image quality. Material and Methods. This retrospective study compared 13 patients who underwent ultra-high pitch CTE with 25 patients who underwent routine CTE on the same CT scanner with identical radiation emission settings. Total scan time and radiation exposure were recorded for each patient. Image quality was assessed by measurement of image noise and also qualitatively by two independent observers. Results. Total scan time was significantly lower for patients who underwent ultra-high pitch CTE (2.1 s {+-} 0.2) than by routine CTE (18.6 s {+-} 0.9) (P < 0.0001). The mean radiation exposure for ultra-high pitch CTE was also significantly lower (10.1 mGy {+-} 1.0) than routine CTE (15.8 mGy {+-} 4.5) (P < 0.0001). No significant difference in image noise was found between ultra-high pitch CTE (16.0 HU {+-} 2.5) and routine CTE (15.5 HU {+-} 3.7) (P > 0.74). There was also no significant difference in image quality noted by either of the two readers. Conclusion. Ultra-high pitch CTE can be performed more rapidly than standard CTE and offers the potential for radiation exposure reduction while maintaining image quality.

  6. Ultra-high-speed serial optical communications: Enabling technologies

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen;

    2008-01-01

    This paper will present recently identified and demonstrated key technologies for ultra-high-speed serial communications. Certain key components such as stabilised highly non-linear fibre switches, periodically poled Lithium Niobate devices and semiconductor optical amplifiers will be described w...

  7. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    Science.gov (United States)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  8. Ultra high performance liquid chromatography of seized drugs

    NARCIS (Netherlands)

    Lurie, I.S.

    2010-01-01

    The primary goal of this thesis is to investigate the use of ultra high performance liquid chromatography (UHPLC) for the analysis of seized drugs. This goal was largely achieved and significant progress was made in achieving improved separation and detection of drugs of forensic interest.

  9. On Anisotropy of Ultra-High Energy Cosmic-Rays

    CERN Document Server

    Kashti, Tamar

    2009-01-01

    We briefly summarize our study on anisotropy of Ultra-High Energy Cosmic-Rays (UHECRs), in which we define a statistics that measures the correlation between UHECRs and Large Scale Structure (LSS). We also comment here on recently published paper by Koers and Tinyakov that compared our statistics to improved KS statistics.

  10. Fact or friction: jumps at ultra high frequency

    NARCIS (Netherlands)

    K. Christensen; R. Oomen; M. Podolskij

    2011-01-01

    In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate d

  11. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der

    2007-01-01

    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice

  12. Determining neutrino absorption spectra at ultra-high energies

    NARCIS (Netherlands)

    Scholten, O.; van Vliet, A. R.

    2008-01-01

    A very efficient method for measuring the flux of ultra-high energy ( UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100 - 200 MHz which can be measured

  13. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  14. High Redshift Galaxies in the Hubble Ultra Deep Field

    CERN Document Server

    Hathi, Nimish P

    2008-01-01

    My dissertation presents results from three recent investigations in the Hubble Ultra Deep Field (HUDF) focusing on understanding structural and physical properties of high redshift galaxies. Here I summarize results from these studies. This thesis work was conducted at Arizona State University under the guidance of Prof. Rogier Windhorst and Prof. Sangeeta Malhotra.

  15. Nonresonant Metamaterials with an Ultra-High Permittivity

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Yang; CHEN Qi; LI Lin-Cui; YANG Chun; LI Biao; ZHOU Bang-Hua; TANG Chuan-Xiang

    2011-01-01

    @@ A nonresonant structure composed of metal cut-wires for realization of metamaterials is proposed.This kind of metamaterial works at an ultra broad bandwidth with uniform permittivity.Theoretical analysis and numerical simulations are carried out to study this inclusion and expression for the effective permittivity is given.Several methods are studied to enhance the permittivity and a nonresonant metamaterial with an ultra-high permittivity is obtained.A demonstration shows that the permittivity of this metamaterial can be as high as 145.%A nonresonant structure composed of metal cut-wires for realization of metamaterials is proposed. This kind of metamaterial works at an ultra broad bandwidth with uniform permittivity. Theoretical analysis and numerical simulations are carried out to study this inclusion and expression for the effective permittivity is given. Several methods are studied to enhance the permittivity and a nonresonant metamaterial with an ultra-high permittivity is obtained. A demonstration shows that the permittivity of this metamaterial can be as high as 145.

  16. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  17. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  18. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    Akira Hasegawa

    2001-11-01

    Multi-terabit/s, ultra-high speed optical transmissions over several thousands kilometers on fibers are becoming a reality. Most use RZ (Return to Zero) format in dispersion-managed fibers. This format is the only stable waveform in the presence of fiber Kerr nonlinearity and dispersion in all optical transmission lines with loss compensated by periodic amplifications. The nonlinear Schrödinger equation assisted by the split step numerical solutions is commonly used as the master equation to describe the information transfer in optical fibers. All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  19. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.;

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbed....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press.......The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds...

  20. Elastic diffractive scattering of nucleons at ultra-high energies

    Energy Technology Data Exchange (ETDEWEB)

    Godizov, A.A., E-mail: anton.godizov@gmail.com

    2014-07-30

    A simple Regge-eikonal model with the eikonal represented as a single-reggeon-exchange term is applied to description of the nucleon–nucleon elastic diffractive scattering at ultra-high energies. The range of validity of the proposed approximation is discussed. The model predictions for the proton–proton cross-sections at the collision energy 14 TeV are given.

  1. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  2. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  3. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  4. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  5. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  6. Searching for ultra-high energy cosmic rays with smartphones

    Science.gov (United States)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  7. Ultra-compact Marx-type high-voltage generator

    Science.gov (United States)

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  8. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  9. Preparation for Ultra High Pure Indium Metal for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Shashwat V. Joshi

    2014-11-01

    Full Text Available Ultra high pure Indium metal is extensively used in optoelectronic devices. Indium and its alloys become potential candidates in aerospace, defense and communication sectors. Purification of Indium has been done by Instrolec-200 Refiner followed by Directional Melting/ Freezing and Solidification Systems. Major targeted impurities are Metallic impurities Ag, Al, As, Bi, Ca, Cu, Fe, Ga, Ge, Mg, Pb, Sb, Si, Sn, and Zn. Purified Indium is characterized by analytical techniques Inductively Coupled Plasma- Optical Emission Spectrophotometry and Inductively Coupled Plasma- Mass Spectrometry.

  10. Design of Ultra-High Temperature Ceramics for Improved Performance

    Science.gov (United States)

    2009-02-28

    Hilmas, S. Zhu, J. Ridge, D.G. Fletcher, CO. Asma , O. Chazot, and J. Thomel, "Oxidation of ZrB2-SiC Ultra-High Temperature Ceramic Composites in...American Ceramic Society, elected September 2007 3. Univ. of New Mexico School of Engineering Distinguished Young Alumnus, October 2006 4. Faculty...Verona, Italy. 4. J. Marschall, D.A. Pejakovi, W.G. Fahrenholtz, G.E. Hilmas, S. Zhu, J. Ridge, D.G. Fletcher, CO. Asma , O. Chazot, and J. Thomel

  11. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    34Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries," ACS Nano, vol. 4, pp. 6121- 6131...2010/10/26 2010. [2] S. L. Chou, et al., "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0170 TR-2013-0170 ULTRA HIGH ENERGY DENSITY CATHODES WITH CARBON NANOTUBES Brian J. Landi, et al. Rochester

  12. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  13. The Lamb Shift and Ultra High Energy Cosmic Rays

    CERN Document Server

    Xue, S S

    2002-01-01

    On the analogy with the Lamb shift, we study the vacuum effects that a proton interacts with virtual particles when it travels through the vacuum. We find that a moving proton is accelerated by gaining the zero-point energy from the vacuum (~10^{-5} eV/cm). Such an effect possibly accounts for the mysterious origin and spectrum of ultra high-energy cosmic ray events above 10^{20}eV, and explains the puzzle why the GZK cutoff is absent. The candidates of these events could be protons from early Universe.

  14. Ultra High Energy Comic Rays in the Cosmic Microwave Background

    CERN Document Server

    Hwang, W-Y Pauchy

    2011-01-01

    We consider the propagation of ultra high energy cosmic rays (UHECR), for energies greater than E > 10^{14} eV but less than E < 10^{26} eV, in the cosmic medium of the Cosmic Microwave Background (CMB). We find that the CMB plays a pivot role in this energy range. As example, the observed "knee(s)" and the "ankle" could be understood in reasonable terms. What we may observe at energy near 10^{25} eV (W^\\pm bursts or Z^0 bursts) is also briefly discussed.

  15. TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2013-12-01

    Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.

  16. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  17. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  18. Ultra High Energy Electrons Powered by Pulsar Rotation

    CERN Document Server

    Mahajan, Swadesh; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration to ultra high energies, driven by the rotational slow down of a pulsar (Crab pulsar, for example), is explored. The rotation, through the time dependent centrifugal force, can very efficiently excite unstable Langmuir waves in the e-p plasma of the star magnetosphere via a parametric process. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV ($\\sim 100$ TeV) and even PeV energy domain. It is expected that the proposed mechanism may, partially, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  19. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kim, Sang Baik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  20. Ultra High Energy Neutrino Signature in Top-Down Scenario

    CERN Document Server

    Aloisio, R

    2006-01-01

    Neutrinos are the best candidates to test the extreme Universe and ideas beyond the Standard Model of particle Physics. Once produced, neutrinos do not suffer any kind of attenuation by intervening radiation fields like the Cosmic Microwave Background and are not affected by magnetic fields. In this sense neutrinos are useful messengers from the far and young Universe. In the present paper we will discuss a particular class of sources of Ultra High Energy Cosmic Rays introduced to explain the possible excess of events with energy larger than the Graisen-Zatsepin-Kuzmin cut-off. These sources, collectively called top-down, share a common feature: UHE particles are produced in the decay or annihilation of superheavy, exotic, particles. As we will review in the present paper, the largest fraction of Ultra High Energy particles produced in the top-down scenario are neutrinos. The study of these radiation offers us a unique opportunity to test the exotic mechanisms of the top-down scenario.

  1. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  2. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  3. An ultra-low noise, high-voltage piezo driver

    CERN Document Server

    Pisenti, N C; Reschovsky, B J; Barker, D S; Campbell, G K

    2016-01-01

    We present an ultra-low noise, high-voltage driver suited for use with piezoelectric actuators and other low-current applications. The architecture uses a flyback switching regulator to generate up to 250V in our current design, with an output of 1 kV or more possible with small modifications. A high slew-rate op-amp suppresses the residual switching noise, yielding a total RMS noise of $\\approx 100\\mu$V (1 Hz--100 kHz). A low-voltage ($\\pm 10$V), high bandwidth signal can be summed with unity gain directly onto the output, making the driver well-suited for closed-loop feedback applications. Digital control enables both repeatable setpoints and sophisticated control logic, and the circuit consumes less than 150mA at $\\pm 15$V.

  4. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  5. Physicochemical features of ultra-high viscosity alginates.

    Science.gov (United States)

    Storz, Henning; Müller, Kilian J; Ehrhart, Friederike; Gómez, Ivan; Shirley, Stephen G; Gessner, Petra; Zimmermann, Gertraud; Weyand, Esther; Sukhorukov, Vladimir L; Forst, Thomas; Weber, Matthias M; Zimmermann, Heiko; Kulicke, Werner-Michael; Zimmermann, Ulrich

    2009-05-26

    The physicochemical characteristics of the ultra-high viscosity and highly biocompatible alginates extracted from Lessonia nigrescens (UHV(N)) and Lessonia trabeculata (UHV(T)) were analyzed. Fluorescence and (1)H NMR spectroscopies, viscometry, and multi-angle light scattering (MALS) were used for elucidation of the chemical structure, molar mass, and coil size. The sequential structures from NMR spectroscopy showed high guluronate content for UHV(T), but low for UHV(N). Intrinsic viscosity [eta] measurements exhibited unusual high values (up to 2750 mL/g), whereas [eta] of a commercial alginate was only about 970 mL/g. MALS batch measurements of the UHV-alginates yielded ultra-high values of the weight average molar mass (M(w) up to 1.1x10(6) g/mol) and of the z-average gyration radius (R(G)(z) up to 191 nm). The M(w) and R(G)(z) distributions of UHV-alginates and of ultrasonically degraded fractions were determined using size exclusion chromatography combined with MALS and asymmetrical flow-field-flow fractionation. The M(w) dependency of [eta] and R(G)(z) could be described by [eta]=0.059xM(w)(0.78) and R(G)(z)=0.103xM(w)(x). (UHV(N): x=0.52; UHV(T): x=0.53) indicating that the monomer composition has no effect on coil expansion. Therefore, the equations can be used to calculate M(w) and R(G)(z) values of UHV(T)- and UHV(N)-alginate mixtures as used in immunoisolation. Furthermore, the simple and inexpensive capillary viscometry can be used for real-time validation of the extraction and purification process of the UHV-alginates.

  6. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  7. Extragalactic Propagation of Ultra-High Energy Cosmic Rays

    CERN Document Server

    Kuempel, Daniel

    2014-01-01

    More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energies (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic particles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.

  8. High-brightness ultra-cold metastable neon-beam

    CERN Document Server

    Shimizu, Fujio

    2015-01-01

    This paper presents detailed characteristics of an ultra-cold bright metastable neon atomic beam which we have been using for atom-interferometric applications. The basis of the device is an atomic beam released from a magneto-optical trap (MOT) which is operated with a high intensity trapping laser, high magnetic quadrupole field, and large laser detuining. Mainly due to the complex structure of three dimensional magnetic field and laser beams, a bright small spot of atoms is formed near the center of the quadrupole magnetic field under an appropriate operating condition. We obtained the minimum trap diameter of 50 micron meter, the atomic density nearly 10^{13}cm^{-3}, and the atomic temperature slightly less than the Doppler limited temperature of 200 micro-K. By releasing trapped atoms we obtained an bright cold atomic beam which is not far from the collision limited atomic density.

  9. Projects for ultra-high-energy circular colliders at CERN

    Science.gov (United States)

    Bogomyagkov, A. V.; Koop, I. A.; Levichev, E. B.; Piminov, P. A.; Sinyatkin, S. V.; Shatilov, D. N.; Benedict, M.; Oide, K.; Zimmermann, F.

    2016-12-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron-positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  10. Radio Detection of Ultra-High Energy Cosmic Rays

    CERN Document Server

    Falcke, Heino

    2008-01-01

    The radio technique for the detection of cosmic particles has seen a major revival in recent years. New and planned experiments in the lab and the field, such as GLUE, Anita, LUNASKA, Codalema, LOPES as well as sophisticated Monte Carlo experiments have produced a wealth of new information and I review here briefly some of the main results with the main focus on air showers. Radio emission of ultra-high energy cosmic particles offers a number of interesting advantages. Since radio waves suffer no attenuation, radio measurements allow the detection of very distant or highly inclined showers, can be used day and night, and provide a bolometric measure of the leptonic shower component. The LOPES experiment has detected the radio emission from cosmic rays, confirmed the geosynchrotron effect for extensive air showers, and provided a good calibration fomula to convert the radio signal into primary particle energy. Moreover, Monte Carlo simulations suggest that also the shower maximum and the particle composition c...

  11. Casing selection and correlation technology for ultra-deep, ultra-high pressure, high H{sub 2}S gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [CCDC Drilling and Production Technology Research Inst., Guanghan, Sichuan (China); Southwest Petroleum Univ., Beijing (China). State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Lin, Y.; Taihe, S. [Southwest Petroleum Univ., Beijing (China). State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Liao, P.; Shen, X. [Southwest Oil and Gas Co., Daxian (China). Northeast Sichuan Gas Field; Liu, H.; Zhao, H. [CCDC Drilling and Production Technology Research Inst., Guanghan, Sichuan (China)

    2010-07-01

    This poster highlighted some economical and suitable methods of choosing well casings for ultra-deep, ultra-high pressure, ultra-high temperature wells where acid gas injection is used for enhanced recovery. In China's northern Sichuan province, such wells tend to be sour. Casing failures have occurred at well temperatures below 90 degrees C due to the severity of the sour environment and sulphide stress cracking (SSC) of carbon and low-alloy steels. The plastic creep of rock salt, gypsum and clay shale may create high external collapse pressure on the outside surface of the casing. Sulphur resistant casings, such as C110 are required to meet ultra-high pressure criteria of more than 100 MPa, and also to meet high sulphur resistance criteria. This poster outlined an economical and suitable method of string design combined with sulphur resistance packer completion technology to address this current problem. tabs., figs.

  12. High-speed spinning of ultra-high molecular weight polyethylene fibres

    NARCIS (Netherlands)

    Roukema, Mees

    1991-01-01

    This thesis deals with the spinning of ultra-high molecular weight polyethylene ( UHMWPE ) fibres at high speeds, and the effects of the spinning parameters on the fibre properties. Polyethylene fibres with strengths up to 7.2 GPa can be produced in a gel-spinning and hot-drawing procedure. In this

  13. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ...] [FR Doc No: 2013-28337] DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2009-0166... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High..., recreational boating, or other maritime activities. The use of HF (50 to 999 kHz) and UHF (1,000 kHz and...

  14. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  15. Mandala Networks: ultra-small-world and highly sparse graphs

    Science.gov (United States)

    Sampaio Filho, Cesar I. N.; Moreira, André A.; Andrade, Roberto F. S.; Herrmann, Hans J.; Andrade, José S.

    2015-03-01

    The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks.

  16. Ultra high energy cosmic rays: the highest energy frontier

    CERN Document Server

    Neto, João R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  17. Ultra-high-Q nanobeam cavity design in Diamond

    CERN Document Server

    Bayn, Igal; Kalish, Rafi

    2010-01-01

    A novel nanobeam design with a triangular cross-section is proposed. This design makes possible implementing nanocavities with improved optical properties. The dependence of a diamond-based cavity quality factor Q and mode volume Vm on geometry parameter space are studied via 3D FDTD computations. An ultra-high-Q cavity with Q\\aprox 2.51 \\times 10^6 and Vm=1.06 \\times ({\\lambda}/n)^3 is predicted. The mode preferential radiation is upward. The implications on the potential applications are discussed. The proposed nanobeam enables fabrication of the cavity without relying on a pre-existing free-standing diamond membrane as required in most previous approaches.

  18. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Dept. of Phys. and Astron., Univ. of Bonn (Germany); Dept. of Phys. and Astr., Univ. of Alabama, Tuscaloosa, AL (United States); Dept. of Phys., Univ. of Alabama at Huntsville, AL (United States); Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Becker, Julia K. [Institution foer Fysik, Goeteborgs Univ. (Sweden); Dept. of Phys., Univ. Dortmund, Dortmund (Germany); Caramete, Laurentiu [MPI for Radioastronomy, Bonn (Germany); Institute for Space Studies, Bucharest (Romania); Curutiu, Alex [MPI for Radioastronomy, Bonn (Germany); Engel, Ralph [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Falcke, Heino [Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen (Netherlands); ASTRON, Dwingeloo (Netherlands); Gergely, Laszlo A. [Dept. Appl. Sci., London South Bank University (United Kingdom); Dept. of Theoret. and Exp. Phys., Univ. of Szeged, Szeged (Hungary); Isar, P. Gina [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Institute for Space Studies, Bucharest (Romania); Maris, Ioana C. [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Meli, Athina [Physik. Inst. Univ. Erlangen-Nuernberg (Germany); Kampert, Karl-Heinz [Phys. Dept., Univ. Wuppertal (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States); Tascau, Oana [Phys. Dept., Univ. Wuppertal (Germany); Zier, Christian [MPI for Radioastronomy, Bonn (Germany); Raman Res. Inst., Bangalore (India)

    2009-05-15

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  19. Ultra High Energy Cosmic Rays from Compact Sources

    CERN Document Server

    Fodor, Z

    2001-01-01

    The clustering of ultra high energy (above 10^20 eV) cosmic rays (UHECR) suggests that they might be emitted by compact sources. Statistical analysis of Dubovsky et al. (astro-ph/0001317) estimated the source density. We extend their analysis to give also the confidence intervals for the number of sources using a.) no assumptions on the relationship between clustered and unclustered events; b.) nontrivial distributions for the source intensities and energies; c.) the energy dependence of the propagation. We determine the probability that a proton created at a distance r with energy E arrives at earth above a threshold E_c. The observed 14 UHECR events above 10^20 eV with one doublet gives for the source densities 6.43_-6.05^+136*10^-3 Mpc^-3 (on the 68% confidence level). We present detailed results for future experiments with larger UHECRs statistics.

  20. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Smitha Gopinath; R Ayashwarya; V Ramesh Kumar; Prabhat Ranjan Prem; A Rama Chandra Murthy; C K Madheswaran; R Nagesh Iyer

    2014-12-01

    This paper presents the results of an investigation carried out on Ultra High Strength Concrete (UHSC) panels subjected to low velocity projectile impact to assess impact resistance. UHSC panel of size 350 × 350 mm and thickness 15 mm is studied under drop weight impact loading for three different pre-determined drop heights ranging from 100 mm to 300 mm. The response of UHSC panel in terms of acceleration vs time is obtained experimentally. Numerical model has been developed to simulate the impact behaviour of UHSC panel. The Brittle cracking model is used to simulate the behaviour of UHSC panel under impact loading and to perform parametric studies by varying the volume fraction of steel fibres.

  1. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  2. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    Science.gov (United States)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  3. Ultra-high Burst Strength of CVD Graphene Membranes

    Science.gov (United States)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  4. Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared

    Science.gov (United States)

    Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.

  5. Achieving ultra-high temperatures with a resistive emitter array

    Science.gov (United States)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  6. Causality, renormalizability and ultra-high energy gravitational scattering

    Science.gov (United States)

    Hollowood, Timothy J.; Shore, Graham M.

    2016-05-01

    The amplitude { A }(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift {{{\\Theta }}}{{scat}}(\\hat{s}), where the single variable \\hat{s}={Gs}/{m}2{b}d-2 contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of {{{\\Theta }}}{{scat}}(\\hat{s}) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.

  7. Silicon-graphene conductive photodetector with ultra-high responsivity

    Science.gov (United States)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at ‑25 °C in our experiment.

  8. Nano-porous ultra-high specific surface ultrafine fibers

    Institute of Scientific and Technical Information of China (English)

    LI Xinsong; NIE Guangyu

    2004-01-01

    Nano-porous ultra-high specific surface ultrafine fibers are created by the method of "electrospinning-phase separation-leaching" (EPL) for the first time. First of all, polymer solutions of polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP) blends dissolved in co-solvent are electrospun to make ultrafine fibers when charged to high voltages. The incompatibility of PAN and PVP induces phase separation to form microdomains of PVP in the polymer blend ultrafine fibers. Then, PVP microdomains in the blend fibers are leached out in water, and porous PAN ultrafine fibers are obtained. Lastly, the surface and cross-section of the porous ultrafine fibers are observed in detail by field emission scanning electron microscope (FESEM), and the specific surface of the ultrafine fibers is measured by means of nitrogen absorption. With increasing the content of PVP, the specific surface area of the ultrafine fibers increases apparently. The specific surface area of the porous ultrafine fibers with the diameter of 2130 nm is more than 70 m2·g-1. The cross-section of the PAN porous ultrafine fibers after leaching of PVP microdomains from polymer blend fibers with the feed ratio of PAN/PVP of 10/20 shows the characteristic of porous structure with pore diameter of ca 30 nm according to FESEM photo.

  9. Silicon-graphene conductive photodetector with ultra-high responsivity

    Science.gov (United States)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at −25 °C in our experiment. PMID:28106084

  10. Nanoporous ultra-high specific surface inorganic fibres

    Science.gov (United States)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  11. Nanoporous ultra-high specific surface inorganic fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kanehata, Masaki [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Ding Bin [Fiber and Polymer Science, University of California, Davis, CA 95616 (United States); Shiratori, Seimei [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)

    2007-08-08

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m{sup 2} g{sup -1} and total pore volume of 0.66 cm{sup 3} g{sup -1}. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  12. Ultra High Energy Cosmic Rays & Super-heavy Dark Matter

    CERN Document Server

    Marzola, Luca

    2016-01-01

    We reanalyse the prospects for upcoming Ultra-High Energy Cosmic Ray experiments in connection with the phenomenology of Super-heavy Dark Matter. We identify a set of observables well suited to reveal a possible anisotropy in the High Energy Cosmic Ray flux induced by the decays of these particles, and quantify their performance via Monte Carlo simulations that mimic the outcome of near-future and next-generation experiments. The spherical and circular dipoles are able to tell isotropic and anisotropic fluxes apart at a confidence level as large as $4\\sigma$ or $5\\sigma$, depending on the Dark Matter profile. The forward-to-backward flux ratio yields a comparable result for relatively large opening angles of about 40~deg, but it is less performing once a very large number of events is considered. We also find that an actual experiment employing these observables and collecting 300~events at 60~EeV would have a $50\\%$ chance of excluding isotropy against Super-heavy Dark Matter at a significance of at least $3...

  13. Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons

    CERN Document Server

    Verzelen, Nicolas

    2010-01-01

    Consider the standard linear regression model $Y=X\\theta+\\epsilon$, where $Y\\in R^n$ is a response vector, $X\\in R^{n\\times p}$ is a design matrix, $\\theta\\in R^p$ is the unknown regression vector, and $\\epsilon\\sim N(0_p,\\sigma^2I_p)$ is a Gaussian noise. Numerous work have been devoted to building efficient estimators of $\\theta$ when $p$ is much larger than $n$. In such a situation, a classical approach amounts to assume that $\\theta$ is approximately sparse. This paper studies the minimax risks of estimation and testing over $k$-sparse vectors $\\theta$. These bounds shed light on the limitations due to high-dimensionality. The results encompass the problem of prediction (estimation of $X\\theta$), the inverse problem (estimation of $\\theta$) and linear testing (test of a linear hypothesis on $\\theta$). Interestingly, an elbow effect occurs when the number of variables $p$ becomes larger than $k\\exp(n/k)$. Indeed, the minimax risks and hypothesis separation distances blow up in this ultra-high dimensional s...

  14. Simulation chain for acoustic ultra-high energy neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Neff, M., E-mail: max.neff@physik.uni-erlangen.de [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anton, G.; Enzenhöfer, A.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2013-10-11

    Acoustic neutrino detection is a promising approach for large-scale ultra-high energy neutrino detectors in water. In this paper, a Monte Carlo simulation chain for acoustic neutrino detection devices in water is presented. It is designed within the SeaTray/IceTray software framework. Its modular architecture is highly flexible and makes it easy to adapt to different environmental conditions, detector geometries, and hardware. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and the propagation to the sensors within the detector. In this phase of the development, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, similar to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it can be used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic source reconstruction algorithms are integrated. In this contribution, an overview of the design and capabilities of the simulation chain will be given, and some applications and preliminary studies will be presented.

  15. On the acceleration of Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Fraschetti, Federico

    2008-01-01

    Ultra High Energy Cosmic Rays (UHECRs) hit the Earth's atmosphere with energies exceeding $10^{18}$ eV. This is the same energy as carried by a tennis ball moving at 100 km/h, but concentrated on a sub-atomic particle. UHECRs are so rare (the flux of particles with $E > 10^{20}$ eV is 0.5/km$^2$/century) that only a few such particles have been detected over the past 50 years. Recently, the HiRes and Auger experiments have reported the discovery of a high-energy cut-off in the UHECR spectrum, and Auger has found an apparent clustering of the highest energy events towards nearby active galactic nuclei. Consensus is building that the highest energy particles are accelerated within the radio-bright lobes of these objects, but it remains unclear how this actually happens, and whether the cut-off is due to propagation effects or reflects an intrinsically physical limitation of the acceleration process. The low event statistics presently allows for many different plausible models; nevertheless observations are begi...

  16. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    Science.gov (United States)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  17. Simulation Chain for Acoustic Ultra-high Energy Neutrino Detectors

    CERN Document Server

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; 10.1016/j.nima.2012.11.147

    2013-01-01

    Acoustic neutrino detection is a promising approach for large-scale ultra-high energy neutrino detectors in water. In this article, a Monte Carlo simulation chain for acoustic neutrino detection devices in water is presented. It is designed within the SeaTray/IceTray software framework. Its modular architecture is highly flexible and makes it easy to adapt to different environmental conditions, detector geometries, and hardware. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and the propagation to the sensors within the detector. In this phase of the development, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, similar to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it can be used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic so...

  18. Generalized OFDM (GOFDM) for ultra-high-speed optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Arabaci, Murat; Xu, Lei; Wang, Ting

    2011-03-28

    We propose a coded N-dimensional modulation scheme suitable for ultra-high-speed serial optical transport. The proposed scheme can be considered as a generalization of OFDM, and hence, we call it as generalized OFDM (GOFDM). In this scheme, the orthogonal subcarriers are used as basis functions and the signal constellation points are defined over this N-dimensional linear space. To facilitate implementation, we propose using N-dimensional pulse-amplitude modulation (ND-PAM) as the signal constellation diagram, which is obtained as the N-ary Cartesian product of one-dimensional PAM. In conventional OFDM, QAM/PSK signal constellation points are transmitted over orthogonal subcarriers and then they are multiplexed together in an OFDM stream. Individual subcarriers, therefore, carry N parallel QAM/PSK streams. In the proposed GOFDM scheme instead, an N-dimensional signal constellation point is transmitted over all N subcarriers simultaneously. When some of the subcarriers are severely affected by channel impairments, the constellation points carried by those subcarriers may be lost in the conventional OFDM. In comparison, under such conditions, the overall signal constellation point will face only small distortion in GOFDM and it can be recovered successfully using the information on the other high fidelity subcarriers. Furthermore, because the channel capacity is a logarithmic function of signal-to-noise ratio but a linear function of the number of dimensions, the spectral efficiency of optical transmission systems can be improved with GOFDM.

  19. Causality, Renormalizability and Ultra-High Energy Gravitational Scattering

    CERN Document Server

    Hollowood, Timothy J

    2016-01-01

    The amplitude A(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Theta_scat(hat_s},, where the single variable hat_s = Gs/m^2 b^(d-2) contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Theta_scat(hat_s) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly disc...

