WorldWideScience

Sample records for brazil droughts modeling

  1. Evaluation of soil moisture and Palmer Drought Severity Index in Brazil

    Science.gov (United States)

    Rossato, Luciana; Antônio Marengo, José; Bassi Marinho Pires, Luciana

    2016-04-01

    Soil moisture is one of the main factors for the study of drought, climate and vegetation. In the case of drought, this is a regional phenomenon and affects food security more than any other natural disaster. Therefore, monitoring of different types of drought has been based on indexes that standardize on temporal and spatial scales. Currently, the monitoring of different types of drought is based on indexes that attempt to encapsulate on temporal and regional levels allowing thereby the comparison of water conditions in different areas. Therefore, in order to assess the impact of soil moisture during periods of drought, the Palmer Drought Severity Index was estimated for the entire Brazilian territory, using meteorological (precipitation and evapotranspiration) and soil (field capacity, permanent wilting point and water storage in the soil) data. The data field capacity and permanent wilting point were obtained from the physical properties of the soil, while the water storage in the soil was calculated considering the water balance model. Analyses were made for the years 2000 through 2014, which includes periods with and without occurrence of drought, respectively. The results showed that the PDSI had higher negative indices for the years 2003 and 2012 in Brazil's Northeast region, and this region was strongly affected by drought during those years. These indices can serve as a basis for assessing future drought projections, considering different scenarios. The results also show that soil moisture constitutes one of the limiting factors for obtaining high agricultural productivity, in order to reduce the effects caused by drought. Therefore, these indices can serve as a basis for assessing future drought projections, considering different scenarios. It would be desirable to assist decision makers in action plans with more effective strategies, allowing farmers to live with drought without losing their livelihood.

  2. Change in statistics of drought in a land use scenario for Brazil

    Science.gov (United States)

    Kilian, Markus; Chavez, Erik; Lucarini, Valerio

    2016-04-01

    The land use changes due to an intensified and expanding agricultural and industrial activity is affecting regional weather and climate in Brazil. We analyse the results of a land use change driven Weather and Research Forecasting Model (WRF) using classical drought indices and specific agricultural yield loss drought optimum indices. The objective is to assess changes in risk exposure driven by changes in weather patterns subject to different scenarios of land use changes in Brazil. The WRF model is driven by land use changes as well as the ECHAM5 climate model (with the A1B scenario) on a 60km and 30km grid. In order to determine the risk exposure of an important economic sector to changes in land use change we focus on maize as one of the principal crop grown in Brazil.

  3. Managing the health impacts of drought in Brazil.

    Science.gov (United States)

    Sena, Aderita; Barcellos, Christovam; Freitas, Carlos; Corvalan, Carlos

    2014-10-16

    Drought is often a hidden risk with the potential to become a silent public health disaster. It is difficult to define precisely when it starts or when it is over, and although it is a climatological event, its impacts depend on other human activities, and are intensified by social vulnerability. In Brazil, half of all natural disaster events are drought related, and they cause half of the impacts in number of affected persons. One large affected area is the semiarid region of Brazil's Northeast, which has historically been affected by drought. Many health and well-being indicators in this region are worse than the rest of the country, based on an analysis of 5565 municipalities using available census data for 1991, 2000 and 2010, which allowed separating the 1133 municipalities affected by drought in order to compare them with the rest of the country. Although great progress has been made in reducing social and economic vulnerability, climate change and the expected changes in the semiarid region in the next few decades call for a review of current programs, particularly in public health, and the planning of new interventions with local communities. This study reviews the literature, analyzes available data and identifies possible actions and actors. The aim is to ensure there will be sufficient and sustainable local adaptive capacity and resilience, for a population already living within the limits of environmental vulnerability.

  4. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil

    Science.gov (United States)

    Melo, Davi de C. D.; Scanlon, Bridget R.; Zhang, Zizhan; Wendland, Edson; Yin, Lei

    2016-11-01

    Droughts are particularly critical for Brazil because of impacts on water supply and because most (70 %) of its electricity is derived from hydroelectric generation. The Paraná basin (PB), a major hydroelectric producing region with 32 % (60 million people) of Brazil's population, recently experienced the most severe drought since the 1960s, compromising the water supply for 11 million people in São Paulo. The objective of this study is to quantify linkages between meteorological and hydrological droughts based on remote sensing, modelling, and monitoring data using the Paraná River basin in south-eastern Brazil as a case study. Two major meteorological droughts were identified in the early 2000s and 2014, with precipitation 20-50 % below the long-term mean. Total water storage change estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites declined by 150 km3 between April 2011 and April 2015. Simulated soil moisture storage declined during the droughts, resulting in decreased runoff into reservoirs. As a result, reservoir storage decreased by 30 % relative to the system's maximum capacity, with negative trends ranging from 17 (May 1997-April 2001) to 25 km3 yr-1 (May 2011-April 2015). Storage in upstream reservoirs is mostly controlled by natural climate forcing, whereas storage in downstream reservoirs also reflects dam operations. This study emphasizes the importance of integrating remote sensing, modelling, and monitoring data to evaluate droughts and to establish a preliminary understanding of the linkages between a meteorological and hydrological drought for future management.

  5. Managing the Health Impacts of Drought in Brazil

    Science.gov (United States)

    Sena, Aderita; Barcellos, Christovam; Freitas, Carlos; Corvalan, Carlos

    2014-01-01

    Drought is often a hidden risk with the potential to become a silent public health disaster. It is difficult to define precisely when it starts or when it is over, and although it is a climatological event, its impacts depend on other human activities, and are intensified by social vulnerability. In Brazil, half of all natural disaster events are drought related, and they cause half of the impacts in number of affected persons. One large affected area is the semiarid region of Brazil’s Northeast, which has historically been affected by drought. Many health and well-being indicators in this region are worse than the rest of the country, based on an analysis of 5565 municipalities using available census data for 1991, 2000 and 2010, which allowed separating the 1133 municipalities affected by drought in order to compare them with the rest of the country. Although great progress has been made in reducing social and economic vulnerability, climate change and the expected changes in the semiarid region in the next few decades call for a review of current programs, particularly in public health, and the planning of new interventions with local communities. This study reviews the literature, analyzes available data and identifies possible actions and actors. The aim is to ensure there will be sufficient and sustainable local adaptive capacity and resilience, for a population already living within the limits of environmental vulnerability. PMID:25325358

  6. Managing the Health Impacts of Drought in Brazil

    Directory of Open Access Journals (Sweden)

    Aderita Sena

    2014-10-01

    Full Text Available Drought is often a hidden risk with the potential to become a silent public health disaster. It is difficult to define precisely when it starts or when it is over, and although it is a climatological event, its impacts depend on other human activities, and are intensified by social vulnerability. In Brazil, half of all natural disaster events are drought related, and they cause half of the impacts in number of affected persons. One large affected area is the semiarid region of Brazil’s Northeast, which has historically been affected by drought. Many health and well-being indicators in this region are worse than the rest of the country, based on an analysis of 5565 municipalities using available census data for 1991, 2000 and 2010, which allowed separating the 1133 municipalities affected by drought in order to compare them with the rest of the country. Although great progress has been made in reducing social and economic vulnerability, climate change and the expected changes in the semiarid region in the next few decades call for a review of current programs, particularly in public health, and the planning of new interventions with local communities. This study reviews the literature, analyzes available data and identifies possible actions and actors. The aim is to ensure there will be sufficient and sustainable local adaptive capacity and resilience, for a population already living within the limits of environmental vulnerability.

  7. Water: Drought, Crisis and Governance in Australia and Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Sousa Júnior

    2016-10-01

    Full Text Available Despite huge differences in population, household income and development levels, Australia and Brazil have some temporal convergences in their water governance systems. Over the last 20 years, both countries have significantly reformed their water policies and practices by introducing a legal foundation for more integrated and participatory catchment/basin management based on the best information available. A critical test of any water reform is how effective it is in meeting the challenges of extreme and unpredictable conditions of drought and floods, which are expected to increase under climate changes scenarios. This paper compared the contemporary water governance frameworks of Australia and Brazil in relation to three elements of Integrated Water Resources Management (IWRM: integration, participation, and information/knowledge. We focused on insights from Brazil’s recent drought and Australia’s fluctuating water crises to derive lessons and recommendations for future changes. Among the main recommendations, we stress the need for both systems to improve effective participation and to embrace a more comprehensive approach to cope with water scarcity in future scenarios. Furthermore, water related decisions should be based on a transparent and well informed process, and take into account the lessons from similar situations worldwide in order to avoid unnecessary or ineffective measures. As demonstrated in the Australian case during the Millennium Drought, the most effective initiatives were those involving government, the private sector and society to achieve a more sustainable consumption pattern in all sectors. There is much to learn from the Brazilian and Australia experiences in water reforms and crises, but it is imperative to understand the social, economic and environmental context within which these took place. Continuing to develop the capacity and willingness of researchers and policy makers to work together can make an

  8. Drought, smallpox, and emergence of Leishmania braziliensis in northeastern Brazil.

    Science.gov (United States)

    Sousa, Anastácio Q; Pearson, Richard

    2009-06-01

    Cutaneous leishmaniasis caused by Leishmania (Vianna) braziliensis is a major health problem in the state of Ceará in northeastern Brazil. We propose that the disease emerged as a consequence of the displacement of persons from Ceará to the Amazon region following the Great Drought and smallpox epidemic of 1877-1879. As the economic and social situation in Ceará deteriorated, approximately 55,000 residents migrated to the Amazon region to find work, many on rubber plantations. Those that returned likely introduced L. (V.) brazilensis into Ceará, where the first cases of cutaneous leishmaniasis were reported early in the 20th century. The absence of an animal reservoir in Ceará, apart from dogs, supports the hypothesis. The spread of HIV/AIDS into the region and the possibility of concurrent cutaneous leishmaniasis raise the possibility of future problems.

  9. Paradigms and public policies on drought in northeast Brazil: a historical perspective.

    Science.gov (United States)

    Campos, José Nilson B

    2015-05-01

    This paper describes the evolution of drought-related public policies in Northeast Brazil (NEB). Using a historical approach, we show that the evolution of public policy has not been characterized by abrupt shifts, but has instead been shaped through debates between renowned intellectuals. The resulting public policies formed a hydrological infrastructure that delivers clean water needed for robust economic activity. However, outcomes of the 2012-2013 drought show that populations that depend on rain fed agriculture are as vulnerable to drought as they were at the start of the 20th century. Although government, social, and emergency programs have aided drought victims, drought analysts agree that rain fed agriculture has remained vulnerable since drought policies were first formulated. Drought policies formulate integrated water resources management (IWRM) strategies that are geared toward supplying safe drinking water, and debates surrounding the IWRM paradigm have been affected by outcomes of major international events such as the World Water Forum.

  10. Drought Duration Biases in Current Global Climate Models

    Science.gov (United States)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  11. Monitoring drought occurrences using MODIS evapotranspiration data: Direct impacts on agricultural productivity in Southern Brazil

    Science.gov (United States)

    Ruhoff, Anderson

    2014-05-01

    Evapotranspiration (ET), including water loss from plant transpiration and land evaporation, is of vital importance for understanding hydrological processes and climate dynamics and remote sensing is considered as the most important tool for estimate ET over large areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers an interesting opportunity to evaluate ET with spatial resolution of 1 km. The MODIS global evapotranspiration algorithm (MOD16) considers both surface energy fluxes and climatic constraints on ET (water or temperature stress) to predict plant transpiration and soil evaporation based on Penman-Monteith equation. The algorithm is driven by remotely sensed and reanalysis meteorological data. In this study, MOD16 algorithm was applied to Southern Brazil to evaluate drought occurrences and its impacts over the agricultural production. Drought is a chronic potential natural disaster characterized by an extended period of time in which less water is available than expected, typically classified as meteorological, agricultural, hydrological and socioeconomic. With human-induced climate change, increases in the frequency, duration and severity of droughts are expected, leading to negative impacts in several sectors, such as agriculture, energy, transportation, urban water supply, among others. The current drought indicators are primarily based on precipitation, however only a few indicators incorporate ET and soil moisture components. ET and soil moisture play an important role in the assessment of drought severity as sensitive indicators of land drought status. To evaluate the drought occurrences in Southern Brazil from 2000 to 2012, we used the Evaporative Stress Index (ESI). The ESI, defined as 1 (one) minus the ratio of actual ET to potential ET, is one of the most important indices denoting ET and soil moisture responses to surface dryness with effects over natural ecosystems and agricultural areas. Results showed that ESI captured major

  12. Model-based scenarios of Mediterranean droughts

    Directory of Open Access Journals (Sweden)

    M. Weiß

    2007-11-01

    Full Text Available This study examines the change in current 100-year hydrological drought frequencies in the Mediterranean in comparison to the 2070s as simulated by the global model WaterGAP. The analysis considers socio-economic and climate changes as indicated by the IPCC scenarios A2 and B2 and the global general circulation model ECHAM4. Under these conditions today's 100-year drought is estimated to occur 10 times more frequently in the future over a large part of the Northern Mediterranean while in North Africa, today's 100-year drought will occur less frequently. Water abstractions are shown to play a minor role in comparison to the impact of climate change, but can intensify the situation.

  13. Probabilistic assessment of agricultural droughts using graphical models

    Science.gov (United States)

    Ramadas, Meenu; Govindaraju, Rao S.

    2015-07-01

    Agricultural droughts are often characterized by soil moisture in the root zone of the soil, but crop needs are rarely factored into the analysis. Since water needs vary with crops, agricultural drought incidences in a region can be characterized better if crop responses to soil water deficits are also accounted for in the drought index. This study investigates agricultural droughts driven by plant stress due to soil moisture deficits using crop stress functions available in the literature. Crop water stress is assumed to begin at the soil moisture level corresponding to incipient stomatal closure, and reaches its maximum at the crop's wilting point. Using available location-specific crop acreage data, a weighted crop water stress function is computed. A new probabilistic agricultural drought index is then developed within a hidden Markov model (HMM) framework that provides model uncertainty in drought classification and accounts for time dependence between drought states. The proposed index allows probabilistic classification of the drought states and takes due cognizance of the stress experienced by the crop due to soil moisture deficit. The capabilities of HMM model formulations for assessing agricultural droughts are compared to those of current drought indices such as standardized precipitation evapotranspiration index (SPEI) and self-calibrating Palmer drought severity index (SC-PDSI). The HMM model identified critical drought events and several drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise as a tool for agricultural drought studies.

  14. Teleconnection mechanisms of northeast Brazil droughts: modeling and empirical evidence Mecanismos de teleconexões do nordeste do Brasil: modelagem numérica e evidência epirica

    Directory of Open Access Journals (Sweden)

    Fred Kucharski

    2008-06-01

    Full Text Available Targeted numerical modelling experimaents are conducted to complement the previous empirical diagnostics of circulation mechanisms leading from sea surface temperature (SST departures in the equatorial Pacific in January to anomalies in the March-April rainy season of Brazil's Nordeste. A weak interhemispheric northward directed SST gradient in the Atlantic favors a more southerly position of the hydrostatically controlled low pressure trough, embedded in which is the Intertropical Convergence Zone (ITCZ, which is the main rainbearing system for the Nordeste. In addition, anomalously warm waters in the equatorial Pacific in January tend to be followed by Nordeste drought. The underlying chain of causalities has been explored by empirical diagnostics and numerical modelling. During El Nino years, an upper-tropospheric wave train extends from the equatorial eastern Pacific to the tropical North Atlantic, affecting the patterns of upper-tropospheric topography and divergence, and hence of vertical motion over the Atlantic. This leads to a weaker meridional pressure gradient on the equatorward flank of the North Atlantic subtropical high, weaker North Atlantic tradewinds, an anomalously far northerly ITCZ position and thus Nordeste drought. The previous empirical diagnostics are overall supported by the modelling experiments.Experimentos específicos de modelagem numérica foram conduzidos para complementar diagnósticos empíricos realizados anteriormente dos mecanismos da circulação que relacionam anomalias na temperatura das águas superficiais do Pacífico equatorial em janeiro com as chuvas subsequentes em março-abril no Nordeste. Um gradiente térmico fraco (no sentido norte no Atlântico favorece a uma posição mais meridional do cavado de baixa pressão, controlado hidrostaticamente, dentro do qual se encontra a Zona de Convergência Inter-Tropical (ITCZ, que é a principal fonte de chuvas para o norte do Nordeste. Além disso,

  15. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections

    Science.gov (United States)

    Coelho, Caio A. S.; de Oliveira, Cristiano Prestrelo; Ambrizzi, Tércio; Reboita, Michelle Simões; Carpenedo, Camila Bertoletti; Campos, José Leandro Pereira Silveira; Tomaziello, Ana Carolina Nóbile; Pampuch, Luana Albertani; Custódio, Maria de Souza; Dutra, Lívia Marcia Mosso; Da Rocha, Rosmeri P.; Rehbein, Amanda

    2016-06-01

    The southeast region of Brazil experienced in austral summer 2014 a major drought event leading to a number of impacts in water availability for human consumption, agricultural irrigation and hydropower production. This study aims to perform a diagnostic analysis of the observed climate conditions during this event, including an inspection of the occurred precipitation anomalies in the context of previous years, and an investigation of possible relationships with sea surface temperatures and atmospheric circulation patterns. The sea surface temperature analysis revealed that the southwestern South Atlantic Ocean region near the coast of southeast Brazil showed strong negative association with precipitation over southeast Brazil, indicating that increased sea temperatures in this ocean region are consistent with reduced precipitation as observed in summer 2014. The circulation analysis revealed prevailing anti-cyclonic anomalies at lower levels (850 hPa) with northerly anomalies to the west of southeast Brazil, channeling moisture from the Amazon towards Paraguay, northern Argentina and southern Brazil, and drier than normal air from the South Atlantic Ocean towards the southeast region of Brazil. This circulation pattern was found to be part of a large-scale teleconnection wave train linked with the subsidence branch of the Walker circulation in the tropical east Pacific, which in turn was generated by an anomalous tropical heat source in north/northeastern Australia. A regional Hadley circulation with an ascending branch to the south of the subsidence branch of the Walker circulation in the tropical east Pacific was identified as an important component connecting the tropical and extratropical circulation. The ascending branch of this Hadley circulation in the south Pacific coincided with an identified Rossby wave source region, which contributed to establishing the extratropical component of the large-scale wave train connecting the south Pacific and the Atlantic

  16. Transient convection over the Amazon-Bolivia region and the dynamics of drought over Northeast Brazil

    Science.gov (United States)

    Buchmann, J.; Leitedasilvadias, P.; Moura, A. D.

    1985-01-01

    A two layer, nonlinear, equatorial beta-plane model, in p-coordinates is used to study the atmospheric response to a large scale prescribed heat source varying in time. The heat source is meant to represent a convective burst with total duration of approximately 48 hours over the Amazon/Bolivia region. The boundary conditions used are meridional velocity zero at 60 deg S, omega w = 0 at the top and zero geometric velocity at the lower boundary. Sensitivity study was done which includes initial state at rest, compared with realistic initial flow. The scale of the heat source is 1500 km in latitude and longitude and it is centered at 10 deg S. Special attention is paid to the distribution and intensity of the induced vertical motion. The model is integrated for two days and the preliminary results show agreement with the observed 200 mb flow. Of interest is the establishment of a trough and descending motion to the northeast of the heat source. A conjucture is thus made that the Amazon heat source and its fluctuations bear some relationship with the drought problem over Northeast Brazil.

  17. Vulnerability Assessment Models to Drought: Toward a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Kiumars Zarafshani

    2016-06-01

    Full Text Available Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers’ ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers’ level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought.

  18. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    Science.gov (United States)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  19. Modeling drought impact occurrence based on meteorological drought indices in Europe

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2015-11-01

    There is a vital need for research that links meteorological drought indices with drought impacts felt on the ground. Previously, this link has been estimated based on experience or defined based on very narrow impact measures. This study expands on earlier work by showing the feasibility of relating user-provided impact reports with meteorological drought indices, the Standardized Precipitation Index and the Standardized Precipitation-Evapotranspiration Index, through logistic regression, while controlling for seasonal and interannual effects. Analysis includes four impact types, spanning agriculture, energy and industry, public water supply, and freshwater ecosystem across five European countries. Statistically significant climate indices are retained as predictors using step-wise regression and used to compare the most relevant drought indices and accumulation periods across different impact types and regions. Agricultural impacts are explained by 2-12 month anomalies, though anomalies greater than 3 months are likely related to agricultural management practices. Energy and industrial impacts, typically related to hydropower and energy cooling water, respond slower (6-12 months). Public water supply and freshwater ecosystem impacts are explained by a more complex combination of short (1-3 month) and seasonal (6-12 month) anomalies. The resulting drought impact models have both good model fit (pseudo-R2 = 0.225-0.716) and predictive ability, highlighting the feasibility of using such models to predict drought impact likelihood based on meteorological drought indices.

  20. Global Drought Assessment using a Multi-Model Dataset

    NARCIS (Netherlands)

    Lanen, van H.A.J.; Huijgevoort, van M.H.J.; Corzo Perez, G.; Wanders, N.; Hazenberg, P.; Loon, van A.F.; Estifanos, S.; Melsen, L.A.

    2011-01-01

    Large-scale models are often applied to study past drought (forced with global reanalysis datasets) and to assess future drought (using downscaled, bias-corrected forcing from climate models). The EU project WATer and global CHange (WATCH) provides a 0.5o degree global dataset of meteorological forc

  1. Modeling Drought Impact Occurrence Based on Climatological Drought Indices for Europe

    Science.gov (United States)

    Stagge, J. H.; Kohn, I.; Tallaksen, L. M.; Stahl, K.

    2014-12-01

    ) and seasonal (6-12 month) anomalies. A mean of 47.0% (22.4-71.6%) impact deviance is explained by the resulting models, highlighting the feasibility of using such statistical techniques and drought impact databases to model drought impact likelihood based on relatively easily calculated meteorological drought indices.

  2. Drought prediction using a wavelet based approach to model the temporal consequences of different types of droughts

    Science.gov (United States)

    Maity, Rajib; Suman, Mayank; Verma, Nitesh Kumar

    2016-08-01

    Droughts are expected to propagate from one type to another - meteorological to agricultural to hydrological to socio-economic. However, they do not possess a universal, straightforward temporal dependence. Rather, assessment of one type of drought (successor) from another (predecessor) is a complex problem depending on the basin's physiographic and climatic characteristics, such as, spatial extent, topography, land use, land cover and climate regime. In this paper, a wavelet decomposition based approach is proposed to model the temporal dependence between different types of droughts. The idea behind is to separate the rapidly and slowly moving components of drought indices. It is shown that the temporal dependence of predecessor (say meteorological drought) on the successor (say hydrological drought) can be better captured at its constituting components level. Such components are obtained through wavelet decomposition retaining its temporal correspondence. Thus, in the proposed approach, predictand drought index is predicted using the decomposed components of predecessor drought. Several alternative models are investigated to arrive at the best possible model structure for predicting different types of drought. The proposed approach is found to be very useful for foreseeing the agricultural or hydrological droughts knowing the meteorological drought status, offering the scope for better management of drought consequences. The mathematical framework of the proposed approach is general in nature and can be applied to different basins. However, the limitation is the requirement of region/catchment specific calibration of some parameters before using the proposed model, which is not very difficult and uncommon though.

  3. Drought

    NARCIS (Netherlands)

    Quevauviller, P.; Lanen, Van Henny A.J.

    2014-01-01

    Drought is one of the most extreme weather-related natural hazards. It differs from other hydrometeorological extremes in several ways. It develops gradually and usually over large areas (transnational), mostly resulting from a prolonged period (from months to years) of below-normal precipitation

  4. A quantitative analysis to objectively appraise drought indicators and model drought impacts

    Science.gov (United States)

    Bachmair, S.; Svensson, C.; Hannaford, J.; Barker, L. J.; Stahl, K.

    2016-07-01

    coverage. The predictions also provided insights into the EDII, in particular highlighting drought events where missing impact reports may reflect a lack of recording rather than true absence of impacts. Overall, the presented quantitative framework proved to be a useful tool for evaluating drought indicators, and to model impact occurrence. In summary, this study demonstrates the information gain for drought monitoring and early warning through impact data collection and analysis. It highlights the important role that quantitative analysis with impact data can have in providing "ground truth" for drought indicators, alongside more traditional stakeholder-led approaches.

  5. A quantitative analysis to objectively appraise drought indicators and model drought impacts

    Science.gov (United States)

    Bachmair, S.; Svensson, C.; Hannaford, J.; Barker, L. J.; Stahl, K.

    2015-09-01

    also provided insights into the EDII, in particular highlighting drought events where missing impact reports reflect a lack of recording rather than true absence of impacts. Overall, the presented quantitative framework proved to be a useful tool for evaluating drought indicators, and to model impact occurrence. In summary, this study demonstrates the information gain for drought monitoring and early warning through impact data collection and analysis, and highlights the important role that quantitative analysis with impacts data can have in providing "ground truth" for drought indicators alongside more traditional stakeholder-led approaches.

  6. A quantitative analysis to objectively appraise drought indicators and model drought impacts

    Directory of Open Access Journals (Sweden)

    S. Bachmair

    2015-09-01

    . The predictions also provided insights into the EDII, in particular highlighting drought events where missing impact reports reflect a lack of recording rather than true absence of impacts. Overall, the presented quantitative framework proved to be a useful tool for evaluating drought indicators, and to model impact occurrence. In summary, this study demonstrates the information gain for drought monitoring and early warning through impact data collection and analysis, and highlights the important role that quantitative analysis with impacts data can have in providing "ground truth" for drought indicators alongside more traditional stakeholder-led approaches.

  7. Representation of drought frequency in Southern South America performed by 14 CMIP5 models. Drought risk implications and perspectives towards future projections

    Science.gov (United States)

    Rivera, J. A.; Penalba, O. C.

    2012-12-01

    Drought frequency estimation is a key variable for drought risk assessment. The aim of this research is to evaluate how well the global climate models (GCMs) represent the drought frequencies in Southern South America (south of 20°S). For that purpose, we used the Standardized Precipitation Index (SPI), which quantifies the number of standard deviations that the accumulated rainfall in a given time scale deviates from the average value of a location in a particular period. The SPI is one of the drought indices most widely used worldwide, and one of the best suited for the study area. In order to build this index, monthly rainfall data were obtained from the CLARIS LPB Data Base for 120 of its stations, which were subjected to quality control procedures and have less than 10% of missing values. The SPI was computed for the period 1979-2008 on a time scale of 12 months, which represents long-term droughts. This procedure was also applied to the simulated precipitation from 14 CMIP5 GCMs over the study area. Two types of comparisons were performed, the first one for drought frequencies without taking into account the different drought classes and the second one for the frequencies of moderate, severe and extreme drought events. This second comparison is important given that drought risk was evaluated through a weighted index based in drought frequencies, which was constructed as a sum of drought classes -moderate, severe and extreme- with a weighting scheme. Most of the regions with moderate to high observed drought frequencies are located in the western and southern portions of La Plata Basin and over Patagonia region, while lower observed drought frequencies were obtained for Northern Argentina, Southern Brazil and Paraguay. This spatial pattern is barely reproduced by the modeled frequencies, and in some cases major differences exist. In order to analyze these differences, we performed a regional assessment of the SPI time series, which showed that the time series

  8. Productivity and drought tolerance of cassava cultivars in the Coastal Tablelands of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Luciana Marques de Carvalho

    2016-05-01

    Full Text Available ABSTRACT: Ten cassava cultivars were grown in the field and evaluated to identify the most adapted to the Coastal Tablelands of northeast Brazil. The cultivars showed differences in proline and chlorophyll contents, plant height, number of leaves and branches, canopy area and root production, however they did not differ on photosynthetic rates. Cultivars 'Tianguá' and '9783-13' presented lower root yield, whereas 'BRS Tapioqueira' and 'Irará' had the highest root yield. Few leaves coupled with the highest water use efficiency for CO2 assimilation was found in 'BRS Kiriris' in contrast to 'BRS Jarina' and '9783-13'. 'BRS Caipira' had high proline content in both Umbaúba and Frei Paulo areas, traits usually associated to drought tolerance, that contribute to the adaptation. It is also important to consider that cultivar 'BRS Caipira' was the first to present increase in chlorophyll content after extended period of drought, that indicates a faster recovery after dry season. Furthermore, the results indicated that the most adapted cultivars for cultivation in this area are 'Irará', 'BRS Tapioqueira', 'BRS Kiriris' and 'BRS Caipira'.

  9. Socioeconomic Drought in a Changing Climate: Modeling and Management

    Science.gov (United States)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid

    2016-04-01

    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally

  10. Quantifying sensitivity to droughts – an experimental modeling approach

    Directory of Open Access Journals (Sweden)

    M. Staudinger

    2014-07-01

    Full Text Available Meteorological droughts like those in summer 2003 or spring 2011 in Europe are expected to become more frequent in the future. Although the spatial extent of these drought events was large, not all regions were affected in the same way. Many catchments reacted strongly to the meteorological droughts showing low levels of streamflow and groundwater, while others hardly reacted. The extent of the hydrological drought for specific catchments was also different between these two historical events due to different initial conditions and drought propagation processes. This leads to the important question of how to detect and quantify the sensitivity of a catchment to meteorological droughts. To assess this question we designed hydrological model experiments using a conceptual rainfall–runoff model. Two drought scenarios were constructed by selecting precipitation and temperature observations based on certain criteria: one scenario was a modest but constant progression of drying based on sorting the years of observations according to annual precipitation amounts. The other scenario was a more extreme progression of drying based on selecting months from different years, forming a year with the wettest months through to a year with the driest months. Both scenarios retained the typical intra-annual seasonality for the region. The sensitivity of 24 Swiss catchments to these scenarios was evaluated by analyzing the simulated discharge time series and modeled storages. Mean catchment elevation, slope and size were found to be the main controls on the sensitivity of catchment discharge to precipitation. Generally, catchments at higher elevation and with steeper slopes seemed to be less sensitive to meteorological droughts than catchments at lower elevations with less steep slopes.

  11. Future meteorological drought: projections of regional climate models for Europe

    Science.gov (United States)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  12. Assessing Model Treatment of Drought Legacy Effects in the Amazon

    Science.gov (United States)

    Kolus, H. R.; Huntzinger, D. N.; Schwalm, C.; Fisher, J. B.; Cook, R. B.; Fang, Y.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.

    2015-12-01

    Extreme climate events play an important and potentially lasting role in terrestrial carbon cycling and storage. In particular, satellite and in-situ measurements have shown that forest recovery time following severe drought can extend several years beyond the return to normal climate conditions. However, terrestrial ecosystem models generally do not account for the physiological mechanisms that cause these legacy effects and, instead, assume complete and rapid vegetation recovery from drought. Using a suite of fifteen land surface models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we assess models' ability to capture legacy effects by analyzing the spatial and temporal extent of modeled vegetation response to the 2005 Amazon drought. We compare the simulated primary production and ecosystem exchange (GPP, NPP, NEE) to previous recovery-focused analysis of satellite microwave observations of canopy backscatter. Further, we evaluate the specific model characteristics that control the timescale and magnitude of simulated vegetation recovery from drought. Since climate change is expected to increase the frequency and severity of extreme climate events, improving models' ability to simulate the legacy effects of these events will likely refine estimates of the land carbon sink and its interannual variability.

  13. A system dynamics model of human-water interaction in anthropogenic droughts

    Science.gov (United States)

    Blair, Peter; Buytaert, Wouter

    2016-04-01

    Modelling is set to be a key part of socio-hydrology's quest to understand the dynamics and long-term consequences of human-water interactions. As a subject in its infancy, still learning the questions to ask, conceptual models are of particular use in trying to understand the general nature of human-water systems. The conceptual model of Di Baldassarre et al. (2013), which investigates human-flood interactions, has been widely discussed, prompting great steps forward in understanding and coverage of socio-hydrology. The development of further conceptual models could generate further discussion and understanding. Flooding is one archetypal example of a system of human-water interaction; another is the case of water stress and drought. There has been a call to recognise and understand anthropogenic drought (Aghakouchak et al. 2015), and so this study investigates the nature of the socio-hydrological dynamics involved in these situations. Here we present a system dynamics model to simulate human-water interactions in the context of water-stressed areas, where drought is induced via a combination of lower than usual water availability and relatively high water use. It is designed based on an analysis of several case-studies where recent droughts have occurred, or where the prospect of drought looms. The locations investigated are Spain, Southeast Brazil, Northeast China and California. The numerical system dynamics model is based on causal loop, and stocks and flows diagrams, which are in turn developed from the qualitative analysis of the different cases studied. The study uses a comparative approach, which has the advantage of eliciting general system characteristics from the similarities between cases, while using the differences to determine the important factors which lead to different system behaviours. References: Aghakouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J., 2015. Recognize anthropogenic drought. Nature, 524, pp.409-411. Di Baldassarre, G

  14. Vulnerability Assessment Models to Drought: Toward a Conceptual Framework

    OpenAIRE

    Kiumars Zarafshani; Lida Sharafi; Hossein Azadi; Steven Van Passel

    2016-01-01

    Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers’ ability to cope with drought. Moreove...

  15. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  16. Meteorological Drought Prediction Using a Multi-Model Ensemble Approach

    Science.gov (United States)

    Chen, L.; Mo, K. C.; Zhang, Q.; Huang, J.

    2013-12-01

    In the United States, drought is among the costliest natural hazards, with an annual average of 6 billion dollars in damage. Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Started in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the National Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the meteorological drought predictability using the retrospective NMME forecasts for the period from 1982 to 2010. Before predicting SPI, monthly-mean precipitation (P) forecasts from each model were bias corrected and spatially downscaled (BCSD) to regional grids of 0.5-degree resolution over the contiguous United States based on the probability distribution functions derived from the hindcasts. The corrected P forecasts were then appended to the CPC Unified Precipitation Analysis to form a P time series for computing 3-month and 6-month SPIs. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation and root-mean-square errors against the observations, are used to evaluate forecast skill. For P forecasts, errors vary among models and skill generally is low after the second month. All model P forecasts have higher skill in winter and lower skill in summer. In wintertime, BCSD improves both P and SPI forecast skill. Most improvements are over the western mountainous regions and along the Great Lake. Overall, SPI predictive skill is regionally and seasonally dependent. The six-month SPI forecasts are skillful out to four months. For

  17. Monitoring and modeling agricultural drought for famine early warning (Invited)

    Science.gov (United States)

    Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.

    2009-12-01

    The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these

  18. Joint modelling of annual maximum drought severity and corresponding duration

    Science.gov (United States)

    Tosunoglu, Fatih; Kisi, Ozgur

    2016-12-01

    In recent years, the joint distribution properties of drought characteristics (e.g. severity, duration and intensity) have been widely evaluated using copulas. However, history of copulas in modelling drought characteristics obtained from streamflow data is still short, especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought events are characterized by annual maximum severity (AMS) and corresponding duration (CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull and Logistic distributions are identified as marginal distributions for the AMS and CD series. Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are then employed to model joint distribution of the AMS and CD series. With respect to the Anderson Darling and Cramér-von Mises statistical tests and the tail dependence assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-Hougaard copulas are used to derive the conditional and joint return periods of the AMS and CD series which can be useful for designing and management of reservoirs in the basin.

  19. Simulation of Change Trend of Drought in Shaanxi Province in Future Based on PRECIS Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to predict the change trend of drought in Shaanxi Province in future. [Method] Based on the regional climate model PRECIS from Hadley Climate Center, British Meteorological Bureau, taking precipitation anomaly percentage as assessment index, the change trend of drought in Shaanxi Province in reference years (1971-1990) was simulated, and the change trend of drought in Shaanxi Province from 2071 to 2100 was predicted. [Result] The simulated value of drought frequency in reference year...

  20. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-07-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is: how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that were part of the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation, i.e. drought events became less and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having less and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  1. Multivariate Statistical Modelling of Drought and Heat Wave Events

    Science.gov (United States)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  2. Regional drought assessment using a distributed hydrological model coupled with Standardized Runoff Index

    Science.gov (United States)

    Shen, H.; Yuan, F.; Ren, L.; Ma, M.; Kong, H.; Tong, R.

    2015-05-01

    Drought assessment is essential for coping with frequent droughts nowadays. Owing to the large spatio-temporal variations in hydrometeorology in most regions in China, it is very necessary to use a physically-based hydrological model to produce rational spatial and temporal distributions of hydro-meteorological variables for drought assessment. In this study, the large-scale distributed hydrological model Variable Infiltration Capacity (VIC) was coupled with a modified standardized runoff index (SRI) for drought assessment in the Weihe River basin, northwest China. The result indicates that the coupled model is capable of reasonably reproducing the spatial distribution of drought occurrence. It reflected the spatial heterogeneity of regional drought and improved the physical mechanism of SRI. This model also has potential for drought forecasting, early warning and mitigation, given that accurate meteorological forcing data are available.

  3. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  4. On the potential application of land surface models for drought monitoring in China

    Science.gov (United States)

    Zhang, Liang; Zhang, Huqiang; Zhang, Qiang; Li, Yaohui; Zhao, Jianhua

    2016-01-01

    The potential of using land surface models (LSMs) to monitor near-real-time drought has not been fully assessed in China yet. In this study, we analyze the performance of such a system with a land surface model (LSM) named the Australian Community Atmosphere Biosphere Land Exchange model (CABLE). The meteorological forcing datasets based on reanalysis products and corrected by observational data have been extended to near-real time for semi-operational trial. CABLE-simulated soil moisture (SM) anomalies are used to characterize drought spatial and temporal evolutions. One outstanding feature in our analysis is that with the same meteorological data, we have calculated a range of drought indices including Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI). We have assessed the similarity among these indices against observed SM over a number of regions in China. While precipitation is the dominant factor in the drought development, relationships between precipitation, evaporation, and soil moisture anomalies vary significantly under different climate regimes, resulting in different characteristics of droughts in China. The LSM-based trial system is further evaluated for the 1997/1998 drought in northern China and 2009/2010 drought in southwestern China. The system can capture the severities and temporal and spatial evolutions of these drought events well. The advantage of using a LSM-based drought monitoring system is further demonstrated by its potential to monitor other consequences of drought impacts in a more physically consistent manner.

  5. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    Science.gov (United States)

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are

  6. Implementing the Schoolwide Enrichment Model in Brazil

    Science.gov (United States)

    de Souza Fleith, Denise; Soriano de Alencar, Eunice M. L.

    2010-01-01

    The Schoolwide Enrichment Model (SEM) has been one of the most widely used models in the education of the gifted in Brazil. It has inspired the political and pedagogical project of the Centers of Activities of High Abilities/Giftedness recently implemented in 27 Brazilian states by the Ministry of Education. In this article, our experience in…

  7. Drought Impacts on Reservoir Storage and Hydro-electricity Production in Southeastern Brazil

    Science.gov (United States)

    Scanlon, B. R.; Melo, D. D.; Yin, L.; Wendland, E.

    2015-12-01

    Brazilian hydroelectric plants (HP) generate ~85% of the total electricity in the country (138 GW). More than half of the number largest reservoirs are located in the Southeast/Midwest region, where ~50% of the population (~100 million) lives. The 2014 drought raised several questions about the resilience of the water sources when several urban centers, including Brazilian's largest metropolis (São Paulo, 20 million people), had their water supply threatened. Such drought also affected reservoirs of hydroelectric plants. This study assesses how the storage and, thus the electricity generation, in 14 of the largest reservoirs were affected by drought events within the past 20 years. We computed the Standardized Precipitation Index (SPI) to identify rainfall anomalies throughout the analyzed period. To evaluate the impacts on surface water, we assessed the changes in total (surface+ subsurface) runoff and soil moisture from Global Land Data Assimilation System (GLDAS) and in Total Water Storage (TWS) from Gravity Recovery and Climate Experiment (GRACE) satellite data. We evaluated the anomalies and significance of the changes in reservoir storage (RS) and electricity generation. The results show that severe dry years (-1.5 enhance drought resilience in the future.

  8. Probabilistic prediction of hydrologic drought using a conditional probability approach based on the meta-Gaussian model

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Sun, Alexander Y.; Xia, Youlong

    2016-11-01

    Prediction of drought plays an important role in drought preparedness and mitigation, especially because of large impacts of drought and increasing demand for water resources. An important aspect for improving drought prediction skills is the identification of drought predictability sources. In general, a drought originates from precipitation deficit and thus the antecedent meteorological drought may provide predictive information for other types of drought. In this study, a hydrological drought (represented by Standardized Runoff Index (SRI)) prediction method is proposed based on the meta-Gaussian model taking into account the persistence and its prior meteorological drought condition (represented by Standardized Precipitation Index (SPI)). Considering the inherent nature of standardized drought indices, the meta-Gaussian model arises as a suitable model for constructing the joint distribution of multiple drought indices. Accordingly, the conditional distribution of hydrological drought can be derived analytically, which enables the probabilistic prediction of hydrological drought in the target period and uncertainty quantifications. Based on monthly precipitation and surface runoff of climate divisions of Texas, U.S., 1-month and 2-month lead predictions of hydrological drought are illustrated and compared to the prediction from Ensemble Streamflow Prediction (ESP). Results, based on 10 climate divisions in Texas, show that the proposed meta-Gaussian model provides useful drought prediction information with performance depending on regions and seasons.

  9. Investigating Differences between Modeled Historical and Station Calculated Drought

    Science.gov (United States)

    With growing concern over increased frequency and intensity of extreme climate events, there is an imperative need to investigate drought under different future scenarios for the contiguous U.S. To assess future drought relative to a historical baseline, drought occurrence (numbe...

  10. Multi-basin, Multi-sector Drought Economic Impact Model in Python: Development and Applications

    Science.gov (United States)

    Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Bearden, B.; Johnson, T. G.

    2015-12-01

    Drought is one of the most economically disastrous natural hazards, one whose impacts are exacerbated by the lack of abrupt onset and offset that define tornados and hurricanes. In the United States, about 30 billion dollars losses is caused by drought in 2012, resulting in widespread economic impacts for societies, industries, agriculture, and recreation. And in California, the drought cost statewide economic losses about 2.2 billion, with a total loss of 17,100 seasonal and part-time jobs. Driven by a variety of factors including climate change, population growth, increased water demands, alteration to land cover, drought occurs widely all over the world. Drought economic consequence assessment tool are greatly needed to allow decision makers and stakeholders to anticipate and manage effectively. In this study, current drought economic impact modeling methods were reviewed. Most of these models only deal with the impact in the agricultural sector with a focus on a single basin; few of these models analyze long term impact. However, drought impacts are rarely restricted to basin boundaries, and cascading economic impacts are likely to be significant. A holistic approach to multi-basin, multi-sector drought economic impact assessment is needed.In this work, we developed a new model for drought economic impact assessment, Drought Economic Impact Model in Python (PyDEM). This model classified all business establishments into thirteen categories based on NAICS, and using a continuous dynamic social accounting matrix approach, coupled with calculation of the indirect consequences for the local and regional economies and the various resilience. In addition, Environmental Policy Integrated Climate model was combined for analyzing drought caused soil erosion together with agriculture production, and then the long term impacts of drought were achieved. A visible output of this model was presented in GIS. In this presentation, Choctawhatchee-Pea-Yellow River Basins, Alabama

  11. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  12. Modeling the relationship between climate oscillations and drought by a multivariate GARCH model

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-01-01

    Typical multivariate time series models may exhibit comovement in mean but not in variance of hydrologic and climatic variables. This paper introduces multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models to capture the comovement of the variance or the conditional covariance between two hydroclimatic time series. The diagonal vectorized and Baba-Engle-Kroft-Kroner models are developed to evaluate the covariance between drought and two atmospheric circulations, Southern Oscillation Index (SOI) and North Atlantic Oscillation (NAO) time series during 1954-2000. The univariate generalized autoregressive conditional heteroscedasticity model indicates a strong persistency level in conditional variance for NAO and a moderate persistency level for SOI. The conditional variance of short-term drought index indicates low level of persistency, while the long-term index drought indicates high level of persistency in conditional variance. The estimated conditional covariance between drought and atmospheric indices is shown to be weak and negative. It is also observed that the covariance between drought and atmospheric indices is largely dependent on short-run variance of atmospheric indices rather than their long-run variance. The nonlinearity and stationarity tests show that the conditional covariances are nonlinear but stationary. However, the degree of nonlinearity is higher for the covariance between long-term drought and atmospheric indices. It is also observed that the nonlinearity of NAO is higher than that for SOI, in contrast to the stationarity which is stronger for SOI time series.

  13. Towards Remotely Sensed Composite Global Drought Risk Modelling

    Science.gov (United States)

    Dercas, Nicholas; Dalezios, Nicolas

    2015-04-01

    Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture

  14. Drought-associated changes in climate and their relevance for ecosystem experiments and models

    Directory of Open Access Journals (Sweden)

    H. J. De Boeck

    2011-05-01

    Full Text Available Drought periods can have important impacts on plant productivity and ecosystem functioning, but climatic conditions other than the lack of precipitation during droughts have never been quantified and have therefore not been considered explicitly in both experimental and modeling studies. Here, we identify which climatic characteristics deviate from normal during droughts and how these deviations could affect plant responses. Analysis of 609 years of daily data from nine Western European meteorological stations reveals that droughts in the studied region are consistently associated with more sunshine (+45 %, increased mean (+1.6 °C and maximum (+2.8 °C air temperatures and vapour pressure deficits that were 51 % higher than under normal conditions. These deviations from normal increase significantly as droughts progress. Using the process-model ORCHIDEE, we simulated droughts consistent with the results of the dataset analysis and compared water and carbon exchange of three different vegetation types during such natural droughts and droughts in which only the precipitation was affected. The comparison revealed contrasting responses: carbon loss was higher under natural drought in grasslands, while increased carbon uptake was found especially in decidious forests. This difference was attributed to better access to water reserves in forest ecosystems which prevented drought stress. This demonstrates that the warmer and sunnier conditions naturally associated with droughts can either improve growth or aggravate drought-related stress, depending on water reserves. As the impacts of including or excluding climatic parameters that correlate with drought are substantial, we propose that both experimental and modeling efforts should take into account other environmental factors than merely precipitation.

  15. Drought-associated changes in climate and their relevance for ecosystem experiments and models

    Directory of Open Access Journals (Sweden)

    H. J. De Boeck

    2011-01-01

    Full Text Available Drought periods can have important impacts on plant productivity and ecosystem functioning, but climatic conditions other than the lack of precipitation during droughts have never been quantified and have therefore not been considered explicitly in both experimental and modeling studies. Here, we identify which climatic characteristics deviate from normal during droughts and how these deviations could affect plant responses. Analysis of 609 years of daily data from nine Western European meteorological datasets reveals that droughts in the studied region are consistently associated with more sunshine (+45%, increased mean (+1.6 °C and maximum (+2.8 °C air temperatures and vapour pressure deficits that were 51% higher than under normal conditions. These deviations from normal increase significantly as droughts progress. Using the process-model ORCHIDEE, we simulated droughts consistent with the results of the dataset analysis and compared water and carbon exchange of three different vegetation types during such natural droughts and droughts in which only the precipitation was affected. The comparison revealed contrasting responses: carbon loss was higher under natural drought in grasslands, while increased carbon uptake was found especially in decidious forests. This difference was attributed to better access to water reserves in forest ecosystems which prevented drought stress. This demonstrates that the warmer and sunnier conditions naturally associated with droughts can either improve growth or aggravate drought-related stress, depending on water reserves. As the impacts of including or excluding climatic parameters that correlate with drought are substantial, we propose that both experimental and modeling efforts should take into account other environmental factors than merely precipitation.

  16. Effects of Severe Floods and Droughts on Wildlife of the Pantanal Wetland (Brazil)-A Review.

    Science.gov (United States)

    Alho, Cleber J R; Silva, João S V

    2012-10-18

    Flooding throughout the Pantanal is seasonal. The complex vegetative cover and high seasonal productivity support a diverse and abundant fauna. A gradient in flood level supports a range of major habitats in a complex mosaic with annual seasonality. The rivers and streams are lined with gallery forests, and other arboreal habitats exist in the more elevated areas. The remainder is either grasslands or seasonally flooded grasslands. The regional flora and fauna are adapted to annual water fluctuation. However, an inter-annual series of higher or lower rainfalls has caused either severe floods or drastic dry seasons. Large scale climate phenomena such as greenhouse gases, El Niño and La Niña influence the seasonality of floods and droughts in the Pantanal. Knowledge of severe floods and droughts, which characterize natural disasters, is fundamental for wildlife management and nature conservation of the Pantanal. Plants and wild animals, for example, are affected by tree mortality in riparian forest after extreme flooding, with consequent habitat modification for wild animals. In addition, human activities are also affected since cattle ranching and ecotourism are economically important in the region, and when seasons with unusual floods or droughts occur, areas with human settlements are impacted.

  17. Prediction of Drought Risk Based on the WRF Model in Yunnan Province of China

    Directory of Open Access Journals (Sweden)

    Chunhong Zhao

    2013-01-01

    Full Text Available Yunnan province is the core region of the drought in the Southwest China, which makes the region become the hot spot in the meteorological research. However, among the various influencing factors of the drought in Yunnan province, the influence of the land use/cover change (LUCC on the drought has not been quantitatively analyzed. The LUCC in recent decades was first quantitatively analyzed in this study. Given the fact that severe drought in Yunnan province is mainly due to much-less-than-normal precipitation and much-warmer-than-normal surface temperature, this study focused on the future spatiotemporal heterogeneity of the temperature and precipitation, which have great impacts on the drought. Finally, the influencing factors of drought in Yunnan province were simulated with the Weather Research and Forecasting (WRF model, and the risk of drought was spatially analyzed with the meteorological drought composite index. The results indicate that the large-area forest plays a more important role in alleviating the risk of drought than other vegetation types do. Besides, the changes of the landscape structure resulting from the urban expansion play a significant role in intensifying the risk of drought.

  18. A geospatial suitability model for drought-tolerant switchgrass

    Science.gov (United States)

    Lewis, S. M.; Kelly, M.

