WorldWideScience

Sample records for brayton totalmente irreversibles

  1. Optimization of the performance characteristics in an irreversible regeneration magnetic Brayton refrigeration cycle

    Science.gov (United States)

    Wang, Hao; Wu, GuoXing

    2012-02-01

    A model of the irreversible regenerative Brayton refrigeration cycle working with paramagnetic materials is established, in which the regeneration problem in two constant-magnetic field processes and the irreversibility in two adiabatic processes are considered synthetically. Expressions for the COP, cooling rate, power input, the minimum ratio of the two magnetic fields, etc., are derived. It is found that the influence of the irreversibility and the regeneration on the main performance parameters of the magnetic Brayton refrigerator is remarkable. It is important that we have obtained several optimal criteria, which may provide some theoretical basis for the optimal design and operation of the Brayton refrigerator. The results obtained in the paper can provide some new theoretical information for the optimal design and performance improvement of real Brayton refrigerators.

  2. Ecological Optimization and Parametric Study of an Irreversible Regenerative Modified Brayton Cycle with Isothermal Heat Addition

    OpenAIRE

    Vivek Tiwari; Subhash Chandra Kaushik; Sudhir Kumar Tyagi

    2003-01-01

    Abstract: An ecological optimization along with a detailed parametric study of an irreversible regenerative Brayton heat engine with isothermal heat addition have been carried out with external as well as internal irreversibilities. The ecological function is defined as the power output minus the power loss (irreversibility) which is ambient temperature times the entropy generation rate. The external irreversibility is due to finite temperature difference between the heat engine and the exter...

  3. Exergetic efficiency optimization for an irreversible heat pump working on reversed Brayton cycle

    Indian Academy of Sciences (India)

    Yuehong Bi; Lingen Chen; Fengrui Sun

    2010-03-01

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is defined as the ratio of rate of exergy output to rate of exergy input of the system. The irreversibilities considered in the system include heat resistance losses in the hot- and cold-side heat exchangers and non-isentropic losses in the compression and expansion processes. The analytical formulas of the heating load, coefficient of performance (COP) and exergetic efficiency for the heat pumps are derived. The results are compared with those obtained for the traditional heating load and coefficient of performance objectives. The influences of the pressure ratio of the compressor, the allocation of heat exchanger inventory, the temperature ratio of two reservoirs, the effectiveness of the hot- and cold-side heat exchangers and regenerator, the efficiencies of the compressor and expander, the ratio of hot-side heat reservoir temperature to ambient temperature, the total heat exchanger inventory, and the heat capacity rate of the working fluid on the exergetic efficiency of the heat pumps are analysed by numerical calculations. The results show that the exergetic efficiency optimization is an important and effective criterion for the evaluation of an irreversible heat pump working on reversed Brayton cycle.

  4. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle.

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan

    2003-11-01

    An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscillators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes. The general performance characteristics of the cycle are investigated, based on the quantum master equation and the semigroup approach. The expressions for several important performance parameters such as the coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be equivalent to a classical Brayton cycle. PMID:14682856

  5. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    International Nuclear Information System (INIS)

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions

  6. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  7. Performance Optimization of a Solar-driven Irreversible Intercooled Regenerated Brayton Cycle%不可逆中冷回热太阳能布雷顿循环系统的优化分析

    Institute of Scientific and Technical Information of China (English)

    许益霖; 黄跃武

    2011-01-01

    建立了由太阳能集热器模型和不可逆中冷回热布雷顿循环模型组成的恒温热源条件下太阳能布雷顿循环系统,以系统总效率为目标函数,考虑了高低温侧换热器、回热器和中冷器的热阻损失以及压缩机和涡轮机的不可逆损失,借助数值计算对太阳能集热器的工作温度进行了优化,并分析了主要特征参数对总效率的影响.结果表明:太阳能布雷顿循环系统中存在一个最佳的太阳能集热器工作温度和相应的最大总效率及最大总输出功率;在此基础上,通过优化中间压比可使循环系统的总效率和相应的总输出功率达到双重最大值;系统总效率随着回热器传热有效度和光学效率的增加而提高;系统运行时存在一个最佳的总压比.%An irreversible solar-driven heat engine system with constant-temperature heat-reservoirs has been built up, which consists of the model of a solar collector and an intercooled regenerated Brayton cycle. Taking the overall efficiency as the objective function, and considering both the heat resistance in high/low temperature-side heat exchanger, regenerative heater and intercooler, and the irreversible loss in compressor and turbine, the operating temperature of solar collector has been optimized with the help of numerical simulation, while influence of the main parameters on its overall efficiency analyzed. Results show that for the solar-driven Brayton cycle, there exists an optimum collector operating temperature, a corresponding maximum overall efficiency and a maximum total output power; on this basis, both the overall efficiency and the total output power may reach their maximum value by optimizing the intermediate pressure ratio; the overall efficiency increases with the rise of thermal and optical efficiency of regenerative heater; there exists an optimum total pressure ratio for the system.

  8. Exergy performance analysis for irreversible closed Brayton cycle combined cooling, heating and power generation plant driven by residual energy and heat of blast furnace%高炉余能余热驱动的不可逆闭式布雷顿热电冷联产装置(炯)性能分析

    Institute of Scientific and Technical Information of China (English)

    冯辉君; 陈林根; 孙丰瑞

    2013-01-01

    A combined cooling,heating and power (CCHP) generation plant model composing by one irreversible closed Brayton cycle driven by residual energy and heat of blast furnace and one endoreversible four-heat-reservoir absorption refrigeration cycle was established by using finite time thermodynamics.The expressions of the exergy output rate and exergy efficiency were derived.The effects of the cycle parameters on the characteristics of exergy output rate and exergy efficiency versus pressure ratio were analyzed by using numerical calculations.The performances of the maximum exergy output rate was compared with that of the maximum exergy efficiency and some suggestions on the designs and operations of actual CCHP plants were proposed.%用有限时间热力学理论建立了由一个高炉余能余热驱动的不可逆闭式布雷顿循环和一个内可逆四热源吸收式制冷循环组成的热电冷联产循环模型,导出了其(娴)输出率和(炯)效率的表达式.利用数值计算方法,分析了循环各参数对(炯)输出率和(炯)效率与压比关系的影响,比较了最大(炯)输出率和最大(炯)效率性能,给出了实际热电冷联产装置设计和运行的建议.

  9. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  10. Microscopic irreversibility

    OpenAIRE

    Karl Gustafson

    2004-01-01

    First, I will recount the substance of several important conversations I had with Ilya Prigogine over the years. There is no doubt in my mind that Professor Prigogine firmly believed in the underlying stochasticity of the universe. Second, I will summarize my curiosity about the principle of detailed balance. In my opinion, so far it has always been put in by hand. Third, I will advance my own theory of microscopic irreversibility, that is, irreversibility at the quantum ...

  11. CONHECIMENTO DE ENFERMEIROS ACERCA DO MANUSEIO DE CATETER TOTALMENTE IMPLANTADO

    Directory of Open Access Journals (Sweden)

    Nayara Nárley Pires

    2014-01-01

    Full Text Available Frente a consultas de enfermería sobre el manejo del catéter en pleno funcionamiento, se evaluaron los conocimientos de estos profesionales. Se trata de un estudio descriptivo con un enfoque cualitativo, cuya muestra estuvo conformada por 32 enfermeras que trabajan en la sala de Medicina Interna y el Centro de Atención de Emergencias. El estudio se realizó en dos etapas: entrevista para evaluar su conocimiento sobre el manejo del catéter totalmente implantado; e revisión integrativa para aclarar las dudas identificadas. Los resultados mostraron un déficit de conocimiento de las enfermeras sobre la indicación y el propósito de la sonda, técnica de punción, mantenimiento y manejo. Llegamos a la conclusión de que el conocimiento de los sujetos evaluados es deficitario, lo que requiere la estandarización de conductas y formación teórico-práctico de estos profesionales.

  12. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Directory of Open Access Journals (Sweden)

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  13. Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

    Directory of Open Access Journals (Sweden)

    Naser M. Jubeh

    2005-07-01

    Full Text Available Abstract: The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet temperature, ambient temperature, altitude, and altitude with variable ambient temperature on irreversibility "exergy destroyed" and second law efficiency was investigated and compared for all models. The results are given graphically with the appropriate discussion and conclusion.

  14. A hybrid Brayton engine concept

    Science.gov (United States)

    Six, L. D.; Elkins, R.

    1980-01-01

    A first generation open cycle Brayton engine concept for use in full scale solar module testing was defined. The concept extended to include solar/fossil hybrid capability. The combustion system defined for hybrid operation consists of a wide range combustor liner, a single airblast atomizer, an ignitor and a high-voltage ignition unit. Wide range combustor operation would be achieved through combining pilot and primary zones. The hybrid control mode and the solar only control mode are both based on the concept of maintaining constant turbine inlet temperature and varying the engine speed for part-power operation. In addition, the hybrid control concept will allow the operator to set a minimum thermal power input to the engine by setting a corresponding minimum engine speed. When the solar thermal power input falls below this minimum, fossil fuel would be utilized to augment the solar thermal power input.

  15. On Brayton and Moser's missing stability theorem

    NARCIS (Netherlands)

    Jeltsema, D.; Scherpen, J. M. A.

    2005-01-01

    In the early 1960s, Brayton and Moser proved three theorems concerning the stability of nonlinear electrical circuits. The applicability of each theorem depends on three different conditions on the type of admissible nonlinearities in circuit. Roughly speaking, this means that the theorems apply to

  16. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  17. Irreversibility, Uncertainty, and Investment

    OpenAIRE

    Robert S. Pindyck

    1990-01-01

    Most investment expenditures have two important characteristics: First, they are largely irreversible; the firm cannot disinvest, so the expenditures are sunk costs. Second, they can be delayed, allowing the firm to wait for new information about prices, costs, and other market conditions before committing resources. An emerging literature has shown that this has important implications for investment decisions, and for the determinants of investment spending. Irreversible investment is especi...

  18. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  19. Back work ratio of Brayton cycle; La relacion de trabajo de retroceso de un ciclo Brayton

    Energy Technology Data Exchange (ETDEWEB)

    Malaver de la Fuente, M. [Universidad Maritima del Caribe (Venezuela)]. E-mail: mmf_umc@hotmail.com

    2010-07-15

    This paper analyzes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational software helps to show the influence of back work ratio or coupling ratio, compressor and turbine inlet temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle. [Spanish] En este articulo se estudia la relacion que existe entre las temperaturas, la relacion de trabajo de retroceso y el trabajo neto en el ciclo Brayton, que es el ciclo ideal que describe el comportamiento de los motores de turbina de gas. La aplicacion de programas computarizados ayuda a mostrar la influencia de la relacion de trabajo de retroceso o relacion de acoplamiento, la temperatura de entrada al compresor y la temperatura de entrada a la turbina en este ciclo termodinamico ideal. Los resultados obtenidos permiten deducir que el valor maximo que alcanza la relacion de trabajo de retroceso dependera de los limites de temperatura maxima y minima impuestos en el ciclo Brayton.

  20. Quantum Brayton cycle with coupled systems as working substance

    Science.gov (United States)

    Huang, X. L.; Wang, L. C.; Yi, X. X.

    2013-01-01

    We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by Fx) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by Fy). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by Fx), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by Fy). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by Fy, the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.

  1. Irreversible quantum baker map.

    Science.gov (United States)

    Łoziński, Artur; Pakoński, Prot; Zyczkowski, Karol

    2002-12-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this superoperator and their link with the increase of the entropy of initially pure states.

  2. Irreversible Quantum Baker Map

    CERN Document Server

    Lozinski, A; Zyczkowski, K; Lozinski, Artur; Pakonski, Prot; Zyczkowski, Karol

    2002-01-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.

  3. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    Science.gov (United States)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  4. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  5. Dynamic simulation of a reverse Brayton refrigerator

    International Nuclear Information System (INIS)

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results

  6. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  7. Thermodynamic Optimization of Supercritical CO2 Brayton Cycles

    International Nuclear Information System (INIS)

    The supercritical CO2 Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO2 Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO2 like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO2 instead of water. The supercritical CO2 recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO2 Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO2 recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO2 recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected

  8. Nonequilibrium and irreversibility

    CERN Document Server

    Gallavotti, Giovanni

    2014-01-01

    This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of ) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending t...

  9. Irreversible Simulated Tempering

    Science.gov (United States)

    Sakai, Yuji; Hukushima, Koji

    2016-10-01

    An extended ensemble Monte Carlo algorithm is proposed by introducing a violation of the detailed balance condition to the update scheme of the inverse temperature in simulated tempering. Our method, irreversible simulated tempering, is constructed on the basis of the framework of the skew detailed balance condition. By applying this method to the ferromagnetic Ising model in two dimensions on a square lattice as a benchmark, the dynamical behavior of the inverse temperature and an autocorrelation function of the magnetization are studied numerically. It is found that the relaxation dynamics of the inverse temperature qualitatively change from diffusive to ballistic on violating the detailed balance condition. Consequently, the autocorrelation time of the magnetization is several times smaller than that for the conventional algorithm satisfying the detailed balance condition.

  10. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    -through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.

  11. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  12. Optimization of Brayton cycles for low-to-moderate grade thermal energy sources

    International Nuclear Information System (INIS)

    Future electricity generation will involve low or moderate temperature technologies. In such a scenario, optimisation of thermodynamic cycles will be a key task. This work presents a systematic analysis to find the operating regime where Brayton cycles reach the highest efficiency, using real substances and given heat source and sink temperatures. Several configurations using fluids close to its critical point at the compressor inlet are considered. Irreversibility sources are carefully analysed, as well as the type of working fluid. The analysis is performed by means of a theoretical approach to obtain some trends, which are afterwards validated with real gases. Results show that the efficiency and the specific work improve if the compressor inlet is close to the critical point. Furthermore, these cycles are less sensitive to pressure drops and politropic efficiencies than those working with ideal gases. The above features are more evident when the ratio of heat source and heat sink temperatures is low. The selection of the gas becomes a fundamental issue in this quest. Critical temperature should be close to ambient temperature, low critical pressure is advisable and the R/cp factor measured at the ideal gas condition should be low to further enhance the efficiency. - Highlights: • Performance analysis of Brayton cycles with the compressor inlet close to the critical point. • Cycles are not very sensitive to pressure drops and isentropic efficiencies of the compressor. • Gas selection becomes important, regarding the critical pressure and temperature as well as the kind of fluid. • R/cp factor measured at the ideal gas condition should be as low as possible

  13. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  14. Power enhancement of the Brayton cycle by steam utilization

    Science.gov (United States)

    Jesionek, Krzysztof; Chrzczonowski, Andrzej; Ziółkowski, Paweł; Badur, Janusz

    2012-09-01

    The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit.

  15. Tumor Ablation with Irreversible Electroporation

    OpenAIRE

    Al-Sakere, Bassim; André, Franck,; Bernat, Claire; Connault, Elisabeth; Opolon, Paule; Davalos, Rafael V.; Rubinsky, Boris; Mir, Lluis M.

    2007-01-01

    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop dur...

  16. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  17. Combined-Brayton cycle, space nuclear power systems

    International Nuclear Information System (INIS)

    Because it is a widely recognized dynamic space conversion system, the Brayton cycle has been studied in France since several years, especially within the framework of a limited space program. A recuperated cycle of 20 to 30 kWe has been considered so far. However, possible applications could evolve and the need for an extended, diversified utilization of the Brayton cycle could appear. So, for Lunar or Mars bases which would accept large radiators and can benefit from a certain gravity level, combined cycle systems could be proposed. Following a reference to past works on space combined cycles, a possible association of a Brayton cycle with a thermoionic reactor is presented. The power level of a 'Topaz-2' type space nuclear system can be boosted from 8 kWe to around 36 to 53 kWe, at the expense of a large radiator of course. Furthermore, combined Brayton-Rankine, organic (toluene) or steam, cycles can pave the way to a simpler gas-cooled, particle bed reactor concept. A particular arrangement of HeXe heater and boiler or steam generator in series is proposed. It makes it possible to lower the reactor inlet temperature, which is quite adequate for the use of light water as moderator. Oustanding net efficiencies of 25.8 to 27.6 per cent, given the reactor temperature profile, are obtained. Consequences on the reactor design are mentioned

  18. Nuclear reactor closed Brayton cycle space power conversion systems

    International Nuclear Information System (INIS)

    This paper presents the past history, present status and future prospects for closed Brayton cycle power conversion systems to be used in space when requirements have been established. Since there is a classic lack of coordination between advanced technology and its perceived need that can be strongly affected by associated factors, recommendations will be made to assist in the current situation. 4 refs

  19. Second-law analysis and optimization of reverse brayton cycles of different configurations for cryogenic applications

    Science.gov (United States)

    Streit, James Ryder; Razani, Arsalan

    2012-06-01

    Second-law of thermodynamics (2nd law) and exergy analyses and optimization offour Reverse Brayton Refrigeration (RBR) cryogenic cycle configurations: Conventional 1-stage compression cycle; Conventional 2-stage compression cycle; 1-stage compressionModified cycle with intermediate cooling of the recuperator using an auxiliary cooler; andan Integrated 2-stage expansion RBR cycle are performed. The conventional RBR cyclesare analyzed for low and high pressure ratio applications using multistage compressorswith intercooling. Analytical solutions for the conventional cycles are developed includingthermal and fluid flow irreversibilities of the recuperators and all heat exchangers inaddition to the compression and expansion processes. Analytical solutions are used to findthe thermodynamic bounds for the performance of the cycles. Exergy irreversibilitydiagrams of the cycles are developed and the effects of important system parameters onRBR cycle performance are investigated. 2nd law/exergy analyses, and optimization of thecycles with intermediate cooling of the recuperator, considering the cooling temperatureand the recuperator effectiveness and pressure drop, are included. The effect of the 2ndlaw/exergy efficiency of the auxiliary cooler on the total system efficiencies is presented.

  20. Tumor ablation with irreversible electroporation.

    Directory of Open Access Journals (Sweden)

    Bassim Al-Sakere

    Full Text Available We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%, in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.

  1. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  4. Operation and analysis of a supercritical CO2 Brayton cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  5. Modeling and Simulation of a Desiccant Assisted Brayton Refrigeration Cycle

    OpenAIRE

    Nobrega, Carlos E.L.; Sphaier, Leandro Alcoforado

    2012-01-01

    The phase-out of CFCs has shed a new light over natural refrigerants, which have null global warming potentials. Air would be a natural choice, and although the Brayton cycle usually exhibits a lower coefficient of performance when compared to vapor-compression systems of same capacity, it has been considered in applications other than aircraft cooling. These include gas separation, food processing and preservation, refrigerated containers and train air-conditioning. Price perspectives in the...

  6. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    This report contains the description of the S-CO2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO2 gas. The long term behavior of a Na/CO2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  7. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  8. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  9. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  10. Irreversible Electroporation of Hepatic Malignancy

    OpenAIRE

    Narayanan, Govindarajan; Froud, Tatiana; Suthar, Rekhaben; Barbery, Katuska

    2013-01-01

    Hepatocellular carcinoma (HCC) is a worldwide problem of epidemic proportions, best treated in a multidisciplinary setting. Major advances have been made in all specialties that manage patients with HCC, with surgical options at one end of the spectrum and palliative chemotherapy on the other, and the vast majority of patients require the involvement and expertise of interventional oncology. Several ablative and transarterial technologies are currently available. Irreversible electroporation ...

  11. Ideally Efficient Irreversible Molecular Gears

    OpenAIRE

    Sokolov, I. M.

    2000-01-01

    Typical man-made locomotive devices use reversible gears, as cranks, for transforming reciprocating motion into directed one. Such gears are holonomic and have the transduction efficiency of unity. On the other hand, a typical gear of molecular motors is a ratchet rectifier, which is irreversible. We discuss what properties of rectifier mostly influence the transduction efficiency and show that an apliance which locks under backwards force can achieve the energetic efficiency of unity, withou...

  12. Irreversible Does Not Mean Unavoidable

    OpenAIRE

    Matthews, H.D.; Solomon, Susan

    2013-01-01

    Understanding how decreases in CO[subscript 2] emissions would affect global temperatures has been hampered in recent years by confusion regarding issues of committed warming and irreversibility. The notion that there will be additional future warming or “warming in the pipeline” if the atmospheric concentrations of carbon dioxide were to remain fixed at current levels (1) has been misinterpreted to mean that the rate of increase in Earth's global temperature is inevitable, regardless of how ...

  13. Ecological optimization for generalized irreversible Carnot refrigerators

    International Nuclear Information System (INIS)

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators

  14. Simulation of CO2 Brayton Cycle for Engine Exhaust Heat Recovery under Various Operating Loads

    Institute of Scientific and Technical Information of China (English)

    舒歌群; 张承宇; 田华; 高媛媛; 李团兵; 仇荣赓

    2015-01-01

    A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9%and the system has a better performance at the engine’s high operating load. The thermal efficiency can be as large as 24.83%under 100%operating load, accordingly, the net output power of 14.86 kW is obtained.

  15. Operational Results of a Closed Brayton Cycle Test-Loop

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert; Lipinski, Ronald J.; Nichols, Kenneth; Brown, Nicholas

    2005-02-01

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ˜1000 K.

  16. Information symmetries in irreversible processes

    Science.gov (United States)

    Ellison, Christopher J.; Mahoney, John R.; James, Ryan G.; Crutchfield, James P.; Reichardt, Jörg

    2011-09-01

    We study dynamical reversibility in stationary stochastic processes from an information-theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes. As a consequence, the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the process's statistical properties, and its reversibility in detail. A process's temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time ɛ-machines. We analyze example irreversible processes whose ɛ-machine representations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time ɛ-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process—the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a process's fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.

  17. Performance evaluation of space solar Brayton cycle power systems

    Science.gov (United States)

    Diao, Zheng-Gang

    1992-06-01

    Unlike gas turbine power systems which consume chemical or nuclear energy, the energy consumption and/or cycle efficiency should not be a suitable criterion for evaluating the performance of space solar Brayton cycle power. A new design goal, life cycle cost, can combine all the power system characteristics, such as mass, area, and station-keeping propellant, into a unified criterion. Effects of pressure ratio, recuperator effectiveness, and compressor inlet temperature on life cycle cost were examined. This method would aid in making design choices for a space power system.

  18. A Brayton cycle solar dynamic heat receiver for space

    Science.gov (United States)

    Sedgwick, L. M.; Nordwall, H. L.; Kaufmann, K. J.; Johnson, S. D.

    1989-01-01

    The detailed design of a heat receiver developed to meet the requirements of the Space Station Freedom, which will be assembled and operated in low earth orbit beginning in the mid-1990's, is described. The heat receiver supplies thermal energy to a nominal 25-kW closed-Brayton-cycle power conversion unit. The receiver employs an integral thermal energy storage system utilizing the latent heat of a eutectic-salt phase-change mixture to store energy for eclipse operation. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification.

  19. Quantum mechanical irreversibility and measurement

    CERN Document Server

    Grigolini, P

    1993-01-01

    This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will

  20. Potential impacts of Brayton- and Stirling-cycle engines

    Energy Technology Data Exchange (ETDEWEB)

    Heft, R.C.

    1980-11-15

    Two engine technologies (Brayton cycle and Stirling cycle) currently being pursued by the US Department of Energy were examined for their potential impacts if they achieved commercial viability. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. The effect upon various economic sectors of a large scale change-over from conventional to alternate engines was estimated using an economic input-output analysis. Primary effects were found in fuels refining, non-ferroalloy ores and ferroalloy smelting. Secondary effects were found in mining, transport, and capital financing. Under the assumption of 10 years for plant conversions and 1990 and 1995 as the introduction date for turine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  1. Mini-Brayton economic RTG study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this study is to demonstrate the applicability of a radioisotope heated Mini-Brayton power system to the 1973 USAF/AEC requirements established for the SURVSATCOM Mission. The principal requiremenets of the power system, are: 400 We power level; maximum weight 205 lbs.; $1.2 to 2.0 million per unit cost; and 5y mission duration. A radioisotope heat source that meets the ACE Nuclear Safety Criteria is presented. The major aspects of the Reference Design MB-ERTG are summarized. The Reference Design, utilizes a flexible Brayton rotating unit (BRU), a /sup 244/Cm heat source with ceramic clad fuel cylinders and an aluminum radiator. The flexible BRU has a variable power output capability, from 400 We to 3000 We, and is an important factor in the formulation of a cost effective development plan. The system weight is 186 lb and unit cost, including the /sup 244/Cm fuel, acceptance testing and delivery is $748,000. The total development cost for the 5-yr program is estimated at $16.4M with an additional $6.5M required for /sup 244/Cm heat source development support, /sup 244/Cm fuel, heat source fabrication and capital equipment expenditures. (LCL)

  2. Atuação da enfermagem na utilização do catéter venoso totalmente implantável (CVTI

    Directory of Open Access Journals (Sweden)

    Rosemeire A. Mendes Lopes

    1993-06-01

    Full Text Available As autoras fizeram um levantamento de 41 casos de utilização do cateter venoso totalmente implantável usados para tratamento com drogas antineoplásicas. Descreveram os motivos que levaram o serviço a utilizar este sistema para infusão e analisaram sua utilização, seu controle e as intercorrências. Os resultados, embora tenham mostrado um índice de complicações de 29%, incluindo falhas na técnica de implantação e no manuseio, apresentaram um bom índice de aproveitamento, ou seja, 61%.

  3. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  4. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  5. Irreversibility of electrical insulating material properties

    OpenAIRE

    Radek Polansky; Vaclav Mentlik

    2007-01-01

    Property changes in electrical insulating materials that appear during repeated voltage stress (e. g. in an applied voltage test) are an often discussed problem. The voltage exposure leads to irreversible changes in a negative sense as this investigation clearly demonstrates. A slow deterioration appears even in the case of the above mentioned applied voltage test when the irreversible effects of particular measurements superimpose. These are the effects of irreversible behavior of the insula...

  6. Key Factors Influencing the Decision on the Number of Brayton Units for the Prometheus Space Reactor

    Science.gov (United States)

    Ashcroft, John; Belanger, Sean; Burdge, Wayne; Clementoni, Eric; Jensen, Krista; Proctor, N. Beth; Zemo-Fulkerson, Annie

    2007-01-01

    The Naval Reactors (NR) Program and its DOE Laboratories, KAPL and Bettis, were assigned responsibility to develop space reactor systems for the Prometheus Program. After investigating all of the potential reactor and energy conversion options, KAPL and Bettis selected a direct gas Brayton system as the reference approach for the nuclear electric propulsion missions, including the Jupiter Icy Moons Orbiter (JIMO). In order to determine the optimal plant architecture for the direct gas system, KAPL and Bettis investigated systems with one or two active Brayton units and up to two spare units. No final decision was made on the optimal system configuration for the NEP gas-Brayton system prior to closeout of the project. The two most promising options appear to be a single system without spares and a three Brayton system with two operating units, each producing half of the required load, with a single spare unit. The studies show that a single Brayton system, without spares, offers the lowest mass system, with potential for lower operating temperature, and a minimum of system and operational complexity. The lower required mass and increased system efficiency inherent in the single Brayton system may be exploited to satisfy other design objectives such as reduced reactor and radiator operating temperatures. While Brayton system lifetimes applicable to a JIMO or other nuclear electric propulsion (NEP) mission have not been demonstrated, there is no fundamental limit on the lifetime of the Brayton hardware. Use of additional Brayton units with installed spares will allow for continued operation in the event of a failure of an individual Brayton unit. However, preliminary system reliability evaluations do not point to any substantial reliability benefit provided by carrying spare Brayton units. If a spare unit is used, operating two of the units at full power with an unpowered spare proved more efficient than operating all three units at a reduced power and temperature

  7. Solar/gas Brayton/Rankine cycle heat pump assessment

    Science.gov (United States)

    Rousseau, J.; Liu, A. Y.

    1982-05-01

    A 10-ton gas-fired heat pump is currently under development at AiResearch under joint DOE and GRI sponsorship. This heat pump features a highly efficient, recuperated, subatmospheric Brayton-cycle engine which drives the centrifugal compressor of a reversible vapor compression heat pump. The investigations under this program were concerned initially with the integration of this machine with a parabolic dish-type solar collector. Computer models were developed to accurately describe the performance of the heat pump packaged in this fashion. The study determined that (1) only a small portion (20 to 50 percent) of the available solar energy could be used because of a fundamental mismatch between the heating and cooling demand and the availability of solar energy, and (2) the simple pay back period, by comparison to the baseline non-solar gas-fired heat pump, was unacceptable (15 to 36 years).

  8. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  9. Brayton isotope power system. Volume II. System evaluation attributes

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    This volume of the Brayton Isotope Power System, Phase II Plan, contains the self-evaluation by AiResearch, GE, and TECO, addressing Section 3 of The Dynamic Systems Evaluation Criteria and Procedures established by the Department of Energy. These evaluation criteria addresses: Component Feasibility; Flight System Design Performance; GDS Test Results; Reliability and Practicality; Safety; Spacecraft Integration; and Cost and Risk. Included in each of these general categories are several attributes, each of which addresses a separate component, feature, or area of interest related to the power system, its development status, degree of preparedness for proceeding into a flight program, and/or the contractors' performance during Phase I. The key elements which indicate the readiness of a radioisotope power system to progress into a flight qualification program are: an advanced state of development of the power conversion system; demonstrated or exhibited potential for space systems standards of reliability; evident capability of meeting system safety requirements; favorable cost/benefit tradeoff considering projected missions and technology advancement potential; and proven feasibility of fabricating and qualifying a flight system and integrating it with a candidate spacecraft and launch vehicle. As a result of considerable government investment in Brayton system component development, the MHW isotope heat source and the BIPS Phase I Ground Demonstration System, the BIPS is a more advanced state of development than any previous radioisotope power system technology. Evidence of this is presented along with a complete review of the attributes, the contractor recommended ratings, and the rationale for the self-evaluation.

  10. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  11. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  12. Automatic Control Strategy Development for the Supercritical CO2 Brayton Cycle for LFR Autonomous Load Following

    International Nuclear Information System (INIS)

    The supercritical carbon dioxide (S-CO2) Brayton cycle is a promising advanced alternative to the Rankine saturated steam cycle and ideal gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO2 Brayton cycle coupled to an autonomous Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to develop an automatic control strategy for the whole plant in response to changes in the demand from the electrical grid. The specific features of the S-CO2 Brayton cycle that result in limitations on the control range and speed of specific control mechanisms are discussed. Calculations of whole-plant responses to plant operational transients involving step and continuous changes in grid demand are demonstrated. (authors)

  13. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  14. A class of internally irreversible refrigeration cycles

    Science.gov (United States)

    Ait-Ali, Mohand A.

    1996-03-01

    A Carnot-like irreversible refrigeration cycle is modelled with two isothermal and two non-adiabatic, irreversible processes. The generic source of internal irreversibility, measured by the Clausius inequality, is a general irreversibility term which could include any heat leaks into the Joule - Thompson expansion valve, the evaporator and compressor cold boxes. This cycle is optimized first for maximum refrigeration power and maximum refrigeration load, then for maximum coefficient of performance. Its performances are compared with those of the endoreversible refrigeration cycle, based on a propane stage of a classical cascade liquefaction cycle example. Both cycle models achieve optimum power and maximum refrigeration load at nearly the same refrigeration temperature, but only the coefficient of performance of the irreversible refrigeration cycle reaches a maximum. Moreover, its prediction of heat conductance allocation between evaporator and condenser appears to be not only more conservative, but also more realistic for actual design considerations of refrigeration cycles.

  15. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  16. Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant

    OpenAIRE

    Bo Yang, Lingen Chen, Fengrui Sun

    2014-01-01

    An endoreversible closed regenerative Brayton cycle CCHP (combined cooling, heating and power) plant coupled to constant-temperature heat reservoirs is presented using finite time thermodynamics (FTT). The CCHP plant includes an endoreversible closed regenerative Brayton cycle, an endoreversible four-heat-reservoir absorption refrigerator and a heat recovery device of thermal consumer. The heat-resistance losses in the hot-, cold-, thermal consumer-, generator-, condenser-, evaporator- and ab...

  17. Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output

    International Nuclear Information System (INIS)

    The main objective of this paper is to optimise the open-air solar-thermal Brayton cycle by considering the implementation of the second law of thermodynamics and how it relates to the design of the heat exchanging components within it. These components included one or more regenerators (in the form of cross-flow heat exchangers) and the receiver of a parabolic dish concentrator where the system heat was absorbed. The generation of entropy was considered as it was associated with the destruction of exergy or available work. The dimensions of some components were used to optimise the cycles under investigation. EGM (Entropy Generation Minimisation) was employed to optimise the system parameters by considering their influence on the total generation of entropy (destruction of exergy). Various assumptions and constraints were considered and discussed. The total entropy generation rate and irreversibilities were determined by considering the individual components and ducts of the system, as well as their respective inlet and outlet conditions. The major system parameters were evaluated as functions of the mass flow rate to allow for a proper discussion of the system performance. The performances of both systems were investigated, and characteristics were listed for both. Finally, a comparison is made to shed light on the differences in performance. - Highlights: • Implementation of the second law of thermodynamics. • Design of heat exchanging and collecting equipment. • Utilisation of Entropy Generation Minimization. • Presentation of a multi-objective optimization. • Raise efficiency with more regeneration

  18. Application of Irreversible Thermodynamics to Distillation

    Directory of Open Access Journals (Sweden)

    Signe Kjelstrup

    2004-09-01

    Full Text Available We compare three different ways of modelling tray distillation to each other, and to experimental data: the most common way that assumes equilibrium between the liquid and vapour phases at the outlets of each tray, and two more precise methods that use irreversible thermodynamics. Irreversible thermodynamics determines the driving forces and fluxes of a system in agreement with the second law. It is shown that the methods using irreversible thermodynamics (Maxwell-Stefan equations are superior to the method that assumes that equilibrium is reached on each tray. The Soret effect must be included to have a good description of the heat flux.

  19. Herniorrafia inguinal laparoscópica totalmente extraperitoneal: vinte e sete complicações graves após 4565 operações consecutivas

    OpenAIRE

    Alberto Meyer; Pierre Blanc; Jean Gabriel Balique; Masaya Kitamura; Ramon Trullenque Juan; Franck Delacoste; Jérôme Atger

    2013-01-01

    OBJETIVO: identificar e avaliar as complicações do tratamento da hérnia inguinal com a colocação de tela totalmente extraperitoneal. MÉTODOS: Foram incluídos, em uma série consecutiva de 4565 reparos de hérnia laparoscópica, pacientes que haviam sido submetidos ao procedimento TEP entre janeiro de 2001 e janeiro de 2011. Os critérios de inclusão foram: diagnóstico com hérnia inguinal sintomática, incluindo recorrência após correção de hérnia inguinal e cirurgia prévia em abdômen inferior e pe...

  20. Performance improvement options for the supercritical carbon dioxide brayton cycle

    International Nuclear Information System (INIS)

    The supercritical carbon dioxide (S-CO2) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO2 Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO2 cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO2 cycle configuration. In this work, several possible ways to improve S-CO2 cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO2 compression (pumping) either by CO2 condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried

  1. Does an irreversible chemical cycle support equilibrium?

    CERN Document Server

    Banerjee, Kinshuk

    2013-01-01

    The impossibility of attaining equilibrium for cyclic chemical reaction networks with irreversible steps is apparently due to a divergent entropy production rate. A deeper reason seems to be the violation of the detailed balance condition. In this work, we discuss how the standard theoretical framework can be adapted to include irreversible cycles, avoiding the divergence. With properly redefined force terms, such systems are also seen to reach and sustain equilibria that are characterized by the vanishing of the entropy production rate, though detailed balance is not maintained. Equivalence of the present formulation with Onsager's original prescription is established for both reversible and irreversible cycles, with a few adjustments in the latter case. Further justification of the attainment of true equilibrium is provided with the help of the minimum entropy production principle. All the results are generalized for an irreversible cycle comprising of N number of species.