  20. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  1. Ultra High Performance, Highly Reliable, Numeric Intensive Processors and Systems

    Science.gov (United States)

    1989-10-01

    to design high-performance DSP/IP systems using either off-the-shelf components or application specific integrated circuitry [ ASIC ]. -9 - HSDAL . ARO...are the chirp-z transform ( CZT ) [13] and (Rader’s) Prime Factor Transform (PFT) [11]. The RNS/ CZT is being studied by a group a MITRE [14] and is given...PFT RNS/CRNS/QRNS implementation has dynamic range requirements on the order of NQ2 (vs NQ4 for the CZT and much higher for the FFT). Therefore, the

  2. Prospects for detecting ultra-high-energy particles with FAST

    CERN Document Server

    James, C W; Ekers, R D

    2016-01-01

    The origin of the highest-energy particles in nature, the ultra-high-energy (UHE) cosmic rays, is still unknown. In order to resolve this mystery, very large detectors are required to probe the low flux of these particles - or to detect the as-yet unobserved flux of UHE neutrinos predicted from their interactions. The `lunar Askaryan technique' is a method to do both. When energetic particles interact in a dense medium, the Askaryan effect produces intense coherent pulses of radiation in the MHz--GHz range. By using radio telescopes to observe the Moon and look for nanosecond pulses, the entire visible lunar surface ($20$ million km$^2$) can be used as an UHE particle detector. A large effective area over a broad bandwidth is the primary telescope requirement for lunar observations, which makes large single-aperture instruments such as the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) well-suited to the technique. In this contribution, we describe the lunar Askaryan technique and its unique obs...

  3. Ultra Fast Shutter Driven by Pulsed High Current

    Institute of Scientific and Technical Information of China (English)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90kA to140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities.

  4. Ultra high energy cosmic rays: the highest energy frontier

    Science.gov (United States)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  5. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  6. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE composites

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Ultra high molecular weight polyethylene (UHMWPE fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE fibre reinforced composites were characterized using the End Notch Flexural (ENF test. Critical strain energy release rate was obtained from the load – deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  7. Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    CAI Xiangrong; XU Shilang

    2011-01-01

    Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite(UHTCC)in terms of strength and toughness and to obtain its stress-strain relationships.The compressive strength investigated ranges from 30 MPa to 60 MPa.Complete stress-strain curves were directly obtained,and the strength indexes,including uniaxial compressive strength,compressive strain at peak stress,elastic modulus and Poisson's ratio,were calculated.The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes.Three dimensionless toughness indexes were calculated,which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material.Moreover,two new toughness indexes,which were named as post-crack deformation energy and equivalent compressive strength,were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete.The failure mode was also given.The study production provides material characteristics for the practical engineering application of UHTCC.

  8. Radiation crosslinking of ultra high molecular weigh polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    The effect of {gamma}-irradiation on the thermal and mechanical properties of ultra high molecular weight polyethylene (UHMWPE) used in orthopedic implants was investigated. UHMWPE was recrystallized with different cooling conditions for the purpose of enhancing the crosslinking extent of the polymer after {gamma}-irradiation. UHMWPE was irradiated with gamma ray to a dosage of 10 kGy to 500 kGy in air and nitrogen atmosphere. Differential scanning calorimetry, tensile characterization, creep deformity and wear were examined to determine the mechanical properties of the irradiated UHMWPE specimens. The crystallinity of the irradiated samples was increased with irradiation dose. The irradiated UHMWPE after recrystallization in a quenching condition had a higher crosslinking extent compared with the irradiated UHMWPE after slowly cooling. The irradiated UHMWPE after quenching had a lower wear rate than the irradiated UHMWPE after recrystallization in a slowly cooling condition, and the wear rate of UHMWPE decreased with irradiation dose up to 250kGy, which showed about 40% of the wear rate of nonirradiated UHMWPE.

  9. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  10. Ultra-high vacuum in superconducting accelerator rings

    Science.gov (United States)

    Bazanov, A. M.; Butenko, A. V.; Galimov, A. R.; Lugovnin, A. K.; Smirnov, A. V.

    2016-12-01

    Achieving the ultra-high vacuum (UHV) in the collider and booster of the NICA project is one of the main challenges when creating this device. It determines the need for a serious approach to this issue and conducting research in this direction. First, it is necessary to understand the effect of the various components of the vacuum systems on the degree of vacuum. It is also necessary to carry out studies of pumping devices for producing the required vacuum (10-9 Pa) in the beam chamber and choose the most optimal pumping scheme. At the same time, it is necessary to figure out how various operations are carried out with the vacuum chamber: preparation of vacuum surfaces, letting in the atmosphere, and warming the chamber after closing the influence on the degree of vacuum and the composition of the residual gas. The temperature may vary from room temperature to liquid helium temperature due to the difficulty of keeping the beam-chamber walls at a constant temperature, including the inner components. This complicates the processes taking place within it. Additional complexity arises due the heating of the chamber walls by various processes during the operation of the accelerator (for example, cycling the magnetic field).

  11. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  12. On the prospects of ultra-high energy cosmic rays detection by high altitude antennas

    CERN Document Server

    Motloch, P; Privitera, P

    2013-01-01

    Radio emission from Ultra-High Energy Cosmic Rays (UHECR) showers detected after specular reflection off the Antarctic ice surface has been recently demonstrated by the ANITA balloon-borne experiment. An antenna observing a large area of ice or water from a mountaintop, a balloon or a satellite may be competitive with more conventional techniques. We present an estimate of the exposure of a high altitude antenna, which provides insight on the prospects of this technique for UHECR detection.

  13. Ultra-high Density SNParray in Neuroblastoma Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Inge M. Ambros

    2014-08-01

    Full Text Available Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e. amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses: so called segmental chromosomal aberrations, i.e. gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as chromothripsis are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism (SNP arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.

  14. Ultra thin films of gadolinium deposited by evaporation in ultra high vacuum conditions: Composition, growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Sancho, O.A.; Castro-Gonzalez, D.; Araya-Pochet, J.A. [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Vargas-Castro, W.E., E-mail: william.vargascastro@ucr.ac.cr [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica)

    2011-02-01

    Ultra-thin gadolinium films with thicknesses between 8 and 101 A were deposited on AT-cut crystalline quartz substrates under ultra high vacuum conditions, and subsequently subjected to composition and morphologic characterization through X-ray photo-spectroscopy analysis and atomic force microscopy. Oxygen contamination is found on the samples, and its amount is estimated in terms of the thickness of an oxygen layer over the gadolinium films after subtracting the contribution to the XPS spectra of the underlying background. Atomic force microscope pictures provide evidence of having metal island films, with two growing regimes: the Volmer-Weber mode for the thinner films considered and the Stranski-Krastanov growing mode for the thicker ones. From evaluation of the sticking coefficient, the shape of the islands is approximated in terms of oblate spheroid caps and variation of the contact angle with film mass thickness is reported.

  15. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  16. On the Origin of Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  17. Ultra-high field magnets for whole-body MRI

    Science.gov (United States)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  18. Brazilian actions to promote physiology learning and teaching in secondary and high schools.

    Science.gov (United States)

    Mello-Carpes, Pâmela B; Granjeiro, Érica Maria; Montrezor, Luís Henrique; Rocha, Maria José Alves

    2016-06-01

    Members of the Education Committee of the Brazilian Society of Physiology have developed multiple outreach models to improve the appreciation of science and physiology at the precollege level. The members of this committee act in concert with important Brazilian governmental strategies to promote training of undergraduate students in the teaching environment of secondary and high schools. One of these governmental strategies, the Programa Institucional de Bolsas de Iniciação à Docência, a Brazilian public policy of teaching enhancement implemented by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) since 2007, represents a well-articulated public policy that can promote the partnership between University and Schools (7). Furthermore, the Program "Novos Talentos" (New Talents)/CAPES/Ministry of Education is another government initiative to bring together university and high-level technical training with the reality of Brazilian schools. Linked to the New Talents Program, in partnership with the British Council/Newton Fund, CAPES recently promoted the visit of some university professors that coordinate New Talents projects to formal and informal educational science spaces in the United Kingdom (Science, Technology, Engineering, and Mathematics, Brazil-United Kingdom International Cooperation Program) to qualify the actions developed in this area in Brazil, and one of us had the opportunity to participate with this.

  19. Intervention in individuals at ultra high risk for psychosis: a review and future directions

    DEFF Research Database (Denmark)

    McGorry, Patrick D; Nelson, Barnaby; Amminger, G Paul;

    2009-01-01

    that neuroprotective agents, such as essential fatty acids, may be a suitable form of intervention for the ultra-high-risk phase of psychotic disorders, with a positive risk-benefit balance. Ethical aspects have become more salient given the recently observed declining transition rate in ultra-high-risk samples. We......OBJECTIVE: Over the last 15 years, a focus on early intervention in psychotic disorders has emerged. Initially, the early psychosis movement focused on timely recognition and phase-specific treatment of first-episode psychosis. However, early psychosis researchers suspected that pushing the point...... of intervention even further back to the prodromal phase of psychotic disorders may result in even better outcomes. This article reviews intervention research in the ultra-high-risk phase of psychotic disorders. DATA SOURCES: A literature search of intervention trials with ultra-high-risk cohorts published after...

  20. Intervention in individuals at ultra-high risk for psychosis: a review and future directions

    DEFF Research Database (Denmark)

    McGorry, Patrick D; Nelson, Barnaby; Amminger, G Paul;

    2009-01-01

    that neuroprotective agents, such as essential fatty acids, may be a suitable form of intervention for the ultra-high-risk phase of psychotic disorders, with a positive risk-benefit balance. Ethical aspects have become more salient given the recently observed declining transition rate in ultra-high-risk samples. We......OBJECTIVE: Over the last 15 years, a focus on early intervention in psychotic disorders has emerged. Initially, the early psychosis movement focused on timely recognition and phase-specific treatment of first-episode psychosis. However, early psychosis researchers suspected that pushing the point...... of intervention even further back to the prodromal phase of psychotic disorders may result in even better outcomes. This article reviews intervention research in the ultra-high-risk phase of psychotic disorders. DATA SOURCES: A literature search of intervention trials with ultra-high-risk cohorts published after...

  1. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  2. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    Energy Technology Data Exchange (ETDEWEB)

    T. F. Patterson

    2004-03-15

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  3. Ultra-compact, High Resolution, LADAR system for 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop an innovative, ultra-compact, high resolution, long range LADAR system to produce a 3D map of the exterior of any object in space such as...

  4. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen;

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  5. An Ultra-Compact High-Definition Hyperspectral Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a powerful Ultra-Compact High-Definition Hyperspectral Imaging System (UC-HDHIS) for UAV deployment. UC-HDHIS concurrently acquires pushbroom...

  6. Premorbid adjustment in individuals at ultra-high risk for developing psychosis

    DEFF Research Database (Denmark)

    Dannevang, Anders; Randers, Lasse; Gondan, Matthias

    2016-01-01

    Objective: Deterioration in premorbid adjustment is related to ultra-high risk (UHR) individuals developing psychosis, but it has not been examined how UHR individuals’ development differs compared to healthy controls. This study investigates differences in premorbid adjustment between UHR...

  7. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  8. Ultra-high energy cosmic rays threshold in Randers-Finsler space

    Institute of Scientific and Technical Information of China (English)

    CHANG Zhe; LI Xin

    2009-01-01

    Kinematics in Finsler space is used to study the propagation of ultra high energy cosmic rays particles through the cosmic microwave background radiation. We find that the GZK threshold is lifted dramatically in Randers-Finsler space. A tiny deformation of spacetime from Minkowskian to Finslerian allows more ultra-high energy cosmic rays particles to arrive at the earth. It is suggested that the lower bound of particle mass is related with the negative second invariant speed in Randers-Finsler space.

  9. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  10. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT Si

  11. Gas and RRR Distribution in High Purity Niobium EB Welded in Ultra-High Vacuum.

    OpenAIRE

    Anakhov, S.; Singer, X.; W. Singer; Wen, H.

    2006-01-01

    Electron beam (EB) welding in UHV (ultra-high vacuum, 10(-5) divided by 10(-8) mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H-2, O-2, N-2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1 divided by 3...

  12. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    OpenAIRE

    2016-01-01

    ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot) on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of a...

  13. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  14. Health approaches in a widely adopted Brazilian high school biology textbook

    Directory of Open Access Journals (Sweden)

    Liziane Martins

    2012-05-01

    Full Text Available Considering the long tradition of discussing health in the Brazilian school curriculum, it is important to investigate how this topic is addressed by the textbooks, the main resource used by most schools in the country. In particular, it is relevant to verify if this content is presented in a manner that contributes to the development of the students as active and critical members of the society. We analyze how health is treated in the textbook Biology, by Laurence (2005, which has been the high school Biology textbook most chosen by public school teachers among those certified by the National Program for High School Textbooks (PNLEM/2007, sponsored by the Brazilian Ministry of Education (MEC. We used categorical content analysis techniques, involving the decomposition of the texts into units of analysis, the categories, which were built in this work through analogical regroupings, by using semantic criteria. In order to investigate the treatment given to health, we applied an analytical table to the units of recording, which consist of sentences, paragraphs, and sections of the textbook that discuss contents related to health and disease. This table systematizes eight health indicators, seeking to identify three health approaches: biomedical, behavioral, and socioecological. We found 267 units of recording in the textbook and, based on their analysis, it was possible to categorize the textbook as one in which the biomedical approach prevails. Our findings are consistent with other works that indicate the prevalence of this approach in Brazilian education, and Brazilian and international textbooks. Another important finding of the work is that the behavioral approach does not hold, at least for the analyzed textbook, as a view of health different from the biomedical and socioecological approaches. After all, when the book mentions behaviors and habits of life associated with health, it generally emphasizes biological dimensions, aligning with a

  15. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  16. A DFB Fiber Laser Sensor System with Ultra-High Resolution and Its Noise Analysis

    Institute of Scientific and Technical Information of China (English)

    Hao Xiao; Fang Li; Jun He; Yu-Liang Liu

    2008-01-01

    A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.

  17. High Prevalence and Onward Transmission of Non-Pandemic HIV-1 Subtype B Clades in Northern and Northeastern Brazilian Regions

    Science.gov (United States)

    Divino, Flavia; de Lima Guerra Corado, Andre; Gomes Naveca, Felipe; Stefani, Mariane M. A.; Bello, Gonzalo

    2016-01-01

    The Human immunodeficiency virus type-1 (HIV-1) epidemic in Brazil is mainly driven by the subtype B pandemic lineage (BPANDEMIC), while Caribbean non-pandemic subtype B clades (BCAR) seem to account for a very low fraction of HIV-infections in this country. The molecular characteristics of the HIV-1 subtype B strains disseminated in the Northern and Northeastern Brazilian regions, however, have not been explored so far. In this study, we estimate the prevalence of the HIV-1 BPANDEMIC and BCAR clades across different Brazilian regions and we reconstruct the spatiotemporal dynamics of dissemination of the major Brazilian BCAR clades. A total of 2,682 HIV-1 subtype B pol sequences collected from 21 different Brazilian states from the five country regions between 1998 and 2013 were analyzed. Maximum Likelihood phylogenetic analyses revealed that the BCAR strains reached 16 out 21 Brazilian states here analyzed. The BCAR clades comprise a low fraction (<10%) of subtype B infections in most Brazilian states analyzed, with exception of Roraima (41%), Amazonas (14%) and Maranhão (14%). Bayesian phylogeographic analyses indicate that BCAR strains originally from the Hispaniola and Trinidad and Tobago were introduced at multiple times into different states from all Brazilian regions and a few of those strains, probably introduced into Roraima, Maranhão and São Paulo between the late 1970s and the early 1980s, established secondary outbreaks in the Brazilian population. These results support that the HIV-1 subtype B epidemics in some Brazilian states from the Northern and Northeastern regions display a unique molecular pattern characterized by the high prevalence of BCAR lineages, which probably reflects a strong epidemiological link with the HIV-1 epidemics in the Caribbean region. PMID:27603317

  18. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  19. Is Ultra-High Reynolds Number Necessary for Comprehensive Log Scaling in a Turbulent Boundary Layer?

    CERN Document Server

    Dixit, Shivsai Ajit

    2015-01-01

    Experiments in an extraordinary turbulent boundary layer called the sink flow, displaying a perfect streamwise invariance, show a wide extent of logarithmic scaling for moments of streamwise velocity up to order 12, even at moderate Reynolds numbers. This is in striking contrast to canonical constant-pressure turbulent boundary layers that show such comprehensive log scaling only at ultra-high Reynolds numbers. This suggests that for comprehensive log scaling, ultra-high-Reynolds-number is not a necessary condition; while specific details of the sink flow are special, the relevance to general turbulent boundary layers is that the sink flow underscores the importance of the streamwise invariance condition that needs to be met in a general flow for obtaining log scaling. Indeed, a simple theory shows that, for log scaling in the inertial sublayer, the invariance of dimensionless mean velocity and higher-order moments along a mean streamline is a necessary and sufficient condition. Ultra-high Reynolds number pri...

  20. Graphene-supported ultra-small Co3O4 nanoparticles for high-performance supercapacitors

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; LI Ji; WU Xiaoliang; WEI Tong; FAN Zhuangjun

    2016-01-01

    Ultra-small Co3O4 nanoparticles/graphene hybrid material had been synthesized by a facile hydrothermal route and consequent calcination process. The as-obtained ultra-small Co3O4 nanoparticles with their sizes of 5–8 nm are tightly anchored on the surface of graphene (GNS). Benefiting from the ultra-small size of Co3O4 nanoparticles, the high interconnectivity of hybrid material as well as the high conductive networks constructed by GNS, which can provide a fast and efficient transportation of electron and electrolyte ions for the overall electrode, the as-prepared hybrid material exhibits a high specific capacitance of 462 F·g-1 at 5 mV·s-1 compared with pure Co3O4 (193 F·g-1), and retained 88.2% of its initial capacitance after 2000 cycles, indicating a promising electrode material for supercapacitors.

  1. Soliton Management for Ultra-high Speed Telecommunications

    Directory of Open Access Journals (Sweden)

    Vladimir N. Serkin

    2001-01-01

    Full Text Available La metodología desarrollada provee un método sistemático de encontrar un número infinito de las novedosas islas solitónicas (‘‘soliton islands’’ estables, brillantes y obscuras en un mar de olas solitarias, para la ecuación no lineal de Schrödinger con dispersión y no linealidad variables y con ganancia o absorción. Se muestra que los solitones existen sólo bajo ciertas condiciones y las funciones paramétricas que describen la dispersión, la no linealidad, la ganacia o absorción no homógenea, no pueden ser electas independientemente. Se han descubierto los regímenes de manejo fundamental solitónico para comunicaciones a velocidades ultra-rápidas a través de fibras ópticas.

  2. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    Science.gov (United States)

    Burri, F.; Fertl, M.; Feusi, P.; Henneck, R.; Kirch, K.; Lauss, B.; Rüttimann, P.; Schmidt-Wellenburg, P.; Schnabel, A.; Voigt, J.; Zenner, J.; Zsigmond, G.

    2014-03-01

    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  3. Testing the Correlation of Ultra-High Energy Cosmic Rays with High Redshift Sources

    CERN Document Server

    Sigl, G; Anchordoqui, L A; Romero, G; Sigl, Guenter; Torres, Diego; Anchordoqui, Luis; Romero, Gustavo

    2001-01-01

    We study the correlation between compact radio quasars and ultra-high energy cosmic rays using an updated list of air shower detections. We estimate the level of positional correlation between both samples and the probability of pure chance association through simulations of random sets of synthetic cosmic ray events. We find that there are no reasons to claim for a physical association and that some previous results appear to be an effect of the small size of the sample used. This is also true when, instead of compact radio quasars, 3EG gamma-ray blazars are considered. Consequently, unless somehow severely deflected, it is unlikely that the high energy CR primaries are new particles or particles with new interactions beyond the electroweak scale, produced in high-redshift active galactic nuclei.

  4. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    CERN Document Server

    Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

    2013-01-01

    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  5. Gas and RRR distribution in high purity Niobium EB welded in Ultra-High Vacuum

    Science.gov (United States)

    Anakhov, S.; Singer, X.; Singer, W.; Wen, H.

    2006-05-01

    Electron beam (EB) welding in UHV (ultra-high vacuum, 10-5÷10-8 mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H2, O2, N2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1÷3 wt. ppm hydrogen and 5÷7 ppm oxygen and nitrogen), essential for high values of RRR — 350÷400 units. Gas content redistribution in the electron beam welded and heat affected region take place in the welding process. Correlation between gas solubility parameters, RRR and thermal conductivity are presented. Mechanisms of gas solubility in EB welding process are discussed.

  6. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  7. High curvature bending characterization of ultra-thin chips and chip-on-foil assemblies

    NARCIS (Netherlands)

    Ende, D. van den; Verhoeven, F.; Eijnden, P. van der; Kusters, R.; Sridhar, A.; Cauwe, M.; Brand, J. van den

    2013-01-01

    Ultra-thin chips of less than 20μm become flexible, allowing integration of silicon IC technology with highly flexible electronics. This combination allows for highly intelligent products of unprecedented thinness, flexibility and cost. Examples include sensor systems integrated into food packaging

  8. Short aramid-fiber reinforced ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Hofste, JM; Bergmans, KJR; deBoer, J; Wevers, R; Pennings, AJ

    1996-01-01

    Ultra-High Molecular Weight Polyethylene (UHMWPE) is frequently used in artificial joints because of its high wear resistance. To extend the lifetime of these joints even further, it is necessary to decrease the wear rate. The wear rate may be decreased by blending UHMWPE with short aramid fibers. O

  9. Lunar detection of ultra-high-energy cosmic rays and neutrinos

    NARCIS (Netherlands)

    Bray, J. D.; Alvarez-Muñiz, J.; Buitink, S.; Dagkesamanskii, R. D.; Ekers, R. D.; Falcke, H.; Gayley, K. G.; Huege, T.; James, C. W.; Mevius, M.; Mutel, R. L.; Protheroe, R. J.; Scholten, O.; Spencer, R. E.; ter Veen, S.

    2014-01-01

    The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Due to their extremely low flux, even the 3,000 km^2 Pierre Auger detector registers only about 30 cosmic rays per year with sufficiently high energy to be used for directional studies.

  10. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bars...

  11. Ultra-high-energy cosmic ray and neutrino physics using the Moon

    NARCIS (Netherlands)

    Scholten, O.; BarronPalos, L; Bijker, R; Fossion, R; Lizcano, D

    2010-01-01

    The intriguing mystery of ultra-high energy (UHE) cosmic particles is the nature of their sources. In this presentation we indicate how these UHE particles, in order to uncover their sources, can be detected using radio observations of the Moon. When high-energy cosmic rays impinge on a dielectric,

  12. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    Science.gov (United States)

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...Engineer Center Tyndall Air Force Base, FL 32403-5319 ERDC/GSL TR-14-11 ii Abstract Runway rubber removal is a maintenance function employed to

  13. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  14. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    Science.gov (United States)

    2014-10-31

    AFRL-AFOSR-UK-TR-2015-0017 Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties Oleg...Ultra-high Temperature Ceramics and their Properties  5a. CONTRACT NUMBER STCU P-511 5b. GRANT NUMBER STCU 11-8002 5c. PROGRAM ELEMENT NUMBER...it defines the elevated diffusion activity at sintering. 2. In the ZrB2-SiC-5% Cr3C2 system, hot pressing allows to obtain porous free ceramics at

  15. Computational Schemes for the Propagation of Ultra High Energy Cosmic Rays

    CERN Document Server

    Aloisio, R

    2012-01-01

    We discuss the problem of ultra high energy particles propagation in astrophysical backgrounds. We present two different computational schemes based on both kinetic and Monte Carlo approaches. The kinetic approach is an analytical computation scheme based on the hypothesis of continuos energy losses while the Monte Carlo scheme takes into account also the stochastic nature of particle interactions. These schemes, that give quite reliable results, enable the computation of fluxes keeping track of the different primary and secondary components, providing a fast and useful workbench to study Ultra High Energy Cosmic Rays.

  16. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  17. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    Science.gov (United States)

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  18. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    Science.gov (United States)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  19. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

    Directory of Open Access Journals (Sweden)

    Xiong, Ming-Xiang

    2015-12-01

    Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir

  20. Enabling ultra high precision on hard steels using surface defect machining

    OpenAIRE

    2014-01-01

    This paper is an extension to an idea coined during the 13th EUSPEN Conference (P6.23) named "surface defect machining" (SDM). The objective of this work was to demonstrate how a conventional CNC turret lathe can be used to obtain ultra high precision machined surface finish on hard steels without recourse to a sophisticated ultra precision machine tool. An AISI 4340 hard steel (69 HRC) workpiece was machined using a CBN cutting tool with and without SDM. Post-machining measurements by a Form...

  1. Effects of high-temperature annealing on ultra-thin CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xia Wei; Lin Hao; Wu, Hsiang N.; Tang, Ching W., E-mail: chtang@che.rochester.edu

    2011-10-31

    High-temperature annealing (HTA), a process step prior to vapor cadmium chloride (VCC) treatment, has been found to be useful for improving the crystallinity of CdTe films and the efficiency of ultra-thin CdTe solar cells. Scanning electron microscopy, optical absorption, photoluminescence measurements and analyses on photoluminescence results using spectral deconvolution reveal that the additional HTA step produces substantial grain growth and reduces grain boundary defects. It also reduces excessive sulfur diffusion across the junction that can occur during the VCC treatment. The HTA step helps to produce pinhole-free CdTe films and reduce electrical shorts in ultra-thin CdTe solar cells. An efficiency of about 11.6% has been demonstrated for ultra-thin CdS/CdTe solar cells processed with HTA step.

  2. Development of UHTC- Ultra-high-temperature ceramics for aerospace and industrial applications

    OpenAIRE

    Bellosi, Alida

    2009-01-01

    Zirconium and Hafnium diborides and carbides belong to the class of Ultra-High-Temperature Ceramics (UHTC) for their high melting point (2700-3900?C). The interest on these materials is due to the unique combination of properties 8High hardness, high electrical and thermal conductivity, chemical inertness). They constitute a clss of promising materials for HT applications in industrial secors like foundry, refractory or nuclear plants. Applications are also found in aerospace industry: leadin...

  3. Multi-modal ultra-high resolution structural 7-Tesla MRI data repository

    NARCIS (Netherlands)

    B.U. Forstmann; M.C. Keuken; A Schafer; P.-L. Bazin; A. Alkemade; R. Turner

    2014-01-01

    Structural brain data is key for the understanding of brain function and networks, i.e., connectomics. Here we present data sets available from the ‘atlasing of the basal ganglia (ATAG)’ project, which provides ultra-high resolution 7 Tesla (T) magnetic resonance imaging (MRI) scans from young, midd

  4. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  5. The moon as a detector of ultra-high-energy neutrinos

    NARCIS (Netherlands)

    Scholten, Olaf

    2012-01-01

    Cosmogenic particles at ultra-high energies (UHE, E >1020 eV, about 1 Joule) are the messengers of the most energetic processes in the universe. Their energy is orders of magnitude higher than reachable at CERN. The quest is to find their origin. Neutrinos are especially suited for this as they fly

  6. The moon as a detector of ultra-high-energy neutrinos

    NARCIS (Netherlands)

    Scholten, Olaf; Bijker, R

    2012-01-01

    Cosmogenic particles at ultra-high energies (UHE, E > 10(20) eV, about 1 Joule) are the messengers of the most energetic processes in the universe. Their energy is orders of magnitude higher than reachable at CERN. The quest is to find their origin. Neutrinos are especially suited for this as they f

  7. Childhood trauma and clinical outcome in patients at ultra-high risk of transition to psychosis

    NARCIS (Netherlands)

    Kraan, Tamar; van Dam, Daniella S.; Velthorst, Eva; de Ruigh, Esther L.; Nieman, Dorien H.; Durston, Sarah; Schothorst, Patricia; van der Gaag, Mark; de Haan, Lieuwe

    2015-01-01

    Background: Although transition rates in 'ultra-high risk' (UHR) for psychosis samples are declining,many young individuals at UHR still experience attenuated positive symptoms and impaired functioning at follow-up. The present study examined the association between a history of childhood trauma and

  8. Can new heavy gauge bosons be observed in ultra-high energy cosmic neutrino events?

    CERN Document Server

    Ježo, T; Lyonnet, F; Montanet, F; Schienbein, I; Tartare, M

    2014-01-01

    A wide range of models beyond the Standard Model predict charged and neutral resonances, generically called $W'$- and $Z'$-bosons, respectively. In this paper we study the impact of such resonances on the deep inelastic scattering of ultra-high energy neutrinos as well as on the resonant charged current $\\bar\

  9. Ultra-high energy interaction on accelerators and in cosmic rays.

    Science.gov (United States)

    Nikolskij, S. I.

    1989-03-01

    The violations of Feinman scaling, accelerator data concerning multiproduction hadron scaling, and relations between the real and imaginary parts of the forward elastic scattering amplitude in pp collisions are discussed. Experimental cosmic ray data indicate the existence of some new energy-threshold processes of the multiproduction of photons and leptons in hadron interaction at ultra-high energies.

  10. ULTRA-HIGH ENERGY COSMIC RAY AND NEUTRINO DETECTION USING THE MOON : FIRST RESULTS

    NARCIS (Netherlands)

    Scholten, O.; Bacelar, J.; Singh, K.; Al Yahyaoui, R.; Buitink, S.; Falcke, H.; Braun, R.; de Bruyn, A. G.; Strom, R. G.; Stappers, B.

    2009-01-01

    We show that at wavelengths comparable to the length of the shower produced by an Ultra-High Energy cosmic ray or neutrino, radio signals are an extremely efficient way to detect these particles. First results are presented of an analysis of 20 hours of observation data for NuMoon project using the

  11. Wear behaviour of discontinuous aramid fibre reinforced ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Hofste, JM; Smit, HHG; Pennings, AJ

    1996-01-01

    The wear of Ultra-High Molecular Weight Polyethylene has generated new concern regarding the long-term clinical performance of total joint replacements. To extend the lifetime of artificial joints, it is necessary to decrease tt-le wear rate of UHMWPE. One possible solution is the incorporation of a

  12. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography

    NARCIS (Netherlands)

    Uliyanchenko, E.; van der Wal, S.; Schoenmakers, P.J.

