WorldWideScience

Sample records for brazed joints

  1. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other......, or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...

  2. Failure Assessment Diagram for Titanium Brazed Joints

    Science.gov (United States)

    Flom, Yury; Jones, Justin S.; Powell, Mollie M.; Puckett, David F.

    2011-01-01

    The interaction equation was used to predict failure in Ti-4V-6Al joints brazed with Al 1100 filler metal. The joints used in this study were geometrically similar to the joints in the brazed beryllium metering structure considered for the ATLAS telescope. This study confirmed that the interaction equation R(sub sigma) + R(sub Tau) = 1, where R(sub sigma) and R(sub Tau)are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in ATLAS brazed joints as well as for construction of the Failure Assessment Diagram (FAD).

  3. High-strength braze joints between copper and steel

    Science.gov (United States)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  4. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    Science.gov (United States)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  5. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  6. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  7. Investigation of the effect of rapidly solidified braze ribbons on the microstructure of brazed joints

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Wiesner, S.; Rochala, P.; Mayer, J.; Aretz, A.; Iskandar, R.; Schwedt, A.

    2017-03-01

    Shrinkage and warpage due to melting and solidification are crucial for the geometric precision of related components. In order to assure a high geometric precision, the formation of the microstructure in the joint during brazing must be taken into consideration. An extensive interaction can occur between liquid melt and base material, resulting in the formation of distinctive phases. This interaction depends on the parameters of the brazing process. However, the consequences of the interaction between phase formation and process parameters in terms of geometric precision cannot be estimated yet. Insufficient quality of the joint can be a result. In this study, investigations focus on the process of solidification in terms of time dependent diffusion behavior of elements. Therefore, microcrystalline and amorphous braze ribbons based on Ti are produced by rapid solidification and are used for joining. The microstructure of the braze ribbons as well as the melting behavior and phase formation during brazing are considered to be of particular importance for the mechanical properties of the brazed components.

  8. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    Science.gov (United States)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  9. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Easton, David, E-mail: david.easton@strath.ac.uk [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Zhang, Yuxuan; Wood, James; Galloway, Alexander; Robbie, Mikael Olsson [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Hardie, Christopher [Culham Centre for Fusion Energy CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A eutectic gold–copper brazing alloy has been successfully used to produce a highly wetted brazed joint between tungsten and copper. • Relevant materials for fusion applications. • Mechanical testing of W–AuCu–Cu soon to be performed. - Abstract: Current proposals for the divertor component of a thermonuclear fusion reactor include tungsten and copper as potentially suitable materials. This paper presents the procedures developed for the successful brazing of tungsten to oxygen free high conductivity (OFHC) copper using a fusion appropriate gold based brazing alloy, Orobraze 890 (Au80Cu20). The objectives were to develop preparation techniques and brazing procedures in order to produce a repeatable, defect free butt joint for tungsten to copper. Multiple brazing methods were utilised and brazing parameters altered to achieve the best joint possible. Successful and unsuccessful brazed specimens were sectioned and analysed using optical and scanning electron microscopy, EDX analysis and ultrasonic evaluation. It has been determined that brazing with Au80Cu20 has the potential to be a suitable joining method for a tungsten to copper joint.

  10. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  11. Online monitoring of the laser brazing of titanium overlap joints

    Science.gov (United States)

    Schmitt, R.; Vielhaber, K.; Donst, D.; Klocke, F.

    2007-06-01

    Image processing and thermography for its own are very versatile and established measurement techniques for many years. However, the combination of these two measurement technologies opens a new field of applications. The online monitoring of the laser-brazing of titanium overlap joints is such a new application. The laser brazing process for overlap joining of formed titanium sheets for the production of heat exchangers is presently being investigated at the Fraunhofer IPT. In comparison to conventional furnace brazing the laser brazing technology decreases substantially the heat impact and thus reduces the thermal material damage in the parts due to local selective heating in a laser beam focal spot. Even though the process is stable, errors in the brazing seam such as pores or unacceptable material oxidation can occur. To ensure a high quality an online process monitoring or even process control is necessary. But since the surface remains unchanged during this brazing process no geometrical inspection of the surface can be conducted. Therefore today's quality assurance performs x-ray or destructive testing. This paper demonstrates how the use of thermography in combination with image processing allows a machine integrated online monitoring of the laser brazing process. First the basic principals are presented which cover the fields of heat coupling, heat transmission and heat distribution as well as the temperature emission of light and the spectral properties of the laser beam shaping optic and so lead to the optical set-up. Then analysis algorithms are derived which characterize the process, detect process failures and make a seam tracking possible.

  12. Brazing

    CERN Document Server

    Schwartz, Mel M

    2003-01-01

    Text provides information needed to braze materials that will be used in the 21st century. Revised to include lessons learned on tooling, design, materials, atmospheres, processing, and equipment. For brazing technologists and engineers.

  13. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2016-12-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S-N curve, providing a design curve for any joint configuration in fatigue solicitation.

  14. Laser beam active brazing of metal ceramic joints

    Science.gov (United States)

    Haferkamp, Heinz; Bach, Friedrich W.; von Alvensleben, Ferdinand; Kreutzburg, K.

    1996-04-01

    The use of engineering ceramics is becoming more and more important. Reasons for this are the specific properties of these materials, such as high strength, corrosion resistance and wear resistance. To apply the advantages of ceramics, joining techniques of metal ceramic parts are required. In this paper, joining of metal ceramic joints by laser beam brazing is presented. This joining technique is characterized by local heat input, and the minimal thermal stress of the brazed components. During the investigations, an Nd:YAG laser and a vacuum chamber were applied. The advantages of Nd:YAG lasers are the simple mechanical construction, and laser beam guidance via quartz glass fibers, which leads to high handling flexibility. In addition, most of the materials show a high absorption rate for this kind of radiation. As materials, ceramic Al2O3 with a purity of 99.4% and metals such as X5CrNi189 and Fe54Ni29Co17 were used. As a filler material, commercially available silver and silver- copper brazes with chemically active elements like titanium were employed. During this study, the brazing wetting behavior and the formation of diffusion layers in dependence on processing parameters were investigated. The results have shown that high brazing qualities can be achieved by means of the laser beam brazing process. Crack-free joining of metal ceramic parts is currently only possible by the use of metals such as Fe54Ni29Co17 because of its low thermal expansion coefficient, which reduces thermal stresses within the joining zone.

  15. Comparison of brazed joints made with BNi-1 and BNi-7 nickel-base brazing alloys

    Directory of Open Access Journals (Sweden)

    Zorc, Borut

    2000-04-01

    Full Text Available Kinetics of the processes are different with different types of brazing alloys. Precipitation processes in the parent metal close to the brazing gap are of great importance. They control the mechanical properties of the joint area when the brittle eutectic has disappeared from the gap. A comparative study of brazed joints on austenitic stainless alloys made with BNi-7 (Ni-P type and BNi-1 (Ni-Si-B type brazing alloys was made. Brazing alloys containing phosphorus behave in a different manner to those containing boron.

    Las aleaciones de níquel se producen mediante tres sistemas de aleación: Ni-P, Ni-Si y Ni-B. Durante las reacciones metalúrgicas con el metal de base, la eutéctica frágil en la separación soldada puede transformarse en la solución dúctil-sólida con todas aleaciones. La cinética del proceso varía según el tipo de aleación. Los procesos de precipitación en el metal de base cerca de la separación soldada son de mucha importancia, ya que controlan las propiedades mecánicas de la área de unión después de desaparecer la eutéctica frágil de la separación. Se ha hecho un análisis comparativo de uniones soldadas en aleaciones austeníticas inoxidables realizadas con aleaciones BNi-7 (tipo Ni-P y BNi-1 (tipo Ni-Si-B. Las aleaciones que contienen fósforo se comportan de una manera diferente, tanto con el cambio de la eutéctica a la solución sólida, como con los procesos de precipitación en el metal de base cerca de la unión soldada.

  16. EFFECT OF BRAZING TIME ON TiC CERMET/IRON JOINT BRAZED WITH Ag-Cu-Zn FILLER METAL

    Institute of Scientific and Technical Information of China (English)

    L.X. Zhang; J.C. Feng; Z.R. Li; H.J. Liu

    2004-01-01

    The brazing of TiC cermet to iron was carried out at 1223K for 5-20min using Ag-Cu-Zn filler metal. The formation phase and interface structure of the joints were investigated by electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the joint strength was tested by shearing method. The results showed: there occurred three new formation phases, Cu(s.s), FeNi and Ag(s.s) in TiC cermet/iron joint. The interface structure was expressed as TiC cermet/Cu(s.s)+FeNi/Ag(s.s)+a little Cu(s.s)+a little FeNi/Cu(s.s)+ FeNi/iron. With brazing time increasing, there appeared highest shear strength of the joints, the value of which was up to 252.2MPa when brazing time was 10min.

  17. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    Science.gov (United States)

    Zhang, Yuxuan; Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David; Zhu, Wenzhong

    2014-11-01

    In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.

  18. XRD and TEM analysis of the microstructure in the brazing joint of 3003 cladding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Feng; Songnian Lou; Luhai Wu; Yajiang Li

    2005-01-01

    The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy.The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and Cu3Mn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.

  19. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  20. Interface structure and mechanical property of the brazed joint of graphite and copper

    Institute of Scientific and Technical Information of China (English)

    XIE Fengchun; ZHANG Lixia; FENG Jicai; HE Peng

    2009-01-01

    A kind of self-made AgCuTiSn braze alloy powder was used to join graphite and copper. The whole brazing process was performed under vacuum circumstances at different temperatures (1033-1193 K) for several holding time (300-1800 s). According to scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electron probe X-ray microanalysis (EPMA) results, the reaction products of the interface are TiC, Ti3Sn, Cu(s. s), Ag(s. s) and Cu-Sn compound. As the brazing parameters increase, the quantity of Ag(s. s) in the braze alloy and C fibers on graphite/AgCuTiSn interface reduce, while that of Cu (s. s) in the braze alloy improves. When the brazing temperature is 1093 K and holding time is 900 s, the joint can obtain the maximum room temperature shear strength 24 MPa.

  1. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    Science.gov (United States)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  2. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxuan, E-mail: yuxuan.zhang@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Zhu, Wenzhong [School of Engineering, University of the West of Scotland, Paisley PA1 2BE (United Kingdom)

    2014-11-15

    Highlights: • We created brazed joints between tungsten and EUROFER 97, Cu and SS316L with Au80Cu19Fe1 filler. • No elemental transitions were detected between the W and the AuCuFe filler in either direction. • Transition regions between filler to EUROFER97/316L showed similar elastic modulus and hardness to the filler. • Smooth elemental and mechanical properties transition were detected between the filler and Cu. - Abstract: In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.

  3. Strength of vacuum brazed joints for repair; Haallfasthet hos reparationer utfoerda med vakuumloedning

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Leif [Siemens Industrial Turbomachinery AB, Finspaang (Sweden)

    2005-04-01

    Strength data are missing for braze joints. Repaired components cannot fully make use of the strength of the braze, and lifetime will be underestimated. The goal of the project was to generate material data to be able to prolong the lifetime of the components. Two different material combinations were tested, 12% Chromium steel brazed with BNi-2, and a nickel base alloy, IN792 brazed with BNi-5. Tensile testing at room temperature and elevated temperature was performed in the project. Target group is purchasers and suppliers of repaired components. A tensile test specimen with butt joint was developed in the project. The used test specimen worked well for the 12% Chromium steel. The results from testing show that proof stress and tensile strength are strongly depending on the joint gap, particularly at room temperature. High strength, close to base material strength, was achieved with joint gaps smaller than 50{mu}m. For wider joint gaps, strength was lower. Strength was approximately 25% of base material strength for joint gaps over 100{mu}m. The results can be explained by changes in microstructure. Joint gaps wider than 50{mu}m showed evidence of two-phase structure. At 500 deg C, the results also showed a connection between joint gap, microstructure and strength. The generated strength data can be used for calculations of lifetime for repaired components. Two different process errors were discovered in the manufacturing process of the brazed IN792 test specimens. The generated material data are therefor erroneous. The reason for this was two manufacturing errors. The tack welding was done with too high heat input. The surfaces of the joint gap became oxidised and the oxide hindered wetting of the braze. The second reason was that the brazing was done without the prescribed hold time at maximum temperature. The melting of the braze was therefor not completed when cooling started. As a result, the strength of the IN792 specimens was low at both temperatures.

  4. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  5. Microstructure of the Al2O3/Al2O3 Joint Brazed with Cu-Zn-Ti Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Hongyuan FANG; Jianguo YANG; Xiuyu YU

    2001-01-01

    Microstructure and interface reactions of Al2O3 joints brazed by Cu-Zn-Ti alloy were studied by using SEM, EDS and XRD. The effects of brazing temperature and Ti content on interfacial reactions and microstructure were investigated, and the action of adding Zn into brazing alloy was also studied. TiO, Ti3Al and CuTi were formed at the interface of ceramics and the filler metal, while CuTi, Cu3Ti and α-Cu were found in the brazing. The thickness of the reaction layer increased with increasing of brazing temperature, under the same brazing process, the thickness increased with the Ti content.

  6. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  7. Microstructure and characteristics of high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2009-12-01

    Full Text Available Purpose: In the article a state of the question concerning stresses in brazing joints of different physical and mechanical properties was appraised as well as possibility of their decrease due to use of different techniques from technological experiments to numerical methods. Evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC – Co and Ferro Titanit Nicro 128 sinters and precipitation hardened stainless steel of 14 –5 PH (X5CrNiMoCuNb14-5 using copper and silver – copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope (SEM were performed to establish microstructure and diffusion influences on creation of intermetallic phases in the joint. Shear strength Rt and tensile strength Rm of the joints have been defined. It have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC - Co ISO K05 sinter – Cu or Ag - Cu brazing filler metal – 14 -5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements and creation of intermetallic in the joint. It can have an unfavourable influence on ductility and quality of the joint.Findings: Results of numerical calculations of two-dimensional models of brazed joints for different sizes of surfaces brazed at a constant width of solder gap are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces.Results of the investigate proved that joints microstructure and mechanical properties depend on filler and parent materials, diffusion process during brazing, leading to exchange of the cermets components and filler metal as well as joint geometry (mainly gap thickness.Practical implications: The results have been applied in surfaces are used in large dimension spinning nozzles of a die for polyethylene granulation, in that

  8. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  9. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  10. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    Science.gov (United States)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  11. An influence of a Glass Braze Composition on the Properties of Li-Ti Ferrite Joints

    Science.gov (United States)

    Lin, Panpan; Lin, Tiesong; He, Peng; Sekulic, Dusan P.; Zhao, Mengyuan; Wang, Shulei

    2017-04-01

    The influence of the chemical composition of Bi2O3-B2O3-SiO2-ZnO glass brazes on (i) the microstructure, (ii) the mechanical and (iii) the dielectric properties of Li-Ti ferrite joints was systematically investigated. The Bi5(Ti3Fe)O15 whisker and a white block phase consisting of Bi12SiO2 and Bi24B2O39 were observed in the joints of Li-Ti ferrite/Bi25-Ba and Li-Ti ferrite/glass brazes, respectively, containing a higher content of Bi2O3. No crystalline phase was detected in the Li-Ti ferrite/Bi25 and Li-Ti ferrite/Bi20 joints. The joint strength reached the maximum of 48 MPa in the Li-Ti ferrite/Bi25-Ba couples. It is assumed that this is mainly due to the strengthening effect of Bi5(Ti3Fe)O15 whiskers. The bonding temperature (700°C) had little effect on the dielectric properties of Li-Ti ferrite. Moreover, compared to the Bi25-Ba glass brazes, the Bi25 and Bi20 glass brazes had a less pronounced influence on the dielectric properties of joints. Different glass brazes can be tailored to different requirements depending on specific application and joint property requirements.

  12. Microstructure and Mechanical Property of 3003 Aluminum Alloy Joint Brazed with Al-Si-Cu-Zn Filler Metal

    Directory of Open Access Journals (Sweden)

    LI Xiao-qiang

    2016-09-01

    Full Text Available Al-Si-Cu-Zn filler metal was developed to braze 3003 aluminum alloy. The microstructure and fracture surface of the joint were analyzed by XRD, SEM and EDS, and the effects of brazing temperature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540-580℃ for 10min. The brazed joint consists of α(Al solid solution, θ(Al2Cu intermetallic compound, fine silicon phase and AlCuFeMn+Si phase in the central zone of brazed seam, and α(Al solid solution and element diffusion layers at both the sides of brazed seam, and the base metal. The room temperature (RT shear fracture of the joint occurs at the interface between the teeth shape α(Al in the diffusion layer and the center zone of brazed seam, which is mainly characterized as brittle cleavage. As the brazing temperature increases, α(Al solid solution crystals in the diffusion zone grow up, and the interfacial bonding of the joint is in the form of interdigitation. Brazing at 560℃ for 10min, the RT shear strength of the joint reaches the maximum value of 92.3MPa, which is about 62.7% of the base material.

  13. Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet

    Science.gov (United States)

    Basak, Sushovan; Das, Hrishikesh; Pal, Tapan Kumar; Shome, Mahadev

    2016-12-01

    Galvanized dual-phase steel sheets are extensively used by the auto industry for their corrosion resistance property. Welding by the metal inert gas (MIG) process causes degradation of the steel in the vicinity of the joint due to excessive zinc evaporation. In order to minimize Zn loss, the MIG brazing process has been tried out in lap joint configuration over a heat input range of 136-204 J mm-1. The amount of zinc loss, intermetallic formation and corrosion properties in the joint area has been evaluated for both MIG brazing and MIG welding. Corrosion rate of 21 mm year-1 has been reduced to 2 mm year-1 by adopting MIGB in place MIGW. Impedance study has shown that the corrosion mechanism in base metal, MIG brazed and MIG welded joints is dominated by charge transfer, diffusion and mixed mode control processes, respectively.

  14. Residual Stress and Bonding Strength in the ElectricalSialon Ceramics Joint Made by Using the Brazing Metal Layer

    OpenAIRE

    Kimura, Mitsuhiko; Asari, Koichi; GOTO, Shoji; Aso, Setsuo

    2002-01-01

    Electrical Sialons which have some TiN contents were joined with Ag-Cu-Ti active brazing metal layer having a thickness from 30μm to 400μm at a temperature from 1113 K to 1213 K in a vacuum. Residual stress in the brazed joint specimens was not observed when the thickness of brazing metal layer was 30 μ m. However, the residual stress of 80 MPa was detected when the thickness of brazing metal layer increased up to 400μm. When the brazing temperature was 1113 K, four-point bending strengths of...

  15. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  16. Interfacial structure and joint strengthening in arc brazed galvanized steels with copper based filler

    Institute of Scientific and Technical Information of China (English)

    LI Rui-feng; YU Zhi-shui; QI Kai

    2006-01-01

    Galvanized steel sheets were joined by tungsten inert gas(TIG) and metal inert gas(MIG) brazing process using copper based filler. The results show that the joint zone hardness is higher than that of the base material or copper filler from the microhardness tests of TIG brazing specimens, and the fracture spot is at the base materials zone from the tensile tests of MIG brazing specimens. Examination using energy dispersive X-ray analysis reveals the presence of intermetallic compound Fe5Si3(Cu) in the joint. The dispersal of fine Fe5Si3(Cu) particles is the main strengthening factor for the joint. The Fe5Si3(Cu) particles are determined to arise from three sources, namely, spot micro-melt, whisker-like fragmentation and dissolve-separation actions.

  17. Evolution of Microstructure in Brazed Joints of Austenitic-Martensitic Stainless Steel with Pure Silver Obtained with Ag-27Cu-5Sn Brazing Filler Material

    Science.gov (United States)

    Gangadharan, S.; Sivakumar, D.; Venkateswaran, T.; Kulkarni, Kaustubh

    2016-12-01

    Brazing of an austenitic-martensitic stainless steel (AMSS) with pure silver was carried out at 1053 K, 1073 K, and 1093 K (780 °C, 800 °C, and 820 °C) with Ag-27Cu-5Sn (wt pct) as brazing filler material (BFM). Wettability of the liquid BFM over base AMSS surface was found to be poor. Application of nickel coating to the steel was observed to enhance the wettability and to enable the formation of a good bond between BFM and the steel. The mechanism responsible for enhanced metallurgical bonding of the BFM with AMSS in the presence of nickel coating was explained based on diffusional interactions and uphill diffusion of iron, chromium and nickel observed in the brazed microstructure. Good diffusion-assisted zone was observed to form on silver side at all three temperatures. Four phases were encountered within the joint including silver solid solution, copper solid solution, Cu3Sn intermetallic and Ni-Fe solid solution. The Cu3Sn intermetallic was present in small amounts in the joints brazed at 1053 K and 1073 K (780 °C and 800 °C). The joint formed at 1093 K (820 °C) exhibited the absence of Cu3Sn, fewer defects and larger diffusion-assisted zone. Hardness of base AMSS was found to reduce during brazing due to austenite reversion and post-brazing sub-zero treatment for 2.5 hours was found suitable to recover the hardness.

  18. Effect of Reaction Layers on the Residual Stress of the Brazed TiC Cermets/Steel Joints

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhang; Jicai Feng

    2009-01-01

    For the first time, considering the effect of reaction layers, numerical simulation calculation of residual stress on brazed TiC cermets/steel joint was studied by finite element method (FEM). The calculation results show that, when the joint is brazed at 1123 K for 300 s (low brazing parameters), the maximum shear stress value occurs on (Cu, Ni) layer near TiC cermets, which is 92.16 MPa as the temperature is 300 K. When the joint is brazed at 1273 K for 900 s (high brazing parameters), the maximum shear stress value occurs on (Cu,Ni)+(Fe, Ni) layer, which is 39.18 MPa as the temperature is 300 K. The fracture sites of the joints obtained from numerical simulation calculation accord with experimental results.

  19. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  20. Topological dependence of mechanical responses of solidification microstructures in aluminum brazed joints

    Institute of Scientific and Technical Information of China (English)

    GAO Feng(高峰); QIAN Yi-yu(钱乙余); D.P.Sekulic; MA Xin(马鑫); F.Yoshida

    2003-01-01

    The main objective is to provide an evidence of spatial dependence of mechanical responses of a heterogeneous aluminum brazed joint re-solidified clad,and to confirm a sufficient sensitivity of a nano-indentation--load curve method for identifying the dependence.Topological features of a network of solidification microstructures(αphase and eutectic),formed during quench in a brazing process of aluminum alloy,influence significantly dynamic mechanical responses of resulting heterogeneous material.Nano/micro indentation depth vs load characteristics of differing phases suggest a spatially sensitive mechanical response of a re-solidified fillet in the joint zone.Hence,a spatial distribution,pattern formations and other morphological characteristics of microstructures have a direct impact on an ultimate joint integrity.Topology-induced variations of indentation-load curves was presented.A hypothesis involving microstructures'spatial distribution vs mechanical response was formulated.

  1. Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nagatsuka, Kimiaki, E-mail: nagatuka@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Joining and Welding Research Institute, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Sechi, Yoshihisa, E-mail: sechi@kagoshima-it.go.jp [Kagoshima Prefectural Institute of Industrial Technology, 1445-1 Oda, Hayato-cho, Kirishima, Kagoshima 899-5105 (Japan); Miyamoto, Yoshinari, E-mail: y_miyamoto@toyotanso.co.jp [Toyo Tanso Co., Ltd., 5-7-12 Takeshima, Nishiyodgawa-ku, Osaka 555-0011 (Japan); Nakata, Kazuhiro, E-mail: nakata@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Ti was required in the filler metal for brazing graphite to WC-Co alloy. Black-Right-Pointing-Pointer The shear strength of the joint increased with Ti content up to 1.7 mass%. Black-Right-Pointing-Pointer Ti concentrated at the interface of graphite/filler metal. Black-Right-Pointing-Pointer TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag-Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC-Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC-Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC-Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.

  2. The effect of a homogenizing optic on residual stresses and shear strength of laser brazed ceramic/steel-joints

    Science.gov (United States)

    Südmeyer, I.; Rohde, M.; Besser, H.; Grein, M.; Liesching, B.; Schneider, J.

    2011-03-01

    Oxide and non oxide ceramics (Al2O3, SiC) were brazed to commercial steel with active filler alloys using a CO2-laser (l = 10.64 μm). Two different laser intensity profiles were used for heating up the compound: A laser output beam presenting a Gaussian profile and a homogenized, nearly top head profile were applied for joining the compounds in an Argon stream. The temperature distribution with and without the homogenizing optic was measured during the process and compared to the results of a finite element model simulating the brazing process with the different laser intensity profiles. Polished microsections were prepared for characterization of the different joints by scanning electron micrographs and EDXanalysis. In order to evaluate the effects of the different laser intensity profiles on the compound, the shear strengths of the braze-joints were determined. Additionally residual stresses which were caused by the gradient of thermal expansion between ceramic and metal were determined by finite element modeling. The microsections did not exhibit differences between the joints, which were brazed with different laser profiles. However the shear tests proved, that an explicit increase of compound strength up to 34 MPa of the ceramic/metal joints can be achieved with the top head profile, whereas the joints brazed with the Gaussian profile achieved only shear strength values of 24 MPa. Finally tribological pin-on-disc tests proved the capability of the laser brazed joints with regard to the application conditions.

  3. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    Science.gov (United States)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  4. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  5. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jicai FENG; Heng ZHOU

    2005-01-01

    Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 k J/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

  6. Effect of interlayer on the mechanical properties of YG8 hard carbide/40Cr steel brazed joints

    Institute of Scientific and Technical Information of China (English)

    Wu Mingfang; Pu Juan; Chen Jian

    2009-01-01

    The effects of Cu foil and Ni foil on the mechanical properties of YG8 hard carbide/4OCr steel brazed joints were investigated. The results show that both Cu foil and Ni foil were beneficial to decrease the residual stress and enhance the joint strength. Moreover, Ni foil exhibited the better impact on enhancing the joint strength relative to Cu foil. When Cu foil was used as interlayer material, the key factor to restrain the joint strength was the massive and quick dissolution of Cu. Therefore, in order to prevent the excessive dissolution of Cu foil, the process parameter should be controlled strictly in the brazing process.

  7. Strength and interfacial microstructure of Si3N4 joint brazed with amorphous Ti-Zr-Ni-Cu filler metal

    Institute of Scientific and Technical Information of China (English)

    ZOU Jiasheng; ZHOU Quan; Lü Sicong

    2009-01-01

    In this paper, the vacuum brazing of Si3N4 ceramic was carried oat with Ti40Zr25Ni15Cu20 amorphous filler metal. The interfacial microstructure was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) etc. According to the analysis, the interface reaction layer was made up of TiN abut on the ceramic and the Ti-Si, Zr-Si compounds. The influence of brazing temperature and holding time on the joint strength was also studied. The results shows that the joint strength first increased and then decreased with the increasing of halding time and brazing temperature. The joint strength was significantly affected by the thickness of the reaction layer. Under the same experimental conditions, the joint brazed with amorphous filler metal exhibits much higher strength compared with the one brazed with crystalline filler metal with the same composition. To achieve higher joint strength at relatively low temperature, it is favorable to use the amorphous filler metal than the crystalline filler metal.

  8. Erosion of tungsten and its brazed joints with bronze irradiated by pulsed deuterium plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Yakushin, V., E-mail: vlyakushin@mephi.ru; Polsky, V.; Kalin, B.; Dzhumaev, P.; Polyansky, A.; Sevryukov, O.; Suchkov, A.; Fedotov, V.

    2013-11-15

    This work presents results on erosion of mono- and polycrystalline tungsten and its brazed joints with bronze substrates under irradiation by high-temperature pulsed (τ{sub p} ∼ 20 μs) deuterium plasma flows, with a power density q = 19–66 GW/m{sup 2} and pulses numbering from 2 to 10, simulating the expected plasma disruptions and ELMs in fusion reactors. The surface erosion and heat resistance of tungsten and brazed joints were investigated by scanning electron microscopy, and erosion coefficients were determined by target mass loss. It is found that for both types of tungsten the surface starts to significantly crack even under relatively weak irradiation regimes (q = 19 GW/m{sup 2}, N = 2), at which point surface melting is not observed. Local melting becomes visible with an increase of q up to 25 GW/m{sup 2}. In addition, there is formation of blisters with a typical size of 1–2 μm on the surface of monocrystalline samples and craters up to 2 μm in diameter on polycrystalline samples. In addition, craters ∼10–30 μm in diameter are formed on defects similar to those observed under unipolar arcs. At that point, the erosion coefficients change to within ranges of 0.2–0.7 × 10{sup −5} kg/J m{sup 2}. It is found that at q = 50 GW/m{sup 2}, the brazed joints of monocrystalline tungsten with bronze of Cu-0.6% Cr-0.08% Zr have the highest heat resistance.

  9. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    Science.gov (United States)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  10. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    . The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety......Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...... materials has large influence on the heating time and temperature distribution in induction heating. In order to ensure high and uniform temperature distribution near the interface of a joint between dissimilar materials the precise coil geometry and position is of great importance. The present report...

  11. Brazing titanium structures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pressly, H.B.

    1977-03-01

    A vacuum furnace brazing process using Ag-5A1-0.5Mn brazing alloy has been developed for joining titanium alloy Ti-6Al-4V structures. Lap-shear strengths of the braze joints and the effects of the brazing thermal cycle on the tensile and bending properties of mill-annealed Ti-6Al-4V alloy sheet are reported. Nondestructive test methods were evaluated for detecting defects in these braze joints.

  12. Microstructure and Properties of Joint Interface of Semisolid Stirring Brazing of Composites

    Institute of Scientific and Technical Information of China (English)

    Huibin Xu; Bofang Zhou; Changhua Du; Quanxiang Luo; Hongyou Chen

    2012-01-01

    Stirring assisted brazing of SiC(p/A356) composites in air was investigated. A stirring was applied on one of the samples to be bonded at 455℃ during brazing. The filler metal was extruded and impacted intensively on the two surfaces of the base materials during stirring. It can be found that oxide film on the surface of the composites can be disrupted and removed through the observation by scanning electron microscopy (SEM). The metallurgical bonds formed between the filler metal and the base materials. However, continuous residual oxide film was found at bottom joint interface, which limited the lift of joint strength. A stirring was applied once more after the samples were continuously heated up to 470 and 500℃, respectively. At this time, residual oxide film after the first of stirring can be broken by once more stirring. The bonds are mainly composed of a new alloy, which have a higher content of aluminum and are free of continuous oxide film, showing higher shear strength of 113 MPa than that of the base materials.

  13. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  14. Effect of parameters on interface of the brazed ZrO2 ceramic and Ti-6Al-4V joint using Ti-based amorphous filler

    Institute of Scientific and Technical Information of China (English)

    Yuhua LIU; Jiandong HU; Yaping ZHANG; Zuoxing GUO; Yue YANG

    2012-01-01

    A commercially available Ti47Zr28Cu14Ni11 (at.pct) amorphous filler foil was used to join ZrO2 ceramic and Ti-6Al-4V alloy.According to experimental observations,the interface microstructure accounts for the mechanical properties of the joints.The effects of brazing conditions and parameters on the joint properties were investigated.The joint shear strength showed the highest value of about 108 MPa and did not monotonously increase with the brazing time increasing.It was shown that decreasing of brazing cooling rate and appropriate filler foil thickness gave higher joint strength.

  15. The effects of fillet formation on the strength of braze pressure welded joint with high frequency induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, A.; Inagaki, Y.; Ikeshoji, T.T.; Yamazaki, T. [Graduate School of Tokyo, Tokyo (Japan)

    2004-07-01

    Braze Pressure Welding (BPW) with high frequency induction heating had been invented as the new joining method for bonding general steel pipes for on-site piping without danger of fire and the dispersion in joint properties due to welder's skill. In the BPW, brazing filler is interlaid between the mating surfaces to be joined. The filler melts by heating up to joining temperature, then the welding pressure discharges it from the joining interface. At the same time, the base metals are pressure-welded to each other, and that the discharged liquid filler forms fillets around the joining area. The fillets have the effects both on relaxing the stress concentration at the joint and on increasing the joining area, which contributes to the strengthening of joint. And the pressure is comparatively low, so the deformation of joint is little. In this paper, in order to investigate the effects of fillet on strengthening the joint, the stress state around the joint area and the degree of the effect of stress concentration relaxation were analyzed by finite element analysis. So it was revealed that the fillets reduced the stress concentration and separated the maximum stress site from the edge of the joining interface. Experimentally, the fillet formation was confirmed around the BPW joining area and that BPW joint had the superior tensile strength to brazed or pressure-welded joints by tensile test of joints. (orig.)

  16. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH{sub 2}) + B composite filler

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yangwu, E-mail: yangwu.mao@gmail.com [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Si [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Zhang, Yizhong [Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Guo, Beibei; Ma, Zhibin; Deng, Quanrong [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China)

    2015-11-15

    Highlights: • TiB whiskers are synthesized in situ in the filler layer of graphite/copper joints. • Boron content has a considerable effect on the strength and microstructure of joints. • TiB whiskers could serve as reinforcements, contributing to the improvement of joints. - Abstract: Joining of carbon materials to copper will benefit the fabrication of plasma facing components for fusion applications. Graphite/Cu joints have been prepared by brazing with (Cu-50TiH{sub 2}) + B composite filler in a vacuum. The effect of boron content in the composite filler on the mechanical property and microstructure of brazed graphite/Cu joints has been investigated. The average shear strength of joints increases with boron content raising from 0 to 15 vol%. The maximum average shear strength of 19.8 MPa was obtained with boron content of 15 vol%. Then, the strength of joints decreases with boron content higher than 15 vol%. The microstructure analysis of joints brazed with (Cu-50TiH{sub 2}) + 15 vol% B filler indicates that TiB whiskers have been in situ synthesized in the filler layer. The filler layer is mainly composed of Cu based solid solution and Ti-Cu intermetallic compounds with TiB whiskers distributed inside. The distribution of TiB whiskers in the filler layer could serve as reinforcements, contributing to the improvement of graphite/Cu joints.

  17. Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints

    Science.gov (United States)

    Schmalen, Pascal; Plapper, Peter

    The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.

  18. Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal

    Institute of Scientific and Technical Information of China (English)

    LI Li-qun; FENG Xiao-song; CHEN Yan-bin

    2008-01-01

    The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes. The microstructures and element distributions of joint interface were investigated by SEM and EDS. The results show that there is no obvious interface layer with the circular individual beam heating and lamellar Fe-Si intermetallic compound layer is found with dual-beam laser spot heating. With the irradiation of rectangular laser spot, the joint interface layer is also formed. The layer thickness is larger than that of dual-beam brazing and the layer shape is fiat so that intermetallic compounds trend to grow into cellular crystals. Moreover, the interface layer shape also depends on its position in the joint. Under the high heat input, dendritic or granular intermetallic compounds dispersively distribute in brazing seam adjacent to the interface, which is caused by the melting or dissolving of the base metal. According to the results, the brazing quality can be controlled by laser heating mode and processing parameters.

  19. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    Science.gov (United States)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  20. Metallurgical reactions in the coalescence zone between a reinforcement and a base metal in reinforced brazed joints

    Directory of Open Access Journals (Sweden)

    Zorc, B.

    2004-12-01

    Full Text Available A reinforcement wire added to a brazed joint strongly improves the properties of the joint, i.e., its strength, toughness and resistance to crack initiation and propagation. This effect, however, can be achieved only if the reinforcement wire is of a suitable shape, from an appropriate material as regards the base metal and the brazing alloy and it coalesces strongly and toughly with the base metal. The properties of such a joint depend on the reinforcement wire and not on the brazing alloy. The most favourable reinforcement shape was determined. Metallurgical reactions among the base metal, the brazing alloy, and the reinforcement were studied.

    La armadura, añadida a las uniones fuertemente soldadas, mejora considerablemente las características de la unión, es decir, su dureza, tenacidad y resistencia frente a la formación y propagación de la grieta separada. Se puede alcanzar dicho resultado solamente si el alambre de la armadura tiene la forma apropiada, está formado con el material adecuado (acorde al material de base y la unión y se funde de manera fuerte y tenaz con el material de base. Las propiedades de la unión mencionada, dependen del alambre de la armadura y no de la soldadura. Se determina la forma más ventajosa de la armadura y se investigan las reacciones metalúrgicas entre el material de base, la soldadura y la armadura.

  1. Microstructure of Si3 N4/Si3 N4 joint brazed using Cu-Pd-Ti alloy filler

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie(张杰); N. Massaki; ZHOU Yu(周玉)

    2004-01-01

    Microstructure of the Si3 N4/Si3 N4 joint brazed using an active filler of Cu-Pd-Ti alloy was analyzed by means of EPMA and XRD. The results indicate that a perfect Si3 N4/Si3 N4 joint is obtained by using an active filler of Cu76.5Pd8.5Ti15 alloy with brazing temperature, pressure and holding time of 1 373 - 1 473 K, 2× 10-3 MPa and 1.8 ks, respectively. The filler alloy in the joint is a Cu-Pd solution containing reactant of TiN, PdTiSi and Pd2Si.The interface between the filler alloy and Si3 N4 ceramic is composed of TiN reactant.

  2. Tensile Strength of Welded Joint of 1Cr18Ni9 Stainless Steel and Nb-1Zr Alloy Jointed by Electron Beam Self-material Brazing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with Nb-1Zr alloy stainless steels have a quite difference in melting point, thermalphysical and electromagnetism properties etc.. Therefore, it is very difficulty to joint by melting weldingmethod. Electron beam self-brazing method is an accepted method to use for this kind of welding. Make

  3. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Hongyuan FANG; Xin WAN

    2005-01-01

    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  4. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    Science.gov (United States)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  5. Characterization of the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joints fabricated using particles modified braze

    Energy Technology Data Exchange (ETDEWEB)

    He, Yanming [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Jie, E-mail: hitzhangjie@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Xiaodong [Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904-4746 (United States)

    2014-10-20

    The Si{sub 3}N{sub 4} ceramics were brazed to themselves by using particles modified braze to control mismatch of thermal expansion and improve joint strength. The brazed joints were examined by using scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), atomic force microscope (AFM) and nanoindentation tester. The results show that a duplex reaction layer which is composed of TiN and Ti{sub 5}Si{sub 3} was formed at the Si{sub 3}N{sub 4} ceramic/braze interface. Two kinds of particles were incorporated in the Ag–Cu–Ti braze. One is SiCp (p=particle), which would react with Ag–Cu–Ti braze and produce Ti{sub 3}SiC{sub 2}, TiC and Ti{sub 5}Si{sub 3} reaction phases. The other is Mo particles, which would not interact with Ag–Cu–Ti during brazing, but many kinds of Cu–Ti intermetallics would occur in the brazing layer after brazing. The strength tests demonstrate that the hard metal particles should be preferentially selected as the incorporation when a low Ti content (≤4 wt%) is supplied in the joint. When the Ti content (>4 wt%) was offered sufficiently, the ceramic particles exhibited an excellent ability to improve the joint strength since an optimum structure in relieving residual stresses was achieved by expediently adjusting the particles and Ti content in the joint. Compared with large sized SiCp or Mo particles, the incorporation with small size produced a relatively low joint strength since Ag–Cu matrix was segmented by an abundance of small sized particles in the brazing layer. At last, in situ AFM analysis shows that deviation of crack path occurred during bending when SiCp or Mo particles were used, retarding the joint fracture and improving the joint strength. The results obtained can provide valuable guidelines for designing a composite braze for a ceramic joint.

  6. The Effect of Post-grinding Heat Treatment of Alumina and Ag-Cu-Ti Braze Preform Thickness on the Microstructure and Mechanical Properties of Alumina-to-Alumina-Brazed Joints

    Science.gov (United States)

    Kassam, Tahsin Ali; Nadendla, Hari Babu; Ludford, Nicholas; Buisman, Iris

    2016-08-01

    Alumina-to-alumina-brazed joints were formed using 96.0 and 99.7 wt.% Al2O3 and TICUSIL® (68.8Ag-26.7Cu-4.5Ti wt.%) preforms of different thicknesses. Brazing was conducted in a vacuum of 1 × 10-5 mbar at 850 °C for 10 minutes. Joint strengths were evaluated using four-point bend testing and were compared to flexural strengths of standard test bars. Post-grinding heat treatment, performed at 1550 °C for 1 hour, did not affect the average surface roughness or grain size of either grades of alumina but affected their average flexural strengths with a small increase for 96.0 wt.% Al2O3 and a small decrease for 99.7 wt.% Al2O3. As the TICUSIL® preform thickness was increased from 50 to 100 µm, the average strengths of both 96.0 and 99.7 wt.% Al2O3 brazed joints improved. Joints made using 100-µm-thick TICUSIL® preforms predominantly consisted of Cu-Ti phases which formed due to excess Ti in the interlayers and non-uniform Ag-rich outflow. Brazed joints of 96.0 wt.% Al2O3 made using 100-µm-thick TICUSIL® preforms achieved an average joint strength of 238 MPa with consistent failure in the ceramic.

  7. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    Science.gov (United States)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  8. Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti+TiH2+BN composite filler

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2016-03-01

    Full Text Available Ag–Cu–Ti + TiH2+BN composite filler was prepared to braze SiO2-BN ceramic and Invar alloy. The interfacial microstructure, mechanical properties, and residual stress distribution of the brazed joints were investigated. The results show that a wave-like Fe2Ti–Ni3Ti structure appears in the Invar substrate and a thin TiN–TiB2 reaction layer forms adjacent to the SiO2-BN ceramic. The added BN particles react with Ti to form TiN–TiB fine-particles, which is beneficial to refine the microstructure of the brazing seam and to greatly inhibit the brittle compounds formation. The interfacial microstructure at various brazing temperatures was analyzed, and the mechanism for the interfacial reactions responsible for the bonding was proposed. The maximum shear strength of the joints brazed with the composite filler at 880 °C for 10 min is 39 MPa, which is 30% greater than that brazed with Ag–Cu–Ti alloy. The improvement of the joint strength is attributed to the variation of joint microstructure and the reduction of tensile stresses induced in the SiO2-BN ceramic. The finite element analysis indicates that the peak tensile stress decreases from 230 to 142 MPa due to the addition of BN particles in the ceramic.