  2. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  3. Irreversible thermodynamics of Poisson processes with reaction

    Science.gov (United States)

    Méndez, Vicenç; Fort, Joaquim

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  4. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH3, SO2, CO2 and H2O were examined as perfect gas and real gas. The advantage of CO2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  5. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  6. Brayton isotope power system. Phase I (Ground demonstration system) configuration control document (CCD)

    Energy Technology Data Exchange (ETDEWEB)

    1975-09-25

    The Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS) configuration is defined. The GDS is configured to be similar to a conceptual flight system design referred to herein as the BIPS Flight System (FS). The Brayton Isotope Power System is being developed by the ERDA as a 500 to 2000 W/sub e/, 7 year life 3.5 W/sub e/ per pound space power system. The system was a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency exceeding 25%. This CCD is for the first phase of the ERDA program to have a qualified system ready for launch by June 30, 1981. Phase I is a 36 month effort to provide a conceptual design of the flight system and design, fabricate and test a ground demonstration system. The baseline system is predicated on using two of the multihundred-watt isotope heat sources being developed for the ERDA by GE. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed by NASA for the Mini-Brayton rotating unit (AIRPHX), recuperator (AIRLA) and heat source assembly (GE). The Ground Demonstration System includes a performance test and a 1000-hour endurance test.

  7. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    International Nuclear Information System (INIS)

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS)

  8. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  9. Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Yanlin Ge, Fengrui Sun

    2014-01-01

    Full Text Available An endoreversible closed regenerative Brayton cycle CCHP (combined cooling, heating and power plant coupled to constant-temperature heat reservoirs is presented using finite time thermodynamics (FTT. The CCHP plant includes an endoreversible closed regenerative Brayton cycle, an endoreversible four-heat-reservoir absorption refrigerator and a heat recovery device of thermal consumer. The heat-resistance losses in the hot-, cold-, thermal consumer-, generator-, condenser-, evaporator- and absorber-side heat exchangers and regenerator are considered. The performance of the CCHP plant is studied from the exergetic perspective, and the analytical formulae about exergy output rate and exergy efficiency are derived. Through numerical calculations, the pressure ratio of regenerative Brayton cycle is optimized, the effects of heat conductance of regenerator and ratio of heat demanded by the thermal consumer to power output on dimensionless exergy output rate and exergy efficiency are analyzed.

  10. Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2

    Science.gov (United States)

    Ziółkowski, Paweł; Zakrzewski, Witold; Kaczmarczyk, Oktawia; Badur, Janusz

    2013-06-01

    In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

  11. Preliminary design for a reverse Brayton cycle cryogenic cooler

    Science.gov (United States)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  12. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  13. Time and irreversibility in an accelerating universe

    CERN Document Server

    Romero, Gustavo E

    2011-01-01

    It is a remarkable fact that all processes occurring in the observable Universe are irreversible, whereas the equations through which the fundamental laws of physics are formulated are invariant under time reversal. The emergence of irreversibility from the fundamental laws has been a topic of consideration by physicists, astronomers and philosophers since Boltzmann's formulation of his famous "H" theorem. In this paper we shall discuss some aspects of this problem and its connection with the dynamics of space-time, within the framework of modern cosmology. We conclude that the existence of cosmological horizons allows a coupling of the global state of the Universe with the local events determined through electromagnetic processes.

  14. Efficiency of Rectification: Reversible vs. Irreversible Regimes

    Science.gov (United States)

    Sokolov, I. M.

    2002-11-01

    Both man-made locomotive devices and molecular motors use gears to transform a reciprocating motion into a directed one. One of the most common gears is a rectifier, a mechanically irreversible appliance. The maximal energetic efficiency of an isothermic gear is bounded by unity, as a consequence of the Second Law. However, approaching this ideal efficiency does not imply approaching reversibility. We discuss what properties of a rectifier mostly influence the transduction efficiency and show that an appliance which locks under backward force is just the one which can approach the ideal efficiency either in the reversible or in the irreversible regime.

  15. Tensión de límite elástico en monocristales de circonia totalmente estabilizada con alto contenido en óxido de itrio

    Directory of Open Access Journals (Sweden)

    Gallardo, A.

    2001-04-01

    Full Text Available The yield stress of cubic stabilized zirconia single crystals with yttria concentrations between 24 to 32 mol % has been studied for temperatures of 1400 °C by compression experiments on the <112> crystalographic axis at constant compressive strain rate. The yield stress reaches a value of 300 MPa, remaining constant for the higher concentration studied, and being also independent of the annealing time in air. The plastic behavior is discussed in terms of the interaction of dislocations with the free yttrium defects.

    Se ha estudiado la tensión de dominio plástico en aire, en monocristales de circonia totalmente estabilizada con contenido en óxido de itrio entre 24 y 32 mol %, a velocidades de deformación constante y temperatura de 1.400 °C. Los monocristales se deformaron por compresión uniaxial en el eje correspondiente a la dirección cristalográfica <112>. La tensión de límite elástico obtenida es de 300 MPa, permaneciendo constante para las concentraciones estudiadas superiores y siendo independiente de tratamientos térmicos en aire. Se discute el comportamiento plástico en función de la interacción de las dislocaciones con los defectos de itrio libres.

  16. Validação de procedimentos operacionais padrão no cuidado de enfermagem de pacientes com cateter totalmente implantado

    Directory of Open Access Journals (Sweden)

    Rita Paiva Pereira Honório

    2011-10-01

    Full Text Available Os protocolos de assistência são recursos tecnológicos importantes na prática de saúde e devem ser validados, para adquirirem credibilidade científica na prática profissional. O objetivo desta pesquisa foi validar os itens de proposta de procedimentos operacionais padrão (POPs quanto à punção, heparinização e curativo do cateter totalmente implantado, por meio da análise de conceito proposta por Hoskins. O estudo se deu em duas etapas. Na primeira, elaborou-se um formulário para validação dos POPs. Na segunda, avaliou-se o conteúdo dos POPs por peritos. As sugestões versaram sobre reformulação da redação; acréscimo de ações, tornando-o mais claro e abrangente; a ordem dos passos dos procedimentos; e o material para a adequação do instrumento. Constatou-se a necessidade de outros estudos que direcionem os profissionais, principalmente, quanto à heparinização dos cateteres e à troca do primeiro curativo após punção, no sentido de uniformizar condutas embasadas em evidências científicas seguras.

  17. Risk Aversion, Price Uncertainty and Irreversible Investments

    NARCIS (Netherlands)

    van den Goorbergh, R.W.J.; Huisman, K.J.M.; Kort, P.M.

    2003-01-01

    This paper generalizes the theory of irreversible investment under uncertainty by allowing for risk averse investors in the absence of com-plete markets.Until now this theory has only been developed in the cases of risk neutrality, or risk aversion in combination with complete markets.Within a gener

  18. The reverse control of irreversible biological processes.

    Science.gov (United States)

    Cho, Kwang-Hyun; Joo, Jae Il; Shin, Dongkwan; Kim, Dongsan; Park, Sang-Min

    2016-09-01

    Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366-377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website. PMID:27327189

  19. Markov Chain Monte Carlo and Irreversibility

    Science.gov (United States)

    Ottobre, Michela

    2016-06-01

    Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.

  20. Mathematical Models and Equilibrium in Irreversible Microeconomics

    OpenAIRE

    Anatoly M. Tsirlin; Sergey A. Amelkin

    2010-01-01

    A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  1. GROUPOIDS AND IRREVERSIBLE DISCRETE DYNAMICAL SYSTEMS II

    Directory of Open Access Journals (Sweden)

    Mădălina Roxana Buneci

    2012-05-01

    Full Text Available The purpose of this paper is to study the topology of the orbit space of an irreversible discrete dynamical system (X,  seen as a principal groupoid associated to the groupoid G(X,,E introduced in [1] (where E is an equivalence relation on X.

  2. Identified corrosion and erosion mechanisms in SCO2 Brayton Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Kruizenga, Alan Michael

    2014-06-01

    Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources is currently underway. To proceed, we must address concerns regarding compatibility of materials, at high temperature, and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while the addition of ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2]. Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. While S-CO2 is typically understood to be the secondary fluid, many varieties of primary fluids exist for nuclear applications. Molten salts, for use in the Molten Salt Reactor concept, are given as an example to contrast the materials requirements of primary and secondary fluids. Thin chromia layers are soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8], making materials selection for heat exchangers a precarious balancing act between high temperature oxidation (S-CO2) and metal dissolution (salt side of heat exchanger). Because concerns have been raised regarding component lifetimes, S-CO2 work has begun to characterize starting materials and to establish a baseline by analysis of 1) as-received stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with Sandia National Laboratories Brayton systems. A second issue discovered by SNL involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that

  3. Manejo do cateter venoso central totalmente implantado em pacientes oncológicos: revisão integrative Manejo del catéter venoso central totalmente implantado en pacientes oncológicos: revisión integrativa Management of totally implanted catheter in patients with cancer: an integrative review

    Directory of Open Access Journals (Sweden)

    Christiane Inocêncio Vasques

    2009-10-01

    Full Text Available O cateter totalmente implantado é amplamente utilizado durante o tratamento de pacientes com câncer e é capaz de minimizar complicações decorrentes da terapia intravenosa periférica. Assim, buscou-se identificar os cuidados de enfermagem relacionados ao manuseio de cateter totalmente implantado nesses pacientes. Para tanto, realizou-se revisão integrativa da literatura que resultou na análise de 15 artigos. O conhecimento produzido está direcionado para o tempo de permanência do cateter, complicações inerentes ao uso, manuseio do dispositivo, percepção do paciente em relação ao cateter e informações ao paciente. Além de demonstrar a complexidade da assistência de enfermagem no manuseio desses dispositivos, os achados podem auxiliar, igualmente, os profissionais que não atuam em oncologia, na aplicação de conhecimentos na prática clínica.El catéter totalmente implantado es ampliamente utilizado durante el tratamiento de pacientes con cáncer y es capaz de minimizar las complicaciones consecuentes de la terapia intravenosa periférica. Así, en este trabajo, se buscó identificar los cuidados de enfermería relacionados a la manipulación del catéter totalmente implantado en esos pacientes. Para tal efecto, se realizó una revisión integrativa de la literatura dando como resultado el análisis de 15 artículos. El conocimiento producido está orientado hacia el tiempo de permanencia del catetér, complicaciones inherentes al uso, manipulación del dispositivo, informaciones y percepción del paciente en relación al catéter. Aparte de demostrar la complejidad de la asistencia de enfermería en la manipulación de esos dispositivos, los hallazgos pueden auxiliar, igualmente, a los profesionales que no actúan en oncología, en la aplicación de conocimientos en la práctica clínica.Totally implanted catheter, which is effective in deceasing complications related to peripheral intravenous therapy, is widely used in

  4. Experimental and Analytical Performance of a Dual Brayton Power Conversion System

    Science.gov (United States)

    Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl

    2009-01-01

    The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.

  5. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Highlights: ► Computational analysis of S-CO2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO2) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  6. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  7. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO{sub 2} (S-CO{sub 2}). However, S-CO{sub 2} still has potential for reaction with sodium. CO{sub 2}-sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO{sub 2}, CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation.

  8. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    International Nuclear Information System (INIS)

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO2 (S-CO2). However, S-CO2 still has potential for reaction with sodium. CO2-sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO2, CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation

  9. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  10. Simulations of kinetically irreversible protein aggregate structure.

    OpenAIRE

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short-...

  11. Water Management in France: Delegation and Irreversibility

    OpenAIRE

    Ephraim Clark; Gérard Mondello

    2000-01-01

    The problem that we address in this paper stems from the trend to delegation in the water management field. It refers to the municipality’s negotiating disadvantage in the face of cartelized water management firms that makes delegation, once undertaken, virtually irreversible. We show why the characteristics of the delegation auction render is useless as a tool for collective welfare maximization. We also show that the remaining tool for achieving collective welfare maximization, i.e. the mun...

  12. Metrics and Energy Landscapes in Irreversible Thermodynamics

    OpenAIRE

    Bjarne Andresen

    2015-01-01

    We describe how several metrics are possible in thermodynamic state space but that only one, Weinhold’s, has achieved widespread use. Lengths calculated based on this metric have been used to bound dissipation in finite-time (irreversible) processes be they continuous or discrete, and described in the energy picture or the entropy picture. Examples are provided from thermodynamics of heat conversion processes as well as chemical reactions. Even losses in economics can be bounded using a therm...

  13. Extended irreversible thermodynamics revisited (1988-98)

    Science.gov (United States)

    Jou, D.; Casas-Vázquez, J.; Lebon, G.

    1999-07-01

    We review the progress made in extended irreversible thermodynamics during the ten years that have elapsed since the publication of our first review on the same subject (Rep. Prog. Phys. 1988 51 1105 - 72). During this decade much effort has been devoted to achieving a better understanding of the fundamentals and a broadening of the domain of applications. The macroscopic formulation of extended irreversible thermodynamics is reviewed and compared with other non-equilibrium thermodynamic theories. The foundations of EIT are discussed on the bases of information theory, kinetic theory, stochastic phenomena and computer simulations. Several significant applications are presented, some of them of considerable practical interest (non-classical heat transport, polymer solutions, non-Fickian diffusion, microelectronic devices, dielectric relaxation), and some others of special theoretical appeal (superfluids, nuclear collisions, cosmology). We also outline some basic problems which are not yet completely solved, such as the definitions of entropy and temperature out of equilibrium, the selection of the relevant variables, and the status to be reserved to the H-theorem and its relation to the second law. In writing this review, we had four objectives in mind: to show (i) that extended irreversible thermodynamics stands at the frontiers of modern thermodynamics; (ii) that it opens the way to new and useful applications; (iii) that much progress has been achieved during the last decade, and (iv) that the subject is far from being exhausted.

  14. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  15. Rotational accuracy of all-ceramic restorations on ceraone components = Liberdade rotacional de restaurações totalmente cerâmicas sobre componentes ceraone

    Directory of Open Access Journals (Sweden)

    Webster, Jacqueline

    2005-01-01

    Full Text Available Objetivo: Este estudo avaliou a desadaptação interna de sistemas cerâmicos em prótese sobre implantes em relação à liberdade rotacional das restaurações após várias cocções da porcelana. Materiais e métodos: Foram analisados três sistemas cerâmicos: Procera AllCeram, In-Ceram e CeraOne sobre análogo e intermediário CeraOne. A liberdade rotacional foi medida com um dispositivo acoplado a um relógio comparador em quatro tempos: fase de coifa, após aplicação do corpo da porcelana e glaze, e após duas queimas adicionais. Os dados foram analisados por testes de Friedman, de Kruskal-Wallis e de Wilcoxon, α = 0,01. Resultados: As médias de liberdade rotacional em graus foram: 0,08 para In-Ceram/Análogo; 1,64 para Procera/ Intermediário; 1,72 para CeraOne/Intermediário; 1,88 para CeraOne/Análogo e 1,97 para Procera/Análogo. O sistema In-Ceram sobre o análogo apresentou níveis de liberdade rotacional dez a vinte vezes menores que CeraOne e Procera. Não houve diferença entre as fases de confecção da restauração para In-Ceram. O comportamento de CeraOne e Procera foi similar, com aumento da liberdade rotacional sobre intermediário e análogo com a progressão da confecção da restauração. A liberdade rotacional sobre intermediário foi menor que sobre análogo. Conclusão: A liberdade rotacional variou em função da etapa do processo de fabricação dependendo do sistema totalmente cerâmico

  16. Herniorrafia inguinal laparoscópica totalmente extraperitoneal: vinte e sete complicações graves após 4565 operações consecutivas

    Directory of Open Access Journals (Sweden)

    Alberto Meyer

    2013-02-01

    Full Text Available OBJETIVO: identificar e avaliar as complicações do tratamento da hérnia inguinal com a colocação de tela totalmente extraperitoneal. MÉTODOS: Foram incluídos, em uma série consecutiva de 4565 reparos de hérnia laparoscópica, pacientes que haviam sido submetidos ao procedimento TEP entre janeiro de 2001 e janeiro de 2011. Os critérios de inclusão foram: diagnóstico com hérnia inguinal sintomática, incluindo recorrência após correção de hérnia inguinal e cirurgia prévia em abdômen inferior e pelve. Todos os pacientes > 18 anos de idade. Pacientes com hérnia encarcerada na urgência foram excluídos do estudo. RESULTADOS: Um total de 4565 hérnias foram incluídas no estudo. Ocorreram 27 complicações graves (0,6%: 12 hemorragias (0,25%, duas lesões da bexiga (0,04%, cinco oclusões (0,11%, quatro perfurações intestinais (0,09%, uma lesão da veia ilíaca (0,02%, uma lesão do nervo femoral (0,02%, duas lesões dos vasos deferentes (0,04% e dois óbitos (0,02% (embolia pulmonar, peritonite. CONCLUSÃO: A taxa de complicações com o procedimento TEP é baixa. Correção de hérnia laparoscópica é uma técnica reprodutível e confiável. Em nossa experiência, existem contraindicações para o procedimento de TEP. A técnica TEP deve ser minuciosa para evitar complicações intraoperatórias (diatermia bipolar. As complicações podem ocorrer mesmo após o cirurgião ter adquirido experiência substancial.

  17. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    Science.gov (United States)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  18. An action principle of classical irreversible thermodynamics - Irreversible thermodynamic cycles and embodied bits of information

    CERN Document Server

    Hanel, Rudolf A

    2016-01-01

    Despite its simplicity, it seems to my best of knowledge that the possibly simplest approach towards deriving equations governing irreversible thermodynamics from gas-kinetic considerations within the framework of classical mechanics has never been pursued. In this paper we address this omission and derive the equations describing the irreversible thermodynamics of a gas in a piston and associated thermodynamic cycles performed in finite time. What we find is a thermodynamic action principle: The irreversible work we require for performing a thermodynamic cycle in finite time times the time we require to run through the cycle, a isothermal compression/decompression cycle for instance, will always be larger or equal to a lower bound given by a system specific constant with the dimension of an action. This process specific action constants can take values of the order of Plank's constant for microscopic processes, such as displacing a Hydrogen atom by one atom diameter. For macroscopic processes (e.g. a bicycle...

  19. Thermodynamics of irreversible plant cell growth

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    2011-04-01

    Full Text Available The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spontaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and expands. In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth equation omit however a very important factor, namely the environmental temperature at which the plant cells grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of external growth stimulator or inhibitor (phytohormones or abiotic factors. In the presence of such external perturbations two possible theoretical solutions have been found: the linear reaction to the application of growth hormones/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental conditions, respectively (growth at constant or increasing concentration of stimulator/inhibitor. The non-linear solution reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increasing (with time concentration of toxins on plant growth. Having obtained temperature modified growth equations we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the cell wall itself. This also concerns a new and interesting result obtained in our model: We have calculated the magnitude of the cell wall yielding coefficient (T [m3 J-1•s-1] in

  20. Phase 2 Brayton/Rankine 10-ton gas-fired space-conditioning system

    Science.gov (United States)

    1982-07-01

    The technical accomplishments to date in the design, development, and demonstration program leading to commercialization of a 10 ton heat actuated space conditioning system for light commercialization of a 10 ton heat actuated space conditioning system for light commercial building applications are summarized. The system consists of a natural gas powered Brayton cycle engine and a Rankine cycle heat pump, combined in a single roof top package. The heat actuated space conditioning system provides more efficient use of natural gas and is intended as an all gas alternative to the electric heat pump. The system employs a subatmospheric natural gas fired heat pump. A centrifugal R-12 refrigerant compressor is driven directly from the Brayton engine rotating group through a hermetically sealed coupling. Unique features that offer high life cycle performance include a permanent magnet coupling, foil bearings, an atmospheric in-line combustor, and a high temperature recuperator.

  1. Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory

    Science.gov (United States)

    Johnson, Paul K.; Mason, Lee S.

    2006-01-01

    This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.

  2. Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger

    Science.gov (United States)

    Steeve, Brian E.; Kapernick, Richard J.

    2004-01-01

    One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.

  3. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  4. Techno-economic studies of environmentally friendly Brayton cycles in the petrochemical industry

    OpenAIRE

    Nkoi, Barinyima

    2014-01-01

    Brayton cycles are open gas turbine cycles extensively used in aviation and industrial applications because of their advantageous volume and weight characteristics. With the bulk of waste exhaust heat and engine emissions associated, there is need to be mindful of environmentally-friendliness of these engine cycles, not compromising good technical performance, and economic viability. This research considers assessment of power plants in helicopters, and aeroderivative ind...

  5. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    This report contains the description of the S-CO2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO2 gas. The long term behavior of a Na-CO2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  6. Preliminary design of S-CO{sub 2} Brayton cycle for APR-1400 with power generation and desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Jeong, Yong Hoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    This study was conducted to explore the capabilities of the S-CO{sub 2} Brayton cycle for a cogeneration system for APR-1400 application. Three concepts of the S-CO{sub 2} simple recuperated co-generation cycle were designed. A supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is recently receiving significant attention as a promising power conversion system in wide range of energy applications due to its high efficiency and compact footprint. The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this study, the concept of replacing the entire steam cycle of APR-1400 with the S-CO{sub 2} Brayton cycle is evaluated. The power generation purpose S-CO{sub 2} Brayton cycles are redesigned to generate power and provide heat to the desalination system at the same time. The performance of these newly suggested cycles are evaluated in this paper. The target was to deliver 147MW heat to the desalination process. The thermal efficiencies of the three concepts are not significantly different, but the 3{sup rd} concept is relatively simpler than other cycles because only an additional heat exchanger is required. Although the 2{sup nd} concept is relatively complicated in comparison to other concepts, the temperatures at the inlet and outlet of the DHX are higher than that of the others. As shown in the results, the S-CO{sub 2} Brayton cycles are not easy to outperform the steam cycle with very simple layout and general design points under APR-1400 operating condition. However, this study shows that the S-CO{sub 2} Brayton cycles can be designed as a co-generation cycle while producing the target desalination heat with a simple configuration. In addition, it was also found that the S-CO{sub 2} Brayton cycle can achieve higher cycle thermal efficiency than the steam power cycle under

  7. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  8. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    Science.gov (United States)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  9. The Brayton Cycle heat pump for solvent recovery and pollution control

    International Nuclear Information System (INIS)

    The Brayton Cycle heat pump technology for the recovery of solvent and prevention of emissions is relatively new. Like most new technologies, it is a combination of older concepts, ideas and types of processes put together in a unique way. As a result, proven equipment enables achievement of extremely low condensing temperatures at relatively low cost. The Brayton Cycle is a thermodynamic principle. It was used first for a turbine engine, but more recently it has been used for a variety of other kinds of processes including refrigeration. A great variety of methods are used for emission control including adsorption, direct condensation, absorption in a fluid, and incineration or destruction. The Brayton Cycle technology actually fits into two of these categories, adsorption and direct condensation. Since it is a refrigeration process, it can be used to condense solvents from a solvent-laden air stream. The advantage of this particular process over other refrigeration methods is that lower temperatures can be achieved more easily. In fact, temperatures as low as -150 degrees F have been used to recover solvents in this manner. That happens to be the freezing point of methylene chloride which is a very volatile compound. High recovery efficiencies can be obtained for a whole variety of organic materials. 8 figs., 1 tab

  10. Irreversible electroporation: state of the art

    Directory of Open Access Journals (Sweden)

    Wagstaff PGK

    2016-04-01

    Full Text Available Peter GK Wagstaff,1 Mara Buijs,1 Willemien van den Bos,1 Daniel M de Bruin,2 Patricia J Zondervan,1 Jean JMCH de la Rosette,1 M Pilar Laguna Pes1 1Department of Urology, 2Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands Abstract: The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate. Keywords: irreversible electroporation, IRE, tumor, ablation, focal therapy, cancer

  11. Magnetic Irreversibility in VO2/Ni Bilayers

    Science.gov (United States)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  12. Probabilistic Gompertz model of irreversible growth.

    Science.gov (United States)

    Bardos, D C

    2005-05-01

    Characterizing organism growth within populations requires the application of well-studied individual size-at-age models, such as the deterministic Gompertz model, to populations of individuals whose characteristics, corresponding to model parameters, may be highly variable. A natural approach is to assign probability distributions to one or more model parameters. In some contexts, size-at-age data may be absent due to difficulties in ageing individuals, but size-increment data may instead be available (e.g., from tag-recapture experiments). A preliminary transformation to a size-increment model is then required. Gompertz models developed along the above lines have recently been applied to strongly heterogeneous abalone tag-recapture data. Although useful in modelling the early growth stages, these models yield size-increment distributions that allow negative growth, which is inappropriate in the case of mollusc shells and other accumulated biological structures (e.g., vertebrae) where growth is irreversible. Here we develop probabilistic Gompertz models where this difficulty is resolved by conditioning parameter distributions on size, allowing application to irreversible growth data. In the case of abalone growth, introduction of a growth-limiting biological length scale is then shown to yield realistic length-increment distributions.

  13. The Value of Fighting Irreversible Demise by Softening the Irreversible Cost

    NARCIS (Netherlands)

    Magis, P.; Sbuelz, A.

    2005-01-01

    We study a novel issue in the real-options-based technology innovation literature by means of double barrier contingent claims analysis.We show how much a ¯rm with the monopoly over a project is willing to spend in investment technology innovation that softens the irreversible cost of accessing the

  14. Irreversible electroporation: state of the art.

    Science.gov (United States)

    Wagstaff, Peter Gk; Buijs, Mara; van den Bos, Willemien; de Bruin, Daniel M; Zondervan, Patricia J; de la Rosette, Jean Jmch; Laguna Pes, M Pilar

    2016-01-01

    The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE) is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate. PMID:27217767

  15. Irreversible Electroporation (IRE) in Renal Tumors.

    Science.gov (United States)

    Narayanan, Govindarajan; Doshi, Mehul H

    2016-02-01

    Small renal masses (SRMs) have been traditionally managed with surgical resection. Minimally invasive nephron-sparing treatment methods are preferred to avoid harmful consequences of renal insufficiency, with partial nephrectomy (PN) considered the gold standard. With increase in the incidence of the SRMs and evolution of ablative technologies, percutaneous ablation is now considered a viable treatment alternative to surgical resection with comparable oncologic outcomes and better nephron-sparing property. Traditional thermal ablative techniques suffer from unique set of challenges in treating tumors near vessels or critical structures. Irreversible electroporation (IRE), with its non-thermal nature and connective tissue-sparing properties, has shown utility where traditional ablative techniques face challenges. This review presents the role of IRE in renal tumors based on the most relevant published literature on the IRE technology, animal studies, and human experience. PMID:26769468

  16. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  17. Diffusion of irreversible energy technologies under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Cacallo, J.D.; Sutherland, R.J.

    1993-09-01

    This paper presents a model of technology diffusion is consistent with characteristics of participants in most energy markets. Whereas the models used most widely for empirical research are based on the assumption that the extended delays in adoption of cost-saving innovations are the result of either lack of knowledge about the new processes or heterogeneity across potential adopters, the model presented in this paper is based on the strategic behavior by firms. The strategic interdependence of the firms` decisions is rooted in spillover effects associated with an inability to exclude others from the learning-by-doing acquired when a firm implements a new technology. The model makes extensive use of recent developments in investment theory as it relates irreversible investments under uncertainty.

  18. Exergetic sustainability evaluation of irreversible Carnot refrigerator

    Science.gov (United States)

    Açıkkalp, Emin

    2015-10-01

    Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.

  19. Work Criteria Function of Irreversible Heat Engines

    Directory of Open Access Journals (Sweden)

    Mahmoud Huleihil

    2014-01-01

    Full Text Available The irreversible heat engine is reconsidered with a general heat transfer law. Three criteria known in the literature—power, power density, and efficient power—are redefined in terms of the work criteria function (WCF, a concept introduced in this study. The formulation enabled the suggestion and analysis of a unique criterion—the efficient power density (which accounts for the efficiency and power density. Practically speaking, the efficient power and the efficient power density could be defined on any order based on the WCF. The applicability of the WCF is illustrated for the Newtonian heat transfer law (n=1 and for the radiative law (n=4. The importance of WCF is twofold: it gives an explicit design and educational tool to analyze and to display graphically the different criteria side by side and thus helps in design process. Finally, the criteria were compared and some conclusions were drawn.

  20. Synergetcs - a field beyond irreversible thermodynamics

    International Nuclear Information System (INIS)

    This lecture introduces the reader to synergetics, a very young field of interdisciplinary research, which is devoted to the question of self-organization and, quite generally, to the birth of new qualities. After comparing the role of thermodynamics, irreversible thermodynamics and synergetics in the description of phenomena we give a few examples for self-oragnizing systems. Next we outline the mathematical approach and consider the generalized Ginzburg-Landau equations for non equilibrium phase transitions. We continue by applying these equations to the problem of morphogenesis in biology. We close our lecture by extending the formalism to spatially inhomogeneous or oscillating systems and arrive at order-parameter equations which are capable of describing new large classes of higher bifurcation schemes. (HJ)

  1. Entropy, Extropy and the Physical Driver of Irreversibility

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2012-06-01

    Full Text Available We point out that the fundamental irreversibility of Nature requires the introduction of a suitable measure for the distance from equilibrium. We show that entropy, which is widely held to be such a measure, suffers from the problem that it does not have a physical meaning, since it is introduced on the basis of mathematical arguments. As a consequence, the basic physics beyond irreversibility has remained obscure. We present here a simple but transparent physical approach for solving the problem of irreversibility. This approach shows that extropy, the fundamental thermodynamic variable introduced by Katalin Martinás, is the suitable measure for the distance from equilibrium, since it corresponds to the actual driver of irreversible processes. Since extropy explicitly contains in its definition all the general thermodynamic forces that drive irreversible processes, extropy is the suitable physical measure of irreversibility.

  2. Performance of an irreversible quantum Carnot engine with spin 12.

    Science.gov (United States)

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih

    2006-06-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.

  3. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Science.gov (United States)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  4. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven A; Rochau, Gary E; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  5. Preliminary Design of S-CO{sub 2} Brayton Cycle for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO{sub 2} Brayton cycle (S-CO{sub 2} cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO{sub 2} coolant, authors selected a simple recuperated S-CO{sub 2} Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO{sub 2} cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study.

  6. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System

    Science.gov (United States)

    Johnson, Paul

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber- Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  7. Recent technology advances in the NASA-Lewis Research Center Brayton program.

    Science.gov (United States)

    Vernon, R.

    1972-01-01

    A review of the progress and milestones passed in the Brayton program during the past year is presented. The 2-to-15 kWe power system was successfully operated in a vacuum with a space-type radiator. Gas loop and electrical subsystem endurance tests have continued to demonstrate long-term operation with one rotating unit surpassing 10,000 hours of failure-free operation. Simplified gas-bearing designs for the rotating unit are being evaluated. Fabrication of an improved design of heat exchanger is nearing completion, and a study of more advanced heat exchanger technology is being conducted.

  8. Irreversible properties of YBCO coated conductors

    CERN Document Server

    Vostner, A

    2001-01-01

    dependence of the irreversibility fields up to 6 T. To gain more insight into the defect structure of the films, neutron irradiation studies were performed on some samples. The introduction of these artificial pinning centers causes large enhancements of the magnetic J sub c in LPE specimens for the field parallel to the c-axis (H//c) at higher temperatures and magnetic fields. The granular structure of the samples does not change up to the highest neutron fluences. However, the enhancements of the transport J sub c 's are not as pronounced as observed in the magnetic measurements. The optimum defect cascade density is determined by sequential irradiation. Especially at higher fluences, the damage caused by the irradiation dominates over the additional pinning force and results in a reduction of the transport J sub c 's. This effect is even more pronounced for fields perpendicular to the c-axis (H//ab). A comparison of irradiation studies between samples deposited by LPE and by PLD shows that LPE films have a...

  9. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.

    2014-10-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  10. Order and disorder in irreversible decay processes.

    Science.gov (United States)

    Nichols, Jonathan W; Flynn, Shane W; Green, Jason R

    2015-02-14

    Dynamical disorder motivates fluctuating rate coefficients in phenomenological, mass-action rate equations. The reaction order in these rate equations is the fixed exponent controlling the dependence of the rate on the number of species. Here, we clarify the relationship between these notions of (dis)order in irreversible decay, n A → B, n = 1, 2, 3, …, by extending a theoretical measure of fluctuations in the rate coefficient. The measure, Jn-Ln (2)≥0, is the magnitude of the inequality between Jn, the time-integrated square of the rate coefficient multiplied by the time interval of interest, and Ln (2), the square of the time-integrated rate coefficient. Applying the inequality to empirical models for non-exponential relaxation, we demonstrate that it quantifies the cumulative deviation in a rate coefficient from a constant, and so the degree of dynamical disorder. The equality is a bound satisfied by traditional kinetics where a single rate constant is sufficient. For these models, we show how increasing the reaction order can increase or decrease dynamical disorder and how, in either case, the inequality Jn-Ln (2)≥0 can indicate the ability to deduce the reaction order in dynamically disordered kinetics.

  11. Irreversible Electroporation for Colorectal Liver Metastases.

    Science.gov (United States)

    Scheffer, Hester J; Melenhorst, Marleen C A M; Echenique, Ana M; Nielsen, Karin; van Tilborg, Aukje A J M; van den Bos, Willemien; Vroomen, Laurien G P H; van den Tol, Petrousjka M P; Meijerink, Martijn R

    2015-09-01

    Image-guided tumor ablation techniques have significantly broadened the treatment possibilities for primary and secondary hepatic malignancies. A new ablation technique, irreversible electroporation (IRE), was recently added to the treatment armamentarium. As opposed to thermal ablation, cell death with IRE is primarily induced using electrical energy: electrical pulses disrupt the cellular membrane integrity, resulting in cell death while sparing the extracellular matrix of sensitive structures such as the bile ducts, blood vessels, and bowel wall. The preservation of these structures makes IRE attractive for colorectal liver metastases (CRLM) that are unsuitable for resection and thermal ablation owing to their anatomical location. This review discusses different technical and practical issues of IRE for CRLM: the indications, patient preparations, procedural steps, and different "tricks of the trade" used to improve safety and efficacy of IRE. Imaging characteristics and early efficacy results are presented. Much is still unknown about the exact mechanism of cell death and about factors playing a crucial role in the extent of cell death. At this time, IRE for CRLM should only be reserved for small tumors that are truly unsuitable for resection or thermal ablation because of abutment of the portal triad or the venous pedicles.

  12. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  13. Heat exchanger design for hot air ericsson-brayton piston engine

    Directory of Open Access Journals (Sweden)

    Ďurčanský P.

    2014-03-01

    Full Text Available One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  14. Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John; Garg, Anita

    2007-01-01

    Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, have been screened to compare their respective capabilities for impeller applications. Mar-M247LC has been selected for additional long term evaluations. Initial tests in helium indicate this inert environment may debit long term creep resistance of this alloy. Several wrought superalloys including Hastelloy® X, Inconel® 617, Inconel® 740, Nimonic® 263, Incoloy® MA956, and Haynes 230 are also being screened to compare their capabilities for duct applications. Haynes 230 has been selected for additional long term evaluations. Initial tests in helium are just underway for this alloy. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Therefore, long term microstructural stability is also being screened.

  15. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  16. Progress Towards a 6-10 K Turbo-Brayton Cryocooler

    Science.gov (United States)

    Zagarola, M. V.; Cragin, K. J.; Breedlove, J. J.; Davis, T. M.

    2006-04-01

    Turbomachine-based Brayton (turbo-Brayton) cryocoolers are an ideal option for long-duration space missions. Key attributes inherent to the technology are high reliability, extremely low vibration emittance, and flexible packaging and integration with instruments and spacecraft systems. The first space implementation of the technology was the NICMOS Cryocooler, which is a single-stage unit that was installed on the Hubble Space Telescope in March 2002. This cryocooler provides 7 W of cooling at 70 K and has been operating for 3.3 years (July 2005) without degradation in performance. New developments at Creare are focused on two-stage configurations with load temperatures as low as 6 K. The lower temperatures and loads have required advances in component technologies to meet aggressive targets for cryocooler mass, size and performance. The development of the electronics, compressors and intermediate turboalternator for a 6-10 K cryocooler are complete. This paper summarizes our accomplishments on the completed components, and reviews our progress towards the development of the remaining critical components, a lightweight recuperator and a high performance low temperature turboalternator.

  17. Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems

    Science.gov (United States)

    Johnson, Paul K.; Mason, Lee S.

    2005-02-01

    The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30,45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.