    2011-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles an

  13. Brain development in adolescents at ultra-high risk for psychosis : Longitudinal changes related to resilience

    NARCIS (Netherlands)

    de Wit, Sanne; Wierenga, Lara M; Oranje, Bob; Ziermans, Tim B; Schothorst, Patricia F; van Engeland, Herman; Kahn, René S; Durston, Sarah

    2016-01-01

    BACKGROUND: The main focus of studies of individuals at ultra-high risk for psychosis (UHR) has been on identifying brain changes in those individuals who will develop psychosis. However, longitudinal studies have shown that up to half of UHR individuals are resilient, with symptomatic remission and

  14. Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    CERN Document Server

    Santangelo, Andrea

    2009-01-01

    The experimental search for ultra high energy cosmic messengers, from $E\\sim 10^{19}$ eV to beyond $E\\sim 10^{20}$ eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we desc...

  15. Ultra-high-energy cosmic ray and neutrino detection using the Moon

    NARCIS (Netherlands)

    Scholten, Olaf; Buitink, S.; Falcke, H.; James, C. W.; Mevius, M.; Singh, K.; Stappers, B.; Ter Veen, S.

    2011-01-01

    When Ultra-high-energy (UHE) neutrinos or cosmic rays interact in the lunar surface they will initiate a particle cascade. These cascades have a sizeable negative charge excess and radiate coherent Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for o

  16. Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array

    NARCIS (Netherlands)

    Bray, J.; Alvarez-Muniz, J.; Buitink, S.; Dagkesamanskii, R.; Ekers, R. D.; Falcke, H. D. E.; Gayley, K.; Huege, T.; James, C. W.; Mevius, M.; Mutel, R.; Protheroe, R. J.; Scholten, O.; Schroeder, F.; Spencer, R. E.; ter Veen, S.

    2014-01-01

    The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Only the most energetic of these have sufficiently small angular deflections to be used for directional studies, and their flux is so low that even the 3,000 km^2 Pierre Auger detector

  17. Multiphysics Modeling of a Novel Photoelastic Modulator for Ultra-High Performance FT Spectrometry

    Science.gov (United States)

    2008-12-01

    1 MULTIPHYSICS MODELING OF A NOVEL PHOTOELASTIC MODULATOR FOR ULTRA-HIGH PERFORMANCE FT SPECTROMETRY Tudor N. Buican* Semiotic Engineering...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Semiotic

  18. Ultra-high-speed optical signal processing of serial data signals

    DEFF Research Database (Denmark)

    Clausen, Anders; Mulvad, Hans Christian Hansen; Palushani, Evarist;

    2012-01-01

    To ensure that ultra high-speed serial data signals can be utilised in future optical communication networks, it is indispensable to have all-optical signal processing elements at our disposal. In this paper, the most recent advances in our use of non-linear materials incorporated in different...

  19. Ultra-High Temperature Metallic Seal/Energizer Development for Aero Propulsion and Gas Turbine Applications

    Science.gov (United States)

    Cornett, Ken; Newman, Jesse; Datta, Amit

    2009-01-01

    The industry is requiring seals to operate at higher and higher temperatures. Traditional static seal designs and materials experience stress relaxation, losing their ability to maintain contact with moving flanges. Ultra High Temperature seal development program is a multiphase program with incremental increases in seal operating temperatures.

  20. Burst activity of the Crab Nebula and its pulsar at high and ultra-high energies

    Science.gov (United States)

    Lidvansky, A. S.

    2016-06-01

    Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes) and 100 TeV (EAS arrays) are different, their time structures seem to be similar. Moreover, may be the difference between "flares" and "waves" recently found in the Crab Nebula emission by AGILE team also exists at ultra-high energies.

  1. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    CERN Document Server

    Chang, Feng-Yin; Lin, Guey-Lin; Reil, Kevin; Sydora, Richard

    2007-01-01

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield so induced validates precisely the theoretical prediction. We show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over a macroscopic distance. Invoking gamma ray burst (GRB) as the source, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV 10^21 eV is possible.

  2. The ultra-rate spatial enhancement using Huber regularization MSRR and Huber high-spectrum expectation

    Science.gov (United States)

    Patanavijit, Vorapoj

    2017-02-01

    The high spatial resolution images are ultimately demanded due to the requirement of the advance digital signal processing (DSP) and digital image processing (DIP) in modern implementations thereby the image spatial enhancements, especially for an ultra-rate spatial enhanced rate, have been ultimately investigated in the DSP and DIP society in the last twenty five years. The ultra-rate spatial enhancement employed by MSRR with Huber ML (Maximum Likelihood) regularization technique and SSRR with Huber high-spectrum expectation is proposed for enhancing upto 16x spatial rate in this paper. Initially, the collection of low spatial resolution images with noise is processed by MSRR for attenuating the noise and enhancing the spatial resolution. Later, the enhanced image is processed by SSRR for calculating the high-spectrum information in order to reconstruct the extortionate spatial enhancement with 16x spatial enhanced rate. In the performance evaluation section, the simulated consequences of the proposed ultra-rate spatial enhancement are compared with other previous state-of-art (such as a bicubic interpolation technique, a classical MSRR and a classical SSRR) in both PSNR (Peak Signal to Noise Ratio) and virtual quality attitude. From the performance evaluation consequence of four noise types at many noise powers, the proposed ultra-rate spatial enhancement has a superior performance than other previous state-of-art.

  3. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power, high efficiency, high reliability lightweight, low cost QCW laser diode pump modules with up to 1000W of QCW output become possible with nLight's...

  4. Application of cold drawn lamellar microstructure for developing ultra-high strength wires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Composite materials having lamellar structure are known to have a good combination of high strength and ductility. They are widely used in the fields of automobiles, civil engineering and construction, machines and many other industries. An application of lamellar microstructure for developing ultra-high strength steel wires was studied and discussed. Based on the experimental results,the relationships between the strength increase and microstructure development during the cold wire drawing were studied to reveal the strengthening mechanism. As cold drawing proceeds, the wire strength extremely increases, the microstructure changes from large single crystal lamellar structure to very fine polycrystalline lamellar one which has nano-sized grains, high dislocation density and amorphous regions. From the results obtained, it is concluded that heavy cold drawing technique is an effective method for lamellar composite to get high strength wires. Furthermore, formation process of the best microstructure for producing the ultra-high strength wires was also discussed.

  5. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change

    Directory of Open Access Journals (Sweden)

    AF. Colombo

    Full Text Available After 500 years of exploitation and destruction, the Brazilian Atlantic Forest has been reduced to less the 8% of its original cover, and climate change may pose a new threat to the remnants of this biodiversity hotspot. In this study we used modelling techniques to determine present and future geographical distribution of 38 species of trees that are typical of the Brazilian Atlantic Forest (Mata Atlântica, considering two global warming scenarios. The optimistic scenario, based in a 0.5% increase in the concentration of CO2 in the atmosphere, predicts an increase of up to 2 °C in the Earth's average temperature; in the pessimistic scenario, based on a 1% increase in the concentration of CO2 in the atmosphere, temperature increase may reach 4 °C. Using these parameters, the occurrence points of the studied species registered in literature, the Genetic Algorithm for Rule-set Predictions/GARP and Maximum entropy modeling of species geographic distributions/MaxEnt we developed models of present and future possible occurrence of each species, considering Earth's mean temperature by 2050 with the optimistic and the pessimistic scenarios of CO2 emission. The results obtained show an alarming reduction in the area of possible occurrence of the species studied, as well as a shift towards southern areas of Brazil. Using GARP, on average, in the optimistic scenario this reduction is of 25% while in the pessimistic scenario it reaches 50%, and the species that will suffer the worst reduction in their possible area of occurrence are: Euterpe edulis, Mollinedia schottiana, Virola bicuhyba, Inga sessilis and Vochysia magnifica. Using MaxEnt, on average, in the optimistic scenario the reduction will be of 20% while in the pessimistic scenario it reaches 30%, and the species that will suffer the worst reduction are: Hyeronima alchorneoides, Schefflera angustissima, Andira fraxinifolia and the species of Myrtaceae studied.

  6. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure

    Institute of Scientific and Technical Information of China (English)

    Xue-xia Xu; Yang Yu; Wen-long Cui; Bing-zhe Bai; Jia-lin Gu

    2009-01-01

    The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a fre-quency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 107 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fa-tigue cycle exceeds 107 , and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fa-tigue mechanism was discussed and it is suggested that specific CFB/M complex microstrueture of the studied steel contributes to itssuperior properties.

  7. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications.

    Science.gov (United States)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-02-11

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called "Si photonics"). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  8. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga......N devices. Simple replacement of Si or SiC devices with GaN devices in the converter will not give an expected increase in efficiency or any improvement in the performance of the converter. The use of GaN devices has defined another dimension in the design of power converters, which mainly deals...

  9. Study of application technology of ultra-high speed computer to the elucidation of complex phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Tomotsugu [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-06-01

    The basic design of numerical information library in the decentralized computer network was explained at the first step of constructing the application technology of ultra-high speed computer to the elucidation of complex phenomena. Establishment of the system makes possible to construct the efficient application environment of ultra-high speed computer system to be scalable with the different computing systems. We named the system Ninf (Network Information Library for High Performance Computing). The summary of application technology of library was described as follows: the application technology of library under the distributed environment, numeric constants, retrieval of value, library of special functions, computing library, Ninf library interface, Ninf remote library and registration. By the system, user is able to use the program concentrating the analyzing technology of numerical value with high precision, reliability and speed. (S.Y.)

  10. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    Science.gov (United States)

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed.

  11. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    Directory of Open Access Journals (Sweden)

    Tania dos Reis Mendonça

    2016-03-01

    Full Text Available ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of altitude in Divinolândia, São Paulo State, Brazil. The Chardonnay vines (clone 96, grafted onto 1103 Paulsen rootstock and trained in a vertical shoot positioning trellis system, were assessed. Vegetative vigor, bud fruitfulness, production and physicochemical composition of grapes were evaluated during 2014 and 2015 growing seasons. The Royat pruning induced higher vegetative vigor and increased the bud fruitfulness, the cluster number and the productivity of Chardonnay vine when compared to Guyot pruning. Even though the increase on yield was observed, there was no effect of pruning type on grape final quality. Therefore, the choice of pruning method in function of variety genetic characteristics and their interaction with environment can optimize the vineyard profitability. In the Brazilian southeast, the Royat system is the most suitable one to grow Chardonnay for sparkling wines production.

  12. Plasma Wind Tunnel Testing of Ultra High Temperature Ceramics: Experiments And Numerical Correlation

    OpenAIRE

    Di Maso, Andrea

    2009-01-01

    The thesis is focused on the aerothermodynamic and oxidation behaviour of ultra-high-temperature Ceramic (UHTC) for aerospace applications. UHTC are very high temperature resistant (>2000K) materials, with good chemical inertness and mechanical properties. These materials could be used for next generation aerospace and hypersonic vehicles. The arc jet plasma wind tunnel available at the Department of Aerospace Engineering of Naples (DIAS) is able to reproduce specific total enthalpies and sta...

  13. Ultra-High-Temperature-Ceramics: potentialities and barriers to the application in hot structures

    OpenAIRE

    Bellosi, Alida

    2009-01-01

    High performance Ultra-High-Temperature Composites (based on zirconium-, hafnium-, tantalum- borides and carbides) are characterized by relevant and unique thermo-physical and thermo-mechanical properties, suitable for applications in thermo-protection systems for aerospace applications. In spite of the difficult sinterability of borides and carbides of Zr, Hf, Ta, recent results highlighted that UHTC ceramics can be successfully produced with full density, fine and uniform microstructure and...

  14. Horizontal Shear Transfer Between Ultra High Performance Concrete And Lightweight Concrete

    OpenAIRE

    Banta, Timothy E.

    2005-01-01

    Ultra high performance concrete, specifically Ductal® concrete, has begun to revolutionize the bridge design industry. This extremely high strength material has given smaller composite sections the ability to carry larger loads. As the forces being transferred through composite members are increasing in magnitude, it is vital that the equations being used for design are applicable for use with the new materials. Of particular importance is the design of the horizontal shear reinforcement ...

  15. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    OpenAIRE

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs develo...

  16. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown....

  17. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-01

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

  18. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  19. ReNPAD: a brazilian network for researchers in High Dilution

    Directory of Open Access Journals (Sweden)

    Paulo Henrique dos Santos Domingos

    2011-07-01

    Full Text Available Some pertinent questions in the practice of science is to know what one is researching, with whom and where. These questions are even more crucial for those involved in High Dilution studies, an emergent and multidisciplinary scientific field, where concepts, methods and models are still to be validated. In this research field, such questions can be addressed through networks because communication between peers accelerates the process of conceiving and refining the concepts, methodologies and standards that give consistency to emergent knowledge. A thematic network can be effective in building an identity for the science of HDs and related community. This article introduces the project ReNPAD (National Network of Researchers in High Dilutions, a Brazilian initiative aiming to put together researchers involved in studies in HDs in order to stimulate interaction and give visibility to the theirs efforts

  20. ReNPAD: a brazilian network for researchers in High Dilution

    Directory of Open Access Journals (Sweden)

    Paulo Henrique dos Santos Domingos

    2009-12-01

    Full Text Available Some pertinent questions in the practice of science is to know what one is researching, with whom and where. These questions are even more crucial for those involved in High Dilution studies, an emergent and multidisciplinary scientific field, where concepts, methods and models are still to be validated. In this research field, such questions can be addressed through networks because communication between peers accelerates the process of conceiving and refining the concepts, methodologies and standards that give consistency to emergent knowledge. A thematic network can be effective in building an identity for the science of HDs and related community. This article introduces the project ReNPAD (National Network of Researchers in High Dilutions, a Brazilian initiative aiming to put together researchers involved in studies in HDs in order to stimulate interaction and give visibility to the theirs efforts.

  1. Laser-driven high-power X- and gamma-ray ultra-short pulse source

    CERN Document Server

    Esirkepov, Timur Zh; Zhidkov, Alexei G; Pirozhkov, Alexander S; Kando, Masaki

    2008-01-01

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.

  2. Laser-driven high-power X- and γ-ray ultra-short pulse source

    Science.gov (United States)

    Esirkepov, Timur Zh.; Bulanov, Sergei V.; Pirozhkov, Alexander S.; Kando, Masaki; Zhidkov, Alexei G.

    2009-07-01

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.

  3. An Ultra-High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Hoover, S.; Hogan, M.J.; Muggli, P.; Thompson, M.; Travish, G.; Yoder, R.; /UCLA /SLAC /Southern California U.

    2005-08-02

    The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

  4. Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source.

    Science.gov (United States)

    Liao, Ruoyu; Song, Youjian; Zhou, Xiaokang; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2016-11-20

    An ultra-flat, high-power supercontinuum generated from a picosecond telecommunication fiber laser was presented. The pulse from a carbon nanotube mode-locked oscillator was amplified using an Er-Yb codoped fiber amplifier. The output of the system achieved an average power of 2.7 W, with the center wavelength at 1564 nm and a FWHM of 6 nm in the spectral domain. By passing this amplified high-power pulse through a 4.6 m highly nonlinear photonic crystal fiber, an ultra-flat supercontinuum spanning 1600-2180 nm is generated. And the average power of the supercontinuum achieves 1 W.

  5. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    Science.gov (United States)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  6. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  7. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  8. Modular Ultra-High Power Solar Array Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) will focus the proposed Phase 2 SBIR program on the hardware-based development and TRL advance of a highly-modularized and...

  9. Modular Ultra-High Power Solar Array Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on the development of a new highly-modularized and extremely-scalable solar array that...

  10. Ultra-high degree spectral modelling of Earth and planetary topography

    Science.gov (United States)

    Rexer, Moritz; Hirt, Christian

    2016-04-01

    New methods for ultra-high degree spherical harmonic analyses and syntheses have been developed and studied over the past years. The focus group "High-resolution Gravity Modelling", established in 2013 at TU Munich, has implemented ultra-high degree spectral modelling techniques and used successfully to transform high-resolution topography grids of Earth, Moon and Mars into spherical harmonics. For Earth, a new set of 1 arc-min topography models, developed by our group and released under the name Earth2014, was expanded into a spherical harmonic series to degree 10,800. For the 15 arc-sec resolution SRTM15_plus topography and bathymetry, a spectral resolution of degree 43,200 was achieved. For Moon and Mars, topography grids from laser altimetry were harmonically analysed up to degree ~46,000. The spectral representations of the topography grids presented in this contribution are required in the context of spectral gravity forward modelling with ultra-high degree, where the topographic potential is computed as a function of the spherical harmonic series of the topography and its integer powers. References: Hirt, C., and M. Rexer (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics, International Journal of Applied Earth Observation and Geoinformation 39, 103-112, doi:10.1016/j.jag.2015.03.001. Rexer, M. and C. Hirt (2015), Ultra-high degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Moon and Mars. Surveys in Geophysics 36(6), 803-830, doi: 10.1007/s10712-015-9345-z.

  11. Simulation of press-forming for automobile part using ultra high tension steel

    Directory of Open Access Journals (Sweden)

    Tanabe I.

    2012-08-01

    Full Text Available In recent years, ultra high tension steel has gradually been used in the automobile industry. The development of press-forming technology is now essential by reason of its high productivity and high product quality. In this study, tensile tests were performed with a view to understanding the material properties. Press-forming tests were then carried out with regard to the behaviors of spring back and deep-drawability, and manufacturing a real product. The ultra high tension steel used in the experiments had a thickness of 1 mm and a tensile strength of 1000 MPa. Finally, simulations of spring back, deep-drawability and manufacturing a real product in ultra high tension steel were conducted and evaluated in order to calculate the optimum-press-forming conditions and the optimum shape of the die. FEM with non-linear and dynamic analysis using Euler-Lagrange’s element was used for the simulations. It is concluded from the results that (1 the simulations conformed to the results of the experiments (2 the simulations proved very effective for calculating the optimum press conditions and die shape.

  12. Chemical fingerprint of Ganmaoling granule by double-wavelength ultra high performance liquid chromatography and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun

    2015-06-01

    A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule.

  13. Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity.

    Science.gov (United States)

    Wang, Liang; Bai, Yang; Lu, Xuefei; Cao, Jiang-Li; Qiao, Li-Jie

    2015-01-05

    High permeability and high permittivity are hard to be achieved simultaneously, either in single-phased materials or in composite materials, such as ferrite-ferroelectric ceramic composites and ferrite-metal percolative composites. In this work, ultra-low percolation threshold is achieved in NiZnCu ferrite-Ag cofired ceramics, which endows the composite with both high permeability and high permittivity by minimizing the negative effect of nonmagnetic conductive fillers on magnetic properties. The percolation threshold is controlled by the temperature matching between ferrite densification and Ag melting. A thin and long percolative net forms between large ferrite grains under a proper cofiring process, which brings a low percolation threshold of 1.21vol%, more than one order of magnitude lower than the theoretical value of 16vol%. Near the ultra-low threshold, the composite exhibits a high permeability of 585 and a high permittivity of 78.

  14. Note: High resolution ultra fast high-power pulse generator for inductive load using digital signal processor.

    Science.gov (United States)

    Flaxer, Eli

    2014-08-01

    We present a new design of a compact, ultra fast, high resolution and high-powered, pulse generator for inductive load, using power MOSFET, dedicated gate driver and a digital signal controller. This design is an improved circuit of our old version controller. We demonstrate the performance of this pulse generator as a driver for a new generation of high-pressure supersonic pulsed valves.

  15. Physics of ultra-high bioproductivity in algal photobioreactors

    Science.gov (United States)

    Greenwald, Efrat; Gordon, Jeffrey M.; Zarmi, Yair

    2012-04-01

    Cultivating algae at high densities in thin photobioreactors engenders time scales for random cell motion that approach photosynthetic rate-limiting time scales. This synchronization allows bioproductivity above that achieved with conventional strategies. We show that a diffusion model for cell motion (1) accounts for high bioproductivity at irradiance values previously deemed restricted by photoinhibition, (2) predicts the existence of optimal culture densities and their dependence on irradiance, consistent with available data, (3) accounts for the observed degree to which mixing improves bioproductivity, and (4) provides an estimate of effective cell diffusion coefficients, in accord with independent hydrodynamic estimates.

  16. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk.

  17. High Performance Ultra Low-Power ADCs and DACs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase-I research is to design a multi-GHz high bandwidth Delta Sigma Analog-to-Digital and Digital-to-Analog converter using a deep sub-micron...

  18. Development and evaluation of ultra high pressure waterjet cutting

    NARCIS (Netherlands)

    Susuzlu, T.

    2008-01-01

    Abrasive waterjet (AWJ) cutting is a machining process to cut wide range of materials from soft materials such as rubber, leather to hard materials such as metals by means of a high-velocity slurry jet, formed as a result of injecting abrasive particles into a waterjet. The machining action is the

  19. Ultra-high Q even eigenmode resonance in terahertz metamaterials

    Science.gov (United States)

    Al-Naib, Ibraheem; Yang, Yuping; Dignam, Marc M.; Zhang, Weili; Singh, Ranjan

    2015-01-01

    We report the simultaneous excitation of the odd and the even eigenmode resonances in a periodic array of square split-ring resonators, with four resonators per unit cell. When the electric field is parallel to their gaps, only the two well-studied odd eigenmodes are excited. As the resonators are rotated relative to one another, we observe the emergence and excitation of an extremely sharp even eigenmode. In uncoupled split-ring resonators, this even eigenmode is typically radiative in nature with a broad resonance linewidth and low Q-factor. However, in our coupled system, for specific range of rotation angles, our simulations revealed a remarkably high quality factor (Q ˜ 100) for this eigenmode, which has sub-radiant characteristics. This type of quad-supercell metamaterial offers the advantage of enabling access to all the three distinct resonance features of the split-ring resonator, which consists of two odd eigenmodes in addition to the high-Q even eigenmode, which could be exploited for high performance multiband filters and absorbers. The high Q even eigenmode could find applications in designing label free bio-sensors and for studying the enhanced light matter interaction effects.

  20. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    Science.gov (United States)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  1. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    Science.gov (United States)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  2. Direct imaging of rf waveguide modes via ultra-high field NMR

    CERN Document Server

    Tonyushkin, A; Van de Moortele, P -F; Adriany, G; Kiruluta, A

    2016-01-01

    We demonstrate an experimental method for direct 2D and 3D imaging of magnetic rf field distribution in metal waveguides based on traveling wave (TW) nuclear-magnetic resonance (NMR) imaging at ultra-high field (>7T). The typical apparatus would include an ultra-high field whole body or small bore NMR scanner, waveguide elements filled with NMR active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW magnetic-resonance (MR) images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore NMR scanner and compared the MR images with numerical simulations. Our NMR technique opens up a practical way of imaging of previously inaccessible rf field distribution of modes inside of various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.

  3. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Science.gov (United States)

    Micheli, Leonardo; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.; Mallick, Tapas K.

    2015-09-01

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151/Wp is expected for a passive least-material heat sink developed for 4000x applications.

  4. Ultra-high energy particle collisions in a regular spacetime without blackholes or naked singularities

    CERN Document Server

    Patil, Mandar

    2012-01-01

    We investigate here the particle acceleration and collisions with extremely large center of mass energies in a perfectly regular spacetime containing neither singularity nor an event horizon. The ultra-high energy collisions of particles near the event horizon of extremal Kerr blackhole, and also in many other examples of extremal blackholes have been investigated and reported recently. We studied an analogous particle acceleration process in the Kerr and Reissner- Nordstrom spacetimes without horizon, containing naked singularities. Further to this, we show here that the particle acceleration and collision process is in fact independent of blackholes and naked singularities, and can happen in a fully regular spacetime containing neither of these. We derive the conditions on the general static spherically symmetric metric for such a phenomena to happen. We show that in order to have ultra-high energy collisions it is necessary for the norm of the timelike Killing vector to admit a maximum with a vanishingly s...

  5. Spectrum and Composition of Ultra-high Energy Cosmic Rays from Semi-relativistic Hypernovae

    CERN Document Server

    Liu, Ruo-Yu

    2011-01-01

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultra-high energies and provide sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultra-high energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  6. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, Roza; Webb, Ian; Deng, Liulin; Garimella, Sandilya; Prost, Spencer; Ibrahim, Yehia; Baker, Erin; Smith, Richard

    2017-01-01

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. The multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.

  7. Temperature stability and microstructure of ultra-high intrinsic coercivity Nd-Fe-B magnets

    Institute of Scientific and Technical Information of China (English)

    HU Zhihua; CHENG Xinghua; ZHU Minggang; LI Wei; LIAN Fazeng

    2008-01-01

    The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated.The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature,but the squareness of the magnets has hardly been changed.The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods,and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed.The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small,and the existence of free microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.

  8. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim

    2016-01-01

    OBJECTIVE: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. METHODS: We performed a detailed neuropath......OBJECTIVE: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. METHODS: We performed a detailed...... in the brainstem, which were not seen on 3.0T MRI. This corresponded to neuropathologic detection of axonal injury in the autopsy case. CONCLUSION: Our findings suggest more widespread perivascular inflammation and postinflammatory axonal injury in patients with CLIPPERS....

  9. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  10. A compact acoustic calibrator for ultra-high energy neutrino detection

    CERN Document Server

    Adrián-Martínez, S; Bou-Cabo, M; Larosa, G; Llorens, C D; Martínez-Mora, J A

    2012-01-01

    With the aim to optimize and test the method of acoustic detection of ultra-high energy neutrinos in underwater telescopes a compact acoustic transmitter array has been developed. The acoustic parametric effect is used to reproduce the acoustic signature of an ultra-high-energy neutrino interaction. Different reseach and development studies are presented in order to show the viability of the parametric sources technique to deal with the difficulties of the acoustic signal generation: a very directive transient bipolar signal with pancake directivity. The design, construction and characterization of the prototype are described, including simulation of the propagation of an experimental signal, measured in a pool, over a distance of 1 km. Following these studies, next steps will be testing the device in situ, in underwater neutrino telescope, or from a vessel in a sea campaign.

  11. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Almonacid, Florencia, E-mail: facruz@ujaen.es [Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Reddy, K. S., E-mail: ksreddy@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India)

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  12. Quality of silicon convex lenses fabricated by ultra-high precision diamond machining

    Directory of Open Access Journals (Sweden)

    Abou-El-Hossein, K.

    2013-05-01

    Full Text Available Infra-red optical components are made mainly from hard and brittle materials such as germanium and silicon. Silicon machining is characterised by some difficulties when ultra-high precision machined by mono-crystalline single-point diamond. Accelerated tool wear and machined-surface deterioration may take place if the machining parameters are not properly selected. In this study, we conducted a machining test on an ultra-high precision machine tool, using ductile regime cutting conditions when fabricating a convex surface on a silicon lens of aperture of 60 mm diameter, and using a mono-crystalline diamond. It was found that the cutting conditions for shaping a convex surface of 500 mm radius resulted in good form accuracy. However, more attention should be paid to optimising the holding force of the vacuum chuck employed.

  13. Single-photon detectors combining near unity efficiency, ultra-high detection-rates, and ultra-high time resolution

    CERN Document Server

    Zadeh, Iman Esmaeil; Gourgues, Ronan B M; Steinmetz, Violette; Dobrovolskiy, Sergiy M; Zwiller, Val; Dorenbos, Sander N

    2016-01-01

    Single-photon detection with high efficiency, high time resolution, low dark counts and high photon detection-rates is required for a wide range of optical measurements. Although efficient detectors have been reported, combining all performances in a single device remains a challenge. Here, we show a broadband NbTiN superconducting nanowire detector with an efficiency over 92%, over 150MHz photon detection-rate and dark counts below 130Hz operated in a conventional Gifford-McMahon cryostat. Furthermore, with an optimized detector and readout electronics, we reach a record low jitter of 14.80ps while maintaining high efficiency.

  14. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  15. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  16. Ultra high energy primary composition and interaction studies with DUMAND

    Science.gov (United States)

    Allkofer, O. C.; Grieder, P. K. F.

    It is pointed out that the addition of a 'shallow muon array' or the Fly's Eye to DUMAND would maximize the amount of information gathered and would make possible a unique interpretation of the new acquired data. In conjunction with the shallow muon array, DUMAND would make it possible to determine the fraction of high-energy muons in showers, the shape of their energy spectrum, and the primary energy dependence of these observables, as well as various correlations.

  17. Research on Fire Resistance of Ultra-High-Performance Concrete

    Directory of Open Access Journals (Sweden)

    Hao-wen Ye

    2012-01-01

    Full Text Available Fire resistance of ultrahigh-performance concrete was measured under different temperatures and loadings. C120 concrete was prepared with 1 kg/m3 organic fiber and C120 concrete with 2 kg/m3 organic fiber and tested under loading at 30% ultimate strength when exposed to high temperatures of 200°C, 300°C, and 400°C, respectively.

  18. ESSENSE: Ultra high resolution spectroscopy for the ESS

    Science.gov (United States)

    Pasini, Stefano; Monkenbusch, Michael; Kozielewski, Tadeusz

    2016-09-01

    The instrument concept for a very high intensity neutron spin-echo spectrometer with ultimate resolution properties has been developed and submitted as an instrument proposal to ESS. Effective intensity gain factors up to 30 compared to the best current instruments are anticipated. In addition the resolution will be boosted to the technical limits by newly designed superconducting precession solenoids. The intensity gain results from the use of an optimized guide transporting the high flux from the ESS cold moderator on the one side and from the utilization of an extended wavelength frame of 8 Å yielding a multiplication of information collection rate on the other side. The instrument thus enables novel views on soft matter systems ranging from polymers, functional gels and more to to dynamics of biological molecules with relevance for MD development; the employment of new techniques for surface NSE (GINSE) may contribute to new knowledge in tribology and lubrication and other surface phenomena that currently are hampered by low intensity. New developments in “intelligent” polymers as e.g. self-healing, the properties of which depend on molecular mobility and dynamics, require observation at many 100 ns of correlation times with high intensity, which can be made with ESSENSE.

  19. Ultra high temperature ceramics for hypersonic vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

  20. Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials

    Science.gov (United States)

    2008-04-15

    Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials Final Performance Report Contract Number...sintered commercially-available powders. Each project is summarized below: Synthesis : Zirconium diboride and a zirconium diboride/tantalum diboride...mixture were synthesized by solution-based processing. Zirconium n-propoxide was refluxed with 2,4-pentanedione to form zirconium diketonate . This compound

  1. Ultra-High Performance ‘Ductile’ Concrete Technology Toward Sustainable Construction

    OpenAIRE

    2011-01-01

    This paper briefly presents an overview of the material characteristics of a Malaysia blend of ultra-high performance ductile concrete (UHPdC) know as DURA®. Examples of the environmental impact calculations of UHPdC structures compared to that of conventional reinforced concrete design are presented. The comparison studies show that many structures constructed from UHPdC are generally more environmentally sustainable than built of the conventional reinforced concrete with respect to the redu...