    2011-12-01

    A perennial grass native to the North America, switchgrass (Panicum virgatum) has been targeted by the USDA as a model mass bioenergy crop to replace petroleum energy products and meet policy demands. Although highly water use efficient, as a warm-season crop, switchgrass requires a significant amount of water during the growing season (April -September). However, locations that have highly reliable water availability are also ideal for profitable food crops (e.g. corn and soy growing regions) and food competition is a significant concern in regards to biofuel crops being grown on productive agricultural lands. Drier, marginal lands (lands on which normal agricultural crops are difficult to cultivate) are therefore potentially ideal locations to grow biofuel crops to ensure that food competition is not an issue. Genetics scientists at UC Davis are in the process of developing a modified variety of switchgrass that can withstand extended periods of drought while not substantially affecting overall yield. As this product is being developed, it is important to identify the potential geographical niche for this new drought-tolerant variety of switchgrass. This project introduces a geospatial approach that utilizes both physical and economic variables to identify ideal geographic locations for this innovative crop.

  19. Risk Assessment on Drought Disaster in China Based on Integrative Cloud Model

    Directory of Open Access Journals (Sweden)

    Junfei Chen

    2012-01-01

    Full Text Available This study promotes cloud model for risk assessment of drought disaster. Cloud model is an effective tool in uncertain transforming between qualitative concepts and their quantitative expressions. Cloud is expressed by a concept with three quantitative characteristics of expectation, entropy and hyper entropy and the mapping between qualitative and quantitative is realized. In this study, considering the fuzziness and uncertainty of drought disaster, we established the comprehensive cloudy model based on entropy weight method for evaluating the risk of drought disaster. The disaster-affected rate and disaster-damaged rate are selected as the evaluation indices of drought degree. The model is applied to assess the drought disaster risk in China. The BP neural network, hard division method and integrative cloud model are compared, and the integrative cloud model is shown better for evaluating drought risk. This study shows that risk assessment of drought disaster based on cloud model is feasible and effective and can provide decision-making for the risk assessment of drought disaster.

  20. Drought Forecasting Using Stochastic Models in a Hyper-Arid Climate

    Directory of Open Access Journals (Sweden)

    Amr Mossad

    2015-03-01

    Full Text Available Drought forecasting plays a crucial role in drought mitigation actions. Thus, this research deals with linear stochastic models (autoregressive integrated moving average (ARIMA as a suitable tool to forecast drought. Several ARIMA models are developed for drought forecasting using the Standardized Precipitation Evapotranspiration Index (SPEI in a hyper-arid climate. The results reveal that all developed ARIMA models demonstrate the potential ability to forecast drought over different time scales. In these models, the p, d, q, P, D and Q values are quite similar for the same SPEI time scale. This is in correspondence with autoregressive (AR and moving average (MA parameter estimate values, which are also similar. Therefore, the ARIMA model (1, 1, 0 (2, 0, 1 could be considered as a general model for the Al Qassim region. Meanwhile, the ARIMA model (1, 0, 3 (0, 0, 0 at 3-SPEI and the ARIMA model (1, 1, 1 (2, 0, 1 at 24-SPEI could be generalized for the Hail region. The ARIMA models at the 24-SPEI time scale is the best forecasting models with high R2 (more than 0.9 and lower values of RMSE and MAE, while they are the least forecasting at the 3-SPEI time scale. Accordingly, this study recommends that ARIMA models can be very useful tools for drought forecasting that can help water resource managers and planners to take precautions considering the severity of drought in advance.

  1. Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China

    Science.gov (United States)

    Ma, Feng; Ye, Aizhong; Duan, Qingyun

    2017-03-01

    An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.

  2. Characterising and quantifying vegetative drought in East Africa using fuzzy modelling and NDVI data

    NARCIS (Netherlands)

    Rulinda, Coco M.; Dilo, Arta; Bijker, Wietske; Stein, Alfred

    2012-01-01

    This study aims at improving the characterisation and quantification of vegetative drought as a vague spatial phenomenon. 10-day NOAA-AVHRR NDVI images of East Africa from September 2005 to April 2006 are used. Vegetative drought is characterised using a membership function to model the gradual tran

  3. Model based climate information on drought risk in Africa

    Science.gov (United States)

    Calmanti, S.; Syroka, J.; Jones, C.; Carfagna, F.; Dell'Aquila, A.; Hoefsloot, P.; Kaffaf, S.; Nikulin, G.

    2012-04-01

    The United Nations World Food Programme (WFP) has embarked upon the endeavor of creating a sustainable Africa-wide natural disaster risk management system. A fundamental building block of this initiative is the setup of a drought impact modeling platform called Africa Risk-View that aims to quantify and monitor weather-related food security risk in Africa. The modeling approach is based the Water Requirement Satisfaction Index (WRSI), as the fundamental indicator of the performances of agriculture and uses historical records of food assistance operation to project future potential needs for livelihood protection. By using climate change scenarios as an input to Africa Risk-View it is possible, in principles, to evaluate the future impact of climate variability on critical issues such as food security and the overall performance of the envisaged risk management system. A necessary preliminary step to this challenging task is the exploration of the sources of uncertainties affecting the assessment based on modeled climate change scenarios. For this purpose, a limited set of climate models have been selected in order verify the relevance of using climate model output data with Africa Risk-View and to explore a minimal range of possible sources of uncertainty. This first evaluation exercise started before the setup of the CORDEX framework and has relied on model output available at the time. In particular only one regional downscaling was available for the entire African continent from the ENSEMBLES project. The analysis shows that current coarse resolution global climate models can not directly feed into the Africa RiskView risk-analysis tool. However, regional downscaling may help correcting the inherent biases observed in the datasets. Further analysis is performed by using the first data available under the CORDEX framework. In particular, we consider a set of simulation driven with boundary conditions from the reanalysis ERA-Interim to evaluate the skill drought

  4. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis

    Directory of Open Access Journals (Sweden)

    Z. Shi

    2013-10-01

    Full Text Available Extremes in climate may severely impact ecosystem structure and function, with both the magnitude and rate of response differing among ecosystem types and processes. We conducted a modeling analysis of the effects of extreme drought on two key ecosystem processes, production and respiration, and to provide broader context we complemented this with a synthesis of published results across multiple ecosystems. The synthesis indicated that across a broad range of biomes gross primary production (GPP generally was more sensitive to extreme drought (defined as proportional reduction relative to average rainfall periods than was ecosystem respiration (ER. Furthermore, this differential sensitivity between production and respiration increased as drought severity increased. The modeling analysis was designed to better understand the mechanisms underlying this pattern and focused on four grassland sites arrayed across the Great Plains, USA. Model results consistently showed that net primary productivity (NPP was reduced more than heterotrophic respiration (Rh by extreme drought (i.e., 67% reduction in annual ambient rainfall at all four study sites. The sensitivity of NPP to drought was directly attributable to rainfall amount, whereas sensitivity of Rh to drought was driven by both soil drying and a drought-induced reduction in soil carbon (C content, a much slower process. However, differences in reductions in NPP and Rh diminished as extreme drought continued due to a gradual decline in the soil C pool leading to further reductions in Rh. We also varied the way in which drought was imposed in the modeling analysis, either as reductions in rainfall event size (ESR or by reducing rainfall event number (REN. Modeled NPP and Rh decreased more by ESR than REN at the two relatively mesic sites but less so at the two xeric sites. Our findings suggest that responses of production and respiration differ in magnitude, occur on different timescales and are

  5. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    OpenAIRE

    M. G. De Kauwe; Zhou, S.-X.; B. E. Medlyn; A. J. Pitman; Wang, Y.-P.; R. A. Duursma; I. C. Prentice

    2015-01-01

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensi...

  6. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Science.gov (United States)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  7. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Indian Academy of Sciences (India)

    Sainath Aher; Sambhaji Shinde; Shantamoy Guha; Mrinmoy Majumder

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi- Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysisrevealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  8. On the spatio-temporal analysis of hydrological droughts from global hydrological models

    Directory of Open Access Journals (Sweden)

    G. A. Corzo Perez

    2011-09-01

    Full Text Available The recent concerns for world-wide extreme events related to climate change have motivated the development of large scale models that simulate the global water cycle. In this context, analysis of hydrological extremes is important and requires the adaptation of identification methods used for river basin models. This paper presents two methodologies that extend the tools to analyze spatio-temporal drought development and characteristics using large scale gridded time series of hydrometeorological data. The methodologies are classified as non-contiguous and contiguous drought area analyses (i.e. NCDA and CDA. The NCDA presents time series of percentages of areas in drought at the global scale and for pre-defined regions of known hydroclimatology. The CDA is introduced as a complementary method that generates information on the spatial coherence of drought events at the global scale. Spatial drought events are found through CDA by clustering patterns (contiguous areas. In this study the global hydrological model WaterGAP was used to illustrate the methodology development. Global gridded time series of subsurface runoff (resolution 0.5° simulated with the WaterGAP model from land points were used. The NCDA and CDA were developed to identify drought events in runoff. The percentages of area in drought calculated with both methods show complementary information on the spatial and temporal events for the last decades of the 20th century. The NCDA provides relevant information on the average number of droughts, duration and severity (deficit volume for pre-defined regions (globe, 2 selected hydroclimatic regions. Additionally, the CDA provides information on the number of spatially linked areas in drought, maximum spatial event and their geographic location on the globe. Some results capture the overall spatio-temporal drought extremes over the last decades of the 20th century. Events like the El Niño Southern Oscillation (ENSO in South America and

  9. Use of Crop Models in Assessment of Soil Drought

    Directory of Open Access Journals (Sweden)

    Milada Stastna

    2007-03-01

    Full Text Available The aims of the study were to apply, test and to present the ability of the deterministic simulation models SIMWASER and CERES-Wheat computing soil-water balance components, percolation losses, ground water recharge and capillary rise. Two case studies for the assessment of percolation losses from irrigated carrots to deep groundwater at Obersiebenbrunn in the Marchfeld (Austria and ground water recharge and capillary rise from shallow groundwater in grass lysimeters at Berlin-Dahlem (Germany together with two test sites with similar climatic conditions and soil water storage potential but with (Grossenzesdorf, Austria and without (Zabcice, Czech Republic groundwater impact in a semi-arid agricultural area in central Europe were chosen. At Obersiebenbrunn, simulated percolation and evapotranspiration were 183 and 629 mm, while the respective measured values amounted to 198 and 635 mm. Up to 42% (194 mm of evapotranspiration was provided by groundwater at s Grossenzesdorf and only 126 mm was used for the worst case comparing to observed data. Th ese results showed both models as proper applicable tools to demonstrate crop – soil – water relations. However, the availability and management of soil water reserves will remain important, especially when extreme events such as droughts occur more frequently and annual soil and groundwater recharge decrease.

  10. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    Science.gov (United States)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow

  11. Using an integrated hydrological model to estimate the usefulness of meteorological drought indices in a changing climate

    Science.gov (United States)

    von Gunten, Diane; Wöhling, Thomas; Haslauer, Claus P.; Merchán, Daniel; Causapé, Jesus; Cirpka, Olaf A.

    2016-10-01

    Droughts are serious natural hazards, especially in semi-arid regions. They are also difficult to characterize. Various summary metrics representing the dryness level, denoted drought indices, have been developed to quantify droughts. They typically lump meteorological variables and can thus directly be computed from the outputs of regional climate models in climate-change assessments. While it is generally accepted that drought risks in semi-arid climates will increase in the future, quantifying this increase using climate model outputs is a complex process that depends on the choice and the accuracy of the drought indices, among other factors. In this study, we compare seven meteorological drought indices that are commonly used to predict future droughts. Our goal is to assess the reliability of these indices to predict hydrological impacts of droughts under changing climatic conditions at the annual timescale. We simulate the hydrological responses of a small catchment in northern Spain to droughts in present and future climate, using an integrated hydrological model calibrated for different irrigation scenarios. We compute the correlation of meteorological drought indices with the simulated hydrological time series (discharge, groundwater levels, and water deficit) and compare changes in the relationships between hydrological variables and drought indices. While correlation coefficients linked with a specific drought index are similar for all tested land uses and climates, the relationship between drought indices and hydrological variables often differs between present and future climate. Drought indices based solely on precipitation often underestimate the hydrological impacts of future droughts, while drought indices that additionally include potential evapotranspiration sometimes overestimate the drought effects. In this study, the drought indices with the smallest bias were the rainfall anomaly index, the reconnaissance drought index, and the standardized

  12. Modeling of hydrological drought durations and magnitudes: Experiences on Canadian streamflows

    Directory of Open Access Journals (Sweden)

    Tribeni C. Sharma

    2014-07-01

    New hydrological insights for the region: Approach based on the extreme number theorem predicted satisfactorily drought durations at monthly and annual time scales and was also found comparable to Markov chain of order-one for predicting monthly drought durations. The approach was found less satisfactory for predicting drought durations at weekly time scale but the performance was found to improve with the use of Markov chain of order-two. At annual, monthly, and weekly time scales, the relationship (magnitude = intensity × duration proved satisfactory for predicting drought magnitudes with the assumption that truncated normal distribution performs well for modeling the drought intensity. For predicting drought magnitudes at monthly and weekly time scales, the Markov chain proved more satisfactory with one order lower than the order that was used for predicting drought durations. Markov chain of order-one modeled durations satisfactorily at weekly time scale with uniform truncation levels corresponding to flows equivalent to 90% and 95%.

  13. Simulating the link between ENSO and summer drought in Southern Africa using regional climate models

    Science.gov (United States)

    Meque, Arlindo; Abiodun, Babatunde J.

    2015-04-01

    This study evaluates the capability of regional climate models (RCMs) in simulating the link between El Niño Southern Oscillation (ENSO) and Southern African droughts. It uses the Standardized Precipitation-Evapotranspiration Index (SPEI, computed using rainfall and temperature data) to identify 3-month drought over Southern Africa, and compares the observed and simulated correlation between ENSO and SPEI. The observation data are from the Climate Research Unit, while the simulation data are from ten RCMs (ARPEGE, CCLM, HIRHAM, RACMO, REMO, PRECIS, RegCM3, RCA, WRF, and CRCM) that participated in the regional climate downscaling experiment (CORDEX) project. The study analysed the rainy season (December-February) data for 19 years (1989-2008). The results show a strong link between ENSO and droughts (SPEI) over Southern Africa. The link is owing to the influence of ENSO on both rainfall and temperature fields, but the correlation between ENSO and temperature is stronger than the correlation between ENSO and rainfall. Hence, using only rainfall to monitor droughts in Southern Africa may underestimate the influence of ENSO on the droughts. Only few CORDEX RCMs simulate the influence of ENSO on Southern African drought as observed. In this regard, the ARPEGE model shows the best simulation, while CRCM shows the worst. The different in the performance may be due to their lateral boundary conditions. The RCA-simulated link between ENSO and Southern African droughts is sensitive to the global dataset used as the lateral boundary conditions. In some cases, using RCA to downscale global circulation models (GCM) simulations adds value to the simulated link between ENSO and the droughts, but in other cases the downscaling adds no value to the link. The added value of RCA to the simulated link decreases as the capability of the GCM to simulate the link increases. This study suggests that downscaling GCM simulations with RCMs over Southern Africa may improve or depreciate the

  14. Drought Forecasting with Vegetation Temperature Condition Index Using ARIMA Models in the Guanzhong Plain

    Directory of Open Access Journals (Sweden)

    Miao Tian

    2016-08-01

    Full Text Available This paper works on the agricultural drought forecasting in the Guanzhong Plain of China using Autoregressive Integrated Moving Average (ARIMA models based on the time series of drought monitoring results of Vegetation Temperature Condition Index (VTCI. About 90 VTCI images derived from Advanced Very High Resolution Radiometer (AVHRR data were selected to develop the ARIMA models from the erecting stage to the maturity stage of winter wheat (early March to late May in each year at a ten-day interval of the years from 2000 to 2009. We take the study area overlying on the administration map around the study area, and divide the study area into 17 parts where at least one weather station is located in each part. The pixels where the 17 weather stations are located are firstly chosen and studied for their fitting models, and then the best models for all pixels of the whole area are determined. According to the procedures for the models’ development, the selected best models for the 17 pixels are identified and the forecast is done with three steps. The forecasting results of the ARIMA models were compared with the monitoring ones. The results show that with reference to the categorized VTCI drought monitoring results, the categorized forecasting results of the ARIMA models are in good agreement with the monitoring ones. The categorized drought forecasting results of the ARIMA models are more severity in the northeast of the Plain in April 2009, which are in good agreements with the monitoring ones. The absolute errors of the AR(1 models are lower than the SARIMA models, both in the frequency distributions and in the statistic results. However, the ability of SARIMA models to detect the changes of the drought situation is better than the AR(1 models. These results indicate that the ARIMA models can better forecast the category and extent of droughts and can be applied to forecast droughts in the Plain.

  15. Evidence and modeling study of droughts in China during 4 - 2 ka BP

    Institute of Scientific and Technical Information of China (English)

    WANG ShaoWu; HUANG JianBin; WEN XinYu; ZHU JinHong

    2008-01-01

    Four periods with predominated droughts are identified in 4-2 ka BP according to documentary data, namely 3.6-3.5, 3.1-3.0, 2.8-2.7, and 2.45-2.35 ka BP. Palaeo-environmental data indicated that droughts were predominated in 4-2 ka BP in the south of Northeast China, Inner-Mongolia, east of Qinghai-Tibetan Plateau, and South China. Modeling study shows that precession may be responsible for the occurrence of droughts in 4-2 ka BP, integrating the GCM with forcing of insolation.

  16. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

    Science.gov (United States)

    Powell, Thomas L; Galbraith, David R; Christoffersen, Bradley O; Harper, Anna; Imbuzeiro, Hewlley M A; Rowland, Lucy; Almeida, Samuel; Brando, Paulo M; da Costa, Antonio Carlos Lola; Costa, Marcos Heil; Levine, Naomi M; Malhi, Yadvinder; Saleska, Scott R; Sotta, Eleneide; Williams, Mathew; Meir, Patrick; Moorcroft, Paul R

    2013-10-01

    Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.

  17. Agriculture Drought Risk Management Using Standardized Precipitation Index and AEZ Model

    Directory of Open Access Journals (Sweden)

    M. H. Nazarifar

    2014-01-01

    Full Text Available The objective of this study was to assess the drought risk management in the region under study. The SPI method was adopted for drought monitoring in Hamadan Province, Iran. The temporal and spatial extent of the area vulnerable to drought was delineated using AEZ model, GIS and other softwares. Five zones were recognized based on the drought severity index. Selection of compatible crops with respect to climate and land production capability of a region specially in drought condition is one of the effective elements to increase the water productivity in agriculture, based on Agro-ecological Zoning(AEZ model, developed by FAO, suitable spatial extension of wheat cultivation, which is the main crop in Hamadan Province, were delineated. According to this study the most suitable lands potentially available for wheat production are located in the north-east region and a part of the central region, where as, least suitable ones can be observed in the north-east and the south – east regions. The results of the risk analysis study show that south-east, north and central regions are susceptible to longest duration intense droughts where as long duration droughts are intensive in north, west and south-east regions. The overlaid and integrated maps of risks with the maps obtained after applying the AEZ model resulted into the map of spatial suitability of potential crop production for each class of risk (longest duration and most intensive durations. This enables the decision makers to define spatial priority of crop cultivation and manage various potential regions susceptible to drought risks.

  18. A discrete stage-structured model of California newt population dynamics during a period of drought.

    Science.gov (United States)

    Jones, Marjorie T; Milligan, William R; Kats, Lee B; Vandergon, Thomas L; Honeycutt, Rodney L; Fisher, Robert N; Davis, Courtney L; Lucas, Timothy A

    2017-02-07

    We introduce a mathematical model for studying the population dynamics under drought of the California newt (Taricha torosa), a species of special concern in the state of California. Since 2012, California has experienced a record-setting drought, and multiple studies predict drought conditions currently underway will persist and even increase in severity. Recent declines and local extinctions of California newt populations in Santa Monica Mountain streams motivate our study of the impact of drought on newt population sizes. Although newts are terrestrial salamanders, they migrate to streams each spring to breed and lay eggs. Since egg and larval stages occur in water, a precipitation deficit due to drought conditions reduces the space for newt egg-laying and the necessary habitat for larval development. To mathematically forecast newt population dynamics, we develop a nonlinear system of discrete equations that includes demographic parameters such as survival rates for newt life stages and egg production, which depend on habitat availability and rainfall. We estimate these demographic parameters using 15 years of stream survey data collected from Cold Creek in Los Angeles County, California, and our model captures the observed decline of the parameterized Cold Creek newt population. Based upon data analysis, we predict how the number of available newt egg-laying sites varies with annual precipitation. Our model allows us to make predictions about how the length and severity of drought can affect the likelihood of persistence and the time to critical endangerment of a local newt population. We predict that sustained severe drought will critically endanger the newt population but that the newt population can rebound if a drought is sufficiently short.

  19. Are droughts occurrence and severity aggravating? A study on SPI drought class transitions using loglinear models and ANOVA-like inference

    Directory of Open Access Journals (Sweden)

    E. E. Moreira

    2011-12-01

    Full Text Available Long time series (95 to 135 yr of the Standardized Precipitation Index (SPI computed with the 12-month time scale relative to 10 locations across Portugal were studied with the aim of investigating if drought frequency and severity are changing through time. Considering four drought severity classes, time series of drought class transitions were computed and later divided into 4 or 5 sub-periods according to length of time series. Drought class transitions were calculated to form a 2-dimensional contingency table for each period. Two-dimensional loglinear models were fitted to these contingency tables and an ANOVA-like inference was then performed in order to investigate differences relative to drought class transitions among those sub-periods, which were considered as treatments of only one factor. The application of ANOVA-like inference to these data allowed to compare the four or five sub-periods in terms of probabilities of transition between drought classes, which were used to detect a possible trend in time evolution of droughts frequency and severity that could be related to climate change. Results for a number of locations show some similarity between the first, third and fifth period (or the second and the fourth if there were only 4 sub-periods regarding the persistency of severe/extreme and sometimes moderate droughts. In global terms, results do not support the assumption of a trend for progressive aggravation of droughts occurrence during the last century, but rather suggest the existence of long duration cycles.

  20. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three General Circulation Models

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2013-12-01

    Full Text Available Hydrological droughts characteristics (drought in groundwater and streamflow likely will change in the 21st century as a results of climate change. Magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is largely unknown. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three General Circulation Models for the A2 emission scenario (GCM forced models, and the WATCH Forcing Data re-analysis dataset(reference model. The threshold level method was applied to investigate drought occurrence, duration and deficit volume. Results for the control period (1971–2000 show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate model's results after post-processing produce realistic outcome for global drought analyses. For the near future (2021–2050 and far future (2071–2100 the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D-climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry B-climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar, the analysis for the control period showed that projections are in these regions most uncertain. On a global scale the increase in hydrological drought duration and severity will lead to a higher impact of drought events, which urges water resources managers to timely anticipate on the increased risk on more severe drought in groundwater and streamflow and to design pro

  1. Predicting Agricultural Drought using NOAH Land Surface Model, MODIS Evapotranspiration and GRACE Terrestrial Water Storage

    Science.gov (United States)

    wu, J.; Zhang, X.

    2013-12-01

    Drought is a major natural hazard in the world which costs 6-8 billion per year in the United States. Drought monitoring and prediction are difficult because it usually develops slowly and it is hard to be recognized until it becomes severe. The severity of agricultural drought was estimated by using Soil Moisture Deficit Index (SMDI) based on soil moisture simulated by Noah land surface model. Based on general water balance and delayed response of soil moisture to the forcing of climate variables, a Multiple Linear Regression (MLR) model for agricultural drought prediction was developed, the inputs of which included data at the previous one and two months of precipitation from Parameter-elevation Regressions on Independent Slopes Model (PRISM), evapotranspiration from MODIS MOD 16 product and terrestrial water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE). The stability of the MLR model is tested using different training datasets from 2003 to 2009 with time spans of one year to six years and the results indicated that the model is stable, with very limited changes in estimated parameters between different datasets. A sensitivity analysis shows that evapotranspiration is the most significant variable affecting soil moisture change compared to precipitation and TWS. The predicted SMDI was compared with U.S. drought monitor products to evaluate its performance for the period of 2010-2012 when a severe drought occurred in the U.S. (Fig.1). The predicted SMDI successfully forecasted the severe drought in the southern U.S. in early 2012 and its expansion in the following summer. The MLR model has a high predictive skill with short-term forecast (1-2 months), while less accuracy is observed for the long-term forecast (3-6 months) (Fig.2).

  2. Reconstructing and analyzing China's fifty-nine year (1951–2009 drought history using hydrological model simulation

    Directory of Open Access Journals (Sweden)

    Z. Y. Wu

    2011-02-01

    Full Text Available The recent fifty-nine year (1951–2009 drought history of China is reconstructed using daily soil moisture values generated by the Variable Infiltration Capacity (VIC land surface macroscale hydrology model. VIC is applied over a grid of 10 458 points with a spatial resolution of 30 km × 30 km, and is driven by observed daily maximum and minimum air temperature and precipitation from 624 long-term meteorological stations. The VIC soil moisture is used to calculate the Soil Moisture Anomaly Percentage Index (SMAPI, which can be used as a measure of the severity of agricultural drought on a global basis. We develop a SMAPI-based drought identification procedure for practical uses in the identification of both grid point and regional drought events. As the result, a total of 325 regional drought events varying in time and strength are identified from China's nine drought study regions. These drought events can thus be assessed quantitatively at different spatial and temporal scales. The result shows that the severe drought events of 1978, 2000 and 2006 are well reconstructed, indicating SMAPI is capable of indentifying the onset of a drought event, its progressing, as well as its ending. Spatial and temporal variations of droughts on China's nine drought study regions are studied. Our result shows that on average, up to 30% of the total area of China is prone to drought. Regionally, an upward trend in drought-affected areas has been detected in three regions Inner Mongolia, Northeast and North during the recent fifty-nine years. However, the decadal variability of droughts has been week in the rest five regions South, Southwest, East, Northwest, and Tibet. Xinjiang has even been wetting steadily since the 1950s. Two regional dry centers are discovered in China as the result of a combined analysis on the occurrence of drought events from both grid points and drought study regions. The first center is located in the area partially covered by two

  3. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a latitudinal gradient in Europe

    OpenAIRE

    M. G. De Kauwe; S.-X. Zhou; B. E. Medlyn; A. J. Pitman; Y.-P. Wang; R. A. Duursma; I. C. Prentice

    2015-01-01

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models, realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable ...

  4. Effects of Planting Density on Transpiration, Stem Flow and Interception for Two Clones Differing in Drought Tolerance in a High Productivity Eucalyptus Plantation in Brazil

    Science.gov (United States)

    Hubbard, R. M.; Hakemada, R.; Ferraz, S.

    2015-12-01

    Eucalypt plantations cover about 20 M hectares worldwide and expansion is expected to mainly occur in marginal growing areas where dry conditions may lead to water conflicts. One of the principal reasons for the expansion of Eucalyptus plantations is rapid wood growth but these forests also transpire large amounts of water. Genotype selection and planting density, are key factors regulating carbon and water tradeoffs at a stand scale, but few studies have examined these simultaneously especially in highly productive clonal plantations. Our goal in this study was to examine the effects of planting density on carbon and water interactions using a drought tolerant and drought sensitive eucalyptus clone. This work is part of a larger study (TECHS project - Tolerance of Eucalyptus Clones to Hydric and Thermal Stresses) and is located in a flat Oxisol in southeast of Brazil. A drought tolerant (E. grandis x E. camaldulensis (Grancam) and drought sensitive clone E. grandis x E. urophylla (Urograndis) were planted at four densities ranging from 600 to 3.000 stem ha-1. We measured transpiration using thermal heat dissipation probes, wood growth, canopy interception and stemflow during a full year (21 to 33 months old). Precipitation during the study period was 738 mm. Independently of genetics, growth increased with increasing density. Transpiration also increased with planting density and ranged from 515-595 mm at wider spacing to 735-978 mm at tighter spacing. Interception increased with planting density representing 18-22% of precipitation versus 13-14% in wider spacing while stem flow represented 2-5% in denser spacing and 1-2% at broader spacing. When density was higher than 1.250 and 1.750 stems ha-1 in Urograndis and Grancam clones, respectively, the water balance were negative. On a stand scale, results show both genetics and spacing can be used as silvicultural tools to better manage the tradeoff between wood growth and water consumption.

  5. Drought Analysis of Haihe Basin in North China based on the Community Land Model, 1960-2010

    Science.gov (United States)

    Qin, Y.; Yang, D.; Lei, H.

    2014-12-01

    Drought severity not only depends on weather anomaly, but is also related to terrestrial hydrological condition to a large extent. In this study, we analyzed droughts using indices based on precipitation and soil moisture during the period of 1960-2010 in Haihe basin, which is a typical drought-prone region in North China. The Soil Moisture Drought Severity (SMDS) and Standardized Precipitation Index (SPI) are used to evaluate drought severity. SMDS is calculated based on the monthly soil moisture of upper 50cm from the simulation by Community Land Model (CLM 4.0) and SPI is calculated based on gridded precipitation at 0.05° resolution (5 km × 5 km approximately), which is spatially interpolated from observations. During the last 51 years, 36 severe drought events (affecting areas greater than 20,000 km2 and durations longer than 3 months) have been identified based on SMDS, and 41 drought events identified based on SPI. Results derived from SMDS indicate that there is a significant increasing trend in the drought affected area, and that the drought event occurred in 1999 has the largest affected area. Compared with the drought events derived from SMDS, the events derived from SPI have shorter durations but larger affected areas on average. Although the mean NDVI of the whole basin has been increasing since the 1980s, the two declining periods of 1992-1994 and 1999-2003 show fairly good agreement with the drought events identified in the same periods. Comparison between SMDS and SPI shows the superiority of SMDS for drought assessment in the perspective of terrestrial ecosystem. Keywords: Drought analysis; Standardized Precipitation Index (SPI); Soil Moisture Drought Severity (SMDS); Community Land Model; Haihe basin

  6. Application of Multi-Model CMIP5 Analysis in Future Drought Adaptation Strategies

    Science.gov (United States)

    Casey, M.; Luo, L.; Lang, Y.

    2014-12-01

    Drought influences the efficacy of numerous natural and artificial systems including species diversity, agriculture, and infrastructure. Global climate change raises concerns that extend well beyond atmospheric and hydrological disciplines - as climate changes with time, the need for system adaptation becomes apparent. Drought, as a natural phenomenon, is typically defined relative to the climate in which it occurs. Typically a 30-year reference time frame (RTF) is used to determine the severity of a drought event. This study investigates the projected future droughts over North America with different RTFs. Confidence in future hydroclimate projection is characterized by the agreement of long term (2005-2100) multi-model precipitation (P) and temperature (T) projections within the Coupled model Intercomparison Project Phase 5 (CMIP5). Drought severity and the propensity of extreme conditions are measured by the multi-scalar, probabilistic, RTF-based Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI). SPI considers only P while SPEI incorporates Evapotranspiration (E) via T; comparing the two reveals the role of temperature change in future hydroclimate change. Future hydroclimate conditions, hydroclimate extremity, and CMIP5 model agreement are assessed for each Representative Concentration Pathway (RCP 2.6, 4.5, 6.0, 8.5) in regions throughout North America for the entire year and for the boreal seasons. In addition, multiple time scales of SPI and SPEI are calculated to characterize drought at time scales ranging from short to long term. The study explores a simple, standardized method for considering adaptation in future drought assessment, which provides a novel perspective to incorporate adaptation with climate change. The result of the analysis is a multi-dimension, probabilistic summary of the hydrological (P, E) environment a natural or artificial system must adapt to over time. Studies similar to this with

  7. Assessing human impact on droughts in a tropical Vietnamese catchment using a combined modelling approach

    Science.gov (United States)

    Nauditt, Alexandra; Birkel, Christian; Ribbe, Lars; Tran Van, Tra; Viet, Trinh Quoc; Firoz, Abm; Fink, Manfred

    2015-04-01

    Historical drought frequency, drought risk and types are still poorly investigated in tropical regions and particularly in South East Asia. However, evolving drought periods during the dry season severely impact on socio economic factors such as livelihood (irrigated rice production), hydropower generation and urban water supply in such regions as in the VuGiaThuBon river basin (10,350 km²) in Central Vietnam. Besides the increasing frequency of heat waves and prolonged dry periods without rainfall, hydropower development and over-exploitation of water resources due to demographic and socioeconomic development are the main causes for drought-related disasters and subsequent salt water intrusion. Precipitation and runoff time series from 1982 to 2009 were used to assess drought severity and typology before hydropower development started in 2010. We applied different rainfall-runoff modelling approaches of increasing complexity (HBV light, J2000 and Mike NAM) as well as meteorological and hydrological drought indices such as the Standardized Precipitation Index (SPI) and its runoff homologue (SRI). In the scope of the BMBF funded research project "Land use and Climate Change interactions (LUCCi)" (www.lucci-vietnam.info), the impacts of the human-induced hydrological alterations on drought risk were quantified by integrating the distributed physically-based hydrological model J2000 with the reservoir operation tool HEC ResSim and the River basin model Mike Basin to simulate the runoff to the coastal system. The salt water intrusion behavior in the flat coastal area was represented by the hydrodynamic Mike 11 model relating low flow thresholds to salt intrusion. The different discharge simulations before and after the reservoir construction were compared and evaluated regarding their relevance for the drought severity being dominated either by meteorological dry spells or hydrological alterations. Results show a clear impact of the hydropower reservoir and resulting

  8. Adaptation of the HBV model for the study of drought propagation in European catchments

    Science.gov (United States)

    van Loon, A. F.; van Lanen, H. A. J.; Seibert, J.; Torfs, P. J. J. F.

    2009-04-01

    Drought propagation is the conversion of a meteorological drought signal into a hydrological drought (e.g. groundwater and streamflow) as it moves through the subsurface part of the hydrological cycle. The lag, attenuation and possibly pooling of parts of the signal are dependent on climate and catchment characteristics. The understanding of processes underlying drought propagation is still very limited. Our aim is to study these processes in small catchments across Europe with different climate conditions and physical structures (e.g. hard rock, porous rock, flat areas, steep slopes, snow, lakes). As measurements of soil moisture and groundwater storage are normally scarce, simulation of these variables using a lumped hydrological model is needed. However, although a simple model is preferable, many conceptual rainfall-runoff models are not suitable for this purpose because of their focus on fast reactions and therefore unrealistic black box approach of the soil moisture and groundwater system. We studied the applicability of the well-known semi-distributed rainfall-runoff model HBV for drought propagation research. The results show that HBV reproduces observed discharges fairly well. However, in simulating groundwater storage in dry periods, HBV has some conceptual weaknesses: 1) surface runoff is approximated by a quick flow component through the upper groundwater box; 2) the storage in the upper groundwater box has no upper limit; 3) lakes are simulated as part of the lower groundwater box; 4) the percolation from the upper to the lower groundwater box is not continuous, but either zero or constant. So, adaptation of the HBV model structure was needed to be able to simulate realistic groundwater storage in dry periods. The HBV Light model (Seibert et al., 2000) was used as basis for this work. As the snow and soil routines of this model have proven their value in previous (drought) studies, these routines are left unchanged. The lower part of HBV Light, the

  9. Reconstructing and analyzing China's fifty-nine year (1951–2009 drought history using hydrological model simulation

    Directory of Open Access Journals (Sweden)

    Z. Y. Wu

    2011-09-01

    Full Text Available The 1951–2009 drought history of China is reconstructed using daily soil moisture values generated by the Variable Infiltration Capacity (VIC land surface macroscale hydrology model. VIC is applied over a grid of 10 458 points with a spatial resolution of 30 km × 30 km, and is driven by observed daily maximum and minimum air temperature and precipitation from 624 long-term meteorological stations. The VIC soil moisture is used to calculate the Soil Moisture Anomaly Percentage Index (SMAPI, which can be used as a measure of the severity of agricultural drought on a global basis. We have developed a SMAPI-based drought identification procedure for practical uses in the identification of both grid point and regional drought events. As a result, a total of 325 regional drought events varying in time and strength are identified from China's nine drought study regions. These drought events can thus be assessed quantitatively at different spatial and temporal scales. The result shows that the severe drought events of 1978, 2000 and 2006 are well reconstructed, which indicates that the SMAPI is capable of identifying the onset of a drought event, its progression, as well as its termination. Spatial and temporal variations of droughts in China's nine drought study regions are studied. Our result shows that on average, up to 30% of the total area of China is prone to drought. Regionally, an upward trend in drought-affected areas has been detected in three regions (Inner Mongolia, Northeast and North from 1951–2009. However, the decadal variability of droughts has been weak in the rest of the five regions (South, Southwest, East, Northwest, and Tibet. Xinjiang has even been showing steadily wetter since the 1950s. Two regional dry centres are discovered in China as the result of a combined analysis on the occurrence of drought events from both grid points and drought study regions. The first centre is located in the area partially covered by the North

  10. Large-scale hydrological modelling in the semi-arid north-east of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, A.

    2002-09-01

    Semi-arid areas are characterized by small water resources. An increasing water demand due to population growth and economic development as well as a possible decreasing water availability in the course of climate change may aggravate water scarcity in future in these areas. The quantitative assessment of the water resources is a prerequisite for the development of sustainable measures of water management. For this task, hydrological models within a dynamic integrated framework are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability over a large geographic domain of semi-arid environments. The study area is the Federal State of Ceara in the semi-arid north-east of Brazil. Surface water from reservoirs provides the largest part of water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. (orig.)

  11. The unusual 2013-2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model

    Science.gov (United States)

    Kwon, Hyun-Han; Lall, Upmanu; Kim, Seong-Joon

    2016-08-01

    Recently, the Korean peninsula faced severe drought for more than 3 years (2013-2015). Drought in this region is characterized by multidecadal variability, as seen from one of the longest systematic records available in Asia from 1770 to 2015. This paper explores how the return period of the 2013-2015 drought varies over this historical period to provide a context for the changing climate and drought severity in the region. A nonstationary, multivariate, Bayesian copula model for drought severity and duration is developed and applied. Given the wetting trend over the last 50 years, the recent drought appears quite extreme, while such droughts were common in the eighteenth and nineteenth centuries.

  12. A Physical Model for Extreme Drought over Southwest Asia

    Science.gov (United States)

    Hoell, A.; Barlow, M. A.; Funk, C. C.; Cannon, F.

    2015-12-01

    The socioeconomic difficulties of Southwest Asia, defined as the area bound by the domain 25°N-40°N and 40°E-70°E, which includes the countries of Iran, Afghanistan and Pakistan, are exacerbated by extreme precipitation deficits during the November-April rainy season. The precipitation deficits during many Southwest Asia droughts have been examined in terms of the forcing by climate variability originating over the Pacific Ocean as a result of the El Niño-Southern Oscillation (ENSO), Pacific Decadal Variability (PDV) and the long-term warming of Pacific (LT) sea surface temperatures (SST). Here, we 1) examine how the most extreme November-April Southwest Asia droughts relate to global SSTs and the associated large-scale atmospheric circulation anomalies, 2) analyze the specific atmospheric forcing mechanisms responsible for changes in regional Southwest Asian precipitation and 3) examine the causal mechanisms responsible for the increased frequency of Southwest Asia drought in recent decades. The driest November-April seasons during 1948-2012 over Southwest Asia are forced by subsidence and reductions of moisture fluxes as a result of the interaction of the mean flow with anomalous zonally-symmetric high pressure throughout the Northern Hemisphere. The anomalous zonally-symmetric high pressure throughout the Northern Hemisphere occurs simultaneously with cool central and eastern Pacific SST anomalies associated with La Niña and the negative phase of PDV and a warm west Pacific Ocean caused in part by the long-term warming of the west Pacific Ocean. The long-term warming of the Pacific Ocean has driven the regional precipitation declines in recent decades, with the strongest signal occurring over areas bordering the Arabian Sea.

  13. Improved confidence in regional climate model simulations of precipitation evaluated using drought statistics from the ENSEMBLES models

    Science.gov (United States)

    Maule, Cathrine Fox; Thejll, Peter; Christensen, Jens H.; Svendsen, Synne H.; Hannaford, Jamie

    2013-01-01

    An ensemble of regional climate model simulations from the European framework project ENSEMBLES is compared with observations of low precipitation events across a number of European regions. We characterize precipitation deficits in terms of two drought indices, the Standardized Precipitation Index and the self-calibrated Palmer Drought Severity Index. Models that robustly describe the observations for the period 1961-2000 in given regions are identified and an assessment of the overall performance of the ensemble is provided. The results show that in general, models capture the most severe drought events and that the ensemble mean model also performs well. Some regions that appear to be more problematic to simulate well are also identified. These are relatively small regions and have rather complex topographical features. The analysis suggests that assessment of future drought occurrence based on climate change experiments in general would appear to be robust. But due to the heterogeneous and often fine-scaled structure of drought occurrence, quantitative results should be used with great care, particularly in regions with complex terrain and limited information about past drought occurrence.

  14. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring

    Science.gov (United States)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  15. Application of Multiple Evaluation Models in Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Victal Saliba

    2008-07-01

    Full Text Available Based on two different samples, this article tests the performance of a number of Value Drivers commonly used for evaluating companies by finance practitioners, through simple regression models of cross-section type which estimate the parameters associated to each Value Driver, denominated Market Multiples. We are able to diagnose the behavior of several multiples in the period 1994-2004, with an outlook also on the particularities of the economic activities performed by the sample companies (and their impacts on the performance through a subsequent analysis with segregation of companies in the sample by sectors. Extrapolating simple multiples evaluation standards from analysts of the main financial institutions in Brazil, we find that adjusting the ratio formulation to allow for an intercept does not provide satisfactory results in terms of pricing errors reduction. Results found, in spite of evidencing certain relative and absolute superiority among the multiples, may not be generically representative, given samples limitation.

  16. River water quality modelling under drought situations - the Turia River case

    Science.gov (United States)

    Paredes-Arquiola, Javier; Macián, Javier; Pedro-Monzonís, María; Belda, Edgar; Momblanch, Andrea; Andreu, Joaquín

    2016-10-01

    Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  17. Drought monitoring based on TIGGE and distributed hydrological model in Huaihe River Basin, China.

    Science.gov (United States)

    Zhao, Junfang; Xu, Jingwen; Xie, Xingmei; Lu, Houquan

    2016-05-15

    Drought assessment is important for developing measures to reduce agricultural vulnerability and thereby secure the livelihoods of those who depend on agriculture. This study uses four global ensemble weather prediction systems: the China Meteorological Administration (CMA), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centres for Environmental Prediction (NCEP) in the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) archive from 2006 to 2010. Based on results from the XXT (the first X denotes Xinanjiang, the second X denotes hybrid, and the T denotes TOPMODEL) distributed hydrological model, as well as soil moisture observations and digital elevation model (DEM) data, synthesized drought grades were established in the Huaihe River Basin of China. To filter out the impact of short-term fluctuations on observed soil moisture, a 30-day moving average was calculated. Use of the moving average significantly improves the correlation between observed soil moisture and simulated soil water deficit depth. Finally, a linear regression model describing the relationship between observed soil moisture and simulated soil water deficit depth was constructed. The deterministic regression coefficient was 0.5872, the correlation coefficient was 0.77, and the regression coefficient was -154.23. The trends in drought grades calculated using soil moisture and soil water deficit depth were found to be the same, and the grades agreed to within one level. Our findings highlight the importance of synthesizing drought grading when assessing drought using different soil moisture indicators in order to obtain a more comprehensive forecast of drought conditions.

  18. Comparison of drought stress indices in beech forests: a modelling study

    Directory of Open Access Journals (Sweden)

    Vilhar U

    2016-08-01

    Full Text Available Two drought stress indices were applied to managed as well as old-growth beech forests and gaps for the 2001 to 2013 period to aid in the development of an efficient tool for field water supply diagnosis. The relative extractable soil water (REW, which was calculated from the soil water content in the root zone, and the transpiration index (TI, calculated as the ratio between the actual and potential transpiration were used. Both indices were calculated on a daily basis using the water balance model BROOK90, which was fitted and tested using measured data on throughfall and soil water content. A sensitivity analysis apportioned to the input parameters of the drought stress indices was conducted to assess uncertainty. Both drought stress indices showed the greatest drought stress in the years 2009, 2003 and 2011, as also indicated by the Standardized Precipitation Evapotranspiration Index (SPEI at the nearest meteorological station. However, drought stress intensity and duration differed between the indices and study sites. Greater water supply stress was shown in the forests than the gaps. Furthermore, the agreement among the indices was smaller for gaps compared with forests, which implies that careful index selection is needed when comparing water supply stresses in different stages of forest stand development. Due to the low amount of input data required and the parameters that can be measured with relative ease in the field, REW might be an efficient tool for field water supply diagnosis when analyzing the drought stresses of similar forest types and at unique stages of development. REW satisfactorily indicated drought stress in forests but to a lesser extent in gaps. TI demonstrated more consistent differences in drought stress between forests and gaps and therefore proved to be the appropriate index for a detailed analysis of drought stress variation between different stages of forest stand development. However, due to a greater number of

  19. Market Anatomy of a Drought: Modeling Barge and Corn Market Adaptation to Reduced Rainfall and Low Mississippi River Water Levels During the 2012 Midwestern U.S. Drought

    Science.gov (United States)

    Foster, B.; Characklis, G. W.; Thurman, W. N.

    2015-12-01

    In mid 2012, a severe drought swept across the Midwest, the heartland of corn production in the U.S. When the drought persisted into late Fall, corn markets were affected in two distinct ways: (1) reduced rainfall led to projected and actual corn yields that were lower than expected and (2) navigation restrictions, a result of low water levels on the Mississippi River, disrupted barge transportation, the most common and inexpensive mode for moving corn to many markets. Both (1) and (2) led to significant financial losses, but due to the complexity of the economic system and the coincidence of two different market impacts, the size of the role that low water levels played wass unclear. This is important, as losses related to low water levels are used to justify substantial investments in dredging activities on the Mississippi River. An "engineering" model of the system, suggests that low water levels should drive large increases in barge and corn prices, while some econometric models suggest that water levels explain very little of the changes in barge rates and corn prices. Employing a model that integrates both the engineering and economic elements of the system indicates that corn prices and barge rates during the drought display spatial and temporal behavior that is difficult to explain using either the engineering or econometric models alone. This integrated model accounts for geographic and temporal variations in drought impacts and identifies unique market responses to four different sets of conditions over the drought's length. Results illustrate that corn and barge price responses during the drought were a product of comingled, but distinct, reactions to both supply changes and navigation disruptions. Results also provide a more structured description of how the economic system that governs corn allocation interacts with the Mississippi River system during drought. As both public and private parties discuss potential managerial or infrastructural methods

  20. Drought, Fire and Insects in Western US Forests: Observations to Improve Regional Land System Modeling

    Science.gov (United States)

    Law, B. E.; Yang, Z.; Berner, L. T.; Hicke, J. A.; Buotte, P.; Hudiburg, T. W.

    2015-12-01

    Drought, fire and insects are major disturbances in the western US, and conditions are expected to get warmer and drier in the future. We combine multi-scale observations and modeling with CLM4.5 to examine the effects of these disturbances on forests in the western US. We modified the Community Land Model, CLM4.5, to improve simulated drought-related mortality in forests, and prediction of insect outbreaks under future climate conditions. We examined differences in plant traits that represent species variation in sensitivity to drought, and redefined plant groupings in PFTs. Plant traits, including sapwood area: leaf area ratio and stemwood density were strongly correlated with water availability during the ecohydrologic year. Our database of co-located observations of traits for 30 tree species was used to produce parameterization of the model by species groupings according to similar traits. Burn area predicted by the new fire model in CLM4.5 compares well with recent years of GFED data, but has a positive bias compared with Landsat-based MTBS. Biomass mortality over recent decades increased, and was captured well by the model in general, but missed mortality trends of some species. Comparisons with AmeriFlux data showed that the model with dynamic tree mortality only (no species trait improvements) overestimated GPP in dry years compared with flux data at semi-arid sites, and underestimated GPP at more mesic sites that experience dry summers. Simulations with both dynamic tree mortality and species trait parameters improved estimates of GPP by 17-22%; differences between predicted and observed NEE were larger. Future projections show higher productivity from increased atmospheric CO2 and warming that somewhat offsets drought and fire effects over the next few decades. Challenges include representation of hydraulic failure in models, and availability of species trait and carbon/water process data in disturbance- and drought-impacted regions.

  1. A drought hazard assessment index based on the VIC-PDSI model and its application on the Loess Plateau, China

    Science.gov (United States)

    Zhang, Baoqing; Wu, Pute; Zhao, Xining; Wang, Yubao; Gao, Xiaodong; Cao, Xinchun

    2013-10-01

    Drought is a complex natural hazard that is poorly understood and difficult to assess. This paper describes a VIC-PDSI model approach to understanding drought in which the Variable Infiltration Capacity (VIC) Model was combined with the Palmer Drought Severity Index (PDSI). Simulated results obtained using the VIC model were used to replace the output of the more conventional two-layer bucket-type model for hydrological accounting, and a two-class-based procedure for calibrating the characteristic climate coefficient ( K j ) was introduced to allow for a more reliable computation of the PDSI. The VIC-PDSI model was used in conjunction with GIS technology to create a new drought assessment index (DAI) that provides a comprehensive overview of drought duration, intensity, frequency, and spatial extent. This new index was applied to drought hazard assessment across six subregions of the whole Loess Plateau. The results show that the DAI over the whole Loess Plateau ranged between 11 and 26 (the greater value of the DAI means the more severe of the drought hazard level). The drought hazards in the upper reaches of Yellow River were more severe than that in the middle reaches. The drought prone regions over the study area were mainly concentrated in Inner Mongolian small rivers, Zuli and Qingshui Rivers basin, while the drought hazards in the drainage area between Hekouzhen-Longmen and Weihe River basin were relatively mild during 1971-2010. The most serious drought vulnerabilities were associated with the area around Lanzhou, Zhongning, and Yinchuan, where the development of water-saving irrigation is the most direct and effective way to defend against and reduce losses from drought. For the relatively humid regions, it will be necessary to establish the rainwater harvesting systems, which could help to relieve the risk of water shortage and guarantee regional food security. Due to the DAI considers the multiple characteristic of drought duration, intensity, frequency

  2. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    NARCIS (Netherlands)

    Holmgren, M.; Gomez-Aparicio, L.; Quero, J.L.; Valladares, F.