  18. Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, john; Garg, Anita

    2007-01-01

    Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, have been screened to compare their respective capabilities for impeller applications. Mar-M247LC has been selected for additional long term evaluations. Initial tests in helium indicate this inert environment may debit long term creep resistance of this alloy. Several wrought superalloys including Hastelloy(Registered TradeMark) X, Inconel(Registered TradeMark) 617, Inconel(Registered TradeMark) 740, Nimonic(Registered TradeMark) 263, Incoloy(Registered TradeMark) MA956, and Haynes 230 are also being screened to compare their capabilities for duct applications. Haynes 230 has been selected for additional long term evaluations. Initial tests in helium are just underway for this alloy. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Therefore, long term microstructural stability is also being screened.

  19. Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John

    2006-01-01

    This paper represents a status report documenting the work on creep of superalloys performed under Project Prometheus. Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, are being screened to compare their respective capabilities for impeller applications. Several wrought superalloys including Hastelloy X, (Haynes International, Inc., Kokomo, IN), Inconel 617, Inconel 740, Nimonic 263, and Incoloy MA956 (Special Metals Corporation, Huntington, WV) are also being screened to compare their capabilities for duct applications. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Conventional tensile and creep tests were performed at temperatures up to 1200 K on specimens extracted from the materials. Initial microstructure evaluations were also undertaken.

  20. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    Science.gov (United States)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  1. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    Science.gov (United States)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  2. Study on the matching performance of a low temperature reverse Brayton air refrigerator

    International Nuclear Information System (INIS)

    Highlights: • A relation between operation parameters of expander and brake pressure was obtained. • A matching model was got based on the theoretical analysis and simulation. • Brake pressure feedback control was proposed and applied in the experiment. • The minimum free-load refrigerating temperature of 99.6 K was reached. - Abstract: A small reverse Brayton cycle air refrigerator was designed and fabricated. Bump-type air journal foil bearing, pressurized thrust gas bearing and centrifugal blower as brake were employed in the turboexpander. Usually, constant brake inlet pressure is set in a reverse Brayton refrigerator. However, the unchanged brake inlet pressure cannot adapt to the changing temperature and expansion ratio during the cooling down process, which could go against the system performance. In this article, the relationship between the turboexpander operation parameters and brake pressure was disclosed through theoretical analysis. The performance curve was analyzed through numerical simulation using CFX. A matching model was established based on the theoretical analysis and numerical simulation. Brake pressure feedback control was then proposed and applied in the experimental study. Thermal performance of the refrigerator was tested under varied operating conditions (different expansion ratios, temperatures and brake pressures). The results indicated that the appropriate brake pressure facilitated system good thermal performance under both design and off-design conditions, and the theoretical results agreed well with the experimental data

  3. Brayton Isotope Power System (BIPS). Phase I. First annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-27

    The objective of the BIPS program is to develop a closed gas turbine dynamic conversion system for space application. The baseline system is a 7-year life, 450 lb, 1300 W(e) unit using Brayton cycle hardware developed for the NASA LeRC and two 2400 W(t) Multi-Hundred Watt isotope heat sources developed for the ERDA. Phase I of the three-phase BIPS program is the conceptual design of the flight system, the design, development, and testing of a prototype Ground Demonstration System (GDS). The Mini-Brayton Rotating Unit (Mini-BRU), Mini-BRU Recuperator (MBR), and Heat Source Assembly (HSA) will be integrated into the ground demonstrator loop, and the system will be tested under simulated space conditions at the AiResearch Space Power Laboratory. Successful completion of the Phase I effort in mid 1978 is expected to lead to the Phase II and Phase III follow-on efforts. Phase II is a 24-month effort for the development and qualification of a flight system. Qualification will include testing with an isotope heat source. Phase III is a 12-month effort to fabricate flight-qualified hardware for delivery in April 1981.

  4. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO2 cycle) as a working fluid can be an alternative approach. The S-CO2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO2. The direction and range of the CO2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO2 was mixed with N2, O2, He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating simple

  5. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1˜3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  6. Irreversible Sorption of Contaminants During Ferrihydrite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Arthur, S.E.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Westrich, H.R.

    1999-05-19

    A better understanding of the fraction of contaminants irreversibly sorbed by minerals is necessary to effectively quantify bioavailability. Ferrihydrite, a poorly crystalline iron oxide, is a natural sink for sorbed contaminants. Contaminants may be sorbed/occluded as ferrihydrite precipitates in natural waters or as it ages and transforms to more crystalline iron oxides such as goethite or hematite. Laboratory studies indicate that Cd, Co, Cr, Cu, Ni, Np, Pb, Sr, U, and Zn are irreversibly sorbed to some extent during the aging and transformation of synthetic ferrihydrite. Barium, Ra and Sr are known to sorb on ferrihydrite in the pH range of 6 to 10 and sorb more strongly at pH values above its zero point of charge (pH> 8). We will review recent literature on metal retardation, including our laboratory and modeling investigation of Ba (as an analogue for Ra) and Sr adsorption/resorption, during ferrihydrite transformation to more crystalline iron oxides. Four ferrihydrite suspensions were aged at pH 12 and 50 °C with or without Ba in 0.01 M KN03 for 68 h or in 0.17 M KN03 for 3424 h. Two ferrihydrite suspensions were aged with and without Sr at pH 8 in 0.1 M KN03 at 70°C. Barium or Sr sorption, or resorption, was measured by periodically centrifuging suspension subsamples, filtering, and analyzing the filtrate for Ba or Sr. Solid subsamples were extracted with 0.2 M ammonium oxalate (pH 3 in the dark) and with 6 M HCl to determine the Fe and Ba or Sr attributed to ferrihydrite (or adsorbed on the goethite/hematite stiace) and the total Fe and Ba or Sr content, respectively. Barium or Sr occluded in goethite/hematite was determined by the difference between the total Ba or Sr and the oxalate extractable Ba or Sr. The percent transformation of ferrihydrite to goethite/hematite was estimated from the ratio of oxalate and HC1 extractable Fe. All Ba was retained in the precipitates for at least 20 h. Resorption of Ba reached a maximum of 7 to 8% of the Ba2+ added

  7. An update on irreversible electroporation of liver tumours.

    Science.gov (United States)

    Yeung, Enoch S L; Chung, Max W Y; Wong, Keedon; Wong, Clement Y K; So, Enoch C T; Chan, Albert C Y

    2014-08-01

    OBJECTIVE. To investigate the clinical efficacy and safety of irreversible electroporation for ablation of liver tumour in humans. DATA SOURCES. The PubMed and MEDLINE databases were systematically searched. STUDY SELECTION. Clinical research published in English in the last 10 years until October 2013 that address clinical issues related to irreversible electroporation of human liver tumours were selected. "Liver tumor", "local ablative therapy", and "irreversible electroporation" were used as the search terms. DATA EXTRACTION AND SYNTHESIS. The data extracted for this review was analysed by the authors, with a focus on the clinical efficacy and the safety of irreversible electroporation. The complete response rates look promising, ranging from 72% to 100%, except in one study in a subgroup of liver tumours in which the complete response rate was only 50% that was likely due to the inclusion of larger-size tumours. In one study, the local recurrence rate at 12 months was approximately 40%. As for the safety of irreversible electroporation, there were only a few reported complications (cardiac arrhythmia, pneumothorax, and electrolyte disturbance) that were mostly transient and not serious. There was no reported mortality related to the use of irreversible electroporation. CONCLUSION. Irreversible electroporation is a potentially effective liver tumour ablative therapy that gives rise to only mild and transient side-effects. Further studies with better patient selection criteria and longer follow-up are needed to clarify its role as a first-line liver tumour treatment modality.

  8. Irreversibility of financial time series: A graph-theoretical approach

    Science.gov (United States)

    Flanagan, Ryan; Lacasa, Lucas

    2016-04-01

    The relation between time series irreversibility and entropy production has been recently investigated in thermodynamic systems operating away from equilibrium. In this work we explore this concept in the context of financial time series. We make use of visibility algorithms to quantify, in graph-theoretical terms, time irreversibility of 35 financial indices evolving over the period 1998-2012. We show that this metric is complementary to standard measures based on volatility and exploit it to both classify periods of financial stress and to rank companies accordingly. We then validate this approach by finding that a projection in principal components space of financial years, based on time irreversibility features, clusters together periods of financial stress from stable periods. Relations between irreversibility, efficiency and predictability are briefly discussed.

  9. Investment Irreversibility and Precautionary Savings in General Equilibrium

    DEFF Research Database (Denmark)

    Ejarque, João

    if the shocks affect the marginal efficiency of investment. For all types of shocks, when concavity of the utility function is moderate or high, the irreversibility constraint never binds and the increase in variance has a negligible impact. Persistence in the shock process induces precautionary savings rather......Partial equilibrium models suggest that when uncertainty increases, agents increase savings and at the same time reduce investment in irreversible goods. This paper characterizes this problem in general equilibrium with technology shocks, additive output shocks and shocks to the marginal efficiency...... of investment. Uncertainty is associated with the variance of these random variables, and irreversibility is introduced by a non negativity constraint on investment. I find that irreversibility and changes in uncertainty can be responsible for sizeable movements in aggregate consumption and investment only...

  10. Ecolosical optimization of an irreversible harmonic oscillators Carnot heat engine

    Institute of Scientific and Technical Information of China (English)

    LIU XiaoWei; CHEN LinGen; WU Feng; SUN FengRui

    2009-01-01

    A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  11. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of an irreversible quantum Carnot heat engine with heat resistance,internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach,equations of some important performance parameters,such as power output,efficiency,exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  12. Microscopic reversibility and macroscopic irreversibility: A lattice gas model

    Science.gov (United States)

    Pérez-Cárdenas, Fernando C.; Resca, Lorenzo; Pegg, Ian L.

    2016-09-01

    We present coarse-grained descriptions and computations of the time evolution of a lattice gas system of indistinguishable particles, whose microscopic laws of motion are exactly reversible, in order to investigate how or what kind of macroscopically irreversible behavior may eventually arise. With increasing coarse-graining and number of particles, relative fluctuations of entropy rapidly decrease and apparently irreversible behavior unfolds. Although that behavior becomes typical in those limits and within a certain range, it is never absolutely irreversible for any individual system with specific initial conditions. Irreversible behavior may arise in various ways. We illustrate one possibility by replacing detailed integer occupation numbers at lattice sites with particle probability densities that evolve diffusively.

  13. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  14. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  15. Irreversible electroporation of lung neoplasm: A case series

    OpenAIRE

    Usman, Mumal; Moore, William; Talati, Ronak; Watkins, Kevin; Bilfinger, Thomas V.

    2012-01-01

    Summary Background Percutaneous irreversible electroporation (IRE) of lung tumors is a new minimally invasive technique which has recently been used in the treatment of soft tissue tumors. Case Reports The case histories are presented of two patients with unresectable malignancies in the lung, who underwent irreversible electroporation as a treatment attempt. The procedure was performed under CT guidance and was uneventful. Conclusions At follow up 6 months later, the tumors both appeared to ...

  16. Mandatory Unbundling and Irreversible Investment in Telecom Networks

    OpenAIRE

    Robert S. Pindyck

    2004-01-01

    This paper addresses the impact on investment incentives of the network sharing arrangements mandated by the Telecommunications Act of 1996, with a focus on the implications of irreversible investment. Although the goal is to promote competition, the sharing rules now in place reduce incentives to build new networks or upgrade existing ones. Such investments are irreversible -- they involve sunk costs. The basic framework adopted by regulators allows entrants to utilize such facilities at pri...

  17. Towards irreversibility with a finite bath of oscillators

    International Nuclear Information System (INIS)

    We investigate the routes by which a bath composed of a finite number of oscillators at zero temperature approaches the induction of dissipation when it nears the usual limit of dense spectrum spread in an infinite interval. It is shown that, when this limit is taken, different distributions of environment frequencies can lead to the same irreversible evolution. However, when we move away from it, the dynamics departs from irreversibility in qualitatively different manners.

  18. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  19. Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report

    Energy Technology Data Exchange (ETDEWEB)

    Burgmeier, L.; Leung, S.

    1981-07-31

    The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

  20. An isothermal model of a hybrid Stirling/reverse-Brayton cryocooler

    Science.gov (United States)

    Nellis, G. F.; Maddocks, J. R.

    2003-01-01

    This paper presents a model of a cryogenic refrigerator that integrates a reverse-Brayton lower temperature stage with a 2-piston Stirling upper temperature stage using a rectification system of check valves and buffer volumes. The numerical model extends the isothermal Schmidt analysis of the Stirling cycle by deriving the additional dimensionless governing equations that characterize the recuperative system. Numerical errors are quantified and the results are verified against analytical solutions in the appropriate limits. The model is used to explore the effect of the rectification system's characteristics on the overall cycle's behavior. Finally, the model is used to optimize the hybrid system's design by varying the swept volume ratio and phase angle in order to maximize the refrigeration per unit of heat transfer in the recuperator and regenerator.

  1. Dynamic response simulation for high temperature gas-cooled reactor with indirect closed Brayton cycle

    International Nuclear Information System (INIS)

    A transient simulation program is developed in order to study dynamic characteristics of high temperature gas-cooled reactor with indirect closed Brayton cycle. After the brief introduction to such a plant, detailed mathematical models for important installations are described in the paper. By inducing step positive reactivity into the reactor, it looks like that the powers of turbo machine installations have a different growth rate accompanied with small increase of reactor power. Furthermore, this paper shows the temperature changes of reactor and heat exchangers. For the heat exchangers of the whole secondary loop, the pressure changes behave quite differently for those three sections divided by turbine, low pressure compressor and high pressure compressor. For all these equipments, the simulation program gives reasonable results and is in accordance with dynamic characteristics of their own. (authors)

  2. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  3. Conceptual Design of S-CO2 Brayton Cycle Radial Turbomachinery for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    KAIST proposed a new SMR design, which utilizes S-CO2 as the working fluid. It was named as KAIST MMR. Compared with existing SMR concepts, KAIST MMR has advantages of achieving smaller volume of power conversion unit (PCU) and containing the core and PCU in one vessel for the complete modularization. Authors noticed that the compressor and turbine assumed performances of KAIST MMR were conservatively selected previously. Thus, this paper tries to address the best estimate values of each turbomachinery in 10MWe class KAIST MMR. The turbomachinery size of the S-CO2 cycle is smaller than helium Brayton cycle and steam Rankine cycle. The suggested SMR concept adopts passive cooling system by using air. This method can cool reactor without external electricity supply. Small size and more flexible installation in the inland area will be necessary characteristics for the future nuclear application in the water limited region. KAIST MMR meets all these requirements by utilizing S-CO2 as a working fluid. This paper presents the work for further increasing the system performance by estimating the component efficiency more realistically. The cycle layout adopted for the application is S-CO2 recuperated Brayton cycle. The best efficiency of compressor and turbine was evaluated to be 84.94% and 90.94%, respectively. By using KAIST in-house code, thermal efficiency and net output were increased to 35.81% and 12.45MWe, respectively, for the same core thermal power. More refined cycle layout and suitable turbomachinery design will be performed in the near future

  4. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  5. Partially-irreversible sorption of formaldehyde in five polymers

    Science.gov (United States)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  6. Performance analysis of a large-scale helium Brayton cryo-refrigerator with static gas bearing turboexpander

    International Nuclear Information System (INIS)

    Highlights: • A 2 kW at 20.0 K helium Brayton cryo-refrigerator is built in China. • A series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. • Maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs. • A model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. - Abstract: Large-scale helium cryo-refrigerator is widely used in superconducting systems, nuclear fusion engineering, and scientific researches, etc., however, its energy efficiency is quite low. First, a 2 kW at 20.0 K helium Brayton cryo-refrigerator is built, and a series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. It is found that maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs, which is the main characteristic of the helium Brayton cryo-refrigerator/cycle different from the air Brayton refrigerator/cycle. Other three characteristics also lie in the configuration of refrigerant helium bypass, internal purifier and non-linearity of specific heat of helium. Second, a model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. The assumption named internal purification temperature depth (PTD) is introduced, and the heat capacity rate of whole cycle is divided into three different regions in accordance with the PTD: room temperature region, upper internal purification temperature region and lower one. Analytical expressions of cooling capacity and COP are obtained, and we found that the expressions are piecewise functions. Further, comparison between the model and the experimental results for cooling capacity of the helium cryo-refrigerator shows that error is less than 7.6%. The PTD not only helps to achieve the analytical formulae and indicates the working

  7. Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole

    Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.

  8. Gas-injection-start and shutdown characteristics of a 2-kilowatt to 15-kilowatt Brayton power system

    Science.gov (United States)

    Cantoni, D. A.

    1972-01-01

    Two methods of starting the Brayton power system have been considered: (1) using the alternator as a motor to spin the Brayton rotating unit (BRU), and (2) spinning the BRU by forced gas injection. The first method requires the use of an auxiliary electrical power source. An alternating voltage is applied to the terminals of the alternator to drive it as an induction motor. Only gas-injection starts are discussed in this report. The gas-injection starting method requires high-pressure gas storage and valves to route the gas flow to provide correct BRU rotation. An analog computer simulation was used to size hardware and to determine safe start and shutdown procedures. The simulation was also used to define the range of conditions for successful startups. Experimental data were also obtained under various test conditions. These data verify the validity of the start and shutdown procedures.

  9. Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics

    CERN Document Server

    Colangeli, Matteo

    2011-01-01

    In a recent paper [M. Colangeli \\textit{et al.}, J.\\ Stat.\\ Mech.\\ P04021, (2011)] it was argued that the Fluctuation Relation for the phase space contraction rate $\\Lambda$ could suitably be extended to non-reversible dissipative systems. We strengthen here those arguments, providing analytical and numerical evidence based on the properties of a simple irreversible nonequilibrium baker model. We also consider the problem of response, showing that the transport coefficients are not affected by the irreversibility of the microscopic dynamics. In addition, we prove that a form of \\textit{detailed balance}, hence of equilibrium, holds in the space of relevant variables, despite the irreversibility of the phase space dynamics. This corroborates the idea that the same stochastic description, which arises from a projection onto a subspace of relevant coordinates, is compatible with quite different underlying deterministic dynamics. In other words, the details of the microscopic dynamics are largely irrelevant, for ...

  10. Irreversibility of the two-dimensional enstrophy cascade

    CERN Document Server

    Piretto,; Boffetta, G

    2016-01-01

    We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking at the time derivative of the square vorticity along Lagrangian trajectories, a quantity which we call metenstrophy. By means of extensive numerical simulations we measure the time irreversibility from the asymmetry of the PDF of the metenstrophy and we find that it increases with the Reynolds number of the cascade, similarly to what found in three-dimensional turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a remarkable difference with respect to what observed for the direct cascade, in particular the role of the statistics of the forcing to determine the degree of irreversibility.

  11. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  12. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    Science.gov (United States)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  13. Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors

    International Nuclear Information System (INIS)

    Highlights: •We propose an enhanced power conversion system layout for a Model C fusion reactor. •Proposed layout is based on a modified recompression supercritical CO2 Brayton cycle. •New arrangement in recuperators regards to classical cycle is used. •High efficiency is achieved, comparable with the best obtained in complex solutions. -- Abstract: A domestic research program called TECNOFUS was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO2 Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO2 Brayton cycles

  14. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  15. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  16. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    Science.gov (United States)

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  17. Intrinsic Decoherence and Irreversibility in the Quasiperiodic Kicked Rotor

    CERN Document Server

    Shifino, A C S; Siri, R; Romanelli, A; Donangelo, R J

    2003-01-01

    We show that some classically chaotic quantum systems uncoupled from noisy environments may generate intrinsic decoherence with all its associated effects. In particular, we have observed time irreversibility and high sensitivity to small perturbations in the initial conditions in a quasiperiodic version of the kicked rotor. The existence of simple quantum systems with intrinsic decoherence clarifies the quantum--classical correspondence in chaotic systems.

  18. Irreversible Encephalopathy After Treatment With High-Dose Intravenous Metronidazole

    NARCIS (Netherlands)

    Groothoff, Miriam V. R.; Hofmeijer, Jannette; Sikma, Maaike A.; Meulenbelt, Jan

    2010-01-01

    Background: Encephalopathy associated with metronidazole is rare and, in most cases, reversible following discontinuation. Objective: We describe a case of fatal encephalopathy after treatment with high-dose intravenous metronidazole and the potential causes of the irreversibility. Case summary: A 3

  19. TOTALMENTE DIVERSO”: SAN TOMMASO

    Directory of Open Access Journals (Sweden)

    IOSIF TAMAŞ

    2011-05-01

    Full Text Available In order to synthesize the exploration of above presented ideas, wesuggest the following conclusions: Pope John Paul II cherished Saint Thomas as representing „that eternal novelty of thinking” which brought us close to the ontic space of knowledge, the dynamic principle of which is Being. The climax of this condition would be the moment of embracing the truth, which would trigger that vital necessity for metaphysics. According to the stated objective ofthe necessary and indispensable ratio between reason and faith, we see that Tomas suggested the vision of the objective, transcendent and universal truth. This fact determined Pope John Paul II to appreciate that “passion” for truth. The man of our time must walk again towards the light of this truth. In this sense, Saint Thomas’ philosophy represents the guide above all. Its philosophic importance, meaning that “it is truly the philosophy of Being, and not the philosophy of a simple epiphany”, confirms its aim to provide a constant answerto many of the problems that concerns the human mind: the problems ofknowledge and Being, the problems of speaking and doing, the problems of the world, and the problems related with Man and God.

  20. Analysis of irreversible displacements of Daniel-Johnson dam

    Energy Technology Data Exchange (ETDEWEB)

    Chouinard, L.; Zhao, W. [McGill Univ., Montreal, PQ (Canada); Lariviere, R. [Hydro-Quebec, Montreal, PQ (Canada); Cote, P. [Hydro-Quebec Production, Baie-Comeau, PQ (Canada)

    2006-07-01

    Irreversible displacements in dams are associated with alkali-aggregate reaction, creep, and other damaging effects that compromise the safety of dams. An identification of the nature of irreversible displacements is needed to predict the future behaviour of dams as well as to select appropriate remedial measures. This paper provided details of a principal component analysis (PCA) used to investigate swelling and small irreversible displacements observed at the Daniel-Johnson dam in Quebec. PCA is a multivariate statistical method that performs the analysis of correlations or covariances between several random variables simultaneously. Three datasets were used: (1) reservoir water level; (2) air temperature; and (3) pendulum displacements. Standard linear regression analyses (HST) were performed for each variable in order to eliminate outliers and replace missing values. The multivariate dataset was then used to perform PCA on the entire dataset as well as on subsets from the original data. Displacement data from pendulums were used in the multivariate statistical analysis in which each component was treated as a separate variable. The comparison of irreversible displacements of the dam from HST analysis and principal component analysis (PCA) indicated that results were consistent with the data. The PCA analysis identified dominant patterns of behaviour and detected 2 distinct components of irreversible deformations arising from creep and swelling of concrete. Results of the study showed that the PCA analysis led to a better understanding of the overall behaviour of the dam and of individual arches and buttresses. It was concluded that the PCA analysis method will help to improve dam safety in addition to more accurately predicting the future behaviour of dams. 6 refs., 2 tabs., 9 figs.

  1. Preparation of irreversible hydrocolloids to improve retention of complete dentures

    Directory of Open Access Journals (Sweden)

    Aleksov Ljiljana

    2008-01-01

    Full Text Available Introduction Precise reproduction of anatomical-morphological details of dentures support on working models presupposes adequate application of modern impression materials and casting procedure, as well as minimal dimensional change of these materials. The aim of the study: experimental and clinical research is connected to irreversible hydrocolloids and the objective was to examine the most suitable consistency of the alginate as the impression mass for the purpose of improving retention of complete dentures. Material and methods This research included 35 completely toothless patients, most of who had already had complete dentures, 40-80 years of age and of both sexes. Static adhesion was measured with aery late plates made of adequate corresponding and various models depending on consistency of the irreversible hydrocolloids. Each model was cut into three parts, the cuts obtained were mutually compared, and computerized graphic charts of each section were made. Results The results of the research show that there is a greater retention force in the acrylate plates obtained on models castled on an anatomical impression base taken with irreversible hydrocolloides of solid consistency. Analysis of the results shows such quality of impressed tissues that they are practically slightly displaced by the impressions regardless of the consistency of the material impressed. Conclusion In conclusion it is pointed out that the preparation of irreversible hydrocolloides must be carried out by strictly obeying the powder-water weight ratios. The sections of the models obtained by irreversible hydrocolloides of various consistencies, that is by applying different pressures, point to minimal displacement of tissues and great differences in the retention force in favor of the compressive impression.

  2. Evaluation of Active Working Fluids for Brayton Cycles in Space Applications

    Science.gov (United States)

    Conklin, J. C.; Courville, G. E.; Scott, J. H.

    2004-02-01

    The main parameter of interest for space thermal power conversion to electricity is specific power, defined as the total electric power output per unit of system mass, rather than the cycle thermal efficiency. For a closed Brayton cycle, performance with two active working fluids, nitrogen tetroxide and aluminum chloride, is compared to that with an inert mixture of helium and xenon having a molecular mass of 40. A chemically active working fluid is defined here as a chemical compound that has a relatively high molecular weight at temperatures appropriate for the compressor inlet and dissociates to a lighter molecular weight fluid at typical turbine inlet temperatures. The active working fluids may have the advantage of a higher net turbomachinery work output and an advantageous enhancement of the heat transfer coefficient in the heat exchangers. The fundamental theory of the active working fluid concept is presented to demonstrate these potential advantages. Scoping calculations of the heat exchanger mass for a selected spacecraft application of 36.4 kW of electrical power output show that the nitrogen tetroxide active working fluid has an advantageous 7% to 30% lower mass-to-power ratio than that for the inert noble gas mixture, depending on the allowable turbine inlet temperature. The calculations for the aluminum chloride system suggest only a slight improvement in performance relative to the inert noble gas mixture.

  3. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    Science.gov (United States)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  4. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    Science.gov (United States)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  5. Brayton power conversion system parametric design modelling for nuclear electric propulsion

    Science.gov (United States)

    Ashe, Thomas L.; Otting, William D.

    1993-11-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  6. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  7. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  8. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  9. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  10. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX

    International Nuclear Information System (INIS)

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data.

  11. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    Science.gov (United States)

    McCann, Larry D.

    2007-01-01

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  12. Thermal analysis on N2 and S-CO2 Brayton cycle for the energy conversion system of small scale ultra-long cycle fast reactor

    International Nuclear Information System (INIS)

    An ultra-long cycle fast reactor (UCFR) is one of the SFR designs operating in a long cycle without refueling. The operational mechanism of long cycle fast reactor is once-through fuel cycle through breed and burn system. The benefits of long cycle fast reactor include capital/operation cost reductions, low proliferation risk, and the interim storage of light water reactor (LWR) spent fuel. For the power conversion system of next generation nuclear reactor, Brayton cycle has been mainly considered. Brayton cycle not only increases overall thermal efficiency in corresponding temperature range of GenIV reactors, but also solves sodium-water reaction issues. As a working fluid in Brayton cycle, many inactive gases are selected. For the power conversion system of next generation nuclear reactor, Brayton cycle has been mainly considered. Among the candidates for working fluid in Brayton power cycle, S-CO2 and N2 are analyzed in thermal aspect. For the major parameters including maximum system pressure, isentropic efficiencies of compressor and turbine, and pinch point, S-CO2 cycle shows the highest thermal performance. However, N2 cycle without intermediate loop gives comparable thermal performance, if high pressure around 70 bar and high isentropic efficiency of each component are maintained

  13. BNNT-mediated irreversible electroporatio: its potential on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Raffa, Cristina Riggio, Michael W. Smith, Kevin C. Jordan, Wei Cao, Alfred Cuschieri

    2012-10-01

    Tissue ablation, i.e., the destruction of undesirable tissues, has become an important minimally invasive technique alternative to resection surgery for the treatment of tumours. Several methods for tissue ablation are based on thermal techniques using cold, e.g. cryosurgery [1] or heat, e.g. radiofrequency [2] or high-intensity focused ultrasound [3] or nanoparticle-mediated irradiation [4]. Alternatively, irreversible electroporation (IRE) has been proposed as non thermal technique for minimally invasive tissue ablation based on the use of electrical pulses. When the electric field is applied to a cell, a change in transmembrane potential is induced, which can cause biochemical and physiological changes of the cell. When the threshold value of the transmembrane potential is exceeded, the cell membrane becomes permeable, thus allowing entrance of molecules that otherwise cannot cross the membrane [5]. A further increase in the electric field intensity may cause irreversible membrane permeabilization and cell death. These pulses create irreversible defects (pores) in the cell membrane lipid bilayer, causing cell death through loss of cell homeostasis [6]. This is desirable in tumour ablation in order to produce large cell death, without the use of cytostatic drugs. A study of Davalos, Mir and Rubinsky showed that IRE can ablate substantial volumes of tissue without inducing a thermal effect and therefore serve as an independent and new tissue ablation modality; this opened the way to the use of IRE in surgery [7]. Their finding was subsequently confirmed in studies on cells [8], small animal models [9] and in large animal models in the liver [10] and the heart [11]. The most important finding in these papers is that irreversible electroporation produces precisely delineated ablation zones with cell scale resolution between ablated and non-ablated areas, without zones in which the extent of damage changes gradually as during thermal ablation. Furthermore, it is

  14. Analysis of Reversible Simulation of Irreversible Computation by Pebble Games

    CERN Document Server

    Li, Maozhen; Vitanyi, P; Li, Ming; Tromp, John; Vitanyi, Paul

    1998-01-01

    Reversible simulation of irreversible algorithms is analyzed in the stylized form of a `reversible' pebble game. While such simulations incur little overhead in additional computation time, they use a large amount of additional memory space during the computation. The reacheable reversible simulation instantaneous descriptions (pebble configurations) are characterized completely. As a corollary we obtain the reversible simulation by Bennett and that among all simulations that can be modelled by the pebble game, Bennett's simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps. One can reduce the auxiliary storage overhead incurred by the reversible simulation at the cost of allowing limited erasing leading to an irreversibility-space tradeoff. We show that in this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. We show that the reversible simulation can be modified so that it is applicable also whe...

  15. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  16. A unified viscoplasticity constitutive model based on irreversible thermodynamics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.

  17. A unified viscoplasticity constitutive model based on irreversible thermodynamics

    Institute of Scientific and Technical Information of China (English)

    LIU ChangChun; LV HeXiang; GUAN Ping

    2008-01-01

    A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity con-stitutive model is given. Compared with the typical unified viscoplasticity constitu-tive models, the presented model evidently satisfies the irreversible thermody-namics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.

  18. Determination of chlorogenic acid by flow injection irreversible biamperometry

    Institute of Scientific and Technical Information of China (English)

    Li Jun Li; Qi Feng Chen; Lai Bo Yu; Zhao Heng Zhong; Jun Feng; Hao Cheng; Hong Xing Kong; Jian Ling Wu

    2007-01-01

    A flow injection irreversible biamperometric method for the determination of chlorogenic acid is described. The proposed method is based on the electrochemical oxidation of chlorogenic acid at pretreated platinum electrode and the reduction of permanganate at another electrode to form an irreversible biamperometric detection system. Under the external potential difference(△E) of 0 V, in the 0.05 mol/L sulfuric acid, chlorogenic acid can be determined over the range 0.8-120 mg/L with a sample measurement frequency of 80 samples/h. The detection limit is 0.18 mg/L. The proposed method exhibits the satisfactory reproducibility with a relative standard derivation (R.S.D.) of 2.21% for 19 successive determinations of 40 mg/L.

  19. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    Institute of Scientific and Technical Information of China (English)

    Wang Hao; Wu Guo-Xing

    2013-01-01

    An irreversible Ericsson refrigeration cycle model is established,in which multi-irreversibilities such as finite-rate heat transfer,regenerative loss,heat leakage,and the efficiency of the regenerator are taken into account.Expressions for several important performance parameters,such as the cooling rate,coefficient of performance (COP),power input,exergy output rate,entropy generation rate,and ecological function are derived.The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed.The optimal regions of the ecological function,cooling rate,and COP are determined and evaluated.Furthermore,some important parameter relations of the refrigerator are revealed and discussed in detail.The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle.

  1. Thermodynamic Analysis of the Irreversibilities in Solar Absorption Refrigerators

    Directory of Open Access Journals (Sweden)

    Emma Berrich Betouche

    2016-03-01

    Full Text Available A thermodynamic analysis of the irreversibility on solar absorption refrigerators is presented. Under the hierarchical decomposition and the hypothesis of an endoreversible model, many functional and practical domains are defined. The effect of external heat source temperature on the entropy rate and on the inverse specific cooling load (ISCL multiplied by the total area of the refrigerator A/Qe are studied. This may help a constructor to well dimension the solar machine under an optimal technico-economical criterion A/Qe and with reasonable irreversibility on the refrigerator. The solar concentrator temperature effect on the total exchanged area, on the technico-economical ratio A/Qe, and on the internal entropy rate are illustrated and discussed. The originality of these results is that they allow a conceptual study of a solar absorption refrigeration cycle.

  2. Dynamics of polydisperse irreversible adsorption: a pharmacological example

    CERN Document Server

    Erban, R; Fisher, K D; Kevrekidis, Yu G; Seymour, L W; Chapman, Jonathan; Erban, Radek; Fisher, Kerry D.; Kevrekidis, Ioannis G.; Seymour, Leonard W.

    1999-01-01

    Many drug delivery systems suffer from undesirable interactions with the host immune system. It has been experimentally established that covalent attachment (irreversible adsorption) of suitable macromolecules to the surface of the drug carrier can reduce such undesirable interactions. A fundamental understanding of the adsorption process is still lacking. In this paper, the classical random irreversible adsorption model is generalized to capture certain essential processes involved in pharmacological applications, allowing for macromolecules of different sizes, partial overlapping of the tails of macromolecules, and the influence of reactions with the solvent on the adsorption process. Working in one dimension, an integro-differential evolution equation for the adsorption process is derived and the asymptotic behaviour of the surface area covered and the number of molecules attached to the surface is studied. Finally, equation-free dynamic renormalization tools are applied to study the asymptotically self-si...

  3. Thermodynamic irreversibility and performance characteristics of thermoelectric power generator

    International Nuclear Information System (INIS)

    Thermodynamic irreversibility and performance characteristics of a thermoelectric power generator are investigated. The influence of the external load parameter, the thermal conductivity ratio, the figure of Merit, and the conductance ratio on the efficiency, the output power, and the entropy generation rate is predicted for various device operating parameters. It is found that the device efficiency increases to reach its maximum at the critical value of the output power and operating the device beyond the critical output power lowers the thermal efficiency and enhances the entropy generation rate significantly in the device. - Highlights: • The thermodynamic irreversibility in thermoelectric generator is studied. • Thermodynamic characteristics of thermoelectric device are investigated. • Influence of various parameters on performance is presented. • The device efficiency reaches its maximum at a critical output power. • The entropy generation increases beyond the critical output power

  4. Uncertainty, Irreversibility and the Timing Problems of Environmental Policy

    Institute of Scientific and Technical Information of China (English)

    Yang Haisheng; Jia Jia; Zhou Yongzhang

    2006-01-01

    Most environmental issues and policy designing are uncertain and irreversible; therefore, the timing of environmental policy implementation becomes especially important. This paper establishes a random dynamic programming model and analyzes the optimal timing problems in environmental policy under uncertain variables. This model results indicate that two variables have a significant impact on the timing of environmental policy implementation and they work in opposite direcfons: on one hand, the more uncertain the economy is, the higher the cost of policies implementation will be, and consequently the incentive to immediately adopt the policy will be stronger. On the other hand, the higher the uncertainty of the environment is, the stronger the irreversibility of ecological harm caused by pollutants per unit will be. Therefore, the government should implement new environmental policies as early as possible in order to gain more ecological benefits.

  5. Comparison of reversible and irreversible dipolar assemblies in a ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Klokkenburg, M. [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)]. E-mail: m.klokkenburg@chem.uu.nl; Erne, B.H. [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2006-11-15

    Zero-field aggregation of magnetic nanoparticles in a ferrofluid can either be irreversible or result from a dynamic equilibrium; the two cases can be distinguished by measurements of the complex magnetic susceptibility and by cryogenic transmission electron microscopy (cryo-TEM). We demonstrate this by comparing two colloidal systems that show dipolar structure formation in zero field. A dispersion of magnetic iron nanoparticles is gradually oxidized to decrease the magnetic moments, and despite the vanishing dipolar attractions, thermal motion does not break up the dipolar structures into single particles. Instead, the dipolar structures become chemically fixed during the oxidation process, an example of irreversible aggregation. In contrast, the zero-field dipolar structures in a chemically stable magnetite dispersion are found to disintegrate upon dilution, indicating that the structures are reversible and result from a dynamic equilibrium.