  9. Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding-brazing process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongtao, E-mail: hitzht@yahoo.com.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Liu Jiakun [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2011-07-25

    Highlights: {yields} Wrought aluminum and stainless steel was joined with welding-brazing process. {yields} Effect of different layers on spreadability of molten filler metal was examined. {yields} Mechanical property of the joints with different heat inputs was investigated. {yields} Microstructure of the joints were also studied by OM, SEM and TEM. {yields} Phase composition was ascertained by diffraction spot and XRD analysis. - Abstract: Lap joints of aluminum alloy 2B50 and stainless steel 1Cr18Ni9Ti were welded by MIG welding-brazing method with 4043 Al-Si filler metal. The effect of aluminizing coating and galvanized zinc coating on fusion metal spreadability were studied. The aluminized coating had limited effect to promote weld surface appearance and obvious micro-cracks were found between the compound layer and the steel side. The fracture in tensile tests occurred at the interfacial layer of the weld with a low tensile strength about 60 MPa. Joints between aluminum alloy and galvanized steel had good surface appearances and the intermetallic compound in fusion zone region close to joint interface was Al{sub 4.5}FeSi. The thickness of the intermetallic compound layer varied from about 5 {mu}m to 15 {mu}m depending on the heat input and the highest tensile strength of lap joint could reached 193.6 MPa when the heat input is 0.846 KJ/cm.

  10. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Asthana, Rajiv [University of Wisconsin-Stout, Menomonie; Ishikawa, Toshihiro [Ube Industries, Ltd.; Matsunaga, Tadashi [Ube Industries, Ltd.; Lin, Hua-Tay [ORNL

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohexs) has been carried out using a Ti-containing Ag Cu active braze alloy (Cusil-ABAs). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 1C and 750 1C, respectively. The fracture at the higher temperature occurred at the interface between the reactionformed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to m-FEA simulation results.

  11. Brazing handbook

    CERN Document Server

    American Welding Society

    2007-01-01

    By agreement between the American Welding Society C3 Committee on Brazing and Soldering and the ASM Handbook Committee, the AWS Brazing Handbook has been formally adopted as part of the ASM Handbook Series. Through this agreement, the brazing content in the ASM Handbook is significantly updated and expanded. The AWS Brazing Handbook, 5th Edition provides a comprehensive, organized survey of the basics of brazing, processes, and applications. Addresses the fundamentals of brazing, brazement design, brazing filler metals and fluxes, safety and health, and many other topics. Includes new chapters on induction brazing and diamond brazing.

  12. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  13. Thermodynamic Justification for the Ni/Al/Ni Joint Formation by a Diffusion Brazing

    Directory of Open Access Journals (Sweden)

    Waldemar Wolczynski

    2011-07-01

    Full Text Available

    A theoretical model for the joint formation was developed for the diffusion brazing. The phenomena of dissolution and solidification were included into the model. A thermodynamic justification for the isothermal soldering occurrence in meta-stable conditions was developed. It involved the application of the criterion of higher temperature of the solid / liquid (s/l interface. The dissolution of the filler metal in the substrate was described by the solute concentration within the dissolution zone (liquid film situated at the substrate surface. The selection of the  parameter was justified by the Thermocalc calculation of the Ni-Al phase diagram for meta-stable equilibrium. According to the model assumptions, the solidification was accompanied by undercooled peritectic reactions resulting in formation of the intermetallic phases. The average Al – solute concentration measured across a given Al3Ni2/Al3Ni/Al3Ni2 joint confirmed that the solute concentration was conserved within the joint sub-layers. The Ni-Al phase diagram for meta-stable equilibrium referred to the solidification was also calculated by means of the Thermocalc Software. It allowed to locate the solidification path, s/l interface path and redistribution path onto the mentioned diagram. Superposition of both calculated phase

  14. 钎焊真空度对铜与铪钎焊接头组织及性能的影响%Effects of Brazing Vacuum Degree on Microstructure and Mechanical Properties of Copper and Hafnium Brazed Joints

    Institute of Scientific and Technical Information of China (English)

    路希龙; 刘平; 刘新宽; 陈小红; 何代华; 李伟

    2014-01-01

    采用72Ag-28Cu钎料对铜与铪进行真空钎焊试验.钎焊温度为840℃,保温时间为15 min,真空度试验范围为5.0×10-2~8.0 Pa.研究了钎焊真空度对铜与铪钎焊接头组织及性能的影响,采用场发射扫描电子显微镜(FESEM)观察钎焊接头的组织形貌,采用ZWICK Z050电子万能材料试验机测试接头剪切强度.结果表明:随着钎焊真空度的升高,接头剪切强度呈先升高后降低的趋势;在钎焊温度为840℃、保温时间为15 min时,较佳的钎焊真空度为2.0×10-1 Pa.%Copper and hafnium was brazed with 72Ag-28Cu filler metal in vacuum on condition that the brazing temperature is 840℃ ,the holding time is 1 5 minutes and the vacuum degree is 5.0 × 10-2-8.0 Pa. The effects of brazing vacuum degree on microstructure and mechanical properties of the copper and hafnium brazing joints were studied based on the microstructure and morphology of the brazing joints observed by scanning electron microscope (FESEM)and the shear strength of the joints tested with electrical universal material testing machine ZWICK-Z050.The results show that,with the increase of the brazing vacuum degree,the shear strength of joints increased first and then decreased.When the brazing temperature is 840 ℃ and the holding time is 15 minutes,the best vacuum degree is 2.0×10-1 Pa.

  15. Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy; Influencia de los parametros de soldeo fuerte en la microestructura y propiedades mecanicas de la union de la aleacion base niquel Hastelloy B2

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, J. C.; Gonzalez, M.; Porto, E.

    2014-07-01

    A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes. (Author)

  16. TC4钛合金真空钎焊接头显微组织分析%Analysis of TC4 Titanium Alloy Vacuum Brazing Joint Microstructure

    Institute of Scientific and Technical Information of China (English)

    徐龙勇

    2013-01-01

      采用Ag-Cu-Ti钎料对TC4钛合金进行真空钎焊;采用金相分析、扫描电镜对钎缝的组织结构、元素分布情况进行分析,并对焊件的整体力学性能进行拉伸测试。结果表明,TC4合金板真空钎焊搭接接头处抗剪强度在200MPa以上,钎焊接头处总体的力学性能优于母材;钎缝与基体相临的部位析出了弥散相,钎缝处有Cu的固溶体析出;焊接接头中的主要元素Ti、Al、V、Ag、Cu呈规律性分布,钎缝及扩散区域得到以细小笋状的方式生长的Cu基固溶体,是为Ag-Cu共晶组织。%Vacuum brazing of TC4 was carried out with Ag-Cu-Ti filler metal. Organizational structure, element distribution of brazed joints were investigated by means of scanning electron microscopy and metallographic microscope, and the joint whole mechanical property was determined by tensile testing method. The results show that shear strength for the brazing joint of TC4 titanium alloy is above 200MPa and whole mechanical property of the brazing joint are better than base metal. Dispersed network phase form between base metal and brazing seam, and Cu-based solid solution separate out in the brazing seam. Ti, Al, V, Ag and Cu of the brazing joint were regular distribution. Ag-Cu eutectic structure of brazing seam and diffuse region were grown by slender and small bamboo shoots mode.

  17. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  18. Theoretical study and numerical simulation of the stress fields of the Al2O3 joints brazed with composite filler materials

    Institute of Scientific and Technical Information of China (English)

    Yang Jianguo; Ji Shude; Fang Hongyuan

    2006-01-01

    Non-linear finite element code MSC.Marc(c) was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials.The properties of the filler materials were defined by using the mixing law, method of MoriTanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM).The results show stress in brazed beam is higher than that in base material.The maximal stress can be found in the interface of joint.And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p 0vol.%) to 135.32 MPa ( Al2O3p 15vol.% ) when composition of titanium is 3wt% in the filler metal.

  19. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag-Cu eutectic alloy filler and Ag interlayer

    Science.gov (United States)

    Lee, M. K.; Park, J. J.; Lee, J. G.; Rhee, C. K.

    2013-08-01

    The electrochemical corrosion properties of Ti-STS dissimilar joints brazed by a 72Ag-28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag-Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance.

  20. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    Science.gov (United States)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  1. Microstructure and Mechanical Properties of AlN/Cu Brazed Joints

    Science.gov (United States)

    Su, Cherng-Yuh; Pan, C. T.; Lo, Min-Sheng

    2014-09-01

    In this study, the AlN/Cu bonding was explored using the brazing technique. During AlN/Cu brazing, the temperature was set at 800, 850, and 900 °C for 10, 20, 30, and 60 min, respectively. We studied the bonding mechanism, microstructure formation, and the mechanical characteristics of the bond. The reaction layer developed at the interface of AlN/Cu is observed to be TiN. The activation energy of TiN is about 149.91 kJ/mol. The reaction layer thickness is linearly dependent on the temperature and duration at 800 and 850 °C for 60 min and 900 °C for 30 min. However, the growth of the reactive layers decreases gradually at 900 °C when the duration changed from 30 to 60 min. The strength of the specimens with thickness ranging between 1 and 1.5 μm is 40-51 MPa.

  2. Microstructure and fracture behavior of SiO_2 glass ceramic and TC4 alloy joint brazed with TiZrNiCu alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Duo; ZHANG Li-xia; FENG Ji-cai; LIU Hong-bin; HE Peng

    2009-01-01

    Vacuum brazing of SiO_2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfaciai microstructure and the fractures were examined with an optical microscope (OM) and an S-4700 scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and an electron probe X-ray microanalyzer (EPMA). The structure of joint interface was identified by XRD (JDX-3530M). Meanwhile, the fracture paths of the joints were comprehensively studied. The results show that processing parameters, especially the brazing temperature, have a significant effect on the microstructurc and mechanical properties of joints. The typical interface structure is SiO_2/Ti_2O+Zr_3Si_2+Ti_5Si_3/(Ti,Zr)+Ti_2O+ TiZrNiCu/Ti(s.s)/TiZrNiCu+Ti(s.s)+Ti_2(Cu,Ni)/TC4 from SiO_2 glass ceramic to TC4 alloy side. Based on the mechanical property tests, the joints brazed at 880℃ for 5 min has the maximum shear strength of 23 MPa.

  3. Effects of Filler Metal on Microstructure and Mechanical Properties of Stainless Steel Brazed Joint%两种钎料对不锈钢钎焊接头组织和力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨光; 李宁; 颜家振; 肖伟

    2011-01-01

    采用四号锰基钎料真空钎焊2Cr13不锈钢,研究了钎焊温度对其接头组织和室温及高温剪切强度的影响,并与Ni-Cr-P钎料钎焊不锈钢接头进行了对比.结果表明:四号锰基钎料钎焊接头组织由Mn-Ni基的单相Mn-Ni-Cu-Fe-Cr-Co固溶体组成,接头室温剪切强度随着钎焊温度的升高逐渐增加;Ni-Cr-P钎料钎焊接头组织由Ni-Fe基固溶体和Ni(Cr,Fe)-P化合物组成,接头室温剪切强度低于四号锰基钎料钎焊接头的室温剪切强度.当测试温度超过500℃时,Ni-Cr-P钎料钎焊接头的高温剪切强度降低幅度不大,四号锰基钎料钎焊接头降低明显,但仍高于Ni-Cr-P钎料钎焊接头的高温剪切强度.%The effects of brazing temperature on the microstructure, shear strength at room temperature and high temperature of 2Crl3 stainless steel joint brazed with 4# manganese filler metal in vacuum were studied The research result was compared with stainless steel joint brazed with Ni-Cr-P filler metaL The results show that the brazed joint of 4* manganese filler metal is made up of Mn-Ni-Cu-Fe-Cr-Co solid solution. The shear strength of the brazed joint at room-temperature gradually increases with the increase of the brazing temperature. The brazed joint of Ni-Cr-P filler metal is made up of Ni-Fe solid solution and Ni (Cr.Fe)-P intermetallic. The shear strength of the brazed joint at room temperature is lower than the shear strength of the brazed joint of 4# manganese filler metal at room temperature. The shear strength at high temperature of the brazed joint of Ni-Cr-P filler metal and 4# manganese filler metal gradually and rapidly decreases above 500 °C, respectively, but the 4# manganese filler metal is still higher than the brazed joint of Ni-Cr-P filler metaL

  4. Application of Induction Heating for Brazing Parts of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Kristína Demianová

    2012-01-01

    Full Text Available This paper reports on the application of induction heating for brazing parts of solar collectors made of Al alloys. The tube-flange joint is a part of the collecting pipe of a solar collector. The main task was to design an induction coil for this type of joint, and to select the optimum brazing parameters. Brazing was performed with AlSi12 brazing alloy, and corrosive and non-corrosive flux types were also applied. The optimum brazing parameters were determined on the basis of testing the fabricated brazed joints by visual inspection, by leakage tests, and by macro- and micro-analysis of the joint boundary. The following conditions can be considered to be the best for brazing Al materials: power 2.69 kW,brazing time 24 s, flux BrazeTec F32/80.

  5. In Situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers

    Science.gov (United States)

    Mao, Yangwu; Yu, Si; Deng, Quanrong; Zhao, Pei

    2016-12-01

    Brazing of two kinds of carbon materials including graphite and carbon fiber-reinforced carbon composites to copper alloys has been realized with CuTiH2 + BN composite fillers. The microstructure characterization reveals that the ceramic reinforcements containing TiN particles and TiB whiskers have been synthesized by in situ reaction of BN additives with Ti discomposed from TiH2 in the composite filler. The filler layer of the joints is mainly composed of Cu-based solid solutions [Cu (ss)] and Ti-Cu intermetallics along with ceramic reinforcements. Furthermore, a continuous thin reaction layer mainly containing TiC is developed at the interface close to the carbon substrates. The growth of TiC layer is mainly controlled by the diffusion of carbon from the substrates into the liquid filler through the TiC layer formed. The interface evolution of the graphite/CuCrZr joints has been discussed. The electrical resistivity of the joining area is relatively low, which highly meets the requirement for the carbon commutator applications.

  6. CuMnNiSi钎料钎焊不锈钢接头组织性能研究%Structure and Property of Stainless Steel Brazed Joint with CuMnNiSi Filler Metal

    Institute of Scientific and Technical Information of China (English)

    杨光; 李宁; 颜家振; 苑博

    2011-01-01

    采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.%The effects of brazing temperature and holding time on the microstructure and mechanical property at room-temperature of the brazed stainless steel joint with Cu-Mn-Ni-Si filler metal in vacuum were studied. The results show that the brazed joint is made up of Cu-Mn based solid solution in the middle area of the brazing seam and (Fe.Ni, Mn)-Si intermetallic phase in the reaction area near the interface. The volume of intermetallic phase decreases and joint clearance is primarily occupied by Cu-Mn based solid solution with the increase of brazing temperature, the shear strength of the brazed joint at room-temperature increases with the increase of the brazing temperature and reaches 321 Mpa when brazing holding time is 15 min and brazing temperature is 1050 °C . The shear strength of the brazed joint at room-temperature increases first and then decreases with the increase of the brazing holding times, and reaches 305 Mpa when the brazing holding time is 30 min.

  7. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  8. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    Science.gov (United States)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  9. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    OpenAIRE

    LONG Wei-min; LU Quan-bin; He, Peng; XUE Song-bai; Wu, Ming-Fang; Xue, Peng

    2016-01-01

    The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors o...

  10. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  11. Effect of bonding parameters on microstructure and properties of Si3N4/Si3N4 joint brazed by Cu-Zn-Ti filler alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; Naka Massaki; ZHOU Yu

    2005-01-01

    Si3N4 ceramic was jointed to Si3N4 ceramic using a filler alloy of Cu-Zn-Ti at 1 123-1 323 K for 0.3 -2.7 ks. Ti content in the Cu-Zn-Ti filler alloy was 15% (molar fraction). The effect of bonding parameters on the microstructure and mechanical properties of the Si3N4/Si3N4 joint were investigated. The results indicate that with increasing brazing temperature from 1 123K to 1 323 K and brazing time from 0.3 ks to 2.7 ks, the thickness of the interfacial reaction layer between the filler alloy and the Si3 N4 ceramic and the size and amount of the reactant products in the filler alloy increase, leading to an increase in shear strength of the joint from 163 MPa to 276 MPa. It is also found that the fracture behavior of the Si3 N4/Si3 N4 joint greatly depends on the microstructure of the joint.

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  13. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  14. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  15. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhihua, E-mail: zhsong@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, Osaka, Ibaraki 567-0047 (Japan); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, Osaka, Ibaraki 567-0047 (Japan); Wu, Aiping [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Liao, Jinsun [Kurimoto Ltd., Osaka 559-0021 (Japan)

    2013-01-10

    Laser brazing of Ti6Al4V and A6061-T6 alloys with 2 mm thickness was conducted by focusing laser beam on aluminum alloy side, and the effect of laser offset distance on microstructure and mechanical properties of the dissimilar butt joint was investigated. Laser offset has a great influence on the thickness of interfacial intermetallic compound (IMC) layer and the mechanical property of joint. The thickness of interfacial IMC layer is less than 500 nm, and the average tensile strength of the joint reaches 64% of aluminum base material strength, when suitable welding conditions are used. The interfacial IMC is TiAl{sub 3}. The formation of interfacial IMC layer and its effect on mechanical property of the joint are discussed in the present study.

  16. Ultrasonic C-scan inspection of brazed joint in thin panel honeycomb structure

    Institute of Scientific and Technical Information of China (English)

    刘斌; 刚铁

    2014-01-01

    The non-destructive testing ofbrazed joint in honeycomb structure with thin panel(thickness:0.2 mm)was studied by ultrasonic C-scan method.Samples with different types ofartificial defect were designed;the characteristic signal and the main parameters ofthe test were determined by the pre-experiment,and then parameters were optimized by orthogonal design, finally the optimum process was verified by a single panel sample. The multiple reflection echoes were chosen as the characteristic signal.The optimal C-scan results were achieved when the 20 MHz focus probe was used,and the pass band range for received signal were selected as 8-17.5 MHz.The defects such as incomplete penetration and core damage can be detected with ultrasonic C-scan,and the detection accuracy can reach to 1 mm.

  17. Novel approach of LY12 alloy brazing

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 钱乙余; 董健; 吕晓春

    2003-01-01

    The LY12 Al alloy was brazed with the adoption of the improved KF-CsF-AlF3 flux matching Ag-Al-Cu-Zn filler metal. The shear strength of brazed joint could reach 80% of that of the substrate and the tensile strength of butt brazed joint will be 70% of that of the substrate. This was the great progress against the traditional claim that Al alloy reinforced by heat treatment could not be brazed. The experimental results and theoretical analysis had proved that it was the key issue to remove the MgO oxide film below 503℃. The addition of rare earth La was the effective way to obtain better mechanical properties of the filler metal as well as brazed joints.

  18. Braze/Rebraze process for CRES steel

    Science.gov (United States)

    Silverman, C. E.

    1976-01-01

    Using induction brazing process with 8.5-Au/16.5-Cu/2.0-Ni braze alloy, joints in 21-6-9 CRES steel tubing can be reworked up to seven times, thus significantly reducing cost of fabrication, repair, and part replacement.

  19. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  20. Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal

    Institute of Scientific and Technical Information of China (English)

    J. Cao; L.X. Zhang; H.Q. Wang; L.Z. Wu; C. Feng

    2011-01-01

    The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of Ag content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag-Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of Ag content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.

  1. Automatic-Control System for Safer Brazing

    Science.gov (United States)

    Stein, J. A.; Vanasse, M. A.

    1986-01-01

    Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.

  2. Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes

    Institute of Scientific and Technical Information of China (English)

    C.T.Chang; T.Y.Yeh; R.K.Shiue; C.S.Chang

    2011-01-01

    Microstructural evolution of infrared vacuum brazed CP-Ti using two Ti-based braze alloys, Ti-15Cu-15Ni and Ti-15Cu-25Ni, has been investigated. The infrared braze d joint consisted of eutectic Ti2Cu/Ti2Ni intermetallic compounds and Ti-rich matrix. The eutectic Ti2Cu/Ti2Ni intermetallic compounds disappeared from the joint after being annealed at 900℃ for 1 h. In contrast, the depletion rate of both Cu and Ni from the braze alloy into CP-Ti substrate at 750℃ annealing was greatly decreased as compared with that annealed at 900℃. Blocky Ti2Cu/Ti2Ni phases were observed even if the specimen was annealed at 750℃ for 15 h. Because the Ni content of the Ti-15Cu-25Ni braze alloy is much higher than that of the Ti-15Cu-15Ni alloy, the amount of eutectic Ti2Cu/Ti2Ni phases in Ti-15Cu-25Ni brazed joint is more than that in Ti-15Ci-15Ni brazed joint. However, similar microstructural evolution can be obtained from the infrared brazed joint annealed at various temperatures and/or time for both filler metals.

  3. Properties and microstructures of the Al/Cu joints brazed by Zn-Al flux cored wires%锌铝药芯钎焊丝钎焊铝/铜接头性能及组织

    Institute of Scientific and Technical Information of China (English)

    邹家生; 杨芬; 许祥平

    2013-01-01

    采用5种不同成分的锌铝药芯钎焊丝钎焊铝/铜接头,研究钎料成分对接头剪切强度和耐蚀性的影响。研究结果表明:对于同成分的锌铝药芯钎焊丝,采用火焰钎焊的铝/铜接头抗剪强度比炉中钎焊高,Zn80Al20药芯钎焊丝钎焊的铝/铜接头强度最高;随钎料中Al含量降低,铝/铜接头的耐蚀性变差,Zn72Al28药芯钎焊丝钎焊的铝/铜接头耐腐蚀性最好。相同条件下,火焰钎焊铝/铜接头的耐蚀性明显好于炉中钎焊的接头;Zn80Al20药芯钎焊丝钎焊的铝/铜接头钎缝组织呈块状。锌铝药芯钎焊丝中适中的Zn,Al含量有利于使铝/铜接头铜侧界面得到固溶体组织,并避免铝侧母材的过度熔蚀。%Five kinds of Zn/Al flux cored wires with different compositions were used to braze Al /Cu joints, and the joints′shear strengths and corrosion resistances which were affected by compositions were studied .It is shown that for the Zn/Al flux cored wires with the same compositions ,the shear strength of the joint brazed by flame bra-zing is higher than furnace brazing , and the shear strength of the joint brazed by Zn 80Al20 flux cored wire is the highest.The corrosion resistance of Al/Cu joint gets worse with the decrease of Al in the solder and that of Al /Cu joint brazed by Zn72Al28 flux cored wire is the best .Under the same conditions ,the corrosion resistance of Al/Cu joint brazed by flame brazing is obviously better than furnace brazing and the microstructure of Al /Cu joint brazed by Zn80Al20 flux cored wires is massive .Moderate contents of Zn and Al in the Zn/Al flux cored wire are beneficial to gain solid solution structure in the Cu side of Al /Cu joint and avoid the excessive corrosion of base metal in the side of Al .

  4. 复合活性钎料钎焊Cu与Al2 O3的接头组织及性能%Microstructure and performance of the Cu/Al2O3 joint brazed with active composite filler

    Institute of Scientific and Technical Information of China (English)

    周英豪; 刘多; 雷玉珍; 宋晓国; 冯吉才

    2016-01-01

    为改善紫铜与Al2 O3陶瓷的连接强度,采用纳米-Al2 O3增强的AgCuTi复合钎料( AgCuTip )对紫铜与Al2 O3陶瓷进行了真空钎焊.采用扫描电镜、能谱分析以及剪切试验对钎焊接头微观组织及力学性能进行了分析.钎焊接头典型界面组织为紫铜/扩散层/铜基固溶体+银基固溶体+ Ti2 Cu + Ti3( Cu, Al)3 O/Al2 O3.纳米-Al2 O3的添加抑制了Al2 O3侧反应层的生长,并促进钎缝中形成弥散分布的Ti2Cu相.随着保温时间的延长,铜侧扩散层和Ti3(Cu, Al)3O反应层的厚度逐渐增大.保温时间为20 min时,铜母材向钎料过度溶解,降低了接头性能.当钎焊温度为880°C,保温10 min时,接头抗剪强度最高为82 MPa.纳米颗粒的加入细化了钎缝组织并降低了母材与钎缝热膨胀系数的不匹配,因此提高了接头的连接性能.保温时间可影响界面组织及反应层的厚度,进而影响接头的连接强度.%In order to improve the strength of Cu/Al2 O3 joint, vacuum brazing of copper to Al2 O3 ceramic was performed using nano -Al2O3 strengthened AgCuTi composite filler ( abbreviated as AgCuTip filler ). The microstructure and mechanical performance of the brazed joint were investigated by scanning electron microscope ( SEM ) , energy dispersive spectrometer ( EDS ) and shear strength test. Typical interfacial microstructure of Cu/AgCuTip/Al2O3 brazed joint is Cu/diffusion layer/Cu-based solid solution + Ag-based solid solution+Ti2 Cu +Ti3( Cu, Al) 3 O/Al2 O3 . The addition of nano-Al2 O3 can improve the interfacial microstructure by inhibiting the growth of reaction layer near Al2 O3 ceramic side, and promoting the formation of dispersed Ti2 Cu phase in brazing seam. Moreover, both thickness of diffusion layer and Ti3(Cu, Al)3O reaction layer thickened with an increasing holding time. Excessive dissolution of copper was occurred when holding time reached 20 min, which

  5. The strength and microstructure of Cu joints brazed with Cu-P based amorphous brazing filler metal contained B%含硼Cu-P基非晶钎料钎焊紫铜接头的连接强度及微观组织

    Institute of Scientific and Technical Information of China (English)

    邹家生; 李华其; 王超

    2012-01-01

    The copper joints were brazed with CuP7. 7Sn5.4Ni14Si0. 2B0. 03amorphous filler metal and conventional filler metal, the microstructure of filler metal and brazing joint were analyzed and the effect of brazing procedure on joints strength was studied. The results show that the brazing procedure has great effects on the brazing joints of both of the CuP7. 7Sn5.4Ni14Si0. 2B0. 03 normal and amorphous filler metal. In the same experimental condition, the temperature has more effects on the shear strength. And the shear strength of amorphous metal joints are always higher than the normal. The microstructure of diffusion and interface zone in joint brazed with CuP7. 7Sn5. 4Ni14Si0. 2B0. 03 amorphous brazing filler metal are mainly composed of a - Cu solid solution, and the center in the brazing seam is mainly composed of a - Cu and ( Cu, Ni) 3 P and (α - Cu + Cu3P) eutectic and (a - Cu + Cu3P + 8) ternary eutectic. A large number of Cu -P, Ni -P, Cu -Sn and other brittle phases exist on the fracture interface of amorphous CuF7. 7Sn5. 4Ni14Si0. 2B0. 03 filler metal joint, therefore, reducing the number of fragile compounds will help to increase the shear strength of the joints.%采用CuP7.7Sn5.4Ni14Si0.2B0.03非晶和常规钎料钎焊紫铜接头,研究了钎焊工艺对连接强度的影响,分析了钎焊接头的微观组织.研究结果表明:钎焊工艺对CuP7.7Sn5.4Ni14Si0.2B0.03常规与非晶钎料钎焊接头的强度均有明显影响,同样条件下,钎焊温度的影响更大;非晶钎料钎焊接头的剪切强度始终高于常规钎料;CuP7.7Sn5.4Ni14Si0.2B0.03非晶钎料钎焊接头扩散区和界面区主要是α - Cu固溶体组织,钎缝中心区主要为α-Cu+ (Cu,Ni)3P+(α- Cu+ Cu3P)共晶+(α-Cu+Cu3P+δ)共晶的混合组织;CuP7.7Sn5.4Ni14Si0.2B0.03钎焊接头断裂界面处存在大量的Cu -P,Ni -P,Cu - Sn等脆性相,因此,减少脆性化合物的数量有助于提高钎焊接头强度.

  6. Microwave-assisted brazing of alumina ceramics for electron tube applications

    Indian Academy of Sciences (India)

    2016-04-01

    Alumina was joined with alumina using microwave-assisted and conventional brazing methods at 960$^{\\circ}$C for 15 min using TiCuSil (68.8Ag–26.7Cu–4.5Ti in wt.%) as the brazing alloy. The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of the microwave and conventionally brazed joints. The elemental compositions at the joint cross-section were determined by energy dispersive X-ray analysis. Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during actual application in an electron tube. Brazing strength measurement and helium leak test provided the evidence forgood alumina-alumina joint formation.

  7. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  8. Infrared Brazing Zirconium using Two Silver Based Foils

    Institute of Scientific and Technical Information of China (English)

    Cheng-Han Lee; Ren-Kae Shiue

    2013-01-01

    Ag-based brazing foils,BAg-8 (72Ag-28Cu in wt%) and Ticusil(R) (68.8Ag-26.7Cu-4.5Tiin wt%) were selected to braze Zr.Interfacial AgCu4Zr,CuZr2 reaction layers and Ag-rich matrix dominate BAg-8 brazed joint,and fractograph after shear test shows ductile dimple fracture with plastic sliding marks.Ticusil~ joint brazed at 910℃ for 300 s is comprised of Cu9Zr11 and AgZr intermetallics,and fractograph after shear test displays brittle cleavage fracture.

  9. Interfacial microstructure and strength of diffusion brazed joint between Al2O3–TiC and 9Cr1MoV steel

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang; S A Gerasimov

    2007-08-01

    Joining of composite, Al2O3–TiC, with heat-resistant 9Cr1MoV steel, was carried out by diffusion brazing technology, using a combination of Ti, Cu and Ti as multi-interlayer. The interfacial strength was measured by shear testing and the result was explained by the fracture morphology. Microstructural characterization of the Al2O3–TiC/9Cr1MoV joint was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM) with energy-dispersion spectroscopy (EDS). The results indicate that a Al2O3–TiC/9Cr1MoV joint with a shear strength of 122 MPa can be obtained by controlling heating temperature at 1130°C for 60 min with a pressure of 12 MPa. Multi-interlayer Ti/Cu/Ti was fused fully and diffusion occurred to produce interfacial layer between Al2O3–TiC and 9Cr1MoV steel. The total thickness of the interfacial layer is about 100 m and Ti3AlC2, TiC, Cu and Fe2Ti are found to occur in the interface layer.

  10. 铝制冷却器真空钎焊接头界面结构及断口分析%Interface Structure and Fracture Analysis of Aluminum Cooler Vacuum Brazing Joint

    Institute of Scientific and Technical Information of China (English)

    许敬年; 曹秀丽; 冯涛

    2012-01-01

    采用真空钎焊技术研制了一种用于高级轿车的铝制冷却器.采用LT-3铝复合板材进行了焊接试验,分析了钎焊接头的组织,并对所试制的铝制板翅式冷却器进行了水压试验及其断口分析.结果表明,钎焊接头中生成了网状共晶组织,接头中生成了金属间化合物.焊接完成的板翅式冷却器水压试验压力可达到15 kg/cm2以上,钎焊接头断口属于混合断裂,断口表面分布有二次裂纹、韧窝、解理面、沿晶断裂等断裂特征.%A kind of aluminum cooler used for advanced car by adopting vacuum brazing technology was developed. Welding test was conducted by Utilizing LT-3 aluminum composite plate. The structure of brazing joint was analyzed, and hydrostatic test and fracture analysis on fin type cooler of trial produced aluminum composite plate were carried out. The results showed that there are some reticular eutectic structures and intermetallic compound in the brazing joint. The hydrostatic test pressure of fine type cooler can reach more than 15 kg/cm2, the fracture type of the brazing joint is mixed fracture, and secondary cracks, dimples, cleavage planes and intergranular fracture etc. distribute on the surface of the fracture.

  11. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Ulrich E. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)], E-mail: klotz@fem-online.de; Liu Chunlei [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Khalid, Fazal A. [Faculty of Metallurgy and Materials Engineering, GIK Institute, Topi, NWFP (Pakistan); Elsener, Hans-Rudolf [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2008-11-15

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time.

  12. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    Science.gov (United States)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  13. Comparison of Microstructure and Mechanical Properties of Induction and Vacuume Brazed Joint of Titanium Via Copper and Ag-Cu Eutectic Filler Metal / Mikrostruktura I Właściwości Mechaniczne Połączeń Tytanu Lutowanych Indukcyjnie I Próżniowo Z Użyciem Spoiwa Miedzianego I Eutektycznego Ag-Cu

    Directory of Open Access Journals (Sweden)

    Różański M.

    2015-12-01

    Full Text Available This study presents the basic physico-chemical properties and describes the brazeability of titanium. The work contains the results of macro and microscopic metallographic examination as well as the results of strength-related tests of vacuum and induction brazed joints made of Grade 2 technical titanium using the Cu 0.99 and Ag 272 filler metal interlayers and F60T flux intended for titanium brazing in the air atmosphere.

  14. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  15. Reactive Brazing of Carbon-Carbon Composites to Titanium

    Science.gov (United States)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  16. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  17. Infrared Brazing Ti50Ni50 and Invar Using Ag-Based Filler Foils

    Science.gov (United States)

    Shiue, R. K.; Chang, Y. H.; Wu, S. K.

    2013-10-01

    Infrared brazing Ti50Ni50 and Invar using BAg-8 and Cusil-ABA foils was investigated. The Ag-Cu eutectic matrix dominates both brazed joints. The maximum shear strengths of the brazed joints using BAg-8 and Cusil-ABA fillers are 158 and 249 MPa. Failure of interfacial Fe2Ti/Ni3Ti reaction layers is responsible for the BAg-8 joint. In contrast, the Cusil-ABA brazed joint is fractured along the interfacial Fe2Ti intermetallic compound. Both fractographs are characterized with cleavage dominated fracture.

  18. Thin-film diffusion brazing of titanium alloys

    Science.gov (United States)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  19. Methods to Predict Stresses in Cutting Inserts Brazed Using Iron-Carbon Brazing Alloy

    Science.gov (United States)

    Konovodov, V. V.; Valentov, A. V.; Retuynskiy, O. Yu; Esekuev, Sh B.

    2016-04-01

    This work describes a method for predicting residual and operating stresses in a flat-form tool insert made of tungsten free carbides brazed using iron-carbon alloy. According to the studies’ results it is concluded that the recommendations relating to the limitation of a melting point of tool brazing alloys (950-1100°C according to different data) are connected with a negative impact on tools as a composite made of dissimilar materials rather than on hard alloys as a tool material. Due to the cooling process stresses inevitably occur in the brazed joint of dissimilar materials, and these stresses increase with the higher solidification temperature of the brazing alloy.

  20. Silicon high vacuum brazing study and microstructural analysis of the joint formation; Estudo da brasagem de silicio em alto vacuo e analise microestructural da juncao

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.C.A. [Universidade Estadual Paulista - UNESP, Campus de Guaratingueta, SP (Brazil); Francisco, F.R.; Bagnato, O.R. [Laboratorio Nacional de Luz Sincrotron - LNLS, Campinas, SP (Brazil)], e-mail: erika.santana@lnls.br

    2010-07-01

    On the project of Synchrotron Light Source, silicon-crystal are often used as monochromator and mirrors, to reflect the electrons beam. Silicon is known as a very fragile material, and its optical elements must be designed carefully. Usually, it is bonded in a cooling support made by copper. Thermal contact between the crystal plate and cooling support is made of In-Ga liquid alloy. Due to the difficult of this bonding, brazing tests are being taken with Fe-Ni alloy, in order to improve the silicon mirrors application and performance. Wet ability tests were performed between the silicon plate and commercial fillers. A brazing test was made of silicon and Al12Si, as filler, with Fe-Ni, as base material. Results of microstructure analysis indicated that the braze of a silicon plate is quite promissory. (author)

  1. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  2. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    Science.gov (United States)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  3. Microstructures of beta-titanium orthodontic wires joined by infrared brazing.

    Science.gov (United States)

    Iijima, Masahiro; Brantley, William A; Kawashima, Isao; Baba, Naoki; Alapati, Satish B; Yuasa, Toshihiro; Ohno, Hiroki; Mizoguchi, Itaru

    2006-10-01

    The microstructures and interdiffusion in brazed beta-titanium orthodontic wires were investigated by scanning electron microscopy and electron probe microanalysis, respectively. Beta-titanium wire (Ti-11Mo-6Zr-4Sn) with cross-section dimensions of 0.032 in. x 0.032 in., titanium-based braze alloy (Ti-30Ni-20Cu), and silver-based braze alloy (Ag-22Cu-17Zn-5Sn) were selected for the study. Brazing was performed using infrared radiation (RS-1) under an argon atmosphere. Specimens were etched with two solutions (2.5% HF + 2.5% HNO(3) + 95% H(2)O; 25% HN(4)OH + 30% H(2)O(2) + 45%H(2)O). It was found that the silver-based braze alloy has a eutectic structure. In the diffusion layer between the beta-titanium wire and this silver-based braze alloy, Cu and Ti were enriched on the wire side, and Sn and Ti were enriched on the braze alloy side. The titanium-based braze alloy has a dendritic structure. Beta-titanium wire specimens brazed with the titanium-based braze alloy had a thicker intermediate area compared to the silver alloy; Ti in the diffusion layer had an irregular concentration gradient, and the braze alloy side had higher Ti concentration. The original microstructure of the beta-titanium wire was not altered with the use of either braze alloy. Infrared brazing of beta-titanium orthodontic wire is acceptable for clinical use, since the wire microstructure did not deteriorate with either the titanium-based or silver-based braze alloy. The differing microstructures of the joint regions for the two braze alloys suggest that the joint strengths may also differ.

  4. A study on brazing of Glidcop® to OFE Cu for application in Photon Absorbers of Indus-2

    Science.gov (United States)

    Yadav, D. P.; Kaul, R.; Ram Sankar, P.; Kak, A.; Ganesh, P.; Shiroman, R.; Singh, R.; Singh, A. P.; Tiwari, P.; Abhinandan, L.; Kukreja, L. M.; Shukla, S. K.

    2012-11-01

    The paper describes an experimental study aimed at standardizing brazing procedure for joining Glidcop to OFE Cu for its application in upgraded photon absorbers of 2.5 GeV synchrotron radiation source, Indus-2. Two different brazing routes, involving brazing with silver base (BVAg-8) and gold base (50Au/50Cu) alloys, were studied to join Glidcop to OFE Cu. Brazing with both alloys yielded helium leak tight and bakeable joints with acceptable shear strengths.

  5. Thermal response of ceramic components during electron beam brazing

    Energy Technology Data Exchange (ETDEWEB)

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  6. Cu/Al管气体火焰钎焊接头特征及热力学分析%Characteristics and thermodynamics analysis of oxyacetylene flame brazing joint of Cu/Al tubes

    Institute of Scientific and Technical Information of China (English)

    罗键; 赵国际; 王向杰; 孙玉

    2011-01-01

    Entropy changes in chemical reaction of Cu/Al intermetallic compounds formation in Cu/Al oxyacetylene flame brazing are calculated, and the tendency of Cu/Al intermetallic compounds form and transform to CuAl2 is analyzed with the method of chemical thermodynamics. The microstructure and characteristics of elements distribution and diffusion of the Cu/Al oxyacetylene flame brazing joint are analyzed by XRD, SEM and EDS. Results show that, under the condition of Cu/Al oxyacetylene flame brazing, the CuAl2 intermetallic compounds formed by the direct reaction of Cu&Al atoms and the sustained reaction of Cu/Al intermetallic compounds with Al atoms. CuAl has relatively strong independent transformation trend. The results of thermodynamics analysis and calculation are consistent with the XRD of joint. Brazing joint can be divided into three feature regions: the a-Al and binary eutectic (α-Al+CuAl2) region is near Al side with the width of about 30 μm; the fine multiple eutectic structure is formed in brazing seam center near Al side with the width of about 150 μm; and the region near Cu substrate with the width of about 120 μm, where Cu diffuses largely and reacts richly with Al and massive CuAl2 is formed like corals.%通过计算Cu/Al管氧乙炔气体火焰钎焊条件下形成金属间化合物的各化学反应的熵变,对Cu/Al金属间化合物的形成及向CuAl2转化的趋势进行了化学热力学分析;结合XRD、SEM、EDS研究了Cu/Al管氧乙炔气体火焰钎焊接头组织与元素分布特征.结果表明,Cu/Al管氧乙炔气体火焰钎焊条件下,接头中脆性金属间化合物CuAl2由Cu、Al原子的直接结合和其他Cu/Al金属间化合物与Al原子的继续反应生成,其中CuAl自主转化趋势较强;热力学计算分析与接头XRD分析结果一致.钎焊接头可分为3个特征区域:靠近Al基体侧形成了宽度约30μm的α-Al与α-Al+CuAl2二元共晶区;钎缝中心偏Al基体一侧形成了宽度约150

  7. Study on vacuum induction brazing of SiCp/LY12 composite using Al-Cu-Si-Mg filler metal

    Institute of Scientific and Technical Information of China (English)

    邹家生; 许如强; 赵其章; 陈铮

    2003-01-01

    The vacuum induction brazing of SiC particulate reinforced LY12 alloy matrix composite using Al-28Cu-5Si-2Mg filler metal has been carried out. The micrograph of the joint interface was observed by scanning electron microscopy. The joint strength was determined by shear tests. The results show that brazing temperature, holding time, SiC particle volume percentage and post heat treatment influence joint strength. SiC particles happen in the brazing seam and the distribution of SiC particles in the joint is not uniform. Particle-poor zones in the joint exist near the base metal, and particle concentrate zones exist in the center of the brazing seam. In addition, the failure of the composite is predominantly initiated by the rooting of SiC particle in the brazing seam and the micro-crack expanded along the brazing seam with low energy.