    2012-01-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical model

  3. Joint meteorological and hydrological drought model: a management tool for proactive water resources planning of semi-arid regions

    Science.gov (United States)

    Modaresi Rad, Arash; Ahmadi Ardakani, Samira; Ghahremani, Zahra; Ghahreman, Bijan; Khalili, Davar

    2016-04-01

    Conventionally drought analysis has been limited to single drought category. Utilization of models incorporating multiple drought categories, can relax this limitation. A copula-based model is proposed, which uses meteorological and hydrological drought indices to assess drought events for ultimate management of water resources, at small scales, i.e., sub-watersheds. The study area is a sub basin located at Karkheh watershed (western Iran), utilizing 41-year data of 4 raingauge stations and one hydrometric station located upstream and at the outlet respectively. Prior to drought analysis, time series of precipitation and streamflow records are investigated for possible dependency/significant trend. Considering the semi-arid nature of the study area, boxplots are utilized to graphically capture the rainy months, which used to evaluate the degree of correlation between streamflow and precipitation records via nonparametric correlations and bivariate tail dependence. Time scales of 3- and 12-month are considered, which are used to study vulnerability of early vegetation establishment and long-term ecosystem resilience, respectively. Among four common goodness of fit tests, the Cramér-von-Mises is found preferable for defining copula distribution functions through Akaike & Bayesian information criteria and coefficient of determination. Furthermore the uncertainty associated with different copula models is measured using the concept of entropy. A new bivariate drought modeling approach is proposed through copulas. The proposed index, named standardized precipitation-streamflow index (SPSI) is compared with two separate indices of streamflow drought index (SDI) and standardized precipitation index (SPI). According to results, the SPSI could detect onset of droughts dominated by precipitation as is similarly indicated by SPI index. It also captures discordant case of normal period precipitation with dry period streamflow and vice versa. Finally, combination of severity

  4. Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections.

    Science.gov (United States)

    Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M

    2017-02-15

    The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on

  5. 基于帕尔默旱度模式的干旱识别及其特征值频率分析%Identification of drought and frequency analysis of drought characteristics based on palmer drought severity index model

    Institute of Scientific and Technical Information of China (English)

    周玉良; 刘立; 周平; 金菊良; 郦建强; 吴成国

    2014-01-01

    periods under dry states, while the drought severity was estimated as summation of absolute value of negative moisture anomaly index, which was of time-comparability during a drought event. On the basis of the distribution of drought duration and drought severity generated by the frequency curve fitting method, their joint distribution was constructed via the GH Copula, and accordingly the estimation of drought recurrence periods at Kunming station from 1951 to 2011 were conducted. There were 43 droughts were identified, and the drought that occurred in 2009-2010 was the most severe drought event in the study period with the recurrence period of 64.7 years. Results showed that drought process indentified based on the PSDI model was consistent with the actual regional drought circumstances and the results by using runoff index methods, notwithstanding the disparity from that by applying the precipitation index that were not concerned with surface hydrological process. The proposed drought frequency analysis was of clear physical concept, and the expression of drought duration and severity was of physically reasonability. The results of this study can provide a reference for assessment of drought disaster hazard.%干旱过程识别及干旱特征值频率分析是旱灾风险管理的重要基础性工作。目前干旱频率分析中存在的主要问题有:水文干旱指标易受人类活动影响,其序列的一致性条件常难满足;基于阈值的干旱过程识别法中存在着阈值无明确物理意义;干旱历时定义为干旱过程中的时段数,会使过程中有较多旱情缓解期但烈度并不大的干旱因干旱历时较长而被识别为严重干旱;干旱烈度常不具有时间可比性。采用受人类活动影响较小的气象因子为输入,基于帕尔默旱度模式计算了研究区逐时段的干、湿状态及帕尔默干旱指数,根据其干、湿状态及帕尔默干旱指数识别了干旱过程,以干旱过程中

  6. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions

    Science.gov (United States)

    Kahil, Mohamed Taher; Dinar, Ariel; Albiac, Jose

    2015-03-01

    Growing water extractions combined with emerging demands for environment protection increase competition for scarce water resources worldwide, especially in arid and semiarid regions. In those regions, climate change is projected to exacerbate water scarcity and increase the recurrence and intensity of droughts. These circumstances call for methodologies that can support the design of sustainable water management. This paper presents a hydro-economic model that links a reduced form hydrological component, with economic and environmental components. The model is applied to an arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to assess alternative adaptation policies. Results indicate that drought events have large impacts on social welfare, with the main adjustments sustained by irrigation and the environment. The water market policy seems to be a suitable option to overcome the negative economic effects of droughts, although the environmental effects may weaken its advantages for society. The environmental water market policy, where water is acquired for the environment, is an appealing policy to reap the private benefits of markets while protecting ecosystems. The current water management approach in Spain, based on stakeholders' cooperation, achieves almost the same economic outcomes and better environmental outcomes compared to a pure water market. These findings call for a reconsideration of the current management in arid and semiarid basins around the world. The paper illustrates the potential of hydro-economic modeling for integrating the multiple dimensions of water resources, becoming a valuable tool in the advancement of sustainable water management policies.

  7. Integrated Modeling of Drought-Impacted Areas using Remote Sensing and Microenvironmental Data in California

    Science.gov (United States)

    Rao, M.; Silber-coats, Z.; Lawrence, F.

    2015-12-01

    California's ongoing drought condition shriveled not just the agricultural sector, but also the natural resources sector including forestry, wildlife, and fisheries. As future predictions of drought and fire severity become more real in California, there is an increased awareness to pursue innovative and cost-effective solutions that are based on silvicultural treatments and controlled burns to improve forest health and reduce the risk of high-severity wildfires. The main goal of this study is to develop a GIS map of the drought-impacted region of northern and central California using remote sensing data for the summer period of 2014. Specifically, Landsat/NAIP imagery will be analyzed using a combination of object-oriented classification and spectral indices such as the Modified Perpendicular Drought Index (MPDI). This spectral index basically scales the line perpendicular to the soil line defined in the Red-NIR feature space in conjunction with added information about vegetative fraction derived using NDVI. The resulting output will be correlated with USGS-produced estimates of climatic water deficit (CWD) data to characterize the severity of the drought. The CWD is simulated based on hydrological tool, Basin Characterization Model (BCM) that ingests historical climate data in conjunction with soils, topography, and geological data to predict other monthly hydrological outputs including runoff, recharge, and snowpack. In addition to field data, data collected by state agencies including USFS, calforests.org will be used in the classification and accuracy assessment procedures. Visual assessment using high-resolution imagery such as NAIP will be used to further refine the spatial maps. The drought severity maps produced will greatly facilitate site-specific planning efforts aimed at implementing resource management decisions.

  8. Process-based simulation of seasonality and drought stress in monoterpene emission models

    Directory of Open Access Journals (Sweden)

    R. Grote

    2009-09-01

    Full Text Available Canopy emissions of volatile hydrocarbons such as isoprene and monoterpenes play an important role in air chemistry. They depend on various environmental conditions, are highly species-specific and are expected to be affected by global change. In order to estimate future emissions of these isoprenoids, differently complex models are available. However, seasonal dynamics driven by phenology, enzymatic activity, or drought stress strongly modify annual ecosystem emissions. Although these impacts depend themselves on environmental conditions, they have yet received little attention in mechanistic modelling.

    In this paper we propose the application of a mechanistic method for considering the seasonal dynamics of emission potential using the ''Seasonal Isoprenoid synthase Model'' (Lehning et al., 2001. We test this approach with three different models (GUENTHER, Guenther et al., 1993; NIINEMETS, Niinemets et al., 2002a; BIM2, Grote et al., 2006 that are developed for simulating light-dependent monoterpene emission. We also suggest specific drought stress representations for each model. Additionally, the proposed model developments are compared with the approach realized in the MEGAN (Guenther et al., 2006 emission model. Models are applied to a Mediterranean Holm oak (Quercus ilex site with measured weather data.

    The simulation results demonstrate that the consideration of a dynamic emission potential has a strong effect on annual monoterpene emission estimates. The investigated models, however, show different sensitivities to the procedure for determining this seasonality impact. Considering a drought impact reduced the differences between the applied models and decreased emissions at the investigation site by approximately 33% on average over a 10 year period. Although this overall reduction was similar in all models, the sensitivity to weather conditions in specific years was different. We conclude that the proposed

  9. Revisiting mechanisms underlying tree mortality induced by drought in the Amazon: from observation to modeling

    Science.gov (United States)

    Joetzjer, E.; Poulter, B.; Ciais, P.; Sala, A.; Sack, L.; Bartlett, M.

    2015-12-01

    In the past decade, two extreme droughts experienced by the Amazon rainforest led to a perturbation of carbon cycle dynamics and forest structure, partly through an increase in tree mortality. While there is a relatively strong consensus in CMIP5 projections for an increase in both frequency and intensity of droughts across the Amazon, the potential for forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems and carbon cycle feedbacks. Two long-term through fall exclusion experiments (TFE) provided novel observations of Amazonian ecosystem responses under drought. These experiments also provided a great opportunity to evaluate and improve models' behavior under drought by comparing simulations and observations. While current DGVM use a wide array of algorithms to represent mortality, most are associated with large uncertainty for representing drought-induced mortality, and require updating to include current information of physiological processes. During very strong droughts, the leaves desiccate and stems may undergo catastrophic embolism. However, even before that point, stomata close, to minimize excessive water loss and risk of hydraulic failure, which reduces carbon assimilation. To maintain respiration and other functions, plants may eventually deplete stored non-structural carbon compounds (NSC), which may have negative impacts on plant and eventually increase the probability of mortality.Here, we describe a new parameterization of the mortality process induced by drought using the ORCHIDEE-CAN dynamic vegetation model and test it using the two TFE results. We first updated and evaluated both the representation of hydraulic architecture and the NSC pool dynamics using in situ data. We implemented a direct climate effect on mortality through catastrophic stem embolism, based on hydraulic vulnerability curves. In addition, we explored the role of NSC on hydraulic failure and mortality by coupling in the model

  10. Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble

    Science.gov (United States)

    PaiMazumder, Debasish; Done, James M.

    2016-11-01

    The 2012 drought was the most severe and extensive summertime U.S. drought in half a century with substantial economic loss and impacts on food security and commodity prices. A unique aspect of the 2012 drought was its rapid onset and intensification over the Southern Rockies, extending to the Great Plains during late spring and early summer, and the absence of known precursor large-scale patterns. Drought prediction therefore remains a major challenge. This study evaluates relationships among snow, soil moisture, and precipitation to identify sources of potential predictability of the 2012 summer drought using observations and a Weather Research and Forecasting model multiphysics ensemble experiment. Although underestimated in intensity, the drought signal is robust to the way atmospheric physical processes are represented in the model. For the Southern Rockies, soil moisture exhibits stronger persistence than precipitation in observations and the ensemble experiment. Correlations between winter/spring snowmelt and concurrent and following season soil moisture, and between soil moisture and concurrent and following season precipitation, in both observations and the model ensemble, suggest potential predictability beyond 1 and 2 month lead-time reside in the land surface conditions for apparent flash droughts such as the 2012 drought.

  11. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    Science.gov (United States)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought

  12. Future changes in drought characteristics over Southern South America projected by a CMIP5 multi-model ensemble

    Science.gov (United States)

    Rivera, J. A.; Penalba, O. C.

    2013-05-01

    The impact of climate change on drought main characteristics (frequency, duration and severity) was assessed over Southern South America through the precipitation outputs from a multi-model ensemble of 15 climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The Standardized Precipitation Index was used as a drought indicator, given its temporal flexibility and simplicity. Changes in drought characteristics were identified by the difference for early (2011-2040) and late (2071-2100) 21st century values with respect to the 1979-2008 baseline. In order to evaluate the multi-model outputs, model biases where identified through a comparison with the drought characteristics from the Global Precipitation Climatology Centre database for the baseline period. Future climate projections under moderate- and high-emission scenarios showed that the occurrence of short-term and long-term droughts will be more frequent in the 21st century, with shorter durations and greater severities over much of the study area. This result is independent on the scenario considered, since no significant differences were observed on drought changes. Taking into account that in most of the region the multi-model ensemble tends to produce less number of droughts, with higher duration and lower severity, the future changes scenario might be even more dramatic. Therefore, Southern South America could experience more frequent water shortages with significant economic losses if proper adaptation measures are not proposed timely.

  13. Modeling carbon cycle dynamics and response to drought in semi-arid ecosystems

    Science.gov (United States)

    Hilton, T. W.; Fox, A. M.; Krofcheck, D. J.; Litvak, M. E.

    2012-12-01

    The southwestern United States is presently experiencing a multi-year drought. Though the carbon uptake per unit area of the semi-arid biomes in this region is smaller than that of more temperate biomes, these biomes cover roughly 40 percent of the world's land surface, and thus make a significant contribution to the global terrestrial biological carbon cycle. Here we test the ability of two land surface model structures to diagnose the carbon cycle dynamics of semi-arid landscapes during the ongoing extreme drought. We use the New Mexico Elevation Gradient (NMEG) as a testbed for these modeling experiments. The NMEG comprises eight eddy covariance towers observing ecosystems ranging from desert grassland ( 1600 m elevation) to alpine mixed coniferous forest ( 3000 m elevation). During the drought the ecosystems observed by these towers saw their annual net carbon uptake decline between 33 and 100 percent (50 to 150 gC m^{-2} year^{-1}), with two of the eight sites becoming net sources of carbon to the atmosphere and one transitioning from a net carbon sink to carbon-neutral. We parametrize a simple light-use efficiency (LUE)-based model (Vegetation Photosynthesis and Respiration Model, VPRM) and a complex model which simulates many land surface processes (Community Land Model, CLM). We explore the capacity of both models to diagnose the terrestrial carbon cycle in semi-arid biomes where water availability is highly episodic.

  14. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  15. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum.

    Science.gov (United States)

    Ngara, R; Ndimba, B K

    2014-11-01

    More than a decade after the sequencing of its genome, Arabidopsis still stands as the epitome of a model system in plant biology. Arabidopsis proteomics has also taught us great lessons on different aspects of plant growth, development and physiology. Without doubt our understanding of basic principles of plant biology would not have been this advanced if it were not for knowledge gained using Arabidopsis as a model system. However, with the projections of global climate change and rapid population growth, it is high time we evaluate the applicability of this model system in studies aimed at understanding abiotic stress tolerance and adaptation, with a particular emphasis on maintaining yield under hot and dry environmental conditions. Because of the innate nature of sorghum's tolerance to drought and moderate tolerance to salinity stresses, we believe sorghum is the next logical model system in such studies amongst cereals. In this acute view, we highlight the importance of Arabidopsis as a model system, briefly discuss its potential limitations in drought and salt stress studies, and present our views on the potential usefulness of sorghum as a model system for cereals in drought and salinity stress proteomic studies.

  16. 2-D Model Test Study of the Suape Breakwater, Brazil

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, Hans F.; Sopavicius, A.;

    This report deals with a two-dimensional model test study of the extension of the breakwater in Suape, Brazil. One cross-section was tested for stability and overtopping in various sea conditions. The length scale used for the model tests was 1:35. Unless otherwise specified all values given...

  17. California Reservoir Drought Sensitivity and Exhaustion Risk Using Statistical Graphical Models

    OpenAIRE

    Taeb, Armeen; Reager, John T.; Turmon, Michael; Chandrasekaran, Venkat

    2016-01-01

    The ongoing California drought has highlighted the potential vulnerability of state water management infrastructure to multi-year dry intervals. Due to the high complexity of the network, dynamic storage changes across the California reservoir system have been difficult to model using either conventional statistical or physical approaches. Here, we analyze the interactions of monthly volumes in a network of 55 large California reservoirs, over a period of 136 months from 2004 to 2015, and we ...

  18. Modelling drought-induced dieback of Aleppo pine at the arid timberline

    Science.gov (United States)

    Wingate, Lisa; Preisler, Yakir; Bert, Didier; Rotenberg, Eyal; Yakir, Dan; Maseyk, Kadmiel; Ogee, Jerome

    2016-04-01

    During the mid 1960's an ambitious afforestation programme was initiated in the Negev desert of Israel. After five decades enduring harsh growing conditions, the Aleppo pine forest of Yatir is now exhibiting signs of 'drought-induced' dieback. Since 2010, 5-10% of the entire Yatir population have died, however the pattern of mortality is extremely patchy with some areas exhibiting >80% mortality whilst others display none. In this presentation, we reflect on historic climatic and edaphic conditions that have triggered this landscape mosaic of survival and mortality and how physiological and hydraulic traits vary within this patchwork. In addition, we explore how these pine trees have responded physiologically over recent years (1996-2010) to a series of severe drought events using a combined approach that brings together micrometeorological, dendro-isotopic and dendro-climatological datasets alongside process-based modelling. In particular the dataset trends were investigated with the isotope-enabled ecosystem model MuSICA to explore the consequences of subsequent droughts and embolism on modelled carbohydrate and water pool dynamics and their impact on carbon allocation and ecosystem function.

  19. The US CLIVAR Working Group on Drought: A Multi-Model Assessment of the Impact of SST Anomalies on Regional Drought

    Science.gov (United States)

    Schubert, Siegfried

    2008-01-01

    The US CLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. What is the role of the land? What is the role of the different ocean basins, including the impact of EL Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and warming trends in the global oceans? The runs were done with several global atmospheric models including NASA/NSIPP-1, NCEP/GFS, GFDL/AM2, and NCAR CCM3 and CAM3. In addition, runs were done with the NCEP CFS (coupled atmosphere-ocean) model by employing a novel adjustment technique to nudge the coupled model towards the imposed SST forcing patterns. This talk provides an overview of the experiments and some initial results.

  20. Brazil.

    Science.gov (United States)

    1985-09-01

    Brazil's population in 1985 was 135 million, with an annual growth rate (1982) of 2.3%. The infant mortality rate (1981) was 92/1000, and life expectancy stood at 62.8 years. 76% of the adult population was literate. Brazil is a federal republic which recognizes 5 political parties. 55% of the population is Portuguese, Italian, German, Japanese, African, or American Indian; 38% is white. Of the work force of 50 million, 35% are engaged in agriculture, 25% work in industry, and 40% are employed in services. Trade union membership totals 6 million. The agricultural sector accounts for 12% of the GDP and 40% of exports. Brazil is largely self-sufficient in terms of food. The GDP was US$218 billion in 1984, with an annual growth rate of 4%. Per capita GDP was US$1645. Brazil's power, transportation, and communications systems have improved greatly in recent years, providing a base for economic development. High inflation rates have been a persistent problem.

  1. Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S.

    Science.gov (United States)

    Li, Bailing; Rodell, Matthew

    2015-01-01

    Monitoring groundwater drought using land surface models is a valuable alternative given the current lack of systematic in situ measurements at continental and global scales and the low resolution of current remote sensing based groundwater data. However, uncertainties inherent to land surface models may impede drought detection, and thus should be assessed using independent data sources. In this study, we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited strong correlation with that from observation wells, with correlation coefficients between 0.43 and 0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on climate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from in situ data, due at least in part to the inability of coarse model inputs to capture high frequency meteorological variability at local scales. The study also showed that groundwater can have a significant impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was estimated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based on models that did not represent groundwater. Assimilation of terrestrial

  2. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  3. A multi-model and multi-index evaluation of drought characteristics in the 21st century

    Science.gov (United States)

    Touma, Danielle; Ashfaq, Moetasim; Nayak, Munir A.; Kao, Shih-Chieh; Diffenbaugh, Noah S.

    2015-07-01

    Drought is a natural hazard that can have severe and long-lasting impacts on natural and human systems. Although increases in global greenhouse forcing are expected to change the characteristics and impacts of drought in the 21st century, there remains persistent uncertainty about how changes in temperature, precipitation and soil moisture will interact to shape the magnitude - and in some cases direction - of drought in different areas of the globe. Using data from 15 global climate models archived in the Coupled Model Intercomparison Project (CMIP5), we assess the likelihood of changes in the spatial extent, duration and number of occurrences of four drought indices: the Standardized Precipitation Index (SPI), the Standardized Runoff Index (SRI), the Standardized Precipitation-Evapotranspiration Index (SPEI) and the Supply-Demand Drought Index (SDDI). We compare these characteristics in two future periods (2010-2054 and 2055-2099) of the Representative Concentration Pathway 8.5 (RCP8.5). We find increases from the baseline period (1961-2005) in the spatial extent, duration and occurrence of "exceptional" drought in subtropical and tropical regions, with many regions showing an increase in both the occurrence and duration. There is strong agreement on the sign of these changes among the individual climate models, although some regions do exhibit substantial uncertainty in the magnitude of change. The changes in SPEI and SDDI characteristics are stronger than the changes in SPI and SRI due to the greater influence of temperature changes in the SPEI and SDDI indices. In particular, we see a robust permanent emergence of the spatial extent of SDDI from the baseline variability in West, East and Saharan Africa as early as 2020 and by 2080 in several other subtropical and tropical regions. The increasing likelihood of exceptional drought identified in our results suggests increasing risk of drought-related stresses for natural and human systems should greenhouse gas

  4. SPI drought class prediction using log-linear models applied to wet and dry seasons

    Science.gov (United States)

    Moreira, Elsa E.

    2016-08-01

    A log-linear modelling for 3-dimensional contingency tables was used with categorical time series of SPI drought class transitions for prediction of monthly drought severity. Standardized Precipitation Index (SPI) time series in 12- and 6-month time scales were computed for 10 precipitation time series relative to GPCC datasets with 2.5° spatial resolution located over Portugal and with 112 years length (1902-2014). The aim was modelling two-month step class transitions for the wet and dry seasons of the year and then obtain probability ratios - Odds - as well as their respective confidence intervals to estimate how probable a transition is compared to another. The prediction results produced by the modelling applied to wet and dry season separately, for the 6- and the 12-month SPI time scale, were compared with the results produced by the same modelling without the split, using skill scores computed for the entire time series length. Results point to good prediction performances ranging from 70 to 80% in the percentage of corrects (PC) and 50-70% in the Heidke skill score (HSS), with the highest scores obtained when the modelling is applied to the SPI12. The adding up of the wet and dry seasons introduced in the modelling brought improvements in the predictions, of about 0.9-4% in the PC and 1.3-6.8% in the HSS, being the highest improvements obtained in the SPI6 application.

  5. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  6. Drought: A comprehensive R package for drought monitoring, prediction and analysis

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Cheng, Hongguang

    2015-04-01

    Drought may impose serious challenges to human societies and ecosystems. Due to complicated causing effects and wide impacts, a universally accepted definition of drought does not exist. The drought indicator is commonly used to characterize drought properties such as duration or severity. Various drought indicators have been developed in the past few decades for the monitoring of a certain aspect of drought condition along with the development of multivariate drought indices for drought characterizations from multiple sources or hydro-climatic variables. Reliable drought prediction with suitable drought indicators is critical to the drought preparedness plan to reduce potential drought impacts. In addition, drought analysis to quantify the risk of drought properties would provide useful information for operation drought managements. The drought monitoring, prediction and risk analysis are important components in drought modeling and assessments. In this study, a comprehensive R package "drought" is developed to aid the drought monitoring, prediction and risk analysis (available from R-Forge and CRAN soon). The computation of a suite of univariate and multivariate drought indices that integrate drought information from various sources such as precipitation, temperature, soil moisture, and runoff is available in the drought monitoring component in the package. The drought prediction/forecasting component consists of statistical drought predictions to enhance the drought early warning for decision makings. Analysis of drought properties such as duration and severity is also provided in this package for drought risk assessments. Based on this package, a drought monitoring and prediction/forecasting system is under development as a decision supporting tool. The package will be provided freely to the public to aid the drought modeling and assessment for researchers and practitioners.

  7. Validating modeled soil moisture with in-situ data for agricultural drought monitoring in West Africa

    Science.gov (United States)

    McNally, A.; Yatheendradas, S.; Jayanthi, H.; Funk, C. C.; Peters-Lidard, C. D.

    2011-12-01

    The declaration of famine in Somalia on July 21, 2011 highlights the need for regional hydroclimate analysis at a scale that is relevant for agropastoral drought monitoring. A particularly critical and robust component of such a drought monitoring system is a land surface model (LSM). We are currently enhancing the Famine Early Warning Systems Network (FEWS NET) monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System (FLDAS). Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following question: How can Noah be best parameterized to accurately simulate hydroclimate variables associated with crop performance? Parameter value testing and validation is done by comparing modeled soil moisture against fortuitously available in-situ soil moisture observations in the West Africa. Direct testing and application of the FLDAS over African agropastoral locations is subject to some issues: [1] In many regions that are vulnerable to food insecurity ground based measurements of precipitation, evapotranspiration and soil moisture are sparse or non-existent, [2] standard landcover classes (e.g., the University of Maryland 5 km dataset), do not include representations of specific agricultural crops with relevant parameter values, and phenologies representing their growth stages from the planting date and [3] physically based land surface models and remote sensing rain data might still need to be calibrated or bias-corrected for the regions of interest. This research aims to address these issues by focusing on sites in the West African countries of Mali, Niger, and Benin where in-situ rainfall and soil moisture measurements are available from the African Monsoon Multidisciplinary Analysis (AMMA). Preliminary results from model experiments over Southern Malawi, validated with Normalized Difference Vegetation Index (NDVI) and maize yield data, show that the

  8. Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion

    Directory of Open Access Journals (Sweden)

    Bagher Bayat

    2016-07-01

    Full Text Available The aim of this study was to follow the response to drought stress in a Poa pratensis canopy exposed to various levels of soil moisture deficit. We tracked the changes in the canopy reflectance (450–2450 nm and retrieved vegetation properties (Leaf Area Index (LAI, leaf chlorophyll content (Cab, leaf water content (Cw, leaf dry matter content (Cdm and senescent material (Cs during a drought episode. Spectroscopic techniques and radiative transfer model (RTM inversion were employed to monitor the gradual manifestation of drought effects in a laboratory setting. Plots of 21 cm × 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were divided into a well-watered control group and a group subjected to water stress for 36 days. In a regular weekly schedule, canopy reflectance and destructive measurements of LAI and Cab were taken. Spectral analysis indicated the first sign of stress after 4–5 days from the start of the experiment near the water absorption bands (at 1930 nm, 1440 nm and in the red (at 675 nm. Spectroscopic techniques revealed plant stress up to 6 days earlier than visual inspection. Of the water stress-related vegetation indices, the response of Normalized Difference Water Index (NDWI_1241 and Normalized Photochemical Reflectance Index (PRI_norm were significantly stronger in the stressed group than the control. To observe the effects of stress on grass properties during the drought episode, we used the RTMo (RTM of solar and sky radiation model inversion by means of an iterative optimization approach. The performance of the model inversion was assessed by calculating R2 and the Normalized Root Mean Square Error (RMSE between retrieved and measured LAI (R2 = 0.87, NRMSE = 0.18 and Cab (R2 = 0.74, NRMSE = 0.15. All parameters retrieved by model inversion co-varied with soil moisture deficit. However, the first strong sign of water stress on the retrieved grass properties was detected as a change of Cw

  9. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    Science.gov (United States)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2015-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  10. Assessing the risk persistent drought using climate model simulations and paleoclimate data

    Science.gov (United States)

    Ault, Toby R.; Cole, Julia E.; Overpeck, Jonathan T.; Pederson, Gregory T.; Meko, David M.

    2014-01-01

    Projected changes in global rainfall patterns will likely alter water supplies and ecosystems in semiarid regions during the coming century. Instrumental and paleoclimate data indicate that natural hydroclimate fluctuations tend to be more energetic at low (multidecadal to multicentury) than at high (interannual) frequencies. State-of-the-art global climate models do not capture this characteristic of hydroclimate variability, suggesting that the models underestimate the risk of future persistent droughts. Methods are developed here for assessing the risk of such events in the coming century using climate model projections as well as observational (paleoclimate) information. Where instrumental and paleoclimate data are reliable, these methods may provide a more complete view of prolonged drought risk. In the U.S. Southwest, for instance, state-of-the-art climate model projections suggest the risk of a decade-scale megadrought in the coming century is less than 50%; the analysis herein suggests that the risk is at least 80%, and may be higher than 90% in certain areas. The likelihood of longer-lived events (>35 yr) is between 20% and 50%, and the risk of an unprecedented 50-yr megadrought is nonnegligible under the most severe warming scenario (5%–10%). These findings are important to consider as adaptation and mitigation strategies are developed to cope with regional impacts of climate change, where population growth is high and multidecadal megadrought—worse than anything seen during the last 2000 years—would pose unprecedented challenges to water resources in the region.

  11. Evaluation of global luminous efficacy models for Florianopolis, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, Roberta G.; Pereira, Fernando O.R. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Laboratorio de Conforto Ambiental, Dpto. de Arquitetura; Robledo, Luis [Universidad Politecnica de Madrid, Madrid (Spain). E.P.E.S. Ciencias Ambientales; Soler, Alfonso [Universidad Politecnica de Madrid, Madrid (Spain). E.P.E.S. Ciencias Ambientales and Dpto. de Fisica e Instalaciones Aplicadas, E.T.S. de Arquitectura

    2006-10-15

    Several global luminous efficacy models have been tested with daylight-measured data obtained for Felipresina, Southern Brazil. The models have been used with their original coefficients, given by the authors and also with local coefficients obtained when the models were optimized with the data measured in Felipresina. The evaluation of the different models has been carried out considering three sky categories, according to a higher or lower presence of clouds. For clear sky, the models tested have been compared with a proposed polynomial model on the solar altitude, obtained by the best fit of experimental points for Felipresina. It has been proved that the model coefficients have a local character. If those models are used with local coefficients, there is no model that works better than the others for all sky types, but that for each sky category a different model could be recommended. (author)

  12. Chance-Constrained Model for Real-Time Reservoir Operation Using Drought Duration Curve

    Science.gov (United States)

    Takeuchi, Kuniyoshi

    1986-04-01

    The seasonal drought duration curve (SDDC) ƒβ (m|τ) is defined as a deterministic equivalent of an average streamflow over an m-day period starting from date τ with probability of failure being β. This curve provides an estimate of a sum of inflows over m days starting from date τ in a T ( = 1/β)-year drought. The reservoir system considered is a single-purpose reservoir already in service. The demand pattern is predetermined, and the percentage of deficit in meeting the demand (supply cut) is left to operators' judgement. A chance-constrained model was developed for such a system. The model determined the percentage of supply cut on date τ in such the way that the probability of exhaustion of reservoir storage Sτ+m at the beginning of date τ+m was maintained less than a given constant βm for all 1 ≤ m ≤ M, i.e., Prob {Sτ+m ≤ 0} ≤ βm, m = 1, 2, …, M, where M is the number of days in the future to be considered to make a current decision on date τ, and βm are a given set of allowable exhaustion probability selected from an indifferent preference curve between reservoir exhaustion probability β and anticipated time to its occurrence, m. The reservoir operation rule thus developed was named as DDC rule curves and demonstrated satisfactorily operational through a simulation study of the Fukuoka drought case during 1978-1979.

  13. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    Science.gov (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  14. A comparison of model simulations of Asian mega-droughts during the past millennium with proxy reconstructions

    Science.gov (United States)

    Fallah, B.; Cubasch, U.

    2015-02-01

    Two PMIP3/CMIP5 climate model ensemble simulations of the past millennium have been analysed to identify the occurrence of Asian mega-droughts. The Palmer drought severity index (PDSI) is used as the key metric for the data comparison of hydro-climatological conditions. The model results are compared with the proxy data of the Monsoon Asia Drought Atlas (MADA). Our study shows that global circulation models (GCMs) are capable of capturing the majority of historically recorded Asian monsoon failures at the right time and with a comparable spatial distribution. The simulations indicate that El Niño-like events lead, in most cases, to these droughts. Both model simulations and proxy reconstructions point to fewer monsoon failures during the Little Ice Age. The results suggest an influential impact of volcanic forcing on the atmosphere-ocean interactions throughout the past millennium. During historic mega-droughts of the past millennium, the monsoon convection tends to assume a preferred regime described as a "break" event in Asian monsoon. This particular regime is coincident with a notable weakening in the Pacific trade winds and Somali Jet.

  15. Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index

    Science.gov (United States)

    Choi, Yeon-Woo; Ahn, Joong-Bae; Suh, Myoung-Seok; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    In this study, the projection of future drought conditions is estimated over South Korea based on the latest and most advanced sets of regional climate model simulations under the Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios, within the context of the national downscaling project of the Republic of Korea. The five Regional Climate Models (RCMs) are used to produce climate-change simulations around the Korean Peninsula and to estimate the uncertainty associated with these simulations. The horizontal resolution of each RCM is 12.5 km and model simulations are available for historical (1981-2010) and future (2021-2100) periods under forcing from the RCP4.5 and RCP8.5 scenarios. To assess the characteristics of drought on multiple time scales in the future, we use Standardized Precipitation Indices for 1-month (SPI- 1), 6-month (SPI-6) and 12-month (SPI-12). The number of drought months in the future is shown to be characterized by strong variability, with both increasing and decreasing trends among the scenarios. In particular, the number of drought months over South Korea is projected to increase (decrease) for the period 2041-2070 in the RCP8.5 (RCP4.5) scenario and increase (decrease) for the period 2071-2100 in the RCP4.5 (RCP8.5) scenario. In addition, the percentage area under any drought condition is overall projected to gradually decrease over South Korea during the entire future period, with the exception of SPI-1 in the RCP4.5 scenario. Particularly, the drought areas for SPI-1 in the RCP4.5 scenario show weakly positive long-term trend. Otherwise, future changes in drought areas for SPI-6 and SPI-12 have a marked downward trend under the two RCP scenarios.

  16. Modeling the hydrological patterns on Pantanal wetlands, Brazil

    Science.gov (United States)

    Castro, A. A.; Cuartas, A.; Coe, M. T.; Koumrouyan, A.; Panday, P. K.; Lefebvre, P.; Padovani, C.; Costa, M. H.; de Oliveira, G. S.

    2014-12-01

    The Pantanal of Brazil is one of the world's largest wetland regions. It is located within the 370,000 km2 Alto Paraguai Basin (BAP). In wet years almost 15% of the total area of the basin can be flooded (approximately 53,000 km2). The hydrological cycle is particularly important in the Pantanal in the transport of materials, and the transfer of energy between atmospheric, aquatic, and terrestrial systems. The INLAND (Integrated Land Surface Model) terrestrial ecosystem model is coupled with the THMB hydrological model to examine the hydrological balance and water dynamics for this region. The INLAND model is based on the IBIS dynamic vegetation model, while THMB represents the river, wetland and lake dynamics of the land surface. The modeled hydrological components are validated with surface and satellite-based estimates of precipitation (gridded observations from CRU v. 3.21, reanalysis data from ERA-interim, and TRMM estimates), evapotranspiration (MODIS and Land Flux-Eval dataset), total runoff (discharge data from ANA-Agência Nacional das Águas - Brazil), and terrestrial water storage (GRACE). Results show that the coupled hydrological model adequately represents the water cycle components, the river discharge and flooded areas. Model simulations are further used to study the influences of climatic variations on the hydrological components, river network, and the inundated areas in the Pantanal.

  17. Using plant growth modeling to analyse C source-sink relations under drought: inter and intra specific comparison

    Directory of Open Access Journals (Sweden)

    Benoit ePallas

    2013-11-01

    Full Text Available The ability to assimilate C and allocate NSC (non structural carbohydrates to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyse such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

  18. Assessing the changes of return periods of floods and droughts in response to climate change using a hydrologic modeling approach

    Science.gov (United States)

    Chien, H.

    2015-12-01

    When accessing the impacts of climate change on water resources, it is important to estimate changes in the frequencies and magnitudes of projected floods and droughts in response to climate change, considering that most disasters result from these hydrological extremes. The objective of this study is to estimate the changes of return periods of floods and droughts based on projected future streamflows in the Illinois River Watershed according to various climate change models. Future streamflows are simulated by combining data from 59 climate model scenarios with the Soil and Water Assessment Tool (SWAT) hydrologic model. Subsequently, a Gumbel distribution (Extreme Value Type I) is fitted to the annual maximum simulated streamflow to derive the number of return periods of future hydrological extremes. The annual minimum 7-day average streamflow has been adopted for drought analysis. A Weibull distribution (Extreme Value Type Ш) is used to analyze the return periods of low flows. The 10-year and 100-year return periods of floods and droughts from 2020 to 2049 and from 2070 to 2099 are analyzed in comparison to streamflows from 1975 to 2004. Results indicate that average streamflow predicted from 33 (2020-2049) and 29 (2070-2099) climate scenarios are expected to decrease. The majority of the 10-year and 100-year return periods of floods in 2020-2049 and 2070-2099 increase; however 10-year and 100-year return periods for droughts tend to decrease.

  19. Impact of droughts on the C-cycle in European vegetation: a probabilistic risk analysis using six vegetation models

    Directory of Open Access Journals (Sweden)

    M. Van Oijen

    2014-06-01

    Full Text Available We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated here from the Standardised Precipitation Evapotranspiration Index. Vulnerability is calculated from the response to drought simulated by process-based vegetation models. Here we use six different models: three for generic vegetation (JSBACH, LPJmL, ORCHIDEE and three for specific ecosystems (Scots pine forests: BASFOR; winter wheat fields: EPIC; grasslands: PASIM. The periods 1971–2000 and 2071–2100 are compared. Climate data are based on observations and on output from the regional climate model REMO using the SRES A1B scenario. The risk analysis is carried out for ∼22 000 grid cells of 0.25° × 0.25° across Europe. For each grid cell, drought vulnerability and risk are quantified for five seasonal variables: net primary and ecosystem productivity (NPP, NEP, heterotrophic respiration (RH, soil water content and evapotranspiration. Climate change is expected to lead to increased drought risks to net primary productivity in the Mediterranean area: five of the models estimate that risk will exceed 15%. The risks will increase mainly because of greater drought probability; ecosystem vulnerability will increase to lesser extent. Because NPP will be affected more than RH, future C-sequestration (NEP will also be at risk predominantly in southern Europe, with risks exceeding 0.25 g C m−2 d−1 according to most models, amounting to reductions in carbon sequestration of 20 to 80%.

  20. SARX Model Application for Industrial Power Demand Forecasting in Brazil

    Directory of Open Access Journals (Sweden)

    Alessandra de Ávila Montini

    2012-06-01

    Full Text Available The objective of this paper is to propose the application of the SARX model to arrive at industrial power consumption forecasts in Brazil, which are critical to support decision-making in the energy sector, based on technical, economic and environmentally sustainable grounds. The proposed model has a seasonal component and considers the influence of exogenous variables on the projection of the dependent variable and utilizes an autoregressive process for residual modeling so as to improve its explanatory power. Five exogenous variables were included: industrial capacity utilization, industrial electricity tariff, industrial real revenues, exchange rate, and machinery and equipment inflation. In addition, the model assumed that power forecast was dependent on its own time lags and also on a dummy variable to reflect 2009 economic crisis. The study used 84 monthly observations, from January 2003 to December 2009. The backward method was used to select exogenous variables, assuming a 0.10 descriptive value. The results showed an adjusted coefficient of determination of 93.9% and all the estimated coefficients were statistically significant at a 0.10 descriptive level. Forecasts were also made from January to May 2010 at a 95% confidence interval, which included actual consumption values for this period. The SARX model has demonstrated an excellent performance for industrial power consumption forecasting in Brazil.

  1. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model

    Science.gov (United States)

    Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.

    2017-02-01

    Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the

  2. Preparing the Dutch delta for future droughts: model based support in the national Delta Programme

    Science.gov (United States)

    ter Maat, Judith; Haasnoot, Marjolijn; van der Vat, Marnix; Hunink, Joachim; Prinsen, Geert; Visser, Martijn

    2014-05-01

    Keywords: uncertainty, policymaking, adaptive policies, fresh water management, droughts, Netherlands, Dutch Deltaprogramme, physically-based complex model, theory-motivated meta-model To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, is established to assess impacts of climate scenarios and socio-economic developments and to explore policy options. The results should contribute to a national adaptive plan that is able to adapt to future uncertain conditions, if necessary. For this purpose, we followed a model-based step-wise approach, wherein both physically-based complex models and theory-motivated meta-models were used. First step (2010-2011) was to make a quantitative problem description. This involved a sensitivity analysis of the water system for drought situations under current and future conditions. The comprehensive Dutch national hydrological instrument was used for this purpose and further developed. Secondly (2011-2012) our main focus was on making an inventory of potential actions together with stakeholders. We assessed efficacy, sell-by date of actions, and reassessed vulnerabilities and opportunities for the future water supply system if actions were (not) taken. A rapid assessment meta-model was made based on the complex model. The effects of all potential measures were included in the tool. Thirdly (2012-2013), with support of the rapid assessment model, we assessed the efficacy of policy actions over time for an ensemble of possible futures including sea level rise and climate and land use change. Last step (2013-2014) involves the selection of preferred actions from a set of promising actions that meet the defined objectives. These actions are all modeled and evaluated using the complex model. The outcome of the process will be an adaptive management plan. The adaptive plan describes a set of preferred policy pathways - sequences of policy actions - to achieve targets under

  3. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    Science.gov (United States)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  4. A Drought Early Warning System Using System Dynamics Model and Seasonal Climate Forecasts: a case study in Hsinchu, Taiwan.

    Science.gov (United States)

    Tien, Yu-Chuan; Tung, Ching-Ping; Liu, Tzu-Ming; Lin, Chia-Yu

    2016-04-01

    In the last twenty years, Hsinchu, a county of Taiwan, has experienced a tremendous growth in water demand due to the development of Hsinchu Science Park. In order to fulfill the water demand, the government has built the new reservoir, Baoshan second reservoir. However, short term droughts still happen. One of the reasons is that the water level of the reservoirs in Hsinchu cannot be reasonably forecasted, which sometimes even underestimates the severity of drought. The purpose of this study is to build a drought early warning system that projects the water levels of two important reservoirs, Baoshan and Baoshan second reservoir, and also the spatial distribution of water shortagewith the lead time of three months. Furthermore, this study also attempts to assist the government to improve water resources management. Hence, a system dynamics model of Touchien River, which is the most important river for public water supply in Hsinchu, is developed. The model consists of several important subsystems, including two reservoirs, water treatment plants and agricultural irrigation districts. Using the upstream flow generated by seasonal weather forecasting data, the model is able to simulate the storage of the two reservoirs and the distribution of water shortage. Moreover, the model can also provide the information under certain emergency scenarios, such as the accident or failure of a water treatment plant. At last, the performance of the proposed method and the original water resource management method that the government used were also compared. Keyword: Water Resource Management, Hydrology, Seasonal Climate Forecast, Reservoir, Early Warning, Drought

  5. Drought impact functions as intermediate step towards drought damage assessment

    Science.gov (United States)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or

  6. The German drought monitor

    Science.gov (United States)

    Zink, Matthias; Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Mai, Juliane; Schäfer, David; Marx, Andreas

    2016-07-01

    The 2003 drought event in Europe had major implications on many societal sectors, including energy production, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone. Furthermore, soil droughts have considerable impacts on ecosystems, forest fires and water management. Monitoring soil water availability in near real-time and at high-resolution, i.e., 4 × 4 km2, enables water managers to mitigate the impact of these extreme events. The German drought monitor was established in 2014 as an online platform. It uses an operational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture using the mesoscale hydrological model; (3) calculation of a quantile-based soil moisture index (SMI) based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally dry to exceptional drought. Finally, an easy to understand map is produced and published on a daily basis on www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event, which garnered broad media attention, shows that 75% of the German territory underwent drought conditions in July 2015. Regions such as Northern Bavaria and Eastern Saxony, however, have been particularly prone to drought conditions since autumn 2014. Comparisons with historical droughts show that the 2015 event is amongst the ten most severe drought events observed in Germany since 1954 in terms of its spatial extent, magnitude and duration.

  7. Mexican drought: an observational modeling and tree ring study of variability and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seager, R.; Ting, M. [Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY (United States)]. E-mail: seager@ldeo.columbia.edu; Davis, M. [Department of History, University of California at Irvine, CA (United States); Cane, M.; Naik, N.; Nakamura, J.; Li, C.; Cook, E. [Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY (United States); Stahle, D.W. [Tree Ring Laboratory, University of Arkansas, Fayetteville, Arkansas (United States)

    2009-01-15

    Variability of Mexican hydroclimate, with special attention to persistent drought, is examined using observations, model simulations forced by historical sea surface temperature (SST), tree ring reconstructions of past climate and model simulations and projections of naturally and anthropogenically forced climate change. During the winter half year, hydroclimate across Mexico is influenced by the state of the tropical Pacific Ocean with the Atlantic playing little role. Mexican winters tend to be wetter during El Nino conditions. In the summer half year northern Mexico is also wetter when El Nino conditions prevail, but southern Mexico is drier. A warm tropical North Atlantic Ocean makes northern Mexico dry and southern Mexico wet. These relationships are reasonably well reproduced in ensembles of atmosphere model simulations forced by historical SST for the period from 1856 to 2002. Large ensembles of 100 day long integrations are used to examine the day to day evolution of the atmospheric circulation and precipitation in response to a sudden imposition of a El Nino SST anomaly in the summer half year. Kelvin waves propagate east and immediately cause increased column-integrated moisture divergence and reduced precipitation over the tropical Americas and Intra-America Seas. Within a few days a low level high pressure anomaly develops over the Gulf of Mexico. A forced nonlinear model is used to demonstrate that this low is forced by the reduced atmospheric heating over the tropical Atlantic-Intra-America Seas area. Tree ring reconstructions that extend back before the period of instrumental precipitation data coverage are used to verify long model simulations forced by historical SST. The early to mid 1950s drought in northern Mexico appears to have been the most severe since the mid nineteenth century and likely arose as a response to both a multiyear La Nina and a warm tropical North Atlantic. A drought in the 1890s was also severe and appears driven by a

  8. 不同水平腐胺对巴西蕉幼苗抗旱生理的影响%Effects of Putrescine at Different Levels on the Drought Resistance of Brazil Banana Plantlets

    Institute of Scientific and Technical Information of China (English)

    王晶晶; 李绍鹏; 李新国; 吴凡; 李茂富; 黄芳; 何娟

    2011-01-01

    Foliar spraying of Brazil banana plantlets with 0.00, 1.00, 1.25, 1.50 and 1.75 ramol/L putrescine and then treated under drought stress, some relative physiological and biochemical indices were measured to study the changes. The results showed that the pretreatment with suitable concentrations of exogenous putrescine increased the relative water content of the Brazil banana plantlet leaves, reduced the relative conductivity, improved the contents of proline and soluble proteins, as well as the activity of SOD and POD, decreased the rate of O2-production and the content of MDA. The results proved that the suitable concentrations of exogenous putrescine could improve the drought resistance of Brazil banana plantlets. The optimal putrescine concentration was found to be 1.25 mmol/L.%用0.00、1.00、1.25、1.50、1.75 mmol/L腐胺(Put)喷施巴西蕉幼苗叶片,研究干旱胁迫后其相关生理生化指标的变化.结果表明,在干旱胁迫下,适宜浓度的外源Put预处理能显著增加巴西蕉幼苗叶片的相对含水量,降低相对电导率,提高脯氨酸、可溶性蛋白质的含量及S0D、POD的活性,.降低O2产生的速率,减少MDA的积累.由此说明适宜浓度的外源Put预处理能提高巴西蕉幼苗抗旱性,以1.25 mmol/L Put预处理效应最佳.

  9. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.

    Directory of Open Access Journals (Sweden)

    Dimitrios-Alexios Karagiannis-Voules

    Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.

  10. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  11. Development of an agricultural drought assessment system : integration of agrohydrological modelling, remote sensing and geographical information

    NARCIS (Netherlands)

    Vazifedoust, M.

    2007-01-01

    Iran faces widespread droughts regularly, causing large economical and social damages. The agricultural sector is with 80-90 % by far the largest user of water in Iran and is often the first sector to be affected by drought. Unfortunately, water management in agriculture is also rather poor and henc

  12. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors

    Science.gov (United States)

    Blauhut, Veit; Stahl, Kerstin; Stagge, James Howard; Tallaksen, Lena M.; De Stefano, Lucia; Vogt, Jürgen

    2016-07-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, meant as the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work tests the capability of commonly applied drought indices and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and combines information on past drought impacts, drought indices, and vulnerability factors into estimates of drought risk at the pan-European scale. This hybrid approach bridges the gap between traditional vulnerability assessment and probabilistic impact prediction in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro-region-specific sensitivities of drought indices, with the Standardized Precipitation Evapotranspiration Index (SPEI) for a 12-month accumulation period as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictors, with information about land use and water resources being the best vulnerability-based predictors. The application of the hybrid approach revealed strong regional and sector-specific differences in drought risk across Europe. The majority of the best predictor combinations rely on a combination of SPEI for shorter and longer accumulation periods, and a combination of information on land use and water resources. The added value of integrating regional vulnerability information with drought risk prediction

  13. How Do Biases in General Circulation Models Affect Projections of Aridity and Drought?

    Science.gov (United States)

    Ficklin, D. L.; Abatzoglou, J. T.; Robeson, S. M.; Dufficy, A. L.

    2015-12-01

    Unless corrected, biases in General Circulation Models (GCMs) can affect hydroclimatological applications and projections. Compared to a raw GCM ensemble (direct GCM output), bias-corrected GCM inputs correct for systematic errors and can produce high-resolution projections that are useful for impact analyses. By examining the difference between raw and bias-corrected GCMs for the continental United States, this work highlights how GCM biases can affect projections of aridity (defined as precipitation (P)/potential evapotranspiration (PET)) and drought (using the Palmer Drought Severity Index (PDSI)). At the annual time scale for spatial averages over the continental United States, the raw GCM ensemble median has a historical positive precipitation bias (+24%) and negative PET bias (-7%) compared to the bias-corrected output. While both GCM ensembles (raw and bias-corrected) result in drier conditions in the future, the bias-corrected GCMs produce enhanced aridity (number of months with PET>P) in the late 21st century (2070-2099) compared to the historical climate (1950-1979). For the western United States, the bias-corrected GCM ensemble estimates much less humid and sub-humid conditions (based on P/PET categorical values) than the raw GCM ensemble. However, using June, July, and August PDSI, the bias-corrected GCM ensemble projects less acute decreases for the southwest United States compared to the raw GCM ensemble (1 to 2 PDSI units higher) as a result of larger decreases in projected precipitation in the raw GCM ensemble. A number of examples and ecological implications of this work for the western United States will be presented.

  14. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    Science.gov (United States)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  15. Decision support for dutch drought management and climate change with the Netherland Hydrological Modeling Instrument

    Science.gov (United States)

    Hunink, J.; Hoogewoud, J. C.; Prinsen, G.; Veldhuizen, A.