  6. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  7. Cell Death Characterization In Tumor Constructs Using Irreversible Electroporation

    OpenAIRE

    Prokop, Katherine Jane

    2013-01-01

    Cell Death Characterization in Tumor Constructs Using Irreversible Electroporation Katherine Jane Prokop ABSTRACT Pancreatic and prostate cancer are both prevalent cancers in the United States with pancreatic being one of the most aggressive of all cancers and prostate cancer being one of the most common, ranking as the number one cancer in men. Treatment of both cancers can be quite challenging as the anatomy of the pancreas and prostate, as well as the development and diagnos...

  8. Advancements in Irreversible Electroporation for the Treatment of Cancer

    OpenAIRE

    Arena, Christopher Brian

    2013-01-01

        Irreversible electroporation has recently emerged as an effective focal ablation technique. When performed clinically, the procedure involves placing electrodes into, or around, a target tissue and applying a series of short, but intense, pulsed electric fields. Oftentimes, patient specific treatment plans are employed to guide procedures by merging medical imaging with algorithms for determining the electric field distribution in the tissue. The electric field dictates treatment outcomes...

  9. Irreversible Electroporation: A Novel Image-Guided Cancer Therapy

    OpenAIRE

    Lee, Edward W.; Thai, Susan; Kee, Stephen T.

    2010-01-01

    Irreversible electroporation (IRE) is a novel tumor ablation technique using a non-thermal energy to create innumerable permanent nanopores in the cell membrane to disrupt cellular homeostasis. This disruption of cellular homeostasis initiates apoptosis which leads to permanent cell death. In our translational research, we have demonstrated that IRE can be a safe, fast and powerful method of tumor treatment. In this review, we present an overview of IRE ablation including a brief history of I...

  10. Study of irreversible thermochromic ink application on textiles

    OpenAIRE

    Canal Barnils, Cristina; Villeger, Sandrine; Erra Serrabasa, Pilar; Ricard, André

    2009-01-01

    In the development of new products or new applications of known products, investigations have to be carried out concerning the choice of the kind of thermochromic matter, support, application form, concerning the evolution of colour change and stability versus imposed external parameters. The present paper studies the application of an irreversible thermochromic ink for the development of new high added value textiles, which may be prone to applications such as plasma treatments at low ...

  11. Irreversible Investment, Capacity Choice, and the Value of the Firm

    OpenAIRE

    Robert S. Pindyck

    1986-01-01

    A model of capacity choice and utilization is developed consistent with value maximization when investment is irreversible and future demand is uncertain. Investment requires the full value of a marginal unit of capacity to be at least as large as its full cost. The former includes the value of the firms option not to utilize the unit, and the latter includes the opportunity cost of exercising the investment option. We show that for moderate amounts of uncertainty, the firm's optimal capacity...

  12. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    International Nuclear Information System (INIS)

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 × 19 to 20 × 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm3. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  13. Rapid Detection of Irreversible Acetylcholineasterase Inhibitor by Mass Spectrometry Assay

    Institute of Scientific and Technical Information of China (English)

    蔡婷婷; 张立; 汪蓉; 梁晨; 赵武生; 傅得锋; 张玉荣; 郭寅龙

    2012-01-01

    Here we developed a rapid method to detect acetylcholinesterase (ACHE) activity by matrix-assisted laser de- sorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) for screening irreversible AChE inhibi- tors. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS could facilitate rapid detection, especially detection in real application. AChE activity was determined through calculating abundance of substrate and product in mass spectrometry. By this approach, we investigated the relation of organophosphorous (OP) con- centrations and AChE inhibition. Shown in different inhibition curves from different OP pesticides, enzyme inhibi- tions still kept good correlation with concentration of OPs. Finally, this AChE-inhibited method was applied to screen whole bloods of four decedents and discuss their death reason. In contrast to healthy persons, three of dece- dents showed low AChE activity, and probably died for irreversible AChE inhibitors. Through the following de- tecting in GC-MS/MS, the possible death reason of these three decedents was confirmed, and another decedent actually died for sumicidin, a non-AChE inhibitor. It demonstrated that screening irreversible AChE inhibitors by detecting enzyme activity in MALDI-FTMS provided fast and accurate analysis results and excluded another toxicants not functioning on ACHE. This method offered alternative choices for indicating the existence of enzyme inhibitors.

  14. Irreversibility in energy processes: Non-dimensional quantification and balance

    Science.gov (United States)

    Pons, Michel

    2004-06-01

    The concept of thermodynamic efficiency (ratio of real cycle efficiency by Carnot efficiency) is well-known. The concept of numbers of entropy-production and of exergy-loss proposed by A. Bejan are also known, but rarely used. The present study firstly evidences that these two last numbers are actually identical, thus being a common number of irreversibility, independent of the method used for obtaining it. The study also evidences a non-dimensional irreversibility balance that applies to any energy conversion process. This balance correlates the thermodynamic efficiency of a whole process (which in most cases equals the exergetic efficiency) and the numbers of irreversibility of the different components or sub-processes involved in this process. Moreover, the basic additivity of entropy-productions and exergy-losses is maintained in this balance. This balance applies to the basic cycles (heat-engines, refrigerators, heat-pumps and heat-transformers), either work- or heat-powered. It also applies to more complex cycles (heat-powered cycles consuming electricity, four-temperature heat-powered cycles, cogeneration processes), thus giving a robust framework for analyzing these cycles.

  15. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    Energy Technology Data Exchange (ETDEWEB)

    Kasivisvanathan, Veeru, E-mail: vk103@ic.ac.uk [Imperial College London, Department of Radiology (United Kingdom); Thapar, Ankur, E-mail: a.thapar09@imperial.ac.uk; Oskrochi, Youssof, E-mail: Youssof.Oskrochi09@imperial.ac.uk [Imperial College London, Department of Surgery and Cancer (United Kingdom); Picard, John, E-mail: John.picard@imperial.nhs.uk [Imperial College Healthcare NHS Trust, Department of Anaesthesia (United Kingdom); Leen, Edward L. S., E-mail: Edward.leen@imperial.ac.uk [Imperial College London, Department of Radiology (United Kingdom)

    2012-12-15

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 Multiplication-Sign 19 to 20 Multiplication-Sign 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm{sup 3}. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  16. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  17. Transient analysis of an FHR coupled to a helium Brayton power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghui [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Kim, In Hun [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Christensen, Richard [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Utgikar, Vivek [Univ. of Idaho, Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) features a passive decay heat removal system and a high-efficiency Brayton cycle for electricity generation. It typically employs an intermediate loop, consisting of an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX), to couple the primary system with the power conversion unit (PCU). In this study, a preliminary dynamic system model is developed to simulate transient characteristics of a prototypic 20-MWth Fluoride salt-cooled High-temperature Test Reactor (FHTR). The model consists of a series of differential conservation equations that are numerically solved using the MATLAB platform. For the reactor, a point neutron kinetics model is adopted. For the IHX and SHX, a fluted tube heat exchanger and an offset strip-fin heat exchanger are selected, respectively. Detailed geometric parameters of each component in the FHTR are determined based on the FHTR nominal steady-state operating conditions. Three initiating events are simulated in this study, including a positive reactivity insertion, a step increase in the mass flow rate of the PCU helium flow, and a step increase in the PCU helium inlet temperature to the SHX. The simulation results show that the reactor has inherent safety features for those three simulated scenarios. It is observed that the increase in the temperatures of the fuel pebbles and primary coolant is mitigated by the decrease in the reactor power due to negative temperature feedbacks. The results also indicate that the intermediate loop with the two heat exchangers plays a significant role in the transient progression of the integral reactor system.

  18. Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles

    International Nuclear Information System (INIS)

    In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range. - Highlights: • Supercritical CO2 cycles are proposed for biomass to electricity conversion. • Four boiler design options are considered. • High total system efficiency is due to the part-flow cascaded configuration. • The efficiency is higher than that of other small/medium size alternative systems

  19. Effects of backlash and dead band on temperature control of the primary loop of a conceptual nuclear Brayton space powerplant

    Science.gov (United States)

    Petrick, E. J.

    1973-01-01

    An analytical study was made of the stability of a closed-loop liquid-lithium temperature control of the primary loop of a conceptual nuclear Brayton space powerplant. The operating point was varied from 20 to 120 percent of design. A describing-function technique was used to evaluate the effects of temperature dead band and control coupling backlash. From the system investigation, it was predicted that a limit cycle will not exist with a temperature dead band, but a limit cycle will not exist when backlash is present. The results compare favorably with a digital computer simulation.

  20. Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. D.; Boman, A.; Arnold, S.; Spitzmesser, J. B.; Jones, D.; McCree, D.; Hacker, L. J.

    2001-10-15

    Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.

  1. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  2. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    OpenAIRE

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO2) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO2 Brayton cycles, can be assessed as a retrofit measu...

  3. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  4. Dimensional Stability of Color-Changing Irreversible Hydrocolloids after Disinfection

    Directory of Open Access Journals (Sweden)

    Khaledi AAR

    2015-03-01

    Full Text Available Statement of Problem: Disinfection of dental impressions is a weak point in the dental hygiene chain. In addition, dental office personnel and dental technicians are endangered by cross-contamination. Objectives: This study aimed to investigate the dimensional stability of two color-changing irreversible hydrocolloid materials (IH after disinfection with glutaraldehyde. Materials and Methods: In this in vitro study, impressions were made of a master maxillary arch containing three reference inserts on the occlucal surface of the left and right maxillary second molars and in the incisal surface of the maxillary central incisors. Two types of color-changing irreversible hydrocolloid (tetrachrom, cavex were used. Glutaraldehyde 2% was used in two methods of spraying and immersion to disinfect the impressions. The control group was not disinfected. Casts were made of type IV gypsum. The linear dimensional change of the stone casts was measured with a profile projector. For statistical analysis, Kruskall-Wallis and Mann-Witney tests were used (α=0.05. Results: By immersion method, the casts fabricated from tetrachrom were 0.36% larger in the anteroposterior (AP and 0.05% smaller in cross arch (CA dimensions; however, the casts prepared after spraying of tetrachrom were 0.44% larger in the AP and 0.10% smaller in CA dimensions. The casts made from Cavex were 0.05% smaller in the AP and 0.02% smaller in CA dimensions after spraying and 0.01% smaller in the AP and 0.003% smaller in CA dimensions after immersion. Generally there were not significant differences in AP and CA dimensions of the experimental groups compared to the control (p > 0.05. Conclusions: Disinfection of the tested color-changing irreversible hydrocolloids by glutaraldahyde 2% did not compromise the accuracy of the obtained casts.

  5. Use of fully covered self-expanding metal stents for the management of benign biliary conditions Utilización de prótesis metálicas autoexpandibles totalmente recubiertas en procesos biliares benignos

    Directory of Open Access Journals (Sweden)

    J. García-Cano

    2010-09-01

    pequeños y proporcionar, al abrirse completamente, diámetros grandes para el drenaje biliar. Su utilización en procesos benignos ha estado muy limitada, fundamentalmente por la dificultad en su extracción. Presentamos nuestra experiencia inicial con una PMAB totalmente recubierta (Wallflex para tratar patología benigna de la vía biliar. Pacientes y métodos: en un estudio descriptivo prospectivo se insertaron por CPRE prótesis de 8 mm de diámetro y 4, 6 u 8 cm de longitud, cuando se consideró que para el drenaje biliar eran precisos diámetros superiores a 10 french (3,3 mm. Las prótesis se retiraron también por endoscopia varios meses después según se consideró oportuno clínicamente. Resultados: se insertaron 20 PMAB. Los motivos fueron: gran fístula biliar intrahepática tras cirugía de quiste hidatídico (1, perforación del área papilar por esfinterotomía endoscópica (2, recanalización de prótesis no recubiertas insertadas en procesos benignos (3, estenosis benignas (7, coledocolitiasis múltiples y de gran tamaño con afilamiento-estenosis del colédoco distal que no pudieron extraerse (7. En todos los casos se logró un drenaje biliar satisfactorio y no se produjeron complicaciones por la inserción. Las prótesis se extrajeron con facilidad a los 132 días de media (36-270. La resolución completa de los procesos se obtuvo en 14 pacientes (70%. Conclusiones: en nuestra experiencia inicial, la prótesis Wallflex biliar totalmente recubierta pudo extraerse sin complicaciones tras permanecer en el colédoco hasta una media de más cuatro meses, por lo que podría utilizarse en el tratamiento de procesos biliares benignos.

  6. Differential description and irreversibility of depolarizing light-matter interactions

    CERN Document Server

    Fade, Julien

    2016-01-01

    The widely-used Jones and Mueller differential polarization calculi allow non-depolarizing deterministic polarization interactions, known to be elements of the $SO^+(1,3)$ Lorentz group, to be described in an efficient way. In this Letter, a stochastic differential Jones formalism is shown to provide a clear physical insight on light depolarization, which arises from the interaction of polarized light with a random medium showing fluctuating anisotropic properties. Based on this formalism, several "intrinsic" depolarization metrics naturally arise to efficiently characterize light depolarization in a medium, and an irreversibility property of depolarizing transformations is finally established.

  7. Irreversible inhibition of epithelial sodium channels by ultraviolet irradiation.

    OpenAIRE

    Cuthbert, A W; Fanestil, D. D.; Herrera, F. C.; Pryn, S. J.

    1982-01-01

    1 The effects of u.v. irradiation at 254 nm and 350 nm on sodium transport across frog skin epithelium have been investigated. 2 Irradiation at 254 nm but not at 350 nm produces a dose-dependent, functionally selective blockade of sodium transport. The effect is apparently due to the irreversible closure of apical sodium channels. 3 The amiloride-sensitive conductance was directly related to sodium transport as measured by short circuit current (SCC) both in normal and irradiated tissues, alt...

  8. Typical pure nonequilibrium steady states and irreversibility for quantum transport

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  9. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors.

    Science.gov (United States)

    Jack, M W; Tumlin, C

    2016-05-01

    We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.

  10. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors

    Science.gov (United States)

    Jack, M. W.; Tumlin, C.

    2016-05-01

    We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.

  11. Proposal for an advanced heat source assembly for the Isotope Brayton Power System. Volume 1. Technical program and statement of work

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    The technical program plan for evaluating the performance and safety of a radioisotope-fueled Brayton power system for space vehicles is presented with schedules for evaluating heat source design and safety, for specifying power system requirements, and for the development and operation of a ground demonstration system. (LCL)

  12. Fluctuations in the number of irreversibly adsorbed particles

    Science.gov (United States)

    Adamczyk, Zbigniew; Szyk-Warszyńska, Lilianna; Siwek, B.; Weroński, P.

    2000-12-01

    Fluctuations in the number of colloid particles adsorbed irreversibly under pure diffusion transport conditions were determined as a function of surface density and ionic strength of the suspension. The experiments were carried out for monodisperse polystyrene latex particles of micrometer size range adsorbing irreversibly at mica surface. The surface density of adsorbed particles at various areas was determined using the direct microscope observation method. A new experimental cell was used enabling in situ observations of particles adsorption under conditions of negligible gravity effects. It was found that the particle density fluctuations for high ionic strength were in a good agreement with the theoretical results derived from the random sequential adsorption (RSA) model. Also, the theoretical results stemming from the equilibrium scaled particle theory reflected the experimental data satisfactorily. For lower ionic strength a deviation from the hard sphere behavior was experimentally demonstrated. This effect due to the repulsive electrostatic interactions was interpreted in terms of the effective hard particle concept. The universal dependence of variance on particle density obtained in this way was found in a good agreement with the RSA model for all ionic strength. These results proved that fluctuations in particle density of monolayer formed under diffusional conditions differ fundamentally from these obtained under ballistic transport conditions.

  13. Irreversible entropy model for damage diagnosis in resistors

    Energy Technology Data Exchange (ETDEWEB)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.

  14. Essays on oil price volatility and irreversible investment

    Science.gov (United States)

    Pastor, Daniel J.

    In chapter 1, we provide an extensive and systematic evaluation of the relative forecasting performance of several models for the volatility of daily spot crude oil prices. Empirical research over the past decades has uncovered significant gains in forecasting performance of Markov Switching GARCH models over GARCH models for the volatility of financial assets and crude oil futures. We find that, for spot oil price returns, non-switching models perform better in the short run, whereas switching models tend to do better at longer horizons. In chapter 2, I investigate the impact of volatility on firms' irreversible investment decisions using real options theory. Cost incurred in oil drilling is considered sunk cost, thus irreversible. I collect detailed data on onshore, development oil well drilling on the North Slope of Alaska from 2003 to 2014. Volatility is modeled by constructing GARCH, EGARCH, and GJR-GARCH forecasts based on monthly real oil prices, and realized volatility from 5-minute intraday returns of oil futures prices. Using a duration model, I show that oil price volatility generally has a negative relationship with the hazard rate of drilling an oil well both when aggregating all the fields, and in individual fields.

  15. Fully covered self-expanding metal stents in the management of difficult common bile duct stones Prótesis metálicas autoexpandibles totalmente recubiertas en el tratamiento de coledocolitiasis difíciles

    Directory of Open Access Journals (Sweden)

    Jesús García-Cano

    2013-01-01

    Full Text Available Background and objectives: plastic biliary stents are often used after an ERCP session without complete common bile duct stones (CBDS extraction. Sometimes, the volume of biliary drainage with these stents may be insufficient. We present our experience with the use of fully covered self-expanding metal stents (FCSEMS in the setting of incomplete CBDS extraction. Patients and methods: after an ERCP session with difficult CBDS not completely removed, biliary FCSEMS (Wallflex were inserted in some patients when it was deemed that biliary sphincterotomy and a single plastic stent would not provide an adequate drainage. Results: a retrospective study was performed. Biliary FCSEMS were inserted in 29 patients, mean age 81 years. CBDS could not be extracted through a biliary sphincterotomy due to its large size (n = 18 or because of the presence of inflammatory distal strictures (n = 11. The greatest biliary drainage with shortest ERCP time was considered mandatory due to clinical instability of patients and/or poor tolerance to conscious sedation administered by the endoscopist. Successful biliary drainage was obtained in all cases. FCSEMS were removed after a median of 199.5 days in 16 patients with a complete CBDS extraction in 15 (93.7%. FCSEMS were not removed in the remaining 13 patients due to their clinical condition, and a wait-and-see strategy was undertaken. Conclusions: in selected cases, utilization of removable FCSEMS can be a good option for a quick and adequate biliary drainage in the setting of difficult CBDS. Because of the higher cost of these stents its use needs to be individualized.Introducción y objetivos: las prótesis biliares plásticas suelen emplearse tras una sesión de CPRE sin extracción completa de coledocolitiasis. En ocasiones, el calibre de drenaje con estas prótesis puede ser insuficiente. Presentamos nuestra experiencia en la utilización de prótesis metálicas autoexpandibles totalmente recubiertas (PMATR en

  16. Rat liver regeneration following ablation with irreversible electroporation.

    Science.gov (United States)

    Golberg, Alexander; Bruinsma, Bote G; Jaramillo, Maria; Yarmush, Martin L; Uygun, Basak E

    2016-01-01

    During the past decade, irreversible electroporation (IRE) ablation has emerged as a promising tool for the treatment of multiple diseases including hepatic cancer. However, the mechanisms behind the tissue regeneration following IRE ablation have not been investigated. Our results indicate that IRE treatment immediately kills the cells at the treatment site preserving the extracellular architecture, in effect causing in vivo decellularization. Over the course of 4 weeks, progenitor cell differentiation, through YAP and notch pathways, together with hepatocyte expansion led to almost complete regeneration of the ablated liver leading to the formation of hepatocyte like cells at the ablated zone. We did not observe significant scarring or tumor formation at the regenerated areas 6 months post IRE. Our study suggests a new model to study the regeneration of liver when the naïve extracellular matrix is decellularized in vivo with completely preserved extracellular architecture. PMID:26819842

  17. Sub-kBT micro-electromechanical irreversible logic gate.

    Science.gov (United States)

    López-Suárez, M; Neri, I; Gammaitoni, L

    2016-01-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed. PMID:27350333

  18. Sub-kBT micro-electromechanical irreversible logic gate

    Science.gov (United States)

    López-Suárez, M.; Neri, I.; Gammaitoni, L.

    2016-06-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  19. Immersion disinfection of irreversible hydrocolloid impressions. Part 1: Microbiology.

    Science.gov (United States)

    Schwartz, R S; Bradley, D V; Hilton, T J; Kruse, S K

    1994-01-01

    This study evaluated the effectiveness of four disinfectants for irreversible hydrocolloid impressions. Impressions were made of a sterile metal model of the maxillary arch that had been contaminated with one of the following bacteria: Staphylococcus aureus, Salmonella choleraesuis, Pseudomonas aeruginosa, Mycobacterium bovis, or Bacillus subtilis. The impressions were cultured before and after immersion in one of the following disinfectants: lodofive, OMC II, 0.525% sodium hypochlorite, or Alcide LD. Alcide LD achieved a 4-log10 (99.99%) or greater reduction in colony forming units for all five organisms plus mixed oral flora. Sodium hypochlorite achieved a 4-log10 reduction in three of the five organisms and mixed oral flora. Iodofive and OMC II were ineffective against all test organisms and mixed oral flora.

  20. Irreversible degradation of quantum coherence under relativistic motion

    Science.gov (United States)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-06-01

    We study the dynamics of quantum coherence under Unruh thermal noise and seek under which condition the coherence can be frozen in a relativistic setting. We find that the frozen condition is either (i) the initial state is prepared as an incoherence state or (ii) the detectors have no interaction with the external field. That is to say, the decoherence of the detectors' quantum state is irreversible under the influence of thermal noise induced by Unruh radiation. It is shown that quantum coherence approaches zero only in the limit of an infinite acceleration, while quantum entanglement could reduce to zero for a finite acceleration. It is also demonstrated that the robustness of quantum coherence is better than entanglement under the influence of the atom-field interaction for an extremely large acceleration. Therefore, quantum coherence is more robust than entanglement in an accelerating system and the coherence-type quantum resources are more accessible for relativistic quantum information processing tasks.

  1. Immersion disinfection of irreversible hydrocolloid impressions. Part 1: Microbiology.

    Science.gov (United States)

    Schwartz, R S; Bradley, D V; Hilton, T J; Kruse, S K

    1994-01-01

    This study evaluated the effectiveness of four disinfectants for irreversible hydrocolloid impressions. Impressions were made of a sterile metal model of the maxillary arch that had been contaminated with one of the following bacteria: Staphylococcus aureus, Salmonella choleraesuis, Pseudomonas aeruginosa, Mycobacterium bovis, or Bacillus subtilis. The impressions were cultured before and after immersion in one of the following disinfectants: lodofive, OMC II, 0.525% sodium hypochlorite, or Alcide LD. Alcide LD achieved a 4-log10 (99.99%) or greater reduction in colony forming units for all five organisms plus mixed oral flora. Sodium hypochlorite achieved a 4-log10 reduction in three of the five organisms and mixed oral flora. Iodofive and OMC II were ineffective against all test organisms and mixed oral flora. PMID:7802909

  2. Irreversible Collective Migration of Cyanobacteria in Eutrophic Conditions

    CERN Document Server

    Dervaux, Julien; Brunet, Philippe

    2015-01-01

    In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cya...

  3. A systematic comprehensive approach to management of irreversible facial paralysis.

    Science.gov (United States)

    Douglas, Raymond S; Gausas, Roberta E

    2003-02-01

    Irreversible facial palsy (IFP) presents a multitude of problems arising from a paretic periorbital and facial complex, the solutions to which cross the spectrum of multiple specialties. The process of facial rehabilitation can be simplified by subdividing the face into functional units. These units consist of the brow complex, the periorbital complex, the midface complex, and the lower face/oral complex. Although all of these units are interrelated and influence each other, careful study of the deformity and symptoms of each unit yields a coherent approach and customized surgical plan. The following provides a complete evaluation method for the surgeon to review and customize an approach to the individual patient's needs and desires. Facial rehabilitation must be tailored to each individual, addressing both functional as well as aesthetic concerns for each facial unit.

  4. Focal Therapy of Prostate Cancer Using Irreversible Electroporation.

    Science.gov (United States)

    Valerio, Massimo; Ahmed, Hashim U; Emberton, Mark

    2015-09-01

    Focal therapy is a novel strategy that attempts to enhance the therapeutic ratio of standard radical treatment in prostate cancer. Irreversible electroporation (IRE) has some inherent characteristics that may be ideal for focal therapy. Precise confined ablation in the treatment area obtained via nonthermal damage with potential for minimal toxicity to surrounding structures may lead to optimal treatment with improved preservation of continence and erectile function. Initial data of focal IRE of the prostate are encouraging although further assessment is awaited to confirm these findings using robust methodology. In this article, we provide a comprehensive step-by-step description of our technique to deliver focal IRE in selected men with localized prostate cancer located in a discrete area of the prostate.

  5. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    Science.gov (United States)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  6. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  7. Advanced thermal-energy-storage concept-definition study for solar Brayton power plants. Final technical report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The detailed results are presented of a technical and economic assessment of phase change and thermochemical energy storage systems in a solar power plant employing a high temperature Brayton cycle thermal engine with helium as the heat transport fluid. The assessment included an examination of the storage system operation, efficiency, power plant interaction, design, materials, safety, maintenance, environmental impact, system life, and economics. These considerations are implemented in the conceptual design of three baseline storage systems and their components for use in a solar power plant module of 50 megawatt electrical power output. Rationale is provided to support the configuration, operation and material choices. A preliminary assessment of the technology development and experimental test program requirements are also included. The report is contained in four separate volumes. This volume is the technical report.

  8. The Social Cost of Stochastic and Irreversible Climate Change

    Science.gov (United States)

    Cai, Y.; Judd, K. L.; Lontzek, T.

    2013-12-01

    Many scientists are worried about climate change triggering abrupt and irreversible events leading to significant and long-lasting damages. For example, a rapid release of methane from permafrost may lead to amplified global warming, and global warming may increase the frequency and severity of heavy rainfall or typhoon, destroying large cities and killing numerous people. Some elements of the climate system which might exhibit such a triggering effect are called tipping elements. There is great uncertainty about the impact of anthropogenic carbon and tipping elements on future economic wellbeing. Any rational policy choice must consider the great uncertainty about the magnitude and timing of global warming's impact on economic productivity. While the likelihood of tipping points may be a function of contemporaneous temperature, their effects are long lasting and might be independent of future temperatures. It is assumed that some of these tipping points might occur even in this century, but also that their duration and post-tipping impact are uncertain. A faithful representation of the possibility of tipping points for the calculation of social cost of carbon would require a fully stochastic formulation of irreversibility, and accounting for the deep layer of uncertainties regarding the duration of the tipping process and also its economic impact. We use DSICE, a DSGE extension of the DICE2007 model of William Nordhaus, which incorporates beliefs about the uncertain economic impact of possible climate tipping events and uses empirically plausible parameterizations of Epstein-Zin preferences to represent attitudes towards risk. We find that the uncertainty associated with anthropogenic climate change imply carbon taxes much higher than implied by deterministic models. This analysis indicates that the absence of uncertainty in DICE2007 and similar IAM models may result in substantial understatement of the potential benefits of policies to reduce GHG emissions.

  9. Conceptual Design of S-CO{sub 2} Brayton Cycle Radial Turbomachinery for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkuk; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST proposed a new SMR design, which utilizes S-CO{sub 2} as the working fluid. It was named as KAIST MMR. Compared with existing SMR concepts, KAIST MMR has advantages of achieving smaller volume of power conversion unit (PCU) and containing the core and PCU in one vessel for the complete modularization. Authors noticed that the compressor and turbine assumed performances of KAIST MMR were conservatively selected previously. Thus, this paper tries to address the best estimate values of each turbomachinery in 10MWe class KAIST MMR. The turbomachinery size of the S-CO{sub 2} cycle is smaller than helium Brayton cycle and steam Rankine cycle. The suggested SMR concept adopts passive cooling system by using air. This method can cool reactor without external electricity supply. Small size and more flexible installation in the inland area will be necessary characteristics for the future nuclear application in the water limited region. KAIST MMR meets all these requirements by utilizing S-CO{sub 2} as a working fluid. This paper presents the work for further increasing the system performance by estimating the component efficiency more realistically. The cycle layout adopted for the application is S-CO{sub 2} recuperated Brayton cycle. The best efficiency of compressor and turbine was evaluated to be 84.94% and 90.94%, respectively. By using KAIST in-house code, thermal efficiency and net output were increased to 35.81% and 12.45MWe, respectively, for the same core thermal power. More refined cycle layout and suitable turbomachinery design will be performed in the near future.

  10. Palliative treatment of presacral recurrence of endometrial cancer using irreversible electroporation: a case report

    OpenAIRE

    Niessen, Christoph; Jung, Ernst-Michael; Schreyer, Andreas G; Wohlgemuth, Walter A; Trabold, Benedikt; Hahn, Joachim; Rechenmacher, Michael; Stroszczynski, Christian; Wiggermann, Philipp

    2013-01-01

    INTRODUCTION: Irreversible electroporation (IRE) is a new minimally invasive tumor ablation technique which induces irreversible disruption of cell membrane integrity by changing the transmembrane potential resulting in cell death. Irreversible electroporation is currently undergoing clinical investigation as local tumor therapy for malignant liver and lung lesions. This is the first case report to describe the successful palliative ablation of a presacral recurrence of an endometrial canc...

  11. Inertial effects during irreversible meniscus reconfiguration in angular pores

    Science.gov (United States)

    Ferrari, Andrea; Lunati, Ivan

    2014-12-01

    In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other

  12. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  13. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    Science.gov (United States)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  14. Lipoxygenase is irreversibly inactivated by the hydroperoxides formed from the enynoic analogues of linoleic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Nieuwenhuizen, W.F.; Kerk-van Hoof, A. van der; Lenthe, J.H. van; Schaik, R.C. van; Versluis, K.; Veldink, G.A.

    1997-01-01

    Triple bond analogues of natural fatty acids irreversibly inactivate lipoxygenase during their enzymatic conversion [Nieuwenhuizen, W. F., et al. (1995) Biochemistry 34, 10538-10545]. To gain insight into the mechanism of the irreversible inactivation of soybean lipoxygenase-1, we studied the enzyma

  15. A Minimal Dissipation Type-Based Classification in Irreversible Thermodynamics and Microeconomics

    OpenAIRE

    A. M. Tsirlin; Valdimir Kazakov; N. A. Kolinko

    2003-01-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  16. Reversibility and irreversibility from an initial value formulation

    Energy Technology Data Exchange (ETDEWEB)

    Muriel, A., E-mail: amadormuriel@fas.harvard.edu

    2013-07-15

    From a time evolution equation for the single particle distribution function derived from the N-particle distribution function (A. Muriel, M. Dresden, Physica D 101 (1997) 297), an exact solution for the 3D Navier–Stokes equation – an old problem – has been found (A. Muriel, Results Phys. 1 (2011) 2). In this Letter, a second exact conclusion from the above-mentioned work is presented. We analyze the time symmetry properties of a formal, exact solution for the single-particle distribution function contracted from the many-body Liouville equation. This analysis must be done because group theoretic results on time reversal symmetry of the full Liouville equation (E.C.G. Sudarshan, N. Mukunda, Classical Mechanics: A Modern Perspective, Wiley, 1974). no longer applies automatically to the single particle distribution function contracted from the formal solution of the N-body Liouville equation. We find the following result: if the initial momentum distribution is even in the momentum, the single particle distribution is reversible. If there is any asymmetry in the initial momentum distribution, no matter how small, the system is irreversible.

  17. Distribution function approach to irreversible adsorption of interacting colloidal particles

    Science.gov (United States)

    Faraudo, Jordi; Bafaluy, Javier

    2000-01-01

    A statistical-mechanical description of the irreversible adsorption of interacting colloidal particles is developed. Our approach describes in a consistent way the interaction of particles from the bulk with adsorbed particles during the transport process towards the adsorbing surface. The macroscopic physical quantities corresponding to the actual process are expressed as averages over simpler auxiliary processes which proceed in the presence of a fixed number n of adsorbed particles. The adsorption rate verifies a generalized Langmuir equation, in which the kinetic resistance (the inverse of the kinetic coefficient) is expressed as the sum of a diffusional resistance and a resistance due to interaction with adsorbed particles during the transport process (blocking effect). Contrary to previous approaches, the blocking effect is not due to geometrical exclusion, instead it measures how the transport from the bulk is affected by the adsorbed particles. From the general expressions obtained, we have derived coverage expansions for the adsorption rate and the surface correlation function. The theory is applied to the case of colloidal particles interacting through DLVO potentials. This form of the kinetic coefficient is shown to be in agreement with recent experimental results, in which RSA fails.

  18. Irreversible gravitational collapse: black stars or black holes?

    CERN Document Server

    Corda, Christian

    2011-01-01

    It is well known that the concept of black hole has been considered very fascinating by scientists even before the introduction of Einstein's general relativity. They should be the final result of an irreversible gravitational collapse of very massive bodies. However, an unsolved problem concerning such objects is the presence of a space-time singularity in their core. Such a problem was present starting by the first historical papers concerning black holes. It is a common opinion that this problem could be solved when a correct quantum gravity theory will be, finally, constructed. In this work we review a way to remove black hole singularities at a classical level i.e. without arguments of quantum gravity. By using a particular non-linear electrodynamics Lagrangian, an exact solution of Einstein field equations is shown. The solution prevents the collapsing object to reach the gravitational radius, thus the final result becomes a black star, i.e. an astrophysical object where both of singularities and event ...

  19. Scaling Law for Irreversible Entropy Production in Critical Systems

    Science.gov (United States)

    Hoang, Danh-Tai; Prasanna Venkatesh, B.; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-06-01

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism.

  20. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  1. The nineteenth century conflict between mechanism and irreversibility

    Science.gov (United States)

    van Strien, Marij

    2013-08-01

    The reversibility problem (better known as the reversibility objection) is usually taken to be an internal problem in the kinetic theory of gases, namely the problem of how to account for the second law of thermodynamics within this theory. Historically, it is seen as an objection that was raised against Boltzmann's kinetic theory of gases, which led Boltzmann to a statistical approach to the kinetic theory, culminating in the development of statistical mechanics. In this paper, I show that in the late nineteenth century, the reversibility problem had a much broader significance-it was widely discussed and certainly not only as an objection to Boltzmann's kinetic theory of gases. In this period, there was a conflict between mechanism and irreversibility in physics which was tied up with central issues in philosophy of science such as materialism, empiricism and the need for mechanistic foundations of physical theories, as well as with concerns about the heat death of the universe. I discuss how this conflict was handled by the major physicists of the period, such as Maxwell, Kelvin, Duhem, Poincaré, Mach and Planck, as well as by a number of lesser-known authors.

  2. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P. [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  3. Parametric optimum design of an irreversible spin quantum refrigeration cycle

    Institute of Scientific and Technical Information of China (English)

    Lin Bi-Hong; Chen Jin-Can

    2005-01-01

    The general performance characteristics of an irreversible quantum refrigeration cycle using many non-interacting spin-1/2 systems as the working substance and consisting of two adiabatic and two isomagnetic field processes are investigated, based on the quantum master equation and semi-group approach. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the refrigeration cycle subject to the finite cycle duration is optimized. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the coefficient of performance and the optimal ranges of the temperatures of the working substance and the times spent on the two isomagnetic field processes are determined. Moreover, the optimal performance of the cycle in the high-temperature limit is also analysed in detail. The results obtained here are further generalized, so that they may be directly used to describe the performance of the quantum refrigeration cycle using spin-J systems as the working substance.