  8. Al2O3/SUS304 Brazing via AgCuTi-W Composite as Active Filler

    Science.gov (United States)

    Su, Cherng-Yuh; Zhuang, Xie-Zongyang; Pan, Cheng-Tang

    2014-03-01

    Alumina ceramic (α-Al2O3) was brazed to stainless steel (SUS304) using an Ag-Cu-Ti + W composite filler and a traditional active brazing filler alloy (CuSil-ABA). Then, the effects of the presence of W particles and of the brazing parameters on the microstructures and mechanical properties of the brazed joints were investigated. The maximum tensile strength of the joints obtained using Ag-Cu-Ti + W composite filler was 13.2 MPa, which is similar to that obtained using CuSil-ABA filler (13.5 MPa). When the joint was brazed at 930 °C for 30 min, the tensile strengths decreased for both kinds of fillers, although the strength was slightly higher for the Ag-Cu-Ti + W composite filler than for the Ag-Cu-Ti filler. The interfacial microstructure results show that the Ti reacts with W to form a Ti-W-O compound in the brazing alloy. When there are more W particles in the brazing alloy, the thickness of the Ti X O Y reaction layer near the alumina ceramic decreases. Moreover, W particles added to the brazing alloy can reduce the coefficient of thermal expansion of the brazing alloy, which results in lower residual stress between the Al2O3 and SUS304 in the brazing joints and thus yields higher tensile strengths as compared to those obtained using the CuSil-ABA brazing alloy.

  9. Zn-Al钎料钎焊Cu/Al接头组织和性能%Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals

    Institute of Scientific and Technical Information of China (English)

    姬峰; 薛松柏; 娄继源; 娄银斌; 王水庆

    2012-01-01

    使用不同成分的Zn-Al钎料对铜铝异种金属进行火焰钎焊,研究其力学性能.利用光学显微镜、扫描电镜和能谱研究不同Zn-Al钎料对Cu/Al钎焊接头钎焊性、力学性能及显微组织的影响.结果表明:随着Al含量的增加,Zn-Al钎料在Cu和Al上的铺展面积逐渐增大.当钎料中Al含量为15%时,Cu/Al接头的抗剪强度达到最大值88 MPa;随着组织的变化,钎缝硬度值呈现HV122到HV515不等的分布.另外,钎缝组织的成分主要为富Zn相和富Al相,但是当钎料中Al含量为2%和15%以上时,靠近Cu侧的界面处会分别形成CuZn3和Al2Cu两种完全不同的金属间化合物.研究Zn-Al钎料中铝含量对Cu/Al接头界面化合物类型的影响.%The mechanical properties and microstructural distribution of the Cu/Al brazing joints formed by torch-brazing with different Zn-Al filler metals were investigated.The microstructure of the Zn-Al alloys was studied by optical microscopy and scanning electron microscopy,and the phase constitution of the Cu/Al joints was analyzed by energy dispersion spectrometry.The results show that the spreading area of the Zn-Al filler metals on the Cu and Al substrates increases as the Al content increases.The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when Al and Cu are brazed with Zn-15Al filler metal.Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features.The Zn- and Al-rich phases exist in the middle brazing seam regions.However,two interface layers,CuZn3 and Al2Cu are formed on the Cu side when the Al content in the filler metals is 2% and more than 15%,respectively.The relationship between intermetallic compounds on Cu side and Zn-xAl filler metals was investigated.

  10. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  11. Vacuum Brazing of TiAl Based Alloy with 40Cr Steel

    Institute of Scientific and Technical Information of China (English)

    周昀; 薛小怀; 吴鲁海; 楼松年

    2004-01-01

    The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal.The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu2Ti compound which joins two parts to produce a brazing joint with higher strength.

  12. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  13. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    Science.gov (United States)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  14. Graphite-to-304SS Braze Joining by Active Metal-Brazing Technique: Improvement of Mechanical Properties

    Science.gov (United States)

    Ray, Ajoy K.; Kar, Abhijit; Kori, S. A.; Pathak, L. C.; Sonnad, A. N.

    2013-01-01

    In the present investigation, an attempt has been made to improve the mechanical strength of graphite-stainless steel-brazed joint. Due to high capillary action, the liquid filler alloy usually tends to percolate into the pores of graphite causing severe stress in the graphite near the joint interface resulting in poor joint strength of 10-15 MPa. In the present investigation, a thin coating of SiC was applied on graphite before the joining process to avoid the penetration of liquid filler alloy into the pores of the graphite. Active filler alloy Ag-Cu-Ti was used to braze the substrates. The brazing was carried out at 850, 900, 950, and 1000 °C. The characterization of the interfaces of the brazed joints was carried out using scanning electron microscopy attached with energy dispersive spectroscopy and x-ray diffraction analysis. From the correlation between the microstructural and mechanical properties, shear strength of approximately 35 MPa for graphite-304SS-brazed joint produced at 900 °C was demonstrated. After the shear tests, the fracture surfaces were analyzed by SEM-EDS.

  15. The story of laser brazing technology

    Science.gov (United States)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  16. Experimental study of W-Eurofer laser brazing for divertor application

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J., E-mail: claudio.munez@urjc.es [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Garrido, M.A. [Dept. de Tecnologia Mecanica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain); Rams, J.; Urena, A. [Dept. de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles 28933, Madrid (Spain)

    2011-11-15

    Highlights: > Laser brazing system as a suitable technique to joint W and Eurofer alloys. > High residual stresses at the bonding were produced. > Laser brazing of powder metallurgy W alloys added porosity in the solidified pool. > The CSM methodology as a suitable technique to discriminate zones of welding joints. - Abstract: This work can be considered as a preliminary evaluation of the potential of laser brazing for joining tungsten based alloys to reduced activation ferritic-martensitic steels (Eurofer). Brazing of tungsten and EUROFER alloys using a 55Ni-45Ti alloy as a brazer and a high power diode laser (HPDL) as a power source has been investigated. The brazed joints showed solidified pools with good superficial aspect and a high degree of wettability with the both parent sheets, presumably because of the active effect of titanium. Metallurgical brazeability was investigated and nanoindentation measurements were done to evaluate local hardening and stiffness effects associated to dilution phenomena.

  17. Contact reactive brazing of Al alloy/Cu/stainless steel joints and dissolution behaviors of interlayer%铝合金/Cu/不锈钢接触反应钎焊及中间层溶解行为

    Institute of Scientific and Technical Information of China (English)

    吴铭方; 司乃潮; 陈健

    2011-01-01

    以Cu作为接触反应材料连接6063铝合金与1Cr18Ni9Ti不锈钢,探讨焊接工艺参数对接头组织的影响规律,分析中间反应层Cu的溶解特性.结果表明:在1Cr18Ni9Ti不锈钢一侧界面反应层由Fe2Al5、FeAl3金属间化合物和Cu-Al金属间化合物构成,与之相邻区域主要含Cu-Al金属间化合物,焊缝组织由Al-Cu共晶及大块状的Al固溶体组成;随着保温时间的延长,焊缝组织最为显著的变化是在1Cr18Ni9Ti不锈钢一侧界面的金属间化合物层厚度增加,共晶组织宽度逐渐减小;中间反应层Cu的溶解速度非常迅速,是以秒为计量单位的快速过程,厚度为10 μm的Cu溶解时间仅为0.47 s.%Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of EMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study.

  18. Interfacial Microstructure and Shear Strength of TC4 Titanium Alloy/Stainless Steel Vacuum Brazed Joint%TC4钛合金/不锈钢真空钎焊接头的界面组织及抗剪强度

    Institute of Scientific and Technical Information of China (English)

    秦优琼; 于治水

    2012-01-01

    TC4 and 1CrlSNi9Ti were brazed by using Ag-28%Cu brazing filler metal under the conditions of brazing temperature of 800-890℃and heating times of 2--25 rain, and the interracial mierostructure and shear strength were investigated. The results show that Ti elements in TC4 dissolved into brazing filler metal and diffused to the interface of brazing filler metal and stainless steel, FeTi+Cu phase was formed at the interface, and thus the problem for the brazing filler metal being difficult to wetting the stainless steel was solved. The interface structure of brazed joints was TC4/ Ti/ Ti2Cu/ TiCu/Ag+Cu/Ti4OCu60-xFex/TiFe/1Crl8NigTi. The maximum shear strength was 103 MPa when the brazing temperature was 830 ℃ and heating time was 5 vain.%在钎焊温度800-890℃、保温时间2~25min的条件下,采用Ag-28%Cu钎料对TC4钛合金与1Cr18Ni9Ti不锈钢进行真空钎焊,并对接头的界面组织及抗剪强度进行了研究。结果表明:由于TC4母材中的钛向钎料溶解并扩散到不锈钢与钎料的界面,形成了固溶Cu的FeTi相,解决了不锈钢难于被一般钎料润湿的问题;钎焊接头界面结构为TC4/Ti/Ti2Cu/TiCu/Ag+Cu/Ti40Cu60-xFex/TiFe/不锈钢;在钎焊温度为830℃、保温时间为5rain的条件下,接头获得的抗剪强度最高,为103MPa。

  19. 时效对铜铝钎焊接头界面化合物和性能的影响%Effects of thermal aging on intermetallic compounds and properties of Cu/Al brazing joint

    Institute of Scientific and Technical Information of China (English)

    姬峰; 薛松柏; 张满; 娄继源; 王水庆

    2012-01-01

    采用Zn-22Al钎料对铜铝异种合金进行了火焰钎焊,并用加速老化试验模拟了其服役环境.研究了时效过程中铜铝钎焊接头界面化合物的形貌变化及其对铜铝钎焊接头电阻率和抗剪强度的影响,并对其生长规律进行了初步计算.结果表明,铜侧界面化合物在250℃恒温时效过程中不断变厚,其生长规律呈抛物线状,且其生长系数约为6.1×10-13cm2/s;当界面化合物的厚度为4.2μm和18.1μm时,铜铝接头的电阻分别为120.3μΩ和132.9μΩ,该界面化合物厚度对电阻率的影响系数为0.25;铜铝接头抗剪强度在时效过程中先有3%的上升,随后逐渐降低至接头初始值的85%.%Cu/Al dissimilar metals were joined with Zn-22Al filler metal by torch-brazing technology and heat treated at constant temperature of 250 ℃ for 0 to 1000 h.To guarantee the reliability of the Cu/Al torch-brazing joints in service requirement,the growth rate of intermetallic compounds on Cu side was calculated and the effects of the intermetallic compound layer on the electrical and mechanical properties have been investigated under various annealing time.It was observed that the width of intermetallic compound increased as the thermal aging proceeded,and the growth rate of the intermetallic compound was 6.1×1013 cm2/s when the aging temperature was 250 ℃.A thicker intermetallic compound layers could degrade the resistivity and shear strength of Cu/Al joints.When the thickness of intermetallic compound was 4.2 μm and 18.1 μm,the electric resistance was 120.3 μΩ and 132.9 μΩ,respectively.Moreover,the shear strength of Cu/Al brazing joint increased by 3% when the aging time was 100 h while the strength decreased by 15% when the Cu/Al joints endured 1000 h thermal aging.

  20. Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al Si La Sr filler

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fei; Wang, Chun Ming; Wang, Ya Jun [Huazhong Univ. of Science and Technology, Wuhan (China); Xu, Dao Rong; Wu, S.C.; Sun, Qin De [Heifei Univ. of Technology, Hefei (China)

    2012-12-15

    It has been mainly studied in this paper on brazing of Cu to Al using Al.Si filler metal. The optimized scanning rate of 2.5 mm/s is first obtained through simulating the temperature field of Cu Al brazing process based on ANSYS software. Then the brazing of Cu C11000 to Al 3003 using Al.Si.La.Sr filler is carried out by torch brazing technology. It is found that the brazing seam region is mainly consisted of {alpha} Al solid solution and CuAl2 IMC. Further experimental results also show that the rare earth element La in filler metal can not only refine the grain, but also promote the dispersion of intermetallic compounds into the brazing seam, which significantly improves the brazing seam microstructure and mechanical properties of the joints.

  1. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B.A. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation)]. E-mail: BAKalin@mephi.ru; Fedotov, V.T. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Sevrjukov, O.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Kalashnikov, A.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Suchkov, A.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Moeslang, A. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung I, 76021 Karlsruhe (Germany); Rohde, M. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung I, 76021 Karlsruhe (Germany)

    2007-08-01

    Results on rapidly solidified filler metals for brazing W with W and monocrystalline W with EUROFER steel (FS) are presented. Rapidly quenched powder-type filler metals based on Ti{sub bal}-V-Cr-Be were developed to braze polycrystalline W with monocrystalline W. In addition, Fe{sub bal}-Ta-Ge-Si-B-Pd alloys were developed to braze monocrystalline W with FS for helium gas cooled divertors and plasma-facing components. The W to FS brazed joints were fabricated under vacuum at 1150 {sup o}C, using a Ta spacer of 0.1 mm in thickness to account for the different thermal expansions. The monocrystalline tungsten as well as the related brazed joints withstood 30 cycles between 750 {sup o}C/20 min and air cooling/3-5 min.

  2. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  3. Research of Brazing Filler Metals for 6061 Aluminum Alloy Brazing%6061铝合金钎焊用钎料的研究

    Institute of Scientific and Technical Information of China (English)

    刘正林; 杨凯珍; 王凯; 刘凤美

    2012-01-01

    研究了6061铝合金钎焊用中温钎料Al-Si-Cu-Ni钎料的熔化特性、钎焊强度、钎料和接头抗腐蚀性能.结果表明,Al-Si-Cu-Ni钎料熔化温度与Al-Si-Cu钎料HL401接近,钎焊强度、钎料和接头抗腐蚀性能均优于HL401;Al-10Cu- 10Si-2Ni钎料熔化温度低,抗拉强度和接头抗腐蚀性能高,适用于6061铝合金的钎焊.%Melting characteristics, brazing strength, corrosion resistance of filler metals and joints of the Al-Si-Cu-Ni brazing filler metals for 6061 alloy brazing were studied. The results show that, the melting temperature of Al-Si-Cu-Ni brazing filler metals are close to the Al-Si-Cu solder HL401and the brazing strength, the corrosion resistance of filler metals and joints are better than HL401; Al-10Cu-10Si-2Ni filler matel with low melting temperature, high brazing strength and better corrosion resistance of joint is suitable for 6061 aluminum alloy brazing.

  4. Induction brazing manual

    Science.gov (United States)

    1971-01-01

    Manual presents standards and techniques which are known or are particular to specific industry, and is useful as guide in closing tolerance brazing. Material and equipment specifications, tool setting tables, and quality control data and instructions are included. Since similar standards are available, manual is supplementary reference.

  5. Investigation of the corrosion performance of different braze fillers fused onto stainless steel type 1.4401 (UNS S31600)

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.; Eklund, T.; Persson, O. [Alfa Laval Corporate AB, Tumba (Sweden)

    2004-07-01

    Corrosion measurements were performed on a new iron based braze filler, AlfaNova{sup 1} developed by Alfa Laval. The braze filler was fused onto stainless steel type EN 1.4401 (UNS S31600). The susceptibility to general corrosion, intergranular corrosion and pitting corrosion was evaluated by gravimetrical and electrochemical methods as well as metallographical examination of the samples. Different sample configurations were utilised, which simulate the geometry of a braze joint in a plate heat exchange. The results were compared with a selection of commercial nickel-based braze fillers. It was shown that the newly developed iron-based braze filler had similar corrosion resistance as the commercially available nickel-based fillers. It was seen that the precipitation of intermetallic phases due to melting point depressants had a governing effect on the corrosion resistance of the braze joint. (orig.)

  6. A review of oxide, silicon nitride, and silicon carbide brazing

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed.

  7. Microstructure of brazed joint and properties of two lead-free solder powders%两种雾化无铅焊锡粉末特性及钎焊接头显微组织

    Institute of Scientific and Technical Information of China (English)

    许天旱; 王党会

    2011-01-01

    Wettability,sphericity and particle size distribution of lead-free solder powders of Sn3Ag2.8Cu and Sn3Ag2.8Cu-0.1Ce and microstracture of brazed joint by the two solder were investigated by means of scanning electron microscopy (SEM) and laser particle size analyzer,and the microstructure of brazed joint and wettability of the powders were compared with those of the corresponding alloys. The results show that the particle size distribution and sphericity of both Sn3Ag2.7Cu-0.1Ce and Sn3Ag2.8Cu powder are good. The Sn3Ag2.8Cu- 0.1Ce solder powder possesses better wettability compared to Sn37Pb and Sn3Ag2.8Cu powders. Brazing with Cu substrate,the diffusion layer of Sn3Ag2.8Cu-0.1Ce solder powder is thinner than that of Sn3Ag2. 8Cu powder,but the diffusion layers of both Sn3Ag2.8Cu and Sn3Ag2.8Cu-0.1Ce powders with Cu substrate are thicker than that of the corresponding alloy. The Sn3Ag2.8Cu-0.1 Ce powder exhibits favorable combination of properties.%采用扫描电镜(SEM)和激光粒度分析仪研究了无铅焊锡粉末Sn3Ag2.8Cu和Sn3Ag2.8cu旬.1Ce的特性诸如球形度、粒度分布、润湿性及钎焊接头的显微组织,并与对应合金的润湿性及钎焊接头显微组织进行了对比.结果表明:Sn3Ag2.8Cu和Sn3Ag2.8Cu-0.1Ce粉末都具有较好的粒度分布和球形度;与传统Sn37Pb粉末和Sn3Ag2.8Cu粉末相比,Sn3Ag2.8cu_o.1Ce粉末均具有更好的润湿性;在与铜基板的钎焊中,Sn3Ag2.8Cu-0.1Ce粉末的扩散层比Sn3Ag2.8Cu粉末更薄,但两种粉末与铜基板形成的扩散层均比其对应合金与铜基板的扩散层更厚.因此,Sn3A萨.8Cu-0.1Ce粉末具有更好的综合性能.

  8. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tyhurst, C.C.; Cunningham, M.A.

    2002-06-04

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  9. A preliminary study on filler metals for vacuum brazing of Al/Ti

    Institute of Scientific and Technical Information of China (English)

    朱颖; 赵鹏飞; 康慧; 胡刚; 曲平

    2002-01-01

    In this paper, nine new filler metals contained Sn and Ga based on Al-11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.

  10. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    Science.gov (United States)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  11. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  12. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S

    2008-01-01

    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  13. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    VAIDYA, RAJENDRA U [Los Alamos National Laboratory; KAUTZ, DOUGLAS D. [Los Alamos National Laboratory; GALLEGOS, DAVID E. [Los Alamos National Laboratory

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  14. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  15. Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper

    Energy Technology Data Exchange (ETDEWEB)

    Zaharinie, Tuan [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Huda, Zainul, E-mail: drzainulhuda@hotmail.com [Department of Engineering, Nilai University, Nilai, 71800 Malaysia (Malaysia); Izuan, Mohd Faaliq; Hamdi, Mohammed [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia)

    2015-03-15

    Highlights: • New brazing process parameters corresponding to the greatest shear strength have been developed. • An effective interaction of brazing filler metal (BFM) and base metal was observed at the interface for the sample brazed at 650 °C/5 min. • The possibility of formation of hard intermetallic compounds of Cu, Sn, and P have been justified in view of high-strength braze joint. • The surface roughness with an average R{sub a} value of around 0.20 μm was found to be the most appropriate for brazing of copper conducted at the specified process parameters. - Abstract: Brazing experiments on commercially-pure copper plates, using brazing filler metal (MBF-2005), are conducted at temperatures in the range of 650–750 °C for time-durations in the range of 5–15 min. Shear tests for braze-joints involved use of a universal testing machine. Based on the shear-test results, a new brazing cycle has been developed that corresponds to the greatest shear strength of the braze-joint. The brazing cycle has been performed under a controlled dry-argon atmosphere in a tube furnace. Microscopic observations were made by use of both optical and electron microscopes; whereas surface roughness measurements were made by using a TR100 Surface Roughness Tester. It is found that successful brazing and good wetting can be achieved by the least voids by using an average surface roughness (R{sub a} value) for the base material.

  16. Brazing zone structure at active brazing of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.

  17. Brazing zone structure at active brazing of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    Demchuk; V.; A.; Kalinichenko; B.; B.

    2005-01-01

    Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.……

  18. Evaluation of the Properties of Si3N4/Si3N4 Joint Brazed Using a Filler Alloy Containing Pd

    Institute of Scientific and Technical Information of China (English)

    M. Naka; Jie ZHANG; Yu ZHOU

    2003-01-01

    Si3N4 ceramic was jointed to itself using a filler alloy of Cu76.5Pd8.5Ti15, and the mechanical properties of the jointwere measured and analyzed. By using a filler alloy of Cu76.5Pd8.5Ti15, the SisN4/SisN4 joints were obtained bybrazing at 1373~1473 K f

  19. Computational simulations and experimental validation of a furnace brazing process

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  20. Effect of ultrasonic transmission rate on microstructure and properties of the ultrasonic-assisted brazing of Cu to alumina.

    Science.gov (United States)

    Ji, Hongjun; Chen, Hao; Li, Mingyu

    2017-01-01

    Fluxless brazing of bare alumina with Cu was conducted with an ultrasonic-assisted brazing technique by a Zn-14wt.%Al filler. The shear strength of Cu/alumina joints (84MPa) exhibited 27% larger than the alumina/Cu joints (66MPa) due to different intermetallic phases and their morphologies formed in the seam under the same parameters, which are probably attributed to the transmission rate of ultrasonic energy varying with density of the ultrasonic horn-contacted materials. Overgrowth of stalactite-like CuZn5 contributes to better thermal dissipation of the ultrasonic-assisted brazed Cu/alumina joints.

  1. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    Science.gov (United States)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  2. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 – 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  3. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  4. MICROSTRUCTURE AND PROPERTIES OF 5A03 AND SUS304 IN TRANSITIONAL BRAZING

    Institute of Scientific and Technical Information of China (English)

    Lu Xueqin; Yang Shanglei; Wu Yixiong

    2005-01-01

    Stainless steel is so different from aluminum alloys in physical and chemical characters.When they are welded directly, there tend to be Al-Fe brittle compounds on the joint. This paper investigates the processing performance, interface microstructures and mechanical properties of aluminum alloys/stainless steel by way of brazing after brush plating a Ni/Cu transitional layer on stainless steel. After the joints are brazed with Al-Si-Cu-Mg~Zn foil brazing filler metal on different brazing parameters, both the mechanical properties and the microstructures are satisfactory for application.And the influence of the brazing parameters on bonding quality of the brazed joints is discussed in detail. The results reveal that no brittle Al-Fe intermetallic Compound is found in the interfaces. The Ni/Cu electroplating layer effectively hinders the diffusion of Fe atoms from SUS304 to 5A03.Though a little AlCu3 brittle compound is produced, its quantity is too small to affect the strength of the joint.

  5. Feasibility study of fluxless brazing cemented carbides to steel

    Science.gov (United States)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  6. 防锈铝板/镀锌钢板异种金属冷金属过渡熔钎焊接头的组织与抗拉强度%Microstructure and Tensile Strength of Rust-Proof Aluminum Plate and Zinc-Coated Steel Plates Braze-Weld Joint Prepared by Cold Metal Transfer

    Institute of Scientific and Technical Information of China (English)

    冯曰海; 王克鸿; 高飞; 杜刚

    2013-01-01

    The cold metal transfer (CMT) brazing-welding process was used to weld dissimilar metals of LF21 rust-proof aluminum plate and DD51D+Z zinc-coated steel plate,and the microstructure and tensile strength of the joint were studied.The results show that the compound layer of middle interface zone of the braze-weld joint was intermetallic compound FeAla with thickness of 4-6 μm.The average transverse tensile strength of the joint was up to 77 MPa and strength coefficient was 0.6.%采用冷金属过渡(CMT)熔钎焊接工艺,对LF21防锈铝板和DD51D+Z镀锌钢板进行了异种金属的连接,对接头的显微组织和抗拉强度进行了研究.结果表明:防锈铝板和镀锌钢板的熔钎焊接头的中间界面区化合物为4~6 μm厚的FeAl3金属间化合物,接头的平均横向抗拉强度为77MPa,接头的强度系数为0.6.

  7. Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, O.C. [Instituto Superior de Engenharia do Porto (ISEP), Rua Dr. Antonio Bernardino de Almeida 431, 4200-072 Porto (Portugal)], E-mail: omp@isep.ipp.pt; Barbosa, M.A. [Instituto de Engenharia Biomedica (INEB), Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias s/n, 4200-465 Porto (Portugal)

    2008-05-15

    The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag-26.5Cu-3Ti and Ag-34.5Cu-1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 deg. C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag-26.5Cu-3Ti brazing alloy and a brazing temperature of 850 deg. C, produces the best results in terms of bond strength, 234 {+-} 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag-34.5Cu-1.5Ti brazing alloy and a brazing temperature of 850 deg. C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 {+-} 0.21 {mu}A cm{sup -2}. Nevertheless, the joints produced at 850 deg. C using a Ag-26.5Cu-3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 {+-} 18 MPa and 1.26 {+-} 0.58 {mu}A cm{sup -2}, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the

  8. Study on Interfacial Reaction Behavior and Properties of Al/Zn-3Al/Cu Fluxless Brazed Joint%Al/Zn-3Al/Cu无钎剂钎焊接头界面冶金反应行为及性能研究

    Institute of Scientific and Technical Information of China (English)

    符永高; 王玲; 肖勇; 万超; 杜彬; 高锐

    2014-01-01

    The metallurgic reaction behavior and properties of Al/Zn-3Al/Cu dissimilar joints ultrasonically brazed at different temperatures were investigated. Results showed that, in the joint brazed at 400℃, the ifller metal layer was composed of Zn-Al eutectic matrix and randomly distributedα-Al and CuZn5 dendrites, the Cu interfacial layer was composed of thick CuZn5 intermetallic compounds layer and Cu based diffusion layer. Increasing the brazing temperature to 440℃, however, the ifller metal layer was composed of refined and dispersed CuZn5,α-Al and Al4.2Cu3.2Zn0.7 phases, and the CuZn5 layer on the Cu surface changed to a serrated Al4.2Cu3.2Zn0.7 intermetallic compounds layer. Further increase the brazing temperature to 480℃ resulted in the coarsening of the microstructure and the creation of cavities in the ifller metal layer. Properties tests showed that, compared with the joints brazed at 400℃ and 480℃, the joint brazed at 440℃ had the highest tensile strength (78.9 MPa) and corrosion resistance.%研究了采用Zn-3Al钎料钎焊Al/Cu异质金属时,钎焊温度对接头冶金反应行为及性能的影响。结果表明,在400℃超声钎焊时,接头的钎缝层由不均匀分布的α-Al和CuZn5树枝状晶以及Zn-Al共晶基体组成,接头的Cu界面处形成了较厚的扇贝状CuZn5金属间化合物层和Cu基扩散层。增加钎焊温度到440℃时,接头的钎缝层转变为由均匀弥散分布的CuZn5、α-Al和Al4.2Cu3.2Zn0.7相组成,接头Cu界面处的金属间化合物层则由CuZn5相转变为锯齿状的Al4.2Cu3.2Zn0.7相。进一步增加钎焊温度至480℃引起了接头显微组织的粗化和钎缝层中缩孔的形成。性能测试表明,与在400℃和480℃超声钎焊相比,在440℃超声钎焊获得的Cu/Al接头有着最佳的拉伸强度值(78.9 MPa)和抗腐蚀性。

  9. Cu-Mn-Ni-Ag钎料高频感应钎焊2Cr13不锈钢接头的显微组织与性能%Microstructure andperformance of 2Cr13stainless steel joint by high frequency induction brazing usingCu-Mn-Ni-Agfiller alloy

    Institute of Scientific and Technical Information of China (English)

    郑义; 颜家振; 李宁; 曹永同; 帅帆

    2016-01-01

    The characteristic of Cu-Mn-Ni-Ag filler alloy and the microstructure and mechanical properties of the 2Cr13 stainless steel joint brazed by high frequency induction brazing using Cu-Mn-Ni-Ag filler alloywerestudied. The results show that the melting point of the Cu-Mn-Ni-Ag filler alloy is 880℃and it is composed of Ag-rich phase, Cu-Mn-Ni solid solution and a little Ni-Mn-Si compound; a layer of Fe-Mn-Ni-Cr-Cu solid solution forms at the interface between the filler alloy and base metal, and the brazing seam zone is composed of Ag-rich phase, Cu-Mn-Ni solid solution and a little Ni-Mn-Si compound. The brazing jointsfailsin the inside Cu-Mn-Ni solid solution and Ag-rich phase, and the fracture mode of the joints is mainly ductile dimple fracture, the best shear strength of the brazing joint at room temperature is 369 MPa, the high temperature shear strength of the brazing joints at 400℃, 500℃and 600℃are 251 MPa, 208 MPa and 84 MPa,respectively.%采用新型的Cu-Mn-Ni-Ag中温铜基钎料高频感应钎焊2Cr13不锈钢,并对钎料的工艺特性、钎焊接头的显微组织以及测试温度对钎焊接头力学性能的影响进行研究。结果表明:Cu-Mn-Ni-Ag钎料的熔点约为880℃,由富Ag相、Cu-Mn-Ni固溶体以及少量的Ni-Mn-Si化合物组成;钎料与2Cr13不锈钢产生良好的冶金结合,且钎焊接头组织致密;界面反应区的组织为Fe-Mn-Ni-Cr-Cu固溶体,钎缝区组织由富Ag相、Cu-Mn-Ni固溶体和少量的Ni-Mn-Si化合物组成;钎焊接头断裂于钎缝中间的富Ag相和CuMnNi固溶体上,为以剪切韧窝为主的韧性断裂,室温剪切强度最大可达369 MPa,在400℃、500℃和600℃下接头的剪切强度分别为251 MPa、208 MPa和84 MPa。

  10. Development of Ag-Cu-Zn-Sn brazing filler metals with a 1 0 weight-% reduction of silver and same liquidus temperature

    Institute of Scientific and Technical Information of China (English)

    Daniel Schnee; Gunther Wiehl; Sebastian Starck; Chen Kevin

    2014-01-01

    With BrazeTec BlueBraze the manufacturers in HVACR industry have an alternative filler metal with 10 weight-%less silver but same brazing temperatures.The performance of these new alloys has been evaluated in several tests.The evaluation included wetting investigations,metallographic examinations,joint strength at different temperatures and pulsation and corrosion resistance.The results ofthese tests will be presented in this paper.

  11. Mechanical Property and Corrosion Resistance Evaluations of Ti-6Al-7Nb Alloy Brazed with Bulk Metallic Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E. [Nagasaki University, Nagasaki, Japan; Kato, H. [Tohoku University, Japan; Ogata, Toshiaki [Nagasaki University, Nagasaki, Japan; Nishiyama, Nobuyuki [Tohoku University, Japan; Specht, Eliot D [ORNL; Shiraishi, Takanobu [ORNL; Inoue, A. [Tohoku University, Japan; Hisatsune, K. [Nagasaki University, Nagasaki, Japan

    2007-01-01

    Exploitation of metallic glass as new brazing filler for Ti-based biomedical alloy was attempted. Ti-6Al-7Nb was used as a brazed material, and candidates of bulk metallic glass brazing filler were Cu60Hf25Ti15, Mg65Cu25Gd10, Zr55Cu30Al10Ni5 and Pd40Cu30P20Ni10. Convergence infrared-ray brazing was conducted for brazing Ti-6Al-7Nb/metallic glass in Ar atmosphere. After brazing, hardness measurement, X-ray tomography, cross-sectional observation, artificial saliva immersion test and tensile test were performed to evaluate brazability, mechanical property and corrosion resistance of the obtained brazing joints. The results of brazing using these metallic glass fillers show that all the metallic glasses were brazable to Ti-6Al-7Nb except for Mg65Cu25Gd10. Mg65Cu25Gd10, Cu60Hf25Ti15 and their joints collapsed rapidly during immersion test. Zr55Cu30Al10Ni5 joint was the best in terms of degradation resistance; however, tensile strength was inferior to the conventional one. Pd40Cu30Ni10P20 filler and Zr55Cu30Al10Ni5 filler and their joints did not show any collapse or tarnish during the immersion test. Pd40Cu30Ni10P20 joint showed the excellent properties in terms of both corrosion resistance and tensile strength, which were superior to a joint brazed using Ti-15Cu-25Ni conventional filler. X-ray tomograph indicates that fracture tends to occur in the vicinity of the brazing interface after tensile test. The brazed metallic glass fillers were fully crystallized, excluding Pd40Cu30Ni10P20 filler. Pd40Cu30Ni10P20 brazed filler contained mapleleaf like primary dendrite, peritectoid and a few microns interfacial reaction layer in glassy matrix. The results indicated that Pd40Cu30Ni10P20 is promising brazing filler for dental or biomaterial devices.

  12. Microstructural Evolution of Brazed CP-Ti Using the Clad Ti-20Zr-20Cu-20Ni Foil

    Science.gov (United States)

    Yeh, Tze-Yang; Shiue, Ren-Kae; Chang, Chenchung Steve

    2013-01-01

    Microstructural evolution of the clad Ti-20Zr-20Cu-20Ni foil brazed CP-Ti alloy has been investigated. For the specimen furnace brazed below 1143 K (870 °C), the joint is dominated by coarse eutectic and fine eutectoid structures. Increasing the brazing temperature above 1163 K (890 °C) results in disappearance of coarse eutectic structure, and the joint is mainly comprised of a fine eutectoid of (Ti,Zr)2Ni, Ti2Cu, Ti2Ni, and α-Ti.

  13. Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications

    Science.gov (United States)

    Singh, M.; Asthana, R.; Shpargel, T> P.

    2007-01-01

    Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.

  14. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    Science.gov (United States)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  15. 铝/镀锌钢薄板异种金属CMT熔钎焊接头组织与力学性能%Microstructure and Mechanical Properties of CMT Welding-brazing Joint for Dissimilar Materials between Aluminums and Galvanized Steels

    Institute of Scientific and Technical Information of China (English)

    余刚; 曹睿; 陈剑虹

    2012-01-01

    The dissimilar materials, aluminum alloys and galvanized steels were joined by CMT welding -brazing method. Analyzing the macro feature of cross -section, microstructure, the defects and mechanical properties of welding-brazing joints with SEM, EDAX, tension text, it is shown that the lap joints with better properties and better weld appearance are formed between the aluminum alloys and galvanized steels. From the microstructure and formation of weld metal, the cross-section of the joint can be divided into four zones; weld metal, middle interface, transitional interface and zinc - rich zone. There is a continuous and compact inter -metallic compound layers with a thickness of 3~4μm, which is formed in the brazing interface zone between the weld metal and the galvanized steel sheet. The main components of the layer are Fe3 Al, FeAl2, Fe2 Al5 and FeAl3,then, the zinc-rich zone is mainly composed of aluminum -rich solid solution and residue of Zn. Tensile strength tests show that the joint is fractured in the aluminum heat affect zone, and the joint strength with 204MPa is obtained.%采用冷金属过渡方法对铝合金和镀锌钢板进行了熔钎焊连接,使用扫描电镜、能谱分析和拉伸试验分析了接头的截面形貌、组织特征、焊接缺陷及力学性能.试验结果表明,铝合金和镀锌钢能得到成形美观、性能良好的搭接接头.对焊缝金属的组织特征分析表明,焊接接头由熔化区、中心界面区、过渡界面区和富锌区组成,在焊缝金属和镀锌板的界面区形成厚度为3~4μm的金属间化合物层(主要成分为Fe3Al、FeAl2、Fe2Al5和FeAl3),富锌区由富铝的固溶体和残留的锌组成.在进行拉伸试验时,断裂发生在热影响区,接头强度为204MPa.

  16. Mo-Cu合金与1Cr18Ni9Ti不锈钢真空钎焊接头的组织性能%Microstructure characteristics of vacuum brazed joint for Mo-Cu alloy with lCrl8Ni9Ti stainless steel

    Institute of Scientific and Technical Information of China (English)

    王娟; 郑德双; 李亚江

    2013-01-01

    Mo-Cu alloy and lCrl8Ni9Ti stainless steel were joined by vacuum brazing with Ag-Cu-Ti active filler metal at 910 ℃ for 20 min and a Mo-Cu/lCrl8Ni9Ti joint with a shear strength of 75 MPa was obtained. The microstructure and performance of Mo-Cu/lCrl8Ni9Ti joint were investigated by scanning electron microscope ( SEM ) , energy dispersive spectrometer ( EDS) and microhardness test. The results indicated that Ag-Cu eutectic and Cu-rich phase were produced in the brazed joint. There were few of TiC phases near the side of lCrl8Ni9Ti stainless steel in the joint. The microhardness of brazed seam was lower than that of Mo-Cu alloy and lCrl8Ni9Ti stainless steel. There are no brittle compounds formed in the Mo-Cu/lCrl8Ni9Ti joint. The shear fracture appearance shows shear dimple feature.%采用Ag-Cu-Ti钎料,控制钎焊温度为910℃,保温时间为20 min,可以实现Mo-Cu合金与1Cr1 8Ni9Ti不锈钢的真空钎焊,接头抗剪强度为75 MPa.采用扫描电镜、能谱分析仪和显微硬度计对Mo-Cu/1 Cr18 Ni9Ti接头组织特征及性能进行分析.结果表明,钎焊接头靠近1Cr18Ni9Ti钢一侧,主要形成Ag-Cu共晶组织和少量的TiC相;靠近Mo-Cu合金一侧,Ag,Cu元素在合金与钎缝间相向扩散,共晶组织消失,以富铜相为主.钎缝的显微硬度明显低于Mo-Cu合金和1Cr18Ni9Ti不锈钢母材,无脆性化合物生成,剪切断口呈现剪切韧窝的形貌特征.

  17. MICROSTRUCTURE ANALYSIS OF INTERFACIAL LAYER WITH TUNGSTEN INERT GAS WELDING-BRAZING JOINT OF ALUMINUM ALLOY/STAINLESS STEEL%铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析

    Institute of Scientific and Technical Information of China (English)

    林三宝; 宋建岭; 杨春利; 马广超

    2009-01-01

    Against the background of the required weight reduction in transportation through lightweight construction, the application of hybrid structures, where aluminum alloy and steel are jointed together, has a high technical and economical potential. But jointing of material combinations of aluminum alloy and steel is problematic by fusion welding since brittle intermetallic compounds (IMCs) are formed between aluminum alloy and steel. Nowadays, tungsten inert gas (TIG) welding-brazing offers a great potential for aluminum alloy and steel jointing. In this process, the sheet and filler metal are heated or melted by TIG heat, and the joint has a dual characteristic: in aluminum alloy side it is a welding joint, while in steel side it is a brazing joint. However, in the dynamic heating process, the heating temperature changes so quickly and the reaction time between the liquid filler metal and solid steel is so short that it is more difficult to control the IMC layer's growth, predominantly its thickness and microstructures. Most of past reports about the brazing of aluminum alloy and steel indicate Al-Fe binary IMC layers, e.g., Fe_2Al_5 and FeAl_3, formed in the brazing joint, which are detrimental to the mechanical properties of the joint. Si additions are used to limit the growth of the brittle Al-Fe IMC layer between aluminum alloy and steel by replacing Al-Fe phases with less detrimental Al-Fe-Si phases in aluminizing and furnace brazing of aluminum alloy and steel. By now, there have been few reports of investigating the interfacial layer of TIG welding-brazing joint of aluminum alloy and stainless steel. In this paper, a butt TIG welding-brazing joint of aluminum alloy/stainless steel was formed using Al-Si eutectic filler wire with modified Noclock flux precoated on a steel surface. The microstructure characteristics of the welded seam-steel interfacial layer were analyzed by OM, SEM and EDS and its mechanical properties were measured by dynamic ultra

  18. 钛热交换器的真空钎焊%Vacuum Brazing of Titanium Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    梁海

    2015-01-01

    Vacuum brazing process of CP Ti-tanium TA2 heat exchangers was investigated. The effect of filler metals composition, use form, clearance, braz-ing temperature and hold time on braze joint forming and microstructure was studied. The test results showed that desirable isothermal-solidiifed braze microstructure can be produced more easily by use of Ti-Zr-Ni-Cu ifller metals than pure copper filler metal when vacuum brazing tita-nium. Whereas low price pure copper rolled foil as filler metal for brazing titanium can also result in tight and good look brazed joints, but at the cost of low plasticity of joints.%研究了不同的钎料成分和使用形式、钎焊间隙、钎焊温度和保温时间对TA2纯钛钎焊接头的成形和钎缝组织形态的影响。试验结果表明,与用纯Cu钎料相比,用Ti-Zr-Ni-Cu钎料可以更容易得到好的等温凝固钎缝组织。而用纯Cu钎料,则价格低,也可得到致密的成形漂亮的钎焊接头,但代价是接头的塑性较低。

  19. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    OpenAIRE

    Nikitin, A.; L. Schleuss; R. Ossenbrink; V. Michailov

    2017-01-01

    Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an importan...

  20. Chemical elements diffusion in the stainless steel components brazed with Cu-Ag alloy

    Science.gov (United States)

    Voiculescu, I.; Geanta, V.; Vasile, I. M.; Binchiciu, E. F.; Winestoock, R.

    2016-06-01

    The paper presents the study of diffusion of chemical elements through a brazing joint, between two thin components (0.5mm) made of stainless steel 304. An experimental brazing filler material has been used for brazing stainless steel component and then the diffusion phenomenon has been studied, in terms of chemical element displacement from the brazed separation interface. The filler material is in the form of a metal rod coated with ceramic slurry mixture of minerals, containing precursors and metallic powders, which can contribute to the formation of deposit brazed. In determining the distance of diffusion of chemical elements, on both sides of the fusion line, were performed measurements of the chemical composition using electron microscopy SEM and EDX spectrometry. Metallographic analysis of cross sections was performed with the aim of highlight the microstructural characteristics of brazed joints, for estimate the wetting capacity, adherence of filler metal and highlight any imperfections. Analyzes performed showed the penetration of alloying elements from the solder (Ag, Cu, Zn and Sn) towards the base material (stainless steel), over distances up to 60 microns.