  2. Sintering and properties of Ultra High Temperature Ceramics for aerospace applications

    OpenAIRE

    Justin, J.F.

    2013-01-01

    The Ultra High Temperature Ceramics (UHTCs) represent a very interesting family of materials and therefore they are the subject of increasing attention from different engineering sectors and notably the aerospace industry. Indeed, hypersonic flights, re-entry vehicles, propulsion applications and so on, require new materials that can perform in oxidizing or corrosive atmospheres at temperatures higher than 2000°C and sometimes, for long life-time. To fulfil these requirements, UHTCs seems to ...

  3. Ultra-High Energy Astrophysical Neutrino Detection, and the Search for Lorentz Invariance Violations

    CERN Document Server

    Hanson, J C

    2016-01-01

    A growing class of ultra-high energy neutrino (UHE-nu) observatories based on the Askaryan effect and Antarctic ice is able to search for Lorentz invariance violation (LIV). The ARA, ARIANNA, ANITA and EVA collaborations have the power to constrain the Standard Model Extension (SME) by measuring the flux and energy distribution of neutrinos created through the GZK process. The future expansion of ARA, at the South Pole, pushes the discovery potential further.

  4. Threaded connection qualification procedures utilized for an ultra-deep, high-pressure gas well

    Energy Technology Data Exchange (ETDEWEB)

    Minge, J.C.; Pejac, R.D.; Asbill, W.T.

    1986-01-01

    This paper describes the premium connection qualification program used to qualify three different connections for the production tubular strings used in an ultra-deep, high pressure gas well. A total of eight connection types were tested during the program. Four connections failed to meet the program's acceptance criteria. Full-scale test procedures and the data acquisition system used to collect, store, reduce, and plot strain gauge data while testing are discussed.

  5. Can new heavy gauge bosons be observed in ultra-high energy cosmic neutrino events?

    Science.gov (United States)

    Ježo, T.; Klasen, M.; Lyonnet, F.; Montanet, F.; Schienbein, I.; Tartare, M.

    2014-04-01

    A wide range of models beyond the Standard Model predict charged and neutral resonances, generically called W' and Z' bosons, respectively. In this paper we study the impact of such resonances on the deep inelastic scattering of ultra-high energy neutrinos as well as on the resonant charged current ν¯ee- scattering (Glashow resonance). We find that the effects of such resonances cannot be observed with the Pierre Auger Observatory or any foreseeable upgrade of it.

  6. Surface modification of ultra-high molecular weight polyethylene for joint prosthesis and sports applications

    Institute of Scientific and Technical Information of China (English)

    H.Dong

    2004-01-01

    The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion ion implantation (PⅢ) and novel active screen plasma (ASP), were all reported. Significantly improved wear resistance was achieved, which has great potential for extending the life-span of joint replacement prostheses and enhancing the performance of such sports equipment as skis and snowboards.

  7. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  8. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduc...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  9. Measurement of ultra-high energy cosmic rays: An experimental summary and prospects

    Directory of Open Access Journals (Sweden)

    Fukushima M.

    2013-06-01

    Full Text Available Measurements of Ultra-High Energy Cosmic Rays achieved remarkable progress in the last 10 years. Physicists, gathered from around the world in the symposium UHECR-2012 held at CERN on February 13-16 2012, reported their most up-to-date observations, discussed the meaning of their findings, and identified remaining problems and future challenges in this field. This paper is a part of the symposium proceedings on the experimental summary and future prospects of the UHECR study.

  10. Research and Application of WCF Technology in Data Acquisition of Ultra-high Speed Packaging Machine

    Directory of Open Access Journals (Sweden)

    Qian Jie

    2016-01-01

    Full Text Available By introducing WCF technology on data acquisition of ultra-high speed packaging machine, data acquisition system reads dates of machine in polling mode through the WCF client, which can achieve accurate data collection, and effectively isolate the data acquisition system and the machine control system. It enhances the security of data interaction between systems, but also reduces the coupling degree between systems.

  11. Ultra High Molecular Weight Polyethylene/Graphene Oxide Nanocomposites: Thermal, Mechanical and Wettability Characterisation

    OpenAIRE

    2015-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is the material most commonly used among hard-on-soft bearings in artificial joints. However, the eventual failure of joint implants has been directly related to the wear and oxidation resistance of UHMWPE. The development of novel materials with improved wear and oxidative characteristics has generated great interest in the orthopaedic community and numerous carbon nanostructures have been investigated in the last years due to their excellent...

  12. Current non-conservation effects in ultra-high energy neutrino interactions

    CERN Document Server

    Fiore, R

    2010-01-01

    The overall hardness scale of the ultra-high energy neutrino-nucleon interactions is usually estimated as $Q^2\\sim m_W^2$. The effect of non-conservation of weak currents pushes this scale up to the top quark mass squared and changes dynamics of the scattering process. The Double Leading Log Approximation provides simple and numerically accurate formula for the top-bottom contribution to the total cross section $\\sigma^{\

  13. Single Straight Steel Fiber Pullout Characterization in Ultra-High Performance Concrete

    OpenAIRE

    Black, Valerie Mills

    2014-01-01

    This thesis presents results of an experimental investigation to characterize single straight steel fiber pullout in Ultra-High Performance Concrete (UHPC). Several parameters were explored including the distance of fibers to the edge of specimen, distance between fibers, and fiber volume in the matrix. The pullout load versus slip curve was recorded, from which the pullout work and maximum pullout load for each series of parameters were obtained. The curves were fitted to an e...

  14. Estimation Prospects of the Source Number Density of Ultra-high-energy Cosmic Rays

    OpenAIRE

    Takami, Hajime; Sato, Katsuhiko

    2007-01-01

    We discuss the possibility of accurately estimating the source number density of ultra-high-energy cosmic rays (UHECRs) using small-scale anisotropy in their arrival distribution. The arrival distribution has information on their source and source distribution. We calculate the propagation of UHE protons in a structured extragalactic magnetic field (EGMF) and simulate their arrival distribution at the Earth using our previously developed method. The source number density that can best reprodu...

  15. Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining

    Science.gov (United States)

    2015-03-16

    INTRODUCTION Zirconium diboride (ZrB2) is ceramic material belonging to the group of materials known as ultra-high temperature ceramics (UHTCs), where UHTCs...expended during the diffusion of C from the graphite spacer. This occurs as the enthalpy of fusion (Hf) and mixing (Hmix) are expected to be positive...ZrB2 Ceramics ( Contributed Oral Presentation) Authors: Derek King, Greg E. Hilmas, and William G. Fahrenholtz Plasma arc welding was used to join

  16. Testing for uniformity of Ultra-High Energy Cosmic Ray arrival directions

    CERN Document Server

    Ivanov, A A

    2016-01-01

    Arrival directions of ultra-high energy cosmic rays (UHECRs) exhibit mainly an isotropic distribution with some small deviations in particular energy bins. In this paper, the Yakutsk array data are tested for circular uniformity of arrival directions in right ascension using 2 methods appropriate for the energy ranges below and above $10^{18}$ eV. No statistically significant deviation from uniformity is found in the arrival directions of cosmic rays (CRs) detected within the observation period 1974--2000.

  17. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    Science.gov (United States)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  18. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography.

    Science.gov (United States)

    Desmarais, Samantha M; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D; de Pedro, Miguel A; Huang, Kerwyn Casey

    2015-12-25

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.

  19. Ultra high risk of psychosis on committal to a young offender prison: an unrecognised opportunity for early intervention

    OpenAIRE

    Flynn Darran; Smith Damian; Quirke Luke; Monks Stephen; Kennedy Harry G

    2012-01-01

    Abstract Background The ultra high risk state for psychosis has not been studied in young offender populations. Prison populations have higher rates of psychiatric morbidity and substance use disorders. Due to the age profile of young offenders one would expect to find a high prevalence of individuals with pre-psychotic or ultra-high risk mental states for psychosis (UHR). Accordingly young offender institutions offer an opportunity for early interventions which could result in improved long ...

  20. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  1. The physics of ultra-high-density magnetic recording

    CERN Document Server

    Ek, Johannes; Weller, Dieter

    2001-01-01

    In this book, 17 experts in magnetic recording focus on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives. In 11 chapters, an examination is made of the fundamental physical concepts and their impact on recording mechanisms, with special emphasis on thin-film longitudinal, perpendicular, patterned and nanoparticle media. Theoretical and experimental investigations are presented which serve to enhance our basic understanding of thin-film dynamics, medium dynamics and thermal effects. Fundamental aspects of magnetotransport are discussed and an overview is given of recording head designs.

  2. Interpersonal sensitivity and functioning impairment in youth at ultra-high risk for psychosis.

    Science.gov (United States)

    Masillo, A; Valmaggia, L R; Saba, R; Brandizzi, M; Lindau, J F; Solfanelli, A; Curto, M; Narilli, F; Telesforo, L; Kotzalidis, G D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2016-01-01

    A personality trait that often elicits poor and uneasy interpersonal relationships is interpersonal sensitivity. The aim of the present study was to explore the relationship between interpersonal sensitivity and psychosocial functioning in individuals at ultra-high risk for psychosis as compared to help-seeking individuals who screened negative for an ultra-high risk of psychosis. A total sample of 147 adolescents and young adult who were help seeking for emerging mental health problems participated in the study. The sample was divided into two groups: 39 individuals who met criteria for an ultra-high-risk mental state (UHR), and 108 (NS). The whole sample completed the Interpersonal Sensitivity Measure (IPSM) and the Global Functioning: Social and Role Scale (GF:SS; GF:RS). Mediation analysis was used to explore whether attenuated negative symptoms mediated the relationship between interpersonal sensitivity and social functioning. Individuals with UHR state showed higher IPSM scores and lower GF:SS and GF:RS scores than NS participants. A statistically negative significant correlation between two IPSM subscales (Interpersonal Awareness and Timidity) and GF:SS was found in both groups. Our results also suggest that the relationship between the aforementioned aspects of interpersonal sensitivity and social functioning was not mediated by negative prodromal symptoms. This study suggests that some aspects of interpersonal sensitivity were associated with low level of social functioning. Assessing and treating interpersonal sensitivity may be a promising therapeutic target to improve social functioning in young help-seeking individuals.

  3. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    Science.gov (United States)

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-03-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices.

  4. Flexural Strength Evaluation of Reinforced Concrete Members with Ultra High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baek-Il Bae

    2016-01-01

    Full Text Available Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.

  5. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  6. New technologies for ultra-high throughput genotyping in plants.

    Science.gov (United States)

    Appleby, Nikki; Edwards, David; Batley, Jacqueline

    2009-01-01

    Molecular genetic markers represent one of the most powerful tools for the analysis of plant genomes and the association of heritable traits with underlying genetic variation. Molecular marker technology has developed rapidly over the last decade, with the development of high-throughput genotyping methods. Two forms of sequence-based marker, simple sequence repeats (SSRs), also known as microsatellites and single nucleotide polymorphisms (SNPs) now predominate applications in modern plant genetic analysis, along the anonymous marker systems such as amplified fragment length polymorphisms (AFLPs) and diversity array technology (DArT). The reducing cost of DNA sequencing and increasing availability of large sequence data sets permits the mining of this data for large numbers of SSRs and SNPs. These may then be used in applications such as genetic linkage analysis and trait mapping, diversity analysis, association studies and marker-assisted selection. Here, we describe automated methods for the discovery of molecular markers and new technologies for high-throughput, low-cost molecular marker genotyping. Genotyping examples include multiplexing of SSRs using Multiplex-Ready marker technology (MRT); DArT genotyping; SNP genotyping using the Invader assay, the single base extension (SBE), oligonucleotide ligation assay (OLA) SNPlex system, and Illumina GoldenGate and Infinium methods.

  7. High frequency of Fredrickson's phenotypes IV and IIb in Brazilians infected by human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Oliveira Helena CF

    2005-06-01

    apolipoprotein A1 (p = 0.02 levels were inversely correlated with the time of protease inhibitor therapy while total cholesterol levels had a trend to correlate with antiretroviral therapy (p = 0.09. Conclusion The highly varied and prevalent types of dyslipidemia found in Brazilian HIV positive patients on antiretroviral therapies indicate the urgent need for their early diagnosis, the identification of the risk factors for CHD and, when needed, the prompt intervention on their lifestyle and/or with drug treatment.

  8. Convergence of Sample Eigenvalues, Eigenvectors, and Principal Component Scores for Ultra-High Dimensional Data.

    Science.gov (United States)

    Lee, Seunggeun; Zou, Fei; Wright, Fred A

    2014-06-01

    The development of high-throughput biomedical technologies has led to increased interest in the analysis of high-dimensional data where the number of features is much larger than the sample size. In this paper, we investigate principal component analysis under the ultra-high dimensional regime, where both the number of features and the sample size increase as the ratio of the two quantities also increases. We bridge the existing results from the finite and the high-dimension low sample size regimes, embedding the two regimes in a more general framework. We also numerically demonstrate the universal application of the results from the finite regime.

  9. Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics

    CERN Document Server

    Spillane, S M; Vahala, K J; Goh, K W; Wilcut, E; Kimble, H J

    2004-01-01

    We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics (QED). Numerical modeling of the optical modes demonstrate a significant reduction of modal volume with respect to the whispering gallery modes of dielectric spheres, while retaining the high quality factors representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve improved cavity QED characteristics. Numerical results for atom-cavity coupling strength, critical atom number N_0 and critical photon number n_0 for cesium are calculated and shown to exceed values currently possible using Fabry-Perot cavities. Modeling predicts coupling rates g/(2*pi) exceeding 700 MHz and critical atom numbers approaching 10^{-7} in optimized structures. Furthermore, preliminary experimental measurements of toroidal cavities at a wavelength of 852 nm indicate that quality factors in excess of 100 million can be obtained in a 50 micron principal diameter cavity, which w...

  10. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  11. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  12. Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, Hiroshi; Kato, Jun-ichi; Murakami, Shin-ya; Ishii, Yoshinori; Kohno, Masaaki; Yabutani, Kei-ichi; Yamamoto, Takuhei; Kera, Yoshiya [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Inoue, Masashi; Inui, Tomoyuki [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-8501 (Japan); Ohtani, Bunsho [Catalysis Research Center, Hokkaido University, Sapporo 060-0811 (Japan)

    2003-09-15

    Thermal treatment of titanium(IV) butoxide dissolved in 2-butanol at 573K under autogenous pressure (alcohothermal treatment) yielded microcrystalline anatase-type titanium(IV) oxide (TiO{sub 2}). Thermal treatment of oxobis(2,4-pentanedionato-O,O')titanium (TiO(acac){sub 2}) in ethylene glycol (EG) in the presence of sodium acetate and a small amount of water at 573K yielded microcrystalline brookite-type TiO{sub 2}. Tungsten(VI) oxide (WO{sub 3}) powders of monoclinic crystal structure with high crystallinity were synthesized by hydrothermal treatment (HTT), at 523 or 573K, of aqueous tungstic acid (H{sub 2}WO{sub 4}) solutions prepared from sodium tungstate by ion-exchange (IE) with a proton-type resin. Anatase and brookite TiO{sub 2} products were calcined at various temperatures and then used for photocatalytic mineralization of acetic acid in aqueous solutions under aerated conditions and dehydrogenation of 2-propanol under deaerated conditions. Almost all the anatase-type TiO{sub 2} samples showed the activities more than twice higher than those of representative active photocatalysts, Degussa P-25 and Ishihara ST-01 in both reactions. A brookite sample with improved crystallinity and sufficient surface area obtained by calcination at 973K exhibited the hydrogen evolution rate almost equal to P-25. HTT WO{sub 3} powders with various physical properties were used as photocatalyst for evolution of oxygen (O{sub 2}) from an aqueous silver sulfate solution. WO{sub 3} powder of high crystallinity, e.g., IE-HTT-WO{sub 3} synthesized at 573K, gave much higher O{sub 2} yield than commercially available WO{sub 3} samples.

  13. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  14. Ultra-High Energy Cosmic Rays: Results and Prospects

    CERN Document Server

    Kampert, Karl-Heinz

    2014-01-01

    Recent advances in measuring and interpreting cosmic rays from the spectral ankle to the highest energies are briefly reviewed. A knee of heavy primaries and an ankle of light primaries have been observed at about 10^{17} eV. The light component starts to dominate the flux at the ankle in the all particle spectrum at about 4x10^{18} eV and sheds light on the transition from galactic to extragalactic cosmic rays. The prime question at the highest energies is about the origin of the flux suppression observed at E > 4x10^{19} eV. Is this the long awaited GZK-effect or the exhaustion of sources? The key to answering this question is again the still largely unknown mass composition at the highest energies. Data from different observatories don't quite agree and common efforts have been started to settle that question. The high level of isotropy observed even at the highest energies challenges models of a proton dominated composition if extragalactic magnetic fields are on the order of a few nG or less. We will dis...

  15. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  16. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-01-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921

  17. ULTRA HIGH SPEED FACTORIAL DESIGN IN SUB-NANOMETER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    2013-02-01

    Full Text Available This work proposes a high speed and low power factorial design in 22nm technology and also it counts the effect of sub nano-meter constraints on this circuit. A comparative study for this design has been done for 90nm, 45nm and 22nm technology. The rise in circuit complexity and speed is accompanied by the scaling of MOSFET’s. The transistor saturation current Idsat is an important parameter because the transistor current determines the time needed to charge and discharge the capacitive loads on chip, and thus impacts the product speed more than any other transistor parameter. The efficient implementation of a factorial number is carried out by using a decremented and multipliers which has been lucidly discussed in this paper. Normally in a factorial module a number is calculated as the iterative multiplication of the given number to the decremented value of the given number. A Parallel adder based decremented has been proposed for calculating the factorial of any number that also includes 0 and 1. The performances are calculated by using the existing 90-nm CMOS technology and scaling down the existing technology to 45-nm and 22-nm.

  18. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    Science.gov (United States)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  19. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    Science.gov (United States)

    Addazi, Andrea; Bianchi, Massimo; Veneziano, Gabriele

    2017-02-01

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of 2 → N scattering at N ˜ sM P - 2 ≫ 1. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass √{s} , although no sign of thermalization is seen to emerge at this level of approximation.

  20. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    CERN Document Server

    Addazi, Andrea; Veneziano, Gabriele

    2016-01-01

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of $2 \\rightarrow N$ scattering at $N \\sim s M_P^{-2} \\gg 1$. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass $\\sqrt{s}$, although no sign of thermalization is seen to emerge at this level of approximation.

  1. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    CERN Document Server

    Addazi, Andrea; Veneziano, Gabriele

    2017-01-01

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of $2 \\rightarrow N$ scattering at $N \\sim s M_P^{-2} \\gg 1$. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass $\\sqrt{s}$, although no sign of thermalization is seen to emerge at this level of approximation.

  2. Single photon imaging at ultra-high resolution

    Science.gov (United States)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgrò, C.; Bregeon, J.; Razzano, M.; Pinchera, M.; Tremsin, A.; McPhate, J.; Vallerga, J. V.; Siegmund, O.

    2008-06-01

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 μm for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 μm in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by ˜0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is ˜3 μm FWHM enabling detection resolution better than 6 μm for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of ˜130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  3. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    Science.gov (United States)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology

  4. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a

  5. Assessment of the State of the Art of Ultra High Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  6. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    Science.gov (United States)

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa.

  7. Several different lactase persistence associated alleles and high diversity of the lactase gene in the admixed Brazilian population.

    Science.gov (United States)

    Friedrich, Deise C; Santos, Sidney E B; Ribeiro-dos-Santos, Ândrea K C; Hutz, Mara H

    2012-01-01

    Adult-type hypolactasia is a common phenotype caused by the lactase enzyme deficiency. The -13910 C>T polymorphism, located 14 Kb upstream of the lactase gene (LCT) in the MCM6 gene was associated with lactase persistence (LP) in Europeans. This polymorphism is rare in Africa but several other variants associated with lactase persistence were observed in Africans. The aims of this study were to identify polymorphisms in the MCM6 region associated with the lactase persistence phenotype and to determine the distribution of LCT gene haplotypes in 981 individuals from North, Northeast and South Brazil. These polymorphisms were genotyped by PCR based methods and sequencing. The -13779*C,-13910*T, -13937*A, -14010*C, -14011*T LP alleles previously described in the MCM6 gene region that acts as an enhancer for the LCT gene were identified in Brazilians. The most common LP allele was -13910*T. Its frequency was highly correlated with European ancestry in the Brazilian populations investigated. The -13910*T was higher (0.295) in southern Brazilians of European ancestry and lower (0.175) in the Northern admixed population. LCT haplotypes were derived from the 10 LCT SNPs genotyped. Overall twenty six haplotypes previously described were identified in the four Brazilian populations studied. The Multidimensional Scaling analysis showed that Belém, in the north, was closer to Amerindians. Northeastern and southern Afro-descendants were more related with Bantu-speaking South Africans whereas the Southern population with European ancestry grouped with Southern and Northern Europeans. This study shows a high variability considering the number of LCT haplotypes observed. Due to the highly admixed nature of the Brazilian populations, the diagnosis of hypolactasia in Brazil, based only in the investigation of the -13910*T allele is an oversimplification.

  8. Several different lactase persistence associated alleles and high diversity of the lactase gene in the admixed Brazilian population.

    Directory of Open Access Journals (Sweden)

    Deise C Friedrich

    Full Text Available Adult-type hypolactasia is a common phenotype caused by the lactase enzyme deficiency. The -13910 C>T polymorphism, located 14 Kb upstream of the lactase gene (LCT in the MCM6 gene was associated with lactase persistence (LP in Europeans. This polymorphism is rare in Africa but several other variants associated with lactase persistence were observed in Africans. The aims of this study were to identify polymorphisms in the MCM6 region associated with the lactase persistence phenotype and to determine the distribution of LCT gene haplotypes in 981 individuals from North, Northeast and South Brazil. These polymorphisms were genotyped by PCR based methods and sequencing. The -13779*C,-13910*T, -13937*A, -14010*C, -14011*T LP alleles previously described in the MCM6 gene region that acts as an enhancer for the LCT gene were identified in Brazilians. The most common LP allele was -13910*T. Its frequency was highly correlated with European ancestry in the Brazilian populations investigated. The -13910*T was higher (0.295 in southern Brazilians of European ancestry and lower (0.175 in the Northern admixed population. LCT haplotypes were derived from the 10 LCT SNPs genotyped. Overall twenty six haplotypes previously described were identified in the four Brazilian populations studied. The Multidimensional Scaling analysis showed that Belém, in the north, was closer to Amerindians. Northeastern and southern Afro-descendants were more related with Bantu-speaking South Africans whereas the Southern population with European ancestry grouped with Southern and Northern Europeans. This study shows a high variability considering the number of LCT haplotypes observed. Due to the highly admixed nature of the Brazilian populations, the diagnosis of hypolactasia in Brazil, based only in the investigation of the -13910*T allele is an oversimplification.

  9. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  10. Microstructure-Fibre-Based Optical Parametric Amplification in Telecom Band with Ultra-High Gain Slope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; XIAO Li; ZHANG Lei; HUANG Yi-Dong; PENG Jiang-De

    2006-01-01

    @@ We report a microstructure-fibre-based parametric amplification experiment in telecom band with ultra-high gain slope. A peak on-off gain of 52.3 dB is achieved using 25 m high nonlinear microstructure fibre (MF) and only 5.3 W pump power. The parametric gain slope is up to 580dBW-1 km-1. From the experimental data, the linear coefficient of the MF is estimated to be about 66. 7 W-1 km-1. The experiment shows the great potential of MFs in practical fibre parametric amplifiers.

  11. Systems and methods for advanced ultra-high-performance InP solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  12. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    Science.gov (United States)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  13. Gravitational Radiation from Ultra High Energy Cosmic Rays in Models with Large Extra Dimensions

    CERN Document Server

    Koch, B; Bleicher, M; Koch, Ben; Drescher, Hans-Joachim; Bleicher, Marcus

    2006-01-01

    The effects of classical gravitational radiation in models with large extra dimensions are investigated for ultra high energy cosmic rays (CRs). The cross sections are implemented into a simulation package (SENECA) for high energy hadron induced CR air showers. We predict that gravitational radiation from quasi-elastic scattering could be observed at incident CR energies above $10^9$ GeV for a setting with more than two extra dimensions. It is further shown that this gravitational energy loss can alter the energy reconstruction for CR energies $E_{\\rm CR}\\ge 5\\cdot 10^9$ GeV.

  14. New Spheroidizing Technique of Ultra-High Carbon Steel With Aluminum Addition

    Institute of Scientific and Technical Information of China (English)

    LI Hong-juan; WANG Bao-qi; SONG Xiao-yan; GUO Su-zhen; GU Nan-ju

    2006-01-01

    A new spheroidizing process of ultra-high carbon steel (UHCS) containing C 1.55%, Cr 1.45%, and Al 1.5% in mass percent has been proposed. The effect of processing parameters on the microstructure was analyzed. The UHCS produced by this new process has a microstructure with recrystallized ferrite matrix and fine and uniform carbide particles. After this spheroidizing, the UHCS exhibits good mechanical properties at ambient temperature, for example σb=1 100 MPa, σs=915 MPa, δ=8% and high ratio of σs/σb.

  15. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    Science.gov (United States)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  16. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    Science.gov (United States)

    Czerwinski, Frank; Birsan, Gabriel

    2016-12-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  17. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Directory of Open Access Journals (Sweden)

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  18. World′s first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed "KIZUNA"

    Directory of Open Access Journals (Sweden)

    Takashi Sawai

    2013-01-01

    Full Text Available Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA has developed the "Kizuna" ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan, Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also

  19. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  20. Ultra-high vacuum compatible induction-heated rod casting furnace

    CERN Document Server

    Bauer, Andreas; Münzer, Wolfgang; Regnat, Alexander; Benka, Georg; Meven, Martin; Pedersen, Björn; Pfleiderer, Christian

    2016-01-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bar. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  1. Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials

    CERN Document Server

    Lecaplain, C; Gorodetsky, M L; Kippenberg, T J

    2016-01-01

    Decades ago, the losses of glasses in the near infrared (near-IR) were investigated in views of developments for optical telecommunications. Today, properties in the mid-infrared (mid-IR) are of interest for molecular spectroscopy applications. In particular, high-sensitivity spectroscopic techniques based on high-finesse mid-IR cavities hold high promise for medical applications. Due to exceptional purity and low losses, whispering gallery mode microresonators based on polished alkaline earth metal fluoride crystals (i.e the $\\mathrm{XF_2}$ family, where X $=$ Ca, Mg, Ba, Sr,...) have attained ultra-high quality (Q) factor resonances (Q$>$10$^{8}$) in the near-IR and visible spectral ranges. Here we report for the first time ultra-high Q factors in the mid-IR using crystalline microresonators. Using an uncoated chalcogenide (ChG) tapered fiber, light from a continuous wave quantum cascade laser (QCL) is efficiently coupled to several crystalline microresonators at 4.4 $\\mu$m wavelength. We measure the optica...

  2. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    Science.gov (United States)

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  3. Connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos

    CERN Document Server

    Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    2016-01-01

    We present evidence of a direct connection between high energy $\\gamma$-ray emitting blazars, very high energy neutrinos, and ultra high energy cosmic rays. We first identify potential hadronic sources by selecting $\\gamma$-ray emitters, that are in spatial coincidence with neutrinos detected by IceCube. These are then correlated with ultra high energy cosmic rays from the Pierre Auger Observatory and the Telescope Array scanning in $\\gamma$-ray flux $F_{\\gamma}$ and angular separation between sources and cosmic rays $\\theta$. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT (2FHL) objects with $F_\\gamma\\left(>50\\:\\mathrm{GeV}\\right)\\geq1.8\\times10^{-11}\\:\\mathrm{ph}\\,\\mathrm{cm}^{-2}\\,\\mathrm{s}^{-1}$ and $\\theta\\leq10^{\\circ}$. The probability for this to happen is $1.6 \\times 10^{-5}$, which translates to $5.5 \\times 10^{-4}$ ($3.26\\sigma$) after compensation for trials. No excess of cosmic rays is instead observed for $\\gamma$-ray blazars not in spati...

  4. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction.

    Science.gov (United States)

    Prasad, K Nagendra; Yang, Bao; Shi, John; Yu, Chunyan; Zhao, Mouming; Xue, Sophia; Jiang, Yueming

    2010-01-20

    The health benefits of fruits acting against chronic diseases are ascribed to their antioxidant activities which are mainly responsible due to the presence of phenolic compounds. The use of ultra-high-pressure-assisted extraction (UHPE) has shown great advantages for the extraction of these phenolic compounds from longan fruit pericarp (LFP). Studies were carried out to investigate the effects of UHPE at pressures of 200, 300, 400 and 500 MPa on total phenolic contents, extraction yield, antioxidant and antityrosinase activities from LFP. The antioxidant activities of these extracts were analyzed, using various antioxidant models like 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, total antioxidant capacity and superoxide anion radical scavenging activity. Extract from ultra-high-pressure-assisted extraction at 500MPa (UHPE-500) showed the highest antioxidant activities of all the tested models. In addition, it also showed moderate tyrosinase inhibitory activity. Three phenolic acids, namely gallic acid, ellagic acid, and corilagin were identified and quantified by HPLC. Corilagin content was the highest compared to other phenolic acids identified. UHPE-500 obtained the higher phenolic acid contents compared to other high pressure processing and conventional extractions (CE). Compared with CE, UHPE-500 exhibited good extraction effectiveness in terms of higher extraction yields with high phenolic contents and also with higher antioxidant and antityrosinase activities.

  5. The influence of ultra-high-energy cosmic rays on star formation in the early universe

    CERN Document Server

    Vasiliev, E O; Shchekinov, Yu.A.

    2006-01-01

    The presence of ultra-high-energy cosmic rays (UHECR) results in an increase in the degree of ionization in the post-recombination Universe, which stimulates the efficiency of the production of H$_2$ molecules and the formation of the first stellar objects. As a result, the onset of the formation of the first stars is shifted to higher redshifts, and the masses of the first stellar systems decrease. As a consequence, a sufficient increase in the ionizing radiation providing the reionization of the Universe can take place. We discuss possible observational manifestations of these effects and their dependence on the parameters of UHECR.