  4. Scaling Law for Irreversible Entropy Production in Critical Systems

    Science.gov (United States)

    Hoang, Danh-Tai; Prasanna Venkatesh, B.; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-01-01

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism. PMID:27277558

  5. Eutectic solidification as explained by the thermodynamics of irreversible processes

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-01-01

    Full Text Available The grain size diameter is the main parameter characterizing a given metallic alloy. In the case of Al-Si or Fe-C eutectic alloy theaverage inter-lamellar spacing is a good parameter which seems to be adequate to describe this irregular structure. To define the averageinter-lamellar spacing the regular areas within generally irregular structure has been distinguished.It has been postulated that the formation of regular structure could be related to the minimum entropy production criterion. From theother side the maximum destabilization of the non-faceted phase interface could be referred to marginal stability.The criterion of minimum entropy production allows to formulate the growth law for regular lamellar structure solidifying understationary state. It defines the regular eutectic spacing versus growth rate. The marginal stability concept allows to define the maximum wavelength which can be developed at the solid / liquid interface of non-faceted (Al phase. It defines the maximum spacing within irregular structure taking into account the wavelength of instability (marginal stability created at the non-faceted phase interface.An average inter-lamellar spacing results from the relationship formulated on the basis of both spacings. It should beemphasized that both conditions (criteria are deduced from the thermodynamics of irreversible processes.The simplified scheme of irregular structure incorporates, additionally the intermediate lamella of faceted phase that is also taken into account in the definition of average inter-lamellar spacing,

  6. Irreversible electroporation of human primary uveal melanoma in enucleated eyes.

    Directory of Open Access Journals (Sweden)

    Yossi Mandel

    Full Text Available Uveal melanoma (UM is the most common primary intraocular tumor in adults and is characterized by high rates of metastatic disease. Although brachytherapy is the most common globe-sparing treatment option for small- and medium-sized tumors, the treatment is associated with severe adverse reactions and does not lead to increased survival rates as compared to enucleation. The use of irreversible electroporation (IRE for tumor ablation has potential advantages in the treatment of tumors in complex organs such as the eye. Following previous theoretical work, herein we evaluate the use of IRE for uveal tumor ablation in human ex vivo eye model. Enucleated eyes of patients with uveal melanoma were treated with short electric pulses (50-100 µs, 1000-2000 V/cm using a customized electrode design. Tumor bioimpedance was measured before and after treatment and was followed by histopathological evaluation. We found that IRE caused tumor ablation characterized by cell membrane disruption while sparing the non-cellular sclera. Membrane disruption and loss of cellular capacitance were also associated with significant reduction in total tumor impedance and loss of impedance frequency dependence. The effect was more pronounced near the pulsing electrodes and was dependent on time from treatment to fixation. Future studies should further evaluate the potential of IRE as an alternative method of uveal melanoma treatment.

  7. The effects of irreversible electroporation (IRE on nerves.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available BACKGROUND: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. METHODS: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. FINDINGS: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. CONCLUSION: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.

  8. State space model extraction of thermohydraulic systems Part II: a linear graph approach applied to a Brayton cycle–based power conversion unit

    OpenAIRE

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space represen...

  9. Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor

    International Nuclear Information System (INIS)

    In this study, the performance of a SBC (supercritical gas Brayton cycle) using CO2-based binary mixtures as the working fluids have been studied. Based on the thermodynamic analyses, an in-house code has been developed to determine the cycle efficiency and the amounts of heat transfer in the HTR (high temperature recuperator) and the LTR (low temperature recuperator) with different CO2/additive gas ratios. Several gases are selected as potential additives, including O2, He, Ar, Kr, butane and cyclohexane. Compared with the Brayton cycle with pure S–CO2 (supercritical carbon dioxide) as the working fluid, it is found that both CO2–He and CO2–Kr mixtures can improve the thermodynamic performances of the SBC by increasing the cycle efficiency and decreasing the amounts of heat transfer in the HTR and LTR. For the cycles with the pure S–CO2 mixture, CO2–butane mixture and CO2–cyclohexane mixture as the working fluids, the cycle efficiencies decrease with increasing main compressor inlet temperature. However, when the main compressor inlet temperature is above the critical temperature of pure CO2, the cycle efficiencies of the cycles with CO2–butane mixture and CO2–cyclohexane mixture are higher than that of the cycle with pure CO2 as the working fluid. For the cycles with CO2-based binary mixtures and pure S–CO2 as the working fluids, the higher reactor outlet temperature always results into higher cycle efficiencies and larger amount of heat transfer in the HTR and smaller amount of heat transfer in the LTR. - Highlights: • The Brayton cycle performance with different mixtures as working fluids is studied. • Thermodynamic analysis is carried out to evaluate cycle efficiency and heat transfer in HTR and LTR. • The optimum working parameters of the Brayton cycle is proposed to improve working performance

  10. The Influence of Swirl Angle on the Irreversibilities in Turbulent Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Alexandru Dobrovicescu

    2007-12-01

    Full Text Available The objective of this paper is to investigate the volumetric irreversibilities of turbulent swirling diffusion flames. The theoretical background of analysis relies on the local transport exergy equation, which allows the formulation of the well-known Gouy-Stodola theorem at the continuum level. It is already known that, in the case of turbulent flame, the chemical, thermal and mass diffusion irreversibilities represent in order of enumeration the predominant sources of exergy destruction. But these irreversibilities have a more complicated structure than in the laminar flames because the turbulent fluctuations generate new and important irreversibility sources, strongly influencing all the mechanisms mentioned above. Using numerical techniques for flow and multi-species balance equations, this paper tries to emphasize the role of both, swirling number and turbulent intensity field, not only in the burning process intensification but also in the irreversibility creation.

  11. Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    The Supercritical Carbon Dioxide (S-CO2) Brayton Cycle is a promising advanced alternative to the Rankine saturated steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO2 Brayton cycle coupled to an autonomous, natural circulation Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios. (authors)

  12. Immunologic response to tumor ablation with irreversible electroporation.

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Li

    Full Text Available BACKGROUND: Irreversible electroporation (IRE is a promising technique for the focal treatment of pathologic tissues, which involves placing minimally invasive electrodes within the targeted region. However, the knowledge about the therapeutic efficacy and immune reactions in response to IRE remains in its infancy. METHODS: In this work, to detect whether tumor ablation with IRE could trigger the immunologic response, we developed an osteosarcoma rat model and applied IRE directly to ablate the tumor. In the experiment, 118 SD rats were randomized into 4 groups: the control, sham operation, surgical resection, and IRE groups. Another 28 rats without tumor cell implantation served as the normal non-tumor-bearing group. We analyzed the changes in T lymphocyte subsets, sIL-2R and IL-10 levels in the peripheral blood one day before operation, as well as at 1, 3, 7,14 and 21 days after the operation. Moreover, splenocytes were assayed for IFN-γ and IL-4 production using intracellular cytokine staining one day before the operation, as well as at 7 and 21 days after operation. RESULTS: We found that direct IRE completely ablated the tumor cells. A significant increase in peripheral lymphocytes, especially CD3(+ and CD4(+ cells, as well as an increased ratio of CD4(+/CD8(+ were detectable 7 days after operation in both the IRE and surgical resection groups. Compared with the surgical resection group, the IRE group exhibited a stronger cellular immune response. The sIL-2R level of the peripheral blood in the IRE group decreased with time and was significantly different from that in the surgical resection group. Moreover, ablation with IRE significantly increased the percentage of IFN-γ-positive splenocytes. CONCLUSION: These findings indicated that IRE could not only locally destroy the tumor but also change the status of cellular immunity in osteosarcoma-bearing rats. This provides experimental evidence for the clinical application of IRE in

  13. Irreversible collective migration of cyanobacteria in eutrophic conditions.

    Directory of Open Access Journals (Sweden)

    Julien Dervaux

    Full Text Available In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803. The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS. Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.

  14. Multiscale time irreversibility of heart rate and blood pressure variability during orthostasis

    International Nuclear Information System (INIS)

    Time irreversibility is a characteristic feature of non-equilibrium, complex systems such as the cardiovascular control mediated by the autonomic nervous system (ANS). Time irreversibility analysis of heart rate variability (HRV) and blood pressure variability (BPV) represents a new approach to assess cardiovascular regulatory mechanisms. The aim of this paper was to assess the changes in HRV and BPV irreversibility during the active orthostatic test (a balance of ANS shifted towards sympathetic predominance) in 28 healthy young subjects. We used three different time irreversibility indices—Porta’s, Guzik's and Ehler's indices (P%, G% and E, respectively) derived from data segments containing 1000 beat-to-beat intervals on four timescales. We observed an increase in the HRV and a decrease in the BPV irreversibility during standing compared to the supine position. The postural change in irreversibility was confirmed by surrogate data analysis. The differences were more evident in G% and E than P% and for higher scale factors. Statistical analysis showed a close relationship between G% and E. Contrary to this, the association between P% and G% and P% and E was not proven. We conclude that time irreversibility of beat-to-beat HRV and BPV is significantly altered during orthostasis, implicating involvement of the autonomous nervous system in its generation. (paper)

  15. Fundamental optimal relation of a generalized irreversible Carnot heat pump with complex heat transfer law

    Indian Academy of Sciences (India)

    Jun Li; Lingen Chen; Fengrui Sun

    2010-02-01

    The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.

  16. Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 1: Thermodynamic model and parameter analyses

    Directory of Open Access Journals (Sweden)

    Lingen Chen, Bo Yang, Fengrui Sun

    2011-03-01

    Full Text Available A thermodynamic model of an endoreversible intercooled regenerative Brayton heat and power cogeneration plant coupled to constant-temperature heat reservoirs is established by using finite time thermodynamics in Part 1 of this paper. The heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are taken into account. The finite time exergoeconomic performance of the cogeneration plant is investigated. The analytical formulae about dimensionless profit rate and exergetic efficiency are derived. The numerical examples show that there exists an optimal value of intercooling pressure ratio which leads to an optimal value of dimensionless profit rate for the fixed total pressure ratio. There also exists an optimal total pressure ratio which leads to a maximum profit rate for the variable total pressure ratio. The effects of intercooling, regeneration and the ratio of the hot-side heat reservoir temperature to environment temperature on dimensionless profit rate and the corresponding exergetic efficiency are analyzed. At last, it is found that there exists an optimal consumer-side temperature which leads to a double-maximum dimensionless profit rate. The profit rate of the model cycle is optimized by optimal allocation of the heat conductance of the heat exchangers in Part 2 of this paper.

  17. Analysis of Superimposed Elementary Thermodynamic Cycles: from the Brayton-Joule to Advanced Mixed (Auto-Combined Cycles

    Directory of Open Access Journals (Sweden)

    Giovanni Manente

    2009-09-01

    Full Text Available

    The need for efficiency improvement in energy conversion systems leads to a stricter functional integration among system components. This results in structures of increasing complexity, the high performance of which are often difficult to be understood easily. To make the comprehension of these structures easier, a new approach is followed in this paper, consisting in their representation as partial or total superimposition of elementary thermodynamic cycles. Although system performance cannot, in general, be evaluated as the sum of the performance of the separate thermodynamic cycles, this kind of representation and analysis can be of great help in understanding directions of development followed in the literature for the construction of advanced energy systems, and could suggest new potential directions of work. The evolution from the simple Brayton-Joule cycle to the so called “mixed” cycles, in which heat at the turbine discharge is exploited using internal heat sinks only without using a separate bottoming section, is used to demonstrate the potentiality of the approach. Mixed cycles are named here "auto-combined cycles” to highlight the combination of different (gas and steam cycles within the same system components.

    • This paper is an updated version of a paper published in the ECOS'08 proceedings. 

  18. Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 2: Heat conductance allocation and pressure ratio optimization

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Fengrui Sun

    2011-03-01

    Full Text Available Finite time exergoeconomic performance of an endoreversible intercooled regenerative Brayton cogeneration plant is optimized based on the model which is established using finite time thermodynamic in Part 1 of this paper. It is found that the optimal heat conductance allocation of the regenerator is zero. When the total pressure ratio and the heat conductance allocation of the regenerator are fixed, it is shown that there exist an optimal intercooling pressure ratio, and a group of optimal heat conductance allocations among the hot-, cold- and consumer-side heat exchangers and the intercooler, which correspond to a maximum dimensionless profit rate. When the total pressure ratio is variable, there exists an optimal total pressure ratio which corresponds to a double-maximum dimensionless profit rate, and the corresponding exergetic efficiency is obtained. The effects of the total heat exchanger conductance, price ratios and the consumer-side temperature on the double-maximum dimensionless profit rate and the corresponding exergetic efficiency are discussed. It is found that there exists an optimal consumer-side temperature which corresponds to a thrice-maximum dimensionless profit rate.

  19. An open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shaobo [Guangdong Ocean University, College of Engineering, East Jiefang Rd. No. 40, Xiashan, Zhanjiang, Guangdong 524006 (China); Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China); Zhang, Hefei [Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China)

    2009-01-15

    This paper presents an open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water, and proves its feasibility through performance simulation. Pinch technology is used to analyze the cooling of the wet air after compressor and the water used for cooling wet air after compressor. Its refrigeration depends mainly on the sensible heat of air and the latent heat of water vapor, its performance is more efficient than a conventional air-cycle, and the utilization of turbo-machinery makes it possible. The adoption of this cycle will make deep freeze easily and reduce initial cost because very low temperature, about -55 C, air is obtained. The sensitivity analysis of coefficient of performance to the efficiency of compressor and the efficiency of compressor, and the results of the cycle are also given. The simulation results show that the COP of this system depends on the temperature before turbine, the efficiency of compressor and the efficiency of compressor, and varies with the wet bulb temperature of the outdoor air. Humid air is a perfect working fluid for deep freeze with no cost to the user. (author)

  20. Reactor dynamics and stability analysis of a burst-mode gas core reactor, Brayton cycle space power system

    International Nuclear Information System (INIS)

    Reactor dynamics and system stability studies are performed on a conceptual burst-mode gaseous core reactor space nuclear power system. This concept operates on a closed Brayton cycle in the burst mode (on the order of 100-MW output for a few thousand seconds) using a disk magnetohydrodynamic generator for energy conversion. The fuel is a gaseous mixture of UF4 or UF6 and helium. Nonlinear dynamic analysis is performed using circulating-fuel, point-reactor-kinetics equations along with thermodynamic, lumped-parameter heat transfer and one-dimensional isentropic flow equations. The gaseous nature of the fuel plus the fact that the fuel is circulating lead to dynamic behavior that is quite different from that of conventional solid-core systems. For the transients examined, Doppler fuel temperature and moderator temperature feedbacks are insignificant when compared with reactivity feedback associated with fuel gas density variations. The gaseous fuel density power coefficient of reactivity is capable of rapidly stabilizing the system, within a few seconds, even when large positive reactivity insertions are imposed; however, because of the strength of this feedback, standard external reactivity insertions alone are inadequate to bring about significant power level changes during normal reactor operation. Additional methods of reactivity control, such as changes in the gaseous of fuel mass flow rate or core inlet pressure, are required to achieve desired power level control. Finally, linear stability analysis gives results that are qualitatively in agreement with the nonlinear analysis

  1. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    Science.gov (United States)

    Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  2. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    Directory of Open Access Journals (Sweden)

    Yijun Yang

    2015-01-01

    Full Text Available A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users’ fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.

  3. A fingerprint encryption scheme based on irreversible function and secure authentication.

    Science.gov (United States)

    Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  4. The Effects of Internal and External Irreversibility of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Wang, Fu-Jen; Chiou, Jeng-Shing

    The concept of finite-time thermodynamics is employed to investigate the optimal refrigeration rate for an irreversible refrigeration cycle. The heat transfer between the system (internal) fluid and cooling (external) fluid takes place at the actual heat exchanger, which has the finite-size heat transfer area and the realistic heat transfer effectiveness. The internal irreversibility results from the compression process and the expansion process are also considered. The optimal refrigeration rate is calculated and expressed in terms of the irreversibility parameter (Ir), coefficient of performance (COP), the time ratio(γ) of heat transfer processes and the effectiveness of heat exchanger. The derived COP which consider both the external and internal irreversibility can thus be considered as the benchmark value for a practical refrigeration cycle, and the parametric study can provide the basis for both determination of optimal operating conditions and design of a practical refrigeration cycle.

  5. Cooling load and COP optimization of an irreversible Carnot refrigerator with spin-1/2 systems

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun

    2011-09-01

    Full Text Available A model of an irreversible quantum refrigerator with working medium consisting of many non-interacting spin-1/2 systems is established in this paper. The quantum refrigeration cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot refrigeration cycle. Expressions of some important performance parameters, such as cycle period, cooling load and coefficient of performance (COP for the irreversible spin quantum Carnot refrigerator are derived, and detailed numerical examples are provided. The optimal performance of the quantum refrigerator at high temperature limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the performance are discussed in detail. The endoreversible case, frictionless case and the case without heat leakage are discussed in brief.

  6. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  7. The maximum coefficient of performance of internally irreversible refrigerators and heat pumps

    Science.gov (United States)

    Ait-Ali, Mohand A.

    1996-04-01

    A class of irreversible refrigeration cycles is investigated to determine the maximum coefficient of performance in the heat pump mode and the refrigerator mode. For the purpose of generality and simplicity of the results, finite-time heat transfer in the condenser and evaporator is expressed in terms of arithmetic mean temperature differences. The generic source of internal irreversibility is measured by a single irreversibility factor which transforms the Clausius inequality into an equality to simplify the cycle model. These optimum cycle performances are obtained as closed form analytical expressions in which the irreversibility factor has been shown to be simply related to the ratio of the actual and endoreversible cycle coefficients of performance.

  8. Thermodynamic efficiency of the cardiac cycle and irreversibility in the interbeat interval time series

    OpenAIRE

    Alejandro Muñoz-Diosdado; Gonzalo Gálvez-Coyt; Alejandro Alonso Martínez

    2010-01-01

    Cardiac cycle can be analyzed as a thermodynamic cycle, however, the inherent variability of this cycle implies that, although in the short term the cycle is quasi-reversible, in the long term is irreversible. This work discusses two important aspects of the cardiac cycle related with thermodynamic concepts: the calculation of the cycles efficiency and the quantification of the irreversibility of interbeat interval time series. The results show that there is a variability of cardiac eff...

  9. Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells.

    Science.gov (United States)

    Hoffman, Michelle D; Zucker, Lauren I; Brown, Pamela J B; Kysela, David T; Brun, Yves V; Jacobson, Stephen C

    2015-12-15

    In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to

  10. Irreversible Electroporation of a Hepatocellular Carcinoma Lesion Adjacent to a Transjugular Intrahepatic Portosystemic Shunt Stent Graft

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Christoph; Jung, Ernst Michael; Wohlgemuth, Walter A. [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany); Trabold, Benedikt [Department of Anaesthesia, University Medical Center Regensburg, Regensburg D-93053 (Germany); Haimerl, Michael; Schreyer, Andreas; Stroszczynski, Christian; Wiggermann, Philipp [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany)

    2013-07-01

    We report in a 65-year-old man hepatocellular carcinoma adjacent to a transjugular intrahepatic portosystemic shunt stent-graft which was successfully treated with irreversible electroporation (IRE). IRE is a new non-thermal tissue ablation technique which uses electrical pulses to induce cell necrosis by irreversible membrane poration. IRE proved to be more advantageous in the ablation of perivascular tumor with little injury to the surrounding structures.

  11. A review on thermodynamic optimization of irreversible refrigerator and verification with transcritical CO2 system

    OpenAIRE

    Sarkar, Jahar

    2014-01-01

    The transcritical vapor compression refrigeration cycle consists of isothermal heat addition process and isobaric non-isothermal heat rejection process with highly variable heat capacity unlike to the subcritical cycle. Hence, it is quite interesting whether the analysis and optimization results of irreversible Carnot-like refrigerator are applicable for this case. The present study consists of two parts: the detailed review on theoretical analysis and analytical optimizations of irreversible...

  12. A statistical model for multidimensional irreversible electroporation cell death in tissue

    OpenAIRE

    Rubinsky Boris; Golberg Alex

    2010-01-01

    Abstract Background Irreversible electroporation (IRE) is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a ...

  13. Irreversible and reversible topoisomerase II DNA cleavage stimulated by clerocidin: sequence specificity and structural drug determinants.

    Science.gov (United States)

    Binaschi, M; Zagotto, G; Palumbo, M; Zunino, F; Farinosi, R; Capranico, G

    1997-05-01

    In contrast to other topoisomerase II poisons, the microbial terpenoid clerocidin was shown to stimulate irreversible topoisomerase II-mediated DNA cleavage. To establish the structural determinants for drug activity, in this study we have investigated intensity patterns and sequence specificity of clerocidin-stimulated DNA cleavage using 5'-end 32P-labeled DNA fragments. At a majority of the sites, clerocidin-stimulated cleavage did not revert upon NaCl addition; nevertheless, at some sites, cleavage completely reverted. Statistical analyses showed that drug-preferred bases were different in the two cases: guanine and cytosine were highly preferred at position -1 at irreversible and reversible sites, respectively. These results demonstrated that cleavage irreversibility was site selective and required a guanine at the 3' end of the cut. Further experiments revealed that some irreversible sites showed an abnormal electrophoretic mobility in sequencing gels with respect to cleaved bands generated by 4-(9-acridinylamino)methanesulfon-m-anisidide, suggesting a chemical alteration of the DNA strand. Interestingly, the ability to stimulate irreversible cleavage progressively decreased over time when clerocidin was stored in ethanol. Under these conditions, nuclear magnetic resonance measurements demonstrated that the drug underwent structural modifications that involved the C-12-C-15 side chain. Thus, the results indicate that a specific moiety of clerocidin may react with the DNA (guanine at -1) in the ternary complex, resulting in cleavage irreversibility and in altered DNA mobility in sequencing gels. PMID:9135013

  14. Simulation of operational an accidental behaviour of modular high temperature reactors with Brayton cycle Power Conversion Unit

    International Nuclear Information System (INIS)

    The present work analyses and investigates the behaviour of a High Temperature Reactor (HTR) with a Pebble Bed core connected to a Brayton cycle Power Conversion Unit (PCU) during operational and accident conditions. The modelling of a complete circuit including both the PCU and the Pebble Bed Reactor has been performed with the commercial thermal-fluid analysis simulation code Flownex. Flownex has been developed for High Temperature Pebble Bed Reactor applications, and has been exten-sively validated against other codes. As the reactor core model incorporated in Flownex is a simplified model based on 0D point kinetics, the extended 1D WKIND core model was implemented in the analysis calculations using a special coupling methodology. This study introduces a new sub-routine which enables the cou-pling of the WKIND reactor core model to the Flownex PCU model via an external interface. The interface facilitates the data exchange between the two codes, allowing for necessary manipulations and synchronisation of the coupled codes. By doing so, the 1D diffusion equation solution implemented in WKIND core model replaces the point kinetics model implemented in Flownex. This replacement allows for a detailed accurate solution even for very fast transients, through the treatment of the space-dependent heat conduction from the graphite matrix to helium. Flownex component models have been validated against the experimental results of the 50 MWel direct helium turbine facility Energieversorgung Oberhausen (EVO II). This provided the opportunity to validate Flownex calculations against experimental data derived from a large-scale helium Brayton cycle installation. Small differences observed in the results could be explained. Based upon steady state and transient analysis it is concluded that Flownex models simulate accurately the behaviour of the components integrated in the EVO II plant. Such models could be applied to analyse the transient behaviour of the total system of the

  15. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  16. PREDICTION OF THE VALUE OF IRREVERSIBLE DEFORMATION OF ROAD STRUCTURE FROM THE IMPACT OF TRAFFIC

    Directory of Open Access Journals (Sweden)

    F. V. Matvienko

    2011-07-01

    Full Text Available Problem statement. The study of irreversible strains in areas of non-rigid pavement with asphalt coating under the influence of traffic flow requires development of methodologies for assessment of the operational status of asphalt concrete pavement subjected to the formation of ruts. To pre-dict the magnitude of irreversible deformation of the pavement, that is rut, mathematical model, methodology and instruments to measure the parameters of road construction should be developed.Results and conclusions. Measurements of the deflection of road construction and rut parameters, including wear and plastic deformation, proved the adequacy of the proposed mathematical model. Obtained analytical dependences allow prediction of pavement wear, plastic deformation and subgrade deterioration. In contrast to the known ones, they take into account the impact of traffic on the formation of a rut. Proposed methods allow estimation of irreversible pavement deformations based on the values obtained with the help of instruments.

  17. Maximum power, ecological function and efficiency of an irreversible Carnot cycle. A cost and effectiveness optimization

    CERN Document Server

    Aragon-Gonzalez, G; Leon-Galicia, A; Morales-Gomez, J R

    2007-01-01

    In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the second and third optimizations, the optimum values for the time ratio and internal temperature ratio are substituted into the equation of power and, then, the optimizations with respect to the cost and effectiveness ratio of the heat exchangers are performed. Finally, a criterion of partial optimization for the class of irreversible Carnot engines is herein presented.

  18. EXERGY-BASED ECOLOGICAL ANALYSIS OF GENERALIZED IRREVERSIBLE HEAT PUMP SYSTEM

    Directory of Open Access Journals (Sweden)

    GOVIND MAHESHWARI

    2011-10-01

    Full Text Available A reverse Carnot cycle forms the basis of all heat-pump cycles in providing heating and cooling loads. The optimal exergy-based Ecological analysis of an irreversible Heat-pump system with the losses of heat resistance, heat leak and internal irreversibility has been carried out by taking into account Exergy based ecological function (E as an objective in the viewpoint of Finite-Time-Thermodynamics (FTT or Entropy Generation Minimization (EGM. Exergy is defined here as the power required minus the lost power. The effects of irreversibilities along with internal heat leakage on coefficient on the performance of the system are investigated. The exergy based Ecological function decreases steadily with irreversibilites and heat leakages in the system. COP in such a system increases with the cycle temperature ratio. If a heat pump cycle is optimized with above mentioned criterion, there is a trade-off between its coefficient of Performance and the heating load it provides.

  19. Optimal fundamental characteristic of a quantum harmonic oscillator Carnot refrigerator with multi-irreversibilities

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun

    2015-01-01

    Full Text Available The optimal performance of an irreversible quantum Carnot refrigerator with working medium consisting of many non-interacting harmonic oscillators is investigated in this paper. The quantum refrigerator cycle is composed of two isothermal processes and two irreversible adiabatic processes, and the irreversibilities of heat resistance, internal friction and bypass heat leakage are considered. By using the quantum master equation, semi-group approach and finite time thermodynamics (FTT, this paper derives the cooling load and coefficient of performance (COP of the quantum refrigeration cycle and provides detailed numerical examples. At high temperature limit, the cooling load versus COP characteristic curves are plotted, and effects of internal friction and bypass heat leakage on the optimal performance of the quantum refrigerator are discussed. Three special cases, i.e., endoreversible, frictionless and without bypass heat leakage, are discussed in brief.

  20. Thermo-economic modeling and optimization of an irreversible solar-driven heat engine

    International Nuclear Information System (INIS)

    Highlights: • An irreversible solar-driven heat engine is optimized. • Developed multi objective evolutionary approaches is used. • Power output, ecological function and thermal efficiency are optimized. - Abstract: The present paper illustrates a new thermo-economic performance analysis of an irreversible solar-driven heat engine. Moreover, aforementioned irreversible solar-driven heat engine is optimized by employing thermo-economic functions. With the help of the first and second laws of thermodynamics, an equivalent system is initially specified. To assess this goal, three objective functions that the normalized objective function associated to the power output (FP) and Normalized ecological function (FE) and thermal efficiency (ηth) are involved in optimization process simultaneously. Three objective functions are maximized at the same time. A multi objective evolutionary approaches (MOEAs) on the basis of NSGA-II method is employed in this work

  1. Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2010-12-01

    Full Text Available The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink: this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine, and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one. Consequences of the proposal are examined; some new analytical results are proposed for efficiencies.

  2. FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2010-01-01

    Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.

  3. Irreversible models with Boltzmann–Gibbs probability distribution and entropy production

    International Nuclear Information System (INIS)

    We analyze irreversible interacting spin models evolving according to a master equation with spin flip transition rates that do not obey detailed balance but obey global balance with a Boltzmann–Gibbs probability distribution. Spin flip transition rates with up–down symmetry are obtained for a linear chain, a square lattice, and a cubic lattice with a stationary state corresponding to the Ising model with nearest neighbor interactions. We show that these irreversible dynamics describes the contact of the system with particle reservoirs that cause a flux of particles through the system. Using a microscopic definition, we determine the entropy production rate of these irreversible models and show that it can be written as a macroscopic bilinear form in the forces and fluxes. Exact expressions for this property are obtained for the linear chain and the square lattice. In this last case the entropy production rate displays a singularity at the phase transition point of the same type as the entropy itself

  4. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  5. Percutaneous Irreversible Electroporation for Recurrent Thyroid Cancer--A Case Report.

    Science.gov (United States)

    Meijerink, Martijn R; Scheffer, Hester J; de Bree, Remco; Sedee, Robert-Jan

    2015-08-01

    A 74-year-old man presented with a small locoregional, histopathologically proven, fluorodeoxyglucose positron emission tomography/computed tomography-avid recurrence of follicular thyroid carcinoma in the left subglottic space after extensive surgical resection, adjuvant radioactive iodine therapy, and external beam radiation therapy. Because all established focal therapies were contraindicated, percutaneous irreversible electroporation was performed without complications. Follow-up imaging at 7 months showed a small ablation scar without signs for residual vital tumor tissue. Irreversible electroporation may be a viable treatment option for selected cases of recurring head and neck tumors that are unsuitable for other local treatments. PMID:26210244

  6. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Fengrui Sun

    2011-01-01

    Full Text Available The optimal ecological performance of a generalized irreversible Carnot heat engine with the losses of heat-resistance, heat leakage and internal irreversibility, in which the transfer between the working fluid and the heat reservoirs obeys a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power and entropy production rate of the heat engine. The effects of heat transfer laws and various loss terms are analyzed. The obtained results include those obtained in many literatures.

  7. Irreversibility and the Arrow of Time in a Quenched Quantum System.

    Science.gov (United States)

    Batalhão, T B; Souza, A M; Sarthour, R S; Oliveira, I S; Paternostro, M; Lutz, E; Serra, R M

    2015-11-01

    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field. We experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time reversal. Our result addresses the concept of irreversibility from a microscopic quantum standpoint. PMID:26588367

  8. A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure

    OpenAIRE

    Ellis Thomas L; Neal Robert E; Rossmeisl John H; Garcia Paulo A; Davalos Rafael V

    2011-01-01

    Abstract Background Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. M...

  9. Superpositions in Prigogine's approach to irreversibility for physical and financial applications

    OpenAIRE

    Carfi', David

    2008-01-01

    In this paper we apply the theory of superpositions for Radon measures on compact subsets of the real Euclidean n-space Rn to Prigogine's approach in the study of irreversible processes, which emerge in physics and in economics, showing that the superposition is a natural rigorous tool feasible to face the problem.

  10. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in t

  11. Pulpitis irreversible como forma de presentación de un odontoma

    OpenAIRE

    Berástegui, Esther; Buenechea Imaz, Ramón

    1997-01-01

    Se presenta un caso de odontoma compuesto que provocó pulpitis irreversible en el incisivo central superior derecho (1,1) en una joven de 20 años. El tratamiento fue la biopulpectomía total y extirpación quirúrgica del tumor.

  12. Site-specific properties and irreversible vegetation changes in semi-arid grazing systems

    NARCIS (Netherlands)

    Rietkerk, M; vandenBosch, F; vandeKoppel, J

    1997-01-01

    There is an urgent need to develop a mechanistic understanding of how site-specific properties can lead to irreversible vegetation changes. We show, by means of a bifurcation analysis of two mathematical models, how site-specific properties determine the resilience of vegetation changes in semi-arid

  13. How to account for irreversibility in integrated assessment of climate change?

    International Nuclear Information System (INIS)

    How to account for irreversibility in integrated assessment of climate change? This Ph. D. thesis in Economics balances discounting, technical progress and the inertia of existing capital stock against uncertainty and the inertia of socio-economic systems to examine the issue of near term limitations of greenhouse gases emissions. After a general overview in chapter 2, and a more historical presentation of the debates in chapter 3, chapter 4 proceeds to review a large number of integrated assessment models. Chapter 5 introduces a Model on the Dynamics of Inertia and Adaptability of energy systems: DIAM, used to discuss how much previous studies might have overestimated the long term costs of CO2 limitations and underestimated adjustment costs. It shows that, given a target date for atmospheric CO2 concentration stabilisation, a higher inertia implies a lower optimal concentration trajectory. In a sequential decision framework, chapter 6 shows that current uncertainties about which CO2 concentration ceiling would not present dangerous interference with the climate system justifies precautionary action. Finally, chapter 7 uses the irreversibility effect theory to define formally situations of decision under controversy and compare the irreversibility of CO2 accumulation with the irreversibility of investments needed to moderate it. An option value for greenhouse gases emissions limitations is computed. (author)

  14. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  15. Profit rate performance optimization for a generalized irreversible combined refrigeration cycle

    Indian Academy of Sciences (India)

    Kang Ma; Lingen Chen; Fengrui Sun

    2009-10-01

    Finite-time exergoeconomic performance of a Newtonian heat transfer law system generalized irreversible combined refrigeration cycle model with finite-rate heat transfer, heat leakage and internal irreversibility is presented in this paper. The operation of the generalized irreversible combined refrigeration cycle is viewed as a production process with exergy as its output. The performance optimization of the cycle is performed by taking profit as the objective. The optimal profit rate, optimal COP (coefficient of performance), as well as the relation between the optimal profit rate and COP of the cycle are derived. The focus of this paper is to obtain the compromise optimization between economics (profit rate) and the energy utilization factor (COP) for the cycle, by searching the optimum COP at maximum profit rate, which is termed as the finite time exergoeconomic performance bound. Moreover, the effects of various factors, including heat leakage, internal irreversibility and the price ratio, on the profit rate performance of the cycle are analysed by detailed numerical examples.

  16. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Risbet, M.; Feaugas, X.; Guillemer-Neel, C.; Clavel, M

    2003-09-15

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship.

  17. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    International Nuclear Information System (INIS)

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship

  18. Kinetic Studies on the Irreversible Inhibition of Restriction Endonuclease Pst I by Site-Specific Inhibitors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The irreversible modifying effects on Pst I of several inhibitors have been studied with the irreversible inhibition kinetic theory of single substrate reaction provided by Tsou,C. L. Pyridoxal phosphate (PLP), p-chloromercuribenzoic acid (PCMB),diisopropyl fluorophosphate (DFP), 2,3-diacetyl (DAC) and N-ethyl-5-phenylisoxazoliun-3'-sulfonate (woodward's reagent K, WRK ) modify the lysine, cysine,serteine, arginine and carboxyl groups of the protein molecule respectively. These five inhibitors have been found to inhibit both the prime activity and star activity of Pst 1. Used with the irreversible inhibition theory,the apparent inhibition rate constant, A and the microcosmic inhibition rate constants, k+0 and k′ +o of every inhibitor were calculated. We also found that their inhibition effects belong to the noncompetitive irreversible inhibition. Results show that among the groups to be modified, some have nothing to do with the combination with the substrate, and some may have, but any of them isn't the only factor involved in the specific binding.Despite all this, they may take part in the catalysis of enzyme or have important effects on maintaining the active structure of enzyme molecules. Furthermore, serine and arginine residues are related to the alteration of Pst I conformation and then influence the ability of Pst I recognizing and incising DNA specifically.

  19. Irreversibility and multiplicity: two criteria for the disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Two criteria are suggested for comparing waste management methods: technical irreversibility and site multiplicity. These criteria can be used to reduce future risk in the face of inherent uncertainty and to provide for safe disposal without requiring guaranteed future ability to recognize, detect or repair areas of failure

  20. Imaging of irreversible loss of brain function; Bildgebende Verfahren zur Diagnostik des irreversiblen Hirnfunktionsausfalles

    Energy Technology Data Exchange (ETDEWEB)

    Lanfermann, H. [Hannover Medical School (Germany). Inst. of Diagnostic and Interventional Neuroradiology; Schober, O. [University Hospital Muenster (Germany). Dept. of Nuclear Medicine

    2016-01-15

    The updated guidelines for the determination of irreversible loss of brain function include a substantial innovation, i. e., the use of CT angiography as a supplementary technical examination. Adherence to a standardized protocol is the prerequisite for the application of CT angiography. The guidelines for standardized execution of perfusion scintigraphy are unchanged and still valid. Requirements regarding the quality of examining physicians are specified.

  1. Predictive charge-regulation transport model for nanofiltration from the theory of irreversible processes

    NARCIS (Netherlands)

    Lint, de W.B. Samuel; Benes, Nieck E.