    2012-04-01

    Netherlands Hydrological Modeling Instrument Decision support for dutch drought management and climate change. J. Hunink , J.C.Hoogewoud , A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods and is updated every year. During periods of water scarcity the NHI is used for operational forecasting and decision support system for the National Board of water Distribution. It provides data on nationwide calculated water demands, development of water levels in reservoirs and possible los of yield in agricultural area's. For the exploration of the future of fresh water supply in the Netherlands an extensive study is set up using the NHI. In this study different climate scenarios are being evalueated. In the first phase the focus is on describing the range of possible effects, the second phase focuses on adaptive measures and preparing for decisions how to alter the hydrological system. Results from the first phase show that in future scenario's fresh water may not be available to current water users. Important decisions about the

  16. Assessment of Long-Term Drought Characteristics in 14 Major Texas Cities Based on CMIP5 Multi-Model Projections

    Science.gov (United States)

    Venkataraman, K.; Medina-Tamayo, A.; Perry, J. R.

    2014-12-01

    Texas is a highly water-stressed region due to rapid population growth and frequent droughts. Characterizing long-term drought is thus critical for sustainable water use planning. The Standardised Precipitation Evaporation Index (SPEI) is a widely-used drought index as it considers both the supply and demand elements of the water balance and can be used to compare drought characteristics across locations. In this study, bias-corrected and spatially disaggregated (BCSD) temperature and precipitation projections from an ensemble of Coupled Model Intercomparison Project 5 (CMIP5) earth system models were used to develop the SPEI for 14 major cities spread across different climate divisions of Texas. The SPEI were computed for 12 and 24 month scales for the Representative Concentration Pathway (RCP) 8.5 scenario for three time periods, 1950-1999 (historic), 2000-2049 (early), and 2050-2099 (latter). Both the SPEI-12 and SPEI-24 show a sharply-declining trend beginning in middle of the 21st century across all locations. The most severe droughts, characterized by the number of consecutive and overall months with SPEI ≤ 1.5, generally occur in the last two decades of the 21st century, particularly in semi-arid locations like El Paso and Laredo and appear to be controlled by potential evapotranspiration (PET). In addition, decreasing trends are observed in annual precipitation in major urban areas such as Austin, San Antonio and Houston. The results of the study highlight the need for proper management of water resources to match the trends in climate, economic and demographic changes.

  17. Proposed Hydrodynamic Model Improves Resolution of Species-Specific Responses to Drought and Disturbance

    Science.gov (United States)

    Matheny, A. M.; Bohrer, G.; Fiorella, R.; Mirfenderesgi, G.

    2015-12-01

    Plant functional types in land surface models (LSMs) are broadly defined, and often represent species with different physiologies within the same category. For example, trees of opposing hydraulic strategies and traits are commonly grouped together, as is the case of red oak and red maple. As a result, LSMs generate typical patterns of errors in predictions of transpiration and production. We studied sap flux, stem water storage, stomatal conductance, photosynthesis, rooting depth, and bole growth of these species at disturbed and undisturbed field sites in Michigan. Species-specific differences significantly impact temporal patterns of stomatal conductance and overall transpiration responses to both drought and disturbance. During drought, maples relied heavily on stem-stored water, while oaks did not. After disturbance, oaks increased stomatal conductance while maple conductance declined. Isotopic analysis of xylem water revealed that oak roots can access a deep groundwater source, which maple roots cannot. This deep rooting strategy permits transpiration and growth to continue in oaks during periods of water limitation, even when maples cease transpiration. Using 16 years of bole growth data, we show that maple growth is strongly correlated with mean annual precipitation, yet oak growth is not. We propose a framework to incorporate these species-specific differences into LSMs using the Finite-Element Tree-Crown Hydrodynamics model version 2 (FETCH2) that resolves the fast dynamics and diurnal hysteresis of stomatal conductance at the tree level. FETCH2 uses atmospheric and biological forcings from the LSM, simulates water movement through trees as flow through a system of porous media conduits, and calculates realistic hydraulic restrictions to stomatal conductance. This model replaces the current, non-physical link which empirically connects soil moisture to stomatal conductance in LSMs. FETCH2 resolved transpiration is then easily scaled to the plot level

  18. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    Science.gov (United States)

    Ramakrishna, S. S. V. S.; Brahmananda Rao, V.; Srinivasa Rao, B. R.; Hari Prasad, D.; Nanaji Rao, N.; Panda, Roshmitha

    2016-09-01

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E-95E; 5N-35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data -0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423-3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux.

  19. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    KAUST Repository

    Ramakrishna, S. S. V. S.

    2016-09-16

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E–95E; 5N–35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data −0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423–3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux. © 2016 Springer-Verlag Berlin Heidelberg

  20. Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales

    Science.gov (United States)

    Drought assessment is a complex undertaking, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture, groundwater and surface water anomalies reflect deficiencies in mo...

  1. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  2. Towards developing drought impact functions to advance drought monitoring and early warning

    Science.gov (United States)

    Bachmair, Sophie; Stahl, Kerstin; Hannaford, Jamie; Svoboda, Mark

    2015-04-01

    , damage, or loss due to drought, and (3) to test different statistical models to link drought intensity with drought impact information to derive meaningful thresholds. While the focus regarding drought impact variables lies on text-based impact reports from the European Drought Impact report Inventory (EDII) and the US Drought Impact Reporter (DIR), the information gain through exploiting other variables such as agricultural yield statistics and remotely sensed vegetation indices is explored. First results reveal interesting insights into the complex relationship between drought indicators and impacts and highlight differences among drought impact variables and geographies. Although a simple intensity threshold evoking specific drought impacts cannot be identified, developing drought impact functions helps to elucidate how drought conditions relate to ecological or socioeconomic impacts. Such knowledge may provide guidance for inferring meaningful triggers for drought M&EW and could have potential for a wide range of drought management applications (for example, building drought scenarios for testing the resilience of drought plans or water supply systems).

  3. Safety performance models for urban intersections in Brazil.

    Science.gov (United States)

    Barbosa, Heloisa; Cunto, Flávio; Bezerra, Bárbara; Nodari, Christine; Jacques, Maria Alice

    2014-09-01

    This paper presents a modeling effort for developing safety performance models (SPM) for urban intersections for three major Brazilian cities. The proposed methodology for calibrating SPM has been divided into the following steps: defining the safety study objective, choosing predictive variables and sample size, data acquisition, defining model expression and model parameters and model evaluation. Among the predictive variables explored in the calibration phase were exposure variables (AADT), number of lanes, number of approaches and central median status. SPMs were obtained for three cities: Fortaleza, Belo Horizonte and Brasília. The SPM developed for signalized intersections in Fortaleza and Belo Horizonte had the same structure and the most significant independent variables, which were AADT entering the intersection and number of lanes, and in addition, the coefficient of the best models were in the same range of values. For Brasília, because of the sample size, the signalized and unsignalized intersections were grouped, and the AADT was split in minor and major approaches, which were the most significant variables. This paper also evaluated SPM transferability to other jurisdiction. The SPM for signalized intersections from Fortaleza and Belo Horizonte have been recalibrated (in terms of the Cx) to the city of Porto Alegre. The models were adjusted following the Highway Safety Manual (HSM) calibration procedure and yielded Cx of 0.65 and 2.06 for Fortaleza and Belo Horizonte SPM respectively. This paper showed the experience and future challenges toward the initiatives on development of SPMs in Brazil, that can serve as a guide for other countries that are in the same stage in this subject.

  4. Disentangling the uncertainty of hydrologic drought characteristics in a multi-model century-long experiment in continental river basins

    Science.gov (United States)

    Samaniego, Luis; Kumar, Rohini; Pechlivanidis, Illias; Breuer, Lutz; Wortmann, Michel; Vetter, Tobias; Flörke, Martina; Chamorro, Alejandro; Schäfer, David; Shah, Harsh; Zeng, Xiaofan

    2016-04-01

    The quantification of the predictive uncertainty in hydrologic models and their attribution to its main sources is of particular interest in climate change studies. In recent years, a number of studies have been aimed at assessing the ability of hydrologic models (HMs) to reproduce extreme hydrologic events. Disentangling the overall uncertainty of streamflow -including its derived low-flow characteristics- into individual contributions, stemming from forcings and model structure, has also been studied. Based on recent literature, it can be stated that there is a controversy with respect to which source is the largest (e.g., Teng, et al. 2012, Bosshard et al. 2013, Prudhomme et al. 2014). Very little has also been done to estimate the relative impact of the parametric uncertainty of the HMs with respect to overall uncertainty of low-flow characteristics. The ISI-MIP2 project provides a unique opportunity to understand the propagation of forcing and model structure uncertainties into century-long time series of drought characteristics. This project defines a consistent framework to deal with compatible initial conditions for the HMs and a set of standardized historical and future forcings. Moreover, the ensemble of hydrologic model predictions varies across a broad range of climate scenarios and regions. To achieve this goal, we use six preconditioned hydrologic models (HYPE or HBV, mHM, SWIM, VIC, and WaterGAP3) set up in seven large continental river basins: Amazon, Blue Nile, Ganges, Niger, Mississippi, Rhine, Yellow. These models are forced with bias-corrected outputs of five CMIP5 general circulation models (GCM) under four extreme representative concentration pathway (RCP) scenarios (i.e. 2.6, 4.5, 6.0, and 8.5 Wm-2) for the period 1971-2099. Simulated streamflow is transformed into a monthly runoff index (RI) to analyze the attribution of the GCM and HM uncertainty into drought magnitude and duration over time. Uncertainty contributions are investigated

  5. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    Directory of Open Access Journals (Sweden)

    B. Orlowsky

    2013-05-01

    Full Text Available Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI of these events lies within the general range of observation-based SPI time series and simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5. In terms of magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observation-based datasets and CMIP5 simulations, but Soil Moisture Anomalies (SMAs in CMIP5 simulations hint at increased drought in a few regions (e.g., the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa. Also for the future, projections of changes in the magnitude of meteorological (SPI and soil moisture (SMA drought in CMIP5 display large spreads over all time frames, generally impeding trend detection. However, projections of changes in the frequencies of future drought events display more robust signal-to-noise ratios, with detectable trends towards more frequent drought before the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or display non-significant changes in drought occurrence. A separation of different sources of uncertainty in projections of meteorological and soil moisture drought reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs generally becomes the dominant source of spread by the end of the 21st century, especially for soil moisture drought. In comparison, the uncertainty from Green-House Gas (GHG concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave index, for which GHG concentrations scenarios constitute the main source

  6. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    Directory of Open Access Journals (Sweden)

    B. Orlowsky

    2012-12-01

    Full Text Available Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI of these events lies within the range of internal climate variability, which we estimate from simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5. In terms of drought magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observations and CMIP5 simulations, although Soil Moisture Anomalies (SMAs in CMIP5 simulations hint at increased drought in a few regions (e.g. the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa. Also for the future, projections of meteorological (SPI and agricultural (SMA drought in CMIP5 display large uncertainties over all time frames, generally impeding trend detection. Analogue analyses of the frequencies rather than magnitudes of future drought display, however, more robust signal-to-noise ratios with detectable trends towards more frequent drought until the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or to display unsignificant changes in drought occurrence. A separation of different sources of uncertainty in drought projections reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs generally becomes the dominant source of uncertainty by the end of the 21st century, especially for agricultural (soil moisture drought. In comparison, the uncertainty in Green-House Gas (GHG concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave indicator, for which GHG concentrations scenarios constitute the main source of uncertainty. Our

  7. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    Science.gov (United States)

    Orlowsky, B.; Seneviratne, S. I.

    2013-05-01

    Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the general range of observation-based SPI time series and simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observation-based datasets and CMIP5 simulations, but Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g., the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of changes in the magnitude of meteorological (SPI) and soil moisture (SMA) drought in CMIP5 display large spreads over all time frames, generally impeding trend detection. However, projections of changes in the frequencies of future drought events display more robust signal-to-noise ratios, with detectable trends towards more frequent drought before the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or display non-significant changes in drought occurrence. A separation of different sources of uncertainty in projections of meteorological and soil moisture drought reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of spread by the end of the 21st century, especially for soil moisture drought. In comparison, the uncertainty from Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave index, for which GHG concentrations scenarios constitute the main source of

  8. DROUGHT FORECASTING BASED ON MACHINE LEARNING OF REMOTE SENSING AND LONG-RANGE FORECAST DATA

    OpenAIRE

    Rhee, J; Im, J.; Park, S.

    2016-01-01

    The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6) and the 6-month Standardized Precipitatio...

  9. Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model

    Institute of Scientific and Technical Information of China (English)

    XIN Xiaoge; Zhaoxin LI; YU Rucong; ZHOU Tianjun

    2008-01-01

    Responses of late spring (21 April-20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de Météorologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981-2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.

  10. Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin

    Directory of Open Access Journals (Sweden)

    Alex Avilés

    2016-01-01

    Full Text Available The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC and Bayesian network- (BN based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken.

  11. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model.

    Science.gov (United States)

    Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K

    2017-05-15

    Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve.

  12. GRACE Assimilation into Hydrological Model Improves Representation of Drought-induced Groundwater Trend over Murray-Darling Basin, Australia

    Science.gov (United States)

    Schumacher, Maike; Forootan, Ehsan; Van Dijk, Albert I. J. M.; Müller Schmied, Hannes; Crosbie, Russell S.; Kusche, Jürgen; Döll, Petra

    2016-04-01

    The Murray-Darling Basin, one of the largest and driest river basins over the world, experienced a long-term drought (over 2003-2009), the so-called Millennium Drought. As a result, the terrestrial water storage in the region decreased, which was attributed to dry meteorological conditions and extensive irrigation for agriculture. We used simulations of the WaterGAP Global Hydrology Model (WGHM) driven by monthly climate fields from the Climate Research Unit's Time Series (CRU TS 3.2) and precipitation data from the Global Precipitation Climatology Center (GPCC) to estimate linear trends in soil, surface and groundwater compartments, as well as total water storage changes (TWSC). However, the model was not able to capture the effect of the Millennium Drought on the storage compartments likely due to missing processes in dry regions or climate forcing uncertainties. Particularly, TWSC simulated by standard WGHM did not reproduce the negative trend during 2003-2009. Therefore, in this study, we investigate whether assimilating TWSC from the Gravity Recovery And Climate Experiment (GRACE) satellite mission into WGHM enables a more realistic representation of the Millennium Drought on the basin hydrology. Firstly, the quality of monthly GRACE TWSC and its post-processing over the Murray-Darling Basin was assessed. An improved calibration and data assimilation (C/DA) approach (Schumacher et al., JoG-2016) was then applied to integrate GRACE TWSC along with its full error covariance information into WGHM during 2003-2009. Independent observations of soil moisture, groundwater and surface water extent were used to validate the model outputs after C/DA. Our investigations indicate that the integration of GRACE data indeed introduces a negative trend to TWSC simulations of WGHM, which occurred predominantly in the south (Murray Basin). The trend was found to be associated with the changes in groundwater storage, which was confirmed through validation with in

  13. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Science.gov (United States)

    Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  14. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Directory of Open Access Journals (Sweden)

    Alvaro G Gutiérrez

    Full Text Available Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S. The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area. We compared the responses of a young stand (YS, ca. 60 years-old and an old-growth forest (OG, >500 years-old in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  15. SVAT modeling of crop physiological response to drought in potatoes under different types of deficit irrigation

    DEFF Research Database (Denmark)

    Plauborg, Finn; Mollerup, Mikkel; Abrahamsen, Per;

      Further understanding of the crop physiologic responses to drought caused by deficit irrigation (DI), regular or partial root drying (PRD), have been obtained in several studies in tomatoes and potatoes under controlled environment. The improved quantitative description of the production...

  16. Improving representation of drought stress and fire emissions in climate carbon models: measurements and modeling with a focus on the western USA

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, James [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Biology; Randerson, James [Univ. of California, Irvine, CA (United States); Lai, Chun-Ta [San Diego State Univ., CA (United States)

    2016-02-16

    The objective of the proposed research was to collect data and develop models to improve our understanding of the role of drought and fire impacts on the terrestrial carbon cycle in the western US, including impacts associated with urban systems as they impacted regional carbon cycles. Using data we collected and a synthesis of other measurements, we developed new ways (a) to evaluate the representation of drought stress and fire emissions in the Community Land Model, (b) to model net ecosystem exchange combining ground level atmospheric observations with boundary layer theory, (c) to model upstream impacts of fire and fossil fuel emissions on atmospheric carbon dioxide observations, and (d) to model carbon dioxide observations within urban systems and at the urban-wildland interfaces of forest ecosystems.

  17. Drought assessment in the Dongliao River basin: traditional approaches vs. generalized drought assessment index based on water resources systems

    Science.gov (United States)

    Weng, B. S.; Yan, D. H.; Wang, H.; Liu, J. H.; Yang, Z. Y.; Qin, T. L.; Yin, J.

    2015-08-01

    Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao River basin in northeastern China. The results simulated by the GDAI are compared to observed drought disaster records in the Dongliao River basin. In addition, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approaches in general (i.e., standard precipitation index, Palmer drought severity index and rate of water deficit index). Then, generalized drought times, generalized drought duration, and generalized drought severity were calculated by theory of runs. Application of said runs at various drought levels (i.e., mild drought, moderate drought, severe drought, and extreme drought) during the period 1960-2010 shows that the centers of gravity of them all distribute in the middle reaches of Dongliao River basin, and change with time. The proposed methodology may help water managers in water-stressed regions to quantify the impact of drought, and consequently, to make decisions for coping with drought.

  18. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model

    Science.gov (United States)

    Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong

    2016-11-01

    The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEIG90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding

  19. Comparison of rainfall based SPI drought indices with SMDI and ETDI indices derived from a soil water budget model

    Science.gov (United States)

    Houcine, A.; Bargaoui, Z.

    2012-04-01

    Modelling soil water budget is a key issue for assessing drought awareness indices based on soil moisture estimation. The aim of the study is to compare drought indices based on rainfall time series to those based on soil water content time series and evapotranspiration time series. To this end, a vertically averaged water budget over the root zone is implemented to assist the estimation of evapotranspiration flux. A daily time step is adopted to run the water budget model for a lumped watershed of 250 km2 under arid climate where recorded meteorological and hydrological data are available for a ten year period. The water balance including 7 parameters is computed including evapotranspiration, runoff and leakage. Soil properties related parameters are derived according to pedo transfer functions while two remaining parameters are considered as data driven and are subject to calibration. The model is calibrated using daily hydro meteorological data (solar radiation, air temperature, air humidity, mean areal rainfall) as well as daily runoff records and also average annual (or regional) evapotranspiration. The latter is estimated using an empirical sub-model. A set of acceptable solutions is identified according to the values of the Nash coefficients for annual and decadal runoffs as well as the relative bias for average annual evapotranspiration. Using these acceptable solutions several drought indices are computed: SPI (standard precipitation index), SMDI (soil moisture deficit index) and ETDI (evapotranspiration deficit index). While SPI indicators are based only on monthly precipitation time series, SMDI are based on weekly mean soil water content as computed by the hydrological model. On the other hand ETDI indices are based on weekly mean potential and actual evapotranspirations as estimated by the meteorological and hydrological models. For SPI evaluation various time scales are considered from one to twelve months (SPI1, SPI3, SPI6, SPI9 and SPI12). For all

  20. ASSESSMENT OF EARLY SEASON AGRICULTURAL DROUGHT THROUGH LAND SURFACE WATER INDEX (LSWI AND SOIL WATER BALANCE MODEL

    Directory of Open Access Journals (Sweden)

    K. Chandrasekar

    2012-08-01

    Full Text Available An attempt was made to address the early season agriculture drought, by monitoring the surface soil wetness during 2010 cropping seasons in the states of Andhra Pradesh and Tamil Nadu. Short Wave Infrared (SWIR based Land Surface Water Index (LSWI and Soil Water Balance (SWB model using inputs from remote sensing and ancillary data were used to monitor early season agriculture drought. During the crop season, investigation was made on LSWI characteristics and its response to the rainfall. It was observed that the Rate of Increase (RoI of LSWI was the highest during the fortnights when the onset of monsoon occurred. The study showed that LSWI is sensitive to the onset of monsoon and initiation of cropping season. The second part of this study attempted to develop a simple book keeping – bucket type – water tight soil water balance model to derive the top 30cm profile soil moisture using climatic, soil and crop parameters as the basic inputs. Soil moisture derived from the model was used to compute the Area Conducive for Sowing (ACS during the sowing window of the cropping season. The soil moisture was validated spatially and temporally with the ground observed soil moisture values. The ACS was compared with the RoI of LSWI. The results showed that the RoI was high during the sowing window whenever the ACS was greater than 50% of the district area. The observation was consistent in all the districts of the two states. Thus the analysis revealed the potential of LSWI for early season agricultural drought management.

  1. Measuring inflation persistence in Brazil using a multivariate model

    Directory of Open Access Journals (Sweden)

    Vicente da Gama Machado

    2014-06-01

    Full Text Available We estimate inflation persistence in Brazil in a multivariate framework of unobserved components, accounting for the following sources affecting inflation persistence: Deviations of expectations from the actual policy target; persistence of the factors driving inflation; and the usual intrinsic measure of persistence, evaluated through lagged inflation terms. Data on inflation, output and interest rates are decomposed into unobserved components. To simplify the estimation of a great number of unknown variables, we employ Bayesian analysis. Our results indicate that expectations-based persistence matters considerably for inflation persistence in Brazil.

  2. Assessing the link between Atlantic Niño 1 and drought over West Africa using CORDEX regional climate models

    Science.gov (United States)

    Adeniyi, Mojisola Oluwayemisi; Dilau, Kabiru Alabi

    2016-12-01

    The skill of Coordinated Regional Climate Downscaling Experiment (CORDEX) models (ARPEGE, CCLM, HIRHAM, RACMO, REMO, PRECIS, RegCM3, RCA, WRF and CRCM) in simulating the climate (precipitation, temperature and drought) of West Africa is determined using a process-based metric. This is done by comparing the CORDEX models' simulated and observed correlation coefficients between Atlantic Niño Index 1 (ATLN1) and the climate over West Africa. Strong positive correlation is observed between ATLN1 and the climate parameters at the Guinea Coast (GC). The Atlantic Ocean has Niño behaviours through the ATLN indices which influence the climate of the tropics. Drought has distinct dipole structure of correlation with ATLN1 (negative at the Sahel); precipitation does not have distinct dipole structure of correlation, while temperature has almost a monopole correlation structure with ATLN1 over West Africa. The magnitude of the correlation increases with closeness to the equatorial eastern Atlantic. Correlations between ATLN1 and temperature are mostly stronger than those between ATLN1 and precipitation over the region. Most models have good performance over the GC, but ARPEGE has the highest skill at GC. The PRECIS is the most skilful over Savannah and RCA over Sahel. These models can be used to downscale the projected climate at the region of their highest skill.

  3. Forest biogeochemistry in response to drought.

    Science.gov (United States)

    Schlesinger, William H; Dietze, Michael C; Jackson, Robert B; Phillips, Richard P; Rhoades, Charles C; Rustad, Lindsey E; Vose, James M

    2016-07-01

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests.

  4. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models

    Science.gov (United States)

    Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B.

    2014-01-01

    We compare new and traditional data-driven long-term drought forecast models.The Standard Precipitation Index (SPI 12 and SPI 24) is forecasted.Wavelet-ANN and wavelet-SVR models provided better results than the other model types used.

  5. Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model

    NARCIS (Netherlands)

    Mercado, Vitali Diaz; Perez, Gerald Corzo; Solomatine, Dimitri; Lanen, Van Henny A.J.

    2016-01-01

    Lately, drought is more intense and much more severe around the globe, causing more deaths than other hazards in the past century. Drought can be characterized quantitatively for its spatial extent, intensity and duration by using drought indicators. Several indicators have been developed in orde

  6. Improved Analyses and Forecasts of Snowpack, Runoff and Drought through Remote Sensing and Land Surface Modeling in Southeastern Europe

    Science.gov (United States)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Kobold, M.; Zagar, M.; Knoblauch, H.; Staudinger, M.; Mecklenburg, S.; Lehning, M.; Schweizer, J.; Balint, G.; Cacic, I.; Houser, P.; Pozzi, W.

    2008-12-01

    European hydrometeorological services and research centers are faced with increasing challenges from extremes of weather and climate that require significant investments in new technology and better utilization of existing human and natural resources to provide improved forecasts. Major advances in remote sensing, observation networks, data assimilation, numerical modeling, and communications continue to improve our ability to disseminate information to decision-makers and stake holders. This paper identifies gaps in current technologies, key research and decision-maker teams, and recommends means for moving forward through focused applied research and integration of results into decision support tools. This paper reports on the WaterNet - NASA Water Cycle Solutions Network contacts in Europe and summarizes progress in improving water cycle related decision-making using NASA research results. Products from the Hydrologic Sciences Branch, Goddard Space Flight Center, NASA, Land Information System's (LIS) Land Surface Models (LSM), the SPoRT, CREW , and European Space Agency (ESA), and Joint Research Center's (JRC) natural hazards products, and Swiss Federal Institute for Snow and Avalanche Research's (SLF), and others are discussed. They will be used in collaboration with the ESA and the European Commission to provide solutions for improved prediction of water supplies and stream flow, and droughts and floods, and snow avalanches in the major river basins serviced by EARS, ZAMG, SLF, Vituki Consult, and other European forecast centers. This region of Europe includes the Alps and Carpathian Mountains and is an area of extreme topography with abrupt 2000 m mountains adjacent to the Adriatic Sea. These extremes result in the highest precipitation ( > 5000 mm) in Europe in Montenegro and low precipitation of 300-400 mm at the mouth of the Danube during droughts. The current flood and drought forecasting systems have a spatial resolution of 9 km, which is currently being

  7. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.

  8. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Science.gov (United States)

    Van Loon, Anne F.; Stahl, Kerstin; Di Baldassarre, Giuliano; Clark, Julian; Rangecroft, Sally; Wanders, Niko; Gleeson, Tom; Van Dijk, Albert I. J. M.; Tallaksen, Lena M.; Hannaford, Jamie; Uijlenhoet, Remko; Teuling, Adriaan J.; Hannah, David M.; Sheffield, Justin; Svoboda, Mark; Verbeiren, Boud; Wagener, Thorsten; Van Lanen, Henny A. J.

    2016-09-01

    are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future.

  9. Drought characteristics and related risks in large and mesoscale tropical catchments in Latin-America and South East Asia

    Science.gov (United States)

    Nauditt, Alexandra; Ribbe, Lars; Birkel, Christian; Célleri, Rolando

    2016-04-01

    Seasonal meteorological and hydrological droughts are a recurrent phenomenon in water abundant tropical countries and are expected to become more frequent in the future. Unusual water shortage in the past months and years has severely affected societies living in the Paraiba do Sul river basin (Brazil), the Mekong, as well as in a number of basins in Central America and Vietnam among many others. Preparedness, however, is absent and site appropriate water management measures and strategies are not available. While drought related research and water management in recent years has been widely addressed in water scarce subtropical regions, the US and Europe, not much attention has been paid to drought risk in tropical catchments. Available daily or monthly precipitation and runoff time series for catchments in Brazil, Costa Rica, Ecuador, the Mekong region and Vietnam were analysed to compare historical meteorological and hydrological drought frequency (SPI/SRI). The role of tropical catchment characteristics, storage and climate variability in seasonal drought evolvement was investigated by applying the conceptual semi-distributed HBV light model to two undisturbed catchments in Central Vietnam and 18 catchments of a size of 70-5000 km² in Costa Rica. For the Mekong and the Paraíba de Sul, the hydrological module of the WEAP model was applied to undisturbed subcatchments with the same objective. To understand and separate the anthropogenic impact on drought evolvement, the abstractions (irrigation, reservoirs, water supply) and hydrological alterations were observed and quantified by applying water allocation and balance model WEAP. We conclude that such a combined model-data analysis that equally accounts for landscape related and anthropogenic impacts on the local hydrological cycle is a useful approach for drought management in tropical countries.

  10. Drought as a natural disaster

    Energy Technology Data Exchange (ETDEWEB)

    Maybank, J. [Agvironics Consulting, SK (Canada); Bonsal, B. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Geography; Jones, K. [Environment Canada, Downsview, ON (Canada). Canadian Climate Centre; Lawford, R. [Canadian Climate Centre, Saskatoon, SK (Canada). National Hydrology Research Centre; O`Brien, E.G. [Agriculture Canada, Ottawa, ON (Canada). Energy Analysis and Policy Div.; Ripley, E.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science; Wheaton, E. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    1995-12-31

    A discussion of droughts as a major natural disaster in dry areas such as the Canadian Prairies where precipitation patterns are seasonal, was presented. Environmental damages include soil degradation and erosion, vegetation damage, slough and lake deterioration and wildlife loss. The development and application of specific soil moisture and drought indices based on cumulative precipitation deficits have enhanced drought monitoring programs. The identification of precursor conditions raises the possibility that the likelihood of a drought occurring in a particular year or growing season might be predictable. The ability to forecast seasonal temperature and precipitation anomalies is potentially feasible using a suitable merging of precursor parameters and modelling methodologies. Research activity to identify and evaluate new mitigative measure should be increased to keep pace with the prospects of drought predictability. 90 refs., 1 tab., 7 figs.

  11. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    Directory of Open Access Journals (Sweden)

    E. Joetzjer

    2014-08-01

    Full Text Available While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  12. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress

    Energy Technology Data Exchange (ETDEWEB)

    Potosnak, M.; LeStourgeon, Lauren; Pallardy, Stephen G.; Hosman, Kevin P.; Gu, Lianghong; Karl, Thomas; Geron, Chris; Guenther, Alex B.

    2014-02-19

    Ecosystem fluxes of isoprene emission were measured during the majority of the 2011 growing season at the University of Missouri's Baskett Wildlife Research and Education Area in centralMissouri, USA (38.7° N, 92.2° W). This broadleaf deciduous forest is typical of forests common in theOzarks region of the central United States. The goal of the isoprene flux measurements was to test ourunderstanding of the controls on isoprene emission from the hourly to the seasonal timescale using a state-of-the-art emission model, MEGAN (Model of Emissions of Gases and Aerosols from Nature). Isoprene emission rates were very high from the forest with a maximum of 50.9 mg m-2 hr-1 (208 nmol m-2 s-1), which to our knowledge exceeds all other reports of canopy-scale isoprene emission. The fluxes showed a clear dependence on the previous temperature and light regimes which was successfully captured by the existing algorithms in MEGAN. During a period of drought, MEGAN was unable to reproduce the time-dependent response of isoprene emission to water stress. Overall, the performance of MEGAN was robust and could explain 87% of the observed variance in the measured fluxes, but the response of isoprene emission to drought stress is a major source of uncertainty.

  13. Propagation of model and forcing uncertainty into hydrological drought characteristics in a multi-model century-long experiment in continental river basins

    Science.gov (United States)

    Samaniego, L. E.; Kumar, R.; Schaefer, D.; Huang, S.; Yang, T.; Mishra, V.; Eisner, S.; Vetter, T.; Pechlivanidis, I.; Liersch, S.; Flörke, M.; Krysanova, V.

    2015-12-01

    Droughts are creeping hydro-meteorological events that bring societiesand natural systems to their limits and inducing considerablesocio-economic losses. Currently it is hypothesized that climate changewill exacerbate current trends leading a more severe and extendeddroughts, as well as, larger than normal recovery periods. Currentassessments, however, lack of a consistent framework to deal withcompatible initial conditions for the impact models and a set ofstandardized historical and future forcings. The ISI-MIP project provides an unique opportunity to understand thepropagation of model and forcing uncertainty into century-long timeseries of drought characteristics using an ensemble of model predictionsacross a broad range of climate scenarios and regions. In the presentstudy, we analyze this issue using the hydrologic simulations carriedout with HYPE, mHM, SWIM, VIC, and WaterGAP3 in seven large continentalriver basins: Amazon, Blue Nile, Ganges, Niger, Mississippi, Rhine,Yellow. All models are calibrated against observed streamflow duringthe period 1971-2001 using the same forcings based on the WATCH datasets. These constrained models were then forced with bias correctedoutputs of five CMIP-5 GCMs under four RCP scenarios (i.e. 2.6, 4.5,6.0, and 8.5 W/m2) for the period 1971-2099. A non-parametric kernel density approach is used to estimate thetemporal evolution of a monthly runoff index based on simulatedstreamflow. Hydrologic simulations corresponding to each GCM during thehistoric period of 1981-2010 serve as reference for the estimation ofthe basin specific monthly probability distribution functions. GCMspecific reference pdfs are then used to recast the future hydrologicmodel outputs from different RCP scenarios. Based on these results,drought severity and duration are investigated during periods: 1)2006-2035, 2) 2036-2065 and 3) 2070-2099. Two main hypothesis areinvestigated: 1) model predictive uncertainty of drought indices amongdifferent hydrologic

  14. 3-D Hydraulic Model Testing of the New Roundhead in Suape, Brazil

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, Hans F.; Sipavicius, A.;

    This report deals with a three-dimensional model test study of the extension of the breakwater in Suape, Brazil. The roundhead was tested for stability in various sea conditions. The length scale used for the model tests was 1:35. Unless otherwise specified all values given in this report are pro...

  15. Regional Comprehensive Drought Assessment Stochastic Model and Its Application%区域综合干旱随机评价模型及其应用

    Institute of Scientific and Technical Information of China (English)

    施晔; 梁忠民; 易知之

    2011-01-01

    In order to correctly evaluate regional drought, a stochastic model based on Bayesian theory is proposed. Under Bayesian theory's frame, the probability of each classification is calculated for each drought index in index system, and the drought grades are obtained by maximum likelihood classification principle. The weight of each drought index is determined by improved TOPSIS theory and the regional drought grade is finally confirmed. Taking Xuzhou Area for an example, compared with the actual situation and comprehensive index method, the result shows that the stochastic model is feasible and effective.%为准确评价区域干旱特征,基于贝叶斯公式,构建了区域干旱评价指标体系,计算了各评价指标的干旱等级概率,采用最大似然分类原则确定了单个干旱指标的评价结果,并采用改进的TOPSIS方法计算了各指标的权重系数,加权得到区域的干旱等级.以江苏省徐州地区干旱评价为例,将评价结果与实际情况及综合指数法进行对比,结果表明该方法有效、可靠.

  16. Large net CO2 loss from a grass-dominated tropical savanna in south-central Brazil in response to seasonal and interannual drought

    Science.gov (United States)

    Zanella De Arruda, Paulo Henrique; Vourlitis, George Louis; Santanna, Franciele Bomfiglio; Pinto, Osvaldo Borges, Jr.; De Almeida Lobo, Francisco; De Souza Nogueira, José

    2016-08-01

    The savanna vegetation of Brazil (Cerrado) accounts for 20-25% of the land cover of Brazil and is the second largest ecosystem following Amazonian forest; however, Cerrado mass and energy exchange is still highly uncertain. We used eddy covariance to measure the net ecosystem CO2 exchange (NEE) of grass-dominated Cerrado (campo sujo) over 3 years. We hypothesized that soil water availability would be a key control over the seasonal and interannual variations in NEE. Multiple regression indicated that gross primary production (GPP) was positively correlated (Pearson's r = 0.69; p correlated with the vapor pressure deficit (VPD), indicating that drier conditions increased water limitations on GPP. Similarly, ecosystem respiration (Reco) was positively correlated (Pearson's r = 0.78; p correlated with rainfall and the VPD. While the NEE responded rapidly to temporal variations in soil water availability, the grass-dominated Cerrado stand was a net source of CO2 to the atmosphere during the study period, which was drier compared to the long-term average rainfall. Cumulative NEE was approximately 842 gC m-2, varying from 357 gC m-2 in 2011 to 242 gC m-2 in 2012. Our results indicate that grass-dominated Cerrado may be an important regional CO2 source in response to the warming and drying that is expected to occur in the southern Amazon Basin under climate change.

  17. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  18. Geocomputation and Spatial Modelling for Geographical Drought Risk Assessment: A Case Study of the Hustopeče Area, Czech Republic

    Science.gov (United States)

    Ruda, Aleš; Kolejka, Jaromír; Batelková, Kateřina

    2017-02-01

    The phenomenon of drought is serious in many landscapes with continental patterns of climate. In fact, drought risk is usually assessed in terms of prevailing issue (meteorological, hydrological, agronomical, etc.) and not in terms of complex landscape features. A procedure for detailed geographical drought risk modelling has been developed using recent meteorological data of dry period and prior precipitations, as well as a digital elevation model and geographic data layers of natural landscape features and land cover. The current version of the procedure starts with meteorological data (temperature and precipitation) processing followed by the use of soil and geological data and land cover, the national CORINE LC 2006 CZ database, for assessing the impact of the local natural features on drought risk. The methodology is based on GIS tools, geodata of the geological structure of the area (water holding capacity of the substrate, the horizontal and vertical water conductivity), soil cover (in agricultural and forested areas, soil types and kinds), landscape cover (land use), relief (digital elevation model and its derivatives), temperature and precipitation data from neighbouring representative meteorological and climate stations. The procedure uses regression equation for temperature and precipitation risk modelling, fuzzy standardization for estimation of different water retention within land cover categories and expert estimation for risk categories within rocks and soils. The final calculation is based on spatial decision-making techniques, especially the weighted sum method with a natural breaks reclassification algorithm. Combining geodata of soils, the geological environment and the active surface with their computed humidity conditions, it is possible to identify areas with a graded risk of geographic drought. The final results do not represent partial values, but identify five risk classes in the study area illustrating a possible level of geographical

  19. Geocomputation and Spatial Modelling for Geographical Drought Risk Assessment: A Case Study of the Hustopeče Area, Czech Republic

    Science.gov (United States)

    Ruda, Aleš; Kolejka, Jaromír; Batelková, Kateřina

    2016-04-01

    The phenomenon of drought is serious in many landscapes with continental patterns of climate. In fact, drought risk is usually assessed in terms of prevailing issue (meteorological, hydrological, agronomical, etc.) and not in terms of complex landscape features. A procedure for detailed geographical drought risk modelling has been developed using recent meteorological data of dry period and prior precipitations, as well as a digital elevation model and geographic data layers of natural landscape features and land cover. The current version of the procedure starts with meteorological data (temperature and precipitation) processing followed by the use of soil and geological data and land cover, the national CORINE LC 2006 CZ database, for assessing the impact of the local natural features on drought risk. The methodology is based on GIS tools, geodata of the geological structure of the area (water holding capacity of the substrate, the horizontal and vertical water conductivity), soil cover (in agricultural and forested areas, soil types and kinds), landscape cover (land use), relief (digital elevation model and its derivatives), temperature and precipitation data from neighbouring representative meteorological and climate stations. The procedure uses regression equation for temperature and precipitation risk modelling, fuzzy standardization for estimation of different water retention within land cover categories and expert estimation for risk categories within rocks and soils. The final calculation is based on spatial decision-making techniques, especially the weighted sum method with a natural breaks reclassification algorithm. Combining geodata of soils, the geological environment and the active surface with their computed humidity conditions, it is possible to identify areas with a graded risk of geographic drought. The final results do not represent partial values, but identify five risk classes in the study area illustrating a possible level of geographical

  20. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    Science.gov (United States)

    Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.

    2014-01-01

    Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA) model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE) and gross primary productivity (GPP) were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June-August: +4.5 °C), because of a strong decline in GPP (-17%) while heterotrophic respiration was relatively unaffected (-1%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable

  1. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    Directory of Open Access Journals (Sweden)

    N. K. Ruehr

    2014-01-01

    Full Text Available Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE and gross primary productivity (GPP were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June–August: +4.5 °C, because of a strong decline in GPP (−17% while heterotrophic respiration was relatively unaffected (−1%. Considering warming trends across all seasons (September–May: +3 °C and June–August: +4.5 °C, the negative drought effects were largely compensated by an earlier

  2. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    Science.gov (United States)

    Schubert, Siegfried

    2009-01-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of

  3. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    Science.gov (United States)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  4. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  5. Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite estimated rainfall—Southern Malawi case study

    Science.gov (United States)

    Funk, Christopher C.; Verdin, James; Adams Chavula,; Gregory J. Husak,; Harikishan Jayanthi,; Tamuka Magadzire,

    2013-01-01

    During 1990s, disaster risk reduction emerged as a novel, proactive approach to managing risks from natural hazards. The World Bank, USAID, and other international donor agencies began making efforts to mainstream disaster risk reduction in countries whose population and economies were heavily dependent on rain-fed agriculture. This approach has more significance in light of the increasing climatic hazard patterns and the climate scenarios projected for different hazard prone countries in the world. The Famine Early Warning System Network (FEWS NET) has been monitoring the food security issues in the sub-Saharan Africa, Asia and in Haiti. FEWS NET monitors the rainfall and moisture availability conditions with the help of NOAA RFE2 data for deriving food security status in Africa. This paper highlights the efforts in using satellite estimated rainfall inputs to develop drought vulnerability models in the drought prone areas in Malawi. The satellite RFE2 based SPI corresponding to the critical tasseling and silking phases (in the months of January, February, and March) were statistically regressed with drought-induced yield losses at the district level. The analysis has shown that the drought conditions in February and early March lead to most damage to maize yields in this region. The district-wise vulnerabilities to drought were upscaled to obtain a regional maize vulnerability model for southern Malawi. The results would help in establishing an early monitoring mechanism for drought impact assessment, give the decision makers additional time to assess seasonal outcomes, and identify potential food-related hazards in Malawi.

  6. Modeling the Impacts of Historic Climate Change and Extreme Droughts on Water Yield and Productivity of National Forests over the Conterminous U.S

    Science.gov (United States)

    Sun, S.; Sun, G.; Caldwell, P. V.; McNulty, S. G.; Zhang, Y.

    2014-12-01

    Quantifying the impacts of droughts on the U.S National Forests (NFs) is necessary to develop sound forest management plans to mitigate and adapt to climate change. This study applied a water balance model (WaSSI) to 170 National Forests (NFs) over the conterminous U.S to examine how long-term climatic change and extreme climate events impacted forest water yield and productivity. Our model predicted that mean water yield decreased by 5% while mean productivity increased by 10% between 1961-2012 across the NFs. Overall 32% of NFs showed a significant increasing trend in forest gross ecosystem productivity (GEP), while 5% of the NFs had a significant decreasing trend. This study also suggested that the extent and severity of drought events occurring in the NFs had an increasing trend during the past 50 years. Taking the 170 NFs as a whole, the top-five droughts were characterized by a 261 mm/yr (or 30%) reduction in precipitation, that resulted in reductions in evapotranspiration by 55 mm/yr (or 10%), water yield by 154 mm/yr (or 49%) and GEP by 121 gC/m2/yr (or 10%). However, distribution of these changes varied spatially due to differences in vegetation types, weather, and geography. Overall, this study provided an assessment of historical impacts of droughts on forest watershed hydrology and productivity across diverse geographic regions using a consistent database. The study also identified forest watersheds that were severely influenced by historical drought, and provided a reference to develop appropriate adaptation strategies for potential future extreme droughts on the forest ecosystem services of NFs.

  7. a Brazilian Vulnerability Index to Natural Disasters of Drought - in the Context of Climate Change

    Science.gov (United States)

    Camarinha, P. I., Sr.; Debortoli, N. S.; Hirota, M.

    2015-12-01

    Droughts are characterized as one of the main types of natural disasters that occur in Brazil. During the 1991-2012, droughts affected more than 14 million Brazilians, so that the concern for the following decades is about the potential impacts triggered by climate change. To analyze the vulnerability of the Brazilian municipalities to drought disasters, we have assessed the effects of climate change to droughts until the end of 21th century. A composite index was created based on three different dimensions: i) Exposure, represented by climate anomalies related to the drought process, such as changes in accumulated rainfall averages, interannual variability of rainfall, and the frequency and magnitude of severe droughts (measured by the Standardized Precipitation-Evapotranspiration Index); ii) Sensitivity, encompassing socioeconomic, demographic, land use and water management data; iii) Adaptive Capacity, consisting of socioeconomic and institutional data from Brazilian municipalities, such as the Human Development Index (HDI), social inequality (Gini index) and illiteracy rate. The climate variables used in this study are results from simulations of the Regional Climate Model Eta (with a downscaling of 20km spatial resolution) nested with two global climate models (HadGEM ES and MIROC 5) and was provided by National Institute for Space Research. The baseline period was 1961-1990 and future periods was 2011-2040; 2041-2070 and 2071-2099. For the simulations of future climate it was used the 4.5 and 8.5 IPCC/AR5 RCP (Representative Concentration Pathways) scenarios. All variables used in this study was handled, exploited and related in a Geographic Information System (GIS). The methodology allowed the identification of vulnerability hotspots, the targeting of adaptation strategies and the development of public policy to minimize the potential impacts of future droughts. The final results (see attached image) indicate that the most vulnerable regions are located in

  8. The role of CSP in Brazil: A multi-model analysis

    Science.gov (United States)

    Soria, Rafael; Lucena, André F. P.; Tomaschek, Jan; Fichter, Tobias; Haasz, Thomas; Szklo, Alexandre; Schaeffer, Roberto; Rochedo, Pedro; Fahl, Ulrich; Kern, Jürgen; Hoffmann, Susanne

    2016-05-01

    MESSAGE, TIMES and REMIX-CEM are potential tools for modelling a larger penetration of variable renewable energy (VRE) into the Brazilian power system. They also allow devising the opportunities that concentrated solar power (CSP) plants offer to the power system and to the wider energy system. There are different opportunities for CSP in Brazil in the short and medium term, consolidating this technology as a feasible alternative for greenhouse gas (GHG) mitigation in Brazil. This work verified that CSP is a cost-effective option only under very stringent mitigation scenarios (4DS and 2DS) and when carbon capture and storage (CCS) is not available. Still, according to the findings of REMIX-CEM-B, CSP can provide firm energy and dispatchable capacity in the Northeast region of Brazil, optimally complementing wind and PV generation. Moreover, CSP can offer additional flexibility to the Northeast power system, especially during winter and after 2030.

  9. Development and evaluation of a comprehensive drought index.

    Science.gov (United States)

    Esfahanian, Elaheh; Nejadhashemi, A Pouyan; Abouali, Mohammad; Adhikari, Umesh; Zhang, Zhen; Daneshvar, Fariborz; Herman, Matthew R

    2016-10-28

    Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories. Additionally, predictive drought models are developed to capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought. In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a universal drought index named MASH. The thirteen drought indices consist of four drought indices from each meteorological, hydrological, and agricultural categories, and one from the stream health category. Cluster analysis was performed to find the three closest indices in each category. Then the closest drought indices were averaged in each category to create the categorical drought score. Finally, the categorical drought scores were simply averaged to develop the MASH drought index. In order to develop predictive drought models for each category and MASH, the ReliefF algorithm was used to rank 90 variables and select the best variable set. Using the best variable set, the adaptive neuro-fuzzy inference system (ANFIS) was used to develop drought predictive models and their accuracy was examined using the 10-fold cross validation technique. The models' predictabilities ranged from R(2) = 0.75 for MASH to R(2) = 0.98 for the hydrological drought model. The results of this study can help managers to better position resources to cope with drought by reducing drought impacts on different sectors.

  10. Evaluation of strategies for nature-based solutions to drought: a decision support model at the national scale

    Science.gov (United States)

    Simpson, Mike; Ives, Matthew; Hall, Jim

    2016-04-01

    There is an increasing body of evidence in support of the use of nature based solutions as a strategy to mitigate drought. Restored or constructed wetlands, grasslands and in some cases forests have been used with success in numerous case studies. Such solutions remain underused in the UK, where they are not considered as part of long-term plans for supply by water companies. An important step is the translation of knowledge on the benefits of nature based solutions at the upland/catchment scale into a model of the impact of these solutions on national water resource planning in terms of financial costs, carbon benefits and robustness to drought. Our project, 'A National Scale Model of Green Infrastructure for Water Resources', addresses this issue through development of a model that can show the costs and benefits associated with a broad roll-out of nature based solutions for water supply. We have developed generalised models of both the hydrological effects of various classes and implementations of nature-based approaches and their economic impacts in terms of construction costs, running costs, time to maturity, land use and carbon benefits. Our next step will be to compare this work with our recent evaluation of conventional water infrastructure, allowing a case to be made in financial terms and in terms of security of water supply. By demonstrating the benefits of nature based solutions under multiple possible climate and population scenarios we aim to demonstrate the potential value of using nature based solutions as a component of future long-term water resource plans. Strategies for decision making regarding the selection of nature based and conventional approaches, developed through discussion with government and industry, will be applied to the final model. Our focus is on keeping our work relevant to the requirements of decision-makers involved in conventional water planning. We propose to present the outcomes of our model for the evaluation of nature

  11. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    NARCIS (Netherlands)

    Wanders, N.; Van Lanen, H. A J

    2015-01-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study

  12. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    NARCIS (Netherlands)

    Wanders, N.; Lanen, Van H.A.J.

    2015-01-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this st

  13. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling.

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M

    2016-05-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle 'press-droughts', and shorter term but extreme 'pulse-droughts'. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  14. Impacts of drought on regional carbon uptake dynamics in the Southwestern US, using the New Mexico Elevation Gradient of flux towers and the Temperature-Greenness model.

    Science.gov (United States)

    Krofcheck, D. J.; Lippitt, C.; Litvak, M. E.

    2014-12-01

    Semi-arid regions store approximately 568 Gt of carbon, roughly 18% of the global carbon reserves. Drought remains one of the largest sources of climatic stress in semi-arid regions globally. The impacts of these expansive, severe droughts on terrestrial productivity can be substantial and difficult to quantify spatially. The semi-arid Southwestern US suffered an expansive drought in 2011 which precipitated significant decline in ecosystem function and woody mortality across the region. We used the New Mexico Elevation Gradient (NMEG) cluster of flux towers, which provided in-situ measures of carbon flux via eddy-covariance to estimate the decreases in gross primary production across six dominant vegetation types in the region. Relative to a wet year, the largest decrease in cumulative carbon uptake we measured was 60% (a reduction of 200 g C /m2 annually) at the ponderosa pine site. The pattern of decreased carbon sequestration was consistent across the gradient, with the C4 grasslands shifting from carbon neutral to a source of 50 g C / m2 in response to the drought and desert shrublands sink strength reduced by 100%, (~50 g C /m2 annually). Juniper savannas, PJ woodlands, and mixed conifer subalpine woodlands all showed a decrease in carbon sequestration of roughly 100 g C /m2 annually. Rough scaling of these results suggest this drought could have resulted in a reduction of carbon uptake of 20 Tg C in NM alone. To more realistically estimate the decrease in carbon sequestration due to drought, we used results from the NMEG to parameterize the Temperature-Greenness model, a remote sensing based approach to scale these estimates to the region, focusing on the six dominant vegetation types represented by the NMEG (accounts for 60% of total land area in NM). This model is driven by 16-day averages of MODIS land surface temperature and the enhanced vegetation index. We used the Southwest Regional GAP analysis classification data to bin NM landcover into

  15. Fighting Against Drought

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The severe drought in southwest China continues and has worsened shortages of drinking water,as recent rainfall in these areas has been far from adequate,said China's drought relief authorities on April 8. The drought situation is looking quite grave,said Chen Lei,Deputy Director of the Office of State Flood Control and Drought Relief Headquarters(SFDH).