  6. Dark matter distribution in the universe and ultra-high energy cosmic rays

    CERN Document Server

    Blasi, P

    2000-01-01

    Two of the greatest mysteries of modern physics are the origin of the dark matter in the universe and the nature of the highest energy particles in the cosmic ray spectrum. We discuss here possible direct and indirect connections between these two problems, with particular attention to two cases: in the first we study the local clustering of possible sources of ultra-high energy cosmic rays (UHECRs) driven by the local dark matter overdensity. In the second case we study the possibility that UHECRs are directly generated by the decay of weakly unstable super heavy dark matter.

  7. Laser-Machined Ultra-High-Q Microrod Resonators for Nonlinear Optics

    CERN Document Server

    Del'Haye, Pascal; Papp, Scott B

    2013-01-01

    Optical whispering-gallery microresonators are useful tools in microphotonics, and nonlinear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lathe machining of fused-quartz rods. The resonators can be fabricated in less than one minute and the obtained optical quality factors exceed Q = 10^9. Demonstrated resonator diameters are in the range between 170 {\\mu}m and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering and four-wave mixing.

  8. Diffuse ultra-high energy neutrino fluxes and physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri, E-mail: atri@hri.res.i [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Choubey, Sandhya; Gandhi, Raj [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Watanabe, Atsushi [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

    2010-06-07

    We study spectral distortions of diffuse ultra-high energy (UHE) neutrino flavour fluxes resulting due to physics beyond the Standard Model (SM). Even large spectral differences between flavours at the source are massaged into a common shape at earth by SM oscillations, thus, any significant observed spectral differences are an indicator of new physics present in the oscillation probability during propagation. Lorentz symmetry violation (LV) and neutrino decay are examples, and result in significant distortion of the fluxes and of the well-known bounds on them, which may allow UHE detectors to probe LV parameters, lifetimes and the mass hierarchy over a broad range.

  9. Searching for signals of magnetic lensing in ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Golup, Geraldina; Harari, Diego; Mollerach, Silvia; Roulet, Esteban, E-mail: golupg@ib.cnea.gov.ar, E-mail: harari@cab.cnea.gov.ar, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar [CONICET and Centro Atómico Bariloche, Av. Bustillo 9500, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    Ultra-high energy cosmic rays are mostly charged particles and they are therefore deflected by magnetic fields on their path from their sources to Earth. An interesting phenomenon arising from these deflections is the appearance of multiple images of a source, i.e. cosmic rays with the same energy coming from the same source that can arrive to the Earth from different directions. In this work we present a technique to identify secondary images, produced by the regular component of the galactic magnetic field, benefiting from the fact that near caustics the flux is significantly magnified.

  10. Mechanism of Austenite Evolution During Deformation of Ultra-High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-lan; SUN Xin-jun; DONG Han

    2008-01-01

    The mechanism of transformation of austenite to cementite and pearlite during the deformation of ultra-high carbon steel was discussed. The results indicate that the pearlite and cementite can be induced by deformation be-tween Acm to Arcm. The transformation during deformation is still considered as a diffusion-controlled process. With the increase of time and reduction, the pearlite fraction increased. At the beginning of the transformation, the pearli- te was lamelliform. When the rate of reduction was increased to 70%, some of the induced lamellar pearlite was bro-ken up under deformation.

  11. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, P. S.; Cavdar, U.

    2015-03-30

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  12. Microscopic description of rotation: From ground states to the extremes of ultra-high spin

    CERN Document Server

    Afanasjev, A V

    2013-01-01

    Recent progress in the microscopic description of rotational properties within covariant density functional theory (CDFT) is presented. It is shown that it provides an accurate description of rotational bands both in the paired regime at low spin and in the unpaired regime at ultra-high spins. The predictive power of CDFT is verified by comparing the CDFT predictions for band crossing features in the $A\\geq 242$ actinides with new experimental data. In addition, possible role of the Coulomb antipairing effect for proton pairing is discussed.

  13. A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions

    CERN Document Server

    Scott, R H H

    2015-01-01

    A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

  14. Ultra-High Performance ‘Ductile’ Concrete Technology Toward Sustainable Construction

    Directory of Open Access Journals (Sweden)

    Yen Lei Voo

    2011-07-01

    Full Text Available This paper briefly presents an overview of the material characteristics of a Malaysia blend of ultra-high performance ductile concrete (UHPdC know as DURA®. Examples of the environmental impact calculations of UHPdC structures compared to that of conventional reinforced concrete design are presented. The comparison studies show that many structures constructed from UHPdC are generally more environmentally sustainable than built of the conventional reinforced concrete with respect to the reduction of CO2 emissions and embodied energy. The enhanced durability of UHPdC also provides for significant improvements in the design life, which further supporting the concept of sustainable construction.

  15. Diffuse Ultra-High Energy Neutrino Fluxes and Physics Beyond the Standard Model

    CERN Document Server

    Bhattacharya, Atri; Gandhi, Raj; Watanabe, Atsushi

    2009-01-01

    We study the effects of physics beyond the Standard Model on diffuse fluxes of neutrino flavours from ultra-high-energy (UHE) sources. Using neutrino decay and Lorentz symmetry violation (LV) as examples, we show that they would result in significant spectral distortion of the well-known bounds on such fluxes. This would allow UHE detectors with some flavour detection sensitivity to probe lifetimes and LV parameters over a broad range beyond present bounds and the neutrino mass hierarchy via distinctive signatures. We indicate how this method may be used to study other new physics scenarios.

  16. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    OpenAIRE

    Blaabjerg, M.; Ruprecht, K.; Sinnecker, T.; Kondziella, D.; Niendorf, T; Kerrn-Jespersen, B.M.; Lindelof, M.; Lassmann, H; Kristensen, B.W.; Paul, F; Illes, Z.

    2016-01-01

    OBJECTIVE: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. METHODS: We performed a detailed neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential ...

  17. Ultra-high energy cosmic rays clustering, GUT scale and neutrino masses

    CERN Document Server

    Fodor, Z

    2002-01-01

    The clustering of ultra high energy (above 5\\cdot 10^{19} eV) cosmic rays (UHECR) suggests that they might be emitted by compact sources. We present a statistical analysis on the source density based on the multiplicities. The propagation of UHECR protons is studied in detail. The UHECR spectrum is consistent with the decay of GUT scale particles and/or with the Z-burst. The predicted GUT mass is m_X=10^b GeV, where b=14.6_{-1.7}^{+1.6}. Our neutrino mass prediction depends on the origin of the power part of the spectrum: m_\

  18. The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays

    CERN Document Server

    Bluemer, Johannes

    2008-01-01

    The focus of this article is on recent results on ultra-high energy cosmic rays obtained with the Pierre Auger Observatory. The world's largest instrument of this type and its performance are described. The observations presented here include the energy spectrum, the primary particle composition, limits on the fluxes of photons and neutrinos and a discussion of the anisotropic distribution of the arrival directions of the most energetic particles. Finally, plans for the construction of a Northern Auger Observatory in Colorado, USA, are discussed.

  19. O-Ring sealing arrangements for ultra-high vacuum systems

    Science.gov (United States)

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  20. Features of the galactic magnetic field regarding deflections of ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Marcus; Erdmann, Martin; Mueller, Gero; Urban, Martin [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    Most recent models of the galactic magnetic field have been derived from Faraday rotation measurements and imply strong deflections even for ultra-high energy cosmic rays. We investigate the characteristics of the different field parametrizations and point out similarities and interesting features. Among them are extragalactic regions which are invisible for an Earth bound observation and the transition from diffuse to ballistic behaviour in the 1 EeV energy regime. Applying this knowledge to a directional analysis, there are indications for deflection patterns by the galactic magnetic field in cosmic ray arrival directions measured by the Pierre Auger Observatory.

  1. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    Science.gov (United States)

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device.

  2. A behavioral intervention in a cohort of Japanese-Brazilians at high cardiometabolic risk

    Directory of Open Access Journals (Sweden)

    Bianca de Almeida-Pititto

    2012-08-01

    Full Text Available OBJECTIVE: To assess the effect of a health promotion program on cardiometabolic risk profile in Japanese-Brazilians. METHODS: A total of 466 subjects from a study on diabetes prevalence conducted in the city of Bauru, southeastern Brazil, in 2000 completed a 1-year intervention program (2005-2006 based on healthy diet counseling and physical activity. Changes in blood pressure and metabolic parameters in the 2005-2006 period were compared with annual changes in these same variables in the 2000-2005 period. RESULTS: During the intervention, there were greater annual reductions in mean (SD waist circumference [-0.5(3.8 vs. 1.2(1.2 cm per year, p<0.001], systolic blood pressure [-4.6(17.9 vs. 1.8(4.3 mmHg per year, p<0.001], 2-hour plasma glucose [-1.2(2.1 vs. -0.2(0.6 mmol/L per year, p<0.001], LDL-cholesterol [-0.3(0.9 vs. -0.1(0.2 mmol/L per year, p<0.001] and Framingham coronary heart disease risk score [-0.25(3.03 vs. 0.11(0.66 per year, p=0.02] but not in triglycerides [0.2(1.6 vs. 0.1(0.42 mmol/L per year, p<0.001], and fasting insulin level [1.2(5.8 vs. -0.7(2.2 IU/mL per year, p<0.001] compared with the pre-intervention period. Significant reductions in the prevalence of impaired fasting glucose/impaired glucose tolerance and diabetes were seen during the intervention (from 58.4% to 35.4%, p<0.001; and from 30.1% to 21.7%, p= 0.004, respectively. CONCLUSIONS: A one-year community-based health promotion program brings cardiometabolic benefits in a high-risk population of Japanese-Brazilians.

  3. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  4. Characteristics of violence suffered by high school adolescents in a Brazilian state capital

    Directory of Open Access Journals (Sweden)

    Christine Baccarat de Godoy Martins

    2015-09-01

    Full Text Available The aims of this cross-sectional study was to describe the characteristics of violence suffered by high school adolescent students of public schools in a Brazilian state capital. The data correspond to 456 adolescent victims of violence, collected by means of a questionnaire and processed by Epi-Info, in which analyses considered a value of p<0.05. Most of the adolescents were girls and the variables (gender, age, relationship with aggressor, frequency/length of time of abuse, place of occurrence and its interruption varied according to the type of violence (bullying, physical, psychological, threat, sexual, witness, harassment, cyber-bullying, abandonment, neglect, child labor and parental alienation. The results represent the scene of violence suffered by adolescents, a reality that is poorly known and reported to official bodies, however, the descriptive data represent only part of the problem, highlighting the need to develop new studies to further investigate the various facets of the theme and to suggest new measures for facing violence in adolescence.

  5. On LiF:Mg,Cu,P and LiF:Mg,Ti phosphors high & ultra-high dose features

    CERN Document Server

    Obryk, Barbara; de Barros, Vinicius S; Guzzo, Pedro L; Bilski, Paweł

    2013-01-01

    LiF:Mg,Ti and LiF:Mg,Cu,P are well known thermoluminescence (TL) dosimetry materials since many years. A few years ago their properties seemed well known and it was widely believed that they are not suitable for the measurement of doses above the saturation level of the TL signal, which for both materials occur at about 1 kGy. The high-dose high-temperature TL emission of LiF:Mg,Cu,P observed at the IFJ in 2006, which above 30 kGy takes the form of the so-called TL peak B, opened the way to use this material for measuring the dose in the high and ultra-high range, in particular for the monitoring of ionizing radiation around the essential electronic elements of high-energy accelerators, also fission and fusion facilities, as well as for emergency dosimetry. This discovery initiated studies of high and ultra-high dose characteristics of both of these phosphors, which turned out to be significantly different in many aspects. These studies not only strive to refine the method for measuring high doses based on th...

  6. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard

    2011-05-01

    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  7. Approaches for springback reduction when forming ultra high-strength sheet metals

    Science.gov (United States)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  8. KELT-16b: A highly irradiated, ultra-short period hot Jupiter nearing tidal disruption

    CERN Document Server

    Oberst, Thomas E; Colón, Knicole D; Angerhausen, Daniel; Bieryla, Allyson; Ngo, Henry; Stevens, Daniel J; Stassun, Keivan G; Gaudi, B Scott; Pepper, Joshua; Penev, Kaloyan; Mawet, Dimitri; Latham, David W; Heintz, Tyler M; Osei, Baffour W; Collins, Karen A; Kielkopf, John F; Visgaitis, Tiffany; Reed, Phillip A; Escamilla, Alejandra; Yazdi, Sormeh; McLeod, Kim K; Lunsford, Leanne T; Spencer, Michelle; Joner, Michael D; Gregorio, Joao; Gaillard, Clement; Matt, Kyle; Dumont, Mary Thea; Stephens, Denise C; Cohen, David H; Jensen, Eric L N; Novati, Sebastiano Calchi; Bozza, Valerio; Labadie-Bartz, Jonathan; Siverd, Robert J; Lund, Michael B; Beatty, Thomas G; Eastman, Jason D; Penny, Matthew T; Manner, Mark; Zambelli, Roberto; Fulton, Benjamin J; DePoy, D L; Marshall, Jennifer L; Pogge, Richard W; Gould, Andrew; Trueblood, Mark; Trueblood, Patricia

    2016-01-01

    We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright ($V = 11.7$) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be a F7V star with $T_{\\rm eff} = 6236\\pm54$ K, $\\log{g_\\star} = 4.253_{-0.036}^{+0.031}$, $[Fe/H] = -0.002_{-0.085}^{+0.086}$, $M_\\star = 1.211_{-0.046}^{+0.043} M_\\odot$, and $R_\\star = 1.360_{-0.053}^{+0.064} R_\\odot$. The planet is a relatively high mass inflated gas giant with $M_P = 2.75_{-0.15}^{+0.16} M_J$, $R_P = 1.415_{-0.067}^{+0.084} R_J$, density $\\rho_{P} = 1.20\\pm0.18$ g cm$^{-3}$, surface gravity $\\log{g_{P}} = 3.530_{-0.049}^{+0.042}$, and $T_{eq} = 2453_{-47}^{+55}$ K. The best-fitting linear ephemeris is $T_C = 2457247.24791\\pm0.00019$ BJD$_{TBD}$ and $P = 0.9689951 \\pm 0.0000024$ days. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with $P < 1$ day. Its ultra-short period and high irradiation make it a benchmark target for atmos...

  9. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  10. Cosmological fast radio bursts and ultra-high energy cosmic rays

    CERN Document Server

    Li, Xiang; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2013-01-01

    The existence of fast radio bursts (FRBs), a new type of cosmological transients, has been established recently. The report of two FRB candidates following two long Gamma-ray Bursts (GRBs) in a search for possible connection between FRBs and GRBs, if confirmed in the future, will favor the origin of delayed collapse of supramassive neutron star (SMNS) to a black hole. The energy injected into the surrounding material by a SMNS will be in order of 1e52 erg unless the gravitational wave radiation is dominant. Energetic forward shock will be driven and ultra-high energy cosmic rays can be accelerated. Moreover, benefit from a very high rate of FRBs (i.e., 1e4 sky^-1 day^-1), these ultra-high energy cosmic rays likely contribute significantly to the observed ones. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, can play an important role in producing 1e18~1e20 eV cosmic rays if SMNSs were formed in a good fraction of mergers and the merger rate is 1e3 yr^-1 Gpc^-3. S...

  11. Garnet growth interruptions during high- and ultra high-pressure metamorphism constrained by thermodynamic forward models

    Science.gov (United States)

    Konrad-Schmolke, M.; Schildhauer, H.

    2013-12-01

    Growth and chemical composition of garnet in metamorphic rocks excellently reflect thermodynamic as well kinetic properties of the host rock during garnet growth. This valuable information can be extracted from preserved compositional growth zoning patterns in garnet. However, metamorphic rocks often contain multiple garnet generations that commonly develop as corona textures with distinct compositional core-overgrowth features. This circumstance can lead to a misinterpretation of information extracted from such grains if the age- and metamorphic relations between different garnet generations are unclear. Especially garnets from high-pressure (HP) and ultra high-pressure (UHP) rocks often preserve textures that show multiple growth stages reflected in core-overgrowth differences both in main and trace element composition and in the inclusion assemblage. Distinct growth zones often have sharp boundaries with strong compositional gradients and/or inclusion- and trace-element-enriched zones. Such growth patterns indicate episodic garnet growth as well as growth interruptions during the garnet evolution. A quantitative understanding of these distinct growth pulses enables the relationship between reaction path, age determinations in spatially controlled garnet domains or temperature-time constraints to be fully characterised. In this study we apply thermodynamic forward models to simulate garnet growth along a series of HP and UHP P-T paths, representative for subducted oceanic crust. We study garnet growth in different basaltic rock compositions and under different element fractionation scenarios in order to detect path-dependent P-T regions of limited or ceased garnet growth. Modeled data along P-T trajectories involving fractional crystallisation are assembled in P-T diagrams reflecting garnet growth in a changing bulk rock composition. Our models show that in all investigated rock compositions garnet growth along most P-T trajectories is discontinuous, pulse

  12. Controlled Rolling and Controlled Cooling Technology of Ultra-High Strength Steel with 700 Mpa Grade

    Institute of Scientific and Technical Information of China (English)

    QI Shi-ze; ZHANG Pi-jun; DU Lin-xiu; LIU Xiang-hua; WANG Guo-dong

    2004-01-01

    With Gleeble-1500 system, the influences of rolling temperature, finishing temperature and cooling rate on the mechanical properties of two ultra-high strength steels were analyzed. The microstructure of the hot rolled specimens was observed by optical microscope, TEM and SEM. The TRIP of HSLA steels was studied. The results show that the yield stress of 700 Mpa can be reached for two steels. The controlled rolling and controlled cooling technology has different effects on two steels, but it is rational to adopt finishing temperature 800 ℃ for both of them. The microstructure of the steels is mainly bainite, and the influence factors of mechanical properties are the size of bainite, and the size, distribution, composition and morphology of secondary phases. The deformation of high molybdenum steels at a high temperature with a high cooling rate would promote TRIP.

  13. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    Science.gov (United States)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  14. Investigation of Plasma Eects in Ultra High Molecular Weight Polyethylene (UHMWPE) Cords

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    modication for improved wetting and/or adhesion with other polymeric materials. Atmospheric pressure plasma treatment is promising for this purpose due to its environmental compatibility, high treatment eects without aecting the textural characteristics of the bulk material, its applicability to a variety......Ultra-high-molecular-weight polyethylene (UHMWPE) has been widely used because of its high chemical stabil- ity, high impact strength, exibility and low cost. Its eld of applications includes use in composites, packing for microelectronic components and biomaterials, usually requiring its surface...... of shapes, and easy up-scaling and construction of in-line production processes. An atmospheric pressure dielectric barrier discharge (DBD) plasma is used to study surface modication eect on UHMWPE cords, operated at a frequency of ca. 40 kHz in He, He/O2, O2 and N2 gases. The cords were continuously...

  15. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    Directory of Open Access Journals (Sweden)

    Fumihisa Ono

    2016-12-01

    Full Text Available This research shows that small animals, tardigrades (Milnesium tardigradum in tun (dehydrated state and Artemia salina cists (dried eggs can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  16. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Shilton, Richie J., E-mail: richard.shilton@iit.it [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Travagliati, Marco [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Beltram, Fabio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Cecchini, Marco, E-mail: marco.cecchini@nano.cnr.it [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  17. Quality of Experience for Large Ultra-High-Resolution Tiled Displays with Synchronization Mismatch

    Directory of Open Access Journals (Sweden)

    Deshpande Sachin

    2011-01-01

    Full Text Available This paper relates to quality of experience when viewing images, video, or other content on large ultra-high-resolution displays made from individual display tiles. We define experiments to measure vernier acuity caused by synchronization mismatch for moving images. The experiments are used to obtain synchronization mismatch acuity threshold as a function of object velocity and as a function of occlusion or gap width. Our main motivation for measuring the synchronization mismatch vernier acuity is its relevance in the application of tiled display systems, which create a single contiguous image using individual discrete panels arranged in a matrix with each panel utilizing a distributed synchronization algorithm to display parts of the overall image. We also propose a subjective assessment method for perception evaluation of synchronization mismatch for large ultra-high-resolution tiled displays. For this, we design a synchronization mismatch measurement test video set for various tile configurations for various interpanel synchronization mismatch values. The proposed method for synchronization mismatch perception can evaluate tiled displays with or without tile bezels. The results from this work can help during design of low-cost tiled display systems, which utilize distributed synchronization mechanisms for a contiguous or bezeled image display.

  18. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    Science.gov (United States)

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment.

  19. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Taylor, Andrew M. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Lemoine, Martin [Institut d' Astrophysique de Paris, CNRS, UPMC, 98 bis Boulevard Arago, F-75014 Paris (France); Waxman, Eli, E-mail: lemoine@iap.fr [Physics Faculty, Weizmann Institute, P.O. Box 26, Rehovot 7600 (Israel)

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ∼20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ∼> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  20. Visualizing potential energy curves and conformations on ultra high-resolution display walls.

    Science.gov (United States)

    Kirschner, Karl N; Reith, Dirk; Jato, Oliver; Hinkenjann, André

    2015-11-01

    In this contribution, we examine how visualization on an ultra high-resolution display wall can augment force-field research in the field of molecular modeling. Accurate force fields are essential for producing reliable simulations, and subsequently important for several fields of applications (e.g. rational drug design and biomolecular modeling). We discuss how using HORNET, a recently constructed specific ultra high-resolution tiled display wall, enhances the visual analytics that are necessary for conformational-based interpretation of the raw data from molecular calculations. Simultaneously viewing multiple potential energy graphs and conformation overlays leads to an enhanced way of evaluating force fields and in their optimization. Consequently, we have integrated visual analytics into our existing Wolf2Pack workflow. We applied this workflow component to analyze how major AMBER force fields (Parm14SB, Gaff, Lipid14, Glycam06j) perform at reproducing the quantum mechanics relative energies and geometries of saturated hydrocarbons. Included in this comparison are the 1996 OPLS force field and our newly developed ExTrM force field. While we focus on atomistic force fields the ideas presented herein are generalizable to other research areas, particularly those that involve numerous representations of large data amounts and whose simultaneous visualization enhances the analysis.

  1. Radio galaxies and the origin of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Massaglia, S. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy)

    2007-03-15

    Among the possible sources of ultra-high energy cosmic rays are the hot-spots of Fanaroff-Rlley II radio galaxies. These regions meet the requirements of size, magnetic field intensity and presence of strong shocks for accelerating particles up to energies that exceed 10{sup 21} eV. On the other hand, the interaction with the photons of the Cosmic Microwave Background radiation, the Greisen-Zatsepin-Kuz'min effect, dictates that the sources of particles with energy above 4x10{sup 19} eV must be within 130 Mpc, at most. There are not very many FR II radio galaxies within this distance, i.e. 15 objects. Once the statistics of events for detection of cosmic rays at these energies will have reached reasonable levels (see the Pierre Auger Experiment [J.W. Cronin, Nucl. Phys. B 138 (2005) 465]), looking for the arrival directions will either confirm or rule out the role of FR II hot-spots as sources of ultra-high energy cosmic rays.

  2. FORTE satellite constraints on ultra-high energy cosmic particle fluxes

    CERN Document Server

    Lehtinen, N G; Jacobson, A R; Roussel-Dupre, R A; Lehtinen, Nikolai G.; Gorham, Peter W.; Jacobson, Abram R.; Roussel-Dupre, Robert A.

    2004-01-01

    The FORTE (Fast On-orbit Recording of Transient Events) satellite records bursts of electromagnetic waves arising from near the Earth's surface in the radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna. We investigate the possible RF signature of ultra-high energy cosmic-ray particles in the form of coherent Cherenkov radiation from cascades in ice. We calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE) neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff. Some constraints on supersymmetry model parameters are also estimated due to the limits that FORTE sets on the UHE neutralino flux. The FORTE database consists of over 4 million recorded events to date, including in principle some events associated with UHE neutrinos. We search for candidate FORTE events in the period from September 1997 to December 1999. The candidate production mechanism is via coherent VHF radiation from a UHE neutrino shower in the Greenland ice sheet. We...

  3. 信息动态%Size Effect on Strength of Ultra-high Strength Concrete RPC

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Reactive Powder Concrete (RPC)is a new kind of ultra-high strength cement based composite with excellent mechanics performance and durability. In order to make RPC used in structural engineering effectively,size effect on strength of the ultra high strength concrete RPC specimen is experimental studied and the mechanism is analyzed in this paper. Test results show that if the 4 cm cube compressive strength is the control strength,conversion coefficients of 10 em cube compressive strength at 150 MPa and 200 MPa grade are 0.81 and 0.76 respectively; conversion coefficients of 10 cm× 10 cm× 30 cm prism compressive strength at 150 MPa and 200 MPa grade are 0.71 and 0. 63 respectively; the size effect conversion coefficient tends to decrease with the increase of control strength, the larger the specimen size, the lower the compressive strength. RPC is a typical brittle material. It extends instability quickly after cracking;damage concentrated in the local area,and therefore appears higher size effect.

  4. Simulation about hot stamping of ultra-high strength steel on the basis of lightweight technology

    Institute of Scientific and Technical Information of China (English)

    Liu Qiang; Ma Fangwu; Wang Xiaona; Yao Zaiqi; Song Wei; Zhao Fuquan; Ma Mingttu; Song Leifeng

    2012-01-01

    With the development of automobile lightweight, it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping, which offers the possibility to reduce the weight of automobiles and maintain the safety requirement. In order to complete hot stamping, it is important to design the structure of parts reasonably, which is related with reasonable matching of strength. The objective of this paper is to guide the design of parts manufactured by hot stamping and find the forming technical requirements of vehicle performance. Through experiments, the paper obtains the stress and strain curves at different deformation temperatures and strain rates. Based on experimental data, the constitutive relationship model is established which can reflect the deformation capacity of ultra-high strength steel during the process of hot stamping. Combined with finite element simulation results of hot stamping by commercial soft- ware AUTOFORM, transfer path of load and matching law of strength, the paper determines the design criteria and forming technical requirements of parts manufactured by hot stamping. At the same time, the impact performance of front cross member internal plate is taken into consideration.

  5. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    Science.gov (United States)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  6. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    Science.gov (United States)

    Smith, Russell W. (Inventor); Rivers, H. Kevin (Inventor); Sikora, Joseph G. (Inventor); Roth, Mark C. (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  7. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  8. Electron microscopy investigation of interface between carbon fiber and ultra high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Stepashkin, A.A.; Chukov, D.I., E-mail: dil_chukov@yahoo.com; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Effect of the carbon fibers surface treatments on the adhesive interactions in UHMWPE composites was studied. • Air oxidation of carbon filler ensures most significant increase in adhesion interaction in UHMWPE based composites. • Nanosized UHMWPE fibers with 20–40 nm in diameter and with 6–10 μm in length, was observed on the surface of carbon fibers. -- Abstract: Scanning electron microscopy was used to investigate the surface of initial and modified high-strength and high-modulus carbon fibers as well as interfaces in the ultra high molecular weight polyethylene, filled with above-mentioned fibers. Effect of the fibers surface modifying method on the adhesive interactions in composites was studied. It was observed that interaction of matrix with a modified surface of fibers results in a formation of bonds with strength higher than the yield strength of the polymer. It results in a formation of long nanosized polymer wires at tensile fracture of composites.

  9. APPLICATION OF ULTRA-HIGH PERFORMANCE CONCRETE TO PEDESTRIAN CABLE-STAYED BRIDGES

    Directory of Open Access Journals (Sweden)

    CHI-DONG LEE

    2013-06-01

    Full Text Available The use of ultra-high performance concrete (UHPC, which enables reducing the cross sectional dimension of the structures due to its high strength, is expected in the construction of the super-long span bridges. Unlike conventional concrete, UHPC experiences less variation of material properties such as creep and drying shrinkage and can reduce uncertainties in predicting time-dependent behavior over the long term. This study describes UHPC’s material characteristics and benefits when applied to super-long span bridges. A UHPC girder pedestrian cable-stayed bridge was designed and successfully constructed. The UHPC reduced the deflections in both the short and long term. The cost analysis demonstrates a highly competitive price for UHPC. This study indicates that UHPC has a strong potential for application in the super-long span bridges.

  10. An Efficient, Movable Single-Particle Detector for Use in Cryogenic Ultra-High Vacuum Environments

    CERN Document Server

    Spruck, Kaija; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2014-01-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut f\\"ur Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to $\\sim$ 10 K and consist fully of ultra-high vacuum (UHV) compatible, high-temperature bakeable and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring (CSR). We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  11. An ultra-low noise, high-voltage piezo-driver

    Science.gov (United States)

    Pisenti, N. C.; Restelli, A.; Reschovsky, B. J.; Barker, D. S.; Campbell, G. K.

    2016-12-01

    We present an ultra-low noise, high-voltage driver suited for use with piezoelectric actuators and other low-current applications. The architecture uses a flyback switching regulator to generate up to 250 V in our current design, with an output of 1 kV or more possible with small modifications. A high slew-rate op-amp suppresses the residual switching noise, yielding a total root-mean-square noise of ≈100 μV (1 Hz-100 kHz). A low-voltage (±10 V), high bandwidth signal can be summed with unity gain directly onto the output, making the driver well-suited for closed-loop feedback applications. Digital control enables both repeatable setpoints and sophisticated control logic, and the circuit consumes less than 150 mA at ±15 V.

  12. An ultra-low noise, high-voltage piezo-driver.

    Science.gov (United States)

    Pisenti, N C; Restelli, A; Reschovsky, B J; Barker, D S; Campbell, G K

    2016-12-01

    We present an ultra-low noise, high-voltage driver suited for use with piezoelectric actuators and other low-current applications. The architecture uses a flyback switching regulator to generate up to 250 V in our current design, with an output of 1 kV or more possible with small modifications. A high slew-rate op-amp suppresses the residual switching noise, yielding a total root-mean-square noise of ≈100 μV (1 Hz-100 kHz). A low-voltage (±10 V), high bandwidth signal can be summed with unity gain directly onto the output, making the driver well-suited for closed-loop feedback applications. Digital control enables both repeatable setpoints and sophisticated control logic, and the circuit consumes less than 150 mA at ±15 V.