    2004-01-01

    The charge-regulation concept is combined with the theory of irreversible processes to predict multi-component electrolyte transport in nanofiltration membranes. Charging of the membrane surface is described using a 1-pK site-binding model with a triple-layer electrostatic description. Mass transpor

  2. Stripping chronopotentiometry at scanned deposition (SSCP). Part 3. Irreversible electrode reactions

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.M.

    2003-01-01

    A rigorous expression is derived for the scanned deposition potential stripping chronopotentiometry (SSCP) curve for the case of quasi-reversible and irreversible redox reactions. The equation is fully applicable to both a conventional (macro) electrode and a microelectrode. SSCP curves are shown to

  3. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  4. Three Body Multichannel Scattering as a Model of Irreversible Quantum Mechanics

    OpenAIRE

    Bogdanov, Alexander V.; Gevorkyan, Ashot S.

    1997-01-01

    The new formulation of the theory of multichannel scattering on the example of collinear model is proposed. It is shown, that in the closed three-body scattering system the principle of quantum determinism in general case breaks down and we have a micro- irreversible quantum mechanics.

  5. Quantum thermodynamics: Microscopic foundations of entropy and of entropy generation by irreversibility

    Directory of Open Access Journals (Sweden)

    Beretta, Gian Paolo

    2008-02-01

    Full Text Available What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrodinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics, that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior and maximal-entropy-generation nonequilibrium dynamics. In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides indeed a

  6. Using irreversible compression in digital radiology: a preliminary study of the opinions of radiologists

    Science.gov (United States)

    Seeram, Euclid

    2006-03-01

    The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the

  7. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Highlights: • A parametric investigation of irreversible Stirling cryogenic refrigerator cycles is presented. • Both internal and external irreversibilities are included in this study, moreover, heat capacities of external reservoirs are involved. • Multi-objective evolutionary algorithm based on NSGA-II approach is utilized. • Three robust decision making approaches are utilized to determine final optimum solution. - Abstract: The main aim of this research article is a parametric demonstration of irreversible Stirling cryogenic refrigerator cycles that includes irreversibilities such as external and internal irreversibilities. In addition, through this study, finite heat capacities of external reservoirs are considered accordingly. To reach the addressed goal of this research, three objective functions that include the input power of the Stirling refrigerator, the coefficient of performance (COP) and cooling load (RL) have been involved in optimization process simultaneously. The first aforementioned objective function has to minimize; the rest objective functions, on the other hand, have to maximize in parallel optimization process. Developed multi objective evolutionary approaches (MOEAs) based on NSGA-II algorithm is implemented throughout this work. Moreover, cold-side’s effectiveness of the heat exchanger, hot-side’s effectiveness of the heat exchanger, heat source’s heat capacitance rate, heat sink’s capacitance rate, temperature ratio ((Th)/(Tc) ), temperature of cold side are assigned as decision variables for decision making procedure. To gain a robust decision, different decision making approaches that include TOPSIS, LINMAP and fuzzy Bellman–Zadeh are used. Pareto optimal frontier was determined precisely and then three final outputs have been gained by means of the mentioned decision making approaches

  8. [Determination of irreversibility of clinical brain death. Electroencephalography and evoked potentials].

    Science.gov (United States)

    Buchner, H; Ferbert, A

    2016-02-01

    Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome. PMID:26785843

  9. Preliminary performance of a 4.97-inch radial turbine operating in a Brayton power system with a helium-xenon gas mixture

    Science.gov (United States)

    Leroy, M. J., Jr.; Ream, L. W.; Curreri, J. S.

    1971-01-01

    The performance characteristics of the Brayton-rotating-unit's 4.97-inch radial turbine were investigated with the turbine part of a power conversion system. The following system parameters were varied: turbine inlet temperature from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor outlet pressure from 20 to 45 psia, and shaft speed from 90-110 percent of rated speed (36000 rpm). The working fluid of the system was a gas mixture of helium-xenon with a nominal molecular weight of 83.8. Test results indicate that changes in system conditions have little effect on the turbine efficiency. At the design turbine inlet temperature of 1600 F and compressor inlet temperature of 80 F, an average turbine efficiency of 91 percent was obtained.

  10. Lie-Admissible Invariant Origin of Irreversibility for Matter and Antimatter at the Classical and Operator Levels

    CERN Document Server

    Santilli, R M

    2006-01-01

    It was generally believed throughout the 20-th century that irreversibility is a purely classical event without operator counterpart. However, a classical irreversible system cannot be consistently decomposed into a finite number of reversible quantum particles (and, vice versa), thus establishing that the origin of irreversibility is basically unknown at the dawn of the 21-th century. To resolve this problem, we adopt the historical an- alytic representation of irreversibility by Lagrange and Hamilton with external terms in their analytic equations; we show that, when properly written, the brackets of the time evolution characterize covering Lie-admissible algebras; we show that the for- malism has a fully consistent operator counterpart given by the Lie-admissible branch of hadronic mechanics; we identify catastrophic mathematical and physical inconsis- tencies when irreversible formulations are treated with the conventional mathematics used for reversible systems; and show that, when the dynamical equation...

  11. Modeling and sizing of the heat exchangers of a new supercritical CO{sub 2} Brayton power cycle for energy conversion for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Cantizano, A.; Linares, J.I., E-mail: linares@upcomillas.es; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO{sub 2}. •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO{sub F}US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO{sub 2} Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO{sub 2}, their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO{sub 2}. The size of all of the heat exchangers of the cycle have been assessed.

  12. Uso de cateteres venosos totalmente implantados para nutrição parenteral: cuidados, tempo de permanência e ocorrência de complicações infecciosas Long-term central venous catheter for total parenteral nutrition: catheter care, permanence period, and incidence of infections

    Directory of Open Access Journals (Sweden)

    Maria do Rosário Del Lama de Unamuno

    2005-04-01

    Full Text Available Cateteres venosos totalmente implantados são utilizados em pacientes com síndrome do intestino curto, para realizar o suporte nutricional parenteral, o qual mantém estes pacientes vivos, pois fornece-lhes nutrientes que são absorvidos pela via digestiva. No entanto, estes cateteres não são isentos de complicações. As infecções relacionadas aos cateteres venosos são as complicações mais temidas e sua incidência varia de 3% a 20%, aumentando em pacientes mais graves. O objetivo do presente estudo é descrever as complicações infecciosas em pacientes recebendo nutrição parenteral por meio de cateteres venosos totalmente implantados. Tais cateteres são utilizados pela Divisão de Nutrição Clínica do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, para realizar o suporte nutricional parenteral em pacientes submetidos a ressecções extensas de intestino delgado. Foram avaliadas as complicações infecciosas ocorridas com 21 cateteres, implantados em 16 pacientes. O tempo de permanência dos cateteres foi de 768±664,3 dias (mediana 529 dias e a taxa de infecção foi de 0,029 infecções/paciente/ano, resultados que se comparam às taxas de infecção observadas em países desenvolvidos. Concluiu-se que os cuidados observados no manuseio destes cateteres foram de fundamental importância para diminuir a incidência de infecção nestes pacientes.Long-term venous catheters are used for the total parenteral nutrition infusion, which is essential for feeding short-bowel syndrome patients. However, complications are likely to occur. The incidence of catheter related infections ranges from 3 to 20% in hospitalized patients. The Divisão de Nutrição Clínica do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Brazil, has been providing nutrition support to short-bowel syndrome patients, using totally implantable venous catheters. This is a

  13. Irreversible electrical manipulation of magnetization on BiFeO{sub 3}-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingyu, E-mail: xuqingyu@seu.edu.cn, E-mail: jdu@nju.edu.cn; Xu, Zhenyu [Department of Physics, Southeast University, Nanjing 211189 (China); Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096 (China); Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China); He, Maocheng; Du, Jun, E-mail: xuqingyu@seu.edu.cn, E-mail: jdu@nju.edu.cn [Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Cao, Yanqiang [Department of Materials Science and Engineering, Nanjing University, Nanjing 210008 (China)

    2015-05-07

    We prepared several heterostructures, Co/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on surface oxidized Si or (111) SrTiO{sub 3} and NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on (001) SrTiO{sub 3} substrates using LaNiO{sub 3} as bottom electrode. With different strategies of voltage application, the exchange bias field H{sub E} decreased with increasing voltage irreversibly for all the heterostructures at room temperature. The chemical state at the NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} interface was studied by X-ray photoelectron spectroscopy before and after the electrical manipulation. The oxidization of the metallic ferromagnetic layer at interface after the electrical manipulation has been confirmed, which might explain the irreversibility.

  14. Irreversible Evolution of a Wave Packet in The Rigged Hilbert Space Quantum Mechanics

    CERN Document Server

    Marcucci, Giulia

    2016-01-01

    It is well known that a state with complex energy cannot be the eigenstate of a self-adjoint operator, like the Hamiltonian. Resonances, i.e. states with exponentially decaying observables, are not vectors belonging to the conventional Hilbert space. One can describe these resonances in an unusual mathematical formalism, based on the so-called Rigged Hilbert Space (RHS). In the RHS, the states with complex energy are denoted as Gamow Vectors (GV), and they model decay processes. We study GV of the Reversed Harmonic Oscillator (RHO), and we analytically and numerically investigate the unstable evolution of wave packets. We introduce the background function to study initial data not composed only by a summation of GV and we analyse different wave packets belonging to specific function spaces. Our work furnishes support to the idea that irreversible wave propagations can be investigated by means of Rigged Hilbert Space Quantum Mechanics and provides insights for the experimental investigation of irreversible dyn...

  15. Immersion disinfection of irreversible hydrocolloid impressions with sodium hypochlorite. Part I: Microbiology.

    Science.gov (United States)

    Beyerle, M P; Hensley, D M; Bradley, D V; Schwartz, R S; Hilton, T J

    1994-01-01

    Current American Dental Association infection control guidelines recommend immersion disinfection of irreversible hydrocolloid impressions, and this study further defines the parameters for use of sodium hypochlorite. Sodium hypochlorite has been shown to be an effective disinfectant for impressions; however, it has not been fully evaluated for optimum immersion time and concentration. In this study, irreversible hydrocolloid impressions contaminated with different bacteria were immersed in varying concentrations of sodium hypochlorite for 1, 5, or 10 minutes. Dilute solutions of sodium hypochlorite (0.525% or 0.0525%) produced a 4-log10 (99.99%) reduction in colony-forming units of Staphylococcus aureus, Salmonella choleraesuis, or Pseudomonas aeruginosa after 1 to 5 minutes' immersion. Full-strength sodium hypochlorite (5.25%) required 5 minutes to produce a 4-log10 reduction of Bacillus subtilis. A 4-log10 reduction of Mycobacterium bovis was not obtained under any conditions examined.

  16. Effects of Detunings on Dynamically Induced Irreversibility in Coherently Driven Systems

    Institute of Scientific and Technical Information of China (English)

    HU Xiang-Ming; PENG Jin-Sheng

    2000-01-01

    Effects of detunings on dynamically induced irreversibilityis studied for coherently driven V systems in which there is no conventional source of irreversible population pumping. For atomic barium (γ1/γ2 = 400 》 1, where γ1 and γ2 are the rates of the spontaneous decay from the excited states 6s6p 1P1 and 6s6p 3p1 to the ground state 6s2 1So, espectively), the strong irreversibility is found to lead to a maximum inversion of 0.77 [only 0.1 in Phys. Rev. Lett. 71 (1993) 4311]. The maximum population inversion requires relatively strong fields coupled respectively to two transitions, a disparity in two atomic decay rates, and the atom-field detunings of opposite signs. However, it is also shown that even in the cases where two detunings have the same sign, or where two decay rates are equal, population inversion takes place.

  17. Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping

    Science.gov (United States)

    Song, Jay Hyok; Kapylou, Andrei; Choi, Hee Sung; Yu, Byong Yong; Matulevich, Evegeniya; Kang, Sun Ho

    2016-05-01

    Li[Li1/6Ni1/6Co1/6Mn1/2]O2-xFx (x = 0.00 to 0.07) materials were synthesized with low temperature heat treatment (700 °C) and their electrochemical performances were evaluated. With the addition of fluorine, the reversible capacity significantly increased as the irreversibility was suppressed during the first cycle. The reduction of irreversibility was mainly attributed to the enhanced first cycle efficiency of Li2MnO3-like component after the fluorine addition. By combining results of the X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), In-situ X-ray absorption spectroscopy (XAS) analyses, and first principle calculations, it was proposed that the presence of fluorine facilitated the reduction of cobalt and manganese ions in Li-rich layered oxide, and that the reduced transition metal (TM) ions suppressed structural changes.

  18. Coefficient of performance under optimized figure of merit in minimally nonlinear irreversible refrigerator

    Science.gov (United States)

    Izumida, Y.; Okuda, K.; Calvo Hernández, A.; Roco, J. M. M.

    2013-01-01

    We apply the model of minimally nonlinear irreversible heat engines developed by Izumida and Okuda (EPL, 97 (2012) 10004) to refrigerators. The model assumes extended Onsager relations including a new nonlinear term accounting for dissipation effects. The bounds for the optimized regime under an appropriate figure of merit and the tight-coupling condition are analyzed and successfully compared with those obtained previously for low-dissipation Carnot refrigerators in the finite-time thermodynamics framework. Besides, we study the bounds for the nontight-coupling case numerically. We also introduce a leaky low-dissipation Carnot refrigerator and show that it serves as an example of the minimally nonlinear irreversible refrigerator, by calculating its Onsager coefficients explicitly.

  19. Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump

    International Nuclear Information System (INIS)

    Highlights: • Thermodynamic modeling of a two-stage irreversible heat pump is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • 3 answers given by the decision-making methods selected. - Abstract: This research study mainly deals with a comprehensive thermodynamic modeling and thermo-economic optimization of an irreversible absorption heat pump. For the optimization goal, various objective functions are considered comprising the specific heating load, coefficient of performance (COP) and the thermo-economic benchmark (F). In order to specify the optimum design variables, non-dominant sorting genetic algorithm (NSGA) is applied satisfying some restrictions. In this optimization study, all three objective functions (e.g. COP, F and specific heating load) are maximized. In addition, decision making is carried out using three well-suited approaches namely LINAMP and TOPSIS and FUZZY. Finally, sensitivity analysis and error analysis are conducted in order to improve understanding of the system performance

  20. Immersion disinfection of irreversible hydrocolloid impressions with sodium hypochlorite. Part II: Effect on gypsum.

    Science.gov (United States)

    Vandewalle, K S; Charlton, D G; Schwartz, R S; Reagan, S E; Koeppen, R G

    1994-01-01

    This study investigated the effects of various immersion times and concentrations of sodium hypochlorite on irreversible hydrocolloid impressions and resultant gypsum casts. Irreversible hydrocolloid impressions of a test die were immersed for 1, 5, or 10 minutes in water (control), 5.25%, 0.525%, and 0.0525% sodium hypochlorite and then cast in a Type III stone and a Type V stone. Each stone specimen was evaluated for detail reproduction, dimensional change, surface roughness, and surface hardness. The results indicated that impressions may be immersed in sodium hypochlorite for any of the experimental times and concentrations without negative effects on Type V stone casts. However, immersion of impressions in 5.25% sodium hypochlorite causes some surface deterioration on Type III stone casts. PMID:7993542

  1. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Glavatskiy, K. S. [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, Victoria 3001 (Australia)

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  2. Immersion disinfection of irreversible hydrocolloid impressions with sodium hypochlorite. Part I: Microbiology.

    Science.gov (United States)

    Beyerle, M P; Hensley, D M; Bradley, D V; Schwartz, R S; Hilton, T J

    1994-01-01

    Current American Dental Association infection control guidelines recommend immersion disinfection of irreversible hydrocolloid impressions, and this study further defines the parameters for use of sodium hypochlorite. Sodium hypochlorite has been shown to be an effective disinfectant for impressions; however, it has not been fully evaluated for optimum immersion time and concentration. In this study, irreversible hydrocolloid impressions contaminated with different bacteria were immersed in varying concentrations of sodium hypochlorite for 1, 5, or 10 minutes. Dilute solutions of sodium hypochlorite (0.525% or 0.0525%) produced a 4-log10 (99.99%) reduction in colony-forming units of Staphylococcus aureus, Salmonella choleraesuis, or Pseudomonas aeruginosa after 1 to 5 minutes' immersion. Full-strength sodium hypochlorite (5.25%) required 5 minutes to produce a 4-log10 reduction of Bacillus subtilis. A 4-log10 reduction of Mycobacterium bovis was not obtained under any conditions examined. PMID:7916888

  3. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa;

    2016-01-01

    showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore......The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X...... the pore structure of ZIF-8 collapses. It is suggested therefore that care must be taken when using ZIF-8 or products containing ZIF-8 for gas capture, gas separation, or other applications where both water and acid gases coexist....

  4. Labile phytochrome and photoperiodic flower induction in Pharbitis nil Chois. The irreversible phytochrome hypothesis

    Directory of Open Access Journals (Sweden)

    Mariusz Cymerski

    2014-02-01

    Full Text Available Seedlings of Pharbitis nil cultivated under non-inductive conditions of white light were subjected to generative induction applying one 16-hour-long period of inductive night. During the eighth hour the night was interrupted with 1 min of red light pulse which completely inhibited the flowering. Treating the plants with KCN blocked the inhibiting effect of red light. Because KCN lowers considerably the rate of destruction of labile Pfd in some plant systems, it seems probable that red light night-break irradiation (without KCN, which blocked the flowering, leads also to the accumulation of unknown Pfd destruction products (irreversible phytochrome. It also suggests that it is not the labile PfrI itself but the products of its irreversible transformation that could be active in the photoperiodic control of flowering.

  5. Irreversible electroporation in the treatment of locally advanced pancreas and liver metastases of colorectal carcinoma

    OpenAIRE

    Wichtowski, Mateusz; Nowaczyk, Piotr; Kocur, Jacek; Murawa, Dawid

    2016-01-01

    Aim of the study Irreversible electroporation is a new, non-thermal ablation technique in the treatment of parenchymal organ tumors which uses short high voltage pulses of electricity in order to induce apoptosis of targeted cells. In this paper the application of this method of treatment in locally advanced pancreatic cancer (LAPC) and liver cancer is analyzed. Material and methods Between 04.2014 and 09.2014 two patients with LAPC and one with colorectal liver metastasis (CRLM) were qualifi...

  6. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Sharabi Shirley

    2016-03-01

    Full Text Available Electroporation-based therapies such as electrochemotherapy (ECT and irreversible electroporation (IRE are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning.

  7. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption

    OpenAIRE

    Sharabi Shirley; Kos Bor; Last David; Guez David; Daniels Dianne; Harnof Sagi; Mardor Yael; Miklavcic Damijan

    2016-01-01

    Background Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This m...

  8. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review

    OpenAIRE

    Salvatore Paiella; Roberto Salvia; Marco Ramera; Roberto Girelli; Isabella Frigerio; Alessandro Giardino; Valentina Allegrini; Claudio Bassi

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on ...

  9. Boltzmann-Equation Based Derivation of Balance Laws in Irreversible Thermodynamics

    OpenAIRE

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2014-01-01

    In this paper we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, separating entropy fluxes and production rates properly, and determining a dissipation matrix. Our approach takes the advantage of both EIT and GENERIC form...

  10. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    Science.gov (United States)

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  11. REC and NdFe magnetic moment irreversibility from temperature cycling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, E.; Chin, J.W.G.; Shuman, D.

    1985-10-01

    Presented are the results of thermal cycling tests carried out on REC and NdFe samples, to determine the irreversible losses in room temperature open circuit magnetic moment. A stabilization prescription was developed for a REC alloy that will allow two 4 day/175/sup 0/C temperature cycles, which simulate two UHV bakeouts, with only a 0.35% average loss and a 0.65% loss variation in the room temperature open circuit magnetic moment after stabilization.

  12. The Market for Used Capital: Endogenous Irreversibility and Reallocation over the Business Cycle

    OpenAIRE

    Andrea Lanteri

    2013-01-01

    This paper explains the procyclicality of capital reallocation documented by Eisfeldt and Rampini (2006) and Cui (2012) by endogenising the resale price of capital in a dynamic general equilibrium model with heterogeneous firms hit by aggregate and idiosyncratic productivity shocks. I build a simple theory of endogenous investment irreversibility by assuming that used investment goods are imperfect substitutes for newly produced ones because of firm-level capital specificity. This creates a d...

  13. Irreversible photo- and radiation-induced effects in amorphous films of arsenic trisulfide

    International Nuclear Information System (INIS)

    It is found that irreversible photo- and radiation-induced effects in virgin As2S3 thin films are accompined by the similar changes of their optical properties. The process of homopolar chemical bond breaking in the thin layer alongside with the creation of the differently charged diamagnetic defects associated with the non-equilibrium breaking of chemical bonds is proper in radiation induced effects, only

  14. Rapid irreversible encephalopathy associated with anti-D immune globulin treatment for idiopathic thrombocytopenic purpura.

    Science.gov (United States)

    Christopher, Kenneth; Horkan, Clare; Barb, Ilie T; Arbelaez, Christian; Hodgdon, Travis A; Yodice, Paul C

    2004-11-01

    Intravenous Rho (D) immune globulin (IV RhIG, WinRho SDF) has been shown to be a safe treatment for idiopathic thrombocytopenic purpura (ITP). Common side effects of IV RhIG include mild hemolysis, febrile reaction, and headache. Significant hemolysis with renal impairment following IV RhIG has been reported. We report a case of irreversible encephalopathy 48 hr following an infusion of IV RhIG for treatment of ITP. PMID:15495245

  15. A Three-Dimensional In Vitro Tumor Platform for Modeling Therapeutic Irreversible Electroporation

    OpenAIRE

    Arena, Christopher B.; Szot, Christopher S.; Garcia, Paulo A.; Rylander, Marissa Nichole; Davalos, Rafael V.

    2012-01-01

    Irreversible electroporation (IRE) is emerging as a powerful tool for tumor ablation that utilizes pulsed electric fields to destabilize the plasma membrane of cancer cells past the point of recovery. The ablated region is dictated primarily by the electric field distribution in the tissue, which forms the basis of current treatment planning algorithms. To generate data for refinement of these algorithms, there is a need to develop a physiologically accurate and reproducible platform on which...

  16. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis

    Science.gov (United States)

    Rôças, Isabela N.; Rachid, Caio T. C. C.; Lima, Kenio C.; Assunção, Isauremi V.; Gomes, Patrícia N.; Siqueira, José F.

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection. PMID:27135405

  17. Uncertainty, instability, and irreversible investment : theory, evidence, and lessons for Africa

    OpenAIRE

    Serven, Luis

    1997-01-01

    A recent (but rapidly growing) literature has focused on how uncertainty and instability affect the adoption of fixed investment projects. That literature shows that if fixed investment projects are costly or impossible to reverse, uncertainty can become a powerful deterrent to investment. The author reviews the literature on irreversible investment to identify the implications for macroeconomic policy and to gauge the practical importance, especially for sub-Saharan Africa, of the link betwe...

  18. IRREVERSIBLE INVESTMENT DECISIONS IN PERENNIAL CROPS WITH YIELD AND PRICE UNCERTAINTY

    OpenAIRE

    Price, T. Jeffrey; Wetzstein, Michael E.

    1999-01-01

    Optimal entry and exit thresholds for Georgia commercial peach production are calculated when both price and yield follow a Brownian motion process. The thresholds are based on an irreversible sunk-cost investment model, where revenue from peach production is affected by the timing of when to enter production. Results indicate stability in Georgia peach production, with growers who are currently producing peaches remaining in production and potential peach growers delaying investment unless t...

  19. A relation between irreversibility and unlinkability for biometric template protection algorithms

    OpenAIRE

    井沼, 学

    2014-01-01

    For biometric recognition systems, privacy protection of enrolled users’ biometric information, which are called biometric templates, is a critical problem. Recently, various template protection algorithms have been proposed and many related previous works have discussed security notions to evaluate the protection performance of these protection algorithms. Irreversibility and unlinkability are important security notions discussed in many related previous works. In this paper, we prove that u...

  20. The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation

    OpenAIRE

    Scheffer, Hester J.; Vogel, Jantien A; Willemien van den Bos; Neal, Robert E.; van Lienden, Krijn P; Besselink, Marc G. H.; van Gemert, Martin J. C.; van der Geld, Cees W. M.; Meijerink, Martijn R; Klaessens, John H.; Rudolf M. Verdaasdonk

    2016-01-01

    Purpose Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its sur...

  1. Irreversible thermodynamic description of interacting dark energy - dark matter cosmological models

    OpenAIRE

    Harko, Tiberiu; Lobo, Francisco S N

    2012-01-01

    We investigate the interaction between dark energy and dark matter in the framework of irreversible thermodynamics of open systems with matter creation/annihilation. We consider dark energy and dark matter as an interacting two component (scalar field and "ordinary" dark matter) cosmological fluid in a homogeneous spatially flat and isotropic Friedmann-Robertson-Walker (FRW) Universe. The thermodynamics of open systems as applied together with the gravitational field equations to the two comp...

  2. Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response

    Directory of Open Access Journals (Sweden)

    Sara Dal Cengio

    2016-07-01

    Full Text Available We review some approaches to macroscopic irreversibility from reversible microscopic dynamics, introducing the contribution of time dependent perturbations within the framework of recent developments in non-equilibrium statistical physics. We show that situations commonly assumed to violate the time reversal symmetry (presence of magnetic fields, rotating reference frames, and some time dependent perturbations in reality do not violate this symmetry, and can be treated with standard theories and within standard experimental protocols.

  3. In vivo imaging of irreversible electroporation by means of electrical impedance tomography

    International Nuclear Information System (INIS)

    Electroporation, the increased permeability of cell membranes due to a large transmembrane voltage, is an important clinical tool. Both reversible and irreversible in vivo electroporation are used for clinical applications such as gene therapy and solid malignant tumor ablation, respectively. The primary advantage of in vivo electroporation is the ability to treat tissue in a local and minimally invasive fashion. The drawback is the current lack of control over the process. This paper is the first report of a new method for real-time three-dimensional imaging of an in vivo electroporation process. Using two needle electrodes for irreversible electroporation and a set of electrodes for reconstructing electrical impedance tomography (EIT) images of the treated tissue, we were able to demonstrate electroporation imaging in rodent livers. Histology analysis shows good correlation between the extent of tissue damage caused by irreversible electroporation and the EIT images. This new method may lead the way to real-time control over genetic treatment of diseases in tissue and tissue ablation.

  4. In vivo imaging of irreversible electroporation by means of electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Yair; Maor, Elad; Rubinsky, Boris [Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720 (United States); Ivorra, Antoni [Departments of Mechanical Engineering and Bioengineering, University of California at Berkeley, Berkeley, CA 94720 (United States)], E-mail: yair.granot@gmail.com

    2009-08-21

    Electroporation, the increased permeability of cell membranes due to a large transmembrane voltage, is an important clinical tool. Both reversible and irreversible in vivo electroporation are used for clinical applications such as gene therapy and solid malignant tumor ablation, respectively. The primary advantage of in vivo electroporation is the ability to treat tissue in a local and minimally invasive fashion. The drawback is the current lack of control over the process. This paper is the first report of a new method for real-time three-dimensional imaging of an in vivo electroporation process. Using two needle electrodes for irreversible electroporation and a set of electrodes for reconstructing electrical impedance tomography (EIT) images of the treated tissue, we were able to demonstrate electroporation imaging in rodent livers. Histology analysis shows good correlation between the extent of tissue damage caused by irreversible electroporation and the EIT images. This new method may lead the way to real-time control over genetic treatment of diseases in tissue and tissue ablation.

  5. In vivo imaging of irreversible electroporation by means of electrical impedance tomography

    Science.gov (United States)

    Granot, Yair; Ivorra, Antoni; Maor, Elad; Rubinsky, Boris

    2009-08-01

    Electroporation, the increased permeability of cell membranes due to a large transmembrane voltage, is an important clinical tool. Both reversible and irreversible in vivo electroporation are used for clinical applications such as gene therapy and solid malignant tumor ablation, respectively. The primary advantage of in vivo electroporation is the ability to treat tissue in a local and minimally invasive fashion. The drawback is the current lack of control over the process. This paper is the first report of a new method for real-time three-dimensional imaging of an in vivo electroporation process. Using two needle electrodes for irreversible electroporation and a set of electrodes for reconstructing electrical impedance tomography (EIT) images of the treated tissue, we were able to demonstrate electroporation imaging in rodent livers. Histology analysis shows good correlation between the extent of tissue damage caused by irreversible electroporation and the EIT images. This new method may lead the way to real-time control over genetic treatment of diseases in tissue and tissue ablation.

  6. A derivation of a microscopic entropy and time irreversibility from the discreteness of time

    CERN Document Server

    Riek, Roland

    2014-01-01

    All of the basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy S larger than 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (i.e. not const). In order to compare this discrete time irreversible mechamics (for simplicity a classical, single particle in a one dimensional space is selected) with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nose-Hoover Lagrangian. The corresp...

  7. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation be-tween the coefficient of performance (COP) and the rate of energy pumping of the generalized irre-versible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the iso-thermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential trans-formers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  8. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; CHEN LinGen; SUN FengRui

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation between the coefficient of performance (COP) and the rate of energy pumping of the generalized irreversible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the isothermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential transformers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  9. Magnetic irreversibility and relaxation in CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. E-mail: goya@macbeth.if.usp.br; Rechenberg, H.R.; Jiang, J.Z

    2000-08-01

    In this work, we present a study on the magnetic behavior of CuFe{sub 2}O{sub 4} nanoparticles with different particle sizes. Magnetic particle size distribution obtained from M(H) curves in the superparamagnetic (SPM) state showed good agreement with data obtained from X-ray powder diffraction. Field-cooled and zero-field-cooled magnetization data showed a blocking temperature T{sub B}{approx}225 K, independent of particle size, which is associated to interparticle interactions. It was observed that T{sub B} and the irreversibility temperature T{sub irr}, shift to lower temperature with increasing applied fields, both with an H{sup -1} dependence. Strong training effects were observed from relaxation data, assigned to the irreversible behavior of the spin-disordered particle surface. The magnetic viscosity at T=4.2 K was analyzed for sample with D{sub mean}=7.7 nm, revealing strong irreversibility after each major hysteresis loop. These results are discussed in terms of multiple spin-disordered configurations, at particle surface, with quasidegenerate states.

  10. Rules to transform concentrations and currents for irreversible reactions to those of quasireversible reactions

    International Nuclear Information System (INIS)

    Highlights: • Simple rules convert irreversible analytical solutions to quasireversible ones • These work for many common convective diffusion situations • Rules involve substitution of kf by kf + kb then scaling and constant addition • Irreversible numerical solutions can be converted to quasireversible ones - Abstract: Transformation rules are given that take the concentration or current expressions for the simple irreversible electron-transfer reaction R → P + e− and convert them to the corresponding quantities for the quasireversible reaction. They apply for many standard electrochemical mass-transport cases, including simple diffusion and convection-diffusion for the rotating disk or channel flow, provided that the diffusivities of the two species are equal. The forward rate constant is replaced by the sum of the forward and reverse rate constants, the result is scaled and then a constant added. Rules are also given for some cases where the diffusivities are unequal. As an application, a new solution of the concentration profile for a channel electrode within the Lévêque approximation neglecting axial diffusion is given

  11. Endothelial dysfunction and atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease

    International Nuclear Information System (INIS)

    To assess endothelial dysfunction and the risk for coronary atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease (CHD). The study included 18 cyanotic patients (the mean age was 12.28 ± 3.26 years) who developed irreversible pulmonary hypertension due to cyanotic and acyanotic CHDs, and 18 control patients (the mean age was 11.78 ± 3.00 years). Study groups were compared for flow-mediated dilatation (FMD), carotid intima media thickness (CIMT) and atherosclerotic risk factors. Compared to the control group, the mean FMD was significantly reduced in the cyanotic group (5.26 ± 2.42% and 9.48 ± 2.60%, respectively; P-value < 0.001). No significant difference was observed between the groups in CIMT (0.41 ± 0.08 mm and 0.39 ± 0.06 mm, respectively; P-value = 0.299). The levels of total cholesterol, low-density lipoprotein–cholesterol and very low-density lipoprotein–cholesterol were statistically significantly lower compared tothe control group (P-value = 0.001, 0.006 and 0.014, respectively), whereas no statistically significant difference was found in the levels of high-density lipoprotein–cholesterol and triglycerides (P-value = 0.113 and 0.975, respectively). Systemic endothelial dysfunction in children with irreversible pulmonary hypertension due to CHD was noted but there was no increased risk for atherosclerosis

  12. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    Science.gov (United States)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  13. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.

    Science.gov (United States)

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2012-03-01

    Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.

  14. Ultraviolet-induced irreversible tensile actuation of diacetylene/nylon microfibers

    Science.gov (United States)

    Chun, Kyoung-Yong; Choi, Changsoon; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Photomechanically irreversible tensile-actuated diacetylene-embedding nylon 6/6 microfibers were investigated. 10,12-pentacosadiynoic acid (PCDA) monomer, which have conventionally provided a visual color change by temperature and photo-driven stimuli, was embedded in nylon 6/6 microfibers by wet spinning. By ultraviolet (UV) (254 nm) exposure, we observed irreversible tensile actuation (contraction) of linear (untwisted) and helical (twisted) structural microfibers. The tensile contraction of twisted nylon 6/6-PCDA microfiber containing10 mM PCDA was reached to ∼2% at 60 °C. Such irreversible tensile contraction can be promoted by volume contraction of PCDA monomers during UV exposure along with irregular structural deformation containing gauche conformation with increasing temperature. The kinetics of tensile contraction with temperature and time were shown by the Arrhenius plots. The activation energies were 34.3–35.7 kJ mol‑1 as increasing the concentration of PCDA, implies that the nylon 6/6-PCDA microfibers could be applied to show time-temperature integrated device.

  15. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  16. Concerning the study of the irreversible magnetic behaviour of superconductivity; Contribution a l'etude du comportement magnetique irreversible des supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-03-01

    The influence of the presence of extended lattice defects on the magnetic behaviour has been studied for the case of type I superconductors, such as Re and Ta, and in a more quantitative manner for the type II superconductor niobium. In this case, measurements of the thermal conductivity have given an estimate of the relative concentration of lattice defects in each specimen. These measurements show that the larger the number of lattice defects, the more irreversible becomes the magnetization curve, and the larger becomes the values of the critical current, which is related by a simple model to the magnetization values. Finally, a study by transmission electron microscopy has confirmed on the one hand the diversity of the extended lattice defects and on the other hand has allowed the formulation of several hypothesis on their respective influence. [French] L'influence de la presence de defauts etendus sur le comportement magnetique a ete etudie pour des supraconducteurs de premiere espece, tels que le rhenium et le tantale, et plus quantitativement pour un supraconducteur de deuxieme espece, le niobium. Dans ce cas, des mesures de conductibilite thermique ont permis d'estimer la concentration relative des defauts du reseau dans chaque echantillon. Ces mesures montrent que plus les defauts du reseau sont nombreux, plus la courbe d'aimantation est irreversible, et plus les valeurs du courant critique, reliees par un modele simple aux valeurs de l'aimantation, sont elevees. Enfin une etude par microscopie electronique en transmission - a permis d'une part de constater la diversite des defauts etendus et d'autre part de formuler quelques hypotheses sur leurs influences respectives.