  16. Development of a model of rain water catchment for the semiarid from Brazil

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Antunes de Lima

    2009-03-01

    Full Text Available The systems capture of rainwater for human consumption through roofs and its storage tanks is a growing practice, especially in regions devoid of sanitation, as much of the Semi-Arid Brazil. Aiming to contribute in improving the performance of systems of collection of rainwater, to ensure an uninterrupted supply, even during the most severe droughts, this work aimed at developing alternative roofing central to rural households, adopting appropriate technology to the population of the Semi-arid Brazilian considering economic aspects, functional and aesthetic-formal. The work started from information obtained from a field research, conducted in the rural community of Paus Brancos, county of Campina Grande, PB, between the years 2002 and 2003. After that were developing them and evaluated prototypes of rails. Although 80% of households surveyed have a system of water abstraction composed of a tank, rails and receiving system of driving, only 16% hold a sufficient volume to supply all year. The pipeline that has a better performance in collecting and carrying water was one that showed a J-shaped profile, and is characterized in one piece with good rigidity and good finishing.

  17. Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamic, and climate models

    OpenAIRE

    Margaret A. Cook; Carey W. King; F. Todd Davidson; Michael E. Webber

    2015-01-01

    Recent droughts and heat waves have revealed the vulnerability of some power plants to effects from higher temperature intake water for cooling. In this evaluation, we develop a methodology for predicting whether power plants are at risk of violating thermal pollution limits. We begin by developing a regression model of average monthly intake temperatures for open loop and recirculating cooling pond systems. We then integrate that information into a thermodynamic model of energy flows within ...

  18. A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Juliana Yim

    2005-01-01

    Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN's, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.

  19. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil.

    Science.gov (United States)

    Araújo, Marcelo Guimarães; Magrini, Alessandra; Mahler, Cláudio Fernando; Bilitewski, Bernd

    2012-02-01

    Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the "boom" in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  20. Seasonal Drought Prediction in India

    Science.gov (United States)

    Shah, R.; Mishra, V.

    2015-12-01

    Drought is among the most costly natural disasters in India. Seasonal prediction of drought can assist planners to manage agriculture and water resources. Such information can be valuable for a country like India where 60% of agriculture is rain-fed. Here we evaluate precipitation and temperature forecast from the NCEP's CFSV2 for seasonal drought prediction in India. We demonstrate the utility of the seasonal prediction of precipitation and temperature for drought forecast at 1-2 months lead time at a high spatial resolution. Precipitation from CFSv2 showed moderate correlations with observed up to two months lead. For one month lead, we found a significant correlation between CFSv2 and observed precipitation during winter season. Air temperature from the CFSv2 showed a good correlation with observed temperature during the winter. We forced the Variable Infiltration Capacity (VIC) model with the CFSv2 forecast of precipitation and air temperature to generate forecast of hydrologic variables such as soil moisture and total runoff. We find that errors of the prediction reduce for the two month lead time in the majority of the study domain except the northern India. Skills of Initial Hydrologic Conditions combined with moderate skills of forcings based on the CFSv2 showed ability of drought prediction in India. The developed system was able to successfully predict observed top layer soil moisture and observed drought based on satellite remote sensing in India.

  1. Integrating MODIS images in a water budget model for dynamic functioning and drought simulation of a Mediterranean forest in Tunisia

    Directory of Open Access Journals (Sweden)

    H. Chakroun

    2012-05-01

    Full Text Available The use of remote sensing at different spatio-temporal resolutions is being common during the last decades since sensors offer many inputs to water budget estimation. Various water balance models use the LAI as a parameter for accounting water interception, evapotranspiration, runoff and available ground water. The objective of the present work is to improve vegetation stress monitoring at regional scale for a natural forested ecosystem. LAI-MODIS and spatialized vegetation, soil and climatic data have been integrated in a water budget model that simulates evapotranspiration and soil water content at daily step. We first explore LAI-MODIS in the specific context of Mediterranean natural ecosystem. Results showed that despite coarse resolution of LAI-MODIS product (1 km, it was possible to discriminate evergreen and coniferous vegetation and that LAI values are influenced by underlying soil capacity of water holding. The dynamic of vegetation has been integrated into the water budget model by weekly varying LAI-MODIS. Results of simulations were analysed in terms of actual evapotranspoiration, deficit of soil water to field capacity and vegetation stress index based on actual and potential evapotranspiration. Comparing dynamic LAI variation, afforded by MODIS, to a hypothetic constant LAI all over the year correspond to 30% of fAPAR increase. A sensitivity analysis of simulation outputs to this fAPAR variation reveals that increase of both deficit of soil water to field capacity and stress index are respectively 18% and 27%, (in terms of RMSE, these variations are respectively 1258 mm yr−1 and 11 days yr−1. These results are consistent with previous studies led at local scale showing that LAI increase is accompanied by stress conditions increase in Mediterranean natural ecosystems. In this study, we also showed that spatial modelisation of drought conditions based on water budget simulations is an adequate tool for

  2. Impacts of Climate Change on Droughts in Gilan Province, Iran

    Directory of Open Access Journals (Sweden)

    Ladan Kazemi Rad

    2015-06-01

    Full Text Available Drought as a complex natural hazard is best characterized by multiple climatological and hydrological parameters and its assessment is important for planning and managing water resources. So understanding the history of drought in an area is essential like investigating the effects of drought. In this study at first climate parameters affecting the drought have downscaled by LARS-WG stochastic weather generator over Gilan province in Iran. After choosing a suitable model, the outputs were used for assessing the drought situation in the period of 2011-2030. Assessing the drought was done by TOPSIS method during 2 periods (present and future. After validation of the method, zoning the drought was performed by IDW method in GIS. Results showed that the expanse of situations with lower drought index will increase. Also we will expect more droughts in these regions for the future.

  3. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins.

  4. Development of an Assimilation Scheme for the Estimation of Drought-Induced Yield Losses Based on Multi-Source Remote Sensing and the AcquaCrop Model

    Science.gov (United States)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Yang, Guijun

    2014-11-01

    In the context of the Dragon-3 Farmland Drought project, our research deals with the development of methods for the assimilation of biophysical variables, estimated from multi-source remote sensing, into the AquaCrop model, in order to estimate the yield losses due to drought both at the farm and at the regional scale. The first part of this project was employed to refine a methodology to obtain maps of leaf area index (LAI), canopy cover (CC), fraction of adsorbed photosynthetically active radiation (FAPAR) and chlorophyll (Cab) from satellite optical data, using algorithms based on the training of artificial neural networks (ANN) on PROSAIL model simulations. In the second part, retrieved values of CC were assimilated into the AquaCrop model using the assimilation method of the Ensemble Kalman Filter to estimate grain wheat yield at the field scale.

  5. Índice padronizado de precipitação aplicado às condições de seca no Estado do Espírito Santo Standardized precipitation index applied to drought conditions of the State of Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel C. Blain

    2010-10-01

    Full Text Available O Índice Padronizado de Precipitação (SPI é um dos métodos mais utilizados para quantificação da seca. A fim de verificar a possibilidade de utilização do SPI no monitoramento das deficiências e excessos de precipitação na escala mensal, no Estado do Espírito Santo objetivou-se, neste trabalho, verificar o ajuste das séries temporais dessa variável meteorológica à distribuição gama em cinco localidades do Estado. Por meio dos testes de aderência Kolmogorov-Smirnov e qui-quadrado, as séries mensais de precipitação pluvial das localidades sob análise podem ser consideradas oriundas de uma população com distribuição gama incompleta, permitindo o uso do SPI no monitoramento das condições de seca meteorológica. Através de análises de autocorrelação e correlação-cruzada, observou-se que a principal característica das séries do SPI é sua grande variabilidade espaço-temporal, a qual indica que em uma mesma região meses extremamente secos podem ser precedidos e/ou seguidos de meses úmidos ou normais, e que distintos casos de seca podem ocorrer de forma aleatória, entre as localidades e em um mesmo período.The Standardized Precipitation Index (SPI is one of the most widely used methods for quantification of drought conditions. In order to apply the SPI model to the climate conditions of the State of Espírito Santo, Brazil, the study evaluated the adjustment of the monthly rainfall time series to the gamma distribution in five regions of this State. Using the Kolmogorov-Smirnov test and the Chi-Square test, it was possible to verify that the monthly rainfall time series, used in this study, can be fitted to the gamma distribution. On this sense, the SPI model can be applied for monitoring the meteorological drought conditions in the State of Espírito Santo. Using the autocorrelation function and the cross-correlation function, it was possible to verify that the main characteristic of the monthly SPI series is

  6. Applying the Triangle Method for the parameterization of irrigated areas as input for spatially distributed hydrological modeling - Assessing future drought risk in the Gaza Strip (Palestine).

    Science.gov (United States)

    Gampe, David; Ludwig, Ralf; Qahman, Khalid; Afifi, Samir

    2016-02-01

    In the Mediterranean region, particularly in the Gaza strip, an increased risk of drought is among the major concerns related to climate change. The impacts of climate change on water availability, drought risk and food security can be assessed by means of hydro-climatological modeling. However, the region is prone to severe observation data scarcity, which limits the potential for robust model parameterization, calibration and validation. In this study, the physically based, spatially distributed hydrological model WaSiM is parameterized and evaluated using satellite imagery to assess hydrological quantities. The Triangle Method estimates actual evapotranspiration (ETR) through the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by Landsat TM imagery. So-derived spatially distributed evapotranspiration is then used in two ways: first a subset of the imagery is used to parameterize the irrigation module of WaSiM and second, withheld scenes are applied to evaluate the performance of the hydrological model in the data scarce study area. The results show acceptable overall correlation with the validation scenes (r=0.53) and an improvement over the usual irrigation parameterization scheme using land use information exclusively. This model setup is then applied for future drought risk assessment in the Gaza Strip using a small ensemble of four regional climate projections for the period 2041-2070. Hydrological modeling reveals an increased risk of drought, assessed with an evapotranspiration index, compared to the reference period 1971-2000. Current irrigation procedures cannot maintain the agricultural productivity under future conditions without adaptation.

  7. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    Science.gov (United States)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  8. Modelling the ecological niche of hookworm in Brazil based on climate.

    Science.gov (United States)

    Mudenda, Ntombi B; Malone, John B; Kearney, Michael T; Mischler, Paula D; Nieto, Prixia del Mar; McCarroll, Jennifer C; Vounatsou, Penelope

    2012-09-01

    The distribution of hookworm in schistosomiasis-endemic areas in Brazil was mapped based on climate suitability. Known biological requirements of hookworm were fitted to data in a monthly long-term normal climate grid (18 x 18 km) using geographical information systems. Hookworm risk models were produced using the growing degree day (GDD) water budget (WB) concept. A moisture-adjusted model (MA-GDD) was developed based on accumulation of monthly temperatures above a base temperature of 15 °C (below which there is no lifecycle progression of Necator americanus) conditional on concurrent monthly values (rain/potential, evapotranspiration) of over 0.4. A second model, designated the gradient index, was calculated based on the monthly accumulation of the product of GDD and monthly WB values (GDD x WB). Both parameters had a significant positive correlation to hookworm prevalence. In the northeastern part of Brazil (the Caatinga), low hookworm prevalence was due to low soil moisture content, while the low prevalence in southern Brazil was related to low mean monthly temperatures. Both environmental temperature and soil moisture content were found to be important parameters for predicting the prevalence of N. americanus.

  9. Modelling the ecological niche of hookworm in Brazil based on climate

    Directory of Open Access Journals (Sweden)

    Ntombi B. Mudenda

    2012-09-01

    Full Text Available The distribution of hookworm in schistosomiasis-endemic areas in Brazil was mapped based on climate suitability. Known biological requirements of hookworm were fitted to data in a monthly long-term normal climate grid (18 x 18 km using geographical information systems. Hookworm risk models were produced using the growing degree day (GDD water budget (WB concept. A moisture-adjusted model (MA-GDD was developed based on accumulation of monthly temperatures above a base temperature of 15 °C (below which there is no lifecycle progression of Necator americanus conditional on concurrent monthly values (rain/potential, evapotranspiration of over 0.4. A second model, designated the gradient index, was calculated based on the monthly accumulation of the product of GDD and monthly WB values (GDD x WB. Both parameters had a significant positive correlation to hookworm prevalence. In the northeastern part of Brazil (the Caatinga, low hookworm prevalence was due to low soil moisture content, while the low prevalence in southern Brazil was related to low mean monthly temperatures. Both environmental temperature and soil moisture content were found to be important parameters for predicting the prevalence of N. americanus.

  10. Estimating drought risk across Europe from reported drought impacts, hazard indicators and vulnerability factors

    Science.gov (United States)

    Blauhut, V.; Stahl, K.; Stagge, J. H.; Tallaksen, L. M.; De Stefano, L.; Vogt, J.

    2015-12-01

    Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought risk, the combination of the natural hazard and societal vulnerability, is difficult to define and challenging to detect and predict, as the impacts of drought are very diverse, covering the breadth of socioeconomic and environmental systems. Pan-European maps of drought risk could inform the elaboration of guidelines and policies to address its documented severity and impact across borders. This work (1) tests the capability of commonly applied hazard indicators and vulnerability factors to predict annual drought impact occurrence for different sectors and macro regions in Europe and (2) combines information on past drought impacts, drought hazard indicators, and vulnerability factors into estimates of drought risk at the pan-European scale. This "hybrid approach" bridges the gap between traditional vulnerability assessment and probabilistic impact forecast in a statistical modelling framework. Multivariable logistic regression was applied to predict the likelihood of impact occurrence on an annual basis for particular impact categories and European macro regions. The results indicate sector- and macro region specific sensitivities of hazard indicators, with the Standardised Precipitation Evapotranspiration Index for a twelve month aggregation period (SPEI-12) as the overall best hazard predictor. Vulnerability factors have only limited ability to predict drought impacts as single predictor, with information about landuse and water resources as best vulnerability-based predictors. (3) The application of the "hybrid approach" revealed strong regional (NUTS combo level) and sector specific differences in drought risk across Europe. The majority of best predictor combinations rely on a combination of SPEI for shorter and longer aggregation periods, and a combination of information on landuse and water resources. The added value of integrating regional vulnerability information

  11. Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought

    Directory of Open Access Journals (Sweden)

    Athanassios eMolassiotis

    2016-02-01

    Full Text Available Plants treated with chemical compounds can develop an enhanced capacity to resist long after treatment to (abiotic stress, a phenomenon known as priming. Evidence suggests that reactive oxygen species (ROS and reactive nitrogen species (RNS coordinately regulate plant stress responses to adverse environmental conditions; however the mechanisms underlying this function remain unknown. Based on the observation that pre-exposure of citrus (Citrus aurantium L. roots to the NO donor sodium nitroprusside (SNP or to H2O2 prior to NaCl application can induce acclimation against subsequent stress we characterized the changes occurred in primed citrus tissues using several approaches. Herein, using this experimental model system, we provide an overview of our current knowledge of the possible mechanisms associated with NO and H2O2 priming to abiotic stresses, most remarkably on salt and drought. The data and ideas presented here introduce six aspects of priming behaviour in citrus under abiotic stress that provide knowledge necessary to exploit priming syndrome in the context of sustainable agriculture.

  12. Citrus Plants: A Model System for Unlocking the Secrets of NO and ROS-Inspired Priming Against Salinity and Drought.

    Science.gov (United States)

    Molassiotis, Athanassios; Job, Dominique; Ziogas, Vasileios; Tanou, Georgia

    2016-01-01

    Plants treated with chemical compounds can develop an enhanced capacity to resist long after being subjected to (a)biotic stress, a phenomenon known as priming. Evidence suggests that reactive oxygen species (ROS) and reactive nitrogen species (RNS) coordinately regulate plant stress responses to adverse environmental conditions; however, the mechanisms underlying this function remain unknown. Based on the observation that pre-exposure of citrus (Citrus aurantium L.) roots to the NO donor sodium nitroprusside (SNP) or to H2O2 prior to NaCl application can induce acclimation against subsequent stress we characterized the changes occurring in primed citrus tissues using several approaches. Herein, using this experimental model system, we provide an overview of our current knowledge of the possible mechanisms associated with NO and H2O2 priming to abiotic stresses, particularly concerning salinity and drought. The data and ideas presented here introduce six aspects of priming behavior in citrus under abiotic stress that provide knowledge necessary to exploit priming syndrome in the context of sustainable agriculture.

  13. Global integrated drought monitoring and prediction system.

    Science.gov (United States)

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.

  14. Impacts of integration of Brazil with the European Union through a general equilibrium model

    Directory of Open Access Journals (Sweden)

    Ezequiel Insaurriaga Megiato

    2016-01-01

    Full Text Available This study analyses the bilateral trade between Brazil and the European Union (EU in the period 2002–2012, examining the trade opportunities based on a full integration process. It employs a computable general equilibrium model from the Global Trade Analysis Project (GTAP, aiming at identifying the sectors that would benefit most from the agreement, according to their technological intensity. The results show that Brazil benefits most from the agreement in terms of welfare and would also increase the country's exports of primary products. However, it would cause a decrease in production and exports of products with higher technological intensity, increasing the country's imports from the EU, in line with their comparative advantages.

  15. Sugarcane Water Sustainability Assessment Through the Indicators Extracted from Spatial Models: Case Study of Sugarcane Expansion Hotspots in Brazil

    Science.gov (United States)

    Ferraz, R. P.; Simoes, M.; Dubreuil, V.

    2012-12-01

    The CanaSat project data from INPE (2010) has evidenced the trend of sugarcane expansion into savanna areas in the Midwest region of Brazil that has a great potential for the sugarcane development, in terms of topography and suitable soils, according to Sugarcane Agroecological Zoning (EMBRAPA, 2009). However, in this region the climatic water availability has limitations, once the climate is marked by drought season with a strong water deficiency due to reduction of rainfall (SILVA et al. 2008). There may be serious risks to the sugarcane culture conducted in dryland crop system without any support from additional irrigation. Silva et al. (2008) state that, for the expansion of sugarcane cultivation in the Cerrado region will be necessary supplemental irrigation with 80 to 120 mm of water applied after cutting or planting. In the Brazilian Midwest the sugarcane agroindustry expansion is technically viable, but for the sustainable development of this activity it is necessary an adequate planning based on knowledge about water demand and availability. The aim of this study was to conduct an assessment of the potential water sustainability for the sugarcane cultivation in four microregions in Goiás State, Brazil, through the use of indicators proposed in Indicators System of Sugarcane Water Sustainability Assessment (Ferraz, 2012), that was thought to subsidize the public policies proposals and sectoral planning in strategic level by means of indicators that enable to perform diagnostic and prognostic analysis. These indicators are direct and relevant indexes obtained from data extracted through geoprocessing techniques from integration of many spatial models. The used indicators were: (i) Three indexes expressing the land favorability for sugarcane development conducted in dryland or irrigation system through the establishment of the ratio between the sugarcane suitable area for each different system and the total area of territorial unit of analysis (micro

  16. Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M.

    2016-01-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  17. Advancing Drought Understanding, Monitoring and Prediction

    Science.gov (United States)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  18. How climate seasonality modifies drought duration and deficit

    NARCIS (Netherlands)

    van Loon, A.F.; Tijdeman, E.; Wanders, N.; Lanen, H.A.J.; Teuling, A.J.; Uijlenhoet, R.

    2014-01-01

    Drought propagation through the terrestrial hydrological cycle is associated with a change in drought characteristics (duration and deficit), moving from precipitation via soil moisture to discharge. Here we investigate climate controls on drought propagation with a modeling experiment in 1271 virtu

  19. FORECASTING RESIDENTIAL ELECTRICITY CONSUMPTION IN BRAZIL: APPLICATION OF THE ARX MODEL

    Directory of Open Access Journals (Sweden)

    Joao Bosco de Castro

    2010-11-01

    Full Text Available This work aims to propose the application of the ARX model to forecast residential electricity consumption in Brazil. Such estimates are critical for decision making in the energy sector,  from a technical, economic and environmentally sustainable standpoint. The demand for electricity follows a multiplicative model based on economic theory and involves four explanatory variables: the cost of residential electricity, the actual average income, the inflation of domestic utilities and the electricity consumption. The coefficients of the electricity consumption equation  were determined using the ARX model, which considers the influence of exogenous variables to estimate the dependent variable and employs an autoregression process for residual modeling to improve the explanatory power. The resulting model has a determination coefficient of 95.4 percent and all estimated coefficients were significant at the 0.10 descriptive level. Residential electricity consumption estimates were also determined for January and February 2010 within the 95 percent confidence interval, which included the actual consumption figures observed. The proposed model has been shown to be useful for estimating residential electricity consumption  in Brazil. Key-words: Time series. Electricity consumption. ARX modeling

  20. Temperature impacts on the water year 2014 drought in California

    OpenAIRE

    Shukla, S; Safeeq, M.; A. AghaKouchak; Guan, K; Funk, C.

    2015-01-01

    ©2015. American Geophysical Union. California is experiencing one of the worst droughts on record. We use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found t...

  1. Kidney transplantation process in Brazil represented in business process modeling notation.

    Science.gov (United States)

    Peres Penteado, A; Molina Cohrs, F; Diniz Hummel, A; Erbs, J; Maciel, R F; Feijó Ortolani, C L; de Aguiar Roza, B; Torres Pisa, I

    2015-05-01

    Kidney transplantation is considered to be the best treatment for people with chronic kidney failure, because it improves the patients' quality of life and increases their length of survival compared with patients undergoing dialysis. The kidney transplantation process in Brazil is defined through laws, decrees, ordinances, and resolutions, but there is no visual representation of this process. The aim of this study was to analyze official documents to construct a representation of the kidney transplantation process in Brazil with the use of business process modeling notation (BPMN). The methodology for this study was based on an exploratory observational study, document analysis, and construction of process diagrams with the use of BPMN. Two rounds of validations by specialists were conducted. The result includes the kidney transplantation process in Brazil representation with the use of BPMN. We analyzed 2 digital documents that resulted in 2 processes with 45 total of activities and events, 6 organizations involved, and 6 different stages of the process. The constructed representation makes it easier to understand the rules for the business of kidney transplantation and can be used by the health care professionals involved in the various activities within this process. Construction of a representation with language appropriate for the Brazilian lay public is underway.

  2. Tests of species-specific models reveal the importance of drought in postglacial range shifts of a Mediterranean-climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection.

    Science.gov (United States)

    Bemmels, Jordan B; Title, Pascal O; Ortego, Joaquín; Knowles, L Lacey

    2016-10-01

    Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species-specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade-offs in functional traits, and local-scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade-off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.

  3. Survival benefits of antiretroviral therapy in Brazil: a model-based analysis

    Science.gov (United States)

    Luz, Paula M; Girouard, Michael P; Grinsztejn, Beatriz; Freedberg, Kenneth A; Veloso, Valdilea G; Losina, Elena; Struchiner, Claudio J; MacLean, Rachel L; Parker, Robert A; Paltiel, A David; Walensky, Rochelle P

    2016-01-01

    Objective In Brazil, universal provision of antiretroviral therapy (ART) has been guaranteed free of charge to eligible HIV-positive patients since December 1996. We sought to quantify the survival benefits of ART attributable to this programme. Methods We used a previously published microsimulation model of HIV disease and treatment (CEPAC-International) and data from Brazil to estimate life expectancy increase for HIV-positive patients initiating ART in Brazil. We divided the period of 1997 to 2014 into six eras reflecting increased drug regimen efficacy, regimen availability and era-specific mean CD4 count at ART initiation. Patients were simulated first without ART and then with ART. The 2014-censored and lifetime survival benefits attributable to ART in each era were calculated as the product of the number of patients initiating ART in a given era and the increase in life expectancy attributable to ART in that era. Results In total, we estimated that 598,741 individuals initiated ART. Projected life expectancy increased from 2.7, 3.3, 4.1, 4.9, 5.5 and 7.1 years without ART to 11.0, 17.5, 20.7, 23.0, 25.3, and 27.0 years with ART in Eras 1 through 6, respectively. Of the total projected lifetime survival benefit of 9.3 million life-years, 16% (or 1.5 million life-years) has been realized as of December 2014. Conclusions Provision of ART through a national programme has led to dramatic survival benefits in Brazil, the majority of which are still to be realized. Improvements in initial and subsequent ART regimens and higher CD4 counts at ART initiation have contributed to these increasing benefits. PMID:27029828

  4. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  5. Generalized drought assessment in Dongliao river basin based on water resources system

    Science.gov (United States)

    Weng, B. S.; Yan, D. H.; Wang, H.; Qin, T. L.; Yin, J.

    2014-11-01

    Drought is firstly a resource issue, and with its development it transforms into a disaster issue. The occurrences of drought events usually feature determinacy and randomness. Drought issue has become one of the major factors to affect sustainable economic and social development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources system for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao river basin (DRB) in the northeast China. The results simulated by the GDAI are then compared to observed drought disaster records in DRB. As second, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approach (i.e. the SPI, the PDSI, and the RWD). Then, generalized drought times (GDT), generalized drought duration (GDD), and generalized drought severity (GDS) were calculated by theory of runs. Application of the GDT, the GDD, and the GDS of various drought levels (i.e. mild drought, moderate drought, severe drought, and extreme drought) to the period 1960-2010 shows that the centers of gravity of them are all distributed in the middle reached of DRB, and change with time. The proposed methodology helps water managers in water-stressed regions to quantify the impact of drought, consequently, to make decisions regarding coping with drought issue.

  6. Generalized drought assessment in Dongliao river basin based on water resources system

    Directory of Open Access Journals (Sweden)

    B. S. Weng

    2014-11-01

    Full Text Available Drought is firstly a resource issue, and with its development it transforms into a disaster issue. The occurrences of drought events usually feature determinacy and randomness. Drought issue has become one of the major factors to affect sustainable economic and social development. In this paper, we propose the generalized drought assessment index (GDAI based on water resources system for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao river basin (DRB in the northeast China. The results simulated by the GDAI are then compared to observed drought disaster records in DRB. As second, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approach (i.e. the SPI, the PDSI, and the RWD. Then, generalized drought times (GDT, generalized drought duration (GDD, and generalized drought severity (GDS were calculated by theory of runs. Application of the GDT, the GDD, and the GDS of various drought levels (i.e. mild drought, moderate drought, severe drought, and extreme drought to the period 1960–2010 shows that the centers of gravity of them are all distributed in the middle reached of DRB, and change with time. The proposed methodology helps water managers in water-stressed regions to quantify the impact of drought, consequently, to make decisions regarding coping with drought issue.

  7. Psychological Responses to Drought in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Angela E. L. Coêlho

    2004-01-01

    Full Text Available Este estudio de los efectos acumulativos de la sequía en el nordeste Del Brasil, evaluó las respuestas psicológicas (ansiedad, distress emocional y trastorno por estrés pós traumático de 102 individuos que vivían en la ciudad de Queimadas/Paraíba, en un área propensa a la sequía, y comparó con las respuestas de 102 personas que vivían en la ciudad de Areia/Paraíba, libre de la sequía, y de tamaño comparable con la primera. De acuerdo con lo esperado, los resultados revelaron que los residentes en el área de sequía (Queimadas tenían niveles significativamente más altos de ansiedad e distress emocional, en comparación con los residentes Del área sin problemas de sequía (Areia. En el área de sequía, las mujeres tenían niveles significativamente más altos de ansiedad y los hombres tenían niveles significativamente más altos de distress emocional, en comparación con mujeres y hombres, respectivamente, en el área sin problemas de sequía. Probablemente, debido a la vulnerabilidad de su papel social, las mujeres tenían niveles significativamente más altos de ansiedad y distress emocional si comparadas con los hombres. Como también ya se esperaba los casos de trastorno por estrés pós traumático, no se relacionaban con la sequía. Aunque descriptivos, los resultados proporcionan datos para comparaciones en el caso de agravamiento de la sequía, y ofrecen sugerencias para futuras investigaciones sobre las consecuencias psicológicas de la sequía.

  8. On the spatio-temporal analysis of hydrological droughts from global hydrological models

    NARCIS (Netherlands)

    Corzo Perez, G.; Huijgevoort, van M.H.J.; Voss, F.; Lanen, van H.A.J.

    2011-01-01

    The recent concerns for world-wide extreme events related to climate change have motivated the development of large scale models that simulate the global water cycle. In this context, analysis of hydrological extremes is important and requires the adaptation of identification methods used for river

  9. Hydro-Economic Modeling with Minimum Data Requirements: An Application to the São Francisco River Basin, Brazil

    Science.gov (United States)

    Torres, M.; Maneta, M.; Vosti, S.; Wallender, W.; Howitt, R.

    2008-12-01

    Policymakers have been charged with the efficient, equitable, and sustainable use of water resources of the São Francisco River Basin (SFRB), Brazil, and also with the promotion of economic growth and the reduction of poverty within the basin. To date, policymakers lack scientific evidence on the potential consequences for growth, poverty alleviation or environmental sustainability of alternative uses of water resources. To address these key knowledge gaps, we have linked a hydrologic and an economic model of agriculture to investigate how economic decisions affect available water, and vice versa. More specifically, the models are used to predict the effects of the application of Brazilian federal surface water use policies on farmer's net revenues and on the hydrologic system. The Economic Model of Agriculture. A spatially explicit, farm-level model capable of accommodating a broad array of farm sizes and farm/farmer characteristics is developed and used to predict the effects of alternative water policies and neighbors' water use patterns on crop mix choice. A production function comprised of seven categories of non-water-related inputs used in agriculture (land, fertilizers, pesticides, seeds, hired labor, family labor and machinery) and four water-related inputs used in agriculture (applied water, irrigation labor, irrigation capital and energy) is estimated. The parameters emerging from this estimated production function are then introduced into a non-linear, net revenue maximization positive mathematical programming algorithm that is used for simulations. The Hydrological Model. MIKE Basin, a semi-distributed hydrology model, is used to calculate water budgets for the SFRB. MIKE Basin calculates discharge at selected nodes by accumulating runoff down the river network; it simulates reservoirs using stage-area-storage and downstream release rule curves. The data used to run the model are discharge to calculate local runoff, precipitation, reference ET, crop

  10. Phenotyping common beans for adaptation to drought

    Directory of Open Access Journals (Sweden)

    Stephen eBeebe

    2013-03-01

    Full Text Available Common beans (Phaseolus vulgaris L. originated in the New World and are the grain legume of greatest production for direct human consumption. Common bean production is subject to frequent droughts in highland Mexico, in the Pacific coast of Central America, in northeast Brazil, and in eastern and southern Africa from Ethiopia to South Africa. This article reviews efforts to improve common bean for drought tolerance, referring to genetic diversity for drought response, the physiology of of drought tolerance mechanisms, and breeding strategies. Different races of common bean respond differently to drought, with race Durango of highland Mexico being a major source of genes. Sister species of P. vulgaris likewise have unique traits, especially P. acutifolius which is well adapted to dryland conditions. Diverse sources of tolerance may have different mechanisms of plant response, implying the need for different methods of phenotyping to recognize the relevant traits. Practical considerations of field management are discussed including: trial planning; water management; and field preparation.

  11. Functional Genomics of Drought Tolerance in Bioenergy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  12. Monitoring agricultural drought with climate-based drought indices in China

    Science.gov (United States)

    Wang, H.; Zhang, C., Sr.; Jeffery, R. C.

    2015-12-01

    Agricultural drought monitoring significantly influences food security in recent decades. Soil moisture shortages adversely affecting agriculture is one important indicator for agricultural drought monitoring. Because of limited soil moisture observations, characterizing soil moisture using climate-based drought indices has great practical meaning. The agricultural area in China was identified by crop identification from remotely sensed data. Drought indices of multiple timescale or from two-layer bucket model were analyzed. In most agricultural areas of China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer time scales. In general, multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0-5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90-100-cm depth than the Z index. Soil moisture-drought indices relationship was significantly affected by soil organic carbon density. Effective agriculture drought monitoring can be conducted with climate-based drought indices from widely available climatic data and crop area identification from remote sensing. Authors:Hongshuo wang1, Chao Zhang1, Jeffery C Rogers2 1 China agricultural university 2 Ohio state University Key words: Agricultural drought, SPI, SPEI, PDSI, Z index, crop identification

  13. Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil

    Institute of Scientific and Technical Information of China (English)

    Lana Milene Sabino

    2014-01-01

    This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrilá-tero Ferrífero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail-ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl-lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness.

  14. Geographic distribution model for Mabuya agmosticha (Squamata: Scincidae in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Raul F.D. Sales

    2015-02-01

    Full Text Available The Neotropical lizard Mabuya agmosticha Rodrigues, 2000 is a habitat-specialist of thorny bromeliads in rocky outcrops of northeastern Brazil. Its distribution in the Caatinga Domain is most likely relictual. In recent years, new surveys conducted in northeastern Brazil have revealed new records of the species in the Caatinga and also in the Atlantic Forest Domain. In this study, we add four new records for M. agmosticha, extending its known geographic range in the states of Rio Grande do Norte and Paraíba. In addition, we investigated the potential geographical distribution of the species using ecological niche modeling (ENM, which combines the available occurrence records with environmental variables. Our model revealed a continuous range of areas with suitable climatic conditions for the species, from the state of Rio Grande do Norte to the northeast portion of the state of Bahia, plus some relictual distribution spots, mainly in the states of Bahia, Pernambuco, Ceará and western Rio Grande do Norte. Based on the model, we suggest that the distribution of M. agmosticha is continuous on a large geographic scale. On a smaller spatial scale, however, it is clear that its distribution is clumped, reflecting its specialist habits associated with rupicolous bromeliads.

  15. A PROPOSAL FORECASTING MODEL FOR THE GROWTH OF THE MOBILE TELEPHONE MARKET IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Luís Fernando Ascenção Guedes

    2009-10-01

    Full Text Available The element that characterizes the information era is the key role of communication and connectivity, broadly speaking, in social life. Among the ways in which users can enter voice or data networks, one of the most prominent is mobile telephony.Therefore, determining the number of mobile phones in operation in Brazil over the next few years is a relevant issue for the strategic planning of firms in this sector. Thus, this article aims to define a mathematical model suitable for calculating the number of mobile phones in operation in Brazil in forthcoming years, as a function of the behavior of the following variables during the course of time: GDP per capita, population and percentage GDP growth.To this end, a quantitative study was conducted, based on secondary data taken from preceding survey; then a linear and polynomial regression was employed to correlate GDP per capita with mobile phone density. The results showed high correlation (97.5% between phone density and Brazil’s GDP growth from 2004 to 2007. This correlation is also high in Russia, India and China.Moreover, we found that the limiting value of good correlation between GDP per capita and mobile phone density is roughly US$20,000.00 and that the limit of mobile telephony penetration is approximately 120%. Thus, taking into account several economic growth rates, we estimate that the penetration of mobile telephony will take 5 to 11 years to reach its upper limit in Brazil.Key words: Mobile telephony. Prediction model. Telecommunications.

  16. Droughts in the Czech Lands: Past, Present and Future

    Science.gov (United States)

    Brázdil, Rudolf; Trnka, Miroslav

    2015-04-01

    The presentation highlights main results of the InterDrought project (2013-2015), which includes several Czech universities and research institutes, and also shows overview of multidisciplinary scientific monograph on drought. The basic data sources consisting of instrumental, documentary, tree-ring and satellite data are presented. Selected drought indices (SPI, SPEI, Z-index and PDSI) calculated from homogenised Czech temperature and precipitation series are used to describe spatial and temporal variability of droughts in the Czech Lands for the 1804-2010 period including selection of drought extreme episodes and their detail description with respect to meteorological and synoptic patterns and impacts as well. Analysis of droughts prior 1804 is based on documentary data and oak tree-ring widths used for compilation of 500-year Czech drought chronology. The occurrence of extreme droughts is further analysed with respect to sea-level pressure patterns in the Atlantic-European area, climate forcings and changes in land-use. Examples of agricultural and hydrological droughts are mentioned. High resolution soil moisture models are used to estimate drought trends in last five decades as well as estimate future development of droughts in the Czech Republic. Overview represented by this paper will be complemented by several individual detail studies of other InterDrought Team members.

  17. A Global Grassland Drought Index (GDI Product: Algorithm and Validation

    Directory of Open Access Journals (Sweden)

    Binbin He

    2015-09-01

    Full Text Available Existing drought indices have been widely used to monitor meteorological drought and agricultural drought; however, few of them are focus on drought monitoring for grassland regions. This study presented a new drought index, the Grassland Drought Index (GDI, for monitoring drought conditions in global grassland regions. These regions are vital for the environment and human society but susceptible to drought. The GDI was constructed based on three measures of water content: precipitation, soil moisture (SM, and canopy water content (CWC. The precipitation information was extracted from the available precipitation datasets, and SM was estimated by downscaling exiting soil moisture data to a 1 km resolution, and CWC was retrieved based on the PROSAIL (PROSPECT + SAIL model. Each variable was scaled from 0 to 1 for each pixel based on absolute minimum and maximum values over time, and these scaled variables were combined with the selected weights to construct the GDI. According to validation at the regional scale, the GDI was correlated with the Standardized Precipitation Index (SPI to some extent, and captured most of the drought area identified by the United States Drought Monitor (USDM maps. In addition, the global GDI product at a 1 km spatial resolution substantially agreed with the global Standardized Precipitation Evapotranspiration Index (SPEI product throughout the period 2005–2010, and it provided detailed and accurate information about the location and the duration of drought based on the evaluation using the known drought events.

  18. How 21st century droughts affect food and environmental security

    Science.gov (United States)

    Kogan, Felix

    The first 13th years of the 21st century has begun with a series of widespread, long and intensive droughts around the world. Extreme and severe-to-extreme intensity droughts covered 2-6% and 7-16% of the world land, respectively, affecting environment, economies and humans. These droughts reduced agricultural production, leading to food shortages, human health deterioration, poverty, regional disturbances, population migration and death. This presentation is a travelogue of the 21st century global and regional droughts during the warmest years of the past 100 years. These droughts were identified and monitored with the NOAA operational space technology, called Vegetation Health (VH), which has the longest period of observation and provide good data quality. The VH method was used for assessment of vegetation condition or health, including drought early detection and monitoring. The VH method is based on operational satellites data estimating both land surface greenness (NDVI) and thermal conditions. The 21st century droughts in the USA, Russia, Australia Argentina, Brazil, China, India and other principal grain producing countries were intensive, long, covered large areas and caused huge losses in agricultural production, which affected food and environmental security and led to food riots in some countries. This presentation investigate how droughts affect food and environmental security, if they can be detected earlier, how to monitor their area, intensity, duration and impacts and also their dynamics during the climate warming era with satellite-based vegetation health technology.

  19. Drought assessment using a multivariate drought index in the Huaihe River basin of Eastern China

    Science.gov (United States)

    Li, Q.; Zeng, M.; Wang, H.; Li, P.; Wang, K.; Yu, M.

    2015-06-01

    The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.

  20. Use of Land Surface Temperature Observations in a Two-Source Energy Balance Model Towards Improved Monitoring of Evapotranspiration and Drought

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.

    2014-12-01

    As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or

  1. Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts

    Science.gov (United States)

    Blauhut, Veit; Gudmundsson, Lukas; Stahl, Kerstin

    2015-01-01

    Drought in Europe is a hazard with a wide range of transboundary, environmental and socio-economic impacts on various sectors including agriculture, energy production, public water supply and water quality. Despite the apparent importance of this natural hazard, observed pan-European drought impacts have not yet been quantitatively related to the most important climatological drivers to map drought risk on a continental scale. This contribution approaches the issue by quantitatively assessing the likelihood of drought impact occurrence as a function of the standardized precipitation evapotranspiration index for four European macro regions using logistic regression. The resulting models allow mapping the sector-specific likelihood of drought impact occurrence for specific index levels. For the most severe drought conditions the maps suggest the highest risk of impact occurrence for ‘Water Quality’ in Maritime Europe, followed by ‘Agriculture & Livestock Farming’ in Western Mediterranean Europe and ‘Energy & Industry’ in Maritime Europe. Merely impacts on ‘Public Water Supply’ result in overall lower risk estimates. The work suggests that modeling and mapping for North- and Southeastern Europe requires further enhancement to the impact database in these regions. Such maps may become an essential component of drought risk management to foster resilience for this hazard at large scale.

  2. Water Quality-Quantity Evaluation of the Ribeirão das Posses Watershed, Brazil, applying the AgES-W model.

    Science.gov (United States)

    Green, T. R.; Cruz, P. P. N. D.; Figueiredo, R. D. O.; Camargo, P. B. D.; Santos, C. P.

    2015-12-01

    Southeastern Brazil is under a period of drought that has impacted the conservation of watersheds and the management of water quality and quantity for agricultural and urban demands. In this context agro-hydrological modeling tools can generate information of water response over time in response to climate and landuse changes. A 12-km2 watershed which has suffered from anthropogenic activities is the Ribeirão das Posses watershed that is located in the extreme south of Minas Gerais State and is a headwater catchment of the Jaguari river, one of the contributing rivers of the Cantareira Reservoir Complex in the state of São Paulo. This watershed had its landscape changed over the last century from native forests to more homogeneous vegetation for pastures and small crops and some forest plantations fragments with eucalyptus. Currently, the Conservative Waters project has planted some small areas with vegetation of native species, especially where there are springs and at the top of the hills, in order to recover degraded areas and improve the hydrogeochemistry in this study basin. In this context, the AgroEcoSystem-Watershed (AgES-W) model is presented to simulate the water movement and storage in agricultural watersheds with different spatial resolutions of land areas or hydrological responses units. The objectives are to evaluate the quality and quantity of water in Ribeirão das Posses Basin using measured data, then simulate these responses in space and time to test the AgES-W model. The period chosen for research was from 2011 to 2015, because the water quality data were collected during this period. The answers that we hope to find out are: How well does the AgES-W model simulate this Brazilian watershed in the tropics? What are the future prospects of the quality and quantity of water in this basin? The results will help to guide hydrological simulations in similar tropical environments in Brazil in this and other agricultural watersheds with AgES-W.

  3. Precipitation variability, extremes and uncertainties over southeastern Brazil projected by the Eta regional model

    Science.gov (United States)

    Cavalcanti, Iracema; Silveira, Virginia; Chan, Chou; Marengo, Jose Antonio

    2014-05-01

    Southeastern Brazil is an area affected by extreme precipitation, mainly in the austral summer, associated with frontal systems or the South Atlantic Convergence Zone (SACZ). Flooding and landslides have occurred in the region with serious impact on society and economy. The region has many vulnerable areas, therefore, projections of precipitation and extremes in the future for the region are important to provide information that can be used in adaptations and management decisions. Results of regional models in South America have been analyzed to assess the future climate changes with higher resolution than global models. In this study the Regional Eta model is used with resolution of 40 and 20 Km to analyze the projections of precipitation changes and extremes over Brazil and mainly over the southeastern region. Simulations and projections obtained from four integrations of the Regional Eta model are analyzed to investigate the model behavior during the period of 1961-1990 and the projections in the near (2011 to 2040) and more distant future (2041 to 2100). Results from four integrations with resolution of 40 km with different lateral boundary conditions from the HadCM3 Global Model and one integration with resolution of 20 km are used to give a confidence interval and the related uncertainty. The first analysis was to verify changes in the main mode of precipitation variability in the future projections, compared to the base period. There is a change in the main centers of extremes variability over South America, which was comparable to changes projected in CMIP5 models. The second analysis was related to changes in the position and intensity of the SACZ. Specific locations in southeastern Brazil were analyzed regarding indices of extremes, such as SDII (mean precipitation of rainy days), SDII_10 (mean precipitation of rainy days >=10 mm/day), R10mm (number of days with precipitation >= 10 mm/day), CDD (maximum number of consecutive dry days), CWD (maximum number

  4. Farmland Drought Evaluation Based on the Assimilation of Multi-Temporal Multi-Source Remote Sensing Data into AquaCrop Model

    Science.gov (United States)

    Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo

    2016-08-01

    Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.

  5. Modeling sugarcane ripening as a function of accumulated rainfall in Southern Brazil

    Science.gov (United States)

    Cardozo, Nilceu P.; Sentelhas, Paulo C.; Panosso, Alan R.; Palhares, Antonio L.; Ide, Bernardo Y.

    2015-12-01

    The effect of weather variables on sugarcane ripening is a process still not completely understood, despite its huge impact on the quality of raw material for the sugar energy industry. The aim of the present study was to evaluate the influence of weather variables on sugarcane ripening in southern Brazil, propose empirical models for estimating total recoverable sugar (TRS) content, and evaluate the performance of these models with experimental and commercial independent data from different regions. A field experiment was carried out in Piracicaba, in the state of São Paulo, Brazil, considering eight sugarcane cultivars planted monthly, from March to October 2002. In 2003, at the harvest, 12 months later, samples were collected to evaluate TRS (kg t-1). TRS and weather variables (air temperature, solar radiation, relative humidity, and rainfall) were analyzed using descriptive and multivariate statistical analysis to understand their interactions. From these correlations, variables were selected to generate empirical models for estimating TRS, according to the cultivar groups and their ripening characteristics (early, mid, and late). These models were evaluated by residual analysis and regression analysis with independent experimental data from two other locations in the same years and with independent commercial data from six different locations from 2005 to 2010. The best performances were found with exponential models which considered cumulative rainfall during the 120 days before harvest as an independent variable ( R 2 adj ranging from 0.92 to 0.95). Independent evaluations revealed that our models were capable of estimating TRS with reasonable to high precision ( R 2 adj ranging from 0.66 to 0.99) and accuracy ( D index ranging from 0.90 to 0.99), and with low mean absolute percentage errors (MAPE ≤ 5 %), even in regions with different climatic conditions.

  6. Assessment on drought risk of typical wheat in China based on EPIC model%基于EPIC模型的中国典型小麦干旱致灾风险评价

    Institute of Scientific and Technical Information of China (English)

    王志强; 何飞; 栗健; 廖永丰

    2012-01-01

    运用EPIC( Environmental Policy Integrated Climate)农作物生长模型模拟了1966- 2005年中国典型小麦生长过程,构建了基于水分胁迫的小麦干旱致灾强度指数,对中国小麦干旱致灾强度和风险的时空分布规律进行了定量评价分析.结果表明:小麦干旱致灾强度呈现出从西北干旱区向东南湿润区递减的趋势,且春小麦分布区旱灾致灾强度高于冬小麦分布区;中国农牧交错带是小麦干旱致灾强度较强且波动较大的区域,也是小麦干旱致灾风险较高的区域;1966 - 2005年春小麦区干旱致灾强度呈现下降趋势,而冬小麦区呈现普遍上升趋势,其中北部和黄淮冬麦上升趋势最为明显.%With global climate change and global warming,the frequency and intensity of drought event and loss is increased. This paper simulated the growth process of wheat in China from 1966 to 2005 using EPIC ( Environmental Policy Integrated Climate) crop model,developed the drought hazard intensity index based on crop water stress index and quantitatively analyzed the tempo-spatial distribution regularity of wheat drought hazard intensity and drought hazard risk. The results is as follows: Fistly,drought hazard intensity of wheat caused by drought was decreased from the arid region of northwest China to the humid region of southeast China,and drought hazard intensity of spring wheat area was higher than winter wheat area; Secondly,the annual variation and intensity of wheat drought hazard intensity had an abnormal high-value zone,and its space range agreed with the Fanning-Pastoral Zone and ecological vulnerable zone of China,which is the high-value zone of the wheat drought hazard risk; Finally,in 1966 to 2005,drought hazard intensity of spring wheat area was decreased,while drought intensity of the winter wheat area was increased,and the North winter wheat area and the winter wheat area of Huang-River and Huai-River demonstrated a distinguished uptrend in all

  7. Forecasts of Agricultural Drought in Sri Lanka

    Science.gov (United States)

    Gilligan, J. M.; Gunda, T.; Hornberger, G. M.

    2015-12-01

    As the most frequent natural disaster in Sri Lanka, drought greatly affects crop production and livelihoods. Over half of all agricultural crop damage in Sri Lanka is currently due to drought; the frequency and severity of drought in the country is only expected to increase with the changing climate. Previous work indicates that the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI) are capable of capturing agricultural drought patterns (between 1881-2010) in the island nation. In this work, PDSI and SPI from 13 long-term meteorological stations will be projected into the future using a combination of artificial neural network and autoregressive integrated moving average models. The impacts of large-scale atmospheric circulation patterns (such as the Niño 3.4 index, a measure of sea surface temperature) and lead times on projection accuracy will also be explored. Model projections will be compared to weather data since 2010 to determine if the 2014 drought could have been forecasted using these methods. Since agricultural systems are strongly influenced by both natural and human systems, it is important to frame these physical findings within a social context. This work is part of an interdisciplinary project that assesses the perceptions of and adaptations to drought by rice farmers in Sri Lanka; disciplines represented in the group include hydrology, social psychology, ethnography, policy, and behavioral economics. Insights from the diverse research perspectives within the group will be drawn upon to highlight the social implications of the physical results.

  8. Deep Sequencing of Suppression Subtractive Hybridisation Drought and Recovery Libraries of the Non-model Crop Trifolium repens L.