  13. Emerging concepts in high-impact publishing: insights from the First Brazilian Colloquium on High Impact Research and Publishing

    Directory of Open Access Journals (Sweden)

    Valerie Matarese

    2010-12-01

    Full Text Available Reports of scientific research are published by selective journals only when they meet stringent criteria, first and foremost of which are the quality and importance of the research. Even when the research is excellent, other elements come into play to determine if the manuscript will be accepted for publication. Many of these factors are under direct control of the researcher-author, but not all authors are aware of the elements of high-impact scientific writing. At the First Brazilian Colloquium on High Impact Research and Publishing, editors of leading biomedical journals provided insight on the aspects of scientific reporting that favor acceptance (or immediate rejection. This commentary summarizes the editors' advice and uses the debate that followed as the basis for analyzing emerging concepts in high-impact publishing. Lessons learned from this meeting are relevant to researcher-authors in other non-anglophone countries as well as to their educators and administrators who wish to improve the impact of the research that they support and finance.

  14. Ultra high risk of psychosis on committal to a young offender prison: an unrecognised opportunity for early intervention.

    LENUS (Irish Health Repository)

    Flynn, Darran

    2012-08-01

    The ultra high risk state for psychosis has not been studied in young offender populations. Prison populations have higher rates of psychiatric morbidity and substance use disorders. Due to the age profile of young offenders one would expect to find a high prevalence of individuals with pre-psychotic or ultra-high risk mental states for psychosis (UHR). Accordingly young offender institutions offer an opportunity for early interventions which could result in improved long term mental health, social and legal outcomes. In the course of establishing a mental health in-reach service into Ireland\\'s only young offender prison, we sought to estimate unmet mental health needs.

  15. Ultra-high-Q microcavities fabricated on fused silica chips with three-dimentional arrangement by femtosecond laser direct writing

    CERN Document Server

    Lin, Jintian; Ma, Yaoguang; Fang, Wei; He, Fei; Qiao, Lingling; Tong, Limin; Cheng, Ya; Xu, Zhizhan

    2011-01-01

    We report on the fabrication of ultra-high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the high spatial resolution and three-dimensional nature of femtosecond laser direct writing. The processing mainly consists of two steps: (1) formation of freestanding microdisks by femtosecond laser direct writing and subsequent chemical wet etching; and (2) transformation of microdisks to microtoroids by annealing with CO2 laser. We show that three-dimensionally arranged ultra-high Q microcavities with a Q-factor up to 1.07x10^6 can be achieved.

  16. Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes

    Institute of Scientific and Technical Information of China (English)

    LAI Jianzhong; SUN Wei

    2008-01-01

    Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder.The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB).The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times.The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave.Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials.The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact.The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.

  17. MODIFICATION THE CEMENTIOUS MATERIAL OF ULTRA-HIGH-STRENGTH SLEEPER CONCRETE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthesis reaction (HSR) in the autoclave-cured condition. The replacement of cement by CSF and PQSS can significantly increase the flexural and compressive strength,which reach 22MPa and 150MPa respectively ,and decrease the porosity of the cement mortar. The ratio of fine aggregation, standard sand to cementious material has significant influence on the mortar strength. The mechanisms involved in cement and natural mineral flour and the HSR are presented. CaO/SiO2 ratio ranges from 3.20 to 1.11, the main hydrate phase is C2SH and there is not Tobermorite through X-Ray diffraction qualitative analysis. The new and ultra-high strength cementious material as basic material of sleeper concrete can be used in prestressed reinforcement sleeper concrete.

  18. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  19. Phyllosphere Metaproteomes of Trees from the Brazilian Atlantic Forest Show High Levels of Functional Redundancy.

    Science.gov (United States)

    Lambais, M R; Barrera, S E; Santos, E C; Crowley, D E; Jumpponen, A

    2017-01-01

    The phyllosphere of the Brazilian Atlantic Forest has been estimated to contain several million bacterial species that are associated with approximately 20000 plant species. Despite the high bacterial diversity in the phyllosphere, the function of these microorganisms and the mechanisms driving their community assembly are largely unknown. In this study, we characterized the bacterial communities in the phyllospheres of four tree species of the Atlantic Forest (Mollinedia schottiana, Ocotea dispersa, Ocotea teleiandra, and Tabebuia serratifolia) and their metaproteomes to examine the basic protein functional groups expressed in the phyllosphere. Bacterial community analyses using 16S rRNA gene sequencing confirmed prior observations that plant species harbor distinct bacterial communities and that plants of the same taxon have more similar communities than more distantly related taxa. Using LC-ESI-Q-TOF, we identified 216 nonredundant proteins, based on 3503 peptide mass spectra. Most protein families were shared among the phyllosphere communities, suggesting functional redundancy despite differences in the species compositions of the bacterial communities. Proteins involved in glycolysis and anaerobic carbohydrate metabolism, solute transport, protein metabolism, cell motility, stress and antioxidant responses, nitrogen metabolism, and iron homeostasis were among the most frequently detected. In contrast to prior studies on crop plants and Arabidopsis, a low abundance of OTUs related to Methylobacterium and no proteins associated with the metabolism of one-carbon molecules were detected in the phyllospheres of the tree species studied here. Our data suggest that even though the phyllosphere bacterial communities of different tree species are phylogenetically diverse, their metaproteomes are functionally convergent with respect to traits required for survival on leaf surfaces.

  20. Nosocomial infections in brazilian pediatric patients: using a decision tree to identify high mortality groups

    Directory of Open Access Journals (Sweden)

    Julia M.M. Lopes

    2009-04-01

    Full Text Available Nosocomial infections (NI are frequent events with potentially lethal outcomes. We identified predictive factors for mortality related to NI and developed an algorithm for predicting that risk in order to improve hospital epidemiology and healthcare quality programs. We made a prospective cohort NI surveillance of all acute-care patients according to the National Nosocomial Infections Surveillance System guidelines since 1992, applying the Centers for Disease Control and Prevention 1988 definitions adapted to a Brazilian pediatric hospital. Thirty-eight deaths considered to be related to NI were analyzed as the outcome variable for 754 patients with NI, whose survival time was taken into consideration. The predictive factors for mortality related to NI (p < 0.05 in the Cox regression model were: invasive procedures and use of two or more antibiotics. The mean survival time was significantly shorter (p < 0.05 with the Kaplan-Meier method for patients who suffered invasive procedures and for those who received two or more antibiotics. Applying a tree-structured survival analysis (TSSA, two groups with high mortality rates were identified: one group with time from admission to the first NI less than 11 days, received two or more antibiotics and suffered invasive procedures; the other group had the first NI between 12 and 22 days after admission and was subjected to invasive procedures. The possible modifiable factors to prevent mortality involve invasive devices and antibiotics. The TSSA approach is helpful to identify combinations of predictors and to guide protective actions to be taken in continuous-quality-improvement programs.

  1. High frequency of mutation G377S in Brazilian type 3 Gaucher disease patients

    Directory of Open Access Journals (Sweden)

    R. Rozenberg

    2006-09-01

    Full Text Available Gaucher disease (GD, the most prevalent lysosome storage disorder, presents an autosomal recessive mode of inheritance. It is a paradigm for therapeutic intervention in medical genetics due to the existence of effective enzyme replacement therapy. We report here the analysis of GD in 262 unrelated Brazilian patients, carried out in order to establish the frequency of the most common mutations and to provide prognostic information based on genotype-phenotype correlations. Among 247 type 1 GD patients, mutation N370S was detected in 47% of all the alleles, but N370S/N370S homozygosity was found in only 10% of the patients, a much lower frequency than expected, suggesting that most individuals presenting this genotype may not receive medical attention. Recombinant alleles were detected at a high frequency: 44% of the chromosomes bearing mutation L444P had other mutations derived from the pseudogene sequence, present in 25% of patients. Three neuronopathic type 2 patients were homozygous for L444P, all presenting additional mutations (E326K or recombinant alleles that probably lead to the more severe phenotypes. Six children, classified as type 1 GD patients, had a L444P/L444P genotype, showing that neuronopathic symptoms may only manifest later in life. This would indicate the need for a higher treatment dose during enzyme replacement therapy. Finally, mutation G377S was present in 4 homozygous type 1 patients and also in compound heterozygosity in 5 (42% type 3 patients. These findings indicate that G377S cannot be unambiguously classified as mild and suggest an allele-dose effect for this mutation.

  2. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    R J M van Donkersgoed

    Full Text Available Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR.A literature search (1970-July 2015 was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms 'social cognition', 'theory of mind', 'emotion recognition', 'attributional style', 'social knowledge', 'social perception', 'empathy', 'at risk mental state', 'clinical high risk', 'psychosis prodrome', and 'ultra high risk'. The pooled effect size (Cohen's D and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used.Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38-0.65. No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM. Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces for the transition into psychosis. More research is needed on

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  4. Analyses of acute kidney injury biomarkers by ultra-high performance liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Al Za'abi, Mohammed; Ali, Badreldin H; ALOthman, Zeid A; Ali, Imran

    2016-01-01

    The newly developed acute kidney injury biomarkers are very important for the early and timely detection of kidney diseases. This review contains details of the analyses of several acute kidney injury biomarkers using ultra-high performance liquid chromatography-mass spectrometry in urine and plasma samples. In this review we attempt to discuss some aspects of the types of the biomarkers, patents, sample preparation, and the analyses. Besides, efforts were also made to discuss the possible uses of superficially porous (core-shell) columns in traditional and inexpensive high-performance liquid chromatography instruments. Additionally, the challenges and the future prospects are also highlighted. The present review will be useful for the academicians, scientists, and clinicians for the early detection of acute kidney injury biomarkers.

  5. Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models

    CERN Document Server

    Fan, Jianqing; Song, Rui

    2011-01-01

    A variable screening procedure via correlation learning was proposed Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under the nonparametric additive models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, an iterative nonparametric independence screening (INIS) is also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data a...

  6. Required developments towards ultra high pressure and temperature subsea tree system solutions

    Energy Technology Data Exchange (ETDEWEB)

    Queseth, Per-Olaf

    2010-07-01

    For the subsea High Pressure High Temperature oil and gas production systems, the primary challenge is to provide good, reliable solutions for HPHT reservoir exploitation based on an overview of parameters for already discovered potential fields. The paper will present a resume of Aker Solutions' previous development in this area exemplified with experiences from testing and operator observations during production start of HPHT fields in the North Sea. Further improvements are required to comply with the extreme pressures and temperatures sought to overcome. 'The Devil is in the details' is a very relevant proverb. A program to qualify subsea production X-mas trees for Ultra HPHT use will be presented with highlight on sealing systems, feed-through solutions and materials as well as impact on interfacing systems. Preliminary and intermediate analytical and test results will be presented and remaining activities summarised. (Author)

  7. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form.

  8. Development of acoustic devices for ultra-high energy neutrino detectors

    CERN Document Server

    Karg, T; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Schwemmer, S

    2005-01-01

    Acoustic neutrino detection is a promising approach to instrument the large detector volumes needed for the detection of the small neutrino fluxes expected at ultra-high energies (E > 1 EeV). We report on several studies investigating the feasibility of such an acoustic detector. High-precision lab measurements using laser and proton beams aiming at the verification of the thermo-acoustic model have been performed. Different types of acoustic sensors have been developed and characterized. An autonomous acoustic system, attached to the ANTARES prototype string "Line0", has been deployed and operated successfully at 2400 m depth, allowing for in-situ studies of the acoustic background in the Mediterranean Sea.

  9. Study on the Generation of Ultra-Wideband (UWB) High Power Microwave

    Institute of Scientific and Technical Information of China (English)

    樊亚军; 刘国治; 刘小龙; 宋晓欣; 刘锋; 石磊

    2003-01-01

    The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.

  10. Ultra-high photosensitivity silicon nanophotonics for retinal prosthesis: electrical characteristics.

    Science.gov (United States)

    Khraiche, Massoud L; Lo, Yuhwa; Wang, Deli; Cauwenberghs, Gert; Freeman, William; Silva, Gabriel A

    2011-01-01

    Retinal degenerative diseases such as age related macular degeneration (AMD) and retinitis pigmentosa (RP), lead to the loss of the photoreceptor cells rendering the retina incapable of detecting light. Several engineering approaches have aimed at replacing the function of the photoreceptors by detecting light via an external camera or photodiodes and electrically stimulating the remaining retinal tissue to restore vision. These devices rely heavily on off-device processing to solve the computational challenge of matching the performance of the PRs. In this work, we present a unique ultra-high sensitivity photodetector technology with light sensitivity, signal amplification, light adaptation that shows signal transduction performance approaching those of the rods and cones in the mammalian retina. In addition, the technology offers nanoscale control over photodetectors topography with the potential to reproduce the visual acuity of the natural retina. This technology promises to drastically reduce the foot print, power consumption and computational needs of the current retinal prothesis, while reproducing high resolution vision.

  11. A low-power high-speed ultra-wideband pulse radio transmission system.

    Science.gov (United States)

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  12. ULTRACAM: an ultra-fast, triple-beam CCD camera for high-speed astrophysics

    CERN Document Server

    Dhillon, V S; Stevenson, M J; Atkinson, D C; Kerry, P; Peacocke, P T; Vick, A J A; Beard, S M; Ives, D J; Lunney, D W; McLay, S A; Tierney, C J; Kelly, J; Littlefair, S P; Nicholson, R; Pashley, R; Harlaftis, E T; O'Brien, K

    2007-01-01

    ULTRACAM is a portable, high-speed imaging photometer designed to study faint astronomical objects at high temporal resolutions. ULTRACAM employs two dichroic beamsplitters and three frame-transfer CCD cameras to provide three-colour optical imaging at frame rates of up to 500 Hz. The instrument has been mounted on both the 4.2-m William Herschel Telescope on La Palma and the 8.2-m Very Large Telescope in Chile, and has been used to study white dwarfs, brown dwarfs, pulsars, black-hole/neutron-star X-ray binaries, gamma-ray bursts, cataclysmic variables, eclipsing binary stars, extrasolar planets, flare stars, ultra-compact binaries, active galactic nuclei, asteroseismology and occultations by Solar System objects (Titan, Pluto and Kuiper Belt objects). In this paper we describe the scientific motivation behind ULTRACAM, present an outline of its design and report on its measured performance.

  13. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    Science.gov (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  14. Ultra-high Q sphere-like cavities for cascaded stimulated Brillouin lasing

    Science.gov (United States)

    Che, Kaijun; Zhang, Pan; Guo, Changlei; Tang, Deyu; Ren, Changyan; Xu, Huiying; Luo, Zhengqian; Cai, Zhiping

    2017-03-01

    High Q microsphere optical cavity is usually fabricated from a single mode fiber. Here, we propose a new method to fabricate sphere-like cavity by melting the tip of rotating quartz-rod with a CO2 laser. The cavities with diameter from 200 μm to 700 μm and resonant Q factors above 108 are obtained. Due to the rich resonances of the sphere-like cavity, up to 15-order cascaded stimulated Brillouin lasings(SBL) near 1.55 μm are observed in a cavity with a diameter of 760 μm by simply tuning the pump wavelength to a finely-selected resonance. We wish the ultra-high Q cavities with rich resonances and bulk rod mount can have practical applications in nonlinear optics and microwave photonics as an optical component.

  15. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    CERN Document Server

    Fujii, T; Bertaina, M; Casolino, M; Dawson, B; Horvath, P; Hrabovsky, M; Jiang, J; Mandat, D; Matalon, A; Matthews, J N; Motloch, P; Palatka, M; Pech, M; Privitera, P; Schovanek, P; Takizawa, Y; Thomas, S B; Travnicek, P; Yamazaki, K

    2015-01-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Tele- scopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.

  16. An ultra short pulse reconstruction software applied to the GEMINI high power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, Mario, E-mail: mario.gall22@gmail.com [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Galimberti, Marco [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Hooker, Chris [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); University of Oxford, Oxford (United Kingdom); Chekhlov, Oleg; Tang, Yunxin [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Bisesto, Fabrizio Giuseppe [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Curcio, Alessandro [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, Maria Pia [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Giulietti, Danilo [Physics Department of the University and INFN, Pisa (Italy)

    2016-09-01

    The GRENOUILLE traces of Gemini pulses (15 J, 30 fs, PW, shot per 20 s) were acquired in the Gemini Target Area PetaWatt at the Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL). A comparison between the characterizations of the laser pulse parameters made using two different types of algorithms: Video Frog and GRenouille/FrOG (GROG), was made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign it has been showed how GROG, the developed algorithm, works as well as VideoFrog algorithm with the PetaWatt pulse class. - Highlights: • Integration of the diagnostic tool on high power laser. • Validation of the GROG algorithm in comparison to a well-known commercial available software. • Complete characterization of the GEMINI ultra-short high power laser pulse.

  17. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  18. Optimal radio window for the detection of ultra-high energy cosmic rays and neutrinos off the Moon

    NARCIS (Netherlands)

    Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Stappers, B.; Strom, R. G.

    2006-01-01

    When high-energy cosmic rays impinge on a dense dielectric medium, radio waves are produced through the Askaryan effect. We show that at wavelengths comparable to the length of the shower produced by an Ultra-High Energy cosmic ray or neutrino, radio signals are ail extremely efficient way to detect

  19. INFLUENCE OF CHEMICAL CROSS-LINKING ON THE CREEP-BEHAVIOR OF ULTRA-HIGH-MOLECULAR-WEIGHT POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    PENNING, JP; PRAS, HE; PENNINGS, AJ

    1994-01-01

    In this study, the effect of chemical crosslinking on the creep behavior of high-strength fibers, obtained by gel-spinning and subsequent hot-drawing of ultra-high molecular weight polyethylene (UHMWPE), is examined. In the first part of the paper, the general aspects of the creep behavior of these

  20. Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver.

    Science.gov (United States)

    Ferrer-Rodríguez, Juan P; Fernández, Eduardo F; Almonacid, Florencia; Pérez-Higueras, Pedro

    2016-05-01

    Ultra-high concentrator photovoltaics (UHCPV), with concentrations higher than 1000 suns, have been pointed out by different authors as having great potential for being a cost-effective PV technology. This Letter presents a UHCPV Cassegrain-based optical design in which the sunrays are concentrated and sent from four different and independent paraboloid-hyperboloid pairs optical units onto a single central receiver. The optical design proposed has the main advantage of the achievement of ultra-high concentration ratios using relative small mirrors with similar performance values of efficiency, acceptance angle, and irradiance uniformity to other designs.

  1. Simulation and optimization of pyramidal AlGaAs probe with ultra-small spot size and high throughput

    Institute of Scientific and Technical Information of China (English)

    王晓秋; 吴世法; 简国树; 潘石

    2005-01-01

    In this paper, the light-emitting spot sizes and throughputs of the four types of probes are studied using the finitedifference time-domain method, and these probes are also compared in performance. Among these probes, a pyramidal AlGaAs tip coated entirely with a thin Ag film can provide the highest throughput and a single near-field spot size.Probe coated with a 3nm Ag film and incident light with a wavelength of 800nm seems to offer the optimum condition for high throughput and ultra-small spot size, which enables the realization of ultra-high density storage.

  2. An Investigation of the Role of Second Phase Particles in the Design of Ultra High Strength Steels of Improved Toughness

    Science.gov (United States)

    1990-06-20

    examples in the literature. The only example in the literature of blunting to vertices from an initially sharp crack is the blunting of HY80 steel to three...AD-A226 056 AN INVESTIGATION OF THE ROLE OF SECOND PHASE PARTICLES IN THE DESIGN OF ULTRA HIGH STRENGTH STEELS OF IMPROVED TOUGHNESS FINAL REPORT W...THE ROLE OF SECOND PHASE PARTICLES IN THE DESIGN OF ULTRA HIGH STRENGTH STEELS OF IMPROVED TOUGHNESS FINAL REPORT W. M. Garrison, Jr. June 15, 1990 U.S

  3. Young people at ultra high risk for psychosis: research from the PACE clinic Jovens em risco ultra alto de psicose: pesquisa na clínica PACE

    Directory of Open Access Journals (Sweden)

    Alison R. Yung

    2011-10-01

    Full Text Available Over the last fifteen years, attempts have been made to prospectively identify individuals in the prodromal phase of schizophrenia and other psychotic disorders. The ultra high risk approach, based on a combination of known trait and state risk factors, has been the main strategy used. The validation of the ultra high risk criteria allowed for predictive research in this population in an attempt to identify clinical, neurocognitive and neurobiological risk factors for psychosis onset. It also led to a series of intervention studies in this population, which have included the use of low dose antipsychotic medication, cognitive therapy, and omega-3 fatty acids. Although there is moderate evidence for the effectiveness of specific intervention strategies in this population, the most effective type and duration of intervention is yet to be determined. A current controversy in the field is whether to include an adaption of the ultra high risk criteria (the attenuated psychosis syndrome in the next version of the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition.Nos últimos quinze anos, foram feitas tentativas para identificar prospectivamente indivíduos na fase prodrômica de esquizofrenia e outros transtornos psicóticos. A abordagem de risco ultra alto, baseada na combinação de fatores conhecidos de risco de traço e estado, tem sido a principal estratégia utilizada. A validação dos critérios de risco ultra alto levou em conta a pesquisa preditiva nessa população, em uma tentativa de identificar fatores de risco clínicos, neurocognitivos e neurobiológicos para o início de psicose. Também levou a uma série de estudos de intervenção nessa população, que incluíram o uso de medicação antipsicótica em baixa dose, terapia cognitiva e ácidos graxos ômega-3. Ainda que existam evidências razoáveis sobre a eficácia de estratégias de intervenção específicas nessa população, o tipo mais efetivo e sua dura

  4. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Gold, D.M.

    1994-06-01

    Experiments were performed to characterize the creation and evolution of high-temperature (T{sub e}{approximately}100eV), high-density (n{sub e}>10{sup 22}cm{sup {minus}3}) plasmas created with intense ({approximately}10{sup 12}-10{sup 16}W/cm{sup 2}), ultra-short (130fs) laser pulses. The principle diagnostic was plasma reflectivity at optical wavelengths (614nm). An array of target materials (Al, Au, Si, SiO{sub 2}) with widely differing electronic properties tested plasma behavior over a large set of initial states. Time-integrated plasma reflectivity was measured as a function of laser intensity. Space- and time-resolved reflectivity, transmission and scatter were measured with a spatial resolution of {approximately}3{mu}m and a temporal resolution of 130fs. An amplified, mode-locked dye laser system was designed to produce {approximately}3.5mJ, {approximately}130fs laser pulses to create and nonintrusively probe the plasmas. Laser prepulse was carefully controlled to suppress preionization and give unambiguous, high-density plasma results. In metals (Al and Au), it is shown analytically that linear and nonlinear inverse Bremsstrahlung absorption, resonance absorption, and vacuum heating explain time-integrated reflectivity at intensities near 10{sup 16}W/cm{sup 2}. In the insulator, SiO{sub 2}, a non-equilibrium plasma reflectivity model using tunneling ionization, Helmholtz equations, and Drude conductivity agrees with time-integrated reflectivity measurements. Moreover, a comparison of ionization and Saha equilibration rates shows that plasma formed by intense, ultra-short pulses can exist with a transient, non-equilibrium distribution of ionization states. All targets are shown to approach a common reflectivity at intensities {approximately}10{sup 16}W/cm{sup 2}, indicating a material-independent state insensitive to atomic or solid-state details.

  5. Analysis of Excitation Characteristics of Ultra High Frequency Electromagnetic Waves Induced by PD in GIS

    Institute of Scientific and Technical Information of China (English)

    DING Dengwei; GAO Wensheng; YAO Senjing; LIU Weidong; HE Jiaxi

    2013-01-01

    The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for applying UHF method to partial discharge (PD) detection.Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave,but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves,we analyzed the proportions between the TEM wave and the high order waves,as well as the influence of the PD position on this proportion,using the finite different time domain (FDTD) method.According to the unique characteristics of the waves,they are separated only approximately.It is found that the high-order mode is the main component,more than 70%,of the electric field around the enclosure of GIS,and that with the increasing distance between PD source and inner conductors,the low frequency (below about 800 MHz) component of EW decreases,but the high frequency component (above 1 GHz) increases,meanwhile the proportion of high-order components in EW could reach 77% from 70%.It concluded that the closer the PD source to the enclosure is,the easier high order EW may be excited.

  6. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    Science.gov (United States)

    Li, Zhi; Zhang, Wei; Wang, Xinwei; Mai, Yongyi; Zhang, Yumei

    2011-06-01

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  7. Ultra high energy cosmic rays from non-relativistic quasar outflows

    CERN Document Server

    Wang, Xiawei

    2016-01-01

    It has been suggested that non-relativistic outflows from quasars can naturally account for the missing component of the extragalactic $\\gamma$-ray background and explain the cumulative neutrino background through pion decay in collisions between protons accelerated by the outflow shock and interstellar protons. Here we show that the same quasar outflows are capable of accelerating protons to energies of $\\sim 10^{20}$ eV during the early phase of their propagation. The overall quasar population is expected to produce a cumulative ultra high energy cosmic ray flux of $\\sim10^{-7}\\,\\rm GeV\\,cm^{-2}s^{-1}sr^{-1}$ at $E_{\\rm CR}\\gtrsim10^{18}$ eV. The spectral shape and amplitude is consistent with recent observations for outflow parameters constrained to fit secondary $\\gamma$-rays and neutrinos without any additional parameter tuning. This indicates that quasar outflows simultaneously account for all three messengers at their observed levels.

  8. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

    CERN Document Server

    Kippenberg, T J; Vahala, K J

    2004-01-01

    Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume V . Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than $10^{6}(\\lambda/n)^{-3}$. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of $2.8\\times10^{6}$ is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensing

  9. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

    Science.gov (United States)

    Kippenberg, T. J.; Spillane, S. M.; Vahala, K. J.

    2004-12-01

    Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume (V). Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than 106(λ/n)-3. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of >2.8×106 is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensing.

  10. HERMES: Simulating the Propagation of Ultra-High Energy Cosmic Rays

    CERN Document Server

    De Domenico, Manlio

    2013-01-01

    The study of ultra-high energy cosmic rays (UHECR) at Earth cannot prescind from the study of their propagation in the Universe. In this paper, we present HERMES, the \\emph{ad hoc} Monte Carlo code we have developed for the realistic simulation of UHECR propagation. We discuss the modeling adopted to simulate the cosmology, the magnetic fields, the interactions with relic photons and the production of secondary particles. In order to show the potential applications of HERMES for astroparticle studies, we provide an estimation of the surviving probability of UHE protons, the GZK horizons of nuclei and the all-particle spectrum observed at Earth in different astrophysical scenarios. Finally, we show the expected arrival direction distribution of UHECR produced from nearby candidate sources. A stable version of HERMES will be released in the next future for public use together with libraries of already propagated nuclei to allow the community to perform mass composition and energy spectrum analysis with our simu...

  11. Influence of amorphous silica on the hydration in ultra-high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Hutter, Frank [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Kletti, Holger [Building Materials, Bauhaus–Universität Weimar, Coudraystr. 11, 99423 Weimar (Germany); Sextl, Gerhard [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.

  12. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    Science.gov (United States)

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.

  13. Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties.

    Science.gov (United States)

    Serra, Mar; Trujillo, Antonio J; Jaramillo, Pamela D; Guamis, Buenaventura; Ferragut, Victoria

    2008-02-01

    The effects of ultra-high pressure homogenization (UHPH) on skim milk yogurt making properties were investigated. UHPH-treated milk was compared with conventionally homogenised (15 MPa) heat-treated skim milk (90 degrees C for 90 s), and to skim milk treated under the same thermal conditions but fortified with 3% skim milk powder. Results of the present study showed that UHPH is capable of reducing skim milk particle size which leads to the formation of finer dispersions than those obtained by conventional homogenisation combined with heat treatment. In addition, results involving coagulation properties and yogurt characteristics reflected that, when increasing UHPH pressure conditions some parameters such as density of the gel, aggregation rate and water retention are improved.

  14. Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects.

    Science.gov (United States)

    Briviba, Karlis; Gräf, Volker; Walz, Elke; Guamis, Buenaventura; Butz, Peter

    2016-02-01

    Ultra high pressure homogenization (UHPH) of food is a processing technology to improve food safety and shelf life. However, despite very short treatment duration UHPH may lead to changes in chemical and physico-chemical properties including formation of submicro-/nano-particles. This may affect the physiological or toxicological properties of the treated food. Here, we treated raw almond milk (AMr) with UHPH at 350 MPa and 85 °C (AMuhph), known able to inactivate food relevant microorganisms. UHPH-treatment led to about a threefold increase of the mean particle size. There was a nearly complete loss of antigenicity investigated by ELISA for determination of traces of almond proteins. The content of vitamins B1 and B2 remained unchanged, while free exposed sulfhydryl groups decreased. Despite of observed modifications, UHPH-treatment of almond milk did not cause any changes in cyto- or genotoxic effects and antigenotoxic capability of protecting intestinal cells against iron induced DNA damage in vitro.

  15. High Temperature Flow Response Modeling of Ultra-Fine Grained Titanium

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Sajadifar

    2015-07-01

    Full Text Available This work presents the mechanical behavior modeling of commercial purity titanium subjected to severe plastic deformation (SPD during post-SPD compression, at temperatures of 600-900 °C and at strain rates of 0.001-0.1 s−1. The flow response of the ultra-fine grained microstructure is modeled using the modified Johnson-Cook model as a predictive tool, aiding high temperature forming applications. It was seen that the model was satisfactory at all deformation conditions except for the deformation temperature of 600 °C. In order to improve the predictive capability, the model was extended with a corrective term for predictions at temperatures below 700 °C. The accuracy of the model was displayed with reasonable agreement, resulting in error levels of less than 5% at all deformation temperatures.

  16. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhi; Zhang Wei; Wang Xinwei [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China); Mai Yongyi, E-mail: SRICIshanghai@163.com [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China); Zhang Yumei [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China)

    2011-06-15

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  17. Equal channel angular extrusion of ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Reinitz, Steven D; Engler, Alexander J; Carlson, Evan M; Van Citters, Douglas W

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications.

  18. Social cognition in patients at ultra-high risk for psychosis

    DEFF Research Database (Denmark)

    Glenthøj, Louise B.; Fagerlund, Birgitte; Hjorthøj, Carsten

    2016-01-01

    Social Challenge (p = .001, d = 1.05). Aspects of emotion recognition were associated with role functioning and social skill performance. The level of attributional bias was associated with overall functioning, and theory of mind ability was associated with self-reported functioning. Negative symptoms...... an important role for functioning. Research is needed to investigate how the relations between social cognition, social skills and functioning develop from the UHR state to the stage of manifest illness. Research into how deficits in social cognition and social skills can be ameliorated in UHR patients......Objective: Patients at ultra-high risk (UHR) for psychosis show significant impairments in functioning. It is essential to determine which factors influence functioning, as it may have implications for intervention strategies. This study examined whether social cognitive abilities and clinical...