  17. Irreversibilidad y pluralismo ontológico Irreversibility and ontological pluralism

    Directory of Open Access Journals (Sweden)

    Martín Labarca

    2007-06-01

    Full Text Available El problema de la irreversibilidad encuentra su origen a fines del siglo xix y comienzos del siglo xx con los trabajos de Maxwell, Boltzmann y Gibbs. La controversia surge al intentar compatibilizar la evolución macroscópica irreversible de los sistemas termodinámicos con la dinámica t-invariante de sus constituyentes microscópicos. En la formulación tradicional de la mecánica estadística, la evolución irreversible se explica mediante la introducción de un grano grueso sobre la dinámica microscópica subyacente. Por este motivo, suele considerarse que la mecánica estadística sólo brinda una descripción subjetiva o meramente gnoseológica de la irreversibilidad. El propósito del presente trabajo consiste en impugnar las interpretaciones tradicionales de la irreversibilidad, poniendo de manifiesto que su único fundamento es la implícita adopción de un realismo metafísico que adjudica prioridad ontológica al mundo microscópico. Argumentaremos que las dificultades se disuelven cuando el problema es abordado sobre la base de un pluralismo ontológico de raíces kantianas, inspirado en el realismo internalista de Putnam. Desde esta perspectiva filosófica, la irreversibilidad macroscópica es una propiedad objetiva que no necesita ser explicada en términos microscópicos para adquirir legitimidad ontológica: el grano grueso que vincula ambas evoluciones no es más que la relación entre dos descripciones igualmente objetivas.The problem of irreversibility finds its roots at the end of 19th century and the beginning of 20th century with the works of Maxwell, Boltzmann and Gibbs. The controversy arises when trying to make compatible the irreversible macroscopic evolution of thermodynamics systems with t-invariant dynamics of its microscopic components. In the traditional approach of statistical mechanics, the irreversible evolution is explained by introducing a coarse grain on the underlying microscopic dynamics. For this reason

  18. The Thermodynamic Continuum of Jet Engine Performance: The Principle of Lost Work due to Irreversibility in Aerospace Systems

    OpenAIRE

    David Riggins

    2003-01-01

    The performance continuum for air-breathing engines is formally developed and illustrated in terms of fundamental thermodynamic quantities including heat and work interactions and the irreversibility occurring in the flow-path of the engine. The thermodynamically consistent base-line from which performance losses due to irreversibility must be measured is clearly defined based on this analysis. Issues and problems with conventional flow availability (flow exergy) in terms of the assessment (d...

  19. On the implication of environmental policy on growth in an OLG model with pollution permits and potential irreversible pollution

    OpenAIRE

    Jean-Marie, Alain; Prieur, Fabien; Tidball, Mabel; European Association of Environmental and Resource Economists

    2007-01-01

    We consider an OLG model with emissions arising from production and potential irreversible pollution. Pollution control goes through a system of permits and private agents can also maintain the environment. In this setting, we prove that there exist multiple equilibria. Due to the possible irreversibility, the economy can be dragged into both stationary and asymptotic poverty traps. First, we show that choosing a global quota on emissions at the lowest level beyond a critical threshold is a m...

  20. On the implication of environmental policy on growth in an OLG model with pollution permits and potential irreversible pollution

    OpenAIRE

    Jean-Marie, Alain; Prieur, Fabien; Tidball, Mabel

    2007-01-01

    International audience This paper develops an OLG model with emissions arising from production and potential irreversible pollution. Pollution control goes through a system of permits and private agents can also maintain the environment. In this setting, we prove that there exist multiple equilibria. Due to the possible irreversibility, the economy can be dragged into both stationary and asymptotic poverty traps. First, we show that choosing a global quota on emissions at the lowest level ...

  1. ON THE IMPLICATION OF ENVIRONMENTAL POLICY ON GROWTH IN AN OLG MODEL WITH POLLUTION PERMITS AND IRREVERSIBLE POLLUTION

    OpenAIRE

    Alain Jean-Marie; Fabien Prieur; Mabel Tidball

    2007-01-01

    This paper develops an OLG model with emissions arising from production and potential irreversible pollution. Pollution control goes through a system of permits and private agents can also maintain the environment. In this setting, we prove that there exist multiple equilibria. Due to the possible irreversibility, the economy can be dragged into both stationary and asymptotic poverty traps. First, we show that choosing a global quota on emissions at the lowest level beyond a critical threshol...

  2. Analysis of transient coolant void formation during a guillotine-type HX tube rupture event in the Star-LM system employing a supercritical CO2 Brayton cycle

    International Nuclear Information System (INIS)

    One proposed concept for the STAR-LM Lead Fast Reactor (LFR) incorporates a supercritical CO2 gas turbine Brayton cycle to achieve high cycle efficiency and reduced plant footprint. In this design, 100+% of core full power is transferred by natural circulation from the core, located at the bottom of the reactor vessel, to in-vessel heat exchangers (HXs) located at the top of the vessel in the annulus between the core shroud and vessel inner wall. Although this approach extremely simplifies the plant design, the presence of the HXs within the vessel raises concerns regarding the potential rupture of a HX tube that would initiate a high-pressure blowdown of CO2 into the lead coolant. The principal issue is to what extent, if any, is void entrained downwards with the coolant and then upwards through the core where adverse reactivity effects or degraded heat removal could result. To address this question, a scoping analysis of transient void formation during a guillotine-type HX tube rupture event in the STAR-LM employing a supercritical CO2 Brayton cycle has been performed. The void formation process is evaluated by solving a coupled set of ordinary differential equations describing: i) the supercritical CO2 blowdown, ii) bubble center-of-mass trajectory, iii) bubble growth rate, iv) bubble gas internal energy, and v) discrete bubble formation rate due to Taylor instability at the bubble/coolant interface. The results indicate that for thermal hydraulic conditions consistent with the current STAR-LM design, the peak blowdown rate from a single tube rupture is ∼ 2.5 kg/sec. The void formation process is dominated by large coherent gas bubbles that penetrate minimally downwards into the coolant due to the large coolant density. Rather, the gas pockets are predicted to periodically rise due to buoyancy and vent to the core cover gas region, as opposed to being swept downwards with the coolant. Moreover, the total CO2 fraction that is rendered in the form of discrete

  3. Endothelial dysfunction and atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease

    Directory of Open Access Journals (Sweden)

    Murat Çiftel

    2012-01-01

    Full Text Available Objective: To assess endothelial dysfunction and the risk for coronary atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease (CHD. Methods: The study included 18 cyanotic patients (the mean age was 12.28 ± 3.26 years who developed irreversible pulmonary hypertension due to cyanotic and acyanotic CHDs, and 18 control patients (the mean age was 11.78 ± 3.00 years. Study groups were compared for flow-mediated dilatation (FMD, carotid intima media thickness (CIMT and atherosclerotic risk factors. Results: Compared to the control group, the mean FMD was significantly reduced in the cyanotic group (5.26 ± 2.42% and 9.48 ± 2.60%, respectively; P-value < 0.001. No significant difference was observed between the groups in CIMT (0.41 ± 0.08 mm and 0.39 ± 0.06 mm, respectively; P-value = 0.299. The levels of total cholesterol, low-density lipoprotein-cholesterol and very low-density lipoprotein-cholesterol were statistically significantly lower compared tothe control group (P-value = 0.001, 0.006 and 0.014, respectively, whereas no statistically significant difference was found in the levels of high-density lipoprotein-cholesterol and triglycerides (P-value = 0.113 and 0.975, respectively. Conclusions: Systemic endothelial dysfunction in children with irreversible pulmonary hypertension due to CHD was noted but there was no increased risk for atherosclerosis.

  4. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Directory of Open Access Journals (Sweden)

    Hisanori Eba

    Full Text Available Matrix metalloproteinases (MMPs are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  5. A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time

    Directory of Open Access Journals (Sweden)

    Roland Riek

    2014-06-01

    Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy

  6. Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation.

    Science.gov (United States)

    Rodriguez-Navarro, C; Ruiz-Agudo, E; Ortega-Huertas, M; Hansen, E

    2005-11-22

    Although Ca(OH)2 is one of the oldest art and building material used by mankind, little is known about its nanostructural and colloidal characteristics that play a crucial role in its ultimate performance as a binder in lime mortars and plasters. In particular, it is unknown why hydrated lime putty behaves as an irreversible colloid once dried. Such effect dramatically affects the reactivity and rheology of hydrated lime dispersions. Here we show that the irreversible colloidal behavior of Ca(OH)2 dispersions is the result of an oriented aggregation mechanism triggered by drying. Kinetic stability and particle size distribution analysis of oven-dried slaked lime or commercial dry hydrate dispersions exhibit a significant increase in settling speed and particle (cluster) size in comparison to slaked lime putty that has never been dried. Drying-related particle aggregation also leads to a significant reduction in surface area. Electron microscopy analyses show porous, randomly oriented, micron-sized clusters that are dominant in the dispersions both before and after drying. However, oriented aggregation of the primary Ca(OH)2 nanocrystals (approximately 60 nm in size) is also observed. Oriented aggregation occurs both before and during drying, and although limited before drying, it is extensive during drying. Nanocrystals self-assemble in a crystallographically oriented manner either along the 100 or equivalent 110 directions, or along the Ca(OH)2 basal planes, i.e., along [001]. While random aggregation appears to be reversible, oriented aggregation is not. The strong coherent bonding among oriented nanoparticles prevents disaggregation upon redispersion in water. The observed irreversible colloidal behavior associated with drying of Ca(OH)2 dispersions has important implications in heritage conservation, particularly considering that nowadays hydrated lime is often the preferred alternative to portland cement in architectural heritage conservation. Finally, our

  7. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

    Science.gov (United States)

    Wang, Yang; Tu, Z C

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)).

  8. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  9. Step-by-Step Technique for Irreversible Electroporation of Focal Prostate Cancer: An Instructional Video Guide.

    Science.gov (United States)

    Ting, Francis; Van Leeuwen, Pim J; Stricker, Phillip D

    2016-04-01

    Focal therapy has emerged as a tissue-sparing treatment modality for selected men with low to intermediate volume, localized prostate cancer with the advantage of reducing treatment morbidity because of preservation of untreated prostate tissue and surrounding structures. Irreversible electroporation is an emerging interventional focal therapy modality that uses high voltage electrical fields to induce cell death. This instructional video guide (Fig) serves as an easy-to-understand, comprehensive educational tool so that a broader audience can gain an understanding of the techniques involved in this treatment modality. PMID:27013005

  10. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    International Nuclear Information System (INIS)

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure

  11. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report.

    Science.gov (United States)

    Melenhorst, Marleen C A M; Scheffer, Hester J; Vroomen, Laurien G P H; Kazemier, Geert; van den Tol, M Petrousjka; Meijerink, Martijn R

    2016-01-01

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth-Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure. PMID:25994516

  12. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    OpenAIRE

    Mohammad Hjouj; Jacob Lavee; David Last; David Guez; Dianne Daniels; Shirley Sharabi; Boris Rubinsky; Yael Mardor

    2013-01-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed ele...

  13. Nonlinear Constants of Quantum Information in Reversible and Irreversible Amplitude Flows

    CERN Document Server

    Qian, Xiao-Feng

    2010-01-01

    We report an approach to quantum open system dynamics that leads to novel nonlinear constant relations governing information flow among the participants. Our treatment is for mixed state systems entangled in a pure state fashion with an unspecified party that was involved in preparing the system for an experimental test, but no longer interacts after $t=0$. Evolution due to subsequent interaction with another party is treated as an amplitude flow channel and uses Schmidt-type bipartite decomposition of the evolving state. We illustrate this with three examples, including both reversible and irreversible information flows, and give formulas for the new nonlinear constraints in each case.

  14. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    OpenAIRE

    C. Anil Kumar; T. Santhosh Kumar; D. Pamu

    2015-01-01

    We report irreversible thermochromic behaviour of BaWO4 (BWO) films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C) using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films depo...

  15. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, an irreversible quantum Otto refrigeration cycle working with harmonic systems is established. Base on Heisenberg quantum master equation, the equations of motion for the set of harmonic systems thermodynamic observables are derived. The simulated diagrams of the quantum Otto refrigeration cycle are plotted. The relationship between average power of friction, cooling rate, power input, and the time of adiabatic process is analyzed by using numerical calculation. Moreover, the influence of the heat conductance and the time of iso-frequency process on the performance of the cycle is discussed.

  16. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle

    Institute of Scientific and Technical Information of China (English)

    HE JiZhou; HE Xian; TANG Wei

    2009-01-01

    In this paper,an irreversible quantum Otto refrigeration cycle working with harmonic systems is estab-lished.Base on Heisenberg quantum master equation,the equations of motion for the set of harmonic systems thermodynamic observables are derived.The simulated diagrams of the quantum Otto refrig-eration cycle are plotted.The relationship between average power of friction,cooling rate,power input,and the time of adiabatic process is analyzed by using numerical calculation.Moreover,the influence of the heat conductance and the time of iso-frequency process on the performance of the cycle is dis-cussed.

  17. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived.

  18. Analysis of a quantum irreversible Otto cycle with exergetic sustainable index

    Science.gov (United States)

    Dalkıran, Alper; Açıkkalp, Emin; Caner, Necmettin

    2016-07-01

    In this study, exergetic sustainability index is applied to quantum irreversible Otto cycle with -1/2 spin system. Exergetic sustainability index in a quantum engine is used first time. This index is the ratio of exergy output (work output for a thermal engine) to total exergetic losses. It gives an opportunity to evaluate for all thermodynamic losses in the system, that is why, it is an important index. In addition, some thermodynamic parameters (work output, exergy destruction, first and second law efficiencies) are considered and their relationships between the exergetic sustainability index are determined.

  19. Statistical mechanics out of equilibrium the irreversibility; Mecanica estadistica fuera del equilibrio debate sobre la irreversibilidad

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Estrada, R. F.

    2001-07-01

    A Round Table about the issue of Irreversibility and related matters has taken place during the last (20th) Statistical Mechanics Conference, held in Paris (July 1998). This article tries to provide a view (necessarily limited, and hence, uncompleted) of some approaches to the subject: the one based upon deterministic chaos (which is currently giving rise to a very active research) and the classical interpretation due to Boltzmann. An attempt has been made to write this article in a self-contained way, and to avoid a technical presentation wherever possible. (Author) 29 refs.

  20. Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films.

    Science.gov (United States)

    Tollan, Christopher M; Marcilla, Rebeca; Pomposo, Jose A; Rodriguez, Javier; Aizpurua, Javier; Molina, Jon; Mecerreyes, David

    2009-02-01

    The novel application of gold and silver nanorods as irreversible thermochromic dyes in polymeric ionic liquid (PIL) nanocomposites is proposed here. These materials have been synthesized by anion exchange of an imidazolium-based PIL in a solution that also contained gold nanorods. This resulted in the entrapment of the nanoobjects within a solid polymer precipitate. In this article, the effect of the temperature was studied in relation to the change of shape and, consequently, color of the gold or silver nanorods within the films. For the nanocomposites studied here, a maximum of two visual thermochromic transitions was observed for gold nanorods and up to three transitions were observed for silver nanorods.

  1. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report.

    Science.gov (United States)

    Melenhorst, Marleen C A M; Scheffer, Hester J; Vroomen, Laurien G P H; Kazemier, Geert; van den Tol, M Petrousjka; Meijerink, Martijn R

    2016-01-01

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth-Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  2. Robust and Irreversible Development in Cell Society as a General Consequence of Intra-Inter Dynamics

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Furusawa, Chikara

    1999-01-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. "Stem cells" that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  3. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Vroomen, Laurien G. P. H., E-mail: la.vroomen@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Kazemier, Geert, E-mail: g.kazemier@vumc.nl; Tol, M. Petrousjka van den, E-mail: mp.vandentol@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  4. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available An endoreversible intercooled regenerative Brayton combined heat and power (CHP plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  5. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  6. Low voltage irreversible electroporation induced apoptosis in HeLa cells

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2012-01-01

    Full Text Available Background: High-voltage electric field pulses can make cell membrane electroporated irreversibly and eliminate malignant cells via necrosis. However, low-voltage is not efficient as that. Aims: This study determined the differential effects of high- and low-voltage electric field pulses on HeLa cells, when the power of low-voltage was enhanced by increasing quantity of pulses. Materials and Methods: Pulses electric fields with permanent frequency (1 Hz and pulse length (100 μs were performed on HeLa cells. Voltage and pulse sets (8 pulses/set were various during treatment. CCK-8 assay was used to detect cell viability. The quantitative determination of apoptosis and necrosis were performed by flow cytometry with Annexin V and PI staining. Transmission electron microscopy was used to observe the ultrastructure of HeLa cells. Caspase-3 and caspase-8, the enzymes in apoptotic pathway, were determined by western blot. Results: The data showed that low-voltage electric field pulses also could make cell irreversible electroporation (IRE and ablate HeLa cells effectively by induction of apoptosis. The ablating effect due to low-voltage treatments delivered with a greater number of pulses may be as satisfactory as high-voltage, or even preferable because it causes less necrosis and more apoptosis. Conclusions: IRE induced by low voltage with more pulses could ablate HeLa cells effectively as high voltage, and it was preferable that less necrosis and more apoptosis occurred under such condition.

  7. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    Science.gov (United States)

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-01-01

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins. PMID:26582263

  8. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids : Symposia

    CERN Document Server

    Sedov, L

    1968-01-01

    At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig­ inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre­ versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re­ sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...

  9. Synthesis and characterization of diazomethylarachidonyl ketone: an irreversible inhibitor of N-arachidonylethanolamine amidohydrolase.

    Science.gov (United States)

    Edgemond, W S; Greenberg, M J; McGinley, P J; Muthian, S; Campbell, W B; Hillard, C J

    1998-07-01

    N-Arachidonylethanolamine (AEA), a putative endogenous agonist of neuronal (CB1) cannabinoid receptors, is a substrate for N-arachidonylethanolamine amidohydrolase (AEA amidohydrolase), a serine amidase present in cell membranes. Following a strategy that has been used to develop inhibitors that covalently bind to the active site of serine peptidases, diazomethyl arachidonyl ketone (DAK) was synthesized and its effects on AEA amidohydrolase were determined. DAK inhibits the hydrolysis of AEA by rat brain membranes with an IC50 value of 0.5 microM. At low concentrations, DAK reduces the Vmax and increases the K(m) of the enzyme for its substrate AEA, which suggests that it is both a competitive and noncompetitive inhibitor. At higher concentrations, DAK inhibition is completely noncompetitive. DAK inhibition of membrane-associated AEA amidohydrolase is irreversible because hydrolytic activity is not restored with extensive washing or dialysis of the membranes. Furthermore, DAK inhibition is not reversible by anion exchange chromatography of the subsequently solubilized enzyme. In contrast, DAK inhibition of detergent-solubilized enzyme exhibits competitive kinetics and is reversible upon ion exchange chromatography. Exposure of C6 glioma cells to DAK results in concentration-related inhibition of AEA amidohydrolase activity in cellular membranes with an IC50 value of 0.3 microM. In summary, these studies demonstrate that DAK is an irreversible inhibitor of AEA amidohydrolase in its native membrane and provides a useful tool with which to study the role of AEA amidohydrolase in the termination of action of AEA.

  10. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Scarlet eGallegos

    2015-03-01

    Full Text Available Alpha-synuclein is a presynaptic protein expressed throughout the central nervous system, and it is the main component of Lewy bodies, one of the histopathological features of Parkinson’s disease (PD which is a progressive and irreversible neurodegenerative disorder. The conformational flexibility of α-synuclein allows it to adopt different conformations, i.e. bound to membranes or form aggregates, the oligomers are believed to be the more toxic species. In this review, we will focus on two major features of α-synuclein, transmission and toxicity that could help to understand the pathological characteristics of PD. One important feature of α-synuclein is its ability to be transmitted from neuron to neuron using mechanisms such as endocytosis, plasma membrane penetration or through exosomes, thus propagating the Lewy body pathology to different brain regions thereby contributing to the progressiveness of PD. The second feature of α-synuclein is that it confers cytotoxicity to recipient cells, principally when it is in an oligomeric state. This form causes mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, proteasome impairment, disruption of plasma membrane and pore formation, and lead to apoptosis pathway activation and consequent cell death. The complexity of α-synuclein oligomerization and formation of toxic species could be a major factor for the irreversibility of PD and could also explain the lack of successful therapies to halt the disease.

  11. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors.

    Science.gov (United States)

    Abdul-Hay, Samer O; Bannister, Thomas D; Wang, Hui; Cameron, Michael D; Caulfield, Thomas R; Masson, Amandine; Bertrand, Juliette; Howard, Erin A; McGuire, Michael P; Crisafulli, Umberto; Rosenberry, Terrone R; Topper, Caitlyn L; Thompson, Caroline R; Schürer, Stephan C; Madoux, Franck; Hodder, Peter; Leissring, Malcolm A

    2015-12-18

    Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.

  12. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    Science.gov (United States)

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  13. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  14. Exergoeconomic optimization of an irreversible regenerated air refrigerator with constant-temperature heat reservoirs

    Directory of Open Access Journals (Sweden)

    Yi Zhang, Lingeng Chen, Guozhong Chai

    2015-01-01

    Full Text Available Based on the finite time exergoeconomic method, the performance analysis and optimization of an irreversible regenerated air refrigerator cycle are carried out by taking the profit rate as the optimization objective. The profit rate is defined as the difference between the revenue rate of output exergy and the cost rate of input exergy. The analytical expression for profit rate is derived, taking into account several irreversibilities, such as heat resistance, losses due to the pressure drop and the effects of non-isentropic expansion as well as compression. The influences of several parameters such as the temperature ratio of reservoirs, the efficiencies of both compressor and expander, the pressure recovery coefficient and so on are discussed by numerical examples. According to the simulation results, the double-maximum profit rate can be achieved when the pressure ratio and the distributions of heat conductance reach their optimal values respectively. By varying the price ratio, the relationship between the profit rate objective and other objectives can be established and the implementation of profit rate as objective can achieve higher COP compared to the cases using ecological function and cooling load as objectives.

  15. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  16. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm

    International Nuclear Information System (INIS)

    Highlights: • The first application of IMOCS for plate-fin heat exchanger design. • Irreversibility degrees of heat transfer and fluid friction are minimized. • Trade-off of efficiency, total cost and pumping power is achieved. • Both EGM and EDM methods have been compared in the optimization of PFHE. • This study has superiority over other single-objective optimization design. - Abstract: This paper introduces and applies an improved multi-objective cuckoo search (IMOCS) algorithm, a novel met-heuristic optimization algorithm based on cuckoo breeding behavior, for the multi-objective optimization design of plate-fin heat exchangers (PFHEs). A modified irreversibility degree of the PFHE is separated into heat transfer and fluid friction irreversibility degrees which are adopted as two initial objective functions to be minimized simultaneously for narrowing the search scope of the design. The maximization efficiency, minimization of pumping power, and total annual cost are considered final objective functions. Results obtained from a two dimensional normalized Pareto-optimal frontier clearly demonstrate the trade-off between heat transfer and fluid friction irreversibility. Moreover, a three dimensional Pareto-optimal frontier reveals a relationship between efficiency, total annual cost, and pumping power in the PFHE design. Three examples presented here further demonstrate that the presented method is able to obtain optimum solutions with higher accuracy, lower irreversibility, and fewer iterations as compared to the previous methods and single-objective design approaches

  17. Herniorrafia inguinal laparoscópica totalmente extraperitoneal: vinte e sete complicações graves após 4565 operações consecutivas Laparoscopic totally extraperitoneal inguinal hernia repair: twenty-seven serious complications after 4565 consecutive operations

    Directory of Open Access Journals (Sweden)

    Alberto Meyer

    2013-02-01

    Full Text Available OBJETIVO: identificar e avaliar as complicações do tratamento da hérnia inguinal com a colocação de tela totalmente extraperitoneal. MÉTODOS: Foram incluídos, em uma série consecutiva de 4565 reparos de hérnia laparoscópica, pacientes que haviam sido submetidos ao procedimento TEP entre janeiro de 2001 e janeiro de 2011. Os critérios de inclusão foram: diagnóstico com hérnia inguinal sintomática, incluindo recorrência após correção de hérnia inguinal e cirurgia prévia em abdômen inferior e pelve. Todos os pacientes > 18 anos de idade. Pacientes com hérnia encarcerada na urgência foram excluídos do estudo. RESULTADOS: Um total de 4565 hérnias foram incluídas no estudo. Ocorreram 27 complicações graves (0,6%: 12 hemorragias (0,25%, duas lesões da bexiga (0,04%, cinco oclusões (0,11%, quatro perfuraç��es intestinais (0,09%, uma lesão da veia ilíaca (0,02%, uma lesão do nervo femoral (0,02%, duas lesões dos vasos deferentes (0,04% e dois óbitos (0,02% (embolia pulmonar, peritonite. CONCLUSÃO: A taxa de complicações com o procedimento TEP é baixa. Correção de hérnia laparoscópica é uma técnica reprodutível e confiável. Em nossa experiência, existem contraindicações para o procedimento de TEP. A técnica TEP deve ser minuciosa para evitar complicações intraoperatórias (diatermia bipolar. As complicações podem ocorrer mesmo após o cirurgião ter adquirido experiência substancial.OBJECTIVE: To identify and assess the complications of laparoscopic inguinal hernia treatment with totally extraperitoneal mesh placement (TEP. METHODS: We included patients who had undergone the TEP procedure in a consecutive series of 4565 laparoscopic hernia repairs between January 2001 and January 2011. Inclusion criteria were diagnosis with symptomatic inguinal hernia, including recurrence after inguinal hernia repair and previous surgery in the lower abdomen and pelvis. All patients were 18 years of age or

  18. Uso de solução bucal com sistema enzimático em pacientes totalmente dependentes de cuidados em unidade de terapia intensiva Use of oral rinse with enzymatic system in patients totally dependent in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio da Silva Santos

    2008-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: Os pacientes internados em unidades de terapia intensiva (UTI, na maioria das vezes, não possuem higienização oral adequada. Esta condição de deficiência de higiene oral em pacientes graves desencadeia freqüentemente periodontites, gengivites e outras complicações sistêmicas e orais. O objetivo deste estudo foi avaliar a eficiência da ação antimicrobiana da solução bucal com sistema enzimático associada à higiene oral, em pacientes totalmente dependentes de cuidados internados em UTI. MÉTODO: Estudo piloto prospectivo duplamente encoberto, realizado com 20 pacientes internados em UTI, divididos em 2 grupos com protocolos de higienização bucal com a mesma técnica, mas utilizando-se soluções diferentes, sendo o grupo de estudo (n = 10 utilizando solução bucal com sistema enzimático e o grupo controle (n = 10 utilizando solução bucal à base de cetilpiridínio. RESULTADOS: Os resultados microbiológicos das culturas coletadas nos grupos de estudo e controle, antes e após o uso da solução enzimática, mostraram que não houve diferença significativa entre os grupos (p = 0,41. Na avaliação clínica do Índice de Higiene Oral Simplificada (IHOS houve significância estatística pelo teste Exato de Fisher (p = 0,01, quando comparados os grupos de estudo e controle. O valor de significância estatística foi estabelecido em 5%, ou p BACKGROUND AND OBJECTIVES: Patients admitted to an intensive care unit (ICU, in most cases do not have a proper oral hygiene. This deficient condition of oral hygiene in critical patients often triggers periodontitis, gingivitis and other systemic and oral complications. This research aimed to evaluate the efficiency of the antimicrobial action of a solution with bioactive enzymatic system for oral hygiene, in totally care-dependent patients admitted to ICU. METHODS: A prospective, double blind pilot study was conducted with 20 patients admitted to an ICU, divided

  19. Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases.

    Science.gov (United States)

    Pang, Yuan-Ping; Ekström, Fredrik; Polsinelli, Gregory A; Gao, Yang; Rana, Sandeep; Hua, Duy H; Andersson, Björn; Andersson, Per Ola; Peng, Lei; Singh, Sanjay K; Mishra, Rajesh K; Zhu, Kun Yan; Fallon, Ann M; Ragsdale, David W; Brimijoin, Stephen

    2009-01-01

    New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 microM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast ( approximately 30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force

  20. MRI study on reversible and irreversible electroporation induced blood brain barrier disruption.

    Directory of Open Access Journals (Sweden)

    Mohammad Hjouj

    Full Text Available Electroporation, is known to induce cell membrane permeabilization in the reversible (RE mode and cell death in the irreversible (IRE mode. Using an experimental system designed to produce a continuum of IRE followed by RE around a single electrode we used MRI to study the effects of electroporation on the brain. Fifty-four rats were injected with Gd-DOTA and treated with a G25 electrode implanted 5.5 mm deep into the striata. MRI was acquired immediately after treatment, 10 min, 20 min, 30 min, and up to three weeks following the treatment using: T1W, T2W, Gradient echo (GE, serial SPGR (DCE-MRI with flip angles ranging over 5-25°, and diffusion-weighted MRI (DWMRI. Blood brain barrier (BBB disruption was depicted as clear enhancement on T1W images. The average signal intensity in the regions of T1-enhancement, representing BBB disruption, increased from 1887±83 (arbitrary units immediately post treatment to 2246±94 20 min post treatment, then reached a plateau towards the 30 min scan where it reached 2289±87. DWMRI at 30 min showed no significant effects. Early treatment effects and late irreversible damage were clearly depicted on T2W. The enhancing volume on T2W has increased by an average of 2.27±0.27 in the first 24-48 hours post treatment, suggesting an inflammatory tissue response. The permanent tissue damage, depicted as an enhancing region on T2W, 3 weeks post treatment, decreased to an average of 50±10% of the T2W enhancing volumes on the day of the treatment which was 33±5% of the BBB disruption volume. Permanent tissue damage was significantly smaller than the volume of BBB disruption, suggesting, that BBB disruption is associated with RE while tissue damage with IRE. These results demonstrate the feasibility of applying reversible and irreversible electroporation for transient BBB disruption or permanent damage, respectively, and applying MRI for planning/monitoring disruption volume/shape by optimizing electrode positions

  1. A statistical model for multidimensional irreversible electroporation cell death in tissue

    Directory of Open Access Journals (Sweden)

    Rubinsky Boris

    2010-02-01

    Full Text Available Abstract Background Irreversible electroporation (IRE is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic. Methods We introduce and describe a new methodology for evaluating IRE induced cell death in tissue. Our approach employs a statistical Peleg-Fermi model to correlate probability of cell death in heterogeneous tissue to the parameters of electroporation pulses such as the number of pulses, electric field amplitude and pulse length. For treatment planning, the Peleg-Fermi model is combined with a numerical solution of the multidimensional electric field equation cast in a dimensionless form. This is the first time in which this concept is used for evaluating IRE cell death in multidimensional situations. Results We illustrate the methodology using data reported in literature for prostate cancer cell death by IRE. We show how to fit this data to a Fermi function in order to calculate the critical statistic parameters. To illustrate the use of the methodology, we simulated 2-D irreversible electroporation protocols and produced 2-D maps of the statistical distribution of cell death in the treated region. These plots were compared to plots produced using a deterministic model of cell death by IRE and

  2. Influence of Irreversible Adsorption on the Glass Transition Temperature of Polymer Thin Films as Measured by Fluorescence

    Science.gov (United States)

    Burroughs, Mary; Priestley, Rodney

    2014-03-01

    Polymers confined to the nanometer length scale have been shown to exhibit deviations in the glass transition temperature (Tg) from the bulk. With the increasing use of confined polymers in nanotechnology, understanding and predicting this behavior is extremely relevant to industries ranging from pharmaceuticals to organic electronics. Recent work (Napolitano, Wübbenhorst, Nature Communications, 2, 260 (2011)) has connected deviations in Tg under confinement with irreversible physical adsorption of polymer chains at substrate interfaces. Here we investigate the influence of irreversibly adsorbed layers on the Tg of polystyrene (PS) thin films supported on silica via fluorescence. We examine the Tg of the brushes as a function of annealing time and irreversibly adsorbed layer thickness. By incorporating fluorescently labeled polymer layers into multilayered films of unlabeled polymer, we will examine the influence of brushes on adjacent layers dynamics. Finally, we will compare the results on PS with those of poly(methyl methacrylate).

  3. Finite-time exergoeconomic performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Yanlin Ge, Fengrui Sun

    2015-01-01

    Full Text Available The finite time exergoeconomic performance of the generalized irreversible Carnot heat engine with the losses of heat resistance, heat leakage and internal irreversibility, and with a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is investigated in this paper. The focus of this paper is to obtain the compromised optimization between economics (profit and the energy utilization factor (efficiency for the generalized irreversible Carnot heat engine, by searching the optimum efficiency at maximum profit, which is termed as the finite time exergoeconomic performance bound. The obtained results include those obtained in many literatures and can provide some theoretical guidelines for the design of practical heat engines.

  4. Rapid Determination of the Specificity Constant of Irreversible Inhibitors (kinact/KI) by Means of an Endpoint Competition Assay.

    Science.gov (United States)

    Miyahisa, Ikuo; Sameshima, Tomoya; Hixon, Mark S

    2015-11-16

    Owing to their covalent target occupancy, irreversible inhibitors require low exposures and offer long duration, and their use thus represents a powerful strategy for achieving pharmacological efficacy. Importantly, the potency metric of irreversible inhibitors is kinact/KI not IC50. A simple approach to measuring kinact/KI was developed that makes use of an irreversible probe for competitive assays run to completion against test compounds. In this system, the kinact/KI value of the test compound is equal to (kinact/KI)probe ×[probe]/IC50. The advantages of this method include simplicity, high throughput, and application to all target classes, and it only requires an in-depth kinetic evaluation of the probe.

  5. Is ‘hit and run’ a single word? The processing of irreversible binomials in neglect dyslexia

    Directory of Open Access Journals (Sweden)

    Giorgio eArcara

    2012-02-01

    Full Text Available The present study is the first neuropsychological investigation into the problem of the mental representation and processing of irreversible binomials, i.e. word pairs linked by a conjunction (e.g. ‘hit and run’, ‘dead or alive’. In order to test their lexical status, the phenomenon of neglect dyslexia is explored.People with left-sided neglect dyslexia show a clear lexical effect: they can read irreversible binomials better (i.e., by dropping the leftmost words less frequently when their components are presented in their correct order. This may be taken as an indication that they treat these constructions as lexical, not decomposable, elements. This finding therefore constitutes strong evidence that irreversible binomials tend to be stored in the mental lexicon as a whole and that this whole form is preferably addressed in the retrieval process.

  6. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review.

    Science.gov (United States)

    Paiella, Salvatore; Salvia, Roberto; Ramera, Marco; Girelli, Roberto; Frigerio, Isabella; Giardino, Alessandro; Allegrini, Valentina; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures. PMID:26981115

  7. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    Science.gov (United States)

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-10-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow.

  8. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation: A Review

    Directory of Open Access Journals (Sweden)

    Salvatore Paiella

    2016-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA and Irreversible Electroporation (IRE are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures.

  9. Effects of oxymorphazone in frogs: long lasting antinociception in vivo, and apparently irreversible binding in vitro

    International Nuclear Information System (INIS)

    Oxymorphazone was found to be a relatively weak antinociceptive drug in intact frog (Rana esculenta) when acetic acid was used as pain stimulus. Frogs remained analgesic for at least 48 hrs following oxymorphazone administration. The ligand increased the latency of wiping reflex in spinal frogs too. There effects were blocked by naloxone. In equilibrium binding studies (3H)oxymorphazone had high affinity to the opioid receptors of frog brain and spinal cord as well. Kinetic experiments show that only 25% of the bound (3H)oxymorphazone is readily dissociable. Preincubation of the membranes with labeled oxymorphazone results in a washing resistant inhibition of the opioid binding sites. At least 70% of the (3H)oxymorphazone specific binding is apparently irreversible after reaction at 5 nM ligand concentration, and this can be enhanced by a higher concentration of tritiated ligand

  10. Universal Ideal Behavior and Macroscopic Work Relation of Linear Irreversible Stochastic Thermodynamics

    CERN Document Server

    Ma, Yi-An

    2015-01-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic "equation of state" of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  11. Effect of irreversible electroporation on three-dimensional cell culture model.

    Science.gov (United States)

    Kurata, Kosaku; Matsushita, Masahiro; Yoshii, Takashi; Fukunaga, Takanobu; Takamatsu, Hiroshi

    2012-01-01

    Irreversible electroporation (IRE) is a new treatment to necrotize abnormal cells by high electric pulses. Electric potential difference over 1 V across the plasma membrane permanently permeabilizes the cell with keeping the extracellular matrix intact if the thermal damage due to the Joule heating effect is avoided. This is the largest advantage of the IRE compared to the other conventional treatment. However, since the IRE has just started to be used in clinical tests, it is important to predict the necrotized region that depends on pulse parameters and electrode arrangement. We therefore examined the numerical solution to the Laplace equation for the static electric field to predict the IRE-induced cell necrosis. Three-dimensionally (3-D) cultured cells in a tissue phantom were experimentally subjected to the electric pulses through a pair of puncture electrodes. The necrotized area was determined as a function of the pulse repetition and compared with the area that was estimated by the numerical analysis. PMID:23365861

  12. Kinetics of irreversible inhibition of yeast alcohol dehydrogenase during modification by o-phthaldehyde.

    Science.gov (United States)

    Le, W P; Yan, S X; Huang, M Q; Zhang, Y X; Zhou, H M

    The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously has been applied to a study on the kinetics of the course of inactivation of yeast alcohol dehydrogenase (YADH) by o-phthaldehyde (OPTA). The microscopic constants for the reaction of the inactivators with the free enzyme and with the enzyme-substrate complexes were determined. The inactivation is a monophasic pseudo-first-order reaction with OPTA. The apparent rate constant A is independent of the OPTA concentration, indicating that the inactivation is a noncomplexing inhibition. The marked protective effect of substrates on the inactivation of YADH by OPTA has been observed. This result suggests that the modification of the enzyme by OPTA may occur at the active site.