    Science.gov (United States)

    Bisaga, Maciej; Lowe, Matthew; Hegarty, Matthew; Abberton, Michael; Ravagnani, Adriana

    2017-01-01

    White clover is a short-lived perennial whose persistence is greatly affected by abiotic stresses, particularly drought. The aim of this work was to characterize its molecular response to water deficit and recovery following re-hydration to identify targets for the breeding of tolerant varieties. We created a white clover reference transcriptome of 16,193 contigs by deep sequencing (mean base coverage 387x) four Suppression Subtractive Hybridization (SSH) libraries (a forward and a reverse library for each treatment) constructed from young leaf tissue of white clover at the onset of the response to drought and recovery. Reads from individual libraries were then mapped to the reference transcriptome and processed comparing expression level data. The pipeline generated four robust sets of transcripts induced and repressed in the leaves of plants subjected to water deficit stress (6,937 and 3,142, respectively) and following re-hydration (6,695 and 4,897, respectively). Semi-quantitative polymerase chain reaction was used to verify the expression pattern of 16 genes. The differentially expressed transcripts were functionally annotated and mapped to biological processes and pathways. In agreement with similar studies in other crops, the majority of transcripts up-regulated in response to drought belonged to metabolic processes, such as amino acid, carbohydrate, and lipid metabolism, while transcripts involved in photosynthesis, such as components of the photosystem and the biosynthesis of photosynthetic pigments, were up-regulated during recovery. The data also highlighted the role of raffinose family oligosaccharides (RFOs) and the possible delayed response of the flavonoid pathways in the initial response of white clover to water withdrawal. The work presented in this paper is to our knowledge the first large scale molecular analysis of the white clover response to drought stress and re-hydration. The data generated provide a valuable genomic resource for marker

  9. Comparative analysis of integrated water resources management models and instruments in South America: case studies in Brazil and Colombia

    Directory of Open Access Journals (Sweden)

    Raquel dos Santos

    2013-04-01

    Full Text Available Brazil and Colombia are rich in terms of water supply, ranking as world leaders in the supply of water resources. Despite this, both countries have problems of relative scarcity of this vital liquid in highly populated areas with much economic activity. Establishing policies and legal environmental standards has long tradition in both countries. However, although there are provisions and instruments for water management at the water basin level, these do not necessarily follow the conceptual development of integrated water resources management (IWRM. As a result, the two countries have partially implemented IWRM elements but with different characteristics both in its structure and instrumentality. In Colombia the State Government, through the Regional Environmental Corporations, implements IWRM (concessions, fee for water use, pollution rate, basin plans, etc, with no formal involvement of civil society management. In Brazil, however, IWRM management structure and tools are decentralized and participatory, as are the Water Basin Committees, entities where the State Government, municipalities and users participate, those with the greatest weight in water management. In Brazil, however, this model is not yet implemented in all watersheds. Thus, the aim of this paper is to compare the institutional and legal aspects of water management models in Brazil and Colombia with regard to the integrated water management concept. For the latter, we worked with a case study for each country regarding Nima River watershed (Colombia and Tietê Jacaré (Brazil.

  10. Forecasting Inflation with the Phillips Curve: A Dynamic Model Averaging Approach for Brazil

    Directory of Open Access Journals (Sweden)

    Diego Ferreira

    2015-12-01

    Full Text Available This paper proposes a generalized Phillips curve in order to forecast Brazilian inflation over the 2003:M1–2013:M10 period. To this end, we employ the Dynamic Model Averaging (DMA method, which allows for both model evolution and time-varying parameters. The procedure mainly consists in state-space representation and by Kalman filter estimation. Overall, the dynamic specifications deliver good inflation predictions for all the forecast horizons considered, underscoring the importance of time-varying features for forecasting exercises. As to the usefulness of the predictors on explaining the Brazilian inflation, there are evidences that the short- and long-term Phillips curve relationship may be rejected for Brazil while short- and medium-term exchange rate pass-through apparently has been decreasing in the last years.

  11. Oral health in Brazil: the challenges for dental health care models.

    Science.gov (United States)

    Chaves, Sônia Cristina Lima

    2012-01-01

    This paper discusses adult oral health in Brazil according to three perspectives: 1) the available epidemiological evidence about the population's oral-health-related epidemiological situation, especially adults and the elderly population, in relation to two high prevalence oral injuries (dental caries and tooth loss), 2) the main health care models for dealing with this situation, by analyzing the related historical processes in order to reveal the likely social, political and epidemiological implications of the different models, and 3) lastly, the possible challenges to Brazilian dentistry or collective oral health in overcoming these obstacles. The main results of the study indicate that, from an epidemiological point of view, Brazil is undergoing a transition in dental caries and tooth loss, which is not yet reflected in the profile of the elderly, but which is tentatively evidenced in young adults. Tooth loss remains high. Certain aspects of society's economic and political superstructure have an important impact on oral health indicators and existing inequalities. Oral health care models have a relative importance and must not be neglected. Vestiges of ideological movements, like preventive medicine, may explain the current impasse in collective oral health practices, such as the preeminence of Finalized Treatment (FT) in clinics and of preventive care in schools fostered by community-based programs. It is therefore important to develop conceptual, theoretical reflections and to increase the objects of intervention, their purposes and their modus operandi. The practice of dentistry according to these alternative models is still being constructed. New studies related to the different formats of these new practices are recommended.

  12. Agricultural Productivity Forecasts for Improved Drought Monitoring

    Science.gov (United States)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  13. A drought index accounting for snow

    Science.gov (United States)

    Staudinger, Maria; Stahl, Kerstin; Seibert, Jan

    2015-04-01

    The Standardized Precipitation Index (SPI) is the most widely used index to characterize and monitor droughts that are related to precipitation deficiencies. However, the SPI does not always deliver the relevant information for hydrological drought management when precipitation deficiencies are not the only reason for droughts as it is the case for example in snow influenced catchments. If precipitation is temporarily stored as snow, then there is a significant difference between meteorological and hydrological drought because the delayed release of melt water from the snow accumulation to the stream. In this study we introduce an extension to the SPI, the Standardized Snow Melt and Rain Index (SMRI), that captures both rain and snow melt deficits, which in effect modify streamflow. The SMRI does not require any snow data instead observations of temperature and precipitation are used to model snow. The SMRI is evaluated for seven Swiss catchments with varying degrees of snow influence. In particular for catchments with a larger component of snowmelt in runoff generation, we found the SMRI to be a good complementary index to the SPI to describe streamflow droughts. In a further step, the SPI and the SMRI were compared for the summer drought of 2003 and the spring drought of 2011 for Switzerland, using gridded products of precipitation and temperature including the entire country.

  14. Hydrological drought severity explained by climate and catchment characteristics

    Science.gov (United States)

    Van Loon, A. F.; Laaha, G.

    2015-07-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to climate and catchment characteristics. In this study we investigated controls on drought severity based on a comprehensive Austrian dataset consisting of 44 catchments with long time series of hydrometeorological data (on average around 50 year) and information on a large number of physiographic catchment characteristics. Drought analysis was performed with the variable threshold level method and various statistical tools were applied, i.e. bivariate correlation analysis, heatmaps, linear models based on multiple regression, varying slope models, and automatic stepwise regression. Results indicate that streamflow drought duration is primarily controlled by storage, quantified by the Base Flow Index or by a combination of catchment characteristics related to catchment storage and release, e.g. geology and land use. Additionally, the duration of dry spells in precipitation is important for streamflow drought duration. Hydrological drought deficit, however, is governed by average catchment wetness (represented by mean annual precipitation) and elevation (reflecting seasonal storage in the snow pack and glaciers). Our conclusion is that both drought duration and deficit are governed by a combination of climate and catchment control, but not in a similar way. Besides meteorological forcing, storage is important; storage in soils, aquifers, lakes, etc. influences drought duration and seasonal storage in snow and glaciers influences drought deficit. Consequently, the spatial variation of hydrological drought severity is highly dependent on terrestrial hydrological processes.

  15. Assessing the Water Parallel Pricing System against Drought in China: A Study Based on a CGE Model with Multi-Provincial Irrigation Water

    Directory of Open Access Journals (Sweden)

    Shuai Zhong

    2015-06-01

    Full Text Available The reform of water management in China is still in progress, and the pricing of water resources is undertaken in parallel, with a divide between irrigation water and pipe water associated with different users: The supply of irrigation water is regulated by local government and that of pipe water is operated by the production sector of pipe water. Based on a literature review and an interview survey of farmers, this study incorporated the water parallel pricing system of China within a computable general equilibrium (CGE model, where the drought of 2000 is simulated. The 16 provincial irrigation water supplies and their subsidies were also estimated and introduced into this CGE model. The results demonstrated that the effects on the macro-economy were insignificant. However, the effects on agricultural production, particularly on farming production mainly cultivated in northern areas, were significant. Most farming production sectors employed more capital and labor to prevent losses in output from drought. Agricultural labor was shifted from non-farming agricultural production sectors into farming. Both urban and rural households suffered severe losses in welfare and food consumption, even though they benefited from the additional income. Moreover, rural households suffering the worst losses were located in both northern and southern areas.

  16. Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil

    Science.gov (United States)

    Borrego, C.; Monteiro, A.; Ferreira, J.; Moraes, M. R.; Carvalho, A.; Ribeiro, I.; Miranda, A. I.; Moreira, D. M.

    2010-01-01

    The main purpose of this study is to evaluate the photochemical pollution over the Metropolitan Area of Porto Alegre (MAPA), Brazil, where high concentrations of ozone have been registered during the past years. Due to the restricted spatial coverage of the monitoring air quality network, a numerical modelling technique was selected and applied to this assessment exercise. Two different chemistry-transport models - CAMx and CALGRID - were applied for a summer period, driven by the MM5 meteorological model. The meteorological model performance was evaluated comparing its results to available monitoring data measured at the Porto Alegre airport. Validation results point out a good model performance. It was not possible to evaluate the chemistry models performance due to the lack of adequate monitoring data. Nevertheless, the model intercomparison between CAMx and CALGRID shows a similar behaviour in what concerns the simulation of nitrogen dioxide, but some discrepancies concerning ozone. Regarding the fulfilment of the Brazilian air quality targets, the simulated ozone concentrations surpass the legislated value in specific periods, mainly outside the urban area of Porto Alegre. The ozone formation is influenced by the emission of pollutants that act as precursors (like the nitrogen oxides emitted at Porto Alegre urban area and coming from a large refinery complex) and by the meteorological conditions.

  17. Impact of drought on the CO2 atmospheric growth rate 2010-2012 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Jiang, Z.; Bloom, A. A.; Lee, M.; Menemenlis, D.; Gierach, M.; Collatz, G. J.; Gurney, K. R.

    2015-12-01

    The La Nina between 2011-2012 led to significant droughts in the US and Northeastern Brazil while the historic drought in Amazon in 2010 was caused in part by the historic central Pacific El Nino. In order to investigate the role of drought on the atmospheric CO2 growth rate, we use satellite observations of CO2 and CO to infer spatially resolved carbon fluxes and attribute those fluxes to combustion sources correlated with drought conditions. Solar induced fluorescence in turn is used to estimate the impact of drought on productivity and its relationship to total flux. Preliminary results indicate that carbon losses in Mexico are comparable to the total fossil fuel production for that region. These in turn played an important role in the acceleration of the atmospheric growth rate from 2011-2012. These results were enabled using the NASA Carbon Monitoring System Project (CMS-Flux), which is based upon a 4D-variational assimilation system that incorporates observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2-­Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model.

  18. Amazon forests green-up during 2005 drought.

    Science.gov (United States)

    Saleska, Scott R; Didan, Kamel; Huete, Alfredo R; da Rocha, Humberto R

    2007-10-26

    Coupled climate-carbon cycle models suggest that Amazon forests are vulnerable to both long- and short-term droughts, but satellite observations showed a large-scale photosynthetic green-up in intact evergreen forests of the Amazon in response to a short, intense drought in 2005. These findings suggest that Amazon forests, although threatened by human-caused deforestation and fire and possibly by more severe long-term droughts, may be more resilient to climate changes than ecosystem models assume.

  19. Drought in Southwestern United States

    Science.gov (United States)

    2007-01-01

    The southwestern United States pined for water in late March and early April 2007. This image is based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite from March 22 through April 6, 2007, and it shows the Normalized Difference Vegetation Index, or NDVI, for the period. In this NDVI color scale, green indicates areas of healthier-than-usual vegetation, and only small patches of green appear in this image, near the California-Nevada border and in Utah. Larger areas of below-normal vegetation are more common, especially throughout California. Pale yellow indicates areas with generally average vegetation. Gray areas appear where no data were available, likely due to persistent clouds or snow cover. According to the April 10, 2007, update from the U.S. Drought Monitor, most of the southwestern United Sates, including Utah, Nevada, California, and Arizona, experienced moderate to extreme drought. The hardest hit areas were southeastern California and southwestern Arizona. Writing for the Drought Monitor, David Miskus of the Joint Agricultural Weather Facility reported that March 2007 had been unusually dry for the southwestern United States. While California's and Utah's reservoir storage was only slightly below normal, reservoir storage was well below normal for New Mexico and Arizona. In early April, an international research team published an online paper in Science noting that droughts could become more common for the southwestern United States and northern Mexico, as these areas were already showing signs of drying. Relying on the same computer models used in the Intergovernmental Panel on Climate Change (IPCC) report released in early 2007, the researchers who published in Science concluded that global warming could make droughts more common, not just in the American Southwest, but also in semiarid regions of southern Europe, Mediterranean northern Africa, and the Middle East.

  20. Comparison between Two Methods for agricultural drought disaster risk in southwestern China

    Science.gov (United States)

    han, lanying; zhang, qiang

    2016-04-01

    The drought is a natural disaster, which lead huge loss to agricultural yield in the world. The drought risk has become increasingly prominent because of the climatic warming during the past century, and which is also one of the main meteorological disasters and serious problem in southwestern China, where drought risk exceeds the national average. Climate change is likely to exacerbate the problem, thereby endangering Chinaʹs food security. In this paper, drought disaster in the southwestern China (where there are serious drought risk and the comprehensive loss accounted for 3.9% of national drought area) were selected to show the drought change under climate change, and two methods were used to assess the drought disaster risk, drought risk assessment model and comprehensive drought risk index. Firstly, we used the analytic hierarchy process and meteorological, geographic, soil, and remote-sensing data to develop a drought risk assessment model (defined using a comprehensive drought disaster risk index, R) based on the drought hazard, environmental vulnerability, sensitivity and exposure of the values at risk, and capacity to prevent or mitigate the problem. Second, we built the comprehensive drought risk index (defined using a comprehensive drought disaster loss, L) based on statistical drought disaster data, including crop yields, drought-induced areas, drought-occurred areas, no harvest areas caused by drought and planting areas. Using the model, we assessed the drought risk. The results showed that spatial distribution of two drought disaster risks were coherent, and revealed complex zonality in southwestern China. The results also showed the drought risk is becoming more and more serious and frequent in the country under the global climatic warming background. The eastern part of the study area had an extremely high risk, and risk was generally greater in the north than in the south, and increased from southwest to northeast. The drought disaster risk or

  1. Drought Tolerance in Wheat

    Directory of Open Access Journals (Sweden)

    Arash Nezhadahmadi

    2013-01-01

    Full Text Available Drought is one of the most important phenomena which limit crops’ production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants’ vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea, responsive to abscisic acid (Rab, rubisco, helicase, proline, glutathione-S-transferase (GST, and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.

  2. Drought risk reduction

    NARCIS (Netherlands)

    Su, Z.; Roerink, G.J.

    2004-01-01

    Due to the shortage of water resources and its inhomogeneous distribution in space and time, large scale droughts occur frequently all over the world. Consequently, drought has become a key factor constraining the economic development and threatening the food security. This report describes the resu

  3. The European Drought Observatory (EDO) - A European Contribution to a Global Drought Information System (GDIS)

    Science.gov (United States)

    Vogt, J.; Sepulcre, G.; De Jager, A.; Magni, D.; Valentini, L.; Russo, S.; Micale, F.; Barbosa, P.

    2013-12-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of EDO is a portal, including a map viewer, a metadata catalogue, a media-monitor and analysis tools. Underlying data stem from ground and satellite observations as well as from distributed hydrological models and are stored in a relational database. Through the map viewer Europe-wide up-to-date information on the occurrence and severity of droughts is presented, complemented by more detailed information from regional, national and local observatories through OGC compliant web-mapping services. The continent-wide meteorological, soil moisture-related and vegetation-related indicators are then integrated into a combined indicator showing different alert levels targeted specifically to decision makers in water and land management. Finally, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells in Europe can be retrieved and analysed. On-going work is focusing on developing reliable medium and long-range probabilistic as well as seasonal drought forecasts, the analysis of climate change impacts on drought occurrence, duration and severity and the assessment of current and future drought hazard and risk. In addition, remote sensing-based water-stress indicators from geostationary satellite data (e.g., MSG SEVIRI) are developed in order to complement the available information. The further development of EDO as part of a Global Drought Information

  4. Drought and groundwater management

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Jensen, Frank

    This paper considers the problem of a water management authority faced with the threat of a drought that hits at an uncertain date. Three management policies are investigated: i) a laissez-faire (open-access) policy of automatic adjustment through a zero marginal private net benefit condition, ii......) a policy of optimal dynamic management ignoring the threat of the drought and relying on automatic adjustments through a zero marginal social net benefit condition, iii) an economically optimal dynamic policy taking account of the threat of a drought. In particular, we show that the optimal pre......-drought steady-state equilibrium stock size of water under policy iii) is smaller than under policy ii) and, hence, a precautionary stock size should not be built up prior to the drought....

  5. The impact of climate mitigation on projections of future drought

    Directory of Open Access Journals (Sweden)

    I. H. Taylor

    2013-06-01

    Full Text Available Drought is a cumulative event, often difficult to define and involving wide-reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Our study considers both climate model uncertainty associated with future climate projections, and future emissions of greenhouse gases (future scenario uncertainty. Four drought indices (the Standardised Precipitation Index (SPI, Soil Moisture Anomaly (SMA, the Palmer Drought Severity Index (PDSI and the Standardised Runoff Index (SRI are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57-member perturbed parameter ensemble of climate simulations of the HadCM3C Earth System model, for the baseline period 1961–1990, and the period 2070–2099 ("the 2080s". We consider where there are statistically significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline. Despite the large range of uncertainty in drought projections for many regions, projections for some regions have a clear signal, with uncertainty associated with the magnitude of change rather than direction. For instance, a significant increase in time spent in drought is generally projected for the Amazon, Central America and South Africa whilst projections for northern India consistently show significant decreases in time spent in drought. Whilst the patterns of changes in future drought were similar between scenarios, climate mitigation, represented by the RCP2.6 scenario, tended to reduce future changes in drought. In general, climate mitigation reduced the area over which there was a significant increase in drought but had little impact on the area over which there was a significant decrease in time spent in drought.

  6. Drought modes in West Africa and how well CORDEX RCMs simulate them

    Science.gov (United States)

    Diasso, Ulrich; Abiodun, Babatunde J.

    2015-12-01

    This study presents the spatial-temporal structure of droughts in West Africa and evaluates the capability of CORDEX regional climate models in simulating the droughts. The study characterize droughts with the standardized evapo-transpiration index (SPEI) computed using the monthly rainfall and temperature data from the Climatic Research Unit (CRU) and CORDEX models simulation datasets. To obtain the spatial-temporal structure of the droughts, we applied the principal component analysis on the observed and simulated SPEIs and retained the first four principal factors as the leading drought modes over West Africa. The relationship between the drought modes and atmospheric teleconnections was studied using wavelet coherence analysis, while the ability of the CORDEX models to simulate the drought modes was quantified with correlation analysis. The analysis of the relationship between drought modes and atmospheric teleconnections is based on SPEI from observation dataset (CRU). The study shows that about 60 % of spatial-temporal variability in SPEI over West Africa can be grouped into four drought modes. The first drought mode features drought over east Sahel, the second over west Sahel, the third over the Savanna, and the fourth over the Guinea coast. Each drought mode is linked to sea surface temperature anomalies (SSTAs) over tropical areas of Pacific, Atlantic, and Indian Oceans. Most CORDEX models reproduce at least two of the drought modes, but only two models (REMO and CNRM) reproduce all the four drought modes. REMO and WRF give the best simulation of the seasonal variation of the drought mode over the Sahel in March-May and June-August seasons, while CNRM gives the best simulation of seasonal variation in the drought pattern over the Savanna. Results of this study may guide in selecting appropriate CORDEX models for seasonal prediction of droughts and for downscaling projected impacts of global warming on droughts in West Africa.

  7. Assessing Urban Droughts in a Smart City Framework

    Science.gov (United States)

    Obringer, R.; Zhang, X.; Mallick, K.; Alemohammad, S. H.; Niyogi, D.

    2016-06-01

    This study aims to integrate environmental data for drought monitoring to reduce uncertainty in urban drought characterization as part of the smart city framework. Currently, drought monitoring in urban areas is a challenge. This is due, in part, to a lack of knowledge on the subject of urban droughts and urban drought vulnerability. A critical part to assessing urban drought and implementing the necessary policies is determining drought conditions. Often the timing and severity of the drought can leave cities to enforce water restrictions, so accuracy of this determination has socioeconomic implications. To determine drought conditions, we need to know the water balance over the urban landscape, of which evapotranspiration (ET) is a key variable. However, ET data and models have high uncertainty when compared to other hydrological variables (i.e., precipitation). This is largely due to ill-defined empirical models for characterizing the urban surface resistance parameter (rs) that is used in ET calculations. We propose a method to estimate rs values using a combination of the Surface Temperature Initiated Closure (STIC) method that calculates regional evapotranspiration data and an inverted version of the Penman-Monteith equation. We use this approach across the region surrounding Indianapolis, IN (USA) from 2010-2014. We discuss the potential for this method to be integrated in to smart city framework to improve urban drought assessment.

  8. Drought management plans and water availability in agriculture: A risk assessment model for a Southern European basin

    Directory of Open Access Journals (Sweden)

    Carlos Dionisio Pérez-Blanco

    2014-08-01

    Full Text Available The Drought Management Plans (DMPs are regulatory instruments that establish priorities among the different water uses and define more stringent constraints to access to publicly provided water during droughts, especially for non-priority uses such as agriculture. These plans have recently become widespread across EU southern basins. However, in some of these basins the plans were approved without an assessment of the potential impacts that they may have on the economic activities exposed to water restrictions. This paper develops a stochastic methodology to estimate the expected water availability in agriculture that results from the decision rules of the recently approved DMPs. The methodology is applied to the particular case of the Guadalquivir River Basin in southern Spain. Results show that if DMPs are successfully enforced, available water will satisfy in average 62.2% of current demand, and this figure may drop to 50.2% by the end of the century as a result of climate change. This is much below the minimum threshold of 90% that has been guaranteed to irrigators so far.

  9. Quantitative drought monitoring in a typical cold river basin over Tibetan Plateau: An integration of meteorological, agricultural and hydrological droughts

    Science.gov (United States)

    Makokha, Godfrey Ouma; Wang, Lei; Zhou, Jing; Li, Xiuping; Wang, Aihui; Wang, Guangpeng; Kuria, David

    2016-12-01

    We introduce a Rainfall, Snow and Glacier melt (RSG) standardized anomaly (SA) index to reflect water availability in cold river basins by taking into account snow and glacier melt that influence seasonal water availability. The study takes advantage of a high-resolution Water and Energy Budget-Based Hydrological Distributed Model with improved snow physics (WEB-DHM-S) at a grid size of 5 km to quantify hydrological regimes in a typical cold river basin in the Tibetan Plateau (Lhasa River basin as a demonstration site) from 1983 to 2012. Standardized anomaly index was utilized as drought Indicator whereby each meteo-hydrological parameter involved in drought quantification was fitted to a distribution pattern on a monthly basis. Akaike Information Criterion and Bayesian Information Criterion were used as selection criteria. Drought indices were computed from the model inputs and outputs, which included RSG for meteorological drought, soil moisture (surface and root-zone) for agricultural drought and discharge and groundwater level for hydrological drought. From spatial and temporal analyses, drought occurred in 1984, 1988, 1995, 1997, 2009 and 2010, with the highest severity in August, September, July, August, June and June, respectively. This study addresses the glacierized cold river basin's dryness by considering the contribution of snow and glacier in drought quantification, an integration of meteorological, agricultural and hydrological was performed to highlight drought hotspots in the Lhasa River Basin. To the best of our knowledge, this is the first drought study in Lhasa River Basin.

  10. Trends and variability of droughts over the Indian monsoon region

    Directory of Open Access Journals (Sweden)

    Ganeshchandra Mallya

    2016-06-01

    Full Text Available Drought characteristics for the Indian monsoon region are analyzed using two different datasets and standard precipitation index (SPI, standardized precipitation-evapotranspiration index (SPEI, Gaussian mixture model-based drought index (GMM-DI, and hidden Markov model-based drought index (HMM-DI for the period 1901–2004. Drought trends and variability were analyzed for three epochs: 1901–1935, 1936–1971 and 1972–2004. Irrespective of the dataset and methodology used, the results indicate an increasing trend in drought severity and frequency during the recent decades (1972–2004. Droughts are becoming more regional and are showing a general shift to the agriculturally important coastal south-India, central Maharashtra, and Indo-Gangetic plains indicating higher food security and socioeconomic vulnerability in the region.

  11. Drought - A Global Assessment

    Science.gov (United States)

    Lackner, S.; Barnwal, P.; von der Goltz, J.

    2013-12-01

    We investigate the lasting effects of early childhood exposure to drought on economic and health outcomes in a large multi-country dataset. By pooling all Demographic and Health Survey rounds for which household geocodes are available, we obtain an individual-level dataset covering 47 developing countries. Among other impact measures, we collect infant and child mortality data from 3.3m live births and data on stunting and wasting for 1.2m individuals, along with data on education, employment, wealth, marriage and childbearing later in life for similarly large numbers of respondents. Birth years vary from 1893 to 2012. We seek to improve upon existing work on the socio-economic impact of drought in a number of ways. First, we introduce from the hydrological literature a drought measure, the Standardized Precipitation Index (SPI), that has been shown to closely proxy the Palmer drought index, but has far less demanding data requirements, and can be obtained globally and for long time periods. We estimate the SPI for 110 years on a global 0.5° grid, which allows us to assign drought histories to the geocoded individual data. Additionally, we leverage our large sample size to explicitly investigate both how drought impacts have changed over time as adaptation occurred at a varying pace in different locations, and the role of the regional extent of drought in determining impacts.

  12. Projections of agricultural droughts in the Southeast Asia

    Science.gov (United States)

    Mishra, V.

    2014-12-01

    Southeast Asia is one of the most populated regions in the world, which falls among the food insecure regions. Droughts during the monsoon season hamper crop growth and food production. During the last few decades, rainfall in the monsoon season has been erratic leading to some of the most wide spread droughts in the region. Severity, areal extents, and frequency of droughts are analyzed using the observed data for the period of 1951-2007. Results indicate that frequency of severe drought increased in the Southeast Asia during the recent decades (1980-2007). To assess the variability of hydrologic and agricultural drought in the region, runoff and soil moisture were simulated using the Variable Infiltration Capacity (VIC) model. The model simulated drought variability was compared with drought simulated by the CMIP5 models during the historic period (1951-2005). Most of the CMIP5 models show increased frequency of severe agricultural droughts in the region under the projected future climate. Increased agricultural droughts in the Southeast Asia may put enormous pressure on the efforts towards achieving food security in the region.

  13. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models

    OpenAIRE

    Oliveira Neto, Raúl; Otávio Petter, Carlos; Cortina Pallás, José Luís

    2009-01-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships. Peer Re...

  14. Report: the current situation of sanitary landfills in Brazil and the importance of the application of economic models.

    Science.gov (United States)

    Neto, Raul Oliveira; Petter, Carlos Otávio; Cortina, José Luis

    2009-12-01

    We present the development stage of the sanitary landfills in Brazil in the context of urban solid residue management, demonstrating the necessity and importance of the employment of economic models. In the article, a cost estimate model is proposed as the basis for studies to be applied by sector management, including the city council, companies, consultants and engineers, contributing to the choice of new areas, public bids, municipal consortia and private public partnerships.

  15. Impact of Global Warming on Streamflow Drought in Europe

    OpenAIRE

    Feyen, Luc; Dankers, Rutger

    2009-01-01

    Recent developments in climate modeling suggest that global warming is likely to favor conditions for the development of droughts in many regions of Europe. Studies evaluating possible changes in drought hazard typically have employed indices that are derived solely from climate variables such as temperature and precipitation, whereas many of the impacts of droughts are more related to hydrological variables such as river flow. This study examines the impact of global warming o...

  16. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.

    Science.gov (United States)

    de Lima Barros, Alessandra Maciel; do Carmo Sobral, Maria; Gunkel, Günter

    2013-01-01

    Emissions of pollutants and nutrients are causing several problems in aquatic ecosystems, and in general an excess of nutrients, specifically nitrogen and phosphorus, is responsible for the eutrophication process in water bodies. In most developed countries, more attention is given to diffuse pollution because problems with point pollution have already been solved. In many non-developed countries basic data for point and diffuse pollution are not available. The focus of the presented studies is to quantify nutrient emissions from point and diffuse sources in the Ipojuca river basin, Pernambuco State, Brazil, using the Moneris model (Modelling Nutrient Emissions in River Systems). This model has been developed in Germany and has already been implemented in more than 600 river basins. The model is mainly based on river flow, water quality and geographical information system data. According to the Moneris model results, untreated domestic sewage is the major source of nutrients in the Ipojuca river basin. The Moneris model has shown itself to be a useful tool that allows the identification and quantification of point and diffuse nutrient sources, thus enabling the adoption of measures to reduce them. The Moneris model, conducted for the first time in a tropical river basin with intermittent flow, can be used as a reference for implementation in other watersheds.

  17. Multidecadal Variability of the North Brazil Current

    Science.gov (United States)

    Zhang, D.; McPhaden, M.

    2009-04-01

    The North Brazil Current (NBC) flowing northward in the tropical south Atlantic is one of the strongest western boundary currents in the world ocean. It's unique location, straddling the tropical Atlantic where currents are predominately zonal, suggests that it is a major component of the Atlantic Meridional Overturning Circulation (AMOC). Fritz Schott was one of the first to suggest using the NBC as an index for AMOC transport, which is difficult to simulate accurately in models and data assimilation systems due to a lack of observational constraints. Here, we calculate an NBC transport time series based on five decades of historical ocean observations near the western boundary off the coast of Brazil between 6° and 11°S. Results reveal a large magnitude NBC variation on multidecadal time scales that is coherent with the Atlantic Multidecadal Oscillation in sea surface temperature, multidecadal swings in Sahel Drought and Atlantic hurricane activity, as well as the subtropical and subpolar upper ocean salinity anomalies. All of these multidecadal variations have been linked to the AMOC in a number of modelling studies, suggesting that our observed multidecadal NBC variability is an useful indicator of the AMOC. Concerning the possible slowdown of AMOC under global warming and the debate about whether a slowdown has already occurred, our NBC transport time series shows no significant trend over the last half century. The results provide important constraints on climate models used for climate change projections and decadal time scale climate predictions.

  18. Modeling distribution of Phoneutria bahiensis (Araneae: Ctenidae: an endemic and threatened spider from Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo A Dias

    2011-08-01

    Full Text Available Phoneutria bahiensis Simó & Brescovit, 2001 is a large ctenid spider inhabiting the states of Bahia and Espírito Santo, Brazil. Considering that it is probably endemic, this species was included in the Brazilian red book of threatened species. Here, we predict the distribution range of P. bahiensis using 19 bioclimatic variables in the model design. The most septentrional record for this spider was indicated for northern Bahia. The model predicts that the distribution range covers the Atlantic Forest from the state of Paraíba to Rio de Janeiro, with the best suitable area in the Atlantic Forest of the state of Bahia. The bioclimatic variable with the best contribution to the model was precipitation in the driest quarter. Based on collected data, the species inhabits Ombrophilous Forests and Restinga vegetation, two ecosystems of the Atlantic Forest biome. In the best-predicted area of distribution, eleven Conservation Units were included. This information could be considered for future conservation plans of this species.

  19. Modelling of food intake in Brazil and Germany: Examining the effects of self-construals.

    Science.gov (United States)

    Hirata, Elizabeth; Kühnen, Ulrich; Hermans, Roel C J; Lippke, Sonia

    2015-12-01

    The current research focused on the influence of informational eating norms on people's food intake, and examined whether this influence was moderated by participants' self-construal levels. In two experiments, a two (intake norm manipulation: low vs. high) by two (self-construal manipulation: interdependent versus independent) between-participant factorial design was used. The studies were conducted in Brazil (Experiment 1) and in Germany (Experiment 2) as participants' self-construal levels differ between these countries. In Experiment 1, results indicated that participants exposed to a high-intake norm ate more than participants exposed to a low-intake norm. However, self-construal was not found to moderate the influence of food intake norms on participants' intake. In Experiment 2, replicating the results of Experiment 1, exposure to a high-intake norm increased participants' food intake, but self-construals again did not moderate modelling effects on food intake. Although differences in individuals' self-construal were found between both countries, they did not affect the magnitude of modelling effects on eating. Our studies provide evidence for cross-cultural similarity in the extent to which Brazilian and German female young adults are vulnerable to modelling effects on food intake, independent on their self-construal.

  20. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China

    Science.gov (United States)

    Niu, Jun; Chen, Ji; Sun, Liqun

    2015-07-01

    The knowledge of drought evolution characteristics may aid the decision making process in mitigating drought impacts. This study uses a macro-scale hydrological model, Variable Infiltration Capacity (VIC) model, to simulate terrestrial hydrological processes over the Xijiang (West River) basin in South China. Three drought indices, namely standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture anomaly index (SMAI), are employed to examine the spatio-temporal and evolution features of drought events. SPI, SRI and SMAI represent meteorological drought, hydrological drought and agricultural drought, respectively. The results reveal that the drought severity depicted by SPI and SRI is similar with increasing timescales; SRI is close to that of SPI in the wet season for the Liu River basin as the high-frequency precipitation is conserved more by runoff; the time lags appear between SPI and SRI due to the delay response of runoff to precipitation variability for the You River basin. The case study in 2010 spring drought further shows that the spatio-temporal evolutions are modulated by the basin-scale topography. There is more consistency between meteorological and hydrological droughts for the fan-like basin with a converged river network. For the west area of the Xijiang basin with the high elevation, the hydrological drought severity is less than meteorological drought during the developing stage. The recovery of hydrological and agricultural droughts is slower than that of meteorological drought for basins with a longer mainstream.

  1. Density-dependent vulnerability of forest ecosystems to drought

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades

  2. Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions

    Science.gov (United States)

    Wang, Guiling; Yu, Miao; Xue, Yongkang

    2016-12-01

    This paper investigates the potential impact of "idealized-but-realistic" land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs' internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived

  3. AquaCrop 模型在农业旱灾损失评估中的应用%Application of AquaCrop model in evaluation of agricultural drought losses

    Institute of Scientific and Technical Information of China (English)

    常文娟; 梁忠民

    2014-01-01

    利用作物生长机理模型---AquaCrop 模型,建立作物生长环境要素(气象、土壤水分等)与产量之间的定量关系,以此构建农业旱灾损失定量评估模型,并对云南省曲靖市沾益县一季中稻的旱灾损失进行了实例计算。结果表明, AquaCrop 模型能够客观地评估农业因旱损失,为旱灾风险分析计算提供灾损数据支撑。%T he AquaCrop model, based on t he mechanism of crop growth process, was introduced to develop the quantitative rela-tionship betw een crop environmental factors( w eather, soil moisture, etc) and crop yields, and t hen to construct a quantitat ive e-valuation model of the agricultural drought losses. The model w as applied to calculate the agricultural drought losses of season rice in Zhanyi County of Qujing City in Yunnan Province. The results showed that the AquaCrop model can assess the agricul-tural drought losses objectively and provide data support for drought risk analysis.

  4. Institutional adaptation to drought: the case of Fars Agricultural Organization.

    Science.gov (United States)

    Keshavarz, Marzieh; Karami, Ezatollah

    2013-09-30

    Recurrent droughts in arid and semi-arid regions are already rendering agricultural production, mainstay of subsistence livelihoods, uncertain. In order to mitigate the impact of drought, agricultural organizations must increase their capacity to adapt. Institutional adaptation refers to the creation of an effective, long-term government institution or set of institutions in charge of planning and policy, and its capacity to develop, revise, and execute drought policies. Using the Fars Agricultural Organization in Iran, as a case study, this paper explores the institutional capacities and capabilities, necessary to adapt to the drought conditions. The STAIR model was used as a conceptual tool, and the Bayesian network and Partial Least Squares (PLS) path modeling was applied to explain the mechanisms by which organizational capacities influence drought management. A survey of 309 randomly selected managers and specialists indicated serious weaknesses in the ability of the organization to apply adaptation strategies effectively. Analysis of the causal models illustrated that organizational culture and resources and infrastructure significantly influenced drought management performance. Moreover, managers and specialists perceived human resources and strategy, goals, and action plan, respectively, as the main drivers of institutional adaptation to drought conditions. Recommendations and implications for drought management policy are offered to increase organizational adaptation to drought and reduce the subsequent sufferings.

  5. On the Use of NASA Earth Observations to Characterize the 2012 US Drought

    Science.gov (United States)

    Lawford, Richard; Toll, David; Doorn, Bradley; Entin, Jared; Mocko, David; Svoboda, Mark; Rodell, Matthew; Koster, Randy; Schubert, Siegried; Liang, Xin-Zhong; Cai, Ximing; Wardlow, Brian; Xia, Youlong; Verdin, Jim; Ek, Michael

    2013-01-01

    As the harvest season approached in August 2012, much of the United States remained in the grip of a major drought. According to the United States Drought Monitor (USDM), 52 percent of the United States and Puerto Rico was in moderate drought conditions or worse by August 7, 2012 (see Figure 1a). Drought areas were concentrated in the agricultural states in the central U.S.A. The drought threatened global food prices and US biofuel feedstocks. Although areas east of the Mississippi River experienced some relief due to Hurricane Isaac, the drought persisted west of the Mississippi River Basin. The USDA Economic Research Service reports about 80 percent of the US agriculture experienced drought in 2012 making it the most extensive drought since the 1950's. The Financial Times reported 2012 losses at roughly $30 billion dollars. NASA maintains satellite and modelling capabilities that enable the assessment of drought severity and extent on a national and global basis.

  6. A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook

    Directory of Open Access Journals (Sweden)

    Ji Yae Shin

    2016-01-01

    Full Text Available Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF model was designed using the past, current, and forecasted drought condition. In this study, the drought conditions were represented by the standardized precipitation index (SPI. The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals (CIs, exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought conditions in the outlook framework.

  7. Long term context for recent drought in northwestern Africa

    Science.gov (United States)

    Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Attalah, Said; Baisan, Christopher; Aloui, Ali

    2008-07-01

    Anthropogenic climate change is projected to exacerbate midlatitude aridity. Here, we analyze newly developed multi-century tree-ring records for a long-term perspective on drought in Tunisia and Algeria. We use a new set of 13 Cedrus atlantica and Pinus halepensis chronologies with a strong signal for warm-season drought (May-August) to generate a robust, well-validated reconstruction of the Palmer Drought Severity Index (PDSI) for the period AD 1456-2002. Key features of the reconstruction reveal the magnitude of pre-instrumental droughts from the historic record. Remarkably, the most recent drought (1999-2002) appears to be the worst since at least the middle of the 15th century. This drought is consistent with the early signature of a transition to more arid midlatitude conditions, as projected by general circulation models.

  8. Palmer Drought Severity Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PDSI from the Dai dataset. The Palmer Drought Severity Index (PDSI) is devised by Palmer (1965) to represent the severity of dry and wet spells over the U.S. based...

  9. Root Niche Separation Can Explain Avoidance of Seasonal Drought Stress and Vulnerability of Overstory Trees to Extended Drought

    Science.gov (United States)

    Ivanov, V. Y.; Hutyra, L.; Wofsy, S. C.; Munger, J. W.; Saleska, S. R.; Oliveira, R. C.; Camargo, P. B.

    2011-12-01

    Large areas of Amazonian evergreen forests experience seasonal droughts extending for three or more months, and show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic vegetation-hydrology model is developed to test the roles of deep roots and of soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of ``root niche separation,'' in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data on canopy phenology, energy fluxes, soil moisture, and soil and root structure from the Tapajos National Forest, Brazil, provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. The model can be used to quantitatively predict ecosystem water balances and explore ecosystem tipping points under future climate change.

  10. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model

    Directory of Open Access Journals (Sweden)

    Patrícia Silva

    Full Text Available Abstract Fire has a fundamental role in the Earth system as it influences global and local ecosystem patterns and processes, such as vegetation distribution and structure, the carbon cycle and climate. Since, in the global context, Brazil is one of the regions with higher fire activity, an assessment is here performed of the sensitivity of the wildfire regime in Brazilian savanna and shrubland areas to changes in regional climate during the 21st Century, for an intermediate scenario (RCP4.5 of climate change. The assessment is based on a spatial and temporal analysis of a meteorological fire danger index specifically developed for Brazilian biomes, which was evaluated based on regional climate simulations of temperature, relative humidity and precipitation using the Rossby Centre Regional Climate Model (RCA4 forced by the EC-Earth earth system model. Results show a systematic increase in the extreme levels of fire danger throughout the 21st Century that mainly results from the increase in maximum daily temperature, which rises by about 2 °C between 2005 and 2100. This study provides new insights about projected fire activity in Brazilian woody savannas associated to climate change and is expected to benefit the user community, from governmental policies to land management and climate researches.

  11. Drought, Water Scarcity and Climate Change

    Science.gov (United States)

    van Lanen, H. A. J.; Tallaksen, L. M.; Stahl, K.; van Loon, A. F.; van Huijgevoort, M. H. J.; Corzo Perez, G. A.; Wanders, N.

    2012-04-01

    A recent multi-model analysis using global hydrological model shows a decline of future available water resources by 10-50% in substantial parts of southern, western and central Europe. This implies that water scarcity (long-term unsustainable use of water resources) likely will increase. Additionally, there is some confidence that in southern and central Europe drought will intensify in the 21st century, hence impacts of drought will become more severe. The higher risk for water scarcity and drought calls for an intensified debate on the adaptation of land and water management in Europe. The debate requires a distinction to be made between drought and water scarcity because underlying processes are fundamentally different, which requires management to identify different measures. A case study will be presented demonstrating on how to distinguish between drought and water scarcity. The impacts of drought usually exacerbate scarcity, which makes it necessary to have a comprehensive understanding of future drought risk to identify promising management options. Usually models are applied to project future changes in drought characteristics. The EU project WATCH provided gridded time series (0.5 degree) of a suite of global hydrological models forced by three GCMs. Several characteristics (e.g. change in areas with zero runoff, frequency, durations) of future drought have been derived and will be presented for the globe and Europe in particular. Model performance was evaluated by an intercomparison exercise, assuming that the more the models agree, the more likely they are providing a good representation of reality. Key drought characteristics (e.g. frequency, duration) have been mapped at the global scale and the results will be presented for the range of models included. The large-scale models were also assessed by comparing against an extensive dataset of streamflow observations in Europe. Modelled trends in annual, monthly and low flow simulated with large

  12. Simultaneous Control of Phenanthrene and Drought by Dual Exposure System

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Holmstrup, Martin; Damgaard, Christian;

    2014-01-01

    and independent control of chemical and drought exposure in bioassays with terrestrial organisms: Passive dosing from silicone controlled the chemical activity of phenanthrene (chemical stress), while saline solutions controlled the water activity (drought stress) in the closed exposure system. The dual exposure...... system was then applied in a full factorial experiment with seven exposure levels (72), which aimed at determining the combined effects of phenanthrene and drought on the survival of the terrestrial springtail Folsomia candida after 7 d exposure. Fitting an "independent action" model to the complete data...... set revealed statistically significant synergy between phenanthrene and drought (p

  13. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  14. A global evaluation of streamflow drought characteristics

    Directory of Open Access Journals (Sweden)

    A. K. Fleig

    2005-11-01

    Full Text Available How drought is characterised depends on the region under study, the purpose of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology is preferable. In this study several methods to derive streamflow drought characteristics are evaluated based on their application to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived with the threshold level method. When it is applied to daily time series an additional pooling procedure is required and three different pooling procedures are evaluated, the moving average procedure (MA-procedure, the inter event time method (IT-method, and the sequent peak algorithm (SPA. The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended for the selection of annual maximum series of deficit characteristics and for very low threshold levels due to the high degree of pooling. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams in all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed separately.

  15. A global evaluation of streamflow drought characteristics

    Directory of Open Access Journals (Sweden)

    A. K. Fleig

    2006-01-01

    Full Text Available How drought is characterised depends on the purpose and region of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology to characterise drought is preferable. In this study the threshold level method in combination with three common pooling procedures is applied to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived, and the methods are evaluated for their applicability for regional studies. Three different pooling procedures are evaluated: the moving-average procedure (MA-procedure, the inter-event time method (IT-method, and the sequent peak algorithm (SPA. The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended as pooling procedure for the selection of annual maximum series of deficit characteristics and for very low threshold levels to ensure that events occurring shortly after major events are recognized. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams of all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed

  16. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011 by using PDSI indices and agriculture drought survey data

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Wang, Jun-Bang; Lu, Hou-Quan; Guo, An-Hong; Zhu, Zai-Chun; Myneni, Ranga B.; Shugart, Herman H.

    2016-03-01

    Inspired by concerns of the effects of a warming climate, drought variation and its impacts have gained much attention in China. Arguments about China's drought persist and little work has utilized agricultural drought survey area to evaluate the impact of natural drought on agriculture. Based on a newly revised self-calibrating Palmer Drought Severity Index (PDSI) model driven with air-relative-humidity-based two-source (ARTS) E0 (PDSIARTS; Yan et al., 2014), spatial and temporal variations of drought were analyzed for 1982-2011 in China, which indicates that there was nonsignificant change of drought over this interval but with an extreme drought event happened in 2000-2001. However, using air temperature (Ta)-based Thornthwaite potential evaporation (EP_Th) and Penman-Monteith potential evaporation (EP_PM) to drive the PDSI model, their corresponding PDSITh and PDSIPM all gave a significant drying trend for 1982-2011. This suggests that PDSI model was sensitive to EP parameterization in China. Annual drought-covered area from agriculture survey was initially adopted to evaluate impact of PDSI drought on agriculture in China during 1982-2011. The results indicate that PDSIARTS drought area (defined as PDSIARTS evaluating the impact of natural drought on agriculture.

  17. Classification of Meteorological Drought

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zou Xukai; Xiao Fengjin; Lu Houquan; Liu Haibo; Zhu Changhan; An Shunqing

    2011-01-01

    Background The national standard of the Classification of Meteorological Drought (GB/T 20481-2006) was developed by the National Climate Center in cooperation with Chinese Academy of Meteorological Sciences,National Meteorological Centre and Department of Forecasting and Disaster Mitigation under the China Meteorological Administration (CMA),and was formally released and implemented in November 2006.In 2008,this Standard won the second prize of the China Standard Innovation and Contribution Awards issued by SAC.Developed through independent innovation,it is the first national standard published to monitor meteorological drought disaster and the first standard in China and around the world specifying the classification of drought.Since its release in 2006,the national standard of Classification of Meteorological Drought has been used by CMA as the operational index to monitor and drought assess,and gradually used by provincial meteorological sureaus,and applied to the drought early warning release standard in the Methods of Release and Propagation of Meteorological Disaster Early Warning Signal.

  18. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information

    Science.gov (United States)

    Aghakouchak, Amir; Tourian, Mohammad J.

    2015-04-01

    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014

  19. Is drought helping or killing dengue? Investigation of spatiotemporal relationship between dengue fever and drought

    Science.gov (United States)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2015-04-01

    Dengue Fever is a vector-borne disease that is transmitted between human and mosquitos in tropical and sub-tropical regions. Previous studies have found significant relationship between the epidemic of dengue cases and climate variables, especially temperature and precipitation. Besides, the natural phenomena (e.g., drought) are considered that significantly drop the number of dengue cases by killing vector's breeding environment. However, in Kaohsiung City, Taiwan, there are evidences that the temporal pattern of dengue is correlated to drought events. Kaohsiung City experienced two main dengue outbreaks in 2002 and 2014 that both years were confirmed with serious drought. Especially in 2014, Kaohsiung City was suffered from extremely dengue outbreak in 2014 that reported the highest number of dengue cases in the history. This study constructs the spatiotemporal model of dengue incidences and index of drought events (Standardized Precipitation Index, SPI) based on the distributed lag nonlinear model (DLNM). Other meteorological measures are also included in the analysis.

  20. Modelling physical-biological interactions in the Southeast Brazil Bight: transport patterns of Brazilian Sardine larvae

    Science.gov (United States)

    Faggiani Dias, D.; Gherardi, D. F.; Pezzi, L. P.

    2013-05-01

    The advection of Brazilian Sardine (Sardinella brasiliensis) eggs and larvae in the SBB was modeled using an individual-based model (Ichthyop) and a hydrodynamic model (Regional Ocean Modeling System, ROMS) to test for differences in larval retention for five spawning areas with high probability of egg occurrence: i) two areas north of the domain - Cape Frio and Rio de Janeiro, ii) one in the middle in Sao Sebastiao, and iii) two in the South in Paranagua. According to previous studies, this encompasses the known spawning habitat. Advective processes and physical characteristics, such as water temperature and salinity, were considered to determine larvae transport and survival. The hydrodynamic model grid has a horizontal resolution of 1/12o. Results of monthly mean Sea Surface Temperature (MSST) and Sea Surface Height (MSSH) indicate there isn't warming or cooling trend over the years, and the seasonal cycle well represented. These results were compared with satellite-derived data from the AVHRR sensor and AVISO project. Model results accurately represent the position and shape of the main surface structures observed in the satellite data. Monthly MSST maps for the experiment period indicate that the model tends to underestimate temperatures in upwelling areas and overestimate in the Brazil Current region, with differences mostly around ±1oC. For MSSH, although the model represents well the main surface ocean structures, it tends to underestimate along the domain. Temperature-salinity diagrams plotted in a coastal area for December of four years (1985, 1986, 1987 and 1988), near Ubatuba region, are consistent with field collected data, suggesting that the main water masses in SBB are reliably represented. The IBM experiments were carried out during the summer of six years (1980, 1981, 1988, 1991, 1992 and 1993). For each year, 20000 eggs were released, distributed in the five areas, and tracked for 45 days. At the end of simulation, the mortality due to

  1. Drought in Northeast Brazil—past, present, and future

    Science.gov (United States)

    Marengo, Jose A.; Torres, Roger Rodrigues; Alves, Lincoln Muniz

    2016-06-01

    This study provides an overview of the drought situation in Northeast Brazil for the past, present, and future. Droughts affect more people than any other natural hazard owing to their large scale and long-lasting nature. They are recurrent in the region and while some measures have been taken by the governments to mitigate their impacts, there is still a perception that residents, mainly in rural areas, are not yet adapted to these hazards. The drought affecting the Northeast from 2012 to 2015, however, has had an intensity and impact not seen in several decades and has already destroyed large swaths of cropland, affecting hundreds of cities and towns across the region, and leaving ranchers struggling to feed and water cattle. Future climate projections for the area show large temperature increases and rainfall reductions, which, together with a tendency for longer periods with consecutive dry days, suggest the occurrence of more frequent/intense dry spells and droughts and a tendency toward aridification in the region. All these conditions lead to an increase in evaporation from reservoirs and lakes, affecting irrigation and agriculture as well as key water uses including hydropower and industry, and thus, the welfare of the residents. Integrating drought monitoring and seasonal forecasting provides efficient means of assessing impacts of climate variability and change, identifying vulnerabilities, and allowing for better adaptation measures not only for medium- and long-term climate change but also for extremes of the interannual climate variability, particularly droughts.