  19. Physiological measurements using ultra-high field fMRI: a review.

    Science.gov (United States)

    Francis, Sue; Panchuelo, Rosa Sanchez

    2014-09-01

    Functional MRI (fMRI) has grown to be the neuroimaging technique of choice for investigating brain function. This topical review provides an outline of fMRI methods and applications, with a particular emphasis on the recent advances provided by ultra-high field (UHF) scanners to allow functional mapping with greater sensitivity and improved spatial specificity. A short outline of the origin of the blood oxygenation level dependent (BOLD) contrast is provided, followed by a review of BOLD fMRI methods based on gradient-echo (GE) and spin-echo (SE) contrast. Phase based fMRI measures, as well as perfusion contrast obtained with the technique of arterial spin labelling (ASL), are also discussed. An overview of 7 T based functional neuroimaging is provided, outlining the potential advances to be made and technical challenges to be addressed.

  20. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  1. Single and Multiple Dynamic Impacts Behaviour of Ultra-high Performance Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenhua; ZHANG Yunsheng; ZHANG Guorong

    2011-01-01

    Single and multiple dynamic impacts tests were conducted on ultra-high performance cementitious composite (UHPCC) with various volume fractions of steel fibers (0,1%,2%,3%,4%) by using the split hopkinson pressure bar (SHPB).Besides,the ultrasonic velocity method was used to test the damage on specimens caused by dynamic impacts.For single dynamic impact,the data suggest that UHPCC obviously presents dynamic strength enhancement.With increasing of strain rate,the peak stress and peak strain increase rapidly.For multiple dynamic impacts,the results show that addition of steel fibers can obviously enhance the properties of UHPCC to resist the repeated dynamic impacts.Firstly,the number of impacts sharply increases with the increasing of volume fraction of steel fibers.Secondly,the energy absorption ability linearly increases with addition of steel fibers.Thirdly,the steel fibers can prevent the disruption phenomenon and maintain the integrity of specimen.

  2. Experimental implant communication of high data rate video using an ultra wideband radio link.

    Science.gov (United States)

    Chávez-Santiago, Raúl; Balasingham, Ilangko; Bergsland, Jacob; Zahid, Wasim; Takizawa, Kenichi; Miura, Ryu; Li, Huan-Bang

    2013-01-01

    Ultra wideband (UWB) is one of the radio technologies adopted by the IEEE 802.15.6™-2012 standard for on-body communication in body area networks (BANs). However, a number of simulation-based studies suggest the feasibility of using UWB for high data rate implant communication too. This paper presents an experimental verification of said predictions. We carried out radio transmissions of H.264/1280×720 pixels video at 80 Mbps through a UWB multiband orthogonal frequency division multiplexing (MB-OFDM) interface in a porcine chirurgical model. The results demonstrated successful transmission up to a maximum depth of 30 mm in the abdomen and 33 mm in the thorax within the 4.2-4.8 GHz frequency band.

  3. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  4. Proposal of the Electrically Charged Stellar Black Holes as Accelerators of Ultra High Energy Cosmic Rays

    CERN Document Server

    Soto-Manriquez, Jose

    2016-01-01

    A new mechanism for the acceleration of ultra high energy cosmic rays (UHECR) is presented here. It is based on the tunnel-ionization of neutral atoms approaching electrically charged stellar black holes and on the repulsion of the resulting positively charged atomic part by huge, long-range electric fields. Energies above $10^{18}$ eV for these particles are calculated in a simple way by means of this single-shot, all-electrical model. When this acceleration mechanism is combined with the supernova explosions in the galactic halo of the massive runaway stars expelled from the galactic disk, this model predicts nearly the correct values of the measured top energy of the UHECRs and their flux in a specified EeV energy range. It also explains the near isotropy of the arrivals of these energetic particles to Earth, as has been recently measured by the Auger Observatory.

  5. Searches for ultra-high energy neutrinos at the Pierre Auger observatory

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muñiz, Jaime [Dept. Física de Partículas & Instituto Galego de Física de Altas Enerxías, Univ. de Santiago de Compostela (Spain); Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe (Argentina)

    2015-07-15

    Neutrinos in the sub-EeV energy range and above can be detected and identified with the Surface Detector array of the Pierre Auger Observatory. The identification can be efficiently done for neutrinos of all flavours interacting in the atmosphere, typically above 60° (downward-going), as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos (upward-going). Three sets of identification criteria were designed to search for downward-going neutrinos in the zenith angle bins 60° − 75° and 75° − 90° as well as for upward-going neutrinos. The three searches have been recently combined, providing, in the absence of candidates in data from 1 January 04 until 31 December 12, a stringent limit to the diffuse flux of ultra-high energy neutrinos.

  6. Implications of ultra-high energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos

    CERN Document Server

    Gorham, P W; Allison, P; Beatty, J J; Belov, K; Besson, D Z; Binns, W R; Chen, P; Clem, J M; Hoover, S; Israel, M H; Nam, J; Saltzberg, D; Varner, G S; Vieregg, A G

    2012-01-01

    We consider the implications of Lorentz-invariance violation (LIV) on cosmogenic neutrino observations, with particular focus on the constraints imposed on several well-developed models for ultra-high energy cosmogenic neutrino production by recent results from the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, and Radio Ice Cherenkov Experiment (RICE) at the South Pole. Under a scenario proposed originally by Coleman and Glashow, each lepton family may attain maximum velocities that can exceed the speed of light, leading to energy-loss through several interaction channels during propagation. We show that future observations of cosmogenic neutrinos will provide by far the most stringent limit on LIV in the neutrino sector. We derive the implied level of LIV required to suppress observation of predicted fluxes from several mainstream cosmogenic neutrino models, and specifically those recently constrained by the ANITA and RICE experiments. We simulate via detailed Monte Carlo code ...

  7. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  8. Particle and astrophysical aspects of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, G. [Observatoire de Paris, Section de Meudon (France). DARC]|[Chicago Univ., IL (United States). Dept. of Astronomy and Astrophysics

    2000-07-01

    The origin of cosmic rays is one of the major unresolved astrophysical questions. In particular, the highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the standard model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with {gamma}-ray and neutrino astrophysics will put strong constraints on these theoretical models. Detailed Monte Carlo simulations indicate that charged ultra-high energy cosmic rays can also be used as probes of large scale magnetic fields whose origin may open another window into the very early Universe. We give an overview over this quickly evolving research field. (orig.)

  9. Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    Science.gov (United States)

    Cohen, Seth D.; Rontani, Damien; Gauthier, Daniel J.

    2012-12-01

    We report on an ultra-high-frequency (>1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.

  10. Fluorescence resonance energy transfer of gas-phase ions under ultra high vacuum and ambient conditions.

    Science.gov (United States)

    Frankevich, Vladimir; Chagovets, Vitaliy; Widjaja, Fanny; Barylyuk, Konstantin; Yang, Zhiyi; Zenobi, Renato

    2014-05-21

    We report evidence for fluorescence resonance energy transfer (FRET) of gas-phase ions under ultra high vacuum conditions (10(-9) mbar) inside a mass spectrometer as well as under ambient conditions inside an electrospray plume. Two different FRET pairs based on carboxyrhodamine 6G (donor) and ATTO590 or Bodipy TR (acceptor) dyes were examined and their gas-phase optical properties were studied. Our measurements indicate a different behavior for the two FRET pairs, which can be attributed to their different conformations in the gas phase. Upon desolvation via electrospray ionization, one of the FRET pairs undergoes a conformational change that leads to disappearance of FRET. This study shows the promise of FRET to obtain a direct correlation between solution and gas-phase structures.

  11. CGLXTouch: A multi-user multi-touch approach for ultra-high-resolution collaborative workspaces

    KAUST Repository

    Ponto, Kevin

    2011-06-01

    This paper presents an approach for empowering collaborative workspaces through ultra-high resolution tiled display environments concurrently interfaced with multiple multi-touch devices. Multi-touch table devices are supported along with portable multi-touch tablet and phone devices, which can be added to and removed from the system on the fly. Events from these devices are tagged with a device identifier and are synchronized with the distributed display environment, enabling multi-user support. As many portable devices are not equipped to render content directly, a remotely scene is streamed in. The presented approach scales for large numbers of devices, providing access to a multitude of hands-on techniques for collaborative data analysis. © 2011 Elsevier B.V. All rights reserved.

  12. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    CERN Document Server

    Abbasi, R; Allen, C; Beard, L; Belz, J; Besson, D; Byrne, M; Farhang-Boroujeny, B; Gardner, A; Gillman, W H; Hanlon, W; Hanson, J; Jayanthmurthy, C; Kunwar, S; Larson, S L; Myers, I; Prohyra, S; Ratzlaff, K; Sokolsky, P; Takai, H; Thomson, G B; Von Maluski, D

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs, extending their detection aperture far beyond what is accessible by conventional means. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  13. Ultra-high performance size-exclusion chromatography in polar solvents.

    Science.gov (United States)

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol.

  14. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    Science.gov (United States)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  15. Ultra high-energy neutrinos via heavy-meson synchrotron emission in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Toshitaka; Tokuhisa, Akira; Mathews, Grant J. [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Yoshida, Takashi [Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Famiano, Michael A. [Physics Department, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI 49008-5252 (United States)

    2014-02-20

    We explore the generation and possibility for the detection of heavy-meson synchrotron emission due to the acceleration of ultra-relativistic protons (and possibly nuclei) in the presence of strong magnetic fields (H ≳ 10{sup 15} G) in transient astrophysical environments such as magnetar flares. We show that, in addition to the well-known pion synchrotron emission, heavy vector mesons like ρ, D{sub S} , J/Ψ, and Y could be generated. For high enough energies and magnetic field strengths, such heavy vector mesons can be formed with high intensity (∼10{sup 3} times the photon intensity) through strong couplings to the ultra-relativistic nucleons. We examine in particular the synchrotron emission and subsequent cooling and decay of the heavy ρ{sup 0} and Y(1S) mesons, e.g., via p → p' + Y(1S), Y(1S) → τ{sup +} + τ{sup –}, τ{sup −}→μ{sup −}+ ν-bar {sub μ}+ν{sub τ} and e{sup −}+ ν-bar {sub e}+ν{sub τ}. We evaluate the spectra of escaping ν {sub e}, ν{sub μ}, and ν{sub τ} due to the decay of short-lived τ mesons. We deduce the possible event rate in a terrestrial TeV neutrino detector. We estimate that neutrinos produced from the heavy vector-meson synchrotron radiation from a strong magnetar soft gamma repeater burst will only be detectable with the current generation of detectors if the source is very nearby (<30 pc). Nevertheless, if ever detected, the existence of heavy meson synchrotron emission might be identifiable by the unique signature of energetic tau neutrinos emanating from the source.

  16. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    Directory of Open Access Journals (Sweden)

    Shan eYang

    2013-09-01

    Full Text Available Ultra-high field magnetic resonance imaging (MRI became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods seem to be ideally merged at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time the feasibility and quality of ultra-high spatial resolution (150 µm isotopic imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.

  17. Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Tastan, M.; Gokozan, H.; Taskin, S.; Cavdar, U.

    2015-07-01

    This study compares an energy consumption results of the TI-6Al-4V based material processing under the 900 kHz induction heating for different cases. By this means, total power consumption and energy consumptions per sample and amount have been analyzed. Experiments have been conducted with 900 kHz, 2.8 kW ultra-high frequency induction system. Two cases are considered in the study. In the first case, TI-6Al-4V samples have been heated up to 900 degree centigrade with classical heating method, which is used in industrial applications, and then they have been cooled down by water. Afterwards, the samples have been heated up to 600 degree centigrade, 650 degree centigrade and 700 degree centigrade respectively and stress relieving process has been applied through natural cooling. During these processes, energy consumptions for each defined process have been measured. In the second case, unlike the first study, can be used five different samples have been heated up to the various temperatures between 600 degree centigrade and 1120 degree centigrade and energy consumptions have been measured for these processes. Thereby, the effect of temperature increase on each sample on energy cost has been analyzed. It has been seen that as a result of heating the titanium bulk materials, which have been used in the experiment, with ultra high frequency induction, temperature increase also increases the energy consumption. But it has been revealed that the increase rate in the energy consumption is more than the increase rate of the temperature. (Author)

  18. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    Institute of Scientific and Technical Information of China (English)

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  19. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength.

    Science.gov (United States)

    Fries, Peter; Morelli, John N; Lux, Francois; Tillement, Olivier; Schneider, Günther; Buecker, Arno

    2014-01-01

    Magnetic resonance imaging (MRI) performed at ultra-high field strengths beyond 3 Tesla (T) has become increasingly prevalent in research and preclinical applications. As such, the inevitable clinical implementation of such systems lies on the horizon. The major benefit of ultra-high field MRI is the markedly increased signal-to-noise ratios achievable, enabling acquisition of MR images with simultaneously greater spatial and temporal resolution. However, at field strengths higher than 3 T, the efficacy of Gd(III)-based contrast agents is diminished due to decreased r1 relaxivity, somewhat limiting imaging of the vasculature and contrast-enhanced imaging of tumors. There have been extensive efforts to design new contrast agents with high r1 relaxivities based on macromolecular compounds or nanoparticles; however, the efficacy of these agents at ultra-high field strengths has not yet been proven. The aim of this review article is to provide an overview of the basic principles of MR contrast enhancement processes and to highlight the main factors influencing relaxivity. In addition, challenges and opportunities for contrast-enhanced MRI at ultra-high field strengths will be explored. Various approaches for the development of effective contrast agent molecules that are suitable for a broad spectrum of applied field strengths will be discussed in the context of the current literature.

  20. Ultra-High-Efficiency Multijunction Cell and Receiver Module, Phase 1B: High Performance PV Exploring and Accelerating Ultimate Pathways; Final Subcontract Report, 13 May 2005 - 10 December 2008

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.

    2010-03-01

    Spectrolab's two High Performance Photovoltaics primary objectives: (1) develop ultra-high-efficiency concentrator multijunction cells and (2) develop a robust concentrator cell receiver package.

  1. Transient Thermal Tensile Behaviour of Novel Pitch-Based Ultra-High Modulus CFRP Tendons

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Terrasi

    2016-12-01

    Full Text Available A novel ultra-high modulus carbon fibre reinforced polymer (CFRP prestressing tendon made from coal tar pitch-based carbon fibres was characterized in terms of high temperature tensile strength (up to 570 °C with a series of transient thermal and steady state temperature tensile tests. Digital image correlation was used to capture the high temperature strain development during thermal and mechanical loading. Complementary thermogravimetric (TGA and dynamic mechanical thermal (DMTA experiments were performed on the tendons to elucidate their high temperature thermal and mechanical behaviour. The novel CFRP tendons investigated in the present study showed an ambient temperature design tensile strength of 1400 MPa. Their failure temperature at a sustained prestress level of 50% of the design tensile strength was 409 °C, which is higher than the failure temperature of most fibre reinforced polymer rebars used in civil engineering applications at similar utilisation levels. This high-temperature tensile strength shows that there is potential to use the novel high modulus CFRP tendons in CFRP pretensioned concrete elements for building applications that fulfill the fire resistance criteria typically applied within the construction industry.

  2. DEPENDENT STANDARD OF HIGH EDUCATION AND THE BRAZILIAN UNIVERSITY CURRENT EXPANSION

    Directory of Open Access Journals (Sweden)

    José Renato Bez de Gregório

    2014-06-01

    Full Text Available This article is based on the theoretical contributions of Florestan Fernandes seeking to analyze the structural and cyclical features of Brazilian higher education, in order to understand to what extent these features constitute the pattern-dependent learning, the historic brand dependent capitalist insertion of Brazil in the global economy and cultural heteronomy associated with it. We assume that such theoretical foundation helps us understand some aspects of the redesign of higher education underway in Brazil conducted by governments Lula da Silva and Dilma Rousseff, particularly the Program of Support to the Restructuring and Expansion of Federal Universities (REUNI. Thus, presenting some data expansion in the two largest public universities in the state of Rio de Janeiro in order to demonstrate the extent to which this process is indicating the precariousness / intensification of teaching and a deep reconfiguration of Brazilian public university.

  3. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Erwin; Sarajlic, Edin; Tas, Niels; Jansen, Henri

    2014-01-01

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using (111) silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom surface enclosed by th

  4. Temperature-dependent fracture mechanisms in gel-spun hot-drawn ultra-high molecular weight polyethylene fibres

    NARCIS (Netherlands)

    Pras, E; Pennings, AJ

    1998-01-01

    Tensile testing of gel-spun hot-drawn ultra-high molecular weight polyethylene (UHMWPE) fibres reveal a ductile-brittle transition temperature. Ductile fracture above the transition temperature is believed to be initiated by a stress-induced orthorhombic-hexagonal phase transition, whereas at lower

  5. H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors

    Science.gov (United States)

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2011-03-22

    An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

  6. Ultra-High Energy Cosmic Particles studies from space: super-EUSO, a possible next-generation experiment

    CERN Document Server

    Petrolini, Alessandro

    2009-01-01

    After the Pierre Auger Observatory, it is likely that space-based experiments might be required for next-generation studies of Ultra-High Energy Cosmic Particles. An overview of this challenging task is presented, emphasizing the main design issues, the criticalities and the intermediate steps required to make this challenging task a reality.

  7. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  8. Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    CERN Document Server

    Singh, K; Scholten, O; Anderson, J M; van Ardenne, A; Arts, M; Avruch, M; Asgekar, A; Bell, M; Bennema, P; Bentum, M; Bernadi, G; Best, P; Boonstra, A -J; Bregman, J; van de Brink, R; Broekema, C; Brouw, W; Brueggen, M; Buitink, S; Butcher, H; van Cappellen, W; Ciardi, B; Coolen, A; Damstra, S; Dettmar, R; van Diepen, G; Dijkstra, K; Donker, P; Doorduin, A; Drost, M; van Duin, A; Eisloeffel, J; Falcke, H; Garrett, M; Gerbers, M; Griessmeier, J; Grit, T; Gruppen, P; Gunst, A; van Haarlem, M; Hoeft, M; Holties, H; Horandel, J; Horneffer, L A; Huijgen, A; James, C; de Jong, A; Kant, D; Kooistra, E; Koopman, Y; Koopmans, L; Kuper, G; Lambropoulos, P; van Leeuwen, J; Loose, M; Maat, P; Mallary, C; McFadden, R; Meulman, H; Mol, J -D; Morawietz, J; Mulder, E; Munk, H; Nieuwenhuis, L; Nijboer, R; Norden, M; Noordam, J; Overeem, R; Paas, H; Pandey, V N; Pandey-Pommier, M; Pizzo, R; Polatidis, A; Reich, W; de Reijer, J; Renting, A; Riemers, P; Roettgering, H; Romein, J; Roosjen, J; Ruiter, M; Schoenmakers, A; Schoonderbeek, G; Sluman, J; Smirnov, O; Stappers, B; Steinmetz, M; Stiepel, H; Stuurwold, K; Tagger, M; Tang, Y; ter Veen, S; Vermeulen, R; de Vos, M; Vogt, C; van der Wal, E; Weggemans, H; Wijnholds, S; Wise, M; Wucknitz, O; Yattawatta, S; van Zwieten, J

    2011-01-01

    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an e?cient trigger implementation for LOFAR optimized for the observation of short radio pulses.

  9. Increased Saccadic Rate during Smooth Pursuit Eye Movements in Patients at Ultra High Risk for Developing a Psychosis

    Science.gov (United States)

    van Tricht, M. J.; Nieman, D. H.; Bour, L. J.; Boeree, T.; Koelman, J. H. T. M.; de Haan, L.; Linszen, D. H.

    2010-01-01

    Abnormalities in eye tracking are consistently observed in schizophrenia patients and their relatives and have been proposed as an endophenotype of the disease. The aim of this study was to investigate the performance of patients at Ultra High Risk (UHR) for developing psychosis on a task of smooth pursuit eye movement (SPEM). Forty-six UHR…

  10. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  11. High Avidity dsDNA Autoantibodies in Brazilian Women with Systemic Lupus Erythematosus: Correlation with Active Disease and Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Oliveira

    2015-01-01

    Full Text Available We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA. Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction.

  12. Modeling a Kolmogorov-Type Magnetic Field in the Galaxy and its Effect on an Extragalactic Isotropic Flux of Ultra High Energy Cosmic Rays

    Science.gov (United States)

    Davoudifar, Pantea

    2016-08-01

    A model of turbulent galactic magnetic fields was developed in which, the type of turbulence were considered to be Kolmogorov. We tested the effect of this model on an isotropically distributed flux of ultra high energy cosmic ray in the extragalactic space. To do this, a giant Galactic halo (radius of ∼⃒ 100Mpc) was considered. Regular and random components of the Galactic Magnetic Fields were considered to have the mean observed relevant values and also satisfy a Kolmogorov field type. The deviation from isotropy then were calculated considering the propagation of ultra high energy protons in such a magnetic field and results were discussed to show how isotropic is the flux of ultra high energy cosmic rays in the extragalactic space. It is seen that considering an isotropic flux of ultra high energy cosmic rays in the intergalactic space for different choices of galactic magnetic field is not consistence with the distribution of observed ultra high energy events.

  13. Properties of Diamond Film/Alumina Composites for Integrated Circuits with Ultra-High Speed and High Power

    Institute of Scientific and Technical Information of China (English)

    WANG Lin-Jun; XIA Yi-Ben; FANG Zhi-Jun; ZHANG Ming-Long; SHEN Hu-Jiang

    2004-01-01

    @@ We report the properties of the diamond film/alumina composites which were thought of as promising substrate materials for integrated circuits with ultra-high speed and high power. The measurement results of dielectric properties of diamond film/alumina composites show that the coating of CVD diamond films could effectively reduce the dielectric constant of the composite. Carbon ion implantation into alumina substrates prior to the diamond deposition can reduce the dielectric loss of the composite from 5 × 10-3 to 2 × 10-3, and can give the composite better frequency stability. The thermal conductivity of composites could be obviously increased by coating CVD diamond film. The composite has a dielectric constant of 6.5 and a thermal conductivity of 3.98 W/(cmK) when the thickness of diamond film is up to 100 μm.

  14. Nanoliter homogenous ultra-high throughput screening microarray for lead discoveries and IC50 profiling.

    Science.gov (United States)

    Ma, Haiching; Horiuchi, Kurumi Y; Wang, Yuan; Kucharewicz, Stefan A; Diamond, Scott L

    2005-04-01

    Microfluidic technologies offer the potential for highly productive and low-cost ultra-high throughput screening and high throughput selectivity profiling. Such technologies need to provide the flexibility of plate-based assays as well as be less expensive to operate. Presented here is a unique microarray system (the Reaction Biology [Malvern, PA] DiscoveryDot), which runs over 6,000 homogeneous reactions per 1" x 3" microarray using chemical libraries or compound dilutions printed in 1-nl volumes. A simple and rapid piezo-activation method delivers from 30 to 300 pl of biochemical targets and detector chemistries to each reaction. The fluorescent signals are detected and analyzed with conventional microarray scanners and software. The DiscoveryDot platform is highly customizable, and reduces consumption of targets and reaction chemistries by >40-fold and the consumption of compounds by >10,000-fold, compared to 384-well plate assay. We demonstrate here that the DiscoveryDot platform is compatible with conventional large-volume well-based reactions, with a Z' factor of >0.6 for many enzymes, such as the caspase family enzymes, matrix metalloproteinase, serine proteases, kinases, and histone deacetylases. The platform is well equipped for 50% inhibitory concentration (IC50) profiling studies of enzyme inhibitors, with up to 10 dilution conditions of each test compound printed in duplicate, and each microarray chip can generate over 300 IC50 measurements against a given target.

  15. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Thornhill, Tom Finley, III (KTech)

    2010-03-01

    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  16. Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating

    Science.gov (United States)

    Li, Ruifang; Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Ye, Han

    2017-01-01

    A perfect ultra-narrow band infrared metamaterial absorber based on the all-metal-grating structure is proposed. The absorber presents a perfect absorption efficiency of over 98% with an ultra-narrow bandwidth of 0.66 nm at normal incidence. This high efficient absorption is contributed to the surface plasmon resonance. Moreover, the surface plasmon resonance-induced strong surface electric field enhancement is favorable for application in biosensing system. When operated as a plasmonic refractive index sensor, the ultra-narrow band absorber has a wavelength sensitivity 2400 nm/RIU and an ultra-high figure of merit 3640, which are much better than those of most reported similar plasmonic sensors. Besides, we also comprehensively investigate the influences of structural parameters on the sensing properties. Due to the simplicity of its geometry structure and its easiness to be fabricated, the proposed high figure of merit and sensitivity sensor indicates a competitive candidate for applications in sensing or detecting fields.

  17. Development and validation of ultra-high performance supercritical fluid chromatography method for determination of illegal dyes and comparison to ultra-high performance liquid chromatography method.

    Science.gov (United States)

    Khalikova, Maria A; Šatínský, Dalibor; Solich, Petr; Nováková, Lucie

    2015-05-18

    A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70°C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min(-1). The UV-vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices - Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50-9.09 mg kg(-1) (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg(-1) to 0.60 mg kg(-1) (1.80 mg kg(-1) for Fast Garnet) for standard solution and from 0.25 mg kg(-1) to 1.00 mg kg(-1) (2.50 mg kg(-1) for Fast Garnet, 1.50 mg kg(-1) for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5-107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real

  18. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  19. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  20. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  1. High-precision photometry by telescope defocussing. VII. The ultra-short period planet WASP-103

    CERN Document Server

    Southworth, John; Ciceri, S; Budaj, J; Dominik, M; Jaimes, R Figuera; Haugbolle, T; Jorgensen, U G; Popovas, A; Rabus, M; Rahvar, S; von Essen, C; Schmidt, R W; Wertz, O; Alsubai, K A; Bozza, V; Bramich, D M; Novati, S Calchi; D'Ago, G; Hinse, T C; Henning, Th; Hundertmark, M; Juncher, D; Korhonen, H; Skottfelt, J; Snodgrass, C; Starkey, D; Surdej, J

    2014-01-01

    We present 17 transit light curves of the ultra-short period planetary system WASP-103, a strong candidate for the detection of tidally-induced orbital decay. We use these to establish a high-precision reference epoch for transit timing studies. The time of the reference transit midpoint is now measured to an accuracy of 4.8s, versus 67.4s in the discovery paper, aiding future searches for orbital decay. With the help of published spectroscopic measurements and theoretical stellar models, we determine the physical properties of the system to high precision and present a detailed error budget for these calculations. The planet has a Roche lobe filling factor of 0.58, leading to a significant asphericity; we correct its measured mass and mean density for this phenomenon. A high-resolution Lucky Imaging observation shows no evidence for faint stars close enough to contaminate the point spread function of WASP-103. Our data were obtained in the Bessell $RI$ and the SDSS $griz$ passbands and yield a larger planet ...

  2. The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes

    CERN Document Server

    Gandhi, Raj; Watanabe, Atsushi

    2009-01-01

    It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it lead...

  3. Ultra-high geomagnetic field reversal frequency around the Precambrian-Cambrian transition ?

    Science.gov (United States)

    Pavlov, V.; Gallet, Y.; Shatsillo, A.; Kouznetsov, N.

    2014-12-01

    Magnetostratigraphic investigations carried out in Siberia have shown that the middle Cambrian was marked by an extremely high geomagnetic field reversal frequency of about 7 to 10 rev./Myr. The results available for the Lower Cambrian are more uncertain but they may indicate an even higher reversal frequency, which could thus reveal a very unstable nature of the geomagnetic field at this time. Recent magnetostratigraphic results also suggest that the geomagnetic reversal frequency has been extraordinarily high at the end of the Precambrian, thus in agreement with the Lower Cambrian data. We will present a review of these data, and will further describe new results we have obtained from Late Ediacaran-Nemakit-Daldynian sections of the south-western Siberian platform (Enisey range, Teya and Chapa rivers valleys). All these data provide consistent evidences for an ultra-high geomagnetic field reversal frequency, and thus for the exceptional nature of the geomagnetic field, around the Precambrian-Cambrian transition. We will also discuss a number of hypotheses which could explain a temporary destabilization of the geomagnetic field.

  4. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  5. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    Science.gov (United States)

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-01-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities. PMID:27752136

  6. Nanocomposites of TiO₂/cyanoethylated cellulose with ultra high dielectric constants.

    Science.gov (United States)

    Madusanka, Nadeesh; Shivareddy, Sai G; Hiralal, Pritesh; Eddleston, Mark D; Choi, Youngjin; Oliver, Rachel A; Amaratunga, Gehan A J

    2016-05-13

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

  7. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants

    Science.gov (United States)

    Madusanka, Nadeesh; Shivareddy, Sai G.; Hiralal, Pritesh; Eddleston, Mark D.; Choi, Youngjin; Oliver, Rachel A.; Amaratunga, Gehan A. J.

    2016-05-01

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

  8. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    Science.gov (United States)

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-10-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities.

  9. The Rheological Properties of Ultra-fine High Performance Grouting Cement

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The material properties of surface and powder, rheological property and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary viscometer.The influence of admixture on ultra-fine cement rheological properties and its mechanism were studied in material theories.The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste,decreases flowability loss as time prolonging,improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers.

  10. Influence of particles on the loading capacity and the temperature rise of water film in Ultra-high speed hybrid bearing

    Science.gov (United States)

    Zhu, Aibin; Li, Pei; Zhang, Yefan; Chen, Wei; Yuan, Xiaoyang

    2015-04-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  11. Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing

    Institute of Scientific and Technical Information of China (English)

    ZHU Aibin; LI Pei; ZHANG Yefan; CHEN Wei; YUAN Xiaoyang

    2015-01-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  12. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    Science.gov (United States)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  13. High-resolution T2-weighted cervical cancer imaging : a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    NARCIS (Netherlands)

    Hoogendam, Jaap; van Kalleveen, Irene; Arteaga de Castro, Catalina; Raaijmakers, AJE; Verheijen, René H M; van Den Bosch, Maurice A A J; Klomp, DWJ; Zweemer, RP; Veldhuis, Wouter B.

    2017-01-01

    Objectives: We studied the feasibility of high-resolution T2-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. Methods: A feasibility study on 20 stage IB1–IIB cervical cancer patients was conducted.