  1. Laser brazing of inconel 718 alloy with a silver based filler metal

    Science.gov (United States)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  2. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  3. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    Science.gov (United States)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  4. Plasma arc brazing - a low energy joining technology for steel sheets; Plasmalichtbogenloeten - eine energiearme Fuegetechnik fuer Feinblechwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B.; Draugelates, U.; Helmich, A.; Ouaissa, B. [TU Clausthal, Clausthal-Zellerfeld (Germany)

    2001-07-01

    Mild and high strength steel sheets are comparatively difficult to weld. The heat input in the case of conventional welding processes is too high, so that plasma brazing is an attractive alternative and complementary joining process. One characteristic of the process is the independent input of energy and filler material. In addition, the process is practically spatter-free. Plasma brazing reduces joint and panel distortion and is tolerant to surface contamination and metallic surface coatings. The brazed seams are aesthetic in appearance and clear good mechanical properties. (orig.)

  5. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  6. 钎焊工艺参数对C/C复合材料/Cu/Mo/TC4钎焊接头微观组织的影响%Effects of Brazing Parameters on Microstructures of C/C Composite/Cu/Mo/TC4 Brazed Joints

    Institute of Scientific and Technical Information of China (English)

    秦优琼; 于治水

    2012-01-01

    在钎焊温度为820~940℃,钎焊时间为1~30min的条件下,采用TiZrNiCu钎料、Cu/Mo复合中间层对C/C复合材料和TC4进行了钎焊实验.利用扫描电镜及能谱仪对接头的界面组织进行了研究.结果表明:在较低工艺参数下,Cu/C/C复合材料界面结构为Cu/Cu51Zr14/Ti2 (Cu,Ni)+ Ti(Cu,Ni)+ TiCu+ Cu2TiZr/TiC/C/C复合材料.随着工艺参数的提高,TiCu和Cu2TiZr反应相逐渐消失,Ti(Cu,Ni)2新相生成,此时的界面结构为Cu/Cu51Zr14/Ti2 (Cu,Ni)+ Ti(Cu,Ni)+Ti(Cu,Ni)2/TiC/C/C复合材料.钎焊工艺参数较高时界面结构为Cu/Cu51Zr14/Cu(s.s)+Ti(Cu,Ni)2/TiC/C/C复合材料.随着钎焊温度的增加以及保温时间的延长,界面反应层Cu51Zr14和TiC反应层厚度增加.%C/C composite and TC4 were brazed using TiZrNiCu filler metal and Cu/Mo composite in-terlayers at 820-940℃ for l-30min. The interfacial microstructures were investigated by scanning electron microscopy and electron energy spectrum analysis. The results showed that the sequence of the interface structure at low brazing parameters can be described as the following: Cu/Cu51Zr14/Ti2 (Cu, Ni)+Ti(Cu,Ni)+TiCu+Cu2TiZr/TiC/C/C composite. With the increased brazing parameter, TiCu and Cu2TiZr disappeared, and Ti(Cu,Ni)2 appeared. The interface structure was changed to Cu/Cu5i Zri4/Ti2 (Cu,Ni)+Ti(Cu,Ni)+ Ti(Cu,Ni)2/TiC/C/C composite. For high brazing parameters, the interface structure was composed of Cu/Cu51 Zr14/Cu(s. s) + Ti(Cu, Ni)2/TiC/C/C composite. The thickness of Cu51Zr14and TiC reaction layers increased with the increased brazing temperature and the prolonged holding time.

  7. Microstructural characteristics of joint region during diffusion-brazing of magnesium alloy and stainless steel using pure copper interlayer%纯铜作中间层的镁合金与不锈钢扩散-钎焊接头区的微观结构特征

    Institute of Scientific and Technical Information of China (English)

    袁新建; 盛光敏; 罗军; 李佳

    2013-01-01

    A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect flee interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone.%以纯铜作中间层采用一种新型的两步式扩散-钎焊方法对AZ31镁合金和304L奥氏体不锈钢进行连接.304L与铜的固态扩散连接在850℃下进行20 min,随后与镁合金在520℃和495℃进行不同时间的钎焊.对扩散-钎焊接头区的微观结构特征进行研究.在铜与304L钢之间形成没有缺陷存在的Fe-Cu扩散界面.在AZ31和铜之间形成Cu-Mg反应物.在接头处出现包含AZ31/Cu-Mg化合物/Cu/Fe-Cu扩散层/304L的层状结构.随着时间的延长,铜层的宽度降低,而Cu-Mg化合物层的宽度增加.形成的Mg-Cu化合物使AZ31和铜层之间的区域出现显微硬度的峰值.

  8. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    Science.gov (United States)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  9. Microstructure and Interfacial Reactions During Active Metal Brazing of Stainless Steel to Titanium

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Tewari, R.; Kumar, Anish; Jayakumar, T.; Dey, G. K.

    2013-05-01

    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 intermetallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti-braze alloy interface, through the (Ag,Cu)Ti2 phase layer.

  10. Interface microstructure of the brazed zirconia and Ti-6Al-4V using Ti-based amorphous filler

    Directory of Open Access Journals (Sweden)

    Liu Y.

    2013-01-01

    Full Text Available The polycrystalline ZrO2−3mol.%Y2O3 was brazed to Ti-6Al-4V using a Ti47Zr28Cu14Ni11 (at.% amorphous ribbon at 1123 K in a high vacuum. The microstructure of the interface and evolution mechanism of the joint was investigated. The experimental result showed that the typical interfacial microstructures of the joints consisted of ZrO2/TiO+TiO2+Cu2Ti4O+Ni2Ti4O/α-Ti+(Ti,Zr2(Cu,Ni eutectic/(Ti,Zr2(Cu,Ni/acicular Widmanstäten structure/Ti-6Al-4V alloy. The microstructure of the brazed joint was related to the solution and chemical reaction among atoms during brazing. According to the mechanical property tests the joint brazed at 1123 K for 30 min obtained the maximum shear strength 63 MPa. Both the white block intermetallic compound (Ti,Zr2(Cu,Ni and the coarse α-Ti+(Ti,Zr2(Cu,Ni eutectic structure should be avoided forming in the brazed joint.

  11. Brazing process provides high-strength bond between aluminum and stainless steel

    Science.gov (United States)

    Huschke, E. G., Jr.; Nord, D. B.

    1966-01-01

    Brazing process uses vapor-deposited titanium and an aluminum-zirconium-silicon alloy to prevent formation of brittle intermetallic compounds in stainless steel and aluminum bonding. Joints formed by this process maintain their high strength, corrosion resistance, and hermetic sealing properties.

  12. Low activation brazing materials and techniques for SiC f/SiC composites

    Science.gov (United States)

    Riccardi, B.; Nannetti, C. A.; Petrisor, T.; Sacchetti, M.

    2002-12-01

    A low activation brazing technique for silicon carbide fiber reinforced silicon carbide matrix composites (SiC f/SiC) is presented; this technique is based on the use of the 78Si-22Ti (wt%) eutectic alloy. The joints obtained take advantage of a melting point able to avoid composite fibre-interface degradation. All the joints showed absence of discontinuities and defects at the interface and a fine eutectic structure. Moreover, the joint layer appeared well adherent both to the matrix and the fibre interphase and the brazing alloy infiltration looked sufficiently controlled. The joints of SiC f/SiC composites showed 71±10 MPa almost pure shear strength at RT and up to 70 MPa at 600 °C.

  13. Laser Brazing of Aluminum with a New Filler Wire AlZn13Si10Cu4

    Science.gov (United States)

    Tang, Z.; Seefeld, T.; Vollertsen, F.

    Laser brazing processes of aluminum with both single beam and double beam techniques were developed using a new AlZn13Si10Cu4 filler wire which has a lower solidification range comparing to normal AlSi12 filler wire and the base material. Brazing experiments on both bead on plate and flange joints showed that the new wire has a very good wettability on the aluminum samples. Comparing to the AlSi12 wire one needs a lower heat input (in some cases 73% less heat input) for joining the same samples with the new filler wire and reaches a high hardness value in the joint. In addition, brazing with double beam technique showed its potential to increase the joint quality.

  14. Cold metal transfer welding–brazing of pure titanium TA2 to magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Cao, R., E-mail: caorui@lut.cn; Wang, T.; Wang, C.; Feng, Z.; Lin, Q.; Chen, J.H.

    2014-08-25

    Highlights: • Mg–Ti joints can be successfully performed at suitable welding variables by CMT. • Typical brazing–welding joints can be formed for Mg–Ti joint and Ti–Mg joint. • The brazing interface is mainly composed of Ti{sub 3}Al, Mg{sub 17}Al{sub 12} and Mg{sub 0.97}Zn{sub 0.03}. • Elements Al and Zn are crucial to join successfully Mg and Ti base metals. - Abstract: Pure titanium TA2 was joined to Mg AZ31B by cold metal transfer (CMT) welding–brazing method in the form of two lap-shear joints (Mg–Ti joint and Ti–Mg joint) with Mg AZ61 wire. The microstructure of Ti/Mg CMT joints was identified and characterized by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of various welding parameters were compared and analyzed. Desired Ti/Mg CMT joints with satisfied weld appearances and mechanical properties were achieved at suitable welding variables. The Ti/Mg CMT joints had dual characteristics of a welding joint at the Mg side and a brazing joint at the Ti side. Moreover, for two joints, the brazing interfaces were composed of an intermetallic compounds (IMCs) layer including Ti{sub 3}Al, Mg{sub 17}Al{sub 12} and Mg{sub 0.97}Zn{sub 0.03} phases. Mg–Ti joint had the higher tensile load of 2.10 kN, and Ti–Mg joint had the tensile load of 1.83 kN.

  15. A Compendium of Brazed Microstructures For Fission Power Systems Applications

    Science.gov (United States)

    Locci, Ivan E.; Bowman, Cheryl L.

    2012-01-01

    NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.

  16. Nano Brazing of Pt-Ag Nanoparticles under Femtosecond Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    L Liu; H Huang; A Hu; G Zou; L Quintino; Y Zhou

    2013-01-01

    Nano brazing of Pt-Ag nanoparticles with nano Ag filler metal is reported in this letter, which presents an effective way to join nanoobjects by femtosecond laser irradiation. The nano brazed interface between Pt-Ag and Ag showed good lattice matching along (111)Ag//(111)Ag-Pt. Lattice mismatch can hardly be observed at the interface between the filler metal and Pt-Ag nanoparticle, which is important for the joint strength and normally does not occur during joining. The very low mismatch also suggested that melting and solidification occurred during nano brazing by femtosecond laser. The role of Brownian motion on the nano joining process is also discussed in this paper.

  17. Aging Thermal Treatment in the Inconel 725 Brazed Incorporating Tungsten Nanoparticles

    Directory of Open Access Journals (Sweden)

    H. M. Hdz-García

    2016-01-01

    Full Text Available Fractures in blade sections of Inconel 725 were impregnated with tungsten nanoparticles and jointed by the brazing process. In order to evaluate their effect over the microstructure, aging thermal treatments at 750°C for 2, 6, 10, and 14 h were done. BNi-9 was selected as brazing filler metal and was characterized by scanning electron microscopy and X-ray fluorescence. Before brazing, the fractures were impregnated with a mixture of tungsten NPs in ethanol. Measurements of Vickers microhardness showed an increase in the melting zone of samples with aging thermal treatment for 14 h, which is attributed to the precipitation of the γ′ phase with a typical size of ca. 100 nm. Likewise, the tungsten NPs modified the size and morphology of Cr-Ni eutectics into finer and uniformly distributed microstructures.

  18. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  19. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel

    Institute of Scientific and Technical Information of China (English)

    San-bao LIN; Jian-ling SONG; Guang-chao MA; Chun-li YANG

    2009-01-01

    Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel was investigated, and the wettability and spreadability of aluminum filler metal on the steel surface were analyzed. The resultant joint was characterized in order to determine the brittle intermetallic compound (IMC) in the interfacial layer, and the mechan-ical property of the joint was tested. The results show that the zinc coated layer can improve the wettability and spreadability of liquid aluminum filler metal on the surface of the steel, and the wetting angle can reach less than 20°. The lap joint has a dual characteristic and can be divided into a welding part on the aluminum side and a brazing part on the steel side. The interfacial IMC layer in the steel side is about 9.0 μm in thickness, which transfers from (α-Al + FeAl3) in the welded seam side to (Fe2Al5+ FeAl2) and (FeAl2+ FeAl) in the steel side. The crystal grain of the welded seam is obviously larger in size in the aluminum side. The local incomplete brazing is found at the root of the lap joint, which weakens the property of the joint. The fracture of the joint occurs at the root and the average tensile strength reaches 90 MPa.

  20. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  1. Microstructural and Mechanical Evaluation of a Cu-Based Active Braze Alloy to Join Silicon Nitride Ceramics

    Science.gov (United States)

    Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.

    2010-01-01

    Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.

  2. Theory and modeling of active brazing.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  3. Joining of metal bars by a new process of transformation-diffusion brazing

    Institute of Scientific and Technical Information of China (English)

    Zhang Guifeng; Zhang Jianxun; Pei Yi

    2006-01-01

    Within the bonded interface of metal bars joint produced by conventional solid state bonding process (such as flash welding, resistance butt welding, friction welding and so on ), the inclusions are often present, which degrade the ductility of joint. A new process of transformation-diffusion brazing is proposed, in which an amorphous foil containing melting point depressant is preplaced between the interfaces to be joined, and the assembly is repeatedly heated/cooled without holding time at peak temperature. A low carbon steel bars, BNi-2 amorphous foil and resistance butt welding machine were used. The results show that surface contamination can be disrupted by the dissolution of base metal into molten interlayer in comparison with conventional process, and the ductility of joint can be improved by increasing the times of temperature cycles on line. In addition, transformation-diffusion brazing can be done with relatively simple and inexpensive system in comparison with transient liquid phase bonding.

  4. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  5. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  6. Microstructure and properties of tungsten/steel joint brazed with Ni-based foil-type filler%基于镍基微晶钎料的钨/钢真空焊接接头的组织及性能

    Institute of Scientific and Technical Information of China (English)

    刘文胜; 刘书华; 马运柱; 蔡青山; 刘昊阳; 余强; 伍镭

    2014-01-01

    A brazing process, using a rapidly solidified Ni-based foil-type filler, was performed to investigate the joining of tungsten and steel with/without an interlayer Ni-Cu at 1150℃for 30 min. The cross sectional microstructure, element compositions and microhardness distribution of the joint region were analyzed by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and nano-indenter, respectively. The tensile strength of the joints was measured by mechanical tests, and then the microstructure and element compositions of the fracture were analyzed. The results indicate that the tensile strength of the as-bonded W/Ni-Cu/FS joints (300 MPa) is much higher than that of the as-bonded W/FS joints. Both W/FS and W/Ni-Cu/FS joints appear a brittle fracture mode and fracture in tungsten matrix which is close to the interface. The micro-hardness analysis of joint interface reveals that solid solution strengthening effect and the generation of brittle compounds are responsible for an increasing micro-hardness in inter-diffusion layer between the filler and W.%采用镍基微晶箔带作为钎料,在1150℃、30 min的工艺条件下研究直接钎焊和添加Ni-Cu合金中间层两种工艺焊接钨和钢的特性。采用扫描电镜(SEM)、电子探针(EPMA)和纳米压痕分别对接头的显微组织、元素分布及显微硬度进行分析,测试接头的拉伸强度并分析断口形貌和物相组成。结果表明:添加Ni-Cu合金中间层的钎焊接头的拉伸强度(300 MPa)远高于直接钎焊的焊接接头的拉伸强度。两种钎焊接头的断裂均发生在残余应力集中的靠近钨/钎料界面的钨基体内,为典型的脆性断裂方式。接头界面硬度分析表明,固溶强化效应及脆性化合物的生成,使靠近钨侧的钨/钎料扩散区域的显微硬度得到显著增加。

  7. Detached Melt Nucleation during Diffusion Brazing of a Technical Ni-based Superalloy: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Laux, B.; Piegert, S.

    2015-06-01

    Advanced solidification processes like welding, soldering, and brazing are often characterized by their specific solidification conditions. But they also may include different types of melting processes which themselves are strongly influenced by the initial microstructures and compositions of the applied materials and therefore are decisive for the final quality and mechanical properties of the joint. Such melting processes are often not well- understood because - compared to other fields of solidification science - relatively little research has been done on melting by now. Also, regarding microstructure simulation, melting has been strongly neglected in the past, although this process is substantially different from solidification due to the reversed diffusivities of the involved phases. In this paper we present phase-field simulations showing melting, solidification and precipitation of intermetallic phases during diffusion brazing of directionally solidified and heat-treated high-alloyed Ni- based gas turbine blade material using different boron containing braze alloys. Contrary to the common belief, melting of the base material is not always planar and can be further accompanied by detached nucleation and growth of a second liquid phase inside the base material leading to polycrystalline morphologies of the joint after solidification. These findings are consistent with results from brazed laboratory samples, which were characterized by EDX and optical microscopy, and can be explained in terms of specific alloy thermodynamics and inter-diffusion kinetics. Consequences of the gained new understanding for brazing of high- alloyed materials are discussed.

  8. Brazing of Ti2AlNb Based Alloy with Amorphous Ti-Cu-Zr-Ni Filler

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; HUANG Yongjiang; WANG Guochao; SHEN Jun; CHEN Zhihao

    2015-01-01

    Amorphous Ti-Cu-Zr-Nifi ller foils with low melting point of 1 133 K were synthesized using a melt-spinning method in argon atmosphere. A Ti2AlNb based alloy was brazed at 1 153-1 223 K for 600-3 000 s. The effects of brazing temperature (Tb) and time (tb) on the shear strength of the joints were investigated. The results showed that the joint strength was signifi cantly affected by the reaction layer thickness. The optimum brazing parameters can be determined as follows:Tb=1 173 K, and tb=600 s. The maximum tensile strength of the joint obtained can reach 260 MPa. Furthermore, the activation energyQand the growth velocityA0 of the reaction layer in the brazed joints were calculated to be 161.742 kJ/mol and 0.213 m2/s, respectively. The growth of the reaction layer (y) could be expressed by the expression:y2 =0.213exp(−19 454/Tb)tb.

  9. Brazing of Be with CuCrZr-bronze using copper-based filler metal STEMET

    Directory of Open Access Journals (Sweden)

    B.A. Kalin

    2016-12-01

    Optimization of the composition of the Cu–Ni–Sn–P system filler metals and comparative tests of filler metals of various compositions have been carried out in this paper to reduce the brazing temperature of beryllium with CuCrZr. Alloys of the following compositions Cu–6.4Ni–9.2Sn–6.3P (STEMET 1105 and Cu–9.1Ni–3.6Sn–8.0P (STEMET 1101 were made in the form of rapidly quenched ribbons with a thickness of 50µm and a width of 50mm. They were used to perform furnace brazing by Joule heating (with a rate of 15K/min of beryllium with CuCrZr (Be/CuCrZr at temperatures of 650, 700 and 750°C for 15min. Metallographic investigations of the zone of brazing and mechanical shear tests of joints before and after the heat treatment at 350°C for 30h have been conducted. It was found that the joints of Be/CuCrZr brazed at 650°C using STEMET 1105 (τs=230MPa and at 750°C using STEMET 1101 (τs=260MPa had the best shear strength properties. However, there is a significant decrease of the microhardness of CuCrZr from 1570 to 1140MPa at 750°C, which indicates a significant loss of its strength. The results obtained suggest that the brazing of beryllium with CuCrZr using STEMET 1105 at 650–700°C will not adversely affect the CuCrZr.

  10. Behavior and influence of Pb and Bi in Ag-Cu-Zn brazing alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag-Cu-Zn filler metal have been studied. The results show that Pb has little effect on both above properties, and Bi has remarkable influence on the spreading property but little effect on the strength of brazed joint. Pb and Bi dissolve into the Ag-Cu-Zn matrix and will melt and gather at lower temperature when that alloy is being heated. Therefore a liquid forms on the surface of the Ag-Cu-Zn alloy and overlays the melting alloy, then keeps the filler metal away from the materials being joined, and so decreases the spreading property.

  11. Combined scale effects for effective brazing at low temperatures

    Directory of Open Access Journals (Sweden)

    Bartout D.

    2012-12-01

    Full Text Available In modern joining technology, the focus is on effective brazing and soldering of temperature sensitive materials. Here, as well as in diffusion welding processes the needed thermal energy is externally realized in the joint zone. This produces a heating of the whole joining parts, since in laminar joining the thermal energy is transported in interior by thermal conduction. An excess of critical temperatures or tolerable impact periods in wide parts of materials and respectively components is often not avoidable. This leads to thermal damages. In this point of view nanotechnology shows promising possibilities as scale effects and their resulting thermophysical effects such as melting temperature reduction and high diffusion rates can be used for providing a self-propagating high-temperature synthesis at room temperature. After ignition by an external energy source a self-propagating exothermic reaction is started. By producing a multilayer system with alternately arranged nanoscaled layers of e.g. Al and Ni the resulting thin foil can be used as heat source for melting the braze or solder material within the joining zone without any external preheating. Due to the high process velocities up to 30 m/s and the local heat input significant thermal influences on the joined parts are not detectable.

  12. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  13. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  14. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  15. 珩磨工具用中温钎焊材料的研制%Development of moderate temperature brazing filler metals for honing tools

    Institute of Scientific and Technical Information of China (English)

    杨继东; 裴夤崟; 龙伟民; 钟素娟

    2011-01-01

    For the present brazing problems on the honing segments, joining experiment on the honing segments was conducted by moderate temperature brazing. The compositions of moderate temperature brazing filler metals were adjusted, melting temperature of filler metals, wettability of filler metals on the honing segments and the tensile strength of brazing joints were tested. The deformation amount of brazed honing segments with different filler metals was compared. The research results showed that the moderate temperature brazing technology had small deformation and high tensile strength, and it was a feasible mode for joining of honing segments.%针对目前珩磨条钎焊存在的问题,采用中温钎焊对珩磨工具进行了连接试验,对中温钎焊用钎料的化学成分进行了调整,测试了钎料的熔化温度、钎料对珩磨条的润湿性以及钎焊接头的抗拉强度,并比较了不同钎料钎焊后珩磨工具的变形量.研究表明:中温钎焊工艺变形小,强度较高,是珩磨条连接的可行方式.

  16. Issues of low activation brazing of SiC f/SiC composites by using alloys without free silicon

    Science.gov (United States)

    Riccardi, B.; Nannetti, C. A.; Petrisor, T.; Woltersdorf, J.; Pippel, E.; Libera, S.; Pilloni, L.

    2004-08-01

    The paper presents a novel low activation brazing technique for SiC f/SiC composites. The brazing alloy does not contain free silicon and is based on the use of a Si-44Cr at.% eutectic and the intermetallic CrSi 2 (melting temperatures 1390 and 1490 °C, respectively). These are advantageous because the melting point is low enough to avoid degradation of the advanced fibres and of the interphases in the composite, and the Si-Cr intermetallics are chemically compatible with silicon carbide. Both the eutectic and the intermetallic were prepared before brazing operations by melting a Si-Cr mixture. The joining was performed under vacuum (about 10 -4 Pa). Systematic investigations of the microstructure and of the nanochemistry (TEM, EELS, ELNES) of the Si-Cr joints reveal that direct chemical Si-Si, Cr-C and Si-Cr bonds across the interface are responsible for the adhesion: the interfaces were proved to be nearly atomically sharp and adhesive. Altogether, this brazing procedure enables joints with sufficient strength and with a microstructure comparable with that of the starting powders to be obtained.

  17. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  18. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  19. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    Science.gov (United States)

    Eluri, Ravindranadh T.

    Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (˜5 nm and ˜50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 microm. Further suppression of the brazing temperature to 500ºC was achieved by

  20. Joining of Si3N4 ceramic using PdCo(NiSiB)-V system brazing filler alloy and interfacial reactions

    Institute of Scientific and Technical Information of China (English)

    Huaping Xiong; Bo Chen; Yu Pan; Wanlin Guo; Wei Mao; Qingsong Ma

    2014-01-01

    The wettability of V-active PdCo-based alloys on Si3N4 ceramic was studied with the sessile drop method. And the alloy of Pd50.0-Co33.7-Ni4.0-Si2.0-B0.7-V9.6 (wt%), was developed for Si3N4 ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0-Co33.7-Ni4.0-Si2.0-B0.7-V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4 joints brazed at 1453 K for 10 min was 205.6 MPa, and the newly developed braze gives joint strengths of 210.9 MPa, 206.6 MPa and 80.2 MPa at high temperatures of 973 K, 1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4 joint brazed at 1453 K for 10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result, the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases, in which the concentration of element Pd was high up to 18.0-19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.

  1. Joining of Si3N4 ceramic using PdCo(NiSiB–V system brazing filler alloy and interfacial reactions

    Directory of Open Access Journals (Sweden)

    Huaping Xiong

    2014-02-01

    Full Text Available The wettability of V-active PdCo-based alloys on Si3N4 ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6 (wt%, was developed for Si3N4 ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4 joints brazed at 1453 K for 10 min was 205.6 MPa, and the newly developed braze gives joint strengths of 210.9 MPa, 206.6 MPa and 80.2 MPa at high temperatures of 973 K, 1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4 joint brazed at 1453 K for 10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result, the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases, in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.

  2. Spot brazing of aluminum to copper with a cover plate

    Science.gov (United States)

    Hayashi, Junya; Miyazawa, Yasuyuki

    2014-08-01

    It is difficult to join dissimilar metals when an intermetallic compound is formed at the joining interface. Spot brazing can be accomplished in a short time by resistance heating. Therefore, it is said that the formation of a intermetallic compound can be prevented. In this study, aluminum and copper were joined by spot brazing with a cover plate. The cover plate was used to supply heat to base metals and prevent heat dissipation from the base metals. The ability to braze Al and Cu was investigated by observation and analysis. Pure aluminum (A1050) plate and oxygen-free copper (C1020) plate were used as base metals. Cu-Ni-Sn-P brazing filler was used as the brazing filler metal. SPCC was employed as cover plate. Brazing was done with a micro spot welder under an argon gas atmosphere. Brazing ability was estimated by tensile shear strength and cross sectional microstructure observation. Al and Cu can be joined by spot brazing with Cu-Ni-Sn-P brazing filler and cover plate.

  3. Study on Brazing Ability of Ti2 AlNb Base Alloy%Ti2AlNb基合金钎焊性研究

    Institute of Scientific and Technical Information of China (English)

    吴松; 侯金保; 张蕾

    2011-01-01

    研究了不同钎焊工艺对Ti2AlNb合金接头组织的影响.选取Ti-Cu-Zr-Ni粉末钎料,在不同的钎焊温度和保温时间钎焊,采用光学金相显微镜、扫描电镜、能谱对接头的组织研究.结果表明:接头组织与母材组织相差较大,中间有双相脆性中间层组织产生.延长钎焊时间,接头中间层化合物分解,接头组织为平衡相(B2+α2).焊缝间隙对接头焊合率影响明显,室温接头抗拉强度达到母材强度70%.%The effect of different brazing processing to the Ti2AlNb alloy was studied. Using Ti-Cu-Zr-Ni solders, the microstructure and phase composition of the joint were observed and analyzed by means of optical microscope ( OM) , scanning electron microscope ( SEM) and energy spectrometer( EDS). The results indicated that microstructures in the base metal were different with joints. In the joint there were two brittle phases. Increasing brazing time, the compound of joint disassemble while equilibrium phase( B2 + α2)were in the brazing seam. Bonding rate, of joint was influenced by brazing seam gap. The Tensile strength of brazing joint at room-temperature reached 70% of those of the base metal.

  4. Mechanical Properties of Aluminum-Copper Joint by Laser Penetration Brazing%铝-铜异种金属激光深熔钎焊接头力学性能

    Institute of Scientific and Technical Information of China (English)

    董鹏; 陈凯华; 肖荣诗

    2011-01-01

    采用Yb:YAG盘式激光器进行3 mm厚1060铝合金-T2紫铜异种金属激光深熔钎焊试验,并用显微硬度测试以及静载拉伸试验对接头的力学性能进行评价.由于焊缝中晶粒细小且含有硬度较高的AlCu以及A1Cu金属间化合物,其显微硬度要高于铝、铜母材.接头的抗拉强度可以达到铝母材的94%以上,拉伸试验的结果具有一定随机性,其中试样最大的抗拉强度为100.6 MPa,断裂发生在铝合金母材;断裂在焊缝界面处的试样的抗拉强度为94.5 MPa.由于在过渡层内存在硬度和脆性较大的金属间化合物过渡层,与焊缝其他部分存在硬度梯度,在拉伸过程中过渡层处容易出现裂纹,形成断裂.%1060 aluminum alloy and T2 copper with the thickness of 3 mm are joined by means of laser penetrationbrazing (LPB) with a Yb: YAG disc laser. The mechanical properties of the joint are measured by microhardness and tensile tests. The microhardness of the weld is higher than that of aluminum and copper base metals, respectively,due to the formation of fine grains and hard Al2Cu and Al2Cu3 intermetallic compounds. The results of the tensile tests for welded samples are variational under the same parameters. The maximum failure strength for tensile test is 100.6 MPa. The failure occurres at aluminum side. The minimum failure strength is 94. 5 MPa. The failure happens close to the interface due to the hardness gradient and brittle intermetallic compounds.

  5. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  6. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  7. Silver-palladium braze alloy recovered from masking materials

    Science.gov (United States)

    Cierniak, R.; Colman, G.; De Carlo, F.

    1966-01-01

    Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.

  8. Brazing of stainless steel; Stainless ko no rozuke

    Energy Technology Data Exchange (ETDEWEB)

    Matsu, T.

    1996-04-01

    This paper explains brazing of stainless steel as to its processing materials, brazing materials, brazing methods, and brazing works. When performing brazing at higher than 800{degree}C on a martensite-based stainless steel represented by the 13Cr steel, attention is required on cracking caused by quenching. When a ferrite-based stainless steel represented by the 18Cr steel is heated above 900{degree}C, crystalline particles grow coarser, causing their tenacity and corrosion resistance to decline. High-temperature long-time heating in brazing in a furnace demands cautions. Austenite-based stainless steel represented by the 18Cr-8Ni steel has the best brazing performance. However, since the steel has large thermal expansion coefficient and low thermal conductivity, attention is required on strain and deformation due to heating, and on localized overheating. Deposition hardened stainless steel made of the Cr-Ni alloy steel added with aluminum and titanium has poor wettability in a brazing work, hence pretreatment is required for the purpose of activation. 9 figs., 7 tabs.

  9. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  10. Mechanical characteristics of laser braze-welded aluminium-copper connections

    Science.gov (United States)

    Solchenbach, Tobias; Plapper, Peter

    2013-12-01

    The mechanical characteristics of dissimilar Al-Cu connections, joined by a novel, robust laser braze-welding process are reported. A fiber laser is used in combination with a 2D galvoscanner to provide spatial power modulation by superposed circular beam oscillation. With the help of statistical experimental design, a broad range of processing parameters has been investigated in order to understand their effects on the joint characteristics. A maximum shear strength of 121 MPa has been detected within the scope of the experiments.

  11. Wetting Behavior in Ultrasonic Vibration-Assisted Brazing of Aluminum to Graphite Using Sn-Ag-Ti Active Solder

    Science.gov (United States)

    Yu, Wei-Yuan; Liu, Sen-Hui; Liu, Xin-Ya; Shao, Jia-Lin; Liu, Min-Pen

    2015-03-01

    In this study, Sn-Ag-Ti ternary alloy has been used as the active solder to braze pure aluminum and graphite in atmospheric conditions using ultrasonic vibration as an aid. The authors studied the formation, composition and decomposition temperature of the surface oxides of the active solder under atmospheric conditions. In addition, the wettability of Sn-5Ag-8Ti active solder on the surface of pure aluminum and graphite has also been studied. The results showed that the major components presented in the surface oxides formed on the Sn-5Ag-8Ti active solder under ambient conditions are TiO, TiO2, Ti2O3, Ti3O5 and SnO2. Apart from AgO and Ag2O2, which can be decomposed at the brazing temperature (773 K), other oxides will not be decomposed. The oxide layer comprises composite oxides and it forms a compact layer with a certain thickness to enclose the melted solder, which will prevent the liquid solder from wetting the base metals at the brazing temperature. After ultrasonic vibration, the oxide layer was destroyed and the liquid solder was able to wet and spread out around the base materials. Furthermore, better wettability of the active solder was observed on the surface of graphite and pure aluminum at the brazing temperature of 773-823 K using ultrasonic waves. The ultrasonic wave acts as the dominant driving factor which promotes the wetting and spreading of the liquid solder on the surface of graphite and aluminum to achieve a stable and reliable brazed joint.

  12. 46 CFR 56.75-10 - Joint clearance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Joint clearance. 56.75-10 Section 56.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Brazing § 56.75-10 Joint clearance. (a) The clearance between surfaces to be joined shall be...

  13. Vacuum brazing of alumina ceramic to titanium for biomedical implants using pure gold as the filler metal

    Science.gov (United States)

    Siddiqui, Mohammad S.

    One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 x 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the

  14. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  15. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  16. Brazing characteristics of a Zr–Ti–Cu–Fe eutectic alloy filler metal for Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung G.; Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Park, S.S. [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Lee, M.K., E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    A Zr–Ti–Cu–Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr{sub 58}Ti{sub 16}Cu{sub 10}Fe{sub 16} (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr–Cu–Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr{sub 2}Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  17. INFLUENCE OF REFRACTORY FILLERS ON THE PROCESS OF COMPOSITE BRAZING OF DIAMOND-ABRASIVE TOOLS

    Directory of Open Access Journals (Sweden)

    Kozachenko A. D.

    2015-04-01

    Full Text Available Brazes with increased viscosity are needed for brazing of abrasive diamond tools with working surface of complex contoured shape. It’s known that high viscosity is a property of composite brazes consisting of fusible matrix and refractory filler that is not melting during brazing. Goal of the work is to research the influence of refractory fillers on the process of composite brazing of diamond-abrasive tools and on that basis discover the optimal composition of braze. Composite brazes Sn-Cu-Co were researched in the work. It is determined that at least 26-28% (by mass of cobalt powder should be included in brazes for giving the braze Sn-Cu-Co necessary viscosity and for creation of uniform diamond-comprising layers with thickness up to 2.5 mm on the vertical layers and sharp edges of tools. It is determined that solid-state sintering of powders on the initial stage of heating the composite braze leads to emerging of internal stresses and forming cracks. Inert additions that prevent solid-state sintering should be include in braze to prevent cracking. Optimal inert addition for brazes Sn-Cu-Co is the tungsten powder. Minimum content of tungsten needed to prevent cracking is 6% (by mass. Optimal content of components in composition braze for brazing shaped diamond-abrasive tools is (% by mass: 30 Co, 20 Sn, 43 Cu, 7 W

  18. COMPARATION BETWEEN NONDESTRUCTIVE TESTING METHODS FOR THE ALUMINIUM BRAZED PIECES

    Directory of Open Access Journals (Sweden)

    Dan NIŢOI

    2014-05-01

    Full Text Available Presented paper refers to different control methods used in aluminium brazed joining because of possible defects. Low joining complexity permits exact damages position in relation with materials geometry.

  19. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  20. Control of vacuum induction brazing system for sealing of instrumentation feed-through

    Energy Technology Data Exchange (ETDEWEB)

    Sung Ho Ahn; Jintae Hong; Chang Young Joung; Ka Hae Kim; Sung Ho Heo [Korea Atomic Energy Research Institute (Korea, Republic of)

    2015-07-01

    The integrity of instrumentation cables is an important performance parameter in addition to the sealing performance in the brazing process. An accurate brazing control was developed for the brazing of the instrumentation feed-through in the vacuum induction brazing system in this paper. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. Consequently, the sealing performances of the instrumentation feed-through and the integrities of the instrumentation cables were satisfied after brazing. (authors)

  1. Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide

    Science.gov (United States)

    Sechi, Yoshihisa; Nagatsuka, Kimiaki; Nakata, Kazuhiro

    2014-08-01

    Laser brazing with Ti as an active element in silver-copper alloy braze metal has been carried out for binder-less cubic boron nitride and tungsten carbide, using silver-copper- titanium braze alloys with titanium content that varied between 0.28 mass% and 1.68 mass%. Observations of the interface using electron probe microanalysis and scanning acoustic microscopy show that efficient interface adhesion between binder-less cubic boron nitride and the silver-copper-titanium braze alloy was achieved for the braze with a titanium content of 0. 28 mass%.

  2. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  3. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; C. J. Woolstenhulme

    2009-06-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL’s Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed.

  4. Nd:YAG Laser Melting-Brazing Welding Between 5052 Aluminum and Galvanized Steel%5052铝/镀锌钢Nd:YAG激光熔-钎焊

    Institute of Scientific and Technical Information of China (English)

    石岩; 邝玉林; 刘佳; 张宏

    2012-01-01

    利用Nd:YAG激光器实现了5052铝/镀锌钢异种金属板材之间的熔-钎焊连接,并对焊缝成形、接头性能及微观形貌做了分析.分析结果表明,合适的热输入能够有效实现5052铝/镀锌钢异种金属之间的熔-钎焊连接,焊接接头中铝合金母材发生熔化与镀锌钢形成钎焊连接,镀锌钢母材并未发生熔化;焊接接头的抗拉强度为128 N/mm;微观形貌分析表明,在焊缝钎接界面处生成了一层薄金属间化合物层,金属间化合物层的厚度为3~4 μm.%The melting-brazing connection of the dissimilar metal 5052 aluminum alloy/galvanized steel was achieved by using the Nd:YAG laser, and the weld formation, joint performance and microstructure of joint was analyzed. The analysis result indicates that, it can achieve successful melting-brazing connection of 5052 aluminum alloy/galvanized steel, the aluminum in the joint melted and formed a brazed joint with galvanized steel, the galvanized steel hadn't melt; tensile strength of welded joint can be high as 128 N/mm; the microstructure showed that, a thin intermetallic compound layer is generated on the welded brazing interface, its thickness is 3~4 μm.

  5. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  6. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  7. Diffusion Brazing of Al6061/15 Vol. Pct Al2O3p Using a Cu-Sn Interlayer

    Science.gov (United States)

    Cooke, Kavian O.; Khan, Tahir I.; Oliver, Gossett D.

    2013-06-01

    Diffusion brazing of Al-6061 alloy containing 15 vol. pct Al2O3 particles was attempted using Cu-Sn interlayer. Joint formation was attributed to the solid-state interdiffusion of Cu and Sn followed by eutectic formation and subsequent isothermal solidification. Examination of the joint region using scanning electron microprobe analyzer (EPMA), wavelength dispersive spectroscopy (WDS) and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al7Cu3Mg3, Mg2Cu6Al5, Cu3Sn, and Mg2Sn. The results indicated an increase in joint strength with increasing bonding time giving the highest joint shear strength of 94 MPa at a bonding duration of 3 hours.

  8. Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler.

    Science.gov (United States)

    Ji, Hongjun; Chen, Hao; Li, Mingyu

    2017-03-01

    The ultrasonic-assisted brazing of α-alumina to copper was achieved in air without flux using Zn-14wt%Al hypereutectic filler at 753K within tens of seconds. The effects of ultrasonic time on the microstructures and mechanical properties of joints were investigated. In the joint interlayer, large amounts of intermetallic phases consisted of binary CuZn5 embedded by many ternary Al4.2Cu3.2Zn0.7 particles were formed. At the ceramic interface, newly formed crystalline Al2O3 aggregated. At the Cu interface, acoustic corrosion on the copper resulted in depriving the surface oxides and forming many pits on its surface, which provided saturated Cu in the melted filler alloys during the brazing. The ultrasonic vibrations had distinct effects on the metallurgical reactions of the joints, resulting in intermetallic-phase-filled composite joints with shear strength of 66MPa. The overgrowth of intermetallic compounds, the newly formed crystalline alumina, and the acoustic pits was probably ascribed to the ultrasonic effects.

  9. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  10. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    Science.gov (United States)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  11. Microstructural Changes in Brazing Sheet due to Solid-Liquid Interaction

    NARCIS (Netherlands)

    Wittebrood, A.J.