  2. Trends in Drought Frequency. The Fate of DOC Export From British Peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, F. [Department of Geological Sciences, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Burt, T.P. [Department of Geography, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Adamson, J.K. [Environmental Change Network, Centre for Ecology and Hydrology, Merlewood, Windermere Road, Grange over Sands, Cumbria, LA11 6JU (United Kingdom)

    2006-06-15

    There is increasing evidence that drought is leading to increased loss of dissolved organic carbon (DOC) from upland peats. Therefore, this study endeavours to understand the severity and frequency of the scale of drought responsible for driving the observed changes; and, by reconstructing climatic records, to understand whether such droughts are increasing in severity and frequency. The study suggests that there are two levels of drought severity important in the peatlands: a hydrological drought that causes hydrophobic effects in the upper peat profile lasting 3-4 years in duration, and a more severe biogeochemical drought that triggers new mechanisms of DOC production and decade-long effects. The study uses long term climate data from Central England and Northern England to reconstructs depth to water table for an upland peat catchment back to 1766 and shows that hydrological drought has a return period of 25 years and that biogeochemical drought has a return period of 15.5 years. Statistical modelling of the time series of annual droughts shows only weak evidence for an increasing frequency of severe droughts since 1766, but stronger evidence for the recent past. The return period of drought of sufficient severity to cause biogeochemical response is coming close to the length of effect such a drought would have, i.e. trends in drought frequency mean that peatlands may no longer be resilient to the impact of drought, with dire consequences for the storage of carbon in these environments.

  3. Assessing the performance of two models on calculating maize actual evapotranspiration in a semi-humid and drought-prone region of China

    Science.gov (United States)

    Wang, J.; Wang, J. L.; Zhao, C. X.; McGiffen, M. E.; Liu, J. B.; Wang, G. D.

    2017-01-01

    The two-step and one-step models for calculating evapotranspiration of maize were evaluated in a semi-humid and drought-prone region of northern China. Data were collected in the summers of 2013 and 2014 to determine relative model accuracy in calculating maize evaopotranspiration. The two-step model predicted daily evaoptranspiration with crop coefficients proposed by FAO and crop coefficient calibrated by local field data; the one-step model predicted daily evapotranspiration with coefficients derived by other researcher and coefficients calibrated by local field data. The predicted daily evapotranspiration in 2013 and 2014 growing seasons with the above two different models was both compared with the observed evapotranspiration with eddy covariance method. Furthermore, evapotranspiration in different growth stages of 2013 and 2014 maize growing seasons was predicted using the models with the local calibrated coefficients. The results indicated that calibration of models was necessary before using them to predict daily evapotranspiration. The model with the calibrated coefficients performed better with higher coefficient of determination and index of agreement and lower mean absolute error and root mean square error than before. And the two-step model better predicted daily evapotranspiration than the one-step model in our experimental field. Nevertheless, as to prediction ET of different growth stages, there still had some uncertainty when predicting evapotranspiration in different year. So the comparisons suggested that model prediction of crop evapotranspiration was practical, but requires calibration and validation with more data. Thus, considerable improvement is needed for these two models to be practical in predicting evapotranspiration for maize and other crops, more field data need to be measured, and an in-depth study still needs to be continued.

  4. Observed and CMIP5 modeled influence of large-scale circulation on summer precipitation and drought in the South-Central United States

    Science.gov (United States)

    Ryu, Jung-Hee; Hayhoe, Katharine

    2017-02-01

    Annual precipitation in the largely agricultural South-Central United States is characterized by a primary wet season in May and June, a mid-summer dry period in July and August, and a second precipitation peak in September and October. Of the 22 CMIP5 global climate models with sufficient output available, 16 are able to reproduce this bimodal distribution (we refer to these as "BM" models), while 6 have trouble simulating the mid-summer dry period, instead producing an extended wet season ("EW" models). In BM models, the timing and amplitude of the mid-summer westward extension of the North Atlantic Subtropical High (NASH) are realistic, while the magnitude of the Great Plains Lower Level Jet (GPLLJ) tends to be overestimated, particularly in July. In EW models, temporal variations and geophysical locations of the NASH and GPLLJ appear reasonable compared to reanalysis but their magnitudes are too weak to suppress mid-summer precipitation. During warm-season droughts, however, both groups of models reproduce the observed tendency towards a stronger NASH that remains over the region through September, and an intensification and northward extension of the GPLLJ. Similarly, future simulations from both model groups under a +1 to +3 °C transient increase in global mean temperature show decreases in summer precipitation concurrent with an enhanced NASH and an intensified GPLLJ, though models differ regarding the months in which these decreases are projected to occur: early summer in the BM models, and late summer in the EW models. Overall, these results suggest that projected future decreases in summer precipitation over the South-Central region appear to be closely related to anomalous patterns of large-scale circulation already observed and modeled during historical dry years, patterns that are consistently reproduced by CMIP5 models.

  5. Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit

    Science.gov (United States)

    Borgomeo, Edoardo; Pflug, Georg; Hall, Jim W.; Hochrainer-Stigler, Stefan

    2015-11-01

    Global climate models suggest an increase in evapotranspiration, changing storm tracks, and moisture delivery in many parts of the world, which are likely to cause more prolonged and severe drought, yet the weakness of climate models in modeling persistence of hydroclimatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multiyear droughts. In this paper, we propose a vulnerability-based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Marginal distributions of the streamflow for each month are generated by bootstrapping the historical data, while the joint probability distributions of consecutive months are constructed using a copula-based method. Droughts with longer durations and larger deficits than the observed record are generated by perturbing the copula parameter and by adopting an importance sampling strategy for low flows. In this way, potential climate-induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed. Results indicate that the water system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought.

  6. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  7. Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamic, and climate models

    Directory of Open Access Journals (Sweden)

    Margaret A. Cook

    2015-11-01

    Full Text Available Recent droughts and heat waves have revealed the vulnerability of some power plants to effects from higher temperature intake water for cooling. In this evaluation, we develop a methodology for predicting whether power plants are at risk of violating thermal pollution limits. We begin by developing a regression model of average monthly intake temperatures for open loop and recirculating cooling pond systems. We then integrate that information into a thermodynamic model of energy flows within each power plant to determine the change in cooling water temperature that occurs at each plant and the relationship of that water temperature to other plants in the river system. We use these models together with climate change models to estimate the monthly effluent temperature at twenty-six power plants in the Upper Mississippi River Basin and Texas between 2015 and 2035 to predict which ones are at risk of reaching thermal pollution limits. The intake model shows that two plants could face elevated intake temperatures between 2015 and 2035 compared to the 2010–2013 baseline. In general, a rise in ambient cooling water temperature of 1 °C could cause a drop in power output of 0.15%–0.5%. The energy balance shows that twelve plants might exceed state summer effluent limits.

  8. Deficit of sand in a sediment transport model favors coral reef development in Brazil

    Directory of Open Access Journals (Sweden)

    Abílio C.S.P. Bittencourt

    2008-03-01

    Full Text Available This paper shows that the location of the shoreface bank reefs along the northeastern and eastern coasts of Brazil, in a first order approximation, seem to be controlled by the deficit of sediment in the coastal system. The sediment transport pattern defined by a numerical modeling of wave refraction diagrams, representing circa 2000 km of the northeastern and eastern coasts of Brazil, permitted the regional-scale reproduction of several drift cells of net longshore sediment transport. Those drift cells can reasonably explain the coastal sections that present sediment surplus or sediment deficit, which correspond, respectively, to regions where there is deposition and erosion or little/no deposition of sand. The sediment deficit allows the exposure and maintenance of rocky substrates to be free of sediment, a favorable condition for the fixation and development of coral larvae.Este trabalho mostra que a localização dos recifes de coral ao longo dos litorais leste e nordeste do Brasil, em uma aproximação de primeira ordem, parece ser controlada pelo déficit de sedimentos no sistema costeiro. O padrão de transporte de sedimentos definido por modelagem numérica a partir de diagramas de refração de ondas, representando cerca de 2000 km dos litorais leste e nordeste do Brasil, permitiu a reprodução, em escala regional, de várias células de deriva litorânea efetiva de sedimentos. Essas células de deriva podem razoavelmente explicar os segmentos costeiros que representam superávit, ou deficit de sedimentos que correspondem, respectivamente, a regiões onde existe deposição e erosão ou pouca/nenhuma deposição de areia. O deficit de sedimentos propicia a exposição e manutenção de substratos rochosos livres de sedimento, uma condição favorável para a fixação e desenvolvimento das larvas de coral.

  9. Rainwater harvesting in the challenge of droughts and climate change in semi-arid Brazil%巴西半干旱地区干旱和气候多变情况下的雨水收集

    Institute of Scientific and Technical Information of China (English)

    Johann Gnadlinger

    2014-01-01

    Some successful experiences of rainwater harvesting in Brazil’s semi-arid region are shown how rural communities are living during the severe drought from 2011 to 2013 using technologies of rainwater harvesting for the household in agriculture livestock raising and the environment.Starting from the positive experiences principles of living in the challenge of droughts and climate change are elaborated and summarized into different guidelines for sustainable livelihood and production access to water and sufficient land area rainwater harvesting to provide water security to households and communities preservation recovering and management of drought-resistant vegetation emphases on raising of small and medium sized livestock and water and forage storage appropriate crop selection and sustainable extraction processing and marketing of crop products capacity building of the people. These principles contribute to preparing a national policy on living in harmony with the semi-arid climate. Rainwater harvesting is an important part of a package of measures which enables a sustainable livelihood in such a difficult environment.%通过巴西半干旱地区的一些成功案例,介绍了当地农村社区在2011~2013年严重旱灾期间所采取的有效措施:对生活用水、农业用水和畜牧用水采取水资源管理技术;对土壤湿度和含水层采取诸如蓄水池、地下水坝等环境保护措施。根据这些经验,总结出旱灾和气候变化环境下的生活原则,并制定成可持续性生活生产的指导方针:获取足够的水资源和土地面积;利用雨水以保证家庭和社区的用水安全;种植、养护与管理抗旱植物;倡导对中小型家畜养殖的水和饲料储存;加强农作物品种甄选及其产品的可持续生产、加工和销售;重视居民的水资源保护思想和能力培养。这些原则为指导干旱气候条件下人与环境和谐相处提供了宝贵的经验。

  10. Geologic conceptual model of the municipality of Sete Lagoas (MG, Brazil and the surroundings

    Directory of Open Access Journals (Sweden)

    PAULO GALVÃO

    2016-03-01

    Full Text Available ABSTRACT The study area is located in the state of Minas Gerais, Brazil, among the municipalities of Pedro Leopoldo, Matozinhos, and Sete Lagoas, with Velhas River as the eastern boundary. It is located in the São Francisco Craton, where carbonated argillo-arenaceous sediments are emplaced giving origin to the Bambuí Group, in the São Francisco Basin. Despite the geological knowledge previously developed, the region needs work on integration and detailing of such information. For this reason, the main objective was to contribute to the quality of the geologic cartography, the spatial distribution, and the structural framework geometry. Thus, geologic mapping, aerial photography interpretation, and evaluation of 270 lithologic well profiles were carried out. It was possible to establish a new geologic perspective of the region by obtaining the detailed geologic map of the municipality of Sete Lagoas, 14 geologic cross sections, and a geologic conceptual model. The study showed that the area is within a basin border, presenting a geometry conditioned by horst and graben system controlled by faulting. This structural feature displaced stratigraphic sequences positioning them side by side with lithologic sequences with different ages.

  11. Application of agrometeorological spectral model in rice area in southern Brazil

    Science.gov (United States)

    Leivas, Janice F.; de C. Teixeira, Antonio Heriberto; Andrade, Ricardo G.; de C. Victoria, Daniel; Bayma-Silva, Gustavo; Bolfe, Edson L.

    2015-10-01

    The southern region is responsible for 70% of rice production in Brazil. In this study, rice areas of Rio Grande do Sul were selected, using the land use classification, scale 1: 100,000, provided by Brazilian Institute of Geography and Statistics (IBGE). MODIS Images were used and meteorological data, available by National Institute of Meteorology (INMET). The period of analysis was crop season 2011/2012, October to March. To obtain evapotranspiration was applied agrometeorological-spectral model SAFER (Simple Algorithm For Retrieving Evapotranspiration). From the analysis of the results, on planting and cultivation period , the average evapotranspiration (ET) daily was 1.93 +/- 0.96 mm.day-1. In the vegetative development period of rice, the daily ET has achieved 4.94 mm.day-1, with average value 2,31+/- 0.97 mm.day-1. In the period of harvest, evapotranspiration daily average was 1.84 +/- 0.80 mm.day-1. From results obtained, the estimation of evapotranspiration from satellite images may assist in monitoring the culture during the cycle, assisting in estimates of water productivity and crop yield.

  12. Drought Monitoring, Prediction and Adaptation under Climatic Changes

    Science.gov (United States)

    Su, Z.; Ma, Y.; van der Velde, R.; Dente, L.; Wang, L.; Timmermans, J.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Verhoef, W.; Jia, L.; Wen, J.; He, Y.; Wan, L.; Liu, Q. H.; Yu, Q.; Li, X.; Zhong, L.; Zeng, Y.; Tian, X.; Li, L.; Qin, C.; Timmermans, W.; van Helvoirt, M.; van der Tol, C.; Salama, M. S.; Vekerdy, Z.

    2013-01-01

    The objective of this project was to develop a quantitative and operational system for nationwide drought monitoring and drought impact assessment for application in agriculture and water resources and environment in China using ESA, Chinese and other relevant satellite data as major data source in combination with other data (e.g. meteorological and drought statistics, etc.). An extension to drought prediction and adaptation to climate change had been made compared to the Dragon I drought monitoring project. In detail the project generated: (1) a preoperational real time drought monitoring and prediction system, (2) improved understanding of land surface processes and land-atmosphere interactions over different terrains (e.g. agriculture land, forest, Gobi desert, high plateau, polar environment), (3) algorithms for estimation of land surface parameters and heat fluxes, (4) assessment of economic loss caused by drought and adaptation measures under climatic change, (5) training of young scientists in the area of water, climate and environment. An operational system will be established by the China Meteorological Administration’s National Meteorological Center (CMA/NMC) to provide information concerning the drought evolution situation and to support drought relief decision-making. We report on advances in retrievals of soil moisture using in-situ observations, satellite sensors and numerical modeling. The accuracy of available soil moisture products are assessed using in-situ data collected in the soil moisture monitoring networks developed for this and other projects. The use of these satellite retrievals in drought monitoring is demonstrated by analyzing the droughts in China and the generated drought assessment indices are compared to current practice by CMA.

  13. Contributions to uncertainty in projections of future drought under climate change scenarios

    Directory of Open Access Journals (Sweden)

    I. H. Taylor

    2012-11-01

    Full Text Available Drought is a cumulative event, often difficult to define and involving wide reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Uncertainties in future projections of drought arise from several sources and our aim is to understand how these sources of uncertainty contribute to future projections of drought. We consider four sources of uncertainty; climate model uncertainty associated with future climate projections, future emissions of greenhouse gases (future scenario uncertainty, type of drought (drought index uncertainty and drought event definition (threshold uncertainty. Three drought indices (the Standardised Precipitation Index (SPI, Soil Moisture Anomaly (SMA and Palmer Drought Severity Index (PDSI are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57 member perturbed parameter ensemble of climate simulations of the HadCM3C Earth system model, for the baseline period, 1961–1990, and the period 2070–2099 (representing the 2080s. We consider where there are significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline and compare the effects from the four sources of uncertainty. Our results suggest that, of the included uncertainty sources, choice of drought index is the most important factor influencing uncertainty in future projections of drought (60%–85% of total included uncertainty. There is a greater range of uncertainty between drought indices than that between the mitigation scenario RCP2.6 and the A1B emissions scenario (5%–6% in the 2050s to 17%–18% in the 2080s and across the different model variants in the ensemble (9%–17%. Choice of drought threshold has the least influence on uncertainty in future

  14. Climate and Hydrological Data Analysis for hydrological and solute transport modelling purposes in the Muriaé River basin, Atlantic Forest Biome, SE Brazil

    Science.gov (United States)

    Santos, Juliana; Künne, Annika; Kralisch, Sven; Fink, Manfred; Brenning, Alexander

    2016-04-01

    The Muriaé River basin in SE Brazil has been experiencing an increasing pressure on water resources, due to the population growth of the Rio de Janeiro urban area connected with the growth of the industrial and agricultural sector. This leads to water scarcity, riverine forest degradation, soil erosion and water quality problems among other impacts. Additionally the region has been suffering with seasonal precipitation variations leading to extreme events such as droughts, floods and landslides. Climate projections for the near future indicate a high inter-annual variability of rainfall with an increase in the frequency and intensity of heavy rainfall events combined with a statistically significant increase in the duration of dry periods and a reduced duration of wet periods. This may lead to increased soil erosion during the wet season, while the longer dry periods may reduce the vegetation cover, leaving the soil even more exposed and vulnerable to soil erosion. In consequence, it is crucial to understand how climate affects the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. In this context, physically-based hydrological modelling can contribute to a better understanding of spatial-temporal process dynamics in the Earth's system and support Integrated Water Resourses Management (IWRM) and adaptation strategies. The study area is the Muriaé river basin which has an area of approx. 8000 km² in Minas Gerais and Rio de Janeiro States. The basin is representative of a region of domain of hillslopes areas with the predominancy of pasture for livestock production. This study will present some of the relevant analyses which have been carried out on data (climate and streamflow) prior to using them for hydrological modelling, including consistency checks, homogeneity, pattern and statistical analyses, or annual and seasonal trends detection. Several inconsistencies on the raw data were

  15. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts.

    Science.gov (United States)

    Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa

    2015-03-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient.

  16. Monitoring vegetation responses to drought -- linking Remotely-sensed Drought Indices with Meteorological drought indices

    Science.gov (United States)

    Wang, H.; Lin, H.; Liu, D.

    2013-12-01

    Abstract: Effectively monitoring vegetation drought is of great significance in ecological conservation and agriculture irrigation at the regional scale. Combining meteorological drought indices with remotely sensed drought indices can improve tracking vegetation dynamic under the threat of drought. This study analyzes the dynamics of spatially-defined Temperature Vegetation Dryness Index (TVDI) and temporally-defined Vegetation Health Index (VHI) from remotely sensed NDVI and LST datasets in the dry spells in Southwest China. We analyzed the correlation between remotely sensed drought indices and meteorological drought index of different time scales. The results show that TVDI was limited by the spatial variations of LST and NDVI, while VHI was limited by the temporal variations of LST and NDVI. Station-based buffering analysis indicates that the extracted remotely sensed drought indices and Standard Precipitation Index (SPI) could reach stable correlation with buffering radius larger than 35 km. Three factors affect the spatiotemporal relationship between remotely sensed drought indices and SPI: i) different vegetation types; ii) the timescale of SPI; and iii) remote sensing data noise. Vegetation responds differently to meteorological drought at various time scales. The correlation between SPI6 and VHI is more significant than that between SPI6 and TVDI. Spatial consistency between VHI and TVDI varies with drought aggravation. In early drought period from October to December, VHI and TVDI show limited consistency due to the low quality of remotely sensed images. The study helps to improve monitoring vegetation drought using both meteorological drought indices and remotely sensed drought indices.

  17. A copula-based nonstationary frequency analysis for the 2012-2015 drought in California

    Science.gov (United States)

    Kwon, Hyun-Han; Lall, Upmanu

    2016-07-01

    Using a multicentury reconstruction of drought, we investigate how rare the 2012-2015 California drought is. A Bayesian approach to a nonstationary, bivariate probabilistic model, including the estimation of copula parameters is used to assess the time-varying return period of the current drought. Both the duration and severity of drought exhibit similar multicentury trends. The period from 800 to 1200 A.D. was perhaps more similar to the recent period than the period from 1200 to 1800 A.D. The median return period of the recent drought accounting for both duration and severity, varies from approximately 667-2652 years, if the model parameters from the different time periods are considered. However, we find that the recent California drought is of unprecedented severity, especially given the relatively modest duration of the drought. The return period of the severity of the recent drought given its 4 year duration is estimated to be nearly 21,000 years.

  18. Estimation of Phosphorus Emissions in the Upper Iguazu Basin (brazil) Using GIS and the More Model

    Science.gov (United States)

    Acosta Porras, E. A.; Kishi, R. T.; Fuchs, S.; Hilgert, S.

    2016-06-01

    Pollution emissions into the drainage basin have direct impact on surface water quality. These emissions result from human activities that turn into pollution loads when they reach the water bodies, as point or diffuse sources. Their pollution potential depends on the characteristics and quantity of the transported materials. The estimation of pollution loads can assist decision-making in basin management. Knowledge about the potential pollution sources allows for a prioritization of pollution control policies to achieve the desired water quality. Consequently, it helps avoiding problems such as eutrophication of water bodies. The focus of the research described in this study is related to phosphorus emissions into river basins. The study area is the upper Iguazu basin that lies in the northeast region of the State of Paraná, Brazil, covering about 2,965 km2 and around 4 million inhabitants live concentrated on just 16% of its area. The MoRE (Modeling of Regionalized Emissions) model was used to estimate phosphorus emissions. MoRE is a model that uses empirical approaches to model processes in analytical units, capable of using spatially distributed parameters, covering both, emissions from point sources as well as non-point sources. In order to model the processes, the basin was divided into 152 analytical units with an average size of 20 km2. Available data was organized in a GIS environment. Using e.g. layers of precipitation, the Digital Terrain Model from a 1:10000 scale map as well as soils and land cover, which were derived from remote sensing imagery. Further data is used, such as point pollution discharges and statistical socio-economic data. The model shows that one of the main pollution sources in the upper Iguazu basin is the domestic sewage that enters the river as point source (effluents of treatment stations) and/or as diffuse pollution, caused by failures of sanitary sewer systems or clandestine sewer discharges, accounting for about 56% of the

  19. Diagnosing Drought in a Changing Climate

    Science.gov (United States)

    Swann, A. L. S.; Hoffman, F. M.; Koven, C. D.; Randerson, J. T.

    2015-12-01

    Predictions of future climate impacts such as drought rely heavily on metrics based on changes in rainfall and changes in the demand for water from the atmosphere. However, the underlying driver of climate change is the increasing concentration of atmospheric carbon dioxide (CO2), which simultaneously increases temperature globally and modifies the water needs of plants. Although the influence of CO2 on plant stomatal conductance and transpiration is well established, the relative impact of this physiology on different drought metrics has not been rigorously assessed. We find that predictions of increasing drought stress derived using atmospheric demand metrics in many regions (including potential evapotraspiration and Palmer Drought Stress Index) correspond to places where Earth system models show stable or increasing water availability on land when assessed using the difference between precipitation and evapotranspiration. Approximately 70% of the increase in global water availability is a direct result of the effect of CO2 reducing plant water needs. Current models predict a decoupling of water flux and carbon flux, which require revisions to how aridity is measured and drought is calculated under changing CO2.

  20. Drought frequency analysis using stochastic simulation with maximum entropy model%基于最大熵分布模拟的干旱频率分析

    Institute of Scientific and Technical Information of China (English)

    张明; 金菊良; 王国庆; 周润娟

    2013-01-01

    为提高干旱频率分析结果的可靠性,提出了基于最大熵分布模拟的干旱频率分析方法.该模型首先用自回归模型剔除年径流量序列中的相依成分,分别计算年径流残差项序列各阶样本矩,并通过加速遗传算法求解获得残差项的最大熵概率分布函数,得到研究区域年径流量序列的最大熵分布随机模型;然后采用Monte Carlo随机模拟研究区域长、短序列的年径流量序列,在比较模拟效果的基础上,用轮次分析方法得到研究区域的干旱发生频率情况.区域干旱频率分析的实例研究结果显示,最大熵分布和P-Ⅲ分布的模拟结果在各统计特性上较为接近,充分说明最大熵分布模拟结果的准确性;窟野河流域温家川站10 000年的年径流量序列轮次分析结果表明,温家川站发生连续12年严重干旱事件的概率为2.6%,重现期为203年.基于最大熵分布模拟残差项序列,由于不事先假定理论分布线型,使得最大熵分布模拟结果更具有适用性,适合于处理水资源系统中各种降水、径流等模拟分析工作.%This paper develops a model for drought frequency analysis using maximum entropy distribution to improve the reliability of analysis. This model adopts three steps. First, it calculates the probability density function ( PDF) of the residual series of annual runoff after eliminating the dependent components with a auto-regression process. Second, it simulates the maximum entropy PDF of a purely random series generated by a Monte Carlo model with a rejection technique. Third, it calculates the negative run lengths for a simulated long-term annual runoff series, so that a frequency curve of these lengths was obtained and used in drought frequency analysis. Its application to the runoff at the Wenjiachuan station in the Kuye river basin indicates that its stochastic simulations are better than those with a P-Ⅲ distribution method. And on the basis of a

  1. Study on Comprehensive Drought Monitoring Model of Winter Wheat in Hebei Province%河北省冬小麦干旱综合监测模型研究

    Institute of Scientific and Technical Information of China (English)

    康西言; 乐章燕; 车少静; 李春强

    2012-01-01

    干旱是影响河北省冬小麦生产的主要灾害之一.为了客观地辨识、监测干旱的发生发展,针对河北省冬小麦干旱监测业务服务需求,开展冬小麦干旱综合监测模型研究,选取能反映土壤、作物、大气三方面干旱的土壤相对湿度指数、作物水分亏缺距平指数、降水量距平指数,采用层次分析法确定各指数权重系数,建立冬小麦干旱综合监测模型;应用1981-2010年唐山、涿州、定州、黄骅、深县、栾城、南宫、肥乡8个农业气象观测站资料,计算各站冬小麦干旱综合指数,并对其描述干旱的能力进行分析.结果表明:当不存在旱情时,各单一指数和综合指数均可正确反映,这种情况占总样本的17.6%.当存在旱情时,综合指数克服了距平指数不能反映灌溉对旱情的影响,及土壤相对湿度指数受灌溉影响,掩盖前期旱情的不足,比较客观地反映了旱情的发生发展情况,这种情况占总样本的67.6%;同时,综合指数也克服了距平指数对降水过度敏感的不足,既能反映降水对旱情的影响,又能反映降水大小对旱情的影响程度,较单一指数能更准确的反映旱情,这种情况占总样本的14.8%.%Drought is one of the main hazards for winter wheat production in Hebei Province. Aiming at the service demand of monitoring the winter wheat drought in Hebei Province, in order to objectively identify and monitor the occurrence and development of winter wheat drought, we designed the wheat drought monitoring model. Based on the analysis of the limitations of single drought index, the soil relative moisture index, crop water deficit departure index and precipitation departure index were applied in the model of winter wheat drought monitoring, because they could reflect the drought of soil, crop and atmospheric respectively. The weight coefficient of the three drought indexes were defined by analytic hierarchy method. Data were selected

  2. Based on the Hydrological Model to Build Integrated Drought Index in Luanhe Basin%基于水文模型的滦河流域综合干旱指数研究

    Institute of Scientific and Technical Information of China (English)

    屈海晨; 胡艳阳; 刘晓东

    2015-01-01

    Soil moisture is an important indicator of watershed judgment of drought,which was measured with a one-sided, and unpredictable,but hydrological model can effectively simulate soil moisture throughout the basin. With Luan River basin above the county hydrological station as a research area,based on soil moisture runoff model to simulate vertical mixing basin, the relative soil moisture drought index is constructed. Through the principal component analysis the relative soil moisture, precipitation anomaly percentage and relative wetting degree are integrated to build a comprehensive drought index in order to make a quantitative assessment of the frequency of the different time scales Watershed(year,month,quarter scale)drought. The results show that:the comprehensive drought index can be used to Luan River drought assessment,and drought events that have occurred have better goodness of fit;1960—1989 in Luan River Basin the maximum frequency of special drought for three months is 18.23 percent ,the highest frequency of continuous drought for five months is 17.26 percent,the frequency of light drought for seven months is 9.24 percent;in Luan River Basin the highest frequency of drought in winter is 37.8 percent , the lower frequency of drought in summer is 22.6 percent,the frequencies of severe drought and average drought in winter are respectively 6.0 percent and 11.3 percent,the maximum frequency of special drought in spring is 3.5 percent,the frequency of light drought in summer is 18.1 percent.The results is important to predict the drought in Luanhe basin.%土壤墒情是判定流域干旱的一个重要指标,其测定具有片面性且无法预测,而水文模型可有效模拟整个流域的土壤含水量。以滦河滦县水文站以上流域作为研究区域,基于垂向混合产流模型模拟流域土壤含水量,构建土壤相对湿润度干旱指数,并运用主成分分析法将土壤相对湿润度、降水距平

  3. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Directory of Open Access Journals (Sweden)

    F. Fundel

    2013-01-01

    Full Text Available Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month.

    The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive

  4. Is Snowpack Drought an Increasing Threat in the Pacific Northwest?

    Science.gov (United States)

    Barik, M. G.; Liu, M.; Stockle, C.; Abatzoglou, J. T.; Adam, J. C.

    2015-12-01

    In spite of near normal precipitation during the winter of water year 2015, the Pacific Northwest (PNW) has experienced drought because of insufficient snow accumulation in the mountains, which was exacerbated by an unusually warm and dry summer. Low mountain snowpack resulted from an anomalously warm winter and subsequently affected water supply for irrigation, fish habitat, ecosystem, and recreation, necessitating a statewide drought emergency declaration in the Washington State. While the 2015 drought is likely a result of natural variability superposed with climate warming, we ask how the frequency of droughts of this character are likely to change as a result of anthropogenic climate change. Downscaled climate data from multiple Global Climate Models from the Fifth Climate Model Intercomparison Project were used with the Variable Infiltration Capacity (VIC) model to calculate both the Standardized Precipitation Index (SPI) and Snow Melt and Rain Index (SMRI) indices for quantifying meteorological and snowpack droughts, respectively, in the Columbia River Basin (CRB) under historic and future climate change scenarios. Our results show that snowpack droughts increase in severity and frequency in the future in response to the sensitivity of the snowpack to warming, whereas there is a less systematic trend in meteorological drought. Water resources in the CRB largely depend on the mountain snowpack and spring snowmelt. More frequent occurrence of snowpack drought will have serious implications in this system, which need to be addressed in future studies.

  5. Global trends in future hydrological drought

    Science.gov (United States)

    Van Lanen, H.; Wanders, N.; Wada, Y.

    2013-12-01

    Climate change very likely impacts future hydrological drought characteristics worldwide (i.e. duration and intensity of drought in runoff). However, the magnitude and sign of the change is largely unknown. In this study we quantify impact of climate change on future low flows and hydrological droughts characteristics on a global scale. The global hydrological and water resources model PCR-GLOBWB was used to simulate future river runoff at 0.5 degree globally on a daily basis. The newly available CMIP5 climate projections were obtained through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The model was forced with the daily transient climate fields taken from five GCMs and four underlying emission scenarios (here accounted for by using four Representative Concentration Pathways or RCPs). The monthly Q80 (20 percentile lowest flow) was used to evaluate the changes in low flows and as the threshold level for the hydrological drought characterisation. The monthly threshold was smoothed to allow for drought calculations on a daily basis. The thresholds in the future remained transient and were calculated over the climatology of the last 30 year period to reflect the adaptation of society to new conditions. Trends in the thresholds and drought characteristics were analysed over the period 2000-2099. Results for most GCMs and all RCPs showed that Q80 discharge (low flow metric) indicates a significant negative trend in large parts of South America, Central Africa, the Mediterranean and South East Asia. Under the higher greenhouse gas emission scenarios of RCP6.0 and RCP8.5, the USA and Central and South Europe were also projected to have drier conditions. For all future projections Russia and Canada were expected to get wetter during the 21st century. Under RCP6.0 and RCP8.5 scenarios, the results generally showed the strongest negative changes in future low flow. The results simulated with most GCMs agree well over many parts of the world, however

  6. The 2010 Amazon drought.

    Science.gov (United States)

    Lewis, Simon L; Brando, Paulo M; Phillips, Oliver L; van der Heijden, Geertje M F; Nepstad, Daniel

    2011-02-04

    In 2010, dry-season rainfall was low across Amazonia, with apparent similarities to the major 2005 drought. We analyzed a decade of satellite-derived rainfall data to compare both events. Standardized anomalies of dry-season rainfall showed that 57% of Amazonia had low rainfall in 2010 as compared with 37% in 2005 (≤-1 standard deviation from long-term mean). By using relationships between drying and forest biomass responses measured for 2005, we predict the impact of the 2010 drought as 2.2 × 10(15) grams of carbon [95% confidence intervals (CIs) are 1.2 and 3.4], largely longer-term committed emissions from drought-induced tree deaths, compared with 1.6 × 10(15) grams of carbon (CIs 0.8 and 2.6) for the 2005 event.

  7. Drought Risk Identification: Early Warning System of Seasonal Agrometeorological Drought

    Science.gov (United States)

    Dalecios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2014-05-01

    By considering drought as a hazard, drought types are classified into three categories, namely meteorological or climatological, agrometeorological or agricultural and hydrological drought and as a fourth class the socioeconomic impacts can be considered. This paper addresses agrometeorological drought affecting agriculture within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with the quantification and monitoring of agrometeorological drought, which constitute part of risk identification. For the quantitative assessment of agrometeorological or agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural region of Greece characterized by vulnerable and drought-prone agriculture. The results show that every year there is a seasonal agrometeorological drought with a gradual increase in the areal extent and severity with peaks appearing usually during the summer. Drought monitoring is conducted by monthly remotely sensed VHI images. Drought early warning is developed using empirical relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought, respectively. The two fitted curves offer a seasonal

  8. Introduction 'Governance for Drought Resilience'

    NARCIS (Netherlands)

    Bressers, Nanny; Bressers, Hans; Larrue, Corinne; Bressers, Hans; Bressers, Nanny; Larrue, Corinne

    2016-01-01

    This book is about governance for drought resilience. But that simple sentence alone might rouse several questions. Because what do we mean with drought, and how does that relate to water scarcity? And what do we mean with resilience, and why is resilience needed for tackling drought? And how does g

  9. Climate Change Projections over Northeast Brazil According to CMIP5 Models

    Science.gov (United States)

    Oliveira Guimarães, Sullyandro; Araújo Costa, Alexandre; Cassain Sales, Domingo

    2013-04-01

    Northeast Brazil (NEB) climate is well diversified, influenced by various large-scale and mesoscale systems as the ITZC (Intertropical Convergence Zone), FSs (Frontal Systems), El Niño and La Niña, among others, causing great climate variability in this region. That translates into vulnerability to climate change - which will possibly occur due to changes in land use, aerosols and greenhouse gases (GHGs) in the atmosphere, and other issues, which are largely due to the anthropic action. Thinking of the possible conditions that the climate system might be forced into by human action, the IPCC (Intergovernmental Panel on Climate Change) established RCP (Representative Concentration Pathways) scenarios, among which RCP4.5 RCP8.5 projected an increase in radiative forcing - mainly from GHGs of ~4.5 and ~8.5 W/m² at the end of the 21st century, respectively. In order to study how NEB climate might behave under these scenarios of GHGs emissions, we analyzed projected temperature and precipitation from 30 Global Climate Models (GCMs) that participate in CMIP5 (Coupled Model Intercomparison Project - Phase 5) regarding climatological changes, including quantitative increase and/or decrease of these variables, and spatial changes. In the present analysis we verified GCMs ability in representing the climate, and the mean value in the GCMs ensemble (for the variables studied) agreeing with the region's climate. The projections under scenarios RCP4.5 and RCP8.5 show significant increases in the temperature during the 21st century, depending on the time slice (2015-2035, 2045-2065 and 2079-2099) in both scenarios, and a slight decrease in the precipitation - though there are greater uncertainties associated with this variable. The models tend to present distribution profiles (precipitation versus temperature changes) that are more dispersed as one approaches the end of 21st century, resulting from larger variations of the percentual changes in precipitation with respect to

  10. Wind Power Energy in Southern Brazil: evaluation using a mesoscale meteorological model

    Science.gov (United States)

    Krusche, Nisia; Stoevesandt, Bernhard; Chang, Chi-Yao; Peralta, Carlos

    2015-04-01

    In recent years, several wind farms were build in the coast of Rio Grande do Sul state. This region of Brazil was identified, in wind energy studies, as most favorable to the development of wind power energy, along with the Northeast part of the country. Site assessments of wind power, over long periods to estimate the power production and forecasts over short periods can be used for planning of power distribution and enhancements on Brazil's present capacity to use this resource. The computational power available today allows the simulation of the atmospheric flow in great detail. For instance, one of the authors participated in a research that demonstrated the interaction between the lake and maritime breeze in this region through the use of a atmospheric model. Therefore, we aim to evaluate simulations of wind conditions and its potential to generate energy in this region. The model applied is the Weather Research and Forecasting , which is the mesoscale weather forecast software. The calculation domain is centered in 32oS and 52oW, in the southern region of Rio Grande do Sul state. The initial conditions of the simulation are taken from the global weather forecast in the time period from October 1st to October 31st, 2006. The wind power potential was calculated for a generic turbine, with a blade length of 52 m, using the expression: P=1/2*d*A*Cp*v^3, where P is the wind power energy (in Watts), d is the density (equal to 1.23 kg/m^3), A is the area section, which is equal to 8500 m2 , and v is the intensity of the velocity. The evaluation was done for a turbine placed at 50 m and 150 m of height. A threshold was chosen for a turbine production of 1.5 MW to estimate the potential of the site. In contrast to northern Brazilian region, which has a rather constant wind condition, this region shows a great variation of power output due to the weather variability. During the period of the study, at least three frontal systems went over the region, and thre was a

  11. Human influence on meteorological drought risk in Europe

    Science.gov (United States)

    Gudmundsson, L.; Seneviratne, S. I.

    2015-12-01

    Drought has affected 37% of the European Union's territory in the past three decades, triggering ecological and socio-economic damages and impacting more than 100 billion inhabitants. Climate change simulations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the norther of the continent. Observed changes in water balance components and drought indicators do resemble the projected pattern. However, assessments of possible causes of the reported regional changes have yet been inconclusive. To resolve this, we first employ a data driven approach and estimate how the probability of exceptionally dry years is related to global warming. The results confirm that it is very likely that that drought risk in the Mediterranean has increased in response to global warming, whereas it is very likely that drought risk has decreased in Northern Europe. Subsequently we show that observed changes in drought risk can only be captured by climate models if anthropogenic radiative forcing is accounted for. The consistency of the observational estimates with model simulations suggests that it is very likely that past changes in drought risk are attributable to anthropogenic effects on the climate.

  12. Hydrological drought frequency analysis of the Yom River, Thailand

    Directory of Open Access Journals (Sweden)

    Kanokporn Sawatpru

    2016-06-01

    Full Text Available The Yom River is subjected to flood and drought annually each for half a year. Several works suggested storing water during the surplus season for use in the dry season. None of them, however, quantified the precise amounts of suggested storage along the river with acceptable risk. In an attempt to quantify storage, we performed frequency analyses to find out severity of streamflow droughts along the river. A deficit volume, the amount of flow being less than a selected threshold level, was used to characterize a drought event. The Weibull distribution model was chosen for analysis after comparison with lognormal and Pareto models to the empirical distribution. Results show a more severe drought condition toward the downstream section of the river where paddy fields get larger. A large deep groundwater irrigation project located about the mid-section of the river mitigates drought along this section. Drought is more severe further downstream from the project, one reason being the baseflow is cut off by the groundwater abstraction. This presented method can help to quantify severity of hydrological drought along any river therefore its drought management can be undertaken.

  13. 基于最大熵原理的区域农业干旱度概率分布模型%Probability distribution model of regional agricultural drought degree based on the maximum entropy principle

    Institute of Scientific and Technical Information of China (English)

    陈海涛; 黄鑫; 邱林; 王文川

    2013-01-01

      提出了构建综合考虑自然因素与农作物生长周期之间量化关系的干旱度评价指标,并基于最大熵原理建立了项目区干旱度分布密度函数,避免了以往构建概率分布的随意性,实现了对区域农业干旱度进行量化评价的目的。首先根据作物在非充分灌溉条件下的减产率,建立了干旱程度的量化评价指标,然后通过蒙特卡罗法生成了长系列降雨资料,并计算历年干旱度指标,最后利用最大熵原理,构建了农业干旱度分布的概率分布密度函数。以河南省濮阳市渠村灌区为对象进行了实例计算。结果表明,该模型概念清晰,计算简便实用,结果符合实际,是一种较好的评估方法。%The evaluation index of drought degree,which comprehensively considering the quantitative rela⁃tionship between the crop growing period and natural factors, is presented in this paper. The distribution density function of drought degree has been established based on the maximum-entropy principle. It can avoid the randomness of probability distribution previous constructed and has realized purpose of quantita⁃tive evaluation of agricultural drought degree. Firstly, the quantitative evaluation index of drought degree was established according to the yield reduction rate of deficit irrigation conditions. Secondly,a long series rainfall data were generated by Monte-Carlo method and the past years index of drought degree were calcu⁃lated. Finally, the density function of probability distribution of agricultural drought degree distribution was constructed by using maximum entropy principle. As an example, the calculation results of the distribution of drought degree of agriculture in Qucun irrigation area were presented. The results show that the model provides a better evaluation method with clear concept,simple and practical approach,and reasonable out⁃comes.

  14. A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Xia, Youlong; Ouyang, Wei; Shen, Xinyi

    2016-06-01

    Drought indices have been commonly used to characterize different properties of drought and the need to combine multiple drought indices for accurate drought monitoring has been well recognized. Based on linear combinations of multiple drought indices, a variety of multivariate drought indices have recently been developed for comprehensive drought monitoring to integrate drought information from various sources. For operational drought management, it is generally required to determine thresholds of drought severity for drought classification to trigger a mitigation response during a drought event to aid stakeholders and policy makers in decision making. Though the classification of drought categories based on the univariate drought indices has been well studied, drought classification method for the multivariate drought index has been less explored mainly due to the lack of information about its distribution property. In this study, a theoretical drought classification method is proposed for the multivariate drought index, based on a linear combination of multiple indices. Based on the distribution property of the standardized drought index, a theoretical distribution of the linear combined index (LDI) is derived, which can be used for classifying drought with the percentile approach. Application of the proposed method for drought classification of LDI, based on standardized precipitation index (SPI), standardized soil moisture index (SSI), and standardized runoff index (SRI) is illustrated with climate division data from California, United States. Results from comparison with the empirical methods show a satisfactory performance of the proposed method for drought classification.

  15. The Impacts of Droughts in Tropical Forests.

    Science.gov (United States)

    Corlett, Richard T

    2016-07-01

    Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other vegetation type and, thus, form a crucial component of the global carbon cycle. However, the impacts of anthropogenic climate change on drought occurrence and intensity could weaken the tropical forest carbon sink, with resulting feedback to future climates. We urgently need a better understanding of the mechanisms and processes involved to predict future responses of tropical forest carbon sequestration to climate change. Recent progress has been made in the study of drought responses at the molecular, cellular, organ, individual, species, community, and landscape levels. Although understanding of the mechanisms is incomplete, the models used to predict drought impacts could be significantly improved by incorporating existing knowledge.

  16. Diverging trends between meteorological drought indices (SPI and SPEI) in Europe

    Science.gov (United States)

    Stagge, James; Kingston, Daniel; Tallaksen, Lena; Hannah, David

    2016-04-01

    Severe European droughts over the last decade and climate change projections of increased regional drought severity for the Mediterranean and eastern Europe make understanding drought events in a non-stationary climate a major scientific and practical concern for Europe. Additionally, the existence of numerous differing drought metrics is a challenge for the robust detection of drought occurrence trends. This research addresses these issues by testing the hypotheses that (a) there have been recent trends in meteorological drought severity across Europe, and (b) that the choice of drought index significantly affects these observed trends. Meteorological drought is quantified in this study using the 6-month Standardized Precipitation Index (SPI-6) and Standardized Precipitation-Evapotranspiration Index (SPEI-6), which are commonly recommended drought metrics that measure accumulated precipitation and climatic water balance (precipitation minus reference potential evapotranspiration), respectively. Climate data are based on the WATCH Forcing Data (WFD) and WFD ERA-Interim (WFDEI) datasets, which together cover the period 1958-2014. Trends in percentage of European land area in drought were calculated for this 56 year period by defining drought as occurring below the 20th index percentile (SPI/SPEI SPEI-6 drought area have been moderate, with a slight decrease in precipitation-only drought (SPI) area and a slight increase in climatic water balance drought (SPEI) area. The observed spatial trends in drought frequency are consistent with climate model output, with increases in drought frequency for southern Europe and decreases across northern Europe. However, the difference between percentage drought area measured using these two indices has steadily increased. Investigating the constituent climate variables shows that the increasing divergence between drought measured by SPI and SPEI is driven by an increase in temperature and thus PET, which is only accounted for in

  17. Projected Changes in Evapotranspiration Rates over Northeast Brazil

    Science.gov (United States)

    Costa, Alexandre; Guimarães, Sullyandro; Vasconcelos, Francisco, Jr.; Sales, Domingo; da Silva, Emerson

    2015-04-01

    Climate simulations were performed using a regional model (Regional Atmospheric Modeling System, RAMS 6.0) driven by data from one of the CMIP5 models (Hadley Centre Global Environmental Model, version 2 - Earth System, HadGEM2-ES) over two CORDEX domains (South America and Central America) for the heavy-emission scenario (RCP8.5). Potential evapotranspiraion data from the RCM and from the CMIP5 global models were analyzed over Northeast Brazil, a semiarid region with a short rainy season (usually February to May in its northern portion due to the seasonal shift of the Intertropical Convergence Zone) and over which droughts are frequent. Significant changes in the potential evapotranspiration were found, with most models showing a increasing trend along the 21st century, which are expected to alter the surface water budget, increasing the current water deficit (precipitation is currently much smaller than potential evapotranspiration). Based on the projections from the majority of the models, we expect important impacts over local agriculture and water resources over Northeast Brazil.

  18. Analysis of a general circulation model product. I - Frontal systems in the Brazil/Malvinas and Kuroshio/Oyashio regions

    Science.gov (United States)

    Garzoli, Silvia L.; Garraffo, Zulema; Podesta, Guillermo; Brown, Otis

    1992-01-01

    The general circulation model (GCM) of Semtner and Chervin (1992) is tested by comparing the fields produced by this model with available observations in two western boundary current regions, the Brazil/Malvinas and the Kuroshio/Oyashio confluences. The two sets of data used are the sea surface temperature from satellite observations and the temperature field product from the GCM at levels 1 (12.5 m), 2 (37.5 m), and 6 (160 m). It is shown that the model reproduces intense thermal fronts at the sea surface and in the upper layers (where they are induced by the internal dynamics of the model). The location of the fronts are reproduced in the model within 4 to 5 deg, compared with observations. However, the variability of these fronts was found to be less pronounced in the model than in the observations.

  19. Modeling the Paranagua Estuarine Complex, Brazil: tidal circulation and cotidal charts

    Directory of Open Access Journals (Sweden)

    Ricardo de Camargo

    2003-01-01

    Full Text Available The tidal circulation in Paranagua Bay (Parana State, Southern Brazil was studied based on the Princeton Ocean Model. The model domain covered the near shore region and the estuarine area, with about 1 km grid resolution in cross-shore and along-shore directions. Homogeneous and diagnostic distributions for temperature and salinity were used and 12 tidal constituents were considered to specify the elevations at the open boundaries. Tidal analysis of 29-days time series of elevations and currents for each grid point generated corange and cophase lines as well as the correspondent axes of the current ellipses for each constituent. These computed values reproduced well the observed amplifications and phase lags of surface elevations and currents. Residual flows show the formation of tidal eddies, related to coastal geometry and bottom topography.A circulação de maré na Baía de Paranaguá (Estado do Paraná, sul do Brasil foi estudada através do Princeton Ocean Model. O domino do modelo abrange a região costeira adjacente e a área estuarina, com resolução de aproximadamente I km nas direções perpendicular e paralela à costa. Distribuições homogêneas e diagnosticas para temperatura e salinidade foram usadas e 12 constituintes de maré especificaram as elevações de superfície nos contornos abertos. Análises de maré de séries temporais de 29 dias de elevações e correntes para cada ponto de grade geraram linhas cotidais de amplitude e de fase, assim como elipses de correntes, para cada constituinte. Os valores obtidos pelo modelo reproduziram satisfatoriamente as amplificações e defasagens observadas nas elevações e correntes de superfície. Fluxos residuais mostram a formação de vórtices de maré, relacionados com a geometria da costa e a topografia do fundo.

  20. Probabilistic forecasting of seasonal drought behaviors in the Huai River basin, China

    Science.gov (United States)

    Xiao, Mingzhong; Zhang, Qiang; Singh, Vijay P.; Chen, Xiaohong

    2016-01-01

    The Huai River basin is one of the major supplier of agricultural products in China, and droughts have critical impacts on agricultural development. Good knowledge of drought behaviors is of great importance in the planning and management of agricultural activities in the Huai River basin. With the copula functions to model the persistence property of drought, the probabilistic seasonal drought forecasting models have been built in the Huai River basin. In this study, droughts were monitored by the Standardized Precipitation Evapotranspiration Index (SPEI) with the time scales of 3, 6, and 9 months, and their composite occurrence probability has been used to forecast the seasonal drought. Results indicated that the uncertainty related to the predicted seasonal drought is larger when more severe droughts occurred in the previous seasons, and the severe drought which occurs in summer and autumn will be more likely to be persistent in the next season while the severe drought in winter and spring will be more likely to be recovered in the subsequent season. Furthermore, given the different drought statuses in the previous season, spatial patterns of the predicted drought events with the largest occurrence probability have also been investigated, and results indicate that the Huai River basin is vulnerable to the extreme drought in most parts of the basin, e.g., the severe drought in winter will be more likely to be persistent in spring in the central part of the southern Huai River basin. Such persistent drought events pose serious challenges for planning and management of agricultural irrigation, then results of the study will be valuable for the planning of crop cultivation or mitigation of the losses caused by drought in the Huai River basin, China.