  14. Ultra - High Energy Cosmic Rays from decay of the Super Heavy Dark Matter Relics

    CERN Document Server

    Doroshkevich, A G

    2000-01-01

    In this paper we briefly discuss the problem of the origin of Ultra High Energy Cosmic Rays in the framework of Top-Down models. We show that, for high energy of decays and in a wide range of spectra of injected protons, their extragalactic flux is consistent with the observed fluxes of cosmic rays in the energy range 0.1 E_{GZK}< E < 10E_{GZK}. For suitable energy and spectra of injected protons, the contribution of galactic sources is moderate, in this energy range, but it dominates at smaller and larger energies. In such models we can expect that at these energies the anisotropy of cosmic rays distribution over sky will be especially small. Some possible manifestations of decays of super massive particles such as, for example, primordial black holes with masses M_{pbh} ~ 10^{-5} g, are considered. In particular, we show that partial conversion of energy released during these decays at redshifts z ~ 1000 to Ly-alpha photons can delay the hydrogen recombination and distort the spectrum of fluctuations ...

  15. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-05-01

    Full Text Available Ultra-high-frequency (UHF partial discharge (PD online monitoring is an effective way to inspect potential faults and insulation defects in power transformers. The construction of UHF PD online monitoring system is a challenge because of the high-frequency and wide-frequency band of the UHF PD signal. This paper presents a novel, intelligent sensor for UHF PD online monitoring based on a new method, namely a level scanning method. The intelligent sensor can directly acquire the statistical characteristic quantities and is characterized by low cost, few data to output and transmit, Ethernet functionality, and small size for easy installation. The prototype of an intelligent sensor was made. Actual UHF PD experiments with three typical artificial defect models of power transformers were carried out in a laboratory, and the waveform recording method and intelligent sensor proposed were simultaneously used for UHF PD measurement for comparison. The results show that the proposed intelligent sensor is qualified for the UHF PD online monitoring of power transformers. Additionally, three methods to improve the performance of intelligent sensors were proposed according to the principle of the level scanning method.

  16. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics

    Directory of Open Access Journals (Sweden)

    Ruzhuan Wang

    2015-08-01

    Full Text Available A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.

  17. Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.

    Science.gov (United States)

    Fan, Jianqing; Feng, Yang; Song, Rui

    2011-06-01

    A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under general nonparametric models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, a data-driven thresholding and an iterative nonparametric independence screening (INIS) are also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.

  18. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    Institute of Scientific and Technical Information of China (English)

    Yan Changwang; Jia Jinqing

    2010-01-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SR.C) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and R.C frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  19. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Takami Hajime

    2013-06-01

    Full Text Available Transient generation of ultra-high-energy cosmic rays (UHECRs has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ∼ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  20. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    CERN Document Server

    Baerwald, Philipp; Winter, Walter

    2014-01-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corres...

  1. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    Science.gov (United States)

    Yan, Changwang; Jia, Jinqing

    2010-09-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  2. Concept for support and heating of plate-like samples in the ultra-high vacuum

    Science.gov (United States)

    Tröger, L.; Pieper, H. H.; Reichling, M.

    2013-01-01

    We present the concept for a sample holder designed for mounting and heating of plate-like samples that is based on a clamping mechanism for easy handling. The clamping mechanism consists of a U-shaped bracket encompassing the sample support plate from the rear. Two spring wires are fixed in the walls of the bracket spanning the sample to secure it with only two point contacts. This enables the sample to freely expand or contract during heating and cooling. To accommodate for a large variety in sample size, shape, and quality, we introduce two designs differing in the generation of the clamping force: One pressing the sample against the spring wires, the other one pulling the spring wires onto the sample. Both designs yield an automatically even alignment of the sample during the mounting process to achieve an even load distribution and reliable fixation specifically for brittle samples. For high temperature treatment, the sample holders are enhanced by a resistive heating plate. As only the sample and a small fraction of the sample holder are heated, temperatures of 1300 °C are reached with only 8 W heating power. The sample support and heating components are mounted on a 11 mm × 13 mm base plate with a handle that can be transferred between the sample entry stage, the preparation stage, and surface science experiments in the ultra-high vacuum system.

  3. Social relationships in young adults at ultra high risk for psychosis.

    Science.gov (United States)

    Robustelli, Briana L; Newberry, Raeana E; Whisman, Mark A; Mittal, Vijay A

    2017-01-01

    Studies suggest that individuals with schizophrenia have smaller social networks and less satisfying relationships. However, much is still unknown about the typical quantity and quality of social relationships in young adults during the ultra high-risk (UHR) period. Investigating these relationships holds significant importance for improving understanding of etiological processes, mapping the social environment, and highlighting treatment targets in a critical period. A total of 85 participants (44 UHR and 41 healthy controls) completed measures examining the participants' social relationships, social support, and loneliness. Mean differences between the UHR and healthy control participants and associations between social relationships and symptoms and functioning were examined. Results indicated significant differences between groups on several indices. Specifically, the UHR youth reported fewer close friends, less diverse social networks, less perceived social support, poorer relationship quality with family and friends, and more loneliness. Notably, within the UHR group, being lonely and having fewer and worse quality relationships was associated with greater symptom severity and lower overall functioning. This study suggests that youth at high-risk of developing psychosis have fewer and poorer quality social relationships. Interventions that focus on increasing the quantity and quality of young adults' social networks may be beneficial for this population.

  4. Requirement of ultra-high voltage GIS arrester to voltage gradient of metal-oxide varistor

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The surge arrester with excellent protection characteristics would decrease the overvoltage level ap- plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The arrester for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite element method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the resulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrester would be controlled smaller than 10%. The result in this paper provides the fundamental technical index for the study of the high voltage gradient ZnO varistors.

  5. Propagation of extragalactic photons at ultra-high energy with the EleCa code

    CERN Document Server

    Settimo, Mariangela

    2013-01-01

    Ultra-high energy (UHE) photons play an important role as an independent probe of the photo-pion production mechanism by UHE cosmic rays. Their observation, or non-observation, may constrain astrophysical scenarios for the origin of UHECRs and help to understand the nature of the flux suppression observed by several experiments at energies above $10^{19.5}$ eV. Whereas the interaction length of UHE photons above $10^{17}$ eV ranges from a few hundred kpc up to tenths of Mpc, photons can interact with the extragalactic background radiation initiating the development of electromagnetic cascades which affect the fluxes of photons observed at Earth. The interpretation of the current experimental results rely on the simulations of the UHE photon propagation. In this paper, we present the novel Monte Carlo code EleCa to simulate the $Ele$ctromagnetic $Ca$scading initiated by high-energy photons and electrons. We provide an estimation of the surviving probability for photons inducing electromagnetic cascades as a fu...

  6. Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Sudhakar, E-mail: sudhakar.padmanabhan@ril.co [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India); Sarma, Krishna R.; Rupak, Kishor; Sharma, Shashikant [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India)

    2010-04-15

    Tailoring the synthesis of a suitable Ziegler-Natta (ZN) catalyst coupled with optimized polymerization conditions using a suitable activator holds the key for an array of differentiated polymers with diverse and unique properties. Ultra high molecular weight polyethylene (UHMWPE) is one such polymer which we have synthesized using TiCl{sub 4} anchored on MgCl{sub 2} as the support and activated using AlRR'{sub 2} (where R, R' = iso-prenyl or isobutyl) under specific conditions. Here in we have accomplished a process for synthesizing UHMWPE in hydrocarbon as the medium with molecular weights ranging from 5 to 10 million g/mole. The differentiated polymers exhibited the desired properties such as particle size distribution (PSD), average particle size (APS), bulk density (BD) and molecular weight (MW) with controlled amount of fine and coarse particles. Scanning electron micrographs (SEM) reflected the material to have uniform particle size distribution with a spherical morphology. The extent of entanglement was determined from thermal studies and it was found to be highly entangled.

  7. Energy reconstruction of hadron-initiated showers of ultra-high energy cosmic rays

    CERN Document Server

    Ros, G; Supanitsky, A D; del Peral, L; Rodríguez-Frías, M D

    2015-01-01

    The current methods to determine the primary energy of ultra-high energy cosmic rays (UHECRs) are different when dealing with hadron or photon primaries. The current experiments combine two different techniques, an array of surface detectors and fluorescence telescopes. The latter allow an almost calorimetric measurement of the primary energy. Thus, hadron-initiated showers detected by both type of detectors are used to calibrate the energy estimator from the surface array (usually the interpolated signal at a certain distance from the shower core S(r0)) with the primary energy. On the other hand, this calibration is not feasible when searching for photon primaries since no high energy photon has been unambiguously detected so far. Therefore, pure Monte Carlo parametrizations are used instead. In this work, we present a new method to determine the primary energy of hadron-induced showers in a hybrid experiment based on a technique previously developed for photon primaries. It consists on a set of calibration ...

  8. A Measurement Of The Ultra-high Energy Cosmic Ray Flux With The Hires Fadc Detector

    CERN Document Server

    Zech, A

    2004-01-01

    We have measured the ultra-high energy cosmic ray flux with the newer one of the two detectors of the High Resolution Fly's Eye experiment (HiRes) in monocular mode. An outline of the HiRes experiment is given here, followed by a description of the trigger and Flash ADC electronics of the HiRes-2 detector. The computer simulation of the experiment, which is needed for resolution studies and the calculation of the detector acceptance, is presented in detail. Different characteristics of the simulated events are compared to real data to test the performance of the Monte Carlo simulation. The calculation of the energy spectrum is described, together with studies of systematic uncertainties due to the cosmic ray composition and aerosol content of the atmosphere that are assumed in the simulation. Data collected with the HiRes- 2 detector between December 1999 and September 2001 are included in the energy spectrum presented here. We compare our result with previous measurements by other experiments.

  9. An ultra-high dose of electron radiation response of Germanium Flat Fiber and TLD-100

    Science.gov (United States)

    Alawiah, A.; Amin, Y. M.; Abdul-Rashid, H. A.; Abdullah, W. S. Wan; Maah, M. J.; Bradley, D. A.

    2017-01-01

    The thermoluminescence (TL) response of Germanium Flat Fiber (GFF) and TLD-100 irradiated with 2.5 MeV electrons for the doses up to 1 MGy were studied and compared. The aim was to evaluate the TL supralinearity response at an ultra-high dose (UHD) range and to investigate the change in kinetic parameters of the glow peaks, as the doses increases up to 1 MGy. It is found that the critical dose limit (CDL) of GFF is 5 times higher as compared to TLD-100. CDL is determined by the dose at the maximum supralinearity, f(D)max. It is also found that annealing the TLD-100 and GFF with temperature more than 400 °C is required to reset it back to its original condition, following radiation doses up to 1 MGy. It is also noticed the strange behavior of Peak 4 (TLD-100), which tends to be invisible at the lower dose (<10 kGy) and starts to be appeared at the critical dose limit of 10 kGy. This result might be an important clue to understand the behavior of TLD-100 at extremely high dose range. For both samples, it is observed that the TL intensity is not saturated within the UHD range studied.

  10. Audiovisual focus of attention and its application to Ultra High Definition video compression

    Science.gov (United States)

    Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj

    2014-02-01

    Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.

  11. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    Science.gov (United States)

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.

  12. Identifying galaxy candidates in WSRT HI imaging of ultra-compact high velocity clouds

    CERN Document Server

    Adams, Elizabeth A K; Cannon, John M; Giovanelli, Riccardo; Haynes, Martha P

    2016-01-01

    Ultra-compact high velocity clouds (UCHVCs) were identified in the ALFALFA HI survey as potential gas-bearing dark matter halos. Here we present higher resolution neutral hydrogen (HI) observations of twelve UCHVCS with the Westerbork Synthesis Radio Telescope (WSRT). The UCHVCs were selected based on a combination of size, isolation, large recessional velocity and high column density as the best candidate dark matter halos. The WSRT data were tapered to image the UCHVCs at 210" (comparable to Arecibo) and 105" angular resolution. In a comparison of the single-dish to interferometer data, we find that the line flux recovered in the WSRT observations is comparable to that from the single-dish ALFALFA data. In addition, any structure seen in the ALFALFA data is reproduced in the WSRT maps at the same angular resolution. At 210'" resolution all the sources are generally compact with a smooth HI morphology, as expected from their identification as UCHVCs. At the higher angular resolution, a majority of the source...

  13. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

    Science.gov (United States)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad

    2014-09-01

    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  14. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  15. Ultra-high energy neutrino fluxes as a probe for non-standard physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri; Choubey, Sandhya; Gandhi, Raj [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Watanabe, Atsushi, E-mail: atri@hri.res.in, E-mail: sandhya@hri.res.in, E-mail: nubarnu@gmail.com, E-mail: watanabe@muse.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2010-09-01

    We examine how light neutrinos coming from distant active galactic nuclei (AGN) and similar high energy sources may be used as tools to probe non-standard physics. In particular we discuss how studying the energy spectra of each neutrino flavour coming from such distant sources and their distortion relative to each other may serve as pointers to exotic physics such as neutrino decay, Lorentz symmetry violation, pseudo-Dirac effects, CP and CPT violation and quantum decoherence. This allows us to probe hitherto unexplored ranges of parameters for the above cases, for example lifetimes in the range 10{sup −3}−10{sup 4} s/eV for the case of neutrino decay. We show that standard neutrino oscillations ensure that the different flavours arrive at the earth with similar shapes even if their flavour spectra at source may differ strongly in both shape and magnitude. As a result, observed differences between the spectra of various flavours at the detector would be signatures of non-standard physics altering neutrino fluxes during propagation rather than those arising during their production at source. Since detection of ultra-high energy (UHE) neutrinos is perhaps imminent, it is possible that such differences in spectral shapes will be tested in neutrino detectors in the near future. To that end, using the IceCube detector as an example, we show how our results translate to observable shower and muon-track event rates.

  16. Ultra-High-Energy Cosmic Rays from Low-Luminosity Active Galactic Nuclei

    CERN Document Server

    Dutan, Ioana

    2014-01-01

    We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power $P_{\\mathrm{j}} \\leqslant 10^{46}$ erg s$^{-1}$. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies $ \\geqslant 50$ EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We find that the UHECR flux is dependent on the {\\it observed radio flux density, the distance to the AGN, and the BH mass}, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 ...

  17. Coherent Radiation from Extensive Air Showers in the Ultra-High Frequency Band

    CERN Document Server

    Alvarez-Muñiz, Jaime; Romero-Wolf, Andrés; Tueros, Matías; Zas, Enrique

    2012-01-01

    Using detailed Monte Carlo simulations we have characterized the features of the radio emission of inclined air showers in the Ultra-High Frequency band (300 MHz - 3 GHz). The Fourier-spectrum of the radiation is shown to have a sizable intensity well into the GHz frequency range. The emission is mainly due to transverse currents induced by the geomagnetic field and to the excess charge produced by the Askaryan effect. At these frequencies only a significantly reduced volume of the shower around the axis contributes coherently to the signal observed on the ground. The size of the coherently emitting volume depends on frequency, shower geometry and observer position, and is interpreted in terms of the relative time delays. At ground level, the maximum emission at high frequencies is concentrated in an elliptical ring-like region around the intersection of a Cherenkov cone with its vertex at shower maximum and the ground. The frequency spectrum of inclined showers when observed at positions that view shower max...

  18. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles.

  19. Design and Performance Tests of Ultra-Compact Calorimeters for High Energy Astrophysics

    Science.gov (United States)

    Salgado, Carlos W.

    2003-01-01

    This R&D project had two goals: a) the study of general-application ultra-compact calorimetry technologies for use in High Energy Astrophysics and, b) contribute to the design of an efficient calorimeter for the ACCESS mission. The direct measurement of galactic cosmic ray fluxes is performed from space or from balloon-borne detectors. Detectors used in those studies are limited in size and, specially, in weight. Since galactic cosmic ray fluxes are very small, detectors with high geometrical acceptances and long exposures are usually required for collecting enough statistics. We have studied calorimeter techniques that could produce large geometrical acceptance per unit of mass (G/w) and that may be used to study galactic cosmic rays at intermediate energies (knee energies).-The most important asset for detection of primary cosmic rays at and about the knee is large acceptance. To construct a large acceptance calorimeter (this term is used here in its most general accepted meaning of calorimeter as a device to measure particle energies ) the detector needs to be verv liaht or verv shallow . We studied two possible technologies to built compact calorimeters: the use of lead-tungstate crystals (PWO) and the use of sampling calorimetry using scintillating fibers embedded in a matrix of powder tungsten. For a very light detector, we considered the possibility of using Optical Transition Radiation (OTR) to measure the energy (and perhaps also direction and identity) of VHE cosmic rays.

  20. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons.

    Science.gov (United States)

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-10-30

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

  1. Performance Analysis of Ultra Wideband Receivers for High Data Rate Wireless Personal Area Network System

    Directory of Open Access Journals (Sweden)

    Bikramaditya Das

    2010-03-01

    Full Text Available For high data rate ultra wideband communication system, performance comparison of Rake, MMSE andRake-MMSE receivers is attempted in this paper. Further a detail study on Rake-MMSE time domainequalizers is carried out taking into account all the important parameters such as the effect of the numberof Rake fingers and equalizer taps on the error rate performance. This receiver combats inter-symbolinterference by taking advantages of both the Rake and equalizer structure. The bit error rateperformances are investigated using MATLAB simulation on IEEE 802.15.3a defined UWB channelmodels. Simulation results show that the bit error rate probability of Rake-MMSE receiver is much betterthan Rake receiver and MMSE equalizer. Study on non-line of sight indoor channel models illustratesthat bit error rate performance of Rake-MMSE (both LE and DFE improves for CM3 model with smallerspread compared to CM4 channel model. It is indicated that for a MMSE equalizer operating at low tomedium SNR values, the number of Rake fingers is the dominant factor to improve system performance,while at high SNR values the number of equalizer taps plays a more significant role in reducing the errorrate.

  2. Requirement of ultra-high voltage GIS arrester to voltage gradient of metal-oxide varistor

    Institute of Scientific and Technical Information of China (English)

    HE JinLiang; HU Jun; MENG BoWen; ZHANG Bo; ZHU Bin; CHEN ShuiMing; ZENG Rong

    2009-01-01

    The surge arrestor with excellent protection characteristics would decrease the overvoltage level ap-plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The ar-restor for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite ele-ment method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the re-sulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrestor would be controlled smaller than 10%. The result in this paper provides the fundamental technical in-dex for the study of the high voltage gradient ZnO varistors.

  3. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44

    CERN Document Server

    van Dokkum, Pieter; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Merritt, Allison; Mowla, Lamiya; Romanowsky, Aaron; Zhang, Jielai

    2016-01-01

    Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these Ultra Diffuse Galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here we present the stellar kinematics of Dragonfly 44, one of the largest Coma UDGs, using a 33.5 hr integration with DEIMOS on the Keck II telescope. We find a velocity dispersion of 47 km/s, which implies a dynamical mass of M_dyn=0.7x10^10 M_sun within its deprojected half-light radius of r_1/2=4.6 kpc. The mass-to-light ratio is M/L=48 M_sun/L_sun, and the dark matter fraction is 98 percent within the half-light radius. The high mass of Dragonfly 44 is accompanied by a large globular cluster population. From deep Gemini imaging taken in 0.4" seeing we infer that Dragonfly 44 has 94 globular clusters, similar to the counts for other galaxies in this mass range. Our results add to other recent evidence that many UDGs are "failed" galaxies, with the sizes, dark matter conte...

  4. Overview of lunar detection of ultra-high energy particles and new plans for the SKA

    Science.gov (United States)

    James, Clancy W.; Alvarez-Muñiz, Jaime; Bray, Justin D.; Buitink, Stijn; Dagkesamanskii, Rustam D.; Ekers, Ronald D.; Falcke, Heino; Gayley, Ken; Huege, Tim; Mevius, Maaijke; Mutel, Rob; Scholten, Olaf; Spencer, Ralph; ter Veen, Sander; Winchen, Tobias

    2017-03-01

    The lunar technique is a method for maximising the collection area for ultra-high-energy (UHE) cosmic ray and neutrino searches. The method uses either ground-based radio telescopes or lunar orbiters to search for Askaryan emission from particles cascading near the lunar surface. While experiments using the technique have made important advances in the detection of nanosecond-scale pulses, only at the very highest energies has the lunar technique achieved competitive limits. This is expected to change with the advent of the Square Kilometre Array (SKA), the low-frequency component of which (SKA-low) is predicted to be able to detect an unprecedented number of UHE cosmic rays. In this contribution, the status of lunar particle detection is reviewed, with particular attention paid to outstanding theoretical questions, and the technical challenges of using a giant radio array to search for nanosecond pulses. The activities of SKA's High Energy Cosmic Particles Focus Group are described, as is a roadmap by which this group plans to incorporate this detection mode into SKA-low observations. Estimates for the sensitivity of SKA-low phases 1 and 2 to UHE particles are given, along with the achievable science goals with each stage. Prospects for near-future observations with other instruments are also described.

  5. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  6. Application of phase diagram calculations to development of new ultra-high temperature structural materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (> 1 400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad(Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.

  7. Search for Ultra High-Energy Neutrinos with AMANDA-II

    CERN Document Server

    Ackermann, M; Ahrens, J; Andeen, K; Auffenberg, J; Bai, X; Baret, B; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Beimforde, M; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Böser, S; Botner, O; Bouchta, A; Braun, J; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirrs, L; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Griesel, T; Gro, A; Grullon, S; Gunasingha, R M; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Hasegawa, Y; Hauschildt, T; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hul, J P; Hulth, P O; Hultqvist, K; Hundertmark, S; Inaba, M; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K H; Kappes, A; Karg, T; Karle, A; Kawai, H; Kelley, J L; Kiryluk, J; Kislat, F; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Kpke, L; Kowalski, M; Kowarik, T; Krasberg, M; Kühn, K; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Lauer, R; Leich, H; Leier, D; Liubarsky, I; Lundberg, J; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meagher, K; Meli, A; Messarius, T; Mszros, P; Miyamoto, H; Montaruli, T; Mor, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Nieen, P; Nygren, D R; Olivas, A; Ono, M; Patton, S; Prezdelos Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Robbins, W J; Roth, P; Rothmaier, F; Rott, C; Roucelle, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Satalecka, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schultz, O; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, A J; Song, C; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Sumner, T J; Swillens, Q; Taboada, I; Tarasova; Tepe, A; Thollander, L; Tilav, S; Tluczykont, M; Toale, P A; Tosi, D; Turan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Viscomi, V; Vogt, C; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Waldenmaier, T; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C H; Wiedemann, C; Wikstrm, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2007-01-01

    A search for diffuse neutrinos with energies in excess of 10^5 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10^7 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E^{-2} $\\Phi$_{90%CL} < 2.7 $\\times$ 10^{-7} GeV cm^{-2} s^{-1} sr^{-1} valid over the energy range of 2 $\\times$ 10^5 GeV to 10^9 GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

  8. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  9. Ultra-Lightweight High Efficiency Nanostructured Materials and Coatings for Deep Space Mission Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a nanostructured spray self-assembly manufacturing method that has resulted in ultra-lightweight (< 0.4g/cc) textile interconnects for...

  10. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    Science.gov (United States)

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  11. EleCa: A Monte Carlo code for the propagation of extragalactic photons at ultra-high energy

    Energy Technology Data Exchange (ETDEWEB)

    Settimo, Mariangela [University of Siegen (Germany); De Domenico, Manlio [Laboratory of Complex Systems, Scuola Superiore di Catania and INFN (Italy); Lyberis, Haris [Federal University of Rio de Janeiro (Brazil)

    2013-06-15

    Ultra high energy photons, above 10{sup 17}–10{sup 18}eV, can interact with the extragalactic background radiation leading to the development of electromagnetic cascades. A Monte Carlo code to simulate the electromagnetic cascades initiated by high-energy photons and electrons is presented. Results from simulations and their impact on the predicted flux at Earth are discussed in different astrophysical scenarios.

  12. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach

    OpenAIRE

    Krug, Johannes W; Rose, Georg; Clifford, Gari D.; Oster, Julien

    2013-01-01

    Background In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects w...

  13. Ultra High p-doping Material Research for GaN Based Light Emitters

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing

  14. Ultra high molecular weight polyethylene as a base material for shielding cosmic radiation in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marlon A., E-mail: marlon@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Fisica Aplicada; Goncalez, Odair L. [Instituto Tecnologico de Aeronautica (PG/CTE/ITA), Sao Jose dos Campos, SP (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnologias Espaciais

    2013-07-01

    Materials with high content of hydrogen have good properties of shielding against the effects of cosmic rays (CR) because are less effective than materials with high nuclear masses in the generation of secondary radiation. Beside the Aluminum, Polyethylene has been used as a reference and as a base material for composites applied in structures and in shielding of ionizing radiation for aerospace applications. Ultra high molecular weight polyethylene (UHMWPE), pure and doped 10% by mass with cadmium chloride, had its shielding properties for CR evaluated in this paper. Methodology used was based in conventional radioactive sources employed on simple geometries experiments and then computational simulation for isotropic fluxes of cosmic-ray high energy particles. Transmission experiments were performed with a3.7GBq (100 mCi){sup 241}Am-Be neutron source and a set of conventional calibration gamma radiation sources. Samples were characterized according to their gamma total attenuation coefficients from 59 to 1,408 keV, dose deposition curve for {sup 60}Co gamma-rays, fast neutron transmission coefficient, generation and self-absorption of thermal neutrons as well as their generation of internal cascades of secondary electrons and gamma-rays by nuclear interactions of fast neutrons with shielding material. Main effects of the additive in the polyethylene base were the most effective removal of gamma radiation and of secondary electrons with energies below 200 keV, the reduction of the albedo as well as the thermal neutrons transmission. Dose reduction due to primary CR were not significant, since the largest contribution to the doses due to high energy ionizing particles transmitted and, also, due to secondary radiation with energy above 1 MeV produced in shielding. (author)

  15. Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines

    Institute of Scientific and Technical Information of China (English)

    Dieter BOHN; Robert KREWINKEL; Shuqing TIAN

    2009-01-01

    In order to increase efficiency and achieve a further CO2-reduction, the next generation of power plant turbines will have steam turbine inlet temperatures that are considerably higher than the current ones. The high pressure steam turbine inlet temperature is expected to be increased up to approximately 700℃ with a live steam pressure of 30 MPa. The elevated steam parameters in the high and intermediate pressure turbines can be encountered with Ni-base alloys, but this is a costly alternative associated with many manufacturing difficulties. Colla-borative research centre 561 "Thermally Highly Loaded,Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants" at RWTH Aachen University proposes cooling the highly loaded turbines instead, as this would necessitate the application of far less Ni-base alloys.To protect the thermally highly loaded components, a sandwich material consisting of two thin face sheets and a core made from a woven wire mesh is used to cover the walls of the steam turbine casing. The cooling steam is led through the woven wire mesh between the two face sheets to achieve a cooling effect. The wire mesh provides the grid-sheet with structural rigidity under varying operating conditions.In the present work, the cooling performance of the grid-sheets will be investigated applying the conjugate heat transfer method to ultra-supercritical live and cooling steam conditions for a section of the cooling structure. The behaviour of the flow and the heat transfer in the grid-sheet will be analyzed in detail using a parameter variation. The numerical results should give a first prediction of the cooling performance under future operating conditions.

  16. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M

    2006-03-01

    To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.

  17. Prior knowledge of deaf students fluent in brazilian sign languages regarding the algebraic language in high school

    Directory of Open Access Journals (Sweden)

    Silvia Teresinha Frizzarini

    2014-06-01

    Full Text Available There are few researches with deeper reflections on the study of algebra with deaf students. In order to validate and disseminate educational activities in that context, this article aims at highlighting the deaf students’ prior knowledge, fluent in Brazilian Sign Language, referring to the algebraic language used in high school. The theoretical framework used was Duval’s theory, with analysis of the changes, by treatment and conversion, of different registers of semiotic representation, in particular inequalities. The methodology used was the application of a diagnostic evaluation performed with deaf students, all fluent in Brazilian Sign Language, in a special school located in the north of Paraná State. We emphasize the need to work in both directions of conversion, in different languages, especially when the starting record is the graphic. Therefore, the conclusion reached was that one should not separate the algebraic representation from other records, due to the need of sign language perform not only the communication function, but also the functions of objectification and treatment, fundamental in cognitive development.

  18. Prevalence of high blood pressure in Brazilian adolescents and quality of the employed methodological procedures: systematic review

    Directory of Open Access Journals (Sweden)

    Marina Gabriella Pereira de Andrada Magalhães

    2013-12-01

    Full Text Available OBJECTIVE: To review the literature on studies that estimated the prevalence of high blood pressure (HBP or systemic arterial hypertension (SAH in Brazilian adolescents, considering the employed methodological procedures. METHODS: Bibliographical research of prevalence studies of HBP/SAH in adolescents from 1995 to 2010. The search was conducted in the electronic databases PubMed/Medline, Lilacs, SciELO, and Isi Adolec. The descriptors "hypertension", "BP", "teen", "students", "cross-sectional", "prevalence" and "Brazil" were used in Portuguese and English. Furthermore, a score ranging from 0 to 18 based on Recommendations for Blood Pressure Measurement in Humans and Experimental Animals and the VI Brazilian Guidelines of Hypertension was elaborated, in order to analyze the procedures used to measure BP in studies. RESULTS: Twenty-one articles were identified, mostly published in the last 10 years, and 90.5% were performed in school-based and regions of the Southeast, Northeast and South. The prevalence of HBP/SAH ranged from 2.5 to 30.9%. The score of the studies ranged from 0 to 16. A significant negative correlation (rho = -0.504; p = 0.020 was observed between the prevalence of HBP/SAH and the score of BP measurement quality. CONCLUSION: The great variability of PAE/SAH estimates appears to be influenced by methodological procedures used in the studies.

  19. High-power laser-driven source of ultra-short X-ray and gamma-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Esirkepov, T.Zh.; Bulanov, S.V.; Pirozhkov, A.S.; Kando, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Kyoto (Japan); Zhidkov, A.G. [Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa-Ken (Japan)

    2009-11-15

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor. (authors)

  20. High-power laser-driven source of ultra-short X-ray and gamma-ray pulses

    Science.gov (United States)

    Esirkepov, T. Zh.; Bulanov, S. V.; Zhidkov, A. G.; Pirozhkov, A. S.; Kando, M.

    2009-11-01

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation udergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.