    2009-01-01

    Aluminium brazing sheet is the material of choice to produce automotive heat exchangers. Although in Dutch the official translation of aluminium brazing sheet is “aluminium hardsoldeerplaat” the English name is used in the industry. Aluminium brazing sheet is basically a sandwich material and consis

  12. Effect of Filler Composition on the Brazing of Alumina to Copper Using Ultrasonic Wave

    Institute of Scientific and Technical Information of China (English)

    Khalid M. HAFEZ; Masaaki NAKA

    2003-01-01

    An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn A

  13. Cu-P-Sn-Ni钎料真空钎焊MGH956合金的研究%Research of brazing MGH956 alloy with Cu-Ni-Sn-Ni filler metal in vacuum

    Institute of Scientific and Technical Information of China (English)

    刁秀晖; 李小强; 张民爱; 屈盛官; 董重里

    2016-01-01

    为扩展Cu-P基钎料在连接MGH956合金中的应用,采用新型Cu-P-Sn-Ni钎料对MGH956合金在800~890℃进行了真空钎焊,研究了不同钎焊温度和保温时间对焊缝组织及力学性能的影响.结果表明:在所研究的钎焊温度范围内保温5 min均可获得成形效果良好的钎焊接头,其主要由钎缝中心区和界面反应层组成,其中,钎缝中心区由α( Cu)固溶体基体和化合物Cu3 P+( Fe,Ni)3 P+FeCr组成,反应层由α( Fe)固溶体、Fe3 P和Cu3 P组成;随着钎焊温度的升高,反应层厚度逐渐增加,钎缝中心区中的化合物Cu3 P+( Fe,Ni)3 P+FeCr的形态也随之发生明显改变;各钎焊温度下获得的钎焊接头经室温拉伸,断裂均发生在钎缝中心区,断口形貌呈现韧性和脆性的混合断裂特征.830℃钎焊5 min的接头抗拉强度最大,为510.3 MPa,达到了母材抗拉强度的70.9%.%To expand the application of Cu-P based filler metal for joining MGH956 superalloy, a noval Cu-P-Sn-Ni based filler metal was developed and it was used to vacuum braze MGH956 superalloy in temperature range of 800-890℃. The effect of brazing temperature and holding time on the microstructures and mechanical properties of the joints were investigated in detail. The results show that all the brazed joints have good appearance in the brazing temperature range for 5 min. The brazed joint mainly consists of a central brazed layer and two interfacial reaction layers close to MGH956 superalloy. The central brazed layer consists of the matrix of α (Cu) solid solution and the compounds of Cu3P, (Fe,Ni)3P and FeCr. The interfacial reaction layer was composed of α (Fe) solid solution, Fe3P and Cu3P. With the increasing of brazing temperature, the thickness of reaction layer increases, and the shape of the compounds in the central brazed layer also changes markedly. The room temperature tensile fracture of all the

  14. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    Science.gov (United States)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  15. Solid-Liquid State Bonding of Si3N4 Ceramics with Ceramic-Modified Brazing Alloy

    Institute of Scientific and Technical Information of China (English)

    杨俊; 吴爱萍; 邹贵生; 张德库; 刘根茂

    2004-01-01

    Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are generally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and compact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reaction between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume fraction in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5%TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes fractions above 20%, the joint strengths decrease.

  16. Numerical simulation of filler metal droplets spreading in laser brazing

    Science.gov (United States)

    Chen, Yanbin; Feng, Xiaosong; Li, Liqun

    2007-11-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry, and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot. The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  17. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  18. Numerical simulation of filler metal droplets spreading in laser brazing

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Xiaosong Feng; Liqun Li

    2007-01-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry,and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot.The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  19. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  20. The effect of different crystal conditions of filler metal on vacuum brazing of TiAl alloy and 42CrMo

    Institute of Scientific and Technical Information of China (English)

    Zhu Ying; Zhang Mo; Wang Guojian; Li Wenyi; Kang Hui; Qu Ping

    2007-01-01

    Ti-based filler metals made by transient solidification and normal crystallization were selected for the vacuum brazing of the TiAl alloy and 42CrMo under different processing parameters. The results show that the tensile strength of the joint of transient solidified filler metal is higher than that of normal crystallized filler metal under the same processing parameters. By the analysis of scanning electron microscope(SEM) and X-ray diffracting (XRD) , it is found that the higher strength maybe caused by the generating of TiAl , TiNi and TiCu at the interface of joint made by transient solidified filler metal.

  1. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by th

  2. Effects of Al2O3-Particulate-Contained Composite Filler Materials on the Shear Strength of Alumina Joints

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    All2O3/Al2O3 joints were brazed with a new kind of filler materials, which were formed by adding Al2O3 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(Al2O3p 0 vol. pct) to 135.32 MPa(Al2O3p 15 vol. pct).

  3. Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads

    Science.gov (United States)

    Chen, Lei; Lian, Youyun; Liu, Xiang

    2014-03-01

    In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.

  4. Brazing Microstructures and Properties of 45 Steel and WC-Co Cemented Carbide%45钢与钨钴硬质合金的钎焊组织与性能

    Institute of Scientific and Technical Information of China (English)

    李玉龙; 禹业晓; 谢凤春

    2012-01-01

    In order to join the grinding bead with high-quality and high-efficiency, induction brazing of cemented carbide and the carbon steel was identified. Microstructure and Vickers hardness of the brazed joint was analyzed. Results show: (I) a good brazed joint of the cemented carbide and carbon steel can be acquired with the Cu-Zn filler metal; (ii) a -Cu and Fe-Cu-Zn ternary reaction layer were formed across the joint zone, (iii) microhardness of the cemented carbide was increased significantly due to the quenching effect of the induction heating process. After brazing, the brazed grinding head was electroplated with chromium alloy, the corrosion resistance ability was increased and the appearance was improved.%为实现中碳钢和硬质合金的高效优质钎焊,以Cu-Zn钎料对硬质合金和中碳钢进行了感应钎焊.结果表明,黄铜钎料可以使硬质合金和中碳钢形成良好的钎焊接头;分析了钎焊接头界面组织,接头区由α铜、Fe-Cu-Zn三元反应层构成;维氏硬度测试结果表明,因感应加热淬火效应,焊接后硬质合金显微硬度有显著增加;对感应钎焊的打磨头进行了电镀Cr处理,铬镀层提高了打磨头的耐蚀性和美观程度.

  5. Elemental composition of brazing alloys in metallic orthodontic brackets.

    Science.gov (United States)

    Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita

    2004-06-01

    The aim of this study was to assess the elemental composition of the brazing alloy of representative orthodontic brackets. The brackets examined were Gemini (3M, Unitec, Monrovia, Calif), MicroLoc (GAC, Bohemia, NY), OptiMESHxrt (Ormco, Glendora, Calif), and Ultratrim (Dentarum, Ispringen, Germany). Four metallic brackets for each brand were embedded in epoxy resin and after metallographic grinding and polishing were cleaned in a water ultrasonic bath. Scanning electron microscopy and energy-dispersive x-ray microanalysis (EDS) were used to assess the quantitative composition of the brazing alloy. Four EDS spectra were collected for each brazing alloy, and the mean value and standard deviation for the concentration of each element were calculated. The elemental composition of the brazing alloys was determined as follows (percent weight): Gemini: Ni = 83.98 +/- 1.02, Si = 6.46 +/- 0.37, Fe = 5.90 +/- 0.93, Cr = 3.52 +/- 0.34; MicroLoc: Ag = 42.82 +/- 0.18, Au = 32.14 +/- 0.65, Cu = 24.53 +/- 0.26, Mg = 1.12 +/- 0.33; OptiMESHxrt: Au = 67.79 +/- 0.97, Fe = 15.69 +/- 0.29, Ni = 13.01 +/- 0.93, Cr = 4.01 +/- 0.35; Ultratrim: Ag = 87.97 +/- 0.33, Cu = 10.51 +/- 0.45, Mg = 1.29 +/- 0.63, Zn = 1.13 +/- 0.24. The findings of this study showed that different brazing materials were used for the different brands, and thus different performances are expected during intraoral exposure; potential effects on the biological properties also are discussed.

  6. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  7. Effect of Heat Treatment on High Temperature Stress Rupture Strength of Brazing Seam for Nickel-base Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to enhance the high-temperature stress rupture strength of brazing seam by heat treatment, it was diffusion treated, then solution heat treated, and finally aging treated. The microstructure of brazing seam especially morphology of phase and boride was observed and the strength of brazing seam was measured in this process. The results show that heat treatment can enhance high-temperature stress rupture strength by improving the microstructure of brazing seam. The strength of brazing seam after solution heat treatment decreases in comparison with that only after diffusion treatment while aging treatment after solution heat treatment increases the strength of brazing seam.

  8. 异种合金激光熔钎焊研究进展%Progress in Laser Fusion Welding-Brazing of Dissimilar Alloys

    Institute of Scientific and Technical Information of China (English)

    肖荣诗; 董鹏; 赵旭东

    2011-01-01

    激光熔钎焊是利用两种合金熔点的差异,通过激光加热使低熔点材料(母材和填充材料)熔化,在接头界面与固态高熔点母材相互作用达到冶金结合的异种合金连接方法.按激光能量吸收机制对激光熔钎焊进行了分类,并结合所做工作,阐述了激光熔钎焊方法的发展及研究进展.%Laser fusion welding-brazing processes are methods to metallurgically join dissimilar alloys with different melting points by laser heating to melt materials (substrate and filler material) with lower melting point, and by the interaction between the weld pool and the solid substrate with higher melt point at the joint interface. Laser fusion welding-brazing processes of dissimilar alloys are classified according to the laser energy absorption mechanisms. The development and state of the art of laser fusion welding-brazing processes are reviewed.

  9. Analysis of Laser-Brazed Diamond Particle Microstructures

    Directory of Open Access Journals (Sweden)

    Zhibo YANG

    2015-11-01

    Full Text Available Brazing diamond particles to a steel substrate using Ni-based filler alloy was carried out via laser in an argon atmosphere. The brazed diamond particles were detected by scanning electron microscope (SEM, X-ray diffraction (XRD, and energy dispersive X-ray spectroscopy (EDS. The formation mechanism of carbide layers was discussed. All the results indicated that a high-strength bond between the diamond particles and the steel substrate was successfully realized. The chromium in the Ni-based alloy segregated preferentially to the surfaces of the diamonds to form a chromium-rich reaction product, and the bond between the alloy and the steel substrate was established through a cross-diffusion of iron and Ni-based alloy.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9626

  10. An unconventional set-up for fluxless brazing of aluminium

    CERN Document Server

    Loos, Robert

    1999-01-01

    In order to successfully braze aluminium alloy assemblies without the use of oxide-removing fluxes, an evironment with very low contaminant level is mandatory. This is mostly achieved by using a vacuum furnace. Brazing under inert gas of sufficient purity is also possible. The method reported upon here makes use of a stainless steel bag which can enter a traditional air furnace. The bag is evacuated, giving a well distributed mechanical pressure on the parts to join. The intrinsic handicap of poor vacuum is compensated by regular inert gas flushing, even at high temperatures. The set-up works rather well, and the idea is believed to yield a valuable strategic and economic option, for the realization of special equipment as well as for prototyping work. We intend to use the principle for the CMS Preshower cooling screens.

  11. Dissolution behavior of Cu in Cu-Ag and Cu-P brazing alloys using weld brazing%溶解钎焊时Cu在Cu-Ag及Cu-P合金钎料中的溶解行为

    Institute of Scientific and Technical Information of China (English)

    李一楠; 王长文; 彭子龙; 闫久春; 刘雪松

    2011-01-01

    研究溶解钎焊条件下母材Cu在Cu-Ag及Cu-P合金钎料中的溶解行为.测量了在800~920℃的温度范围内铜箔在Cu-P和Cu-Ag合金中的溶解厚度.推导并计算出Cu在这两种合金钎料中的溶解速度常数存在如下关系:kCu-p(T)=10kCu-A(T).结果表明,采用溶解钎焊工艺时在相同条件下液态Cu-P合金对母材Cu的溶解量大于Cu-Ag合金的.由于溶解钎焊工艺在一个热循环内具有反应时间短和温度变化快的特点,因此Cu在液态钎料中快的溶解反应速度是实现溶解钎焊的根本原因.同时,P元素与Ag元素相比具有加速溶解母材的作用,是实现溶解钎焊必不可少的合金元素.研究了合金元素的添加对焊接接头力学性能的影响,提出了获得良好力学性能的钎料成分设计原则.%The dissolution behavior of base metal Cu in the Cu-Ag and Cu-P brazing alloys using weld brazing was researched.The thickness loss of Cu foil in contact with Cu-P and Cu-Ag alloys at 800-920 ℃ was measured.And the dissolution rate constants in both alloys were calculated as the following relation:kcu-p(T)=1 0kCu.Ag(T),which explains the special phenomenon that the dissolving amount of copper in Cu-P liquid alloys is larger than that in Cu-Ag alloys under the same condition.As weld brazing has its own characteristics of short reaction time and quick temperature variation in one thermal cycle,the quick dissolution rate of copper in filler metals is the main reason to achieve weld brazing.It can be concluded that element P is indispensable in filler metals compared with element Ag as the function of accelerating dissolution during weld brazing.Finally,the influences of the addition of alloy element on mechanical performance of the welding joints were studied and the design principles of filler metals for weld brazing were proposed to achieve good mechanical performance.

  12. Mechanistic understanding of aerosol emissions from a brazing operation.

    Science.gov (United States)

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols.

  13. 78 FR 53159 - Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's...

    Science.gov (United States)

    2013-08-28

    ... Occupational Safety and Health Administration Standard for Welding, Cutting, and Brazing; Extension of the..., Cutting, and Brazing (29 CFR Part 1910, Subpart Q). The information collected is used by employers and workers whenever welding, cutting, and brazing are performed. The purpose of the information is to...

  14. SiCp/2024Al铝基复合材料表面颗粒暴露及真空钎焊分析%Analysis on SiCp/2024 aluminum matrix composites surface reinforcements exposing and vacuum brazing

    Institute of Scientific and Technical Information of China (English)

    冯涛; 王引真; 楼松年; 张蒙蒙; 李春鹏

    2011-01-01

    Using the particle exposing and surface alloying technique of aluminum matrix composite, taking M6 and BAI88Si as the filler metal, the SiCp/2024Al aluminum matrix composite was brazed. The metallographic analysis, tensile test and Xray diffraction experiment were done. The test results indicate that the surface reinforcements are partly exposed by ( NaOH+HNO3 ) solution. The brazing joint combination state could be improved by depositing Cu element with M6 filler metal. The brazing joint and the base metal combined well with no obvious boundary. The reinforced composite solder joints with SiC particle are formed. There is no SiC particle agglomerated in the brazing joint. The tensile strength of the welded joint can reach 202 MPa. There is no Al4C3 brittleness phase formed in the brazing joint.%采用复合材料表面颗粒暴露及表面合金化工艺,利用M6和BAI88Si钎料对SiCp/2024Al铝基复合材料进行钎焊试验,并进行金相分析、拉伸试验和X射线衍射试验.结果表明:采用(NaOH+HNO3)工艺能将复合材料表面颗粒部分暴露出来;采用表面沉积Cu,使用M6钎料,能改善钎缝的结合状态;钎缝与铝基复合材料间无明显界限,结合良好,并形成了有SiC颗粒增强的复合钎缝,SiC颗粒在钎缝中无团聚现象;钎焊接头强度能达到202 MPa;在钎缝中无Al4C3脆性相生成.

  15. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    Science.gov (United States)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2017-02-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  16. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    Science.gov (United States)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2016-12-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  17. Comparative Investigation on Brazing Behavior, Compressive Strength, and Wear Properties of Multicrystalline CBN Abrasive Grains

    Directory of Open Access Journals (Sweden)

    Wen-Feng Ding

    2014-05-01

    Full Text Available In order to fabricate the abrasive wheels with good grain self-sharpening capacity, two types of multicrystalline CBN grains, that is, polycrystalline CBN (PCBN and binderless CBN (BCBN, were brazed using Cu-Sn-Ti alloy, respectively. Comparative investigation on the brazing interface, compressive strength, and wear properties of the different grains was carried out. Results obtained show that the PCBN grains have more intricate reaction, more complicated resultants, and thicker reaction layer than the BCBN counterparts under the identical brazing conditions. Though the average compressive strength of the PCBN grains is similar to that of BCBN ones, stronger self-sharpening action by virtue of the microfracture behavior takes place with BCBN grains during grinding. As a consequence, compared to the brazed PCBN wheels and the conventional monocrystalline CBN (MCBN ones, longer service life is obtained for the brazed BCBN wheels.

  18. 多元平行流式冷凝器炉中钎焊工艺研究%Study on Brazing Process for Condenser in Controlled Atmosphere Brazing Furnace

    Institute of Scientific and Technical Information of China (English)

    郭艳; 凌泽民; 李金阁

    2011-01-01

    The optimum technological parameters of brazing condenser in controlled atmosphere brazing(CAB) furnace were obtained by simulating 3-D temperature distribution of micro-joint between fin and flat tube of the condenser using ANSYS software. The process experiment, temperature measurement and properties testing were carried out. The results show that the real thermal cycle curve fits well with the initial simulation one. The morphology of the welded joint has no defects and the microstructure is dense and mainly a(Al)+Al-Si. The leaking has no slightly leaking. It can be obtained that it is a meaningful method to put FEM employ into the process design.%采用ANSYS软件,通过对温度场的模拟,确定了较佳的工艺参数,并进行了工艺实验、温度检测及相关性能测试.温度检测结果表明,模拟曲线与实测曲线吻合较好,说明模拟的温度场是正确的.通过对钎焊接头显微组织分析表明,接头无缺陷,组织致密,显微组织主要以a(Al)+Al-Si共晶组织为主;相关性能测试表明,接头无微漏,达到了使用要求.说明采用有限元软件进行工艺指导是可行的.

  19. Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys

    Science.gov (United States)

    Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang

    2017-03-01

    AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.

  20. Preparation of Ti-based amorphous brazing alloy

    Institute of Scientific and Technical Information of China (English)

    ZOU Jia-sheng; JIANG Zhi-guo; XU Zhi-rong; CHEN Guang

    2006-01-01

    A new kind of amorphous active brazing alloy foil with the composition of Ti40Zr25Ni15Cu20 was successfully synthesized using melt spinning in roll forging machine in argon atmosphere. The amorphous structure and composition were examined by X-ray diffraction, differential thermal analysis and energy dispersive X-ray detector. The results show that the Ti40Zr25Ni15Cu20 amorphous alloy foil has excellent wettability on Si3N4 ceramic and demonstrate a strong glass forming ability. The reduced glass transition temperature (Trg) and the temperature interval of supercooled liquid region before crystallization are 0.76 and 78 K, respectively.

  1. Production of ceramic-metal joints for high-vacuum applications and development of simulation program for discharge tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Chung, K. H. [Seoul National University, Seoul (Korea)

    2000-04-01

    To develop a ceramic-metal jointed tube for high-vacuum applications, metalizing process and active metal brazing were investigated. Active metal brazing was adopted as a joining process to produce a high-vacuum tube which had high joint strength and reliability. A possibility for the development of new composition of Mo-Mn paste was studied. Also, to improve the strength and reliability of active metal brazed joint, TiN coating was introduced as a diffusion barrier. It was revealed that TiN coating could improve the joint strength and reliability. 100mm {phi} tube joint was produced using incusil ABA brazing alloy. The strength and reliability of manufactured tube showed higher value than commercial one. The electric field distribution in ceramic tube under high voltage was analyzed. Two dimensional electric field distribution was investigated under the existence of charged particles. From this result, electric field distribution at the surface of ceramic tube and the location of high electric field was predicted. Finally, Arc discharge was simulated to analyze the effect of arc discharge on the discharge tube wall. The maximum temperature of arc was 12000-13000K. The wall temperature was increased 100-170K by the arc discharge. 45 refs., 57 figs., 4 tabs. (Author)

  2. Thermal fatigue characterization of CFC divertor modules using a one step brazing process

    Science.gov (United States)

    Pintsuk, G.; Casalegno, V.; Ferraris, M.; Koppitz, T.; Salvo, M.

    2012-07-01

    From the European side, three directional carbon fiber composites (CFCs) are foreseen to be used as plasma facing material for the strike point region of the initial ITER divertor installed for the non-tritium operational phase. For such divertor components two designs, the flat tile and the monoblock concept, are feasible, comprising a joint of the CFC with a Cu/Cu-alloy heat sink. This paper deals with the qualification of a reliable and cheap joining technology for such components, i.e. the simultaneous joining of the CuCrZr heat sink to a compliant Cu layer for the accommodation of thermal stresses and of the Cu layer and the CFC using a non-active Cu-Ge brazing material. For this purpose flat tile and monoblock mock-ups were manufactured, microstructurally analyzed, and subsequently exposed to cyclic high heat flux tests in the electron beam facility JUDITH. Applying hundreds of cycles at up to 20 MW/m2 the tested mock-ups underwent partial damaging, which was characterized in post-mortem microstructural investigations to analyze occurring degradation mechanisms, e.g. partial delamination at the CFC/Cu-interface.

  3. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    produce results on precipitation hardened Al alloys which provide a good indicator of long term field exposure performance in natural environments [15...I \\ I I i i I i i i I 750 ZOO AI-0.15Cu-0.9Mg-0.6Si (wt%) J50 m 100 10000 1000 10000 100000 1000000 i 10o Time, min Time...for good corrosion resistance and simultaneous weld penetration to achieve bonding vi. Designed New Braze alloy based on combined metallurgical

  4. Finite element analysis on electron beam brazing temperature and stresses of stainless steel radiator

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Liu Jun; Xie Ruijun; Liu Fangjun; Hu Gang

    2006-01-01

    Based on thermal-elasto-plastic finite element theory, a two-dimensional finite element model for calculating electron beam brazing temperature and residual stress fields of stainless steel radiator are presented.The distributions of temperature and residual stress are studied.The results showed that temperature distribution on brazing surface is rather uniform, ranging from 1026 ℃ to 1090 ℃.The residual stresses are varied from initial compressive to tensile , and the variation of residual stress is very little in total zone of brazing surface.

  5. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  6. 溅射Al对AlN的“润湿”与钎焊∗%“Wetting” and brazing of AlN by sputtered Al

    Institute of Scientific and Technical Information of China (English)

    赵博文; 尚海龙; 陈凡; 石恺成; 李荣斌; 李戈扬

    2016-01-01

    The wettabilities of molten metals on ceramics are poor normally. In order to improve the wettability, all existing ceramic brazing methods introduce a compound transition layer that is formed by the reaction of active metal and ceramic. The transition layer between brazing seam and ceramic however creates negative effect on the properties of brazing joints. This paper reports our study of the“wetting”effect of sputtered Al particles on AlN, which enables the direct brazing of AlN using deposited Al-based films as fillers, thereby eliminating the need of a transition layer. The results show that under the bombardment of energetic sputtered Al particles, Al-N chemical bonding is formed at the interface between Al film and AlN, which typically requires temperatures above 850 ◦C, much higher than the melting point of Al. The bonding remained intact even after the Al film has been melted, achieving the“wetting”effect on AlN. As a result, the direct brazing of AlN without the need of a transition layer becomes feasible. The shear strength of Al/AlN joint using this process reaches 104 MPa. The addition of 3.8 at.%Cu to film fillers increases the shear strength to 165 MPa. The fracture is generated in metallic brazing seam in both cases. When Cu content increases to 9.1 at.%, the segregation of Cu at the interface between the brazing seam and the ceramic reduces the shear strength of the joint to 95 MPa. With Al-20 at.%Ge, the brazing temperature can be lowered to 510 ◦C, although the segregation of Ge at interface results in a low shear strength of 48 MPa. Instead of the traditional use of molten metals, utilization of the metallic vapor particles to bombard AlN achieves the “wetting” and the direct brazing of ceramics, with no negative effect of transition layers. This breakthrough method provides a brand new perspective to the technique of ceramic brazing.%由于润湿性不佳,难以实现金属钎料对陶瓷的无过渡层直接钎焊,本文在研

  7. Research on Brazability of SiC Particle Reinforced Aluminium-based Composite Prepared by Vacuum Brazing Process%SiC颗粒增强铝基复合材料的真空钎焊性研究

    Institute of Scientific and Technical Information of China (English)

    徐冬霞; 陈龙; 牛济泰; 薛行雁; 孙华为

    2013-01-01

    选用Pb80Sn20钎料,对体积分数20%的SiCP/A356复合材料进行真空钎焊,分析了表面镀镍和不镀镍对其真空钎焊性的影响,并通过金相显微、能谱分析等手段研究了保温时间对其钎焊接头组织的影响.研究结果表明:体积分数20%的SiCdA356复合材料表面不镀镍进行钎焊时,焊接性很差,镀镍后焊接性显著提高;对比6、8和10 min保温时间下钎焊接头硬度,8min保温时间最好.%Using Pb80Sn20 alloy as filler metal, SKVA356 composite containing 20% (volume fraction) SiC was brazed by vacuum brazing process. The influences on the brazability of the composite were analyzed after nickel chemical-plating on the surface of composite and without nickel chemical-plating process. The effects of holding time on the microstructure of the brazed joints of the composite were studied by metallographic microscope, SEM and energy spectrum analysis. The results show that the nickel plating on the surface of the composite can improve the brazability of SiCp/A356 composite, while the inferior brazability is demonstrated if the surface of the composite without nickel plating process. The hardness of the welded joints which are brazed at holding time for 6 min, 8 min and 10 min was contrasted. The hardness of the weld seam region is highest when the holding time is 8 min.

  8. 49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.

    Science.gov (United States)

    2010-10-01

    ... integral formed heads or bases must be subjected to a normalizing operation. Normalizing and brazing... strain measurement, the initial strain must be set while the specimen is under a stress of 12,000 psi...

  9. Evaluation of the adhesion strength of diamond films brazed on K-10 type hard metal

    Directory of Open Access Journals (Sweden)

    Santos Sérgio Ivan dos

    2004-01-01

    Full Text Available The coating of cutting tools with diamond films considerably increases the tool performance due to the combination of the unique tribological properties of diamond with the bulk properties of the substrate (toughness. The tool performance, however, is strongly related to the adhesion strength between the film and the substrate. In this work our main goal was to propose and to test a procedure, based on a tensile strength test, to evaluate the adhesion strength of a diamond wafer brazed on a hard metal substrate, taking into account the effect of the brazing temperature and time. The temperature range studied was from 800 to 980 °C and the brazing time ranged from 3 to 40 min. The obtained results could be used to optimize the costs and time required to the production of high performance cutting tools with brazed diamond wafers.

  10. Researches and studies regarding brazed aluminium alloys microstructure used in aeronautic industry

    Directory of Open Access Journals (Sweden)

    A. Dimitrescu

    2015-04-01

    Full Text Available Brazing is applied to the merge of the pieces which are most required, tensile strength of the solder can reach high values. By brazing there can be assembled pieces of most metals and ferrous and nonferrous alloys, with high melting temperature. This paper presents an analysis of the microstructure of materials from a brazed merge of aluminum alloy L103 which is often used to produce pieces of aeronautical industry. Brazing material was performed using several technologies, and after examination of the microstructure of materials from the merge area it was established as optimal technology the technology which consist of pickling in Aloclene 100 solution with the deposition of filler material on both sides of the base material and the use of spectral acetylene and neutral flame.

  11. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  12. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MRi is proposing, with its partner, Exotherm Corp (Camden, NJ) to demonstrate the feasibility of using exothermic brazing to join RCC (or C:SiC) composites to itself...

  13. Compatibility of Au-Cu-Ni braze alloy with NH3

    Science.gov (United States)

    Diaz, V., Jr.

    1978-01-01

    Tests show that Gold-Copper-Nickel alloy is compatible with ammonia systems. Joining tubes by brazing has advantages such as reducing chances of excessive grain growth in base metal, saving weight, and cleanliness.

  14. GEH-4-63, 64: Proposal for irradiation of production brazed Zircaloy-2 clad fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1961-05-18

    A brazed end closure is currently being used on prototypical NPR fuel elements. The production closure will use a braze alloy composed of 5% Be + 95% Zry-2 to braze the Zircaloy-2 cap to the jacket and to the metallic uranium core. A similar MTR test, a GEH-4-57, 58, used a braze alloy of the composition 4% Be + 12% Fe + 84% Zry-2 which melts at a lower temperature. In this previous test, element GEH-4-57 failed through a cladding defect located at the base of the braze heat affected zone. Because of this failure it would be desirable to subject a fuel element, which had been subjected to more severe brazing conditions, to the same conditions as GEH-4-57, 58. For this reason the thermal conditions of this test essentially match those of GEH-4-57, 58. This irradiation test consists of two identical fuel elements. The fuel material is normal metallic uranium, Zircaloy-2 clad of the tubular geometry, NPR inner size. The fuel was coextruded at Hanford by General Electric`s Fuels Preparation Department. Each element is 10.8 inches in length with flat Zircaloy-2 end caps brazed to the jacket and uranium core with the 5 Be + 95 Zry-2 brazing alloy, then TIG welded to further insure closure integrity. The elements ar 1.254 inches OD and 0.439 inches ID. For hydraulic purposes a 0.343 inch diamater flow restrictor has been fitted into the central flow channel of both elements.

  15. [Determination of Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES].

    Science.gov (United States)

    Yang, X

    1997-06-01

    A method of simultaneous and direct determination for Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES is reported. The spectral interferences and effect of acidity have been investigated. Working conditions were optimized. The method has been applied to the analysis of silver brazing filler metals with RSD of 4-7% and recovery of 94-105%. This method was accurate, simple and rapid.

  16. Mechanical properties of Inconel 718 and Nickel 201 alloys after thermal histories simulating brazing and high temperature service

    Science.gov (United States)

    James, W. F.

    1985-01-01

    An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.

  17. Study on Al-Cu-Si braze containing small amount of rare earth erbium

    Institute of Scientific and Technical Information of China (English)

    Yao-wu SHI; Yang YU; Zhi-dong XIA; Yong-ping LEI; Xiao-yan LI; Fu GUO; Jian-ping LIU

    2008-01-01

    In the present work, the effect of a small amount of rare earth Er addition on the microstructure of Al-Cu-Si brazing alloy has been investigated. In the study, the Al-20Cu-7Si brazing alloys with various Er contents were prepared. 3003 aluminum alloy was chosen as a substrate The microstructure of the brazed alloys was carefully observed. In addition, melting temperature, wettability and hardness of the brazing alloys were mea-sured. The results indicate that the constituent of the microstructure of Al-20Cu-7Si-Er brazed alloy is similar to the Al-20Cu-7Si, which is mainly comprised of solid solutions of aluminum, silicon and the intermetallic com-pounds CuAl2. When the Er content increases, the size of AI phases is decreased, and the filament-like or needle-like Si phase is thickened. The Si phases dominating in the shape of a filament or needle are transformed to those in the shape of a block when Er content is increased. Moreover, adding a small amount of Er can improve the wettability and hardness of the Al-20Cu-7Si brazing alloy. However, the melting temperature of the Al-20Cu-7Si alloy is almost unchanged when a small amount of Er is added.

  18. Sealed joint structure for electrochemical device

    Science.gov (United States)

    Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

    2013-05-21

    Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

  19. 铝钢异种材料电弧熔钎焊接技术的研究%Investigation on Arc Brazing Technology of Aluminum and Steel

    Institute of Scientific and Technical Information of China (English)

    尹兰礼; 雷永平; 林健; 王培中; 钟毅

    2011-01-01

    为了减轻车身重量,铝合金正被广泛的应用到汽车车身用中.而铝合金与汽车用钢板的连接问题是铝合金得以广泛应用的关键.本研究通过钨极氩弧焊和冷金属过渡焊两种电弧熔钎焊接方法实现铝合金与低碳钢的连接,研究了两种焊接方法的焊缝成型、接头拉剪强度以及金属间化合物的成分差异,并与传统的铆接接头进行比较.研究表明,电弧熔钎焊具有较高的接头拉剪强度和较小的接头重量.由于冷金属过渡焊的热输入量低,使得其焊缝成型相对较好,且其接头拉剪强度值已达到母材强度的85%.%Aluminum is being widely applied to automobile body to reduce the weight The key problem is connecting aluminum alloy to steel of car-body. In this paper, aluminum and steel are connected by Tungsten Inert Gas (TIG) arc brazing and Cold Metal Transfer (CMT) arc brazing. The weld formation of the two welding methods and component of intermetallic compounds (IMC) are investigated, and compared the joint's tensile-shear strength with traditional Self-piercing riveting. The results show that the joints made by arc brazing have higher tensile-shear strength and lighter weight. Due to the low welding heat input, the weld formation of CMT is better than that of TIG. And the tensile-shear strength of CMT joint has reached 85% of the base metal strength.

  20. 75 FR 52037 - Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-08-24

    ... Occupational Safety and Health Administration Welding, Cutting and Brazing Standard; Extension of the Office of... the information collection requirements contained in the Welding, Cutting and Brazing Standard (29 CFR part 1910, subpart Q). The information collected is used by employers and workers whenever...

  1. The Integration of Vacuum Brazing into Heat Treatment - A Progressive Combined Process

    Institute of Scientific and Technical Information of China (English)

    Ingo Reinkensmeier; Henkjan Buursen

    2004-01-01

    The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance.The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.

  2. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  3. Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying

    Institute of Scientific and Technical Information of China (English)

    Kirsten BOBZIN; Lidong ZHAO; Felix ERNST; Katharina RICHARDT

    2008-01-01

    In the present study, AlSi12 and AlSi10Cu4 were deposited onto Mg-containing aluminium alloys 6063 and 5754 by cold spraying. The influences of the two brazing alloys and spray parameters on coating formation were investigated. The microstructure of the coatings was characterized. Some coated samples were heat-treated at 590℃ and 560℃ in air to investigate the effect of the rupture of oxide scales on the diffusion of elements during heat-treatment. Some coated samples were brazed under argon atmosphere without any fluxes. The results show that AlSi12 had much better deposition behaviour than AlSi10Cu4. Due to the rupture of oxide scales, Cu and Si diffused into the substrate and a metal-lurgical bond formed between the brazing alloys and the substrates during heat-treatment. The coated samples could be brazed without any fluxes. Because the oxide scales prevented the formation of a metallurgical bond locally, the brazed samples had relatively low shear strengths of up to 43 MPa.

  4. Dissimilar laser brazing of h-BN and WC-Co alloy in Ar atmosphere without evacuation process

    Science.gov (United States)

    Sechi, Y.; Nagatsuka, K.; Nakata, K.

    2012-08-01

    Laser brazing with Ti as an active element in Ag-Cu alloy braze metal has been successfully applied to dissimilar joining of h-BN and WC-Co alloy in Ar (99.999% purity) gas flow atmosphere without any evacuation process. Good wettability of the braze metal with h-BN and WC-Co alloy were confirmed by the observation and structural analysis of the interface by electron probe micro-analysis and scanning acoustic microscopy. The oxidation of titanium was not observed and this showed that the laser brazing with titanium as an active element in braze metal could be performed even in an Ar gas flow atmosphere without an evacuation process using a high-vacuum furnace.

  5. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  6. The jointing stress analysis of one-shot seal-off high-voltage vacuum interrupters

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhizhong; Zou Jiyan; Cong Jiyuan; Wen Huabin; Sun Hui

    2006-01-01

    The free shrinkage of ceramic or metal is restricted due to solidification of the solder. Hence the shrinkage stress arises and the jointing strength is reduced during the brazing of high-voltage vacuum interrupters ( HVVIs ) . The solder bound contour was gained by solved energy bound equation. The finite element model of weld beads was established with Surface Evolver software. Then the stress in two different cooling techniques ( natural cooling and force cooling) was calculated with ANSYS. Comparing the stress, a better cooling technique was selected for HVVIs. Its cooling time is shortened by 3 hours while the jointing stress doesn' t increase and the tensile strength of ceramic to metal seal is not decreased. The stress-rupture tests have validated the calculated results. More important, a method is found, by which the brazing technique could be improved in advance instead of blind experiments.

  7. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    Science.gov (United States)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  8. 1Cr18Ni9Ti不锈钢/Ti6Al4V钛合金真空钎焊工艺研究%Vacuum Brazing of 1Cr18Ni9Ti Stainless Steel and Ti6Al4V Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    祁凯; 于治水; 李瑞峰

    2011-01-01

    Ti6A14V titanium alloy and lCrl8Ni9Ti stainless steel was vacuum brazed using Ag-Cu-Ti as filler. The interfacial microstructure and element distribution was studied at 790°C ~870 °C for lmin and 3min, respectively. The results show that the width of seam decreases with the increase of brazing temperature and increases with the increase of . Holding time, however, the width of the diffusion layer increases with the increase of brazing temperature. Element Ti determines the formation of inermetallic compounds. The optimal interfacial microstructure can be obtained when brazing at 790 °C for 3 min, no cracks are found in the brazed joint.%采用Ag-Cu-Ti钎料进行Ti6Al4V(TC4)钛合金和1Cr1 8Ni9Ti不锈钢的真空钎焊,观察分析了其在钎焊温度为790~870℃和保温时间为1和3min时钎缝界面微观组织和成分分布.研究结果表明,钎缝宽度随着钎焊温度的升高而降低,随着保温时间的增加而增加;扩散层厚度随着保温时间的增加而增加.Ti是焊缝中反应物多少的决定因素.在钎焊温度790℃,保温3min时能得到较好的焊缝组织,界面无裂纹出现.

  9. THERMAL FIELD MODELING IN THE MIG / MAG - CMT BRAZE-WELDING PROCESS OF GALVANIZED SHEETS

    Directory of Open Access Journals (Sweden)

    GHEORGHE SIMA

    2013-10-01

    Full Text Available This paper deals with some technical aspects of the optimization process braze-welding of galvanized steel sheet with a thickness of 0.7-1.5 mm. The braze-welding process is presented systemic, highlighting the input and output variables (of the zinc layer and intermetallic layer characteristics. It is presented the test for statistical analysis performed on a four-level factorial experiment aimed at studying the influence of the main simultaneously welding parameters of the welding technology CMT (Cold Metal Transfer: determining an optimal welding current IS, welding speed vS, boos current Ina and arc length correction factor l0.

  10. Effect of stainless steel chemical composition on brazing ability of filler metal

    Science.gov (United States)

    Miyazawa, Yasuyuki; Ohta, Kei; Nishiyama, Akira

    2014-08-01

    Many kinds of stainless steel have been used in the engineering field. So it is necessary to investigate the effect of SUS chemical compositions on the brazing ability of filler metal. In this study, SUS315J containing Cr, Ni, Si, Cu, and Mo was employed as a base metal. Excellent spreading ability of the molten nickel-based brazing filler on SUS315J was obtained as compared with that on SUS316. Copper and silicon influenced the significant spreading ability of the filler.

  11. VACUUM BRAZING OF ULTRASONIC CUTTING TOOL%超声切割刀具的真空钎焊

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 顾世鹏; 李广

    2000-01-01

    Vacuum brazing technology of a type of ultrasonic cutting tool is introduced in this paper. The main contents are composed of brazing riller metal, brazing method and brazing procedure. The cutting tool is made of high - speed tool - steel blade and titanium ahoy tool carrier. The brazing filler metal is Ag - Cu eutectic alloy. The brazing parameters are vacuum 7.5 ×Pa,brazing temperature 830 ℃ ,temperature holding time 10 min。%介绍了超声切割刀具的真空钎焊技术,主要内容包括钎焊材料、钎焊方法和钎焊工艺。刀具由高速钢刀片和钛合金刀杆组成,所用钎料为Ag-Cu共晶钎料。钎焊工艺参数为:真空度7.5 xPa,钎焊温度830℃,保温时间10 min。

  12. Effect of braze processing on the microstructure and mechanical properties of SCS-6/beta21S titanium matrix composites

    Science.gov (United States)

    Hoffman, Eric K.; Bird, R. K.; Dicus, Dennis L.

    1992-01-01

    An investigation is conducted of the effects of braze processing on the microstructure and tensile properties of SiC fiber-reinforced Ti-15Mo-2.7Nb-3Al-0.25Si-matrix composite (TMC) laminates; the brazing alloy was the commercial Ti-15Cu-15Ni, in both its conventional and metglass forms. Tensile tests conducted at room temperature, 1200 F, and 1500 F showed that the braze processes (1) had little effect on tensile properties, and (2) appeared to degrade neither the reinforcing fibers not the fiber/matrix interfacial bondline.

  13. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  14. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit;

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low qualitywaste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equippedwith brazed plate heat exchangers which allows for efficient heat tra...

  15. Penetrating behavior of eutectic liquid during Al/Cu contact reactive brazing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The behavior of eutectic liquid penetrating into the Al base during Al/Cu contact reactive brazing process was studied. Analysis results show that the eutectic liquid prefers to expand along the grain boundary in the depth direction. Meanwhile, dissolution of solid Al and Cu into the eutectic liquid promotes the eutectic reaction and the continuously formed eutectic liquid leads to the reactive penetrating.

  16. Laser-MIG Arc Hybrid Brazing-Fusion Welding of Al Alloy to Galvanized Steel with Different Filler Metals

    Institute of Scientific and Technical Information of China (English)

    Shujun WANG; Guoliang QIN; Yuhu SU

    2013-01-01

    Aluminum alloy plates were joined to galvanized steel sheets with lap joint by laser-MIG arc hybrid brazingfusion welding with AlSi5,AlSi12,AlMg5 filler wires,respectively.The influences of Si and Mg on the microstructure and mechanical properties of the brazed-fusion welded joint were studied.The increase of Si element in the fusion weld can make the grain refined,and increase the microhardness of the fusion weld.Therefore,the microhardness in fusion weld made from AlSi12 and AlSi5 filler wires can be up to 98.4 HV0.01and 96.8 HV0.01,which is higher than that from AlMg5 filler wire of 70.4 HV0.01.The highest tensile strength can reach 178.9 MPa made with AlMg5 filler wire.The tensile strength is 172.43 MPa made with AlSi5 filler wire.However,the lowest tensile strength is 144 MPa made with AlSi12 filler wire.The average thicknesses of the intermetallic compounds (IMCs) layer with AlSi5,AlSi12,AlMg5 filler wires are 1.49-2.64 μm.The lMCs layer made from AlSi5,AlSi12 filler wires are identified as FeAl2,Fe2Als,Fe4Al13 and Al0.5Fe3Si0.5,that from AlMg5 filler wire are identified as FeAl2,Fe2Al5 and Fe4Al13.