  1. Household Choices of Child Labor and Schooling: A Simple Model with Application to Brazil

    Science.gov (United States)

    Soares, Rodrigo R.; Kruger, Diana; Berthelon, Matias

    2012-01-01

    This paper argues that conflicting results from previous literature--related to the effect of economic conditions on child labor--derive from different income and substitution effects implicit in different types of income variation. We use agricultural shocks to local economic activity in Brazil (coffee production) to distinguish between increases…

  2. 模糊综合模型在广西干旱评价中的应用研究%Application of fuzzy comprehensive model in drought assessment of Guangxi

    Institute of Scientific and Technical Information of China (English)

    张立杰; 杨焱; 李连芬

    2015-01-01

    干旱是多种因素长期共同作用的结果,使用单一指标很难全面准确地把握旱情。为此,利用降水距平指数、连续无有效降水日数、河川径流距平指数和水库工程蓄水距平指数的评价结果,运用模糊综合模型,对广西各地历史典型干旱时间进行了综合评价,并将各评价方法的评价结果与实际旱情进行了对比,结果表明:模糊综合模型的评价结果与实际旱情基本相符,有效避免了单指标方法评价结果不一致的问题,其评价结果较为客观全面地反映了广西各地实际旱情,具有较强的科学性和可靠性。%Drought is associated with concomitance of multi-factors in long term. It is difficult to provide a rational assessment of drought by a single-index approach. Based on the assessment results of the precipitation anomaly per⁃centage index (PAP),the consecutive dry days index (CDD),the flow anomaly percentage index (FAP) and the res⁃ervoir deposited water index (RDW),the historic droughts of Guangxi were annualized by the fuzzy comprehensive model. The assessment results were compared with the different indexes of historic droughts. The results of applica⁃tion show that the fuzzy comprehensive model is maintaining a good consistency with the historic drought data ,and it prevents the inconsistent information based on the assessment results of the single-index approach. The fuzzy comprehensive model has a high reliability,and can provide relatively objective and comprehensive assessment of drought in Guangxi.

  3. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shradhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  4. A drought-based predictor of recent haze events in western Indonesia

    Science.gov (United States)

    Field, Robert D.; Wang, Yonghe; Roswintiarti, Orbita; Guswanto

    Indonesia's fire and haze problem is reviewed, and a model quantifying the relationship between drought and haze from biomass burning in western Indonesia is presented. Visibility observations from weather stations in Sumatra and Kalimantan were used as a haze indicator. The Drought Code component of the Canadian Forest Fire Weather Index System was used as a drought indicator. Using meteorological data from 1994 to 1998, we obtained regional haze and drought signals for western Indonesia. Nonlinear regression analysis was performed between the two signals to obtain a model of haze potential based on the Drought Code. Using the curvature properties of the nonlinear model, we estimated that severe haze is likely above a threshold Drought Code of 388.2. Using this threshold value, we propose four levels of drought that can be used operationally as an early warning tool in managing Indonesia's serious haze problem.

  5. Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro, Brazil.

    Directory of Open Access Journals (Sweden)

    Nildimar Alves Honório

    Full Text Available BACKGROUND: Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever, characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized Additive Model (GAM. METHODOLOGY/PRINCIPAL FINDINGS: Three neighborhoods were investigated: a central urban neighborhood, and two isolated areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three neighborhoods were collected before the 2008 epidemic (July through November 2007 and during the epidemic (February through April 2008. Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before-after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not, and seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting contact between hosts and vectors. By fitting spatial GAM we found

  6. Future hydrological drought in the context of water scarcity

    Science.gov (United States)

    van Lanen, Henny A. J.; Wanders, Niko

    2013-04-01

    Observations show that droughts and water scarcity have increased over the last decades in Europe. In particular summer low flows show downward trends in vast areas (only in Scandinavia wetting trends occur). The lower water availability and the enhanced water demands led to growing water scarcity and increasing challenges for water management to assess future water resources and to develop a pro-active approach. A key element in the assessment is how drought will develop, i.e. will drought become more severe (frequency, intensity, spatial scale, location). Hydrological drought (groundwater and streamflow) development is the most relevant among drought types for water resources assessment. This study presents the likely change of hydrological droughts characteristics in the 21st century as a result of climate change across the world. Magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, is largely unknown. A conceptual hydrological model was forced with downscaled and bias-corrected outcome from three General Circulation Models (GCM forced models), A2 emission scenario The same hydrological model was also forced with the WATCH Forcing re-analysis dataset (reference model). The variable threshold level method was applied to identify hydrological drought occurrence, duration and severity in time series of simulated discharge. Results for the control period (1971-2000) show that the drought characteristics of the GCM forced models reasonably agree with the reference model implying that the climate models produce realistic outcome for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models project a global average decrease in drought occurrence (67-74% end of 21st century), indicating that the number of drought days per year will become lower. However, all three GCM forced models project a substantial increase of both average drought duration (43-57%) and

  7. GEOWOW: a drought scenario for multidisciplinary data access and use

    Science.gov (United States)

    Santoro, Mattia; Sorichetta, Alessandro; Roglia, Elena; Craglia, Massimo; Nativi, Stefano

    2013-04-01

    Recent enhancements of the GEOSS Common Infrastructure (GCI; http://www.earthobservations.org/gci_gci.shtml), and in particular the introduction of a middleware in the GCI that brokers across heterogeneous information systems, have increased significantly the number of information resources discoverable worldwide. Now the challenge moves to the next level of ensuring access and use of the resources discovered, which have many different and domain-specific data models, communication protocols, encoding formats, etc. The GEOWOW Project - GEOSS interoperability for Weather, Ocean and Water, http://www.geowow.eu - developed a set of multidisciplinary use scenarios to advance the present GCI. This work describes the "Easy discovery and use of GEOSS resources for addressing multidisciplinary challenges related to drought scenarios" showcase demonstrated at the last GEO Plenary in Foz de Iguazu (Brazil). The scientific objectives of this showcase include: prevention and mitigation of water scarcity and drought situations, assessment of the population and geographical area potentially affected, evaluation of the possible distribution of mortality and economic loss risk, and support in building greater capacity to cope with drought. The need to address these challenges calls for producing scientifically robust and consistent information about the extent of land affected by drought and degradation. Similarly, in this context it is important: (i) to address uncertainties about the way in which various biological, physical, social, and economic factors interact each other and influence the occurrence of drought events, and (ii) to develop and test adequate indices and/or combination of them for monitoring and forecasting drought in different geographic locations and at various spatial scales (Brown et al., 2002). The scientific objectives above can be met with an increased interoperability across the multidisciplinary domains relevant to this drought scenario. In particular

  8. Drought Dynamics and Food Security in Ukraine

    Science.gov (United States)

    Kussul, N. M.; Kogan, F.; Adamenko, T. I.; Skakun, S. V.; Kravchenko, O. M.; Kryvobok, O. A.; Shelestov, A. Y.; Kolotii, A. V.; Kussul, O. M.; Lavrenyuk, A. M.

    2012-12-01

    In recent years food security became a problem of great importance at global, national and regional scale. Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. According to the 2011 statistics provided by the USDA FAS, Ukraine was the 8th largest exporter and 10th largest producer of wheat in the world. Therefore, identifying current and projecting future trends in climate and agriculture parameters is a key element in providing support to policy makers in food security. This paper combines remote sensing, meteorological, and modeling data to investigate dynamics of extreme events, such as droughts, and its impact on agriculture production in Ukraine. Two main problems have been considered in the study: investigation of drought dynamics in Ukraine and its impact on crop production; and investigation of crop growth models for yield and production forecasting and its comparison with empirical models that use as a predictor satellite-derived parameters and meteorological observations. Large-scale weather disasters in Ukraine such as drought were assessed using vegetation health index (VHI) derived from satellite data. The method is based on estimation of green canopy stress/no stress from indices, characterizing moisture and thermal conditions of vegetation canopy. These conditions are derived from the reflectance/emission in the red, near infrared and infrared parts of solar spectrum measured by the AVHRR flown on the NOAA afternoon polar-orbiting satellites since 1981. Droughts were categorized into exceptional, extreme, severe and moderate. Drought area (DA, in % from total Ukrainian area) was calculated for each category. It was found that maximum DA over past 20 years was 10% for exceptional droughts, 20% for extreme droughts, 50% for severe droughts, and 80% for moderate droughts. Also, it was shown that in general the drought intensity and area did not increase considerably over past 10 years. Analysis

  9. Evaluation of drought indices via remotely sensed data with hydrological variables

    Science.gov (United States)

    Choi, Minha; Jacobs, Jennifer M.; Anderson, Martha C.; Bosch, David D.

    2013-01-01

    SummaryAn intercomparison among standard and remotely sensed drought indices was conducted using streamflow and soil moisture measurements collected in the Little River Experimental Watershed, Georgia, US, during the period from 2000 to 2008. All drought indices exhibited a linear, monotonic association with soil moisture, but there was a non-linear monotonic association between the drought indices and streamflow. Of the indices examined, the Evaporative Stress Index (ESI) showed reasonable performance with about 90% accuracy capturing moderate drought conditions and 80% accuracy capturing severe drought conditions in comparison to observed soil moisture and streamflow. While the ability of the ESI to capture shorter term droughts is equal or superior to the Palmer Drought Severity Index (PDSI) when characterizing droughts based on soil moisture and streamflow thresholds, the accuracy of the ESI was less efficient in the case of severe droughts. A drought index developed from the Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture product showed reasonable correlations with the observed soil moisture and streamflow. However the ESI, Vegetation Health Index (VHI), and PDSI demonstrated greater skill in detecting drought in this study region. Multi-variable linear regression models revealed that the joint use of PDSI and appropriate remote sensing products improved predictions of observed hydrologic variables. Overall, the ESI was identified as a promising drought index for characterizing streamflow and soil moisture anomalies, particularly in regions where precipitation observations are unavailable, sparsely distributed, or biased with respect to regional averages.

  10. Evaluation of the IPCC Models (AR4 and AR5) in the Precipitation Simulation in the Northeast of Brazil

    Science.gov (United States)

    Alves, José; Vasconcelos Junior, Francisco; Chaves, Rosane; Silva, Emerson; Servain, Jacques; Costa, Alexandre; Sombra, Sérgio; Barbosa, Augusto; Dos Santos, Antonio

    2016-04-01

    With the simulations of the models used in the latest reports from the Intergovernmental Panel on Climate Change (IPCC), comparative studies are necessary between observations and the so-called historical run (C20) and future projections of the AR4 (A2) and AR5 (RCP8.5) experiments, in order to assess whether the AR5 models had a better performance in the representation of physical processes. This article compares the sensitivity of IPCC models (AR4 and AR5) in representing the anuall average and seasonal rainfall variation (summer and autumn) in three regions of the Northeast of Brazil between 1979 and 2000, using the CMAP - CPC (Merged Analysis of Precipitation) data as reference. The projections made by these models for the period 2040-2070 were also analyzed.

  11. A modeling of the carbon-nitrogen cycle transport at Igap\\'o I Lake - Londrina, Paran\\'a, Brazil

    CERN Document Server

    Pardo, Suellen Ribeiro; Romeiro, Neyva Maria Lopes; Cirilo, Eliandro Rodrigues

    2010-01-01

    This work is a contribution to better understand the effect that domestic sewage discharges may cause in a water body, specifically Igap\\'o I Lake, in Londrina, Paran\\'a, Brazil. The simulation of the dynamics of pollutant concentrations all over the water body is conducted by means of structured discretization of the geometry of Igap\\'o I Lake, together with the finite differences and the finite elements methods. Firstly, the hydrodynamic flow (without the pollutants), modeled by Navier-Stokes and pressure equations, is numerically resolved by the finite differences method, and associated with the fourth order Runge-Kutta procedure. After that, by using the hydrodynamic field velocity, the flow of the reactive species (pollutants) is described through a transport model, which considers advective and diffusive processes, as well as through a reactions model, restricted to the carbon-nitrogen cycle. The transport and reactions model is numerically resolved by the stabilized finite elements method, by means of ...

  12. Aerosol forcing of extreme summer drought over North China

    Science.gov (United States)

    Zhang, Lixia; Wu, Peili; Zhou, Tianjun

    2017-03-01

    The frequency of extreme summer drought has been increasing in North China during the past sixty years, which has caused serious water shortages. It remains unclear whether anthropogenic forcing has contributed to the increasing extreme droughts. Using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) re-analysis data and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations with various combinations of historical forcings, the authors investigated the driving mechanism behind the observed changes. Metrological drought is usually measured by precipitation anomalies, which show lower fidelity in current climate models compared to large-scale circulation patterns. Based on NCEP/NCAR re-analysis, a linear relationship is firstly established between the weakest regional average 850 hPa southerly winds and extreme summer drought. This meridional winds index (MWI) is then used as a proxy for attribution of extreme North China drought using CMIP5 outputs. Examination of the CMIP5 simulations reveals that the probability of the extreme summer droughts with the first percentile of MWI for 1850–2004 under anthropogenic forcing has increased by 100%, on average, relative to a pre-industrial control run. The more frequent occurrence of extremely weak MWIs or drought over North China is ascribed from weakened climate and East Asian summer monsoon (EASM) circulation due to the direct cooling effect from increased aerosol.

  13. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    Science.gov (United States)

    Silva, A. C. S.; Galvão, C. O.; Silva, G. N. S.

    2015-06-01

    Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES) was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997-2000, when Brazil's new water policy was very young, and the other one in 2012-2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  14. Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro - Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Carbonel

    1998-01-01

    Full Text Available A 1 1/2 reduced-gravity model is proposed to study the hydrodynamic and thermodynamic features of the coastal upwelling area of Cabo Frio (Rio de Janeiro-Brazil. The vertical structure of the model is described by an active layer overlaying a deep inert layer where the pressure gradient is set to zero. For the upper layer, the model includes the turbulent version of the momentum. continuity and heat equations. The conservation of heat is represented by a transport equation to describe the thermodynamic changes of the sea surface temperature (SST. The solution domain includes open boundaries in which weakly-retlective conditions are prescribed. Solutions are found numerically on a uniform grid and the fundamental equations are approximated by the finite difference method. Numerical experiments are performed to evaluate the dynamic response of the coastal area of Cabo Frio forced by uniform and non-uniform wind fields. The solutions differ considerably depending on the orientation of the winds. East and northeast winds correlate with colder waters in the zonal coastline of this area and the presence of tlows toward Cabo Frio correlates with north wind components. The proposed model is validated with the numerical simulation of an observed event of upwelling, where a time­-dependent and non-uniform wind ficld develops a SST pattern similar as the observations, particularly the extension of the cool water plume in south-west direction and the rapid time variation of the SST.Um modelo de gravidade reduzida de 1 1/2 camada é proposto para estudar as características hidrodinmicas e termodinmicas da área costeira de Cabo Frio (Rio de Janeiro ­Brasil. A estrutura vertical do modelo é descrita por uma camada ativa sobre uma camada profunda sem movimento onde o gradicnte de pressão é zero. Para a camada superior. o modelo incluí a versão turbulenta das equações de momentum, continuidade e calor. A conservação do calor é representada por uma

  15. Drought Assessment in Zacatecas, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos Bautista-Capetillo

    2016-09-01

    Full Text Available Water has always been an essential development factor for civilizations, but its erratic distribution in space and time has caused severe socio-economic problems throughout human history due to both scarcity and excess. In Mexico, insufficient rainwater to satisfy crop water requirements is a recurrent phenomenon. From a meteorological perspective, drought refers to a decay of the rainfall–runoff process below normal values, resulting in lower availability of water resources to satisfy the needs of human activities, particularly those related to agriculture and livestock. This research reports on drought assessment for Zacatecas, Mexico using monthly data from 111 weather stations with temperature and precipitation information from a 33-year period. Drought was characterized by applying the Standardized Precipitation Index and the Reconnaissance Drought Index using 3, 6, and 12 month timescales; both indexes were plotted and mapped for the period 2005 to 2014. The trend indicates rainfall anomalies (from incipient drought to severe drought in 6 or 7 years, depending of the selected timescale. April was selected to start the drought analysis because it is the month when farmers usually establish rainfed crops in the region. In ten years, Zacatecas has lost 478 million US dollars due to drought. 2005, 2009, and 2011 were the most critical years, with 47%, 39%, and 63% losses in agricultural income. Such values are in agreement with drought severity estimates: 2005 and 2011 were both dry years (drought indexes were less than −1.25 in the whole territory.

  16. Effects of elevated CO2 and drought on wheat : testing crop simulation models for different experimental and climatic conditions

    NARCIS (Netherlands)

    Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Porter, J.R.; Kimball, B.A.; Pinter, P.J.; Manderscheid, R.; Weigel, H.J.; Fangmeier, A.; Fereres, E.; Villalobos, F.

    2002-01-01

    Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been te

  17. Up-regulation of Amazon forest photosynthesis precedes elevated mortality under drought

    Science.gov (United States)

    Saleska, S. R.; Christoffersen, B. O.; Longo, M.; Restrepo-Coupe, N.; Alves, L. F.; Wiedemann, K. T.; Stark, S. C.; Hayek, M.; Wu, J.; Munger, J. W.; Meir, P.; Oliveira Junior, R. C.; da Silva, R.; Camargo, P. B. D.

    2015-12-01

    Coupled climate-carbon cycle models indicate that Amazon forests may be vulnerable to drought, with some predicting drought-induced collapse of the Amazon forest and conversion to savanna, under future climate change. While much progress has been made in understanding tropical forest drought response, a holistic picture encompassing both short-term physiological (e.g., photosynthesis) and longer term demographic responses (e.g., mortality) remains elusive, mainly due to the rarity of coinciding relevant measurements and drought events. Here we address this knowledge gap by analyzing the response of an eastern Amazonian forest at both timescales to the El Nino-induced drought of late 2009 / early 2010 (distinct from the Atlantic SST-induced drought to hit Western Amazonia in mid/late 2010) using eddy flux measurements of carbon exchange and periodic tree demographic surveys. We partitioned the drought response of GPP into environmental (light, vapor pressure deficit (VPD), diffuse light) and biological responses. Based on environmental conditions alone (high VPD), we expected GPP to be 1-2 umol CO2 m-2 s-1 less than average during drought. In contrast, GPP was elevated by 2-4 umol CO2 m-2 s-1 above this expected negative response over a period of ~45 days, consistent with previously observed green-up from satelliltes during the 2005 Amazon drought. At the same time, drought significantly elevated 2009-2011 tree mortality, by ~50% above that during non-drought periods, consistent with a quantitative drought-mortality relationship reported for other Amazon forests. This work suggests that observations of "green-up" of forest canopies during drought may be consistent with subsequent drought-induced tree mortality, in contrast to expectation. More importantly, it highlights endogenous biological regulation of photosynthesis as an important mechanism, neglected by models, in mediating drought responses in tropical forests.

  18. Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.

    Science.gov (United States)

    Fearnside, Philip M

    2003-08-01

    Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.

  19. Diallel analysis and growth parameters as selection tools for drought tolerance in young Theobroma cacao plants

    Science.gov (United States)

    Technical Abstract: This study was aimed to estimate the combining ability, through diallel crosses, of T. cacao genotypes preselected for drought tolerance. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomiz...

  20. Adaptability analysis of the drought monitoring model based on the cloud parameters method in Africa%云参数法干旱遥感监测模型在非洲地区的适应性研究

    Institute of Scientific and Technical Information of China (English)

    张穗; 向大享; 孙忠华

    2013-01-01

    Firstly,the drought monitoring model based on CPI(Cloud Parameters Method/Index) is briefly introduced.Meanwhile,the characteristics of sensors,Spinning Enhanced Visible and Infra-Red Imager (SEVIRI),key payload of METAOSAT,are analyzed from the aspect for drought monitoring.Secondly,a suitable multi-spectral model is promoted to detect cloud pixels to calculate three cloud parameters.Then,the drought conditions of Africa in the winter of 2009 and spring of 2010 are monitored by using the cloud parameters method.Finally,the monitoring result is evaluated by comparing the monthly evaporation and monthly precipitation data from Climate Prediction Center,National Weather Service,US as reference data.The analysis indicated that the degree and scope of draught is almost same by comparing the monitoring results of CPI and area the reference data.Consequently,CPI is adaptable for the drought detecting in Africa.%从云参数法干旱遥感监测模型的需求角度分析了欧洲静止气象卫星SEVIRI数据的应用潜力,并提出了一种适合该数据的多光谱云检测方法;利用云参数法干旱遥感监测模型进行非洲地区2009年底和2010年初的干旱监测,以月度降水和蒸散数据作为参考数据评估监测结果.研究结果表明:云参数法监测结果与参考数据在干旱程度与范围方面基本一致,相对精度高达83.88%,云参数法适合进行非洲地区的干旱监测.

  1. Probabilistic Drought Forecasting in Southern Taiwan Using El Niño-Southern Oscillation Index

    Directory of Open Access Journals (Sweden)

    Shien-Tsung Chen

    2013-01-01

    Full Text Available This study proposes a probabilistic drought forecasting model to forecast meteorological drought in Southern Taiwan using the El Niño-SouthernNiño-Southern Oscillation (ENSO index. Meteorological drought is defined by the standardized precipitation index (SPI, and the ENSO index is El NiñoNiño sea surface temperature (SST. Two probabilistic forecasting model architectures were constructed based on the transition probabilities from El NiñoNiño SSTs to SPIs. Both model architectures forecast a one-month-ahead probability distribution for meteorological drought using different combinations of El NiñoNiño SST variables. Forecasting results showed the robustness of the probabilistic drought forecasting models. In addition, this study discussed the selection of El NiñoNiño SST variables used in the probabilistic drought forecasting model, and found that models with a single SST input outperformed those with multiple SST inputs.

  2. Probabilistic Drought Forecasting in Southern Taiwan Using El Niño-Southern Oscillation Index

    Directory of Open Access Journals (Sweden)

    Shien-Tsung Chen

    2013-01-01

    Full Text Available This study proposes a probabilistic drought forecasting model to forecast meteorological drought in Southern Taiwan using the El Niño-Southern Oscillation (ENSO index. Meteorological drought is defined by the standardized precipitation index (SPI, and the ENSO index is El Niño sea surface temperature (SST. Two probabilistic forecasting model architectures were constructed based on the transition probabilities from El Niño SSTs to SPIs. Both model architectures forecast a one-month-ahead probability distribution for meteorological drought using different combinations of El Niño SST variables. Forecasting results showed the robustness of the probabilistic drought forecasting models. In addition, this study discussed the selection of El Niño SST variables used in the probabilistic drought forecasting model, and found that models with a single SST input outperformed those with multiple SST inputs.

  3. Regimes cambiais: um modelo alternativo para o Brasil Exchange rate rules: an alternative model for Brazil

    Directory of Open Access Journals (Sweden)

    Manoel Carlos de Castro Pires

    2005-04-01

    Full Text Available After the collapse of the Bretton Woods system, many frameworks of exchange rate have been proposed. The aim of this paper is to propose an alternative rule of exchange rate and evaluate the case for Brazil. The analysis of the Brazilian case made necessary the evaluation of auxiliary instruments for its implementation. The paper proposes the use of capital controls or scape clauses.

  4. Drought Forecast Application of BP Prediction Models Based on EMD in Ling River Basin%基于EMD的BP神经网络在凌河流域旱灾预测中的应用

    Institute of Scientific and Technical Information of China (English)

    于洋; 迟道才; 陈涛涛; 孙淼; 栾策

    2014-01-01

    为提高旱灾预测模型预测精度,利用EMD(经验模态分解法)处理非平稳信号的优势,将其应用到BP神经网络预测模型中,建立基于EMD的BP神经网络旱灾预测模型,对凌河流域44个观测站(小凌河流域11站、大凌河流域33站)共51年(1960~2010)的降水资料进行旱灾预测应用,同时将基于EMD的BP神经网络旱灾预测模型结果与BP神经网络预测模型结果进行对比。结果表明:小凌河流域基于EMD的BP神经网络预测模型、BP神经网络预测模型的年均降水量预测值均方误差(MSE)分别为0.0011和0.0076,决定系数(R2)分别为0.95和0.83;大凌河流域基于EMD的BP神经网络预测模型、BP神经网络模型的年均降水量预测值均方误差(MSE)分别为0.0032和0.0092,决定系数(R2)分别为0.93和0.79。基于EMD的BP神经网络预测值均方误差(MSE)较小且决定系数(R2)较高,均优于BP神经网络预测值,提高了BP神经网络旱灾预测模型预测精度,具有一定的可行性。%To improve the accuracy of drought prediction, the EMD (Empirical Mode Decomposition) in processing non-stationary single was used to establish BP neural network forecast model. A drought prediction model was established to conduct a drought prediction for precipitation data from 44 stations (11 stations in Xiaoling River Basin, 33 stations in Daling River Basin) in a total of 51 years (1960-2010) in Ling River Basin and compare the forecast results obtaining from BP neural network prediction model and results from EMD of BP neural network. Results showed that the annual average rainfall prediction mean square error (MSE) based on EMD of BP neural network prediction model and BP neural network prediction model in Xiaoling River Basin were 0.0011 and 0.0076, determination coefficient (R2) were 0.95 and 0.83, The annual average rainfall prediction mean square error(MSE) based on EMD of BP neural network prediction model and BP neural

  5. Validation of energy consumption forecasting model for the Brazil; Validacao de um modelo de previsao de consumo de energia para o Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Jose A.; Lima, Lutero C. de; Silva, Rui Pitanga M. da [Uberlandia Univ., MG (Brazil)

    1995-07-01

    A forecasting model for energy demand and consumption for Brazil has been adapted and developed from a model originally developed in the United States. Different forms of energetics were investigated and the results obtained shown good agreement with the historical data, available at the National Energy Balance.

  6. A Drought Cyberinfrastructure System for Improving Water Resource Management and Policy Making

    Science.gov (United States)

    AghaKouchak, Amir

    2015-04-01

    Development of reliable monitoring and prediction indices and tools are fundamental to drought preparedness, management, and response decision making. This presentation provides an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using both remote sensing observations and model simulations. Designed as a cyberinfrastructure system, GIDMaPS provides drought information based on a wide range of model simulations and satellite observations from different space agencies. Numerous indices have been developed for drought monitoring based on various indicator variables (e.g., precipitation, soil moisture, water storage). Defining droughts based on a single variable (e.g., precipitation, soil moisture or runoff) may not be sufficient for reliable risk assessment and decision making. GIDMaPS provides drought information based on multiple indices including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. In other words, MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of droughts, and better management and distribution of water resources among and across different users. The seasonal prediction component of GIDMaPS is based on a persistence model which requires historical data and near-past observations. The seasonal drought prediction component is designed to provide drought information for water resource management, and short-term decision making. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from several major droughts including the 2013 Namibia, 2012-2013 United States, 2011-2012 Horn of Africa, and 2010 Amazon Droughts will be presented. The presentation will highlight how this drought cyberinfrastructure system can be used to improve water

  7. Impact of drought on wildfires in Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia M.; DaCamara, Carlos; Sousa, Pedro; Trigo, Ricardo M.

    2015-04-01

    months in August. In the Eastern and Northwestern regions the correlation was most significant for the SPI for 3 and 6 months. Thus, the relation between wildfires and drought is better explained in the Northern and Southwestern regions by the temperature influence and on the Northwestern and Eastern by the precipitation influence. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C. (2012) "Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards and Earth System Sciences, 12, 3123-3137, 2012. Vicente-Serrano S.M., Santiago Beguería, Juan I. López-Moreno (2010) "A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index - SPEI". Journal of Climate 23: 1696-1718. Trigo R.M., Sousa P., Pereira M., Rasilla D., Gouveia C.M. (2013) "Modelling wildfire activity in Iberia with different Atmospheric Circulation Weather Types". International Journal of Climatology, DOI: 10.1002/joc.3749 Sousa PM, Trigo RM, Pereira MG, Bedia J, Gutiérrez JM, 2014. Different approaches to model future burnt area in the Iberian Peninsula. Agricultural and Forest Meteorology 202, 11-25. doi:10.1016/j.agrformet.2014.11.018 Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).

  8. Drought in West Africa

    Science.gov (United States)

    2007-01-01

    Drought settled over West Africa's Ivory Coast region when wet season rains came late in 2007. Instead of beginning in February, the rainy season didn't start until March, and steady rains didn't start until late March, said the Famine Early Warning System Network. Though the rain had started to alleviate the drought, vegetation was still depressed in parts of Cote d'Ivoire (Ivory Coast) between March 22 and April 6, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured the data used to make this image. The image shows current vegetation conditions compared to average conditions recorded since 2000. Areas where plants are growing more slowly or more sparsely than average are brown, while areas where vegetation is denser than average are green. The brown tint that dominates the image indicates that plants through most of the country are more sparse than normal. Among the crops affected by the lack of rain was West Africa's cocoa crop. About 70 percent of the world's cocoa comes from West Africa, and Cote d'Ivoire is a top grower, said Reuters. Cocoa prices climbed as the crop fell short. Farmers called the drought the worst in living memory, Reuters said. The delay in rainfall also led to water shortages in parts of Cote d'Ivoire, according to the United Nations Office for the Coordination of Humanitarian Affairs.

  9. Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought.

    Science.gov (United States)

    Anderson, Liana Oighenstein; Aragão, Luiz E O C; Gloor, Manuel; Arai, Egídio; Adami, Marcos; Saatchi, Sassan S; Malhi, Yadvinder; Shimabukuro, Yosio E; Barlow, Jos; Berenguer, Erika; Duarte, Valdete

    2015-10-01

    In less than 15 years, the Amazon region experienced three major droughts. Links between droughts and fires have been demonstrated for the 1997/1998, 2005, and 2010 droughts. In 2010, emissions of 510 ± 120 Tg C were associated to fire alone in Amazonia. Existing approaches have, however, not yet disentangled the proportional contribution of multiple land cover sources to this total. We develop a novel integration of multisensor and multitemporal satellite-derived data on land cover, active fires, and burned area and an empirical model of fire-induced biomass loss to quantify the extent of burned areas and resulting biomass loss for multiple land covers in Mato Grosso (MT) state, southern Amazonia-the 2010 drought most impacted region. We show that 10.77% (96,855 km(2)) of MT burned. We estimated a gross carbon emission of 56.21 ± 22.5 Tg C from direct combustion of biomass, with an additional 29.4 ± 10 Tg C committed to be emitted in the following years due to dead wood decay. It is estimated that old-growth forest fires in the whole Brazilian Legal Amazon (BLA) have contributed to 14.81 Tg of C (11.75 Tg C to 17.87 Tg C) emissions to the atmosphere during the 2010 fire season, with an affected area of 27,555 km(2). Total C loss from the 2010 fires in MT state and old-growth forest fires in the BLA represent, respectively, 77% (47% to 107%) and 86% (68.2% to 103%) of Brazil's National Plan on Climate Change annual target for Amazonia C emission reductions from deforestation.

  10. Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought.

    Science.gov (United States)

    Sun, Zhongyao; Jin, Xiaofen; Albert, Réka; Assmann, Sarah M

    2014-11-01

    Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 10(31) distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems.

  11. Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models

    Science.gov (United States)

    Hoshyaripour, G.; Brasseur, G.; Andrade, M. F.; Gavidia-Calderón, M.; Bouarar, I.; Ynoue, R. Y.

    2016-11-01

    Two state-of-the-art models (deterministic: Weather Research and Forecast model with Chemistry (WRF-Chem) and statistic: Artificial Neural Networks: (ANN)) are implemented to predict the ground-level ozone concentration in São Paulo (SP), Brazil. Two domains are set up for WRF-Chem simulations: a coarse domain (with 50 km horizontal resolution) including whole South America (D1) and a nested domain (with horizontal resolution of 10 km) including South Eastern Brazil (D2). To evaluate the spatial distribution of the chemical species, model results are compared to the Measurements of Pollution in The Troposphere (MOPITT) data, showing that the model satisfactorily predicts the CO concentrations in both D1 and D2. The model also reproduces the measurements made at three air quality monitoring stations in SP with the correlation coefficients of 0.74, 0.70, and 0.77 for O3 and 0.51, 0.48, and 0.57 for NOx. The input selection for ANN model is carried out using Forward Selection (FS) method. FS-ANN is then trained and validated using the data from two air quality monitoring stations, showing correlation coefficients of 0.84 and 0.75 for daily mean and 0.64 and 0.67 for daily peak ozone during the test stage. Then, both WRF-Chem and FS-ANN are deployed to forecast the daily mean and peak concentrations of ozone in two stations during 5-20 August 2012. Results show that WRF-Chem preforms better in predicting mean and peak ozone concentrations as well as in conducting mechanistic and sensitivity analysis. FS-ANN is only advantageous in predicting mean daily ozone concentrations considering its significantly lower computational costs and ease of development and implementation, compared to that of WRF-Chem.

  12. Drought analysis in middle Heihe River

    Institute of Scientific and Technical Information of China (English)

    Jin Junying; Zhang Zhenwei; Zhang Weihua

    2005-01-01

    Water shortage has become one of the severest problems in the middle Heihe River Basin because of high water demand but low available water supply. This paper is oriented to provide solutions to the problem through the analysis of drought. The main objectives to analyze the difference between water demand and supply in various water users in past, present (2000), and project (2010) situation, especially in agriculture, and the most important is to propose and assess a reasonable measure with the purpose of minimum drought and sustainable development. A simulation model, WAFLEX (Water Allocation Flow model in Excel) model is applied in this study to cope with water availability, distribution and requirement of various water users, and the result shows the model and the method is effective and feasible.

  13. DROUGHT FORECASTING BASED ON MACHINE LEARNING OF REMOTE SENSING AND LONG-RANGE FORECAST DATA

    Directory of Open Access Journals (Sweden)

    J. Rhee

    2016-06-01

    Full Text Available The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6 and the 6-month Standardized Precipitation Evapotranspiration Index (SPEI6. An interpolation method based on multiquadric spline interpolation method as well as three machine learning models were tested. Three machine learning models of Decision Tree, Random Forest, and Extremely Randomized Trees were tested to enhance the provision of drought initial conditions based on remote sensing data, since initial conditions is one of the most important factors for drought forecasting. Machine learning-based methods performed better than interpolation methods for both classification and regression, and the methods using climatology data outperformed the methods using long-range forecast. The model based on climatological data and the machine learning method outperformed overall.

  14. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2010-03-01

    Full Text Available Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc. on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI – and multiscale hydrological droughts, through the Standardized Flow Index (SFI. Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow. Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990 to short hot and dry periods (2003. Results show that the ranking of drought events depends highly

  15. Synthetic drought event sets: thousands of meteorological drought events for risk-based management under present and future conditions

    Science.gov (United States)

    Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.

    2016-04-01

    Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its

  16. Vegetation Drought Response Index: 2010-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — VegDRI, short for Vegetation Drought Response Index, is a drought-monitoring tool developed by scientists at EROS in collaboration with the National Drought...

  17. Spatialized Application of Remotely Sensed Data Assimilation Methods for Farmland Drought Monitoring Using Two Different Crop Models

    Science.gov (United States)

    Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang

    2016-08-01

    The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.

  18. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    2017-05-01

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initial condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.

  19. Corn performance with late sowing in Planalto Catarinense, Brazil, simulated with CERES-maize model

    Directory of Open Access Journals (Sweden)

    Célio Orli Cardoso

    2008-08-01

    Full Text Available This work had the objective to investigate the delay effects in the sowing date on corn establishment, cycle duration and yield through the computer simulations using CERES-Maize model, in order to help agrarian producers from the Mountainous Area of Santa Catarina, Brazil to take better decisions on it. The computer simulations showed that: 1the risks on corn establishment increased due to the delay of sowing during the studied years; 2 in some years, its cycles were drastically affected for the lower temperatures; 3 the cycle durations were longer when confronted with the low temperatures; 4 corn income decreased when the cycles were confronted with the low temperatures, water deficiency and low solar radiation; 5 potential incomes averaged 4944 kg ha-1, and under the natural rain conditions averaged 2490 kg ha-1, during all the months analyzed from October to March; 6 besides January, the exploration of this cultivar was not viable because of the high risk of the crop frustration associated to the same ones, due to the thermal conditions (low temperatures and frost.O trabalho teve como objetivo investigar os efeitos decorrentes do atraso da semeadura no estabelecimento, duração do ciclo e rendimento do milho, mediante simulações em computador com o uso do modelo CERES-Maize, a fim de orientar os produtores na tomada de decisão na região do Planalto Serrano Catarinense. Em função da época em que é cultivado, o milho com semeadura tardia normalmente está exposto a riscos maiores de perdas por geadas e defici��ncia hídrica em relação ao cultivo na época recomendada, atingindo um menor potencial de produtividade e tendência de alongamento do ciclo. As simulações permitiram concluir que: os riscos de estabelecimento do milho foram bastante variáveis ao longo dos decêndios analisados; em alguns anos os ciclos foram afetados drasticamente por temperaturas bastante baixas; as durações dos ciclos tenderam a alongar-se quando

  20. Assessing various drought indicators in representing drought in boreal forests in Finland

    Science.gov (United States)

    Gao, Y.; Markkanen, T.; Thum, T.; Aurela, M.; Lohila, A.; Mammarella, I.; Hagemann, S.; Aalto, T.

    2015-08-01

    Droughts can impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August) over a 30 year period (1981-2010) in Finland. Those indicators include the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Soil Moisture Index (SMI) and the Soil Moisture Anomaly (SMA). Herein, regional soil moisture was produced by the land surface model JSBACH. While SPI, SPEI, and SMA show a degree of anomalies from the statistical means over a period, SMI is directly connected to plant available water and closely dependent on soil properties. Moreover, the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, whereas SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF) in Finland. EDF thresholds for these indicators are suggested, based on the spatially representative statistics of forest health observations in the exceptional dry year 2006. Our results showed that SMI was the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, the derived thresholds were applied to those indicators to capture EDF events over the summer months of the 30 year study period. The SPEI and SMA showed more frequent EDF events over the 30 year period, and typically described a higher fraction of influenced area than SMI. In general, the suggested EDF thresholds for those indicators may be used for the indication of EDF events in Finland or other boreal forests areas in the context

  1. Assessing various drought indicators in representing drought in boreal forests in Finland

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2015-08-01

    Full Text Available Droughts can impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August over a 30 year period (1981–2010 in Finland. Those indicators include the Standardized Precipitation Index (SPI, the Standardized Precipitation–Evapotranspiration Index (SPEI, the Soil Moisture Index (SMI and the Soil Moisture Anomaly (SMA. Herein, regional soil moisture was produced by the land surface model JSBACH. While SPI, SPEI, and SMA show a degree of anomalies from the statistical means over a period, SMI is directly connected to plant available water and closely dependent on soil properties. Moreover, the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, whereas SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF in Finland. EDF thresholds for these indicators are suggested, based on the spatially representative statistics of forest health observations in the exceptional dry year 2006. Our results showed that SMI was the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, the derived thresholds were applied to those indicators to capture EDF events over the summer months of the 30 year study period. The SPEI and SMA showed more frequent EDF events over the 30 year period, and typically described a higher fraction of influenced area than SMI. In general, the suggested EDF thresholds for those indicators may be used for the indication of EDF events in Finland or other boreal forests

  2. A comprehensive framework for tourism and recreation drought vulnerability reduction

    Science.gov (United States)

    Thomas, Deborah S. K.; Wilhelmi, Olga V.; Finnessey, Taryn N.; Deheza, Veva

    2013-12-01

    The effects of drought are vast, but loss statistics often do not reflect the impacts on the tourism and recreation sector, which for many places is one of the most critical economic drivers. This is concerning because drought events are common across the globe, with varying frequency, duration, and intensity, and are therefore unavoidable. Over the years, drought conditions have been at record levels in many regions, causing deep societal and economic impacts. However, little research has been conducted on connections between tourism/recreation and drought, revealing a distinct disconnect between the tourism/recreation sector and drought management. To bridge this gap in the current understanding of, and approaches to, managing drought in the tourism/recreation sector, we present an interdisciplinary conceptual framework that integrates tourism/recreation into the drought management process to ensure sustainable economic development and community vitality. The model presented here promotes understanding of critical interactions through a bottom-up stakeholder engagement process balanced with formal top-down management approaches.

  3. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  4. A review of droughts in the African continent: a geospatial and long-term perspective

    Directory of Open Access Journals (Sweden)

    I. Masih

    2014-03-01

    Full Text Available This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900–2013 as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 yr. The extreme droughts of 1972–1973, 1983–1984 and 1991–1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999–2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa (Sahel, 2010–2011 drought in East Africa (Horn of Africa and 2001–2003 drought in Southern and Southeast Africa, to name a few. The available (though limited evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial East Africa regions. Complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO, Sea Surface Temperature (SST and land–atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and North Africa regions. However, the available evidence from the past clearly shows that the African continent is likely to

  5. A review of droughts on the African continent: a geospatial and long-term perspective

    Science.gov (United States)

    Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.

    2014-09-01

    This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013, as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 years. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in northwest Africa, 1970s and 1980s droughts in western Africa (Sahel), 2010-2011 drought in eastern Africa (Horn of Africa) and 2001-2003 drought in southern and southeastern Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and equatorial eastern Africa. The complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), sea surface temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and northern Africa. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and

  6. A review of droughts in the African continent: a geospatial and long-term perspective

    Science.gov (United States)

    Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.

    2014-03-01

    This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013 as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 yr. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa (Sahel), 2010-2011 drought in East Africa (Horn of Africa) and 2001-2003 drought in Southern and Southeast Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial East Africa regions. Complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), Sea Surface Temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and North Africa regions. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread

  7. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests.

    Science.gov (United States)

    Berdanier, Aaron B; Clark, James S

    2016-01-01

    Recent forest diebacks, combined with threats of future drought, focus attention on the extent to which tree death is caused by catastrophic events as opposed to chronic declines in health that accumulate over years. While recent attention has focused on large-scale diebacks, there is concern that increasing drought stress and chronic morbidity may have pervasive impacts on forest composition in many regions. Here we use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 yr. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with drought tolerance. These findings support the ability of trees to avoid death during drought events but indicate shifts that could occur over decades. Tree mortality following drought is predictable in these ecosystems based on growth declines, highlighting an opportunity to address multiyear drought-induced morbidity in models, experiments, and management decisions.

  8. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes

    Directory of Open Access Journals (Sweden)

    Roberts Philip A

    2011-09-01

    Full Text Available Abstract Background Cowpea (Vigna unguiculata is an important crop in arid and semi-arid regions and is a good model for studying drought tolerance. MicroRNAs (miRNAs are known to play critical roles in plant stress responses, but drought-associated miRNAs have not been identified in cowpea. In addition, it is not understood how miRNAs might contribute to different capacities of drought tolerance in different cowpea genotypes. Results We generated deep sequencing small RNA reads from two cowpea genotypes (CB46, drought-sensitive, and IT93K503-1, drought-tolerant that grew under well-watered and drought stress conditions. We mapped small RNA reads to cowpea genomic sequences and identified 157 miRNA genes that belong to 89 families. Among 44 drought-associated miRNAs, 30 were upregulated in drought condition and 14 were downregulated. Although miRNA expression was in general consistent in two genotypes, we found that nine miRNAs were predominantly or exclusively expressed in one of the two genotypes and that 11 miRNAs were drought-regulated in only one genotype, but not the other. Conclusions These results suggest that miRNAs may play important roles in drought tolerance in cowpea and may be a key factor in determining the level of drought tolerance in different cowpea genotypes.

  9. Drought in groundwater-drought distribution and performance indicators

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.; Torfs, P.J.J.F.; Bier, G.

    2005-01-01

    In order to investigate how droughts are changed by the groundwater system and to analyse the performance of groundwater during drought, 10 time series of 1000 years of recharge and groundwater discharge were generated. The 10×1000 years of synthetic daily data were generated using Nearest Neighbour

  10. Probabilistic analysis of hydrological drought characteristics using meteorological drought

    NARCIS (Netherlands)

    Wong, G.; Lanen, van H.A.J.; Torfs, P.J.J.F.

    2013-01-01

    Droughts are an inevitable consequence of climate variability and are pervasive across many regions. Their effects can vary on an extensive scale, depending on the type of drought and people’s vulnerability. Crucial characteristics of both hydrological (groundwater, streamflow) and meteorological (p

  11. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Lorraine H.C. Fisher

    2016-11-01

    Full Text Available Drought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. Brachypodium distachyon (Brachypodium is a key model species for cereals, forage grasses and energy grasses. In this study, initial screening of a Brachypodium germplasm collection consisting of 138 different ecotypes exposed to progressive drought, highlighted the natural variation in morphology, biomass accumulation and responses to drought stress. A core set of ten ecotypes, classified as being either tolerant, susceptible or intermediate, in response to drought stress, were exposed to mild or severe (respectively 15% and 0% soil water content drought stress and phenomic parameters linked to growth and colour changes were assessed. When exposed to severe drought stress, phenotypic data and metabolite profiling combined with multivariate analysis revealed a remarkable consistency in separating the selected ecotypes into their different pre-defined drought tolerance groups. Increases in several metabolites, including for the phytohormones jasmonic acid and salicylic acid, and TCA-cycle intermediates, were positively correlated with biomass yield and with reduced yellow pixel counts; suggestive of delayed senescence, both key target traits for crop improvement to drought stress. While metabolite analysis also separated ecotypes into the distinct tolerance groupings after exposure to mild drought stress, similar analysis of the phenotypic data failed to do so, confirming the value of metabolomics to investigate early responses to drought stress. The results highlight the potential of combining the analyses of phenotypic and metabolic responses to identify key mechanisms and markers associated with drought tolerance in both the Brachypodium

  12. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  13. Distinguishing warming-induced drought from drought-induced warming

    Science.gov (United States)

    Roderick, M. L.; Yin, D.

    2015-12-01

    It is usually observed that temperatures, especially maximum temperatures are higher during drought. A very widely held public perception is that the increase in temperature is a cause of drought. This represents the warming-induced drought scenario. However, the agricultural and hydrologic scientific communities have a very different interpretation with drought being the cause of increasing temperature. In essence, those communities assume the warming is a surface feedback and their interpretation is for drought-induced warming. This is a classic cause-effect problem that has resisted definitive explanation due to the lack of radiative observations at suitable spatial and temporal scales. In this presentation we first summarise the observations and then use theory to untangle the cause-effect relationships that underlie the competing interpretations. We then show how satellite data (CERES, NASA) can be used to disentangle the cause-effect relations.

  14. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  15. A European Drought Reference Database: Design and Online Implementation

    NARCIS (Netherlands)

    Stagge, J.H.; Tallaksen, L.M.; Kohn, I.; Stahl, K.; Loon, van A.

    2013-01-01

    This report presents the structure and status of the online European Drought Reference (EDR) database. This website provides detailed historical information regarding major historical European drought events. Each drought event is summarized using climatological drought indices, hydrological drought

  16. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest

    Science.gov (United States)

    Ivanov, Valeriy Y.; Hutyra, Lucy R.; Wofsy, Steven C.; Munger, J. William; Saleska, Scott R.; de Oliveira, Raimundo C., Jr.; de Camargo, Plínio B.

    2012-12-01

    Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajós National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.

  17. Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil

    Science.gov (United States)

    Loureiro, Afonso; Afilhado, Alexandra; Matias, Luís; Moulin, Maryline; Aslanian, Daniel

    2016-06-01

    In the Santos Basin (Brazil), two parallel wide-angle refraction profiles show different crustal structures. One shows moderate crustal velocity gradient, and a clear Moho with topography. The other has an anomalous velocity zone, and no clear Moho reflections. This has large implications on the geological and geodynamical interpretation of the basin. Model uncertainties must be excluded as a source of these differences. We developed VMONTECARLO, a tool to assess model uncertainty of layered velocity models using a Monte Carlo approach and simultaneous parameter perturbation using all picked refracted and reflected arrivals. It gives insights into the acceptable geological interpretations allowed by data and model uncertainty through velocity-depth plots that provide: a) the velocity-depth profile range that is consistent with the travel times; b) the random model that provides the best fit, keeping most of the observations covered by ray-tracing; c) insight into valid models dispersion; d) main model features unequivocally required by the travel times, e.g., first-order versus second-order discontinuities, and velocity gradient magnitudes; e) parameter value probability distribution histograms. VMONTECARLO is seamlessly integrated into a RAYINVR-based modelling work-flow, and can be used to assess final models or sound the solution space for alternate models, and is also capable of evaluating forward models without the need for inversion, thus avoiding local minima that may trap the inversion algorithms and providing information for models still not well-parametrised. Results for the Brazilian models show that the imaged structures are indeed geologically different and are not due to different interpretations of the same features within the model uncertainty bounds. These differences highlight the strong heterogeneity of the crust in the middle of the Santos Basin, where the rift is supposed to have failed.

  18. Projections of future meteorological drought and wet periods in the Amazon

    OpenAIRE

    Duffy, Philip B.; Brando, Paulo; Asner, Gregory P.; Field, Christopher B.

    2015-01-01

    Recent severe droughts in the Amazon basin have increased interest in future climatological and ecological conditions of this region. Future changes in drought and wet periods could have enormous impacts on forest structure, biomass, and composition, but our ability to predict changes in the hydrological regime remains highly uncertain. We evaluate an ensemble of state-of-the-art climate models and demonstrate their accuracy in simulating processes influencing drought in Amazonia. These model...

  19. Drought impact on forest carbon dynamics and fluxes in Amazonia.

    Science.gov (United States)

    Doughty, Christopher E; Metcalfe, D B; Girardin, C A J; Amézquita, F Farfán; Cabrera, D Galiano; Huasco, W Huaraca; Silva-Espejo, J E; Araujo-Murakami, A; da Costa, M C; Rocha, W; Feldpausch, T R; Mendoza, A L M; da Costa, A C L; Meir, P; Phillips, O L; Malhi, Y

    2015-03-05

    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by sh