  17. Al2O3弥散强化铜与T2铜的真空钎焊工艺研究%Study on Vacuum Brazing of Al2O3 Dispersion-strengthen Copper and Copper T2

    Institute of Scientific and Technical Information of China (English)

    朱音; 王海龙

    2012-01-01

    The vacuum brazing of A12O3 dispersion-strengthen copper to copper T2 with the filler Ag-Cu-Ti and BAg72Cu was studied. The influence of brazing temperature and holding time on the microstructure and tensile strength was studied. The results show that when the temperature is lower, metallurgical action is not good and the bond is not firm. When the temperature is higher or the holding time is longer, the filler can infiltrate into A12O3 dispersion-strengthen copper, cause the appearance of holes in brazed joint, which can decrease the tensile strength. Brazing with Ag-Cu-Ti and BAg72Cu composite filler, the strength of the welded joint increases.%使用Ag-Cu-Ti钎料以及Ag-Cu-Ti+BAg72Cu复合钎料对Al2O3弥散强化铜与T2铜进行真空钎焊,研究了钎焊温度和保温时间对钎焊接头组织和性能的影响.结果表明,温度过低,钎料与母材相互冶金作用较弱,接头性能较差;温度过高或保温时间过长,钎料向弥散强化铜中毛细渗入严重,焊缝中出现孔洞,接头强度也下降.利用Ag-Cu-Ti+BAg72Cu复合钎料进行钎焊能有效提高接头强度.

  18. Joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...

  19. Joint swelling

    Science.gov (United States)

    ... chap 275. Raftery AT, Lim E, Ostor AJK. Joint disorders. In: Raftery AT, Lim E, Ostor AJK, eds. ... A.M. Editorial team. Related MedlinePlus Health Topics Joint Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  20. Fatigue FEM analysis in the case of brazed aluminium alloy 3L59 used in aeronautical industry

    Science.gov (United States)

    Dimitrescu, A.; Amza, Gh; Niţoi, D. F.; Amza, C. Gh; Apostolescu, Z.

    2016-08-01

    The use, on a larger scale, of brazed aluminum alloys in the aerospace industry led to the need for a detailed study of the assemblies behavior. These are built from 6061 aluminum aloy (3L59) brazed with aluminum aloy A103. Therefore, a finit element simulation (FEM) of durability is necessary, that consists in the observation of gradual deterioration until failure. These studies are required and are previous to the stage of the producing the assembly and test it by traditional methods.

  1. Joint ventures

    NARCIS (Netherlands)

    M.N. Hoogendoorn (Martin)

    2009-01-01

    textabstractEen veel voorkomende wijze van samenwerking tussen ondernemingen is het uitvoeren van activiteiten in de vorm van een joint venture. Een joint venture is bijna altijd een afzonderlijke juridische entiteit. De partners in de joint venture voeren gezamenlijk de zeggenschap uit. In internat

  2. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  3. Novel high chromium containing braze filler metals for heat exchanger applications

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, S.; Fortuna, D. [Sulzer Metco, Troy (United States)

    2007-07-01

    A new family of boron-free, high chromium containing braze filler metal compositions were developed (Amdry 105, Amdry 108, Amdry 805). Filler metal properties including metallurgical phases, melting range, flow, corrosion resistance and high temperature oxidation resistance are reported. Additionally, the technical and economical advantages of using these new filler metals in fabricating flat plate type of heat exchangers and metallic catalytic converters is discussed. (orig.)

  4. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  5. Note: Magnification of a polarization angle with a Littrow layout brazed grating.

    Science.gov (United States)

    Sasao, H; Arakawa, H; Kubo, H; Kawano, Y; Itami, K

    2014-08-01

    A new method to magnify a small polarization angle with brazed gratings has been developed. In the method, difference in diffraction efficiency for S and P polarization components is used. The magnification dependence on the incident angle can be small by arranging the grating in Littrow layout. A magnification with a factor ~2.7 has been demonstrated for a 10.6 μm CO2 laser beam as expected from a calculation. The method is applicable in many polarimetry fields.

  6. Production of robust contours with braze coatings for cylinder head gaskets; Erzeugung konturgenauer Auftragsschichten fuer Zylinderkopfdichtungen

    Energy Technology Data Exchange (ETDEWEB)

    Cierocki, K.; Heilig, M. [Goetze Payen GmbH, Herford (Germany); Koch, J.; Koschlig, M. [Degussa AG, Hanau (Germany)

    1998-12-01

    Multilayer gaskets made of steel for cylinder heads are state of the art at the automotive industry. To simplify the construction by replacing one layer a precise braze coating of the gasket contour was developed (BrazeSkin-Process). The used filler metal consists of a Ni-based filler suspension, which is applied by a serigraphy process. Within this work the development up to now and the potential in the near future are described. (orig.) [Deutsch] In der Automobilindustrie werden auf heutigem Stand der Technik Mehr-Lagen-Dichtungen (MLS) als Zylinderkopf-Dichtung eingesetzt. Hierbei kommen den einzelnen Lagen unterschiedliche Funktionen zu. Die Aufgaben einer Vereinfachung des Aufbaus durch Einsparung einer Lage wurde durch die Erzeugung einer konturgenauen Beschichtung auf einer der Zwischenlagen um die Zylinderbohrung herum geloest. Zur Erzeugung dieser Beschichtung wurde eine Lotsuspension entwickelt, die einer Produktgruppe mit dem Begriff BrazeSkin zugerechnet wird. Diese Lotsuspension besteht aus einem gefuellten Ni-Basis-Lot, das mittels Siebdruck aufgetragen wird. Im Durchlaufofen werden die aufgedruckten Flaechen unter Schutzgas geloetet. Aufgrund der Fuellung mit einem hochschmelzenden Zusatz entsteht im Loetprozess eine Legierung, die gleichermassen die Grundzuege eines Verbundwerkstoffes und eines Reaktionslotes beinhaltet. Hierdurch wird auch die Forderung nach einer mass- und konturgenauen Schichtdicke erfuellt. Der Grad der Serienreife fuer die erste Anwendung wurde jetzt erreicht. Eine Beschreibung der Entwicklung sowie zukuenftige Entwicklungsmoeglichkeiten werden aufgezeigt. (orig.)

  7. Vacuum brazing of metals (1961); Brassure sous vide des metaux (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Lapujoulade, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We have studied brazing in vacuum aiming its application for the making of containers and apparatus meant for high vacuum (p < 10{sup -8} torr). We first define the wettability of a brazing alloy on a metal and we remind the influence of the various parameters which act on this wettability (nature of the solid, of the liquid, geometrical and physicochemical state of the surface, metallurgical reactions occurring at the interface, temperature, time). We give then the results of the tests carried out in order to determine the conditions of wettability in vacuum of some brazing alloys on metals which can be used for the above mentioned apparatus (stainless steel, aluminium, bronze, titanium, zirconium, kovar, nickel, copper). (author) [French] Nous avons etudie la brasure sous vide en vue de son application a la construction d'enceintes et apparelilage destines a l'obtention des vides eleves (p < 10{sup -8} torr). Nous definissons d'abord la mouillabilite d'une brasure sur un metal et nous rappelons l'influence des differents parametres qui agissent sur cette mouillabilite (nature du solide, du liquide, etat geometrique et physico-chimique de la surface, reactions metallurgiques a l'interface, temperature, temps). Nous donnons ensuite les resultats des essais effectues dans le but de determiner les conditions de mouillabilite sous vide de certaines brassures sur des metaux utilisables dans les constructions mentionnees ci-dessus (acier inoxydable, bronze d'aluminium, titane, zirconium, kovar, nickel, cuivre). (auteur)

  8. Corrosion considerations in the brazing repair of cobalt-based partial dentures.

    Science.gov (United States)

    Luthy, H; Marinello, C P; Reclaru, L; Scharer, P

    1996-05-01

    Cobalt-based alloys (Co-Cr-Mo) are usually used in dentistry as frameworks for removable partial dentures. In their basic form these structures function successfully. However, modifications or repairs of the frameworks may reduce their resistance to corrosion and, as a consequence, may provoke biologic reactions in the soft tissues. These reactions may be the result of different types of alloys that contact each other and, in the presence of saliva (based on potential differences), produce a galvanic cell. In this study, a clinical situation after repair of a removable partial denture was examined. The metallographic study of the prosthesis revealed a brazed zone where a gold braze was joining the Co-Cr-Mo framework with a Co-Cr-Ni type alloy (without Mo). The latter revealed signs of corrosion. Various electrochemical parameters (Ecorr, Ecouple, icorr, icouple) of these alloys were analyzed in the laboratory. The Co-Cr-Ni alloy had the lowest nobility and underwent galvanic corrosion in a galvanic couple with gold braze.

  9. Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS

    Science.gov (United States)

    Rullik, L.; Bertram, F.; Niu, Y. R.; Evertsson, J.; Stenqvist, T.; Zakharov, A. A.; Mikkelsen, A.; Lundgren, E.

    2016-10-01

    X-ray photoelectron emission microscopy (XPEEM) was used in combination with other microscopic and spectroscopic techniques to follow the surface development of an aluminum brazing sheet during heating. The studied aluminum alloy sheet is a composite material designed for vacuum brazing. Its surface is covered with a native aluminum oxide film. Changes in the chemical state of the alloying elements and the composition of the surface layer were detected during heating to the melting temperature. It was found that Mg segregates to the surface upon heating, and the measurements indicate the formation of magnesium aluminate. During the heating the aluminum oxide as well as the silicon is observed to disappear from the surface. Our measurements is in agreement with previous studies observing a break-up of the oxide and the outflow of the braze cladding onto the surface, a process assisted by the Mg segregation and reaction with surface oxygen. This study also demonstrates how XPEEM can be utilized to study complex industrial materials.

  10. Investigation on laser brazing AA6056 Al alloy to XC18 low-carbon steel

    Institute of Scientific and Technical Information of China (English)

    Jianjun Ding; Feiqun Li; Feng Qu; Patrice Peyre; Remy Fabbro

    2005-01-01

    @@ Based on the studies of influence of YAG laser heating conditions for Al alloy melt and steel on wettability,the mechanics of the laser overlap braze welding of 6056 Al and XC18 steel sheet has been investigated.Under the temperature range which is above the melting point of the Al alloy and below the melting point of the steel, two dissimilar metals can be joined by means of laser braze welding. There is no crack observed in the joining area, i.e. Al-Fe intermetallic phase (Fe3Al/FeAl/FeAl3/Fe2Al5) layer formed by solution and diffusion between liquid-solid interface. The temperature range can be defined as the process temperatures of laser braze welding of Al-Fe materials. Selecting a higher laser heating temperature can improve the wettability of Al melt to steel surface, but the intermetallic phase layer is also thicker. When the laser heating temperature is so high that the joining surface of steel is melted, there is a crack trend in the joining area.

  11. Control of Interfacial Reactivity Between ZrB2 and Ni-Based Brazing Alloys

    Science.gov (United States)

    Valenza, F.; Muolo, M. L.; Passerone, A.; Cacciamani, G.; Artini, C.

    2012-05-01

    Transition metals diborides (Ti,Zr,Hf)B2 play a key role in applications where stability at extremely high temperatures and damage tolerance are required; however, much research has still to be done to optimize the joining of these materials to themselves or to other high-temperature materials. In this study, the reactivity at the solid-liquid interface between ZrB2 ceramics and Ni-based brazing alloys has been addressed; it is shown how the reactivity and the dissolution of the solid phase can be controlled and even suppressed by adjusting the brazing alloy composition on the basis of thermodynamic calculations. Wetting experiments on ZrB2 ceramics by Ni, Ni-B 17 at.%, and Ni-B 50 at.% were performed at 1500 and 1200 °C by the sessile drop technique. The obtained interfaces were characterized by optical microscopy and SEM-EDS, and interpreted by means of the ad hoc-calculated B-Ni-Zr ternary diagram. A correlation among microstructures, substrate dissolution, shape of the drops, spreading kinetics, and the phase diagram was found. The effect on the interfacial reactivity of Si3Ni4 used as a sintering aid and issues related to Si diffusion into the brazing alloy are discussed as well.

  12. Joint Interdiction

    Science.gov (United States)

    2016-09-09

    exercise of authority by combatant commanders and other joint force commanders (JFCs), and prescribes joint doctrine for operations and training. It...interdiction requirements and dependable, interoperable, and secure communications architecture to exercise control. The JFC exercises C2 through...moving across open desert terrain were more vulnerable to interdiction by coalition airpower than dispersed Serbian forces that benefited from trees

  13. Experiments and analysis of thin tungsten slice and W/Cu brazing for primary collimator scraper in CSNS/RCS

    Science.gov (United States)

    Zou, YiQing; Kang, Ling; Yu, JieBing; Qu, HuaMin; He, ZheXi

    2014-04-01

    According to the requirements for the beam collimation system of the rapid cycling synchrotron (RCS) of China Spallation Neutron Source (CSNS), the main structure of a scraper of primary collimator is made by W/Cu brazing, in which the thickness of tungsten slice is 0.17 mm. In order to get the best mechanical properties, the brazing temperature is suggested to be controlled under the recrystallization temperature of tungsten, while the recrystallization temperature is affected directly by the thickness of tungsten. Because of little research and application on the brazing of thin tungsten slice of 0.17 mm and copper, tensile tests are done to get the mechanical properties of tungsten slices which experience different brazing temperatures. In keeping the inner relationships between the mechanical properties and temperature, another experiment is done by using SEM to scan the microstructures including the size and distribution of crystals. Finally we determine the recrystallization temperature of tungsten slice of 0.17 mm, and get the best parameters of W/Cu brazing for scrapers of primary collimator in CSNS/RCS.

  14. Measurement of bulk residual stresses in molybdenum disilicide/stainless steel joints using neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Rangaswamy, P.; Bourke, M.A.M.; Butt, D.P. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-03-23

    Neutron diffraction was used to measure the bulk residual strains in molybdenum disilicide (MoSi{sub 2})-316L stainless steel joints. The joints were produced by brazing disks of MoSi{sub 2} and 316L stainless steel along with an interlayer, using Cusil{trademark} as the braze. This study explored the physical parameters of the interlayer on the average phase strains in the MoSi{sub 2} and 316L stainless steel. The effect of the coefficient of thermal expansion was explored by using three different interlayer materials: niobium, nickel, and nickel-iron. The residual strains in MoSi{sub 2} decreased significantly in both radial and axial directions with increasing niobium interlayer thickness. Residual strains were relatively insensitive to changes in 500 {micro}m thick interlayer material. Finite element modeling results were corroborated by the neutron measurements on the joints allowing inferences to be drawn concerning the preference of the interlayer material. The results illustrate the importance of the ductile interlayer in the successful fabrication of MoSi{sub 2}-316L stainless steel joints.

  15. Review Article: recent advances in metal-ceramic brazing Artigo Revisão: avanços recentes em brasagem metal-cerâmica

    Directory of Open Access Journals (Sweden)

    R. M. do Nascimento

    2003-12-01

    Full Text Available Metal-ceramic joining has slowly but steadily become an important manufacturing step. The evolution of joining processes has allowed ceramics to be used in combination with metals in a number of hybrid devices from traditional light bulbs and seals to improved cutting tools and modern monitoring and measuring electronic devices. New joining methods and newer approaches to conventional methods have been developed aiming at joints characterized by improved reliability, and interfaces capable of withstanding high-temperature resistance with minimum residual stresses. A summary of recent improvements on alternative approaches to ceramic-metal joining as well as new developments on brazing are presented herein. The present review also focuses on recent advances towards brazing metallized ceramics and the selection of filler alloys, since in a scenario that includes joining by laser and direct bonding with liquid transient phases, brazing continues to be by far the most widely used approach to joining as a result of its low-cost and possibility to join intricate geometries for large-scale production. Finally, methods to evaluate the mechanical strength and residual thermal stresses are presented in addition to alternative approaches to minimize residual stresses and, consequently, improve joint reliability.O interesse no estudo de métodos de junção-cerâmica para aplicações industriais tem crescido gradativamente ao longo dos anos. A evolução dos processos de união tem permitido a utilização de cerâmicas em conjunto com metais na fabricação de diversos componentes híbridos incluindo lâmpadas tradicionais, juntas para vácuo, ferramentas de corte de alto desempenho e modernos dispositivos eletrônicos de medição e monitoramento. Novos métodos de união e aprimoramentos de métodos convencionais têm sido estudados com o intuito de produzir-se juntas com alta confiabilidade e interfaces capazes de suportar altas temperaturas de

  16. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila;

    2016-01-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates...... as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates...

  17. A study on reactive braze coating of (TiC + Cr3 C2 )/Fe composite coatings

    Institute of Scientific and Technical Information of China (English)

    Pei Xinjun; Zhang Jiangang; Zhang Luming; Huang Jihua; Wei Shizhong

    2005-01-01

    A new hardfacing process, reactive braze coating process (RBCC) was studied, and ( TiC + Cr3 C2 ) /Fe composite coatings were prepared by RBCC using carbon, Cr3 C2, iron, ferrochromium and titanium powder as the raw materials in vacuum braze furnace. The results show that TiC is in-situ synthesized in the coatings. The methods of introducing Cr3 C2 have great effects on the distribution of TiC. Adding Cr3 C2 directly to the raw materials for coatings, fine TiC particles aggregate into discoids parallel to the coating surface, whereas, in-situ synthesizing Cr3 C2 in coatings, the aggregations of TiC are lumpish. During braze coating, Cr3 C2 particles directly added dissolve and precipitate to become needle-shaped. The coatings have an even and smooth surface and are combined with their mild steel substrates by a metallurgical bonding.

  18. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    Science.gov (United States)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  19. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    Energy Technology Data Exchange (ETDEWEB)

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V. [Efremov Research Institute, St. Petersburg (Russian Federation)] [and others

    1995-09-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350{degrees}C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed.

  20. 镁/镀锌钢异种合金单、双光束激光熔钎焊特性%Single and dual beam laser welding-brazing characteristics of magnesium/zinc-coated steel dissimilar alloys

    Institute of Scientific and Technical Information of China (English)

    檀财旺; 梅长兴; 李俐群; 戴景民; 郭伟

    2012-01-01

    以镁焊丝为填充材料,对镁/镀锌钢异种合金进行单、双光束激光熔钎焊试验研究,分析不同工艺参数对焊缝成形的影响规律,获得不同热源作用方式下的界面形态规律及其对界面强度的影响.结果表明:采用单、双光束进行填丝熔钎焊均可获得较满意的外观成形:单光束容易存在未钎合现象,焊接过程不够稳定,而双光束具有更好的温度分布,容易提高润湿铺展能力.剪切强度测试结果表明,单、双光束最大的接头效率分别达到30.9%和42.4%,焊趾处裂纹的存在是导致接头失效的主要原因.%The single and dual laser welding-brazing of AZ31 Mg alloy to DP980 galvanized steel was conducted with Mg filler wire. The effect of different parameters on the weld appearance was analyzed. Moreover, the interfacial pattern under different heat sources and its influence on the interfacial strength were obtained. The results indicate that good weld appearance can be achieved using both single and dual laser beam welding-brazing as filler wire. It tends to produce the lack of fusion defect by single-beam welding and the welding process is unstable. The dual-beam welding has much more uniform temperature distribution, so, the spreading-wetting ability is better than the former. The shear test results show that the highest joint efficiency of single-beam and dual-beam welding are 30.9% and 42.4%, respectively. The crack produced at the toe of weld after laser welding-brazing is the main reason for joint failure.

  1. 铜触头的高频钎焊%High-frequency brazing a copper contact

    Institute of Scientific and Technical Information of China (English)

    刘轶强; 张狄林

    2012-01-01

    叙述了焊接一种大面积铜触头由气体火焰钎焊改为高频钎焊的研究过程.通过更换钎料,设计合适的感应线圈,选用合适的焊接工艺参数,焊接出合格的产品.经肉眼观察、滚压实验、金相分析和扫描电镜的全面检测,触头的高频钎焊质量优良,符合设计要求.该研究对提高铜触头的焊接合格率,降低生产成本,节省焊接时间并大幅提高生产率,减轻劳动强度和改善劳动环境都有极大的价值.%This paper describes a large area of copper contact welding by the gas flame brazing replaced by high-frequency brazing process.By replacing the induction coil of solder,design appropriate, the appropriate choice of welding parameters, welding of qualified products. By the virual inspection ,rolling experiments, metallographic analysis and scanning electron microscope,a comprehensive inspection,the contact by high-frequency brazing has good quality and meets the design requirements. This study has great value for the company to improve the pass rate of welding of copper contacts,reduces production costs,saves the welding lime and dramatically increases productivity, reduces labor intensity and improves the working environment.

  2. Note: Magnification of a polarization angle with a Littrow layout brazed grating

    Science.gov (United States)

    Sasao, H.; Arakawa, H.; Kubo, H.; Kawano, Y.; Itami, K.

    2014-08-01

    A new method to magnify a small polarization angle with brazed gratings has been developed. In the method, difference in diffraction efficiency for S and P polarization components is used. The magnification dependence on the incident angle can be small by arranging the grating in Littrow layout. A magnification with a factor ˜2.7 has been demonstrated for a 10.6 μm CO2 laser beam as expected from a calculation. The method is applicable in many polarimetry fields.

  3. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  4. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    Science.gov (United States)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  5. Comparison of Brazed Residual Stress and Thermal Deformation between X-Type and Pyramidal Lattice Truss Sandwich Structure: Neutron Diffraction Measurement and Simulation Study

    Science.gov (United States)

    Jiang, Wenchun; Wei, Zhiquan; Luo, Yun; Zhang, Weiya; Woo, Wanchuck

    2016-06-01

    This paper uses finite element method and neutron diffraction measurement to study the residual stress in lattice truss sandwich structure. A comparison of residual stress and thermal deformation between X-type and pyramidal lattice truss sandwich structure has been carried out. The residual stresses are concentrated in the middle joint and then decreases gradually to both the ends. The residual stresses in the X-type lattice truss sandwich structure are smaller than those in pyramidal structure. The maximum longitudinal and transverse stresses of pyramidal structure are 220 and 202 MPa, respectively, but they decrease to 190 and 145 MPa for X-type lattice truss sandwich structure, respectively. The thermal deformation for lattice truss sandwich panel structure is of wave shape. The X-type has a better resistance to thermal deformation than pyramidal lattice truss sandwich structure. The maximum wave deformation of pyramidal structure (0.02 mm) is about twice as that of X-type (0.01 mm) at the same brazing condition.

  6. The present status of R and D for the muon target at J-PARC: The development of silver-brazing method for graphite

    Energy Technology Data Exchange (ETDEWEB)

    Makimura, Shunsuke [Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)], E-mail: shunsuke.makimura@kek.jp; Ozaki, Hidetsugu; Okamura, Hisanori [Kinzoku Giken Co., LTD., 276-21, Motoishikawa, Mito-shi, Ibaraki-ken 310-0843 (Japan); Futakawa, Masatoshi; Naoe, Takashi [Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Miyake, Yasuhiro; Kawamura, Naritoshi; Nishiyama, Kusuo; Kawai, Masayoshi [Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)

    2008-06-30

    At the J-PARC muon science facility, the muon target was made of an isotropic graphite (IG-43). The energy deposited by the proton beam is estimated to be 3.3 kW on graphite and 600 W on the copper frame. To alleviate the thermal stress, a titanium stress absorber is inserted between the graphite and the copper. Although graphite is known to be difficult to be brazed, the titanium is attached to the graphite through silver-brazing. In this report, we will describe the development of a silver-brazing method for graphite in the fabrication of the J-PARC muon target. A capillary test between the graphite and the titanium was performed to determine the optimal brazing conditions. The test involved bonding graphite and titanium plates while varying the gap between them in order to determine the brazing material and the optimal surface treatment of graphite. Subsequently, a trial muon-production target was fabricated using this optimized brazing method. Specimens were cut from the trial target, and bending test experiments were performed to determine the tensile and shear strength of the interface. As a result, it was confirmed that graphite could be bonded adequately through the silver-brazing.

  7. Copper-to-silicon-carbide joints development for Future CLIC Hom Dampers

    CERN Document Server

    Gil Costa, Miguel

    2015-01-01

    Ceramic-to-metal joints have been of paramount importance for the nuclear and aeronautic industry since the last century. In this document, two different approaches to the Cu-to-SiC joining are briefly described and discussed. The first approach consists of an intermediate piece of lower Coefficient of Thermal Expansion than copper aiming to reduce the expansion mismatch with the ceramic during the brazing cycle. Soldering is selected as a second attempt, whose lower joining temperature reduces the absolute expansion difference between Cu and SiC. In addition, four SiC metallization processes are proposed and some of them have been also tested and discussed.

  8. Microstructure and Mechanical Properties of Joints of Titanium with Stainless Steel Performed using Nickel Filler

    Directory of Open Access Journals (Sweden)

    Szwed B.

    2016-06-01

    Full Text Available Diffusion brazing was performed between titanium (Grade 2 and stainless steel (X5CrNi18-10 using as a filler a nickel foil at the temperatures of 850, 900, 950 and 1000°C. The microstructure was investigated using light microscopy and scanning electron microscopy equipped with an energy dispersive X-ray system (EDS. The structure of the joints on the titanium side was composed of the eutectoid mixture αTi+Ti2Ni and layers of intermetallic phases Ti2Ni, TiNi and TiNi3. The stainless steel-nickel interface is free from any reaction layer at 850°C, above this temperature thin layer of reaction appears. The microhardness measured across the joints reaches higher values than for titanium and stainless steel, and it achieves value from 260 to 446 HV. The highest shear strength (214 MPa was achieved for joints brazed at 900°C.

  9. Reduction of Liquid Clad Formation Due to Solid State Diffusion in Clad Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-12-01

    Warm forming operations have shown promise in expanding automotive heat exchanger designs by increasing forming limits of clad brazing sheet. The impact of isothermal holds below the clad melting temperature on subsequent brazeability has not previously been studied in detail. The effect of these holds on brazeability, as measured by the clad thickness loss due to solid state diffusion of Si out of the clad layer prior to clad melting, was assessed through parallel DSC and optical microscopy measurements, as well as through the use of a previously developed model. EPMA measurements were also performed to support the other measures. Overall, the same trends were predicted by DSC, microscopy, and the theoretical model; however, the DSC predictions were unable to accurately predict remaining clad thickness prior to melting, even after correcting the data for clad-core interactions. Microscopy measurements showed very good agreement with the model predictions, although there were slight discrepancies at short hold times due to the inability of the model to account for clad loss during heating to the brazing temperature. Further microscopy measurements showed that when the heating rate is set below a critical value, there is a reduction in the clad thickness from the as-received condition.

  10. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    Science.gov (United States)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-08-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  11. From Coin to Medal: A Metallurgical Study of the Brazing Drop on a 19th Century Scudo

    Science.gov (United States)

    Breda, M.; Canovaro, C.; Pérez, A. F. Miranda; Calliari, I.

    2012-11-01

    In the past, it was customary to use out-of-circulation coins as pendants by brazing a peg or ring on the edge of the coin in order to transform it into a devotional or decorative object; this practice was very common for specimens of the Papal States, especially for silver coins. This metallurgical investigation of a 19th century Scudo aimed to relate the internal structure of the coin to the minting technology with a special focus on the brazing drop, in order to provide information on the solidification microstructure arising from a strongly nonequilibrium process such as brazing. The results show that the Ag content in the coin ranges from 92% in the bulk up to 97% on the surface, due to enrichment, while analysis of the brazing revealed that it consists of an Ag-Cu-Zn-Pb alloy, for which the melting temperature has been estimated. Considering the distribution of minor elements, Zn segregates in the secondary (Cu-rich) β-dendrites and inside the whole eutectic structure, while Pb is only present in the Ag-based phases and seems to reduce the solubility of Zn inside the primary (Ag-rich) α-dendrites.

  12. Joint purpose?

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2013-01-01

    Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose of...

  13. Interfacial reaction mechanism of CBN grain continuous brazed by ultra-high frequency induction%超高频感应连续钎焊立方氮化硼磨粒的界面反应机理

    Institute of Scientific and Technical Information of China (English)

    李奇林; 苏宏华; 徐九华; 雷卫宁

    2015-01-01

    采用超高频感应连续钎焊工艺,在不同扫描速度条件下实现了立方氮化硼(CBN)磨粒、Ag-Tu-Ti合金以及基体三者之间的钎焊连接。采用扫描电子显微镜(SEM)和X射线能谱仪(EDX)观察钎焊后的CBN磨粒界面新生化合物形貌。结果表明:随着扫描速度的变化,在CBN磨粒表面生成颗粒状TiN化合物以及针状和六棱柱状的TiB 2化合物。其中,TiN尺寸为100 nm左右,而TiB 2尺寸小于200 nm。在超高频感应连续钎焊CBN磨粒表面首先生成颗粒状TiN层,然后在TiN层外围形成柱状TiB 2层,最终形成CBN/TiN/TiB 2/钎料结构。当扫描速度为0.5 mm/s时,可以获得较好的界面新生化合物层结构。%Continuous brazing with ultra-high frequency induction was proposed to braze the cubic born nitride (CBN) grits and steel substrate based on Ag-Cu-Ti filler alloy. The new compounds morphologies were observed and analogized by scanning electron microscopy (SEM) and energy diffraction X-ray (EDX). The results show that, with the variation of scanning speed, granular compounds TiN about 100 nm in size, the needle-like and prismatic compounds TiB 2 less than 200 nm in size are observed, respectively. The theoretical analysis results reveal that, during continuous brazing by ultra-high frequency induction, granular TiN layer forms on the surface of CBN firstly, and then, prismatic TiB 2 layer forms on the outside of the new TiN layer. The joint is CBN/TiN/TiB 2/filler structure, finally. A satisfactory interfacial structure can be obtained when scanning speed is 0.5 mm/s.

  14. Brazing diamond/Cu composite to alumina using reactive Ag-Cu-Ti alloy%金刚石/铜复合材料与氧化铝陶瓷的Ag-Cu-Ti活性钎焊

    Institute of Scientific and Technical Information of China (English)

    吴茂; 曹车正; Rafi-ud-din; 何新波; 曲选辉

    2013-01-01

    The novel properties of diamond/Cu composites such as low thermal expansion coefficient and high thermal conductivity have rendered the composites a valuable packaging material. The reactive brazing of diamond/Cu composites and alumina was performed using the 97%(72Ag−28Cu)−3%Ti alloy. The reactive brazing alloy displays good wettability with alumina and diamond film, and the equilibrium contact angle on both the substrates is found to be less than 5º. The influence of main bonding conditions such as peak heating temperature and holding time was investigated in detail. It is found that Ti element concentrates at the surface of diamond particle resulting in the formation of TiC compound. The morphology of TiC compound exhibits a close relationship with the shear strength of brazing joint. It is surmised that an optimal thickness of TiC layer on the diamond particle surface can ameliorate the shear strength of brazing joint. However, on the contrary, the particle-like shaped TiC compound or a thicker TiC compound layer can impair the shear strength. The maximum shear strength is found to be 117 MPa.%金刚石/铜复合材料具有低膨胀系数和高热导率等优异性能,使其成为一种理想的电子封装材料。采用97%(72Ag−28Cu)−3%Ti 活性钎料对金刚石/铜复合材料和氧化铝陶瓷进行钎焊。发现活性钎料在氧化铝陶瓷和金刚石薄膜表面均具有良好的润湿性,在两者表面的平衡润湿角均小于5°。讨论了主要钎焊条件(如钎焊温度和保温时间等)对接头性能的影响。发现钎焊过程中Ti元素聚集在金刚石颗粒的表面形成TiC化合物,且TiC化合物的形貌与钎焊接头的剪切强度具有紧密联系。推测合适的TiC化合物层厚度可改善钎焊接头的剪切强度,而颗粒状的TiC化合物及过厚的TiC化合物层却会损害钎焊接头的性能。获得的最大剪切强度为117 MPa。

  15. Rapidly solidified surface melts of Ni-B-Si-Cr brazing alloy

    Science.gov (United States)

    Tucker, T. R.; Ayers, J. D.

    1981-10-01

    Sintered powder layers of a Ni-based brazing alloy were consolidated by scanned electron beam radiation to produce a continuous fused coating. The surface of this coating was then remelted by laser and electron beams under differing conditions, resulting in a variety of resolidification structures. Alloy BNi2 was chosen for these studies because it exhibits substantial hardening on grain refinement and because it can be prepared in the glassy state relatively easily. Surface microhardness for BNi2 reaches a maximum of about 1200 DPH at a cooling rate approaching 105 K/s. For higher quench rates, hardness decreases and ductility increases. As the cooling rate approaches 107 k/s, overlapping beam scans produce an extended amorphous surface. A solidification rate higher than that needed to produce an amorphous structure in a single melt pass is necessary to avoid surface cracking or crystallization when overlapping melt passes are employed.

  16. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.;

    2012-01-01

    Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion...... potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1wt% NaCl solution at pH 2.8 were...... susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion...

  17. Investigation of Be/Cu joints via HHF tests of small-scale mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Litunovsky, N.; Mazul, I.; Yablokov, N. [Efremov Inst., St. Petersburg (Russian Federation)

    1998-01-01

    Beryllium-copper (Be/Cu) joints in divertor components work under cyclic heat loads. To develop reliable joints small-scale mockups are fabricated by divertor technologies and tested under the divertor conditions. One of the critical damaging factors that exist in the divertor and have to be simulated is thermocyclic heat loads in the range of 1-15 MW/m{sup 2}. This work presents the divertor mockups that have beryllium tiles with different dimensions (5 x 5 - 44 x 44) mm{sup 2} brazed with copper alloy heat sink. The electron beam was used to braze these mockups so as to decrease the formation of brittle intermetallic layers. The description of mockups design, geometry of armour tiles and fabrication techniques are presented in the paper. The results of screening and thermocyclic tests of these mockups in the heat flux range of 2-12 MW/m{sup 2} with a number of cycles {approx}10{sup 3} are presented. The results of metallographic analysis are also presented. The results of fabrication and testing with small-scale mockups for first wall application are also described. (author)

  18. Research Progress of Cu-base Brazing Filler Metals for Brazing Silicon Nitride Ceramics%钎焊氮化硅陶瓷的 Cu 基钎料的研究进展

    Institute of Scientific and Technical Information of China (English)

    栗慧

    2014-01-01

    陶瓷连接技术是结构陶瓷实用化的有效手段,焊料成分对连接体的性能具有决定性作用。文章主要从焊料成分的角度,重点总结了钎焊Si3 N4陶瓷的Cu基钎焊材料的发展现状。%Joining technology of silicon nitride based materials is the most effective means for practical application.The chemical composition of adhesive has significant influence on the joining strength.The re-cent development in brazing of Si3 N4 ceramics Cu-base brazing fillers is emphatically reviewed in this paper from the point of chemical composition.

  19. The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding

    Science.gov (United States)

    Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.

    The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.

  20. 一种新型钎料的成型方法及应用%Forming method and its application of a novel brazing filler metal

    Institute of Scientific and Technical Information of China (English)

    王星星; 龙伟民; 于新泉; 裴夤崟; 孙华为; 程亚芳

    2013-01-01

    主要设计了一种新型钎料的成型模具——三叶内摆线形滚动拉丝模,对其结构特征给以描述,通过算例将新型钎料与棒状钎料进行对比,详细介绍新型三叶内摆线形钎料的实现过程.结果表明,与棒状钎料相比,新型三叶内摆线形钎料与三钢球的接触面积大,增加幅度为15%~50%.在拉拔长度一定的条件下,与等横截面积的棒状钎料相比,三叶内摆线形钎料的横截面周长及体表面积较大.设计的新型钎料成型模具可有效减少能耗,提高拉拔效率,实现三叶内摆线形新型钎料的产业化.%A wire drawing dies of new brazing filler metal was designed.The structure feature of this wire drawing dies was described,and the body surface area of the new brazing filler metal was compared with rod-like brazing filler metal through examples,the process of trefoil hypocycloid brazing filler metal was introduced in detail.The results indicate that the contact area of trefoil hypocycloid brazing filler metal and three steel ball is larger about 15%~50% than the rod-like brazing filler metal.As compared to general trod-like brazing filler metal,the cross-sectional perimeter and body surface area of trefoil hypocycloid brazing filler metal is also larger under the same drawing length.The novel wire drawing dies can effectively reduce energy consumption and improve the drawing efficiency.Industrialization of trefoil hypocycloid new brazing filler metal would be realized in future.

  1. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...

  2. Spacesuit mobility knee joints

    Science.gov (United States)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  3. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    Science.gov (United States)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  4. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  5. Brazing of Mo to a CuZr alloy for the production of bimetallic raw materials for the CLIC accelerating structures

    CERN Document Server

    Salvo, M; Heikkinen, Samuli; Salvo, Milena; Casalegno, Valentina; Sgobba, Stefano; Rizzo, Stefano; Izquierdo, Gonzalo Arnau; Taborelli, Mauro

    2010-01-01

    Future linear accelerators, as CLIC (Compact Linear Collider), are extremely demanding in terms of material properties. Traditionally accelerating structure is made of brazed OFE copper parts. For the high conducting regions submitted to mechanical fatigue, CuZr would represent an improved selection than pure copper while for regions where the highest electric field is applied a refractory metal, i.e. Mo, could result in a better performance. The feasibility of joining such materials, namely CuZr (UNS C15000) and pure Mo has been investigated. The joining method developed and investigated here consists in a vacuum brazing process exploiting a Cu-based brazing filler applied under appropriate vacuum conditions. Apparent shear strength (adapted from ASTM B898) on the joined samples was about 200 MPa. (C) 2010 Elsevier B.V. All rights reserved.

  6. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  7. International joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2001-01-01

    The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....

  8. Cu含量对Ag-Cu钎料钎焊透氧膜界面结构的影响%Effect of Cu Content on Interface Microstructures of Oxygen-Permeable Membrane Brazed with Ag-Cu Brazing Filler

    Institute of Scientific and Technical Information of China (English)

    王方; 张玉文; 丁伟中; 鲁雄刚

    2011-01-01

    采用Ag-Cu钎料用于透氧膜与不锈钢支撑体之间的封接,研究了Cu含量对Ag-Cu钎料钎焊透氧膜界面结构的影响.利用SEM对连接界面的显微组织进行观察,并用EDS对界面的相组成进行分析.结果表明:纯Ag与透氧膜陶瓷之间的连接界面无元素互扩散;Ag中少量1 at%Cu的添加并未明显改善钎焊连接界面:当Cu含量增加到3.3 at%时,在透氧膜一侧生成一层由Cu和Ag扩散所致的厚度约200 μm的反应层,反应层的生成表明Ag-3.3Cu钎料与透氧膜之间具有良好的润湿性和界面结合.%Ag-Cu brazing filler were adopted to seal oxygen-permeable membrane ceramics and stainless steel support, and the effect of Cu content on interface microstructure of oxygen-permeable membrane brazed with Ag-Cu brazing filler was investigated. The microstructure of the interface was observed by SEM and the constituent phases were analyzed by EDS. The results show that no elemental interdiffusion occurs in the interface of pure Ag and oxygen-permeable membrane; the addition of 1 at%Cu doesn't improve the bonding of the interface obviously; when the Cu content reaches 3.3 at%, a reaction layer of about 200μrn in thickness forms on the membrane side due to the diffusion of Cu and Ag, which indicates the good wetting ability and interface bonding between Ag-3.3Cu brazing filler and oxygen-permeable membrane.

  9. Effects of Gap Width and Groove on the Mechanical Properties of Butt Joint Between Aluminum Alloy and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Honggang DONG; Chuanqing LIAO

    2013-01-01

    Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%,the same below) and Zn-15%Al flux-cored filler wires.The effects of gap width and groove in steel side on the microstructure and tensile strength of the resultant joints were investigated.For the joint made with 0 mm-wide gap and without groove in steel side,severe incomplete brazing zone occurred along the steel side and bottom surfaces,and consequently seriously deteriorated the joint strength.However,presetting 1.5 mm-wide gap or with groove in steel side could promote the wetting of molten filler metal on the faying surfaces,and then significantly enhance the resultant joint strength.Moreover,post-weld heat treatment could further improve the tensile strength of the joints.During tensile testing,the specimens from the joints made with Al-12%Si flux-cored filler wire fractured through the weld or interfacial layer,but those from the heat-treated joints made with Zn-15%Al flux-cored filler wire fractured in the aluminum base metal.

  10. Cu含量对铝基钎料性能的影响%Effect of Cu content on the properties of aluminum brazing

    Institute of Scientific and Technical Information of China (English)

    王君君; 王艳; 何雷

    2012-01-01

    试验选用Al-1 1Si-0.3Cu、Al-11Si-4Cu和Al-11Si-1OCu三种铝基钎料,利用SDTQ600型差示扫描量热仪、Phillips X'Pert型X射线衍射仪和OLYMPUS型光学显微镜等分析Cu含量对钎料性能的影响.研究表明,三种钎料的基本组织为:基体α(Al)、共晶硅(α+Si)和少量初生硅;随着Cu含量的增加,Cu与Al之间形成的金属间化合物相的含量增加,钎料硬度随之增加.钎料熔化特性曲线表明,增加Cu含量能有效降低钎料的熔点,并使钎料凝固温度区间变窄.腐蚀试验表明随Cu含量的增加钎料腐蚀率增加.钎料的铺展面积受Cu饱和程度的影响,当Cu含量低于其在Al中溶解度时,随Cu含量增加,铺展面积增大;反之,铺展面积减小.%Three components of aluminum brazing were used for experiment,including Al-11Si-0.3Cu,Al-11Si-4Cu and Al-11Si-10Cu,and on the influence that the performance of brazing was by Cu content analyzed by SDTQ600 type Differential Scanning Calorimeter DSC,Phillips X'Pert type X-ray diffraction and OLYMPUS type Optical Microscope.Research showed that the basic organization was composed of matrix a (Al).eutectic silicon (a + Si) and a few primary silicon for three kinds of aluminum brazing; with the Cu elements increased,the intermetallic phase formed between Cu and Al between content increased,solder hardness increased.Melted characteristic curve of brazing showed that the content of Cu elements increased could effectively reduce the melting point of brazing,and make solidification temperature interval of brazing narrow.Corrosion test suggested that with the content of Cu increased,corrosion rate of brazing increased. Spreading area of brazing was dependent on the influence of Cu saturated degree,when Cu content was lower than its solubility in the Al.with Cu content increased,spreading area increased;conversely,the reverse.

  11. Brasagem da zircônia metalizada com titânio à liga Ti-6Al-4V Brazing of metalized zirconia with titanium to Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    J. S. Pimenta

    2012-06-01

    Full Text Available Zircônia tetragonal estabilizada com ítria foi mecanicamente metalizada com titânio e a condição de molhamento avaliada com as ligas convencionais Ag-28Cu e Au-18Ni. Estas dissolveram o revestimento de titânio para uma completa distribuição deste metal ativo na superfície cerâmica, gerando uma liga ativa in situ e possibilitando adequadas ligações químicas ao metal base na temperatura de união. Os melhores resultados de molhamento foram selecionados para brasagem indireta em forno de alto-vácuo nas juntas ZrO2/Ti-6Al-4V. Testes de detecção de vazamento de gás hélio foram realizados na interface de união das juntas; amostras removidas na seção transversal de juntas estanques foram examinadas por técnicas de análise microestrutural. Formou-se uma camada escura adjacente à cerâmica metalizada, responsável pelo molhamento ocasionado pela liga Ag-28Cu. Entretanto, o uso da liga Au-18Ni resultou em precipitação de intermetálicos e microtrincamento interfacial. Perfis de microdureza através da interface resultante até onde a zircônia mostrou típico escurecimento não indicaram alternância significativa entre medições consecutivas; os resultados dos ensaios de resistência mecânica à flexão-3p foram considerados satisfatórios.Yttria tetragonal zirconia polycrystal was mechanically metallized with titanium and the wetting behavior on the ceramic surface was analyzed using the conventional fillers Ag-28Cu and Au-18Ni. These alloys had dissolved the active metal coating, which acts to zirconia reduction on its surface and promoting suitable chemical bonding to the metallic member. Better wetting results were selected for indirect brazing in a high-vacuum furnace for ZrO2/Ti-6Al-4V simple butt joints. Helium gas leak detection was made at the joints interface; samples were removed from the tight joints cross-section and examined by microstructural analysis techniques and EDX analysis. There was formation of a dark

  12. Ceramic Technology Project database: September 1990 summary report. [SiC, SiN, whisker-reinforced SiN, ZrO-toughened aluminas, zirconias, joints

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    Data generated within the Ceramic Technology Project (CTP) represent a valuable resource for both research and industry. The CTP database was created to provide easy access to this information in electronic and hardcopy forms by using a computerized database and by issuing periodic hardcopy reports on the database contents. This report is the sixth in a series of semiannual database summaries and covers recent additions to the database, including joined brazed specimen test data. It covers 1 SiC, 34 SiN, 10 whisker-reinforced SiN, 2 zirconia-toughened aluminas, 8 zirconias, and 34 joints.

  13. Modeling of Human Joint Structures.

    Science.gov (United States)

    1982-09-01

    Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are

  14. Design, fabrication, and performance of brazed, graphite electrode, multistage depressed collectors with 500-W, continuous wave, 4.8- to 9.6-GHz traveling-wave tubes

    Science.gov (United States)

    Ramins, Peter; Ebihara, Ben

    1989-01-01

    A small, isotropic graphite electrode, multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W, continuous wave (CW), 4.8- to 9.6-GHz traveling-wave tube (TWT). The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The brazing technique, which used copper braze filler metal, is compatible with both vacuum and the more commonly available hydrogen atmosphere brazing furnaces. The TWT and graphite electrode MCC bakeout, processing, and outgassing characteristics were evaluated and found to be comparable to TWT's equipped with copper electrode MDC's. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average radiofrequency (RF), overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-hr CW test, conducted without the use of an appendage ion pump, showed no gas buildup and excellent stability of the electrode surfaces.

  15. Effects of Brazing Parameters on Microstructure and Mechanical Properties of Copper and Steel Brazed Joint%钎焊工艺参数对铜/钢钎焊接头组织及性能的影响

    Institute of Scientific and Technical Information of China (English)

    秦优琼

    2010-01-01

    在钎焊时间120~1500s、钎焊温度1093~1223K的条件下,采用Ag-Cu共晶钎料对铜和1Cr18Ni9Ti进行钎焊,利用扫描电镜及能谱仪对其接头的界面组织进行了研究.结果表明,接头界面结构为Cu/Cu(S.S)/Ag(S.S)+Cu(S.S)/1Cr18Ni9Ti.以抗剪强度评价其接头的力学性能,发现当钎焊温度为1173K、保温时间为300s时,接头抗剪强度最高,为214MPa.

  16. Influence of Cu on Properties of Zn-Al Solders for Al/Cu Brazing%Cu元素对铝/铜钎焊用Zn-Al钎料性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘凤美; 杨凯珍; 刘师田; 刘正林

    2009-01-01

    研究了Cu元素对铝/铜钎焊用Zn-Al钎料的熔化温度、铺展性、接头剪切强度及焊缝组织的影响.结果表明,在Zn-10Al钎料中通过添加Cu元素,可以改善在铝表面上的铺展性能,却降低了在铜表面上的铺展性能,其熔化温度(液相点)降低.当添加一定比例的Cu元素时,可使焊缝中钎料层与铜母材之间界面的组织变细小,从而提高钎焊接头的剪切强度.Cu元素含量过高时,在靠铜侧钎料层会生成层状相.%The influences of copper on properties of Zn-Al solders for Al/Cu brazing, which include wettability,shear strength of joint, microstructure of weld and melting point were studied. The results show that Zn-Al solders,into which element of Cu was added, improve wettability on the surface of Al, but decrease it on the surface of Cu and also decrease the liquidus point. While adding certain ratio of copper into this type of solders, the shear strength of joint can be increased and the microstructure between solder layer and Cu becomes fine. When the content of element Cu is over high, the laminar phase can be formed near the side of Cu part.

  17. Culture - joint fluid

    Science.gov (United States)

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  18. Sacroiliac joint pain - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe the ...

  19. Knee joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the ... to slide 4 out of 4 Overview The knee is a complex joint. It contains the distal ...

  20. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  1. 中国古青铜器表面富锡铜鎏镀及鎏焊的工艺探索第三部分——鎏焊%Technological study on amalgam coating and brazing of tin-rich copper on surface of bronze wares of ancient China——Part Ⅲ.Amalgam brazing

    Institute of Scientific and Technical Information of China (English)

    吴元康; 储荣邦

    2012-01-01

    Amalgam brazing is derived from amalgam coating. The definition, characteristics, application, and significance of amalgam brazing were expatiated. A process of amalgam brazing for producing combined bronze wares was developed. The compositions of brazing material and flux were given. The operations of pretreatment, mercury removal by heating, and post-treatment were described. The implementation of amalgam coating and brazing processes was introduced taking the Western Han Dynasty's bronze cowry container with tribute-paying figures excavated in Yunnan as an example. The method for distinguishing whether an antique bronze ware is produced by cast welding after lost-wax casting or by copper brazing with separated small cast parts was presented.%鎏焊是从鎏镀衍生而来的.阐述了鎏焊的定义、特点、应用和意义.设计了用于制作组合青铜器的鎏焊工艺,给出了焊料、焊剂配方,说明了前处理、加热驱汞及后处理的操作方法.以西汉云南纳贡场面青铜贮贝器为例,介绍了鎏镀与鎏焊工艺的具体实施过程.提出了鉴别古青铜器是由失蜡铸造后铸焊而成还是由分铸小件铜焊而成的方法.

  2. AZ31B镁合金/不锈钢异种合金双光束激光熔钎焊接特性%Welding Characteristics of AZ31B Magnesium Alloy/Stainless Steel Dissimilar Alloys by Dual Beam Laser Welding-Brazing Process

    Institute of Scientific and Technical Information of China (English)

    李俐群; 郭伟; 檀财旺

    2012-01-01

    以镁基焊丝为填充材料,采用双光束激光熔钎焊的方法对AZ31B镁合金/不锈钢的焊接特性进行了研究.分析了不同工艺参数对焊缝成形、接头力学性能和断裂行为的影响.结果表明,采用双光束进行填丝熔钎焊能够获得较满意的外观成形,无明显缺陷,焊接工艺范围较宽.接头拉伸均断裂于熔化焊的镁侧焊缝及热影响区(HAZ),最大剪切强度为193 MPa,达到镁合金母材强度的71%.组织分析发现焊缝和HAZ的晶粒粗大,成为接头的薄弱部位,是接头失效的主要原因.钎焊侧界面发生了冶金反应,界面处生成1~2 μm的反应层.%AZ31B magnesium alloys and 201 stainless steel are joined by laser welding-brazing process with Mg based filler. The welding characteristics including influence of processing parameters on weld appearance, mechanical properties and fracture behavior are studied- Results indicate that satisfactory appearance of welds without evident defects can be achieved by dual beam laser-brazing process with filler. A wide processing window is obtained. The tensile-shear test shows that fracture occurred at two places, weld seam and heat affect zone (HAZ) at the welding side of Mg alloys. The maximum shear strength can reach 193 Mpa, which is 71% of that of Mg base metal. The microstructure observed indicates that seam and HAZ are weak parts, which results in failure of joint due to presence of coarse grains. Metallurgical reaction occurs at the brazing side, where reaction layer with thickness of 1~2 μm forms.

  3. Fluxless Joining between Aluminium Alloy and Galvanized Steel by Fiber Laser Fusion Welding-Brazing with Filler Powder%铝/钢异种金属无钎剂激光填粉熔钎焊接

    Institute of Scientific and Technical Information of China (English)

    赵旭东; 肖荣诗

    2012-01-01

    The fluxless fusion welding-brazing result between 6061 aluminum alloy and galvanized steel with filler material is studied by using rectangular laser beam. The dependence of the mechanical properties on solidification behavior is established based on the joint formation and the weld microstructure. The results indicate that a fusion welding-brazing weld of AA6061 and galvanized steel without flux can be achieved using the welding with filler powder. By optimizing the welding parameters, the favorable weld without crack and porosity can be achieved. The weld width and the thickness of intermetallic compounds layer increase with laser energy input increasing. The intermetallic in the weld is composed of Al-Fe and Al-Fe-Si system phases. Specimens are fractured at the weld/steel interface with the brittle characteristic during tensile test. The weakness of the joint is the weld interface. The maximum intensity of 152. 5 N/mm is obtained. Al6Fe2Zn0.4 and α-Al are found in the fracture surface on the aluminum side. The intensity of joint is both determined by weld width and the thickness of intermetallic compound layer.%采用宽带激光光斑和填粉焊接技术,在不使用钎剂的情况下进行6061铝合金/镀锌钢板的熔钎焊接实验.分析测试了接头成形、焊缝组织和接头强度,并探讨了影响接头强度的因素.结果表明,采用此方法可实现6061铝合金/镀锌钢板的熔钎焊连接.选用优化的焊接工艺参数获得了成形饱满,无裂纹、气孔等缺陷的焊缝.焊缝熔宽和金属间化合物层厚度随焊接热输入量的增加而增大.熔钎焊缝中金属间化合物由AFFe和Al-Fe-Si系统化合物组成.拉伸试样均断裂在钎料/镀锌钢界面,接头最大机械抗力为152.5 N/mm,断口呈脆性断裂特征,钎料/镀锌钢界面为接头的薄弱环节.拉伸试样铝一侧断裂面由Al5 Fe2 Zno.4和α-Al组成.焊缝熔宽、金属间化合物层厚度共同决定了接头的机械抗力水平.

  4. Interfacial Characteristics of Diamond Brazed by Ultra-high Frequency Induction%超高频连续感应钎焊金刚石界面特征

    Institute of Scientific and Technical Information of China (English)

    李奇林; 徐九华; 苏宏华; 谭敏; 茅暑杰

    2013-01-01

    Continuous induction brazing with ultra-high frequency is proposed to braze the diamond grits and large-size steel substrate with Ag-Cu-Ti filler alloy. The interfacial microstructure of the brazed specimen and the resultant morphology on the diamond surface was investigated and analogized by scanning electron microscopy (SEM) and energy diffraction X-ray(EDX). The experimental results show that the bonding among diamond grits, filler alloy and steel substrate was achieved. Due to the short brazing time, the small grain and a little dendritic structure in the filler alloy was obtained. A reaction layer between Ti and C is observed at the interface between diamond grits and filler alloy. The grainy TiC, with the size less than 100 nm, was formed and discretely distributed on the surface of diamond grits. Compared to furnace brazing in vacuum, the interfacial structure of diamond brazed by ultra-high frequency induction is benefit for joining diamond to bonding matrix.%提出超高频连续感应钎焊工艺方法,采用Ag-Cu-Ti合金钎焊金刚石磨粒与大尺寸钢基体.通过扫描电子显微镜(SEM)和X射线能谱仪(EDX)对钎焊后的试样界面微观结构以及金刚石磨粒表面生成物形貌特征进行观察和分析.结果表明,超高频连续感应钎焊实现了金刚石、钎料、基体三者之间的连接,钎焊后的钎料层组织晶粒细小,局部区域可见到枝晶状组织.金刚石与钎料层界面存在Ti元素与C元素的反应层,在金刚石磨粒表面生成点状TiC晶体,其直径均100 nm以下,且在金刚石表面呈离散分布.与真空炉中钎焊工艺相比,该界面结构更有利于钎料层对金刚石磨粒的连接把持.

  5. Managing Joint Production Motivation

    DEFF Research Database (Denmark)

    Lindenberg, Siegwart; Foss, Nicolai Juul

    2011-01-01

    We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared represent...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design.......We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared...

  6. Jointly Poisson processes

    CERN Document Server

    Johnson, D H

    2009-01-01

    What constitutes jointly Poisson processes remains an unresolved issue. This report reviews the current state of the theory and indicates how the accepted but unproven model equals that resulting from the small time-interval limit of jointly Bernoulli processes. One intriguing consequence of these models is that jointly Poisson processes can only be positively correlated as measured by the correlation coefficient defined by cumulants of the probability generating functional.

  7. Joint Program Management Handbook

    Science.gov (United States)

    1994-12-01

    the Engieermg and Manufacuring Devopment Phase. Nfilestoae HI- Develommen Annros Devopment approval marks a significant step for any program, but it is...to review concept formulaton. Systems Engilneertn As with service programs, systems engineering in joint program management is an essential tool . I...MANAGEMENT HANDBOOK On=e wd Umawtaiutt As discussed in Chapter 7, systems analysis of relationships is a usef tool for joint program managers. The joint

  8. 基于 ANSYS 有限元的 Ag-Cu-Ti合金钎焊金刚石磨粒残余应力分析与优化研究%Re search on Thermal Stress of Brazed Diamond Grain with Ag-Cu-Ti Brazing Alloy Based on ANSYS

    Institute of Scientific and Technical Information of China (English)

    朱迪; 吕明; 孟普

    2015-01-01

    The influence of the solder layer thickness to the properties of monolayer brazed diamond tools was studied .The em-bedding depth of diamond was 20%, 40%, 50%, 60%, 80%, respectively .When finite element software ANSYS was used to study the residual stress of diamond brazed with Ag -Cu-Ti alloy brazing , the brazing process could be thought as an isothermal process.Therefore the linear and static analysis method were used to research the residual stress formed during brazing process . Results show that the maximum stress appears at the interface between diamonds and brazing alloy , stress decreases from the bot-tom of the diamond to the top of the diamond;the diamond abrasive endures tensile stress , however , the brazing alloy and tools substrate endures compressive stress .When the embedding depth of the diamond is between 20%and 40%, the residual stress has the minimum value .%研究金刚石包埋深度分别为20%、40%、50%、60%、80%的钎料对单层钎焊金刚石工具性能的影响。利用有限元软件ANSYS对Ag-Cu-Ti合金钎焊金刚石过程中形成的残余应力进行数值模拟,采用线性和静态的分析方法。研究结果表明,最大应力值位于金刚石和钎料界面结合处的最底部,应力从金刚石底部到顶部逐渐减小,金刚石受拉应力,钎料和工具基体受压应力。当金刚石的包埋深度介于20%与40%之间时,钎焊残余应力最小。

  9. Mechanics of Sheeting Joints

    Science.gov (United States)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  10. Avaliação das propriedades mecânicas de juntas cerâmicas usando fitas amorfas como metal de adição Evaluation of the mechanical properties of ceramic joint using amorphous ribbons as filler metals

    Directory of Open Access Journals (Sweden)

    Danielton Gomes dos Santos

    2009-09-01

    Full Text Available Este trabalho teve como objetivo determinar os melhores parâmetros para brasagem de juntas cerâmicas de Al2O3 pré-metalizadas com Ti por processo a plasma utilizando fitas amorfas de ligas Cu49Ag45Cx e como metal de adição. As ligas foram preparadas em forno a arco, e, posteriormente processadas por melt-spinning, variando conteúdo Ce de 4-6. %. A brasagem foi realizada em forno à vácuo e as seguintes variáveis analisadas: tempo de deposição do filme de Ti e temperatura e tempo de brasagem , que foram relacionados com a resistência à flexão em 3 pontos da junta brazada. A equação de regressão linear foi obtida, e verificou-se a interação entre estes fatores. As superfícies cerâmicas metalizadas apresentaram excelente uniformidade e as juntas brasadas muito boa adesão atingindo valores de resistência à flexão de até 176,8 MPa.This work had as objective to establish de best brazing parameter to joint Al2O3 pre-metalized with Ti by plasma process using amorphous ribbons of Cu49g45Ce x alloys as filler metals. The alloys were prepared in arc furnace and processed by melt-spinning process varying the Ce percentiles from 4 to 6. % . The brazing was accomplished in vacuum furnace and the following variables analyzed: deposition time of Ti film, brazing temperature and brazing times which were related to the brazed joint 3-point bending resistance. The interaction between those factors was obtained by linear regression equation. The metalized ceramic surfaces presented an good uniformity and the joint a very good adhesion reaching bending resistance up to 176,8 MPa.

  11. MR diagnosis of temporomandibular joint. A study of joint effusion

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu [Nihon Univ., Matsudo, Chiba (Japan). School of Dentistry

    1998-03-01

    The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)

  12. 硬质合金刀具钎焊后性能变化的研究%Changes in properties of carbide cutting tools after being brazed

    Institute of Scientific and Technical Information of China (English)

    赵丽杰; 王贵成; 王冬

    2001-01-01

    对硬质合金刀具钎焊前后的硬度、裂纹形成及变化、焊缝质量和切削性能等进行了大量的试验研究.结果表明:硬质合金刀具钎焊后硬度下降范围在HRA1以内;采用延长钎焊后保温时间和增加补偿垫片均可以减少或避免刀具表面裂纹的产生;对18CrMnTi渗碳淬火齿轮(HRC55~58)单齿侧刃铣削中钎焊刀具的切削性能同机夹刀具相比无明显差异.它为硬质合金钎焊刀具在精密切削FMS和其他自动化加工中的广泛应用提供了实验和理论依据.%Presents the experimental tests run on hardness of carbide cutting tools before and after being brazed, initiation and propagation of cracks in them, quality of weld and cutting performance of these cutting tools, and the experimental test results which show that the reduction in hardness of carbide cutting tools after being brazed is within HRA1, the initiation of cracks in the surface of cutting tools can be reduced or eliminated by prolonging the holding time for the cutting tools after being brazed and adding shims, and the cutting performance of brazed cutting tools with single cutting edge made of 18CrMnTi is similar to that of fixed machining cutting tool.

  13. Acromioclavicular Joint Separations

    Science.gov (United States)

    2013-01-01

    Published online: 16 December 2012 # Springer Science+Business Media New York 2012 Abstract Acromioclavicular (AC) joint separations are common...injuries. The sports most likely to cause AC joint dislocations are football, soccer , hockey, rugby, and skiing, among others [9, 28, 29]. The major cause

  14. Jointness for the Rest of Us: Reforming Joint Professional Development

    Science.gov (United States)

    2016-06-10

    service members for joint employment . Similar to their enlisted counterparts, the training, education and professional development of DOD civilian...the U.S. Armed forces sought by Congressional legislators and Defense leaders is not possible as long as joint education and training are limited to a...SUBJECT TERMS joint training, joint education , Goldwater Nichols Act, jointness, joint development reform analytics 16. SECURITY CLASSIFICATION OF

  15. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  16. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Science.gov (United States)

    2010-07-01

    ... Volume Volume of empty enclosure Less than 45 cu. in. 45 to 124 cu. in. inclusive More than 124 cu. in... closed with a plug secured by weld or braze. Bolts shall be provided at all corners. 8 The...

  17. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.

  18. Joint Robotics Program

    Science.gov (United States)

    2008-04-23

    Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= JOINT ROBOTICS PROGRAM Published: 23 April 2008 by Joel Brown and Paul Varian 5th Annual Acquisition Research...3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Joint Robotics Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 464 - = = Joint Robotics Program Presenter: Joel Brown, Defense Acquisition University Author: Paul Varian

  19. Joints in steel buildings

    Directory of Open Access Journals (Sweden)

    Gabriel F. Valencia Clement

    2010-04-01

    Full Text Available Masonry and steel components used in constructing buildings are in a constant state of motion. Volumetric changes are produced by temperature variation and deformation resulting from static or dynamic loading and in some materials, such as masonry, due to moisture content. This article addresses means of determining when expansion and seismic joints are required and how to proportion and design appropriate joints, specifically in steel buildings. It does not cover the study of expansion joints in concrete structures, in masonry construction or in non-structural (architectural elements.

  20. 温度对Ag-Cu合金钎焊陶瓷透氧膜的界面反应和连接性能影响的研究%The effect of temperature on the interface reaction and connectivity between Ag-Cu alloy braze and ceramic oxygen-permeable membrane

    Institute of Scientific and Technical Information of China (English)

    刘蛟; 张玉文; 刘旭; 丁伟中

    2011-01-01

    The sessile drop wetting experiment and joint strength test was conducted to study the Ag-3.3mol% Cu air brazing BaCo0.7Fe0.2Nb0.1O3-δ(BCFNO) mixed-conducting membranes for oxygen. The results indicate that the filler has good wetting property to the substrate; with the temperature increasing the wetting angle decreases and the joining strength increases. Controlling the brazing temperature over the monotectic reaction temperature within a certain range, the CuO-rich liquid reacting with BCFNO playing the role of pre-wetting and forming a reaction layer is beneficial to the improvement of the interface joining strength. Then the interface joining strength of joints can reach 65 % of ceramic membranes substrate, fracture occurs mainly in the interface layer between the ceramic substrate and the filler metal.%利用座滴法润湿实验和连接强度测试对Ag-3.3%(摩尔分数)Cu空气钎焊BaCo(0.7)Fe(0.2)Nb(0.1)O(3-8)(BCFNO)混合导体透氧膜陶瓷进行研究.结果表明,此钎料能够很好的润湿BCFNO透氧膜陶瓷,且随着温度的升高润湿角逐渐减小,钎焊界面的连接强度升高.当钎焊温度控制在偏晶反应温度以上一定范围内时,富CuO的液相对BCFNO起到了预润湿作用并形成1层反应层,有利于界面连接强度的提高.这时的界面连接强度可以达到透氧膜陶瓷抗弯强度的65%,断裂主要发生在钎料与陶瓷基界面间的反应层内.

  1. Joint Quantum Institute

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...

  2. Healthy Joints Matter

    Science.gov (United States)

    ... my joints more healthy? Definitions What can go wrong? Although you might think arthritis affects only older ... Discovery Into Health ® Home | Health Information | Research | Funding | News & Events | About Us | Portal en español | Asian-Language ...

  3. Improved orthopedic arm joint

    Science.gov (United States)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  4. 电解法分离Cu-Al钎焊接头的研究%Separation of copper-aluminum brazed joints by electrolysis

    Institute of Scientific and Technical Information of China (English)

    夏天东; 邹培炯

    2010-01-01

    文中从再制造基本思想出发,对Cu-Al钎焊接头分离方法进行了研究.采用电解法对Cu-Al钎焊接头进行了分离.研究结果表明,随电极电压升高,电解分离时间减少,接头的质量损失也减少.但电极电压过高,易出现发热过大、烧断导线的现象.较理想的电解分离参数为:电解液为PH=1.5的15%NaCl溶液时,电极电压为0.8 V,电流为31.0 A或电极电压为0.9 V,电流为37.1 A.试验中采用等离子发射光谱仪测定电解分离后电解液中Al3+浓度,并通过计算得出溶液中Al3+质量与电解分离过程中损失的质量有较好的对应关系,从而证明了电解分离过程中Cu-Al接头损失的质量主要来自于阳极铝一侧的损失.

  5. Concrete Pavement Joint Deterioration

    OpenAIRE

    2016-01-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in INDOT specification, pavement materials, designs and construction practices, and current de-icing materials were examined and related to the durability of concrete at the joints of existing pavements. A survey of concrete pavements across the state ...

  6. 铝与钢、不锈钢、铜焊接,复合板制备及匙孔填充新技术——搅拌摩擦钎焊(FSB)的系列应用%New Techniques for Joining Aluminum/Steel, Aluminum/Stainless Steel and Aluminum/Copper, Fabricating Bimetallic Composite Plate and Filling Keyhole Based on Friction Stir Brazing (FSB)

    Institute of Scientific and Technical Information of China (English)

    张贵锋; 焦伟民; 张建勋; 王士元

    2013-01-01

    In order to overcome the wear of pin by the hard parent metal during friction stir welding (FSW), a novel process of friction stir brazing (FSB) was developed by Welding Research Institute, XPan Jiaotong University.Using the novel process,lap joints of Al/steel, Al/Cu , Al/stainless steel, and Al/steel, Al/stainless steel bimetallic composite plates were successfully prepared.Compared with furnace brazing, FSB has the following advantages: atmospheric environment, clean frictional heat source, the tool without pin and suitable filler metal beneficial to oxide film removal. While comparing with traditional FSW,the characteristics of FSB Can be summarized as follows;rapid dissolution of base metals, instead of the deformation of hard parent metal; multiple mechanisms of interfacial extruding and torsion action, undermining (with aid of filler metal) and extrusion of liquid phase to remove the oxide film; elimination wear of the pin by steel parent metal and no keyhole.%对传统搅拌摩擦焊因针的磨损而难以适应较硬金属材料的不足,西安交通大学开发了一种“搅拌摩擦钎焊(friction stir brazing:FSB)”专利技术,并利用该技术成功焊接了铝/钢、铝/铜和铝/不锈钢异种金属搭接接头,且成功焊接了铝/钢和铝/不锈钢双金属复合板.该技术以洁净高效的摩擦热为热源,采用无针柱状搅拌头,并预置合适钎料在大气环境下施焊.与传统炉中钎焊相比,因工具对界面的挤压与扭转作用,具有明显的去膜优势;与传统搅拌摩擦焊相比,该技术用母材的快速溶解代替较硬材料的塑性变形,通过“界面扭转、挤压+膜下潜流(钎料的加入)+加压挤出”多种机制有效去除母材表面的氧化膜,且可以避免较硬材料对搅拌头针端的磨损,不产生匙孔.

  7. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  8. Combined Laser Beam Welding and Brazing Process for Aluminium Titanium Hybrid Structures

    Science.gov (United States)

    Möller, F.; Grden, M.; Thomy, C.; Vollertsen, F.

    The current state of the art in light-weight construction is - for the case of aircraft structures - the use of either aluminium or titanium. Whereas aluminium is light-weight and less expensive, titanium offers superior corrosion properties at higher cost. In order to combine the advantages of both materials, a hybrid Ti-Al structure is proposed for e.g. seat-track application. In this paper, an overview of the results from this research work and the accompanying thermo-mechanical simulations will be reported and discussed. On the basis of the development of an appropriate system technology, the process development will be described, focusing on the main influencing parameters of the process on joint properties.

  9. Proximal Tibiofibular Joint: An overview

    Directory of Open Access Journals (Sweden)

    Tze Wang Chan

    2016-06-01

    Full Text Available Proximal tibiofibular joint is a frequently neglected joint which can be a source of lateral knee pain. Open surgery is the current mainstay of surgical management of proximal tibiofibular joint disorders. The proximal tibiofibular arthroscopy allows access to the joint and adjacent important ligamentous structures. This forms the basis of further development of arthroscopic procedures for a variety of pathologies.

  10. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    Science.gov (United States)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  11. [Biomechanics of the ankle joint].

    Science.gov (United States)

    Zwipp, H

    1989-03-01

    According to Fick, the tree-dimensional patterns of foot motion are best characterized as jawlike movement. Anatomically and biomechanically, this process represents conjoined, synchronous motion within the three mobile segments of the hindfoot: the ankle joint, the posterior subtalar joint, and the anterior subtalar joint. Foot kinematics can be described more completely if the anterior subtalar joint is defined not only as the talocalcaneal navicular joint, but as including the calcaneocuboid joint, thus representing the transverse joint of the tarsus, i.e., the Chopart joint. The axes of these three joints can be defined precisely. In some parts they represent a screwlike motion, clockwise or counter-clockwise, around the central ligamentous structures (fibulotibial ligament, talocalcaneal interosseous ligament, bifurcate ligament). The individual anatomy and structure of these ligaments provide variations in the degree and direction of foot motion. A precise knowledge of foot kinematics is important in surgical ligament and joint reconstruction and in selective foot arthrodeses.

  12. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  13. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  14. Joint ventures in medical services.

    Science.gov (United States)

    Rublee, D A

    1987-01-01

    This paper is an overview of joint-venture activity in healthcare, describing trends in joint ventures and raising issues for physicians. The purposes are to discuss the major current facets of joint-venture alliances in healthcare and to identify policy issues that arise from the trend to use joint ventures as an organizational tool. Speculation is made about the future role of joint ventures in the organization of healthcare.

  15. C/SiC陶瓷基复合材料与铌合金钎焊机理研究%Study on brazing mechanism of C/SiC ceramic matrix composite to Nb alloy

    Institute of Scientific and Technical Information of China (English)

    张枝梅; 张权明

    2012-01-01

    阐述了C/SiC陶瓷基复合材料与铌合金的活性钎焊连接方式,通过扫描电镜、金相分析等手段,研究了钛基和铜基活性钎焊料分别在C/SiC陶瓷基复合材料和铌合金上的润湿性,并分析了两种材料的钎焊连接界面的微观元素扩散特征。研究结果表明,陶瓷基复合材料与铌合金的活性钎焊机理主要是通过钎焊料中的活性元素分别向陶瓷和铌合金中扩散并发生化学反应,从而实现三者之间的良好键合。%The active brazing method of C/SiC ceramic matrix composite to Nb alloy is discussed.The wettability of Ti-and Cu-based brazing alloys respective on C/SiC ceramic matrix composite and Nb alloy is studied,and the diffusion features of microcosmic elements on brazing connection interfaces of the two brazing alloys are investigated by the aid of scanning electron microscope(SEM) and metallographic phase analysis.The research results show that the active brazing mechanism of ceramic matrix composites to Nb alloy is that the active elements in brazing alloys are diffused to ceramics and Nb alloy respectively and chemically reacted with each other to realize the perfect bonding among them.

  16. Temporomandibular joint examination reviewed

    Directory of Open Access Journals (Sweden)

    L. Guarda Nardini

    2011-09-01

    Full Text Available The temporo-mandibular joint (TMJ it’s a joint closely related to the skull base, the spine, and the jaws; all these anatomical structures must be taken in consideration when evaluating pain involving the tmj. In order to detect patients affected by pathology or dysfunctions of the tmj, physical examination is of great value in orienting the diagnosis. Inspection must consider the symmetry of the body, the dental status and the type of occlusion. Palpation is a way to assess contractiont involving the muscles of the masticatory system and of the neck. Auscultation, based on articular noise provides means to determine whether we are dealing with degeneration of the joint or a dislocation of the intrarticular disc. In order to confirm the diagnosis obtained with the clinical evaluation, it’s useful to perform imaging techniques as opt, tomography and TC of the tmj and electromyokineosiography – index of the mandibular functionality and of the muscles status. MRI and dynamic MRI are among the non invasive exams which give the greatest amount of information, regarding the disc position and the joint degeneration. Arthroscopy is an invasive technique that allows early diagnosis of degeneration and is helpful to reveal early inflammatory processes of the joint.

  17. Temporomandibular joint disorders.

    Science.gov (United States)

    Buescher, Jennifer J

    2007-11-15

    Temporomandibular joint disorders are common in adults; as many as one third of adults report having one or more symptoms, which include jaw or neck pain, headache, and clicking or grating within the joint. Most symptoms improve without treatment, but various noninvasive therapies may reduce pain for patients who have not experienced relief from self-care therapies. Physical therapy modalities (e.g., iontophoresis, phonophoresis), psychological therapies (e.g., cognitive behavior therapy), relaxation techniques, and complementary therapies (e.g., acupuncture, hypnosis) are all used for the treatment of temporomandibular joint disorders; however, no therapies have been shown to be uniformly superior for the treatment of pain or oral dysfunction. Noninvasive therapies should be attempted before pursuing invasive, permanent, or semi-permanent treatments that have the potential to cause irreparable harm. Dental occlusion therapy (e.g., oral splinting) is a common treatment for temporomandibular joint disorders, but a recent systematic review found insufficient evidence for or against its use. Some patients with intractable temporomandibular joint disorders develop chronic pain syndrome and may benefit from treatment, including antidepressants or cognitive behavior therapy.

  18. Distal radioulnar joint injuries

    Directory of Open Access Journals (Sweden)

    Binu P Thomas

    2012-01-01

    Full Text Available Distal radioulnar joint is a trochoid joint relatively new in evolution. Along with proximal radioulnar joint , forearm bones and interosseous membrane, it allows pronosupination and load transmission across the wrist. Injuries around distal radioulnar joint are not uncommon, and are usually associated with distal radius fractures,fractures of the ulnar styloid and with the eponymous Galeazzi or Essex_Lopresti fractures. The injury can be purely involving the soft tissue especially the triangular fibrocartilage or the radioulnar ligaments.The patients usually present with ulnar sided wrist pain, features of instability, or restriction of rotation. Difficulty in carrying loads in the hand is a major constraint for these patients. Thorough clinical examination to localize point of tenderness and appropriate provocative tests help in diagnosis. Radiology and MRI are extremely useful, while arthroscopy is the gold standard for evaluation. The treatment protocols are continuously evolving and range from conservative, arthroscopic to open surgical methods. Isolated dislocation are uncommon. Basal fractures of the ulnar styloid tend to make the joint unstable and may require operative intervention. Chronic instability requires reconstruction of the stabilizing ligaments to avoid onset of arthritis. Prosthetic replacement in arthritis is gaining acceptance in the management of arthritis.

  19. Ni-Cr-B-Si+Cu-P-Sn复合钎料真空钎焊金刚石%Vacuum brazing diamond with Ni-Cr-B-Si+Cu-P-Sn composite filler metal

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 刘磊; 李华

    2016-01-01

    采用在镍基钎料中分别添加3%、5%和7%(质量分数)Cu-P-Sn组成新型复合钎料,并进行金刚石磨粒的钎焊实验,利用SEM、EDS和XRD对金刚石焊后的界面碳化物形貌及钎料组织进行测试分析。结果表明:添加5%Cu-P-Sn的复合钎料进行金刚石钎焊时,钎焊温度有所下降,金刚石表面碳化物较规整,并且数量有所下降,降低金刚石的热损伤。新型钎料中形成树枝晶α-Ni基固溶体和枝晶间Ni 31 Si 12、Cr 7 C 3等化合物的组织,不同含量Cu-P-Sn与Ni-Cr-B-Si合金可以较大程度互溶,可以实现钎料性能的调控,降低金刚石的热损伤。%A series of new composite brazing fillers metal were got by adding 3%, 5% or 7% (mass fraction) Cu-P-Sn in the primary brazing filler metal Ni-Cr-B-Si, respectively, then, they were used to braze diamond particles. The interface morphology of diamond carbide and the microstructure of brazing filler metal were tested by SEM, EDS and XRD. The results show that, when the composite brazing filler metal containing 5% Cu-P-Sn alloy, the carbide on the surface of the diamond is more regular and less with brazing temperature decreases, which decreases the thermal damage to the diamond. In the brazing filler alloy, the microstructures, such as dentrite included solid solution of Ni with some carbides like Ni31Si12 and Cr7C3, are formed. As the added component, Cu-P-Sn at different proportions can be dissolved into the primary brazing filler Ni-Cr-B-Si in large degree, which can adjust the properties of the filler and reduce the heat damage to the diamond.

  20. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  1. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  2. Joint for deployable structures

    Science.gov (United States)

    Craighead, N. D., II; Preliasco, R. J.; Hult, T. D. (Inventor)

    1985-01-01

    A joint is described for connecting a pair of beams to pivot them between positions in alignment or beside one another, which is of light weight and which operates in a controlled manner. The joint includes a pair of fittings and at least one center link having opposite ends pivotally connected to opposite fittings and having axes that pass through centerplates of the fittings. A control link having opposite ends pivotally connected to the different fittings controls their relative orientations, and a toggle assemly holds the fittings in the deployed configuration wherein they are aligned. The fittings have stops that lie on one side of the centerplane opposite the toggle assembly.

  3. Effects of La, Ce and Si Co-addition on Wettability of Copper Phosphorus Brazing Filler Metal and Microstructure of Brazing Seam%复合添加La,Ce和Si对铜磷钎料润湿性和焊缝微观组织的影响

    Institute of Scientific and Technical Information of China (English)

    姜锋; 刘辉; 文康; 徐慧惠

    2013-01-01

    对添加La、Ce和Si的HL201-E钎料和HL205钎料进行了熔化特性及铺展性试验,并采用金相显微镜、扫描电镜、能谱仪分析了两种焊件焊缝微观组织,研究了复合添加La、Ce和Si对铜磷钎料润湿性和焊缝微观组织的影响.结果表明,HL201-E钎料与HL205钎料相比,熔化温度相近,润湿性稍差.HL201-E钎料焊缝组织是由α-Cu化合物相、Cu-Cu3P二元共晶化合物相组成的.HL205钎料焊缝组织由o-Cu化合物相、Cu3P化合物相和少量的含Ag固溶体组成.复合添加La、Ce和Si能细化钎料组织,但由于稀土元素易被氧化,生成黑色稀土相覆盖α-Cu.%The effects of La,Ce and Si Co-addition on the wettability of the copper phosphorus brazing filler and microstructure of the brazing seams were investigated.The melting performance and wettabilities of the 201-E prepared by adding La,Ce,Si into the HL201 and the HL205 were studied and the microstructure of the two brazing seams were analyzed by optical microscopy,scanning electron microscopy and energy dispersive X-ray detector.The results show that the HL201-E has a closed melting temperature and a bit poor wettability compared with HL205.The microstructure of the brazing seam with HL205 is composed of α-Cu,Cu3P and a small quantity of Ag solid solution.The microstructure of the brazing seam with HL201-E is composed of α-Cu and Cu-Cu3P eutectic structure.La,Ce and Si co-addition can refine the microstructure of HL201-E.And the rare earth phase resulting fiom the oxidation of the rare earth element covers o-Cu in HL201-E.

  4. Joint Custody and Coparenting.

    Science.gov (United States)

    Sell, Kenneth D.

    Results are presented of an intensive search of U.S. newspapers and periodicals on the joint custody of children after divorce, where both parents have continued responsibility for parenting and where the children spend part of each week, month, or year with both of the parents. Areas of concern addressed by these materials include the following:…

  5. Jointness: A Selected Bibliography

    Science.gov (United States)

    2010-12-01

    Leavenworth: U.S. Army Combined Arms Center, Combat Studies Institute, 2008. 428pp. (UA25 .C55 2008) http://www.cgsc.edu/ carl /download/csipubs...SMARTbook: Guide to Joint, Multinational & Interagency Operations. 2nd ed., rev. Lakeland, FL: Lightning Press, 2009. 302pp. (U260 .W33 2009) Whittaker

  6. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  7. Jointness, A Selected Bibliography.

    Science.gov (United States)

    1997-02-01

    The Services’ Judge Advocates and Lawyers Move Toward the Next Century. Study Project. Car- lisle Barracks: US Army War College, 5 April 1993. 57pp...Shaping America’s Future Mili- tary." Parameters 24 (Winter 1994-1995): 19-29. Barlow, Jason B. "Interservice Rivalry in the Pacific." Joint Force

  8. Ceramic-to-metal sealing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.G.

    1977-03-01

    Ceramic-to-metal sealing was accomplished by brazing a metallized alumina insulator to a Kovar (Carpenter Technology Corporation) pin and header. A braze alloy wetting evaluation and a braze joint tensile strength evaluation were completed by brazing the specimens in a hydrogen atmosphere. From these evaluations the best braze alloy and brazing cycle were selected. Twelve braze alloys were evaluated and Nicusil 3 (Western Gold and Platinum Company) braze alloy was found to have good wetting characteristics and optimum strength. Assemblies brazed with this alloy were vacuum leak tight and metallurgically sound.

  9. Reasons and countermeasures for “marking problem”during the production of double-walled copper-brazed steel tubes

    Institute of Scientific and Technical Information of China (English)

    YAN Yuanyuan,LIANG Gaofei; WANG Guodong; LIAN Fuliang

    2015-01-01

    This study explores the reasons underlying the frequent appearance of “marking problem”during the production of double-walled copper-brazed steel tubes.To this end,we compared two types of copper-coated steel strips,of which one has almost no problem during production,whereas the other has higher number of incidences of“marking problem”.We analyzed the chemical composition,mechanical properties,the cross-sectional metallographs, and surface quality of the trimmed edge in both types of specimen.After the roll forming process,the bonding condition between the steel layers of the tubes before and after brazing process has also been examined.Results indicate that the chemical composition and mechanical properties of the two kinds of strips are similar;however,the edge quality of the trimmed strips is significantly different.It is believed that the irregular shape of the edge portions in the strips will be more pronounced during the bevel treatment.Consequently,smooth and tight seams cannot be guaranteed by such uneven beveled edges,which lead to higher number of incidences of “marking problem”during production.

  10. 火箭发动机喷管真空加压钎焊技术与设备%THE VACUUM PRESUURE BRAZING TECHNOLOGY AND EQUIPMENT FOR ROCKET ENGINE SPOUT

    Institute of Scientific and Technical Information of China (English)

    牛小莉

    2012-01-01

    介绍了火箭发动机喷管真空加压钎焊技术工艺原理及特点,真空加压钎焊设备的结构和工艺过程.该技术工艺是对火箭发动机喷管夹层抽空,在达到钎焊温度时.炉膛内充人保护性气体.满足工艺所需0.8 MPa的外压力条件,对火箭发动机喷管形成真空钎焊与真空扩散焊两种焊接方式相结合的综合性工艺方法.%This paper introduces a rocket engine spout vacuum and pressure brazing technology principle and characteristic of vacuum braze welding, introduces the structure and process equipment. The technology is on the rocket engine spout dissection in time, to the temperature within the furnace brazing, filled with protective gas, process to meet the required 0.8Mpa outer pressure condition, the rocket engine spout to form a vacuum brazing and vacuum diffusion welding two welding methods of combining a comprehensive process.

  11. Achieving joint benefits from joint implementation

    Energy Technology Data Exchange (ETDEWEB)

    Moomaw, W.R. [Tufts Univ., Medford, MA (United States)

    1995-11-01

    Joint Implementation (JI) appears to have been born with Applied Energy Services Guatemala project in 1988. That project, to plant 52 million trees, protect existing forests from cutting and fire, and enhance rural development, is being implemented by CARE Guatemala to offset 120 per cent of the emissions of a small coal burning power plant that has been built in Connecticut. Since that time, several utilities and governments have initiated additional projects. Not all of these necessarily consist of tree planting in other countries, but may consist of energy efficiency or energy conservation programs designed to reduce carbon emissions by at least as much as the additional releases from a new facility. All JI projects share the characteristic of linking the release of greenhouse gases in an industrial country with an offset that reduces or absorbs a comparable amount in another country. The emitter in the industrial country is willing to pay for the reduction elsewhere because costs are less than they would be at home.

  12. CuSnNiCr真空钎焊金刚石界面微结构分析%Interfacial Microstructure of Diamond Vacuum Brazing with CuSnNiCr

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 穆云超; 丁文锋; 钟素娟; 马佳

    2016-01-01

    为降低钎焊金刚石的热损伤和制造成本,采用 CuSnNiCr 单质金属粉作为钎料,对金刚石磨粒进行了钎焊实验.采用SEM、EDS及 XRD 对金刚石焊后界面微结构、钎料组织进行了分析.结果表明:适合钎焊金刚石的活性成分为 Cu75 Sn15 Ni5 Cr5,该钎料能与金刚石实现化学冶金结合,熔点适中,润湿性较好.金刚石焊后形貌完整,表面基本光滑,表面生成了连续片状(Cr,Fe)7 C3.钎料凝固过程先结晶出α-Cu枝晶,经包晶转变和共析转变,形成了α-Cu 枝晶、Cu5.6 Sn和共析α-Cu,钎料的显微硬度大约为200~250HV0.2.%In order to reduce the heat damage of diamond and manufacturing cost, using CuSnNiCr metal powder as filler and the experiments of brazing diamond abrasive grain were carried out.SEM,EDS and XRD were used to analyze the microstructure of diamond and brazing filler.The results show that the active component of the brazing diamond is Cu75Sn15Ni5Cr5,the melting point of the brazing filler is suitable for brazing diamond,and it can realize the chemical metallurgical bond-ing with diamond.The morphology of diamond is complete,the surface is smooth,and the surface of the diamond is as (Cr,Fe)7 C3 .The brazing filler solidification process of crystallizedα-Cu dendrite, peritectic transformation and eutectoid transformation,the formation of dendrite,Cu5.6 Sn,α-Cu and eutectoidα-Cu,the microhardness of the brazing filler is about 200~250HV0.2.

  13. Laundry joint venture.

    Science.gov (United States)

    Giancola, D; Voyvodich, M

    1984-12-01

    Many hospitals are concerned about the loss of control which is associated with contracting for linen service. On the the hand, many laundries do not have the resources or experience to serve hospitals in a comprehensive and trouble-free manner. In many communities a joint venture, such as the one described here, can successfully combine the interests of the hospital and laundry communities without causing the hospitals to lose control of the service and without requiring the laundry operator to have detailed knowledge of hospital operations. As more hospitals opt for contract service, and if this service is to be provided at the lowest total cost, the hospitals and the laundries must come to grips with the problems surrounding the laundry-hospital interface. A joint venture, such as that described here, is one way to accomplish this.

  14. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  15. Joint Forces Capabilities

    Science.gov (United States)

    2007-11-02

    for countering the proliferation of weapons of mass destruction (WMD) in space. The Space Operations Center ( SPOC ), USSPACECOM is the single point...of contact for assessing space capabilities. Combatant commanders, subordinate JFCs, and Services can access this information from the SPOC via the...special operations forces SPOC Space Operations Center SSBN fleet ballistic missile submarine SST space support team UJTL Universal Joint Task List UN

  16. Australias Joint Approach

    Science.gov (United States)

    2015-09-01

    the early nineties as well. 219 Systems Thinking and Systems Engineering for Defence Strategic Planning, Richard Hodge , Kym Hendrickson and Geoff...Head Capability Systems, dated 9 December 2013. 272 Private communications with LTCOL Nick Floyd, Deputy Director Joint Concepts, JCC, March...with LTCOL Nick Floyd, 29 October 2014. 307 Pathway to Change: Evolving Defence Culture, 2012, p1. 308 Ibid, p3. 309 Communication with Dr Irena Ali

  17. Nonarthritic hip joint pain.

    Science.gov (United States)

    Enseki, Keelan; Harris-Hayes, Marcie; White, Douglas M; Cibulka, Michael T; Woehrle, Judith; Fagerson, Timothy L; Clohisy, John C

    2014-06-01

    The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based practice guidelines for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization's International Classification of Functioning, Disability, and Health (ICF). The purpose of these clinical practice guidelines is to describe the peer-reviewed literature and make recommendations related to nonarthritic hip joint pain.

  18. The international joint commission

    OpenAIRE

    Clamens, Murray

    2005-01-01

    For over 92 years the International Joint Commission (IJC), United States and Canada, has effectively served the two nations in approving and providing continuous oversight of water resource projects along the 5000-mile common border, in assisting the governments in preventing and resolving issues and disagreements regarding the use of these waters, and in addressing other environmental issues affecting or potentially affecting one or both of the countries. During the first years of the 20th...

  19. Joint Urban Operations

    Science.gov (United States)

    2009-11-08

    in Kosovo , the Red Cross provided the most accurate figures on the number of Kosovo refugees, helping US and other coalition services to estimate the...Port-au-Prince, Ramadi, Fallujah, and cities in Bosnia, Serbia, and Kosovo ). This clearly indicates an increase in the frequency of US joint...areas perhaps including shantytowns, and military areas. Buildings may range from single-story wooden or mud dwellings to high-rise apartments and

  20. Successfully Developing Joint Leaders

    Science.gov (United States)

    2010-07-26

    officer’s pyramid representing his career, there is merely the word “joint”. Therefore, unless the officer adamantly pursues a joint assignment it...had the chance to participate in Bosnia stability operations. It is how we were taught to work with locals and the experiences I took with me that...Drug Ops, OAF, OEF, OIF, Bosnia , Unconventional) - When you participated in an operation was there any “joint” involvement? If “yes”, did you feel

  1. Laboratory characterization of rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  2. 浅论铝合金真空钎焊机箱的应用和加工%Elementary Discussion on the Application and Processing of Vacuum Brazing Aluminum Alloy Chassis

    Institute of Scientific and Technical Information of China (English)

    王飚; 李卫民

    2014-01-01

    本文阐述了真空钎焊技术的优点及铝合金真空钎焊机箱的应用和加工的重要性,突出了机载装备中真空钎焊的必要性。其次,本文以某型号机箱为例,围绕着铝合金真空钎焊机箱加工的四个方面详细地加以介绍、描述和总结了加工工艺及要点。最后,本文指出了铝合金真空钎焊机箱能够提升航空电子系统的整体效能,只有通过提高工艺水平,规范生产流程,才能确保机载电子设备机箱的生产和质量稳定,提高生产效益。%Firstly, this paper expounded on the advantages of vacuum brazing technology and the importance of application and processing of vacuum brazing aluminum alloy chassis, with the emphasis on the necessity of vacuum brazing in airborne equipment. Secondly, taking a certain type of chassis as an example, this paper introduced, described and summarized the processing technology and key point of vacuum brazing process of aluminum alloy chassis in four aspects. Finally, it was pointed out that vacuum brazing aluminum alloy chassis was able to improve the overall effectiveness of avionics system, only by improving the technological level , and standardizing the production process, in order to ensure the production and quality of airborne electronic equipment chassis, and improve production efficiency.

  3. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Serge Peraire with regard to exceptional advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 17 to 31 May 2002. Human Resources Division Tel. 74128

  4. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mrs Judith Igo-Kemenes concerning the application of procedures foreseen by Administrative Circular N§ 26 (Rev. 3). As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 6 to 20 June 2003. Human Resources Division Tel. 74128

  5. Joint Advisory Appeals Board

    CERN Multimedia

    2004-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mrs Maria DIMOU with regard to a periodic one-step increase. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 30 April to 14 May 2004. Human Resources Department Tel. 74128

  6. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Aloïs Girardoz with regard to classification and advancement. As the appellant has not objected, the Board's report and the Director-General's decision will be brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 15 to 29 August 2003. Human Resources Division Tel. 74128

  7. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Bertrand Nicquevert with regard to the non-resident allowance. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 29 November to 13 December 2002. Human Resources Division Tel. 74128

  8. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Jack Blanchard with regard to 'non recognition of specific functions'. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 12th to 26th April 2002. Human Resources Division Tel. 74128

  9. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Antonio Millich with regard to advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 27 September to 11 October 2002. Human Resources Division Tel. 74128

  10. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Poul Frandsen concerning his assimilation into the new career structure. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 13 to 24 January 2003. Human Resources Division Tel. 74128

  11. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Luc Vos with regard to advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 14 to 28 June 2002. Human Resources Division Tel. 74128

  12. Surgery center joint ventures.

    Science.gov (United States)

    Zasa, R J

    1999-01-01

    Surgery centers have been accepted as a cost effective, patient friendly vehicle for delivery of quality ambulatory care. Hospitals and physician groups also have made them the vehicles for coming together. Surgery centers allow hospitals and physicians to align incentives and share benefits. It is one of the few types of health care businesses physicians can own without anti-fraud and abuse violation. As a result, many surgery center ventures are now jointly owned by hospitals and physician groups. This article outlines common structures that have been used successfully to allow both to own and govern surgery centers.

  13. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Personnel Division

    1999-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Joào Bento with regard to residential category. As the appellant has not objected, the recommendations of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article RÊVIÊ1.20 of the Staff Regulations.The relevant documents will therefore be posted on the notice boards of the Administration Building (N¡ 60) from 29 October to 12 November 1999.Personnel DivisionTel. 74128

  14. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2006-01-01

    The Joint Advisory Appeals Board was convened to examine an appeal lodged by a member of the personnel with regard to advancement. The person concerned has requested that the report of the Board and the final decision of the Director-General be brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (No. 60) from 24 March to 10 April 2006. Human Resources Department Tel. 74128

  15. Bones and joints

    Energy Technology Data Exchange (ETDEWEB)

    Runge, M.

    1987-01-01

    This exercise book guides the student and the radiologist wishing to review his knowledge to rapid and correct analysis and interpretation of radiologic findings in bone and joint disorders. The first part of the volume demonstrates the radiologic findings without going into the clinical and pathological aspects. In the second part, the reader then learns to analyse and diagnose systematically the case examples by means of a complete description of the X-ray images. Contents: Introduction; iconography; commentary with corresponding schemata; references and subject index.

  16. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel with regard to the decision not to award him a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main building (Bldg. 500) from 17 March to 30 March 2008. Human Resources Department Tel. 73911

  17. Joint Advisory Appeals Board

    CERN Document Server

    2013-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a former member of the personnel, a beneficiary of the CERN Pension Fund, against the calculation of his pension in the framework of the Progressive Retirement Programme.   The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the attention of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be available from 26 July to 11 August 2013 at the following link. HR Department Head Office

  18. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel against the decision to grant him only a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the attention of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main Building (Bldg. 500) from 1 September to 14 September 2008. Human Resources Department (73911)

  19. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main Building (Bldg. 500) from 26 May to 6 June 2008. Human Resources Department (73911)

  20. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2007-01-01

    The Joint Advisory Appeals Board was convened to examine an internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has requested that the report of the Board and the final decision of the Director-General be brought to the notice of the members of the personnel, in accordance with Article R VI 1.18 of the Staff Regulations. The relevant documents will therefore be posted on the notice board of the Main building (Bldg. 60) from 24 September to 7 October 2007. Human Resources Department

  1. Joint Advisory Appeals Board

    CERN Document Server

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board was convened to examine an internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel, in accordance with Article R VI 1.18 of the Staff Regulations. These documents will therefore be posted on the notice board of the Main Building (Bldg. 60) from 21 January to 3 February 2008. Human Resources Department (73911)

  2. Joint Advisory Appeals Board

    CERN Document Server

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel against the decision to grant him only a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the attention of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main building (bldg. 500) from 1 September to 14 September 2008. Human Resources Department (73911)

  3. Lisfranc Joint Injuries

    Institute of Scientific and Technical Information of China (English)

    Lisa Chinn

    2009-01-01

    @@ The ankle and foot are the most common sites for athletic injuries.[1]Midfoot,or Lisfranc,injuries are the second most common foot injury and have a high in cidence in particular sports.They account for 4% of all football injuries per year,occurring frequently in linemen.[2]They are also common in equestrians,surfers,and windsurfers.[2]Lisfranc injuries are often misdiagnosed and if not treated properly can have lingering symptoms.It is estimated that Lisfranc joint injuries occur in 1 in every 55,000 persons every year.[3,4

  4. 锌铝药芯钎焊丝制备及润湿性研究%Manufacturing and wettability of Zn - Al flux cored wire for brazing

    Institute of Scientific and Technical Information of China (English)

    颜鑫鑫; 许祥平; 邹家生

    2013-01-01

    Five kinds of Zn - Al flux cored wires with different compositions were designed and produced, and their manufacturing process and wettability on the surfaces of copper and aluminum alloy were studied. The result shows that the composition of Zn - Al brazing filler metals has an obvious influence on the manufacturing process of Zn - Al flux cored wire. The brazing filler metals of Zn80A115Ag5 、Zn92A18 and Zn95A15 have better quality. These five kinds of Zn - Al flux cored wires have good spreadability on 6063 aluminum alloy. The content of aluminum in Zn - Al flux cored wire has great effect on the spreadability on copper. With the increase of the content of aluminum in the brazing filler metals, its spread area on the copper will increase rapidly. Zn72A128 can get the largest spread area on the copper, which can be up to 86 mm .%设计制备了不同成分的5种锌铝药芯钎焊丝,对锌铝药芯钎焊丝的制备工艺及其在紫铜和6063铝合金上的润湿性能进行了研究.结果表明,锌铝钎料成分对锌铝药芯钎焊丝的制备工艺性有明显影响,Zn80Al15Ag5、Zn92A18和Zn95A15这3种锌铝带状钎料制备的药芯钎焊丝质量较好;5种锌铝药芯钎焊丝在6063铝合金上均具有良好的铺展性;铝元素含量对锌铝药芯钎焊丝在紫铜上的铺展性能影响较大,在该试验范围内,随钎料中铝元素含量的增加,钎料在铜上的铺展面积迅速增大,Zn72Al28药芯钎焊丝在铜上的铺展面积最大,达到86 mm2.

  5. 金刚石厚膜表面金属化及其钎焊研究%Surface Metalization and Brazing of Diamond Thick Films

    Institute of Scientific and Technical Information of China (English)

    邹建英

    2011-01-01

    In this work, Ti/Cu layers were deposited on diamond thick films by magnetron sputtering. Then the surface Cu and Ti layers were corroded by hot concentrated sulfuric acid, while TiC layer remained on the surface. After this, the coated diamond thick film was brazed with hard alloy by high-frequency induction heating method, in which Ag-Cu-Ti mixed powder was used as the solder. The influences of brazing temperature, holding time and the amount of solder were studied in detail. Results show that when using 80 fig solder and increasing the brazing temperature to 870 °C by the speed of 60 'C/s, then holding for 15 s, the weld strength of diamond thick film on hard alloy can reach 125 Mpa, which is fit for machining.%本文首先使用磁控溅射法在清洁的金刚石厚膜表面溅射Ti/Cu层,利用热的浓硫酸腐蚀表层的Cu和Ti层,获得具有合金TiC层的金刚石厚膜表面,实现金刚石厚膜的表面金属化;然后利用高频感应加热方法,以Ag-Cu-Ti混合粉末作为焊料进行金刚石厚膜的钎焊实验,主要对钎焊过程中的钎焊温度、保温时间以及焊料用量等参数进行了研究.结果表明,以60℃/s的速度加热到870℃后保温15 s,焊料用量为80 μg时,金刚石厚膜与硬质合金刀具之间的焊接强度可以达到125 MPa,可以满足机械加工强度要求.

  6. Development and performance evaluation of the abrasive grains vacuum pre-brazed diamond grinding wheel%磨粒真空预钎焊金刚石磨轮的研制及其加工性能分析

    Institute of Scientific and Technical Information of China (English)

    夏斯伟; 肖冰; 段端志; 袁卫; 李文杰

    2014-01-01

    分别采用Cu-Sn-Ti合金、A合金稀释的Ni-Cr合金对金刚石真空预钎焊处理,将预钎焊磨粒与金属粉末混匀后热压烧结制作节块和磨轮,并进行磨轮对比磨削实验。由抗压强度、冲击韧性实验测试磨粒力学性能,由抗弯强度实验测试节块抗弯强度。由扫描电镜分析磨粒与胎体界面结合效果。结果表明:Cu基预钎焊磨粒预钎焊层分布均匀,力学性能比A-Ni基预钎焊磨粒提高;预钎焊节块抗弯强度高于常规节块;Cu 基预钎焊磨粒与胎体结合致密,界面处 Ti 元素偏聚富集,Fe、Cu 元素相互扩散,实现了牢固化学冶金结合;预钎焊磨轮加工性能明显优于常规磨轮,Cu 基预钎焊磨轮锋利度比 Ni 基预钎焊磨轮提高约15%,实现了多层钎焊效果。%Metalization of diamond grains are realized under controlled vacuum brazing conditions using Cu-Sn-Ti filler and Ni-Cr filler added with A powder respectively Pre-brazed diamond segments and grinding wheels are fabricated by powder metallurgy sintering process Comparative grinding experiments on 6 3 5 # granite are carried out between pre-brazed wheels and conventional wheels Mechanical properties of the abrasive grains are evaluated by compressive strength tests and impact toughness tests Flexural strength of different segments are evaluated by three-point bending strength tests Interfaces between the pre-brazed diamond grains and matrix metals are analyzed by SEM Results show that Cu-based pre-brazed diamond of which pre-brazed metal layer is uniform distributed thermal damage degree is lower than that of A Ni-based diamond Bending strength of pre-brazed diamond segments are higher than the conventional segments Accumulation of titanium element and interdiffusion of iron & copper elements result in the high bonding strength at the interface Machining characteristics of pre-brazed diamond grinding wheels are all better than the conventional ones Sharpness of Cu

  7. [Fractures of the elbow joint].

    Science.gov (United States)

    Nowak, T E; Dietz, S O; Burkhart, K J; Müller, L P; Rommens, P M

    2012-02-01

    Fractures around the elbow joint comprise fractures of the distal humerus, the radial head, the olecranon and the coronoid process. Combined lesions are particularly demanding for the surgeon. Accurate knowledge of the anatomy and of the biomechanics is an essential requirement for a specific diagnosis and therapy. A stable and painless movable elbow joint is essential for most of the activities of daily living. Risk factors for the development of posttraumatic elbow joint arthrosis are non-anatomically reconstructed joint surfaces, axial malalignment of the joint axis and untreated concomitant injuries. Modern angular stable and anatomically preshaped implants facilitate a biomechanically adequate osteosynthesis and avoid or decrease functional impairment. In consideration of an increasing number of osteoporotic elbow joint fractures, endoprosthetic replacement has gained significance.

  8. Joint collaborative technology experiment

    Science.gov (United States)

    Wills, Michael; Ciccimaro, Donny; Yee, See; Denewiler, Thomas; Stroumtsos, Nicholas; Messamore, John; Brown, Rodney; Skibba, Brian; Clapp, Daniel; Wit, Jeff; Shirts, Randy J.; Dion, Gary N.; Anselmo, Gary S.

    2009-05-01

    Use of unmanned systems is rapidly growing within the military and civilian sectors in a variety of roles including reconnaissance, surveillance, explosive ordinance disposal (EOD), and force-protection and perimeter security. As utilization of these systems grows at an ever increasing rate, the need for unmanned systems teaming and inter-system collaboration becomes apparent. Collaboration provides a means of enhancing individual system capabilities through relevant data exchange that contributes to cooperative behaviors between systems and enables new capabilities not possible if the systems operate independently. A collaborative networked approach to development holds the promise of adding mission capability while simultaneously reducing the workload of system operators. The Joint Collaborative Technology Experiment (JCTE) joins individual technology development efforts within the Air Force, Navy, and Army to demonstrate the potential benefits of interoperable multiple system collaboration in a force-protection application. JCTE participants are the Air Force Research Laboratory, Materials and Manufacturing Directorate, Airbase Technologies Division, Force Protection Branch (AFRL/RXQF); the Army Aviation and Missile Research, Development, and Engineering Center Software Engineering Directorate (AMRDEC SED); and the Space and Naval Warfare Systems Center - Pacific (SSC Pacific) Unmanned Systems Branch operating with funding provided by the Joint Ground Robotics Enterprise (JGRE). This paper will describe the efforts to date in system development by the three partner organizations, development of collaborative behaviors and experimentation in the force-protection application, results and lessons learned at a technical demonstration, simulation results, and a path forward for future work.

  9. Phytomedicine in Joint Disorders

    Directory of Open Access Journals (Sweden)

    Dorin Dragos

    2017-01-01

    Full Text Available Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.

  10. Phytomedicine in Joint Disorders

    Science.gov (United States)

    Dragos, Dorin; Gilca, Marilena; Gaman, Laura; Vlad, Adelina; Iosif, Liviu; Stoian, Irina; Lupescu, Olivera

    2017-01-01

    Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.

  11. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  12. Arthrography of the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Keyl, W.; Jaeger, M.

    1981-10-01

    The standardized examination technique and the clinical problems of the arthrographic mehtod applied on the knee joint is explained by the results obtained in 3000 examinations. Whereas the accuracy of the knee-joint arthrography provides a high degree in cases of meniscus lesions, computer tomography presents in chondral and capsular ligament lesions, and sonography in popliteal cysts better diagnostic information; but in any case arthroscopy gains more and more importance in knee-joint diagnostics.

  13. OIG targets contractual joint ventures.

    Science.gov (United States)

    O'Hare, Patrick K

    2003-09-01

    A recent OIG Special Advisory Bulletin raises questions for providers involved in joint ventures. The Bulletin describes several characteristics that the OIG views as potentially suspect, including a referral stream controlled by the provider initiating the joint venture and the use of a wholly owned subsidiary of the provider to bill and collect for services. According to the OIG, profits paid by the subsidiary to the provider owner in such "suspect contractual joint ventures" could constitute illegal remuneration for referrals.

  14. Joint audits - benefit or burden?

    DEFF Research Database (Denmark)

    Holm, Claus; Thinggaard, Frank

    In this paper we examine whether there are perceived and observed benefits or burdens from using two audit firms instead of one. In 2005 the mandatory joint audit requirement was abolished in Denmark. This provides a unique setting for studying the consequences and implications of going from...... a joint audit regime to a single auditor/voluntary joint audit regime. The dataset used in this paper has been collected for the full population of non-financial Danish companies listed on the Copenhagen Stock Exchange (CSE) in the years 2004 and 2005. We find that a majority of firms perceive joint...

  15. Sacroiliac joint dysfunction in athletes.

    Science.gov (United States)

    Brolinson, P Gunnar; Kozar, Albert J; Cibor, Greg

    2003-02-01

    The sacroiliac (SI) joint is a common source of low back pain in the general population. Because it is the link between the lower extremities and the spine, it sustains even higher loads during athletic activity, predisposing athletes to a greater probability of joint dysfunction and pain. The diagnosis and treatment of SI joint dysfunction remains controversial, due to complex anatomy and biomechanics, and a lack of universally accepted nomenclature and terminology, consistently reliable clinical tests and imaging studies, and consistently effective treatments. This article clarifies these issues by presenting a model of SI joint anatomy and function, a systematic approach to the diagnosis of dysfunction, and a comprehensive treatment plan.

  16. Variable Joint Elasticities in Running

    Science.gov (United States)

    Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre

    In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.

  17. TEMPOROMANDIBULAR-JOINT OSTEOARTHROSIS AND GENERALIZED JOINT HYPERMOBILITY

    NARCIS (Netherlands)

    DIJKSTRA, PU; DEBONT, LGM; STEGENGA, B; BOERING, G

    1992-01-01

    Peripheral joint mobility of temporomandibular joint (TMJ) osteoarthrosis and internal derangement patients (n = 25) and of a control group (n = 29) was measured according to a rigidly standardized protocol, in order to study the relationships between TMJ osteoarthrosis and internal derangement and

  18. Index of Joint Condition for PVC push-fit joints

    NARCIS (Netherlands)

    Arsenio, A.M.; Vreeburg, J.H.G.; Rietveld, L.

    2014-01-01

    The Index of Joint Condition (IJC) for polyvinyl chloride (PVC) push-fit joints, discussed in this article, was derived from installation guidelines and from destructive laboratory tests. The IJC is presented in a graphical framework and is a powerful tool to employ in order to visualize and compare

  19. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Neil Calder, Mrs Sudeshna Datta Cockerill, Mrs Andrée Fontbonne, Mrs Moniek Laurent and Mr Ulrich Liptow with regard to membership in the Pension Fund under the period with a Paid Associate contract, appeals dealt with on a collective basis. As the appellants have not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 10 to 31 August 2001.

  20. 37 CFR 1.45 - Joint inventors.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Joint inventors. 1.45 Section... Patent § 1.45 Joint inventors. (a) Joint inventors must apply for a patent jointly and each must make the... patent for an invention invented by them jointly, except as provided in § 1.47. (b) Inventors may...

  1. 38 CFR 4.45 - The joints.

    Science.gov (United States)

    2010-07-01

    ..., ratable on a parity with major joints. The lumbosacral articulation and both sacroiliac joints are... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false The joints. 4.45 Section... DISABILITIES Disability Ratings The Musculoskeletal System § 4.45 The joints. As regards the joints the...

  2. Structuring managed care joint ventures.

    Science.gov (United States)

    Williams, L

    1995-08-01

    Providers that undertake joint ventures to secure managed care contracts must understand the important governance, operational, legal, and political issues involved. Careful planning in all these areas can help ensure that the joint venture will meet its goals and avoid problems such as inappropriately negotiated contracts and legal violations.

  3. Steroid injections - tendon, bursa, joint

    Science.gov (United States)

    ... PA: Elsevier Mosby; 2014:chap 71. Schrank KS. Joint disorders. In: Adams JG, ed. Emergency Medicine. 2nd ed. ... A.M. Editorial team. Related MedlinePlus Health Topics Joint Disorders Steroids Browse the Encyclopedia A.D.A.M., ...

  4. Osteoarthritis of the Wrist STT Joint and Radiocarpal Joint

    Directory of Open Access Journals (Sweden)

    Ronit Wollstein

    2012-01-01

    Full Text Available Our understanding of wrist osteoarthritis (OA lags behind that of other joints, possibly due to the complexity of wrist biomechanics and the importance of ligamentous forces in the function of the wrist. Scaphotrapeziotrapezoidal (STT OA is common, but its role in wrist clinical pathology and biomechanics is unclear. We identified the prevalence of radiographic STT joint OA in our hand clinic population and defined the relationship between STT and radiocarpal OA in wrist radiographs. One hundred consecutive wrist clinical and radiographic exams were retrospectively reviewed. Radiographs were evaluated for the presence and stage of OA. The mean age was 61.3 (±14.5 years. The radiographic occurrence of STT joint OA was 59% and of radiocarpal (RC OA was 29%. Radiographic STT and RC joint OA were inversely related. Tenderness over the STT joint in physical exam was not associated with OA in the STT or other joints. STT OA in our series was not related to wrist pain. These findings support the discrepancy between radiographic and cadaver findings and clinically significant OA in this joint. The inverse relationship between STT and RC OA, as seen in scapholunate advanced collapse (SLAC wrist, requires further biomechanical study.

  5. Osteoarthritis of the Wrist STT Joint and Radiocarpal Joint.

    Science.gov (United States)

    Wollstein, Ronit; Clavijo, Julio; Gilula, Louis A

    2012-01-01

    Our understanding of wrist osteoarthritis (OA) lags behind that of other joints, possibly due to the complexity of wrist biomechanics and the importance of ligamentous forces in the function of the wrist. Scaphotrapeziotrapezoidal (STT) OA is common, but its role in wrist clinical pathology and biomechanics is unclear. We identified the prevalence of radiographic STT joint OA in our hand clinic population and defined the relationship between STT and radiocarpal OA in wrist radiographs. One hundred consecutive wrist clinical and radiographic exams were retrospectively reviewed. Radiographs were evaluated for the presence and stage of OA. The mean age was 61.3 (±14.5) years. The radiographic occurrence of STT joint OA was 59% and of radiocarpal (RC) OA was 29%. Radiographic STT and RC joint OA were inversely related. Tenderness over the STT joint in physical exam was not associated with OA in the STT or other joints. STT OA in our series was not related to wrist pain. These findings support the discrepancy between radiographic and cadaver findings and clinically significant OA in this joint. The inverse relationship between STT and RC OA, as seen in scapholunate advanced collapse (SLAC) wrist, requires further biomechanical study.

  6. Temporomandibular joint reconstruction with total alloplastic joint replacement.

    Science.gov (United States)

    Jones, R H B

    2011-03-01

    This paper is a preliminary paper which presents the early findings of an ongoing prospective trial on the use of the TMJ Concepts and Biomet Lorenz total joint replacement systems for the reconstruction of the temporomandibular joint (TMJ). Total alloplastic replacement of the TMJ has become a viable option for many people who suffer from TMJ disease where surgical reconstruction is indicated. Degenerative joint diseases such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, TMJ ankylosis, malunited condylar fractures and tumours can be successfully treated using this technique. There are a number of TMJ prostheses available. Two of the joint replacement products, which have been found to be most reliable and have FDA approval in the United States, are the TMJ Concepts system and the Biomet Lorenz system, and for this reason they are being investigated in this study. This study presents the findings of seven patients with a total of 12 joint replacements using either the TMJ Concepts system or the Biomet Lorenz joint system. Two patients (3 joints) had the TMJ Concepts system and five patients (9 joints) had the Biomet Lorenz system. Although still early, the results were generally pleasing, with the longest replacement having been in position for three years and the most recent six months. The average postoperative mouth opening was 29.7 mm (range 25-35 mm) with an average pain score of 1.7 (range 0-3, minimum score of 0 and maximum 10). Complications were minimal and related to sensory disturbance to the lip in one patient and joint dislocation in two patients.

  7. Laser welding-brazing and numerical simulation of zinc-coated steel and 6016 aluminum alloy%镀Zn钢-6016铝合金异种金属的激光熔钎焊及数值模拟

    Institute of Scientific and Technical Information of China (English)

    周惦武; 吴平; 彭利; 张屹; 陈根余

    2012-01-01

    熔钎焊是抑制或减少钢/铝异种金属激光焊接过程中FeAl脆性金属间化合物产生的有效工艺方法.采用光纤激光器,不添加任何钎料,对1.2 mm厚DC56D+ZF镀锌钢和6016铝合金平板试件进行激光搭接焊试验,利用MATLAB软件,针对焊接过程的实际情况,在一定的基本假设下建立准稳态下钢/铝异种金属激光焊接熔池形状的数学模型,基于准稳态形状控制方程数值计算获得的熔池几何形状分布,结合试验来调整焊接工艺参数,获得最佳焊接成形,利用卧式金相显微镜、扫描电镜和X射线衍射仪等手段研究焊接接头各区域的金相组织、主要元素分布与物相组成.结果表明:焊接激光束照射搭接在钢板上的铝板对接焊缝时,焊接功率和焊接速度对熔池几何形状的影响较大,随着激光功率的增大,熔深增加;而随着焊接速度的增加,熔深却变浅.当焊接功率为1 600~1 800W、焊接速度v=30 mm/s、离焦量D=0 mm时,焊缝成形性良好,无明显裂纹、气孔等缺陷,焊接接头区域存在一个台阶状结构,在平台区域,钢/铝两钟金属存在明显的界限,界面结合依靠液态的铝在钢母材表面上的润湿、填充和铺展等作用;下凹区域,钢/铝熔合较好,Fe和Al元素的混合区宽度较大,未形成明显的FeAl脆性金属间化合物,Fe和Al的热扩散是该区域界面结合的主要原因.%The laser welding-brazing is an effective process to inhibit or reduce FeAl brittle intermetallic compound produced during laser welding-brazing of steel and aluminum alloy. The laser lap welding test was carried out based on the DC56D+ZF galvanized steel with thickness of 1.2 mm and the 6016 aluminum alloy with the fiber laser. The Matlab software was used, according to the actual situation of welding process, the steel and aluminum dissimilar metal laser welding pool shapes of the mathematical model in the flight quasi-steady state was established under

  8. EFECTO DE LA ALTURA DEL MANGUITO EN UNIONES SOLDADAS EN CAÑERÍAS DE COBRE BUSHING HEIGHT EFFECT IN SOLDERED COPPER PIPE JOINTS

    Directory of Open Access Journals (Sweden)

    Víctor Carmona

    2006-12-01

    Full Text Available Se perforó un tubo de cobre de 28,6 mm de diámetro, por el proceso de taladrado por fluencia térmica (TFT. Se prepararon manguitos de diferentes alturas, haciendo un preperforado con brocas convencionales HSS de diferentes diámetros. Se seleccionaron manguitos de dos alturas diferentes. Se determinó la circularidad de la perforación. Se soldó un tubo cobre de ø 12,7 mm en forma perpendicular a un tubo de cobre de ø 28,6 mm y se determinó la resistencia a la tracción de la unión soldada, para lo cual se diseñó un dispositivo mecánico que fue adaptado en la máquina universal de ensayos. Se hicieron ensayos de microdureza y metalografía de la unión. Se concluyó que el manguito de menor altura es suficiente para que la unión alcance la máxima resistencia.Copper tubes were drilled with thermal flow drilling. Conventional HSS drills diameters were used to make pre drilling holes. Different height bushings were made. Two of the bushing heights were selected. The bushing circularity was measured. A ø 12,7 mm tube was welded perpendicularly on a ø 28,6 mm tube. A especial support device was designed and it was adapted to the Universal Test Machine, to determine the tensile stress of the brazing joint. The micro hardness and metallographic test were made in the brazing zone. As a conclusion the lower height bushing is enough to reach the maximum resistance.

  9. Effect of passivation on the dissolution behavior of Ti6A14V and vacuum-brazed Ti6A14V in Hank's ethylene diamine tetra-acetic acid solution Part I Ion release.

    Science.gov (United States)

    Lee, T M; Chang, E; Yang, C Y

    1999-09-01

    This work aims to investigate the effects of three factors, namely: (1) two differently prepared materials (as-polished Ti6A14V and 2 h brazed Ti6A14V); (2) three different surface passivation treatments (34% nitric acid passivation, 400 degrees C heated in air, and aged in 100 degrees C de-ionized water); and (3) periods of immersion time (up to 32 days), on trace element release in Hank's ethylene diamine tetra-acetic acid (EDTA) solution. After passivation and autoclaving treatment, the specimens were immersed in 8.0 mM EDTA in Hank's solution and maintained at 37 degrees C for periods of time up to 32 days. The 400 degrees C -treated specimens exhibit a substantial reduction in constituent release, which may be attributed to the higher thickness and rutile structure of the surface oxides. For acid-passivated and water-aged treatments, a highly significant decrease in the trace levels of Ti, A1, and V is detected from the brazed Ti6A14V compared to those obtained from the Ti6A14V specimens. It is hypothesized that an anatase-rutile transformation of surface TiO_2 is likely to occur, accelerated by the elements of copper and nickel in the brazed specimens. In addition, a significant time-related decrease in constituent release rate is observed for all kinds of specimens throughout the 0-8 day experimental period. The implication of the results is discussed.

  10. TEMPOROMANDIBULAR-JOINT OSTEOARTHROSIS AND TEMPOROMANDIBULAR-JOINT HYPERMOBILITY

    NARCIS (Netherlands)

    DIJKSTRA, PU; DEBONT, LGM; DELEEUW, R; STEGENGA, B; BOERING, G

    1993-01-01

    For studying the relationship between condylar hypermobility of the temporomandibular joint (TMJ) and osteoarthrosis (OA), 13 patients with bilateral condylar hypermobility were evaluated clinically and radiographically, 30 years after non-surgical treatment. The evaluation included range of motion,

  11. Joint ventures in health care.

    Science.gov (United States)

    Pelfrey, S; Theisen, B A

    1989-04-01

    To remain competitive, many not-for-profit hospitals have turned to joint ventures with for-profit and other not-for-profit entities. The authors examine the organizational structures that are used most often to form joint ventures (contractual agreements, subsidiary corporations, partnerships, and not-for-profit title-holding corporations), as well as the advantages and disadvantages associated with each form. Nurse executives must be aware of the opportunities that joint ventures provide their institutions. These arrangements can help improve and expand services and profitability.

  12. Jointness for the Rest of Us: Reforming Joint Professional Development

    Science.gov (United States)

    2016-06-10

    since the law’s enactment, its stated goals are not yet fully realized . This thesis argues that the interdependence sought by Congressional legislators...knowledge, skills, values , and understanding that are not simply related to a narrow field of activity, but instead contribute to defining, analyzing...The authors of the legislation felt that “something had to be done to instill a joint culture (e.g., attitudes, values , and beliefs about joint

  13. Finishing touch to joint venture

    CERN Multimedia

    2003-01-01

    "A new process for polishing titanium and its alloys has been announced following an agreement between Bripol (an Anopol/Delmet joint venture) of Birmingham and the European Organisation for Nuclear Reseach (CERN) in Geneva" (1 paragraph).

  14. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  15. Entanglement swapping without joint Measurement

    CERN Document Server

    Yang, M; Cao, Z L; Yang, Ming; Song, Wei; Cao, Zhuo-Liang

    2004-01-01

    We propose an entanglement swapping scheme in cavity QED. In the scheme, the previously used joint measurement is not needed. Only single measurement on cavity can realize the swapping process, which avoids the difficulty of measurement on atomic state.

  16. Joint Performance and Planning System

    Data.gov (United States)

    US Agency for International Development — A joint State/USAID system hosted by State that integrates resource and performance information at the program level and enables more flexible and frequent entry of...

  17. US Joint Ventures 2014 revision

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A joint venture is a self-directed partnership of agencies, organizations, corporations, tribes, or individuals that has formally accepted the responsibility of...

  18. Campus/Industry Joint Ventures.

    Science.gov (United States)

    McDonald, Eugene J.

    1985-01-01

    Opportunities for joint economic ventures of colleges and industry are discussed, and a variety of ventures undertaken by Duke University are outlined, including a health club, hotel, and office building. Tax and financing considerations are noted. (MSE)

  19. 镀膜CBN珩轮激光钎焊基础工艺研究%Basic Process Research on Laser Brazing Film CBN on the Gear-honing-tool

    Institute of Scientific and Technical Information of China (English)

    梁国星; 吕明; 李文斌; 马麟

    2012-01-01

    完成镀膜CBN珩轮激光钎焊需要1套完整的工艺,包括珩轮基体钎焊前清洗、镀膜CBN粗化、黏结剂涂覆、钎料及磨粒固着、激光钎焊等.任意1项出现纰漏,都会对镀膜CBN钎焊连接质量造成一定的影响,降低钎焊后珩轮精度.本文在总结以往试验的基础上,对镀膜CBN珩轮激光钎焊工艺进行了基础性研究,制定出1套激光钎焊镀膜CBN珩轮制作工艺,并对激光钎焊过程中常见的镀膜CBN磨粒缺陷进行了分析,阐述了产生缺陷的原因,提出避免缺陷产生的方法,为珩轮的制备提供了新的方法,对于加快新型珩轮的开发和推动珩齿工艺的发展提供了有益的帮助.%Laser brazing on the film CBN gear-honing matrix was achieved,a perfect technology must be provided including cleaning honing matrix,CBN grit roughening treatment,coating binder on the matrix,fixing spelter and grits,laser brazing process and so on. Going awry either segment, the laser brazing connection quality among the CBN grit, gear-honing matrix and spelter would be affected to certain extent. The precision of gear-honing-tool would be decreased. Based on summarizing the experiments results,the basic technology of laser brazing the film CBN on the gear-honing matrix was studied in this paper. The defects in the process of laser brazing CBN had been analyzed,and the generated reason and solution were explained, then a new method for manufacturing gear-honing-tool is put forward. It is benefit to speeding up gear-honing-tool developing and promoting the process of honing gear.

  20. The Joint Master Operational Planner

    Science.gov (United States)

    2016-04-04

    Staff College , College of Naval Command and Staff, or Marine Corps Command and Staff College . Next, students must apply, and the services competitively...ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...Daniel H. Hibner, United States Army Joint Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd. Norfolk, VA 23511-1702 Approved