  13. Mass and Heat Diffusion in Ternary Polymer Solutions: A Classical Irreversible Thermodynamics Approach

    CERN Document Server

    Es-haghi, S Shams

    2016-01-01

    Governing equations for evolution of concentration and temperature in three-component systems were derived in the framework of classical irreversible thermodynamics using Onsager variational principle and were presented for solvent/solvent/polymer and solvent/polymer/polymer systems. The derivation was developed from the Gibbs equation of equilibrium thermodynamics using the local equilibrium hypothesis, Onsager reciprocal relations and Prigogine theorem for systems in mechanical equilibrium. It was shown that the details of mass and heat diffusion phenomena in a ternary system are completely expressed by a 3x3 matrix whose entries are mass diffusion coefficients (4 entries), thermal diffusion coefficients (2 entries) and three entries that describe the evolution of heat in the system. The entries of the diffusion matrix are related to the elements of Onsager matrix that are bounded by some constraints to satisfy the positive definiteness of entropy production in the system. All the elements of diffusion matr...

  14. Development of Linear Irreversible Thermodynamic Model for Oxidation Reduction Potential in Environmental Microbial System

    Science.gov (United States)

    Cheng, Hong-Bang; Kumar, Mathava; Lin, Jih-Gaw

    2007-01-01

    Nernst equation has been directly used to formulate the oxidation reduction potential (ORP) of reversible thermodynamic conditions but applied to irreversible conditions after several assumptions and/or modifications. However, the assumptions are sometimes inappropriate in the quantification of ORP in nonequilibrium system. We propose a linear nonequilibrium thermodynamic model, called microbial related reduction and oxidation reaction (MIRROR Model No. 1) for the interpretation of ORP in biological process. The ORP was related to the affinities of catabolism and anabolism. The energy expenditure of catabolism and anabolism was directly proportional to overpotential (η), straight coefficient of electrode (LEE), and degree of coupling between catabolism and ORP electrode, respectively. Finally, the limitations of MIRROR Model No. 1 were discussed for expanding the applicability of the model. PMID:17496027

  15. Study on the Irreversible Thermodynamics of a Marine Engine Exhaust-powered Adsorption Refrigerating System

    Institute of Scientific and Technical Information of China (English)

    XIE Yingchun; MEI Ning; XU Zhen

    2006-01-01

    This study investigates the heat and mass transfer mechanism of a marine engine exhaust-powered adsorption refrigerating system by using irreversible thermodynamics. The equations of entropy-production rate and the linear phenomenological equations of thermodynamic flux and force are established. The conventional experimental facilities of unit tube are developed and the phenomenological coefficients are obtained by fitting the experimental data. It is concluded that the thermodynamic process in the adsorbent bed is determined by the coupling effect of the heat and mass transfer; furthermore, the mass transfer is determined by the heat transfer. Taking some measures to increase heat transfer can improve the performance of the adsorption refrigerating system. The conclusions presented in this paper may be of value to the engineering applications of the system.

  16. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  17. A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution

    CERN Document Server

    Michaelian, Karo

    2013-01-01

    The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the so...

  18. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    Science.gov (United States)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  19. Reversible and irreversible thermochromic phase transitions in single crystals of polydiacetylenes substituted with alkyl-urethanes

    Science.gov (United States)

    Koshihara, Shin-ya; Tokura, Yoshinori; Takeda, Kenji; Koda, Takao; Kobayashi, Akiko

    1990-06-01

    Reversible transitions between the two spectroscopically distinct phases (A and B phases) have been investigated for a new family of polydiacetylenes (PDAs) substituted with side groups of alkyl-urethane [-(CH2)4OCONH(CH2)n-1CH3:n =1-10]. Measurements of optical spectra as well as x-ray and calorimetric studies have revealed the first-order-like phase transitions in a series of PDAs with n=1-10 which are associated with an n-dependent thermal hysteresis ranging from 0 to 60 K in width. It has been found that the thermochromic changes become irreversible in all these PDAs once the hydrogen bond chains in the side groups are interrupted by heating beyond the polymer melting temperature.

  20. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    Science.gov (United States)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  1. Nonlinear Gamow vectors, shock waves and irreversibility in optically nonlocal media

    CERN Document Server

    Gentilini, Silvia; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-01-01

    Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian sys...

  2. Graphical Analysis of PET Data Applied to Reversible and Irreversible Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jean

    1999-11-18

    Graphical analysis refers to the transformation of multiple time measurements of plasma and tissue uptake data into a linear plot, the slope of which is related to the number of available tracer binding sites. This type of analysis allows easy comparisons among experiments. No particular model structure is assumed, however it is assumed that the tracer is given by bolus injection and that both tissue uptake and the plasma concentration of unchanged tracer are monitored following tracer injection. The requirement of plasma measurements can be eliminated in some cases when a reference region is available. There are two categories of graphical methods which apply to two general types of ligands--those which bind reversibly during the scanning procedure and those which are irreversible or trapped during the time of the scanning procedure.

  3. Study on the irreversible thermodynamics of a marine engine exhaust-powered adsorption refrigerating system

    Science.gov (United States)

    Xie, Yingchun; Mei, Ning; Xu, Zhen

    2006-04-01

    This study investigates the heat and mass transfer mechanism of a marine engine exhaust-powered adsorption refrigerating system by using irreversible thermodynamics. The equations of entropy-production rate and the linear phenomenological equations of thermodynamic flux and force are established. The conventional experimental facilities of unit tube are developed and the phenomenological coefficients are obtained by fitting the experimental data. It is concluded that the thermodynamic process in the adsorbent bed is determined by the coupling effect of the heat and mass transfer; furthermore, the mass transfer is determined by the heat transfer. Taking some measures to increase heat transfer can improve the performance of the adsorption refrigerating system. The conclusions presented in this paper may be of value to the engineering applications of the system.

  4. Irreversibility in a unitary finite-rate protocol: the concept of internal friction

    Science.gov (United States)

    Çakmak, Selçuk; Altintas, Ferdi; Müstecaplıoğlu, Özgür E.

    2016-07-01

    The concept of internal friction, a fully quantum mechanical phenomena, is investigated in a simple, experimentally accessible quantum system in which a spin-1/2 is driven by a transverse magnetic field in a quantum adiabatic process. The irreversible production of the waste energy due to the quantum friction is quantitatively analyzed in a forward-backward unitary transform of the system Hamiltonian by using the quantum relative entropy between the actual density matrix obtained in a parametric transformation and the one in a reversible adiabatic process. Analyzing the role of total transformation time and the different pulse control schemes on the internal friction reveal the non-monotone character of the internal friction as a function of the total protocol time and the possibility for almost frictionless solutions in finite-time transformations.

  5. The irreversibility line of (Hg, Cr)Sr2CuO4+δ superconductor

    International Nuclear Information System (INIS)

    Superconducting (Hg, Cr)-1201 phase was synthesized with a nominal composition Hg0.7, Cr0.3Sr2CuO4+δ by solid state reaction method in vacuum-sealed quartz-tube. X-ray diffraction (XRD) analysis of the sample showed a tetragonal symmetry with lattice parameters a = 3.842 (2) A and c = 8.641 (5) A. Ac-susceptibility, dc-magnetization, and dc-resistivity measurements indicate a Tc of 60 K. The irreversibility line (IRL) was obtained from the merging point of the zero field cooled (ZFC) and field cooled (FC) magnetization measurements at several applied fields. The fit H =A(1 -T / Tc)n gave a value of 2.55 for the exponent n. (author)

  6. Metaphit irreversibly inhibits (/sup 3/H)threo-(+/-)-methylphenidate binding to rat striatal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Schweri, M.M.; Jacobson, A.E.; Lessor, R.A.; Rice, K.C.

    1987-01-01

    Metaphit (1-(1-(3-isothiocyanatophenyl)cyclohexyl)-piperidine), a derivative of phencyclidine that contains an isothiocyanate group on the meta position of the aromatic ring, resembles its parent compound (phencyclidine) in its ability to inhibit the binding of the stimulant drug (/sup 3/H)threo-(+/-)-methylphenidate to crude synaptosomal membranes from rat striatal tissue (IC50 = 1.4 and 6.2 microM for phencyclidine and Metaphit, respectively). Unlike phencyclidine, however, Metaphit appears to inhibit binding of the radiolabeled stimulant in an irreversible manner, as the degree of inhibition of binding of the stimulant does not diminish when the Metaphit-treated tissue is subjected to repeated washings before determination of the binding of (/sup 3/H)threo-(+/-)-methylphenidate. This finding suggests that Metaphit may be a useful tool in the study of the molecular basis of stimulant action.

  7. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  8. Did nonlinear irreversible thermodynamics revolutionize the classical time conception of physics?

    Science.gov (United States)

    von Borzeszkowski, Horst-Heino; Wahsner, Renate

    1984-07-01

    From both physical and epistemological viewpoints, the following theses, which nowadays are often discussed in the literature, are examined: Nonlinear thermodynamics renders it possible to grasp evolutionary physical processes; for thermodynamics it introduces, instead of idealized reversible time, a directed time into physics; thus a science is established that is nearer to reality than classical physics. To analyze these theses, the relation of thermodynamics to dynamical physics is considered. In particular, it is demonstrated that, in classical as well as in modern thermodynamics, irreversibility is introduced via conditions which must be formulated in addition to the dynamical laws. To show the reason for this, the epistemological status of the physical time conception is analyzed, and its character as a physical measurement quantity is established.

  9. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Vogel, Jantien A., E-mail: j.a.vogel@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin, E-mail: k.nielsen@vumc.nl; Kazemier, Geert, E-mail: g.kazemier@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-06-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired, the dorsal approach could be considered alternatively.

  10. Irreversible Electroporation of Hepatic and Pancreatic Malignancies: Radiologic-Pathologic Correlation.

    Science.gov (United States)

    Gonzalez-Beicos, Aldo; Venkat, Shree; Songrug, Tanakorn; Poveda, Julio; Garcia-Buitrago, Monica; Poozhikunnath Mohan, Prasoon; Narayanan, Govindarajan

    2015-09-01

    Irreversible electroporation (IRE) is a novel therapy that has shown to be a feasible and promising alternative to conventional ablative techniques when treating tumors near vital structures or blood vessels. The clinical efficacy of IRE has been evaluated using established imaging criteria. This study evaluates the histologic and imaging response of hepatic and pancreatic malignancies that were surgically resected after IRE. In total, 12 lesions ablated with IRE were included, including 3 pancreatic carcinomas, 5 primary tumors of the liver, and 4 metastatic tumors of the liver. The rate of complete response to IRE was 25% based on the histologic evaluation of the resected tumors. Although treatment-related vessel wall changes were noted in several cases in histologic findings, there was no evidence of vascular luminal narrowing or obliteration in any of the specimens. The imaging response to IRE before surgical resection usually resulted in underestimation of disease burden when compared with the histologic response seen on the resected specimens.

  11. Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    CERN Document Server

    Polettini, Matteo

    2014-01-01

    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks ``in a box'', whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmet...

  12. Entropy Production and Irreversible Processes -from the perspective of continuous topological evolution.

    Directory of Open Access Journals (Sweden)

    Robert M. Kiehn

    2004-05-01

    Full Text Available Abstract: A concept of entropy production associated with continuous topological evolution is deduced (without statistics from the fact that Cartan-Hilbert 1-form of Action defines a non-equilibrium symplectic system of Pfaff Topological dimension 2n+2. The differential entropy, dS, is composed of the interior product of the non-canonical components of momentum with the components of the differential velocities. An irreversible process can describe entropy production in terms of continuous topological evolution to non-equilibrium but stationary states. An equilibrium system can be defined topologically as a Lagrange submanifold of the 2n+2 topological space, upon which the change in entropy by continuous topological evolution is zero, dSequil=0.

  13. Estimation of Separation of Electrolytes and Organic Compounds by Nanofiltration Membranes Using an Irreversible Thermodynamic Model

    Institute of Scientific and Technical Information of China (English)

    PallabGhosh

    2003-01-01

    Nanofiltration separation has become a popular technique for removing large organic molecules and inorganic substances from water. It is achieved by a combination of three mechanisms: electrostatic repulsion,sieving and diffusion. In the present work, a model based on irreversible thermodynamics is extended and used to estimate rejection of inorganic salts and organic substances. Binary systems are modeled, where the feed contains an ion that is much less permeable to the membrane as compared with the other ion. The two model parameters are estimated by fitting the model to the experimental data. Variation of these parameters with the composition of the feed is described by an empirical correlation. This work attempts to describe transport through the nanofiltration membranes bv a simple model.

  14. Visualização dos padrões de variação da taxa de mortalidade infantil no Rio Grande do Sul, Brasil: comparação entre as abordagens Bayesiana Empírica e Totalmente Bayesiana Patterns of variation in the infant mortality rate in Rio Grande do Sul State, Brazil: comparison of empirical Bayesian and fully Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Sabrina Letícia Couto da Silva

    2011-07-01

    Full Text Available A mortalidade infantil é um sensível indicador de saúde. Conhecer o seu perfil geográfico auxilia na formulação de estratégias de saúde pública. O mapeamento de doenças tem por objetivo descrever a distribuição geográfica das taxas de mortalidade ou incidência de doenças por intermédio de mapas. Em razão da alta instabilidade das taxas brutas quando há pequenas áreas, utilizam-se os métodos de suavização bayesiana, que se valem de informações de toda a região ou da vizinhança para estimar as taxas. O artigo faz a comparação entre os métodos Bayesiano Empírico e Totalmente Bayesiano para as taxas de mortalidade infantil (dados acumulados de 2001 a 2004 no Rio Grande do Sul, Brasil. O trabalho aponta as vantagens do uso dos estimadores bayesianos na visualização espacial dos mapas. Os métodos Bayesianos Empíricos apresentaram resultados muito semelhantes aos dos métodos Totalmente Bayesianos e possuem a grande vantagem de ser de fácil utilização por profissionais da área de saúde, destacando igualmente os principais padrões espaciais da taxa de mortalidade no Rio Grande do Sul no período estudado.Infant mortality is considered a sensitive health indicator, and knowledge of its geographical profile is essential for formulating appropriate public health policies. Disease mapping aims to describe the geographical distribution of disease incidence and mortality rates. Due to the heavy instability of crude rates in small areas, methods involving Bayesian smoothing of rates are used, drawing on information for the whole area or neighborhood to estimate the event rate. The current study compares empirical Bayesian (EB and fully Bayesian (FB methods for infant mortality rates (accumulated data from 2001 to 2004 in Rio Grande do Sul State, Brazil. This study highlights the advantages of Bayesian estimators for viewing and interpreting maps. For the problem at hand, EB and FB methods showed quite similar results and

  15. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells.

    Science.gov (United States)

    Ray, Arghya; Ravillah, Durgadevi; Das, Deepika S; Song, Yan; Nordström, Eva; Gullbo, Joachim; Richardson, Paul G; Chauhan, Dharminder; Anderson, Kenneth C

    2016-08-01

    Our prior study utilized both in vitro and in vivo multiple myeloma (MM) xenograft models to show that a novel alkylator melphalan-flufenamide (Melflufen) is a more potent anti-MM agent than melphalan and overcomes conventional drug resistance. Here we examined whether this potent anti-MM activity of melflufen versus melphalan is due to their differential effect on DNA damage and repair signalling pathways via γ-H2AX/ATR/CHK1/Ku80. Melflufen-induced apoptosis was associated with dose- and time-dependent rapid phosphorylation of γ-H2AX. Melflufen induces γ-H2AX, ATR, and CHK1 as early as after 2 h exposure in both melphalan-sensitive and -resistant cells. However, melphalan induces γ-H2AX in melphalan-sensitive cells at 6 h and 24 h; no γ-H2AX induction was observed in melphalan-resistant cells even after 24 h exposure. Similar kinetics was observed for ATR and CHK1 in meflufen- versus melphalan-treated cells. DNA repair is linked to melphalan-resistance; and importantly, we found that melphalan, but not melflufen, upregulates Ku80 that repairs DNA double-strand breaks. Washout experiments showed that a brief (2 h) exposure of MM cells to melflufen is sufficient to initiate an irreversible DNA damage and cytotoxicity. Our data therefore suggest that melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in MM cells. PMID:27098276

  16. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion

    Directory of Open Access Journals (Sweden)

    Robertson John

    2010-12-01

    Full Text Available Abstract Background Despite advances in transplant surgery and general medicine, the number of patients awaiting transplant organs continues to grow, while the supply of organs does not. This work outlines a method of organ decellularization using non-thermal irreversible electroporation (N-TIRE which, in combination with reseeding, may help supplement the supply of organs for transplant. Methods In our study, brief but intense electric pulses were applied to porcine livers while under active low temperature cardio-emulation perfusion. Histological analysis and lesion measurements were used to determine the effects of the pulses in decellularizing the livers as a first step towards the development of extracellular scaffolds that may be used with stem cell reseeding. A dynamic conductivity numerical model was developed to simulate the treatment parameters used and determine an irreversible electroporation threshold. Results Ninety-nine individual 1000 V/cm 100-μs square pulses with repetition rates between 0.25 and 4 Hz were found to produce a lesion within 24 hours post-treatment. The livers maintained intact bile ducts and vascular structures while demonstrating hepatocytic cord disruption and cell delamination from cord basal laminae after 24 hours of perfusion. A numerical model found an electric field threshold of 423 V/cm under specific experimental conditions, which may be used in the future to plan treatments for the decellularization of entire organs. Analysis of the pulse repetition rate shows that the largest treated area and the lowest interstitial density score was achieved for a pulse frequency of 1 Hz. After 24 hours of perfusion, a maximum density score reduction of 58.5 percent had been achieved. Conclusions This method is the first effort towards creating decellularized tissue scaffolds that could be used for organ transplantation using N-TIRE. In addition, it provides a versatile platform to study the effects of pulse

  17. Fracture R-curve of a toughened epoxy adhesive as a function of irreversible degradation

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, A. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada); Papini, M. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Spelt, J.K., E-mail: spelt@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada)

    2010-07-25

    Open-faced double cantilever beam (DCB) specimens of a toughened epoxy-aluminum adhesive system were degraded over a relatively wide range of temperature, relative humidity (RH) and exposure time, dried and tested to characterize the irreversible evolution of the mixed-mode fracture resistance curves (R-curves). The water diffusion properties of the bulk adhesive were modeled using an earlier sequential dual Fickian (SDF) model for the same adhesive in order to predict the adhesive water content. Three temporal stages of degradation possessing different R-curve and fracture surface characteristics were observed. In general, the steady-state critical strain energy release rate (G{sub cs}), the rate of toughening (dG{sub cr}/da) and the length of the rising part of the R-curve decreased with increasing exposure temperature, RH and water concentration, while the initiation G{sub c} (G{sub ci}) remained unchanged. It is hypothesized that crack initiation is governed by the properties of the epoxy matrix and that the toughening action of rubber particles does not become appreciable until after a certain amount of crack extension (more than about 50 {mu}m in the present case). The irreversible degradation of fracture toughness was found to be insensitive to the phase angle, which simplifies the construction of the fracture toughness envelope for a given level of degradation. These effects were incorporated into a new R-curve degradation model which has an application in the R-curve prediction for closed joints having nonuniform degradation.

  18. Thermomagnetic behaviour and compositional irreversibility on (Fe/Si){sub 3} multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Badía-Romano, L., E-mail: lbadia@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Rubín, J. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Magén, C. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza (Spain); Fundación ARAID, E-50004 Zaragoza (Spain); Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J.; Ibarra, M.R. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza (Spain); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); and others

    2014-09-01

    This work presents the correlation between the morphology and magnetic properties of (Fe/Si){sub 3} multilayers with different Fe layer thicknesses and fixed Si spacer thickness in a broad temperature range (5irreversible thermal process as temperature increases from 300 to 450 K that is correlated to the formation of a ferromagnetic silicide phase. At higher temperature this phase transforms into a paramagnetic Fe–Si phase. - Highlights: • A thermomagnetic study on (Fe/Si){sub 3} multilayers is performed by in situ annealing. • We assess on the Fe layer thickness dependence, while the Si spacer is fixed. • 90° and AF interlayer exchange couplings are found depending on the Fe thickness. • We report an irreversible thermal process, correlated to chemical transformations. • The integrity of these (Fe/Si){sub 3} films is conserved just till T≈410K.

  19. Theophylline and salbutamol improve pulmonary function in patients with irreversible chronic obstructive pulmonary disease.

    Science.gov (United States)

    Thomas, P; Pugsley, J A; Stewart, J H

    1992-01-01

    To investigate the efficacy of bronchodilators in patients with irreversible chronic obstructive pulmonary disease (COPD), we conducted a double-blind, randomized, four-phase, crossover comparison between placebo, oral theophylline, inhaled salbutamol, and a combination of both drugs in 12 patients with stable COPD (mean age, 63 years) whose increase in forced expiratory volume in 1 s (FEV1) was less than or equal to 15 percent following 200 micrograms of inhaled salbutamol. Patients received two weeks of therapy with each of the test regimens. Both theophylline and salbutamol resulted in statistically significant improvement in FEV1, forced vital capacity (FVC), slow vital capacity (SVC), residual volume (RV), airway resistance (Raw), and maximum expiratory flow rate at 50 percent of vital capacity (V50). In most instances, there were no significant differences between theophylline and salbutamol. Combination therapy produced significantly greater improvement in FEV1, FVC, V50, Raw, and RV than either agent alone. The two drugs interacted in an additive fashion. Neither of the drugs, used singly, significantly reduced the severity or incidence of symptoms. The reduction in dyspnea and wheeze during combination therapy approached statistical significance (p = 0.06) and patient preference was significantly in favor of the combination regimen. None of the active treatments produced significantly more side effects than placebo. We conclude that theophylline and inhaled salbutamol produce significant, and approximately equal, improvement in pulmonary function in patients traditionally classified as suffering from "irreversible" COPD. The combination of theophylline and inhaled salbutamol generally results in additional improvement over that obtained with either drug used alone and this improvement is reflected by reduced symptomatology and treatment preference.

  20. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances. PMID:20445880

  1. Off-design performance prediction of Radial Compressor of Supercritical CO{sub 2} Brayton Cycle for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkuk; Lee, Jekyoung; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    KAIST research team suggested a new concept of SMR, which utilizes S-CO{sub 2} as the operating fluid and coolant. It was named as KAIST MMR(Micro Modular Reactor). Compared with existing SMR concepts, this reactor has advantages of achieving smaller volume of power conversion unit (PCU) containing the core and PCU in one vessel for the complete modularization passive air-cooling system more flexible installation in the inland area. In previous study, performance of turbomachinery in PCU was considered only on-design. But, off-design performances of each component can affect not only PCU but also the core because this reactor adopts the direct S-CO{sub 2} loop in GFR. Nuclear system is applied by relatively conservative criteria of safety. Thus, off-design performances of each component should be considered in order to be more realistic reactor. The suggested turbomachinery size of the S-CO{sub 2} cycle is relatively smaller than those of helium Brayton cycle and steam Rankine cycle. Performance analysis of compressor is conducted by KAIST-TMD in case of on-design and off-design. Compressor efficiency in on-design conditions is obtained 84.51 %. But compressor performance in off-design conditions decreases certainly. This means that more heat than existing prediction is rejected by air-cooling system. KAIST-TMD will be verified with more experiment data for providing the results of more accurate analysis. Also, this code will be modified to couple with safety analysis codes and S-CO{sub 2} cycle analysis codes in the future. Furthermore, authors will consider aerodynamic performance analysis and various losses for more realization.

  2. Interaction effect detected by compared of the irreversible and remanent initial magnetization curves in Ni-Cu-Zn ferrites

    OpenAIRE

    Goev, G.; Masheva, V.

    2013-01-01

    A new technique for estimation of magnetic interaction effects of initial magnetization curves has been proposed. It deals with remanence, and initial irreversible magnetization, curves. The method is applied for single-phase polycrystalline Ni0.85-xCu0.15ZnxFe2O4, (x = 0, 0.2, 0.4 and 0.6), which were synthesized by a standard ceramic technology. A study of the initial reversible and irreversible magnetization processes in ferrite materials was carried out. The field dependence of the irreve...

  3. Impact of pseudo-gap states on the pinning energy and irreversibility field of high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Guy Deutscher

    2014-09-01

    Full Text Available The existence of pseudo-gap states at energies larger than the coherence energy scale is shown to be at the origin of the difficulties encountered in achieving strong vortex pinning in the high Tc cuprates. Reduction or elimination of the pseudo-gap states by overdoping is effective in increasing the condensation energy and the irreversibility field. In YBa2Cu3O7, a full BCS state, with a single energy scale, can be restored, leading to the highest known irreversibility field and pinning strength. In the bismuthates, the detrimental effect of the pseudo-gap states can only be mitigated to some extent by overdoping.

  4. Application of exergetic sustainable index to the quantum irreversible Diesel refrigerator cycles for 1D box system

    Science.gov (United States)

    Açıkkalp, Emin; Caner, Necmettin

    2015-04-01

    In this paper, an irreversible quantum Diesel refrigerator for a 1D-box system is described and analyzed. The exergetic sustainability index that is the rate of the exergy output from the system to the total exergetic losses including exergy destruction and exergy loss from the system is applied for the first time to an irreversible quantum engine. Other thermodynamic parameters including work input, cooling load, exergy destruction, COP and exergy efficiency are investigated according to the cycle temperatures and numerical results are presented.

  5. Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment.

    Science.gov (United States)

    Ding, Q; Yamamura, H; Murata, N; Aoki, N; Yonekawa, H; Hafuka, A; Watanabe, Y

    2016-09-15

    In coagulation-membrane filtration water treatment processes, it is still difficult to determine the optimal coagulation condition to minimize irreversible membrane fouling. In microfiltration (MF), meso-particles (i.e., 20 nm-0.5 μm) are thought to play an important role in irreversible membrane fouling, especially their characteristics of particle number (PN) and zeta potential (ZP). In this study, a new nanoparticle tracker combined a high-output violet laser with a microscope was developed to identify the physicochemical characteristics of these microscopic and widely dispersed meso-particles. The effects of pH and coagulant dose on ZP and PN of micro-particles (i.e., >0.5 μm) and meso-particles were investigated, and then coagulation-MF tests were conducted. As the result, irreversible membrane fouling was best controlled for both types of membranes, while meso-particle ZP approached zero at around pH 5.5 for both types of natural water. Since PN was greatest under these conditions, ZP is more important in determining the extent of irreversible membrane fouling than PN. However, the acidic condition to neutralize meso-particles is not suitable for actual operation, as considering residual aluminum concentration, pipe corrosion, and chlorination efficiency. It is therefore necessary to investigate coagulants or other methods for the appropriate modification of meso-particle characteristics.

  6. Disinfection procedures: their efficacy and effect on dimensional accuracy and surface quality of an irreversible hydrocolloid impression material.

    LENUS (Irish Health Repository)

    Rentzia, A

    2011-02-01

    This study investigated the antibacterial efficacy and effect of 0.55% ortho-phthalaldehyde (Cidex OPA(®)) and 0.5% sodium hypochlorite (NaOCl) on the dimensional accuracy and surface quality of gypsum casts retrieved from an irreversible hydrocolloid impression material.

  7. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  8. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Science.gov (United States)

    Anil Kumar, C.; Santhosh Kumar, T.; Pamu, D.

    2015-10-01

    We report irreversible thermochromic behaviour of BaWO4 (BWO) films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C) using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD). Further, the Raman spectra are being used to quantify the presence of oxygen vacancies and the

  9. Energy Efficient Operation of Distillation Columns and a Reactor Applying Irreversible Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koeijer, Gelein M. de

    2002-05-01

    In this thesis the entropy production rates of diabatic distillation columns and a SO{sub 2} converter were minimised. This is the same as maximising the second law energy efficiency of the systems. The development of chemical industry can be made more sustainable by knowing this minimum. We found that the entropy production rate of distillation could be reduced up to 50 %. In order to achieve this reduction, heat exchangers were added on each tray. The characteristics of an optimum distillation column were presented. Furthermore, the entropy production rate of a SO{sub 2} converter was reduced with 16.7 % by altering the heights of catalytic beds, transfer areas of heat exchangers, and temperature differences over heat exchangers. These reductions show that there is still a large improvement potential in chemical industry. By applying the improved operations the world oil production can be reduced in the order of magnitude of 1 %. A similar reduction in the emission of the greenhouse gas CO{sub 2} can be expected. For deriving the entropy production rate in a systematic manner the theory of irreversible thermodynamics was useful. A simpler and a more complicated equation for the entropy production rate of distillation were derived. The simpler equation used only one force-flux product. It was suitable for minimisation of the entropy production rate of columns with the assumption of equilibrium between the outlets on each tray. The more complicated equation was able to describe satisfactorily the entropy production rate of an experimental column that separated the non-ideal mixture water-ethanol. It was next used to derive an extended set of transport equations for distillation, that includes the interface and the Soret effect (or thermal diffusion). Finally, irreversible thermodynamics was used to describe the contribution to the entropy production rate of heat transfer in heat exchangers. This contribution had a significant impact on the results of the

  10. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Directory of Open Access Journals (Sweden)

    C. Anil Kumar

    2015-10-01

    Full Text Available We report irreversible thermochromic behaviour of BaWO4 (BWO films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD. Further, the Raman spectra are being used to quantify the presence

  11. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    International Nuclear Information System (INIS)

    We report irreversible thermochromic behaviour of BaWO4 (BWO) films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C) using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD). Further, the Raman spectra are being used to quantify the presence of oxygen

  12. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    Science.gov (United States)

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese

  13. Folate Conjugated Cellulose Nanocrystals Potentiate Irreversible Electroporation-induced Cytotoxicity for the Selective Treatment of Cancer Cells.

    Science.gov (United States)

    Colacino, Katelyn R; Arena, Christopher B; Dong, Shuping; Roman, Maren; Davalos, Rafael V; Lee, Yong W

    2015-12-01

    Cellulose nanocrystals are rod-shaped, crystalline nanoparticles that have shown prom-ise in a number of industrial applications for their unique chemical and physical properties. However, investigations of their abilities in the biomedical field are limited. The goal of this study is to show the potential use of folic acid-conjugated cellulose nanocrystals in the potentiation of irreversible electroporation-induced cell death in folate receptor (FR)-positive cancers. We optimized key pulse parameters including pulse duration, intensity, and incubation time with nanoparticles prior to electroporation. FR-positive cancer cells, KB and MDA-MB-468, were preincubated with cellulose nanocrystals (CNCs) conjugated with the targeting molecule folic acid (FA), 10 and 20 min respectively, prior to application of the optimized pulse electric field (PEF), 600 and 500 V/cm respectively. We have shown cellulose nanocrystals' ability to potentiate a new technique for tumor ablation, irreversible electroporation. Pre-incubation with FA-conjugated CNCs (CNC-FA) has shown a significant increase in cytotoxicity induced by irreversible electroporation in FR-positive cancer cells, KB and MDA-MB-468. Non-targeted CNCs (CNC-COOH) did not potentiate IRE when preincubated at the same parameters as previously stated in these cell types. In addition, CNC-FA did not potentiate irreversible electroporation-induced cytotoxicity in a FR-negative cancer cell type, A549. Without changing irreversible electroporation parameters it is possible to increase the cytotoxic effect on FR-positive cancer cells by exploiting the specific binding of FA to the FR, while not causing further damage to FR-negative tissue. PMID:24750004

  14. Determinación irreversible a la floración del aguacate 'Hass' en Michoacán Irreversible determination to flowering for 'Hass' avocado in Michoacán

    Directory of Open Access Journals (Sweden)

    José Luis Rocha-Arroyo

    Full Text Available El objetivo de este estudio, fue precisar los periodos en que ocurre la determinación irreversible a la floración en yemas apicales de brotes vegetativos de los flujos de invierno, primavera y verano en huertos de aguacate con y sin riego establecidos en cuatro condiciones climáticas. El estudio se realizó durante 2006-2008, en seis huertos comerciales de aguacate 'Hass' en el estado de Michoacán, México. En cada huerto se seleccionaron 20 árboles y cada uno se etiquetaron 30 brotes de cada flujo vegetativo. Los tratamientos consistieron en anillado y defoliación de un brote por árbol cada quince días para cada flujo vegetativo. El clima, influyó sobre la fecha en que ocurrió la determinación irreversible a la floración en los brotes de los tres flujos vegetativos, ésta ocurrió más temprano en clima templado que en cálido. Después de la emergencia, los brotes del flujo de invierno requirieron más tiempo para alcanzar la determinación irreversible a la floración que en primavera y verano. La determinación irreversible a la floración en brotes de los flujos de invierno, primavera y verano ocurrió del 30 de mayo al 23 de julio, del 28 de mayo al 26 de septiembre y del 10 de junio al 15 de septiembre, respectivamente, y de 29 a 42 días más temprano en los huertos sin riego. En el desarrollo floral, el número de yemas determinadas irreversiblemente a la floración variaron de 3 a 4 en los brotes de invierno, de 3 a 5 en primavera y de 1 a 4 en verano.The aim of this study was to specify periods in which occurs irreversible determination to flowering in apical bud of vegetative sprout for winter, spring and summer flows in avocado orchards with and without irrigation set under four climatic conditions. The study was carried out during 2006-2008, in six commercial orchards for avocado 'Hass' in State of Michoacán, Mexico. In each orchard 20 trees were selected and in each one 30 sprouts of each vegetative flow were labeled

  15. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  16. The Effect of Irreversible Electroporation on the Femur: Experimental Study in a Rabbit Model.

    Science.gov (United States)

    Song, Yue; Zheng, Jingjing; Yan, Mingwei; Ding, Weidong; Xu, Kui; Fan, Qingyu; Li, Zhao

    2015-01-01

    Irreversible electroporation (IRE) is a novel ablation method that has been tested in humans with lung, prostate, kidney, liver, lymph node and presacral cancers. As a new non-thermal treatment, the use of IRE to ablate tumors in the musculoskeletal system might reduce the incidence of fractures. We aimed to determine the ablation threshold of cortical bone and to evaluate the medium- and long-term healing process and mechanical properties of the femur in a rabbit model post-IRE ablation. The ablation threshold of cortical bone was between 1090 V/cm and 1310 V/cm (120 pulses). IRE-ablated femurs displayed no detectable fracture but did exhibit signs of recovery, including osteoblast regeneration, angiogenesis and bone remodeling. In the ablation area, revascularization appeared at 4 weeks post-IRE. Osteogenic activity peaked 8 weeks post-IRE and remained high at 12 weeks. The mechanical strength decreased briefly 4 weeks post-IRE but returned to normal levels within 8 weeks. Our experiment revealed that IRE ablation preserved the structural integrity of the bone cortex, and the ablated bone was able to regenerate rapidly. IRE may hold unique promise for in situ bone tissue ablation because rapid revascularization and active osteogenesis in the IRE ablation area are possible. PMID:26655843

  17. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation

    International Nuclear Information System (INIS)

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments. (paper)

  18. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation.

    Science.gov (United States)

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-01-01

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation. PMID:26549662

  19. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  20. Local Control of Perivascular Malignant Liver Lesions Using Percutaneous Irreversible Electroporation: Initial Experiences

    International Nuclear Information System (INIS)

    PurposeThis study was designed to assess efficacy and safety in the treatment of perivascular malignant liver lesions using percutaneous, computed tomography (CT)-guided irreversible electroporation (IRE).MethodsFourteen patients (mean age 58 ± 11 years) with 18 malignant liver lesions were consecutively enrolled in this study. IRE was performed in patients not eligible for surgery and lesions abutting large vessels or bile ducts. Follow-up exams were performed using multislice-CT (MS-CT) or MRI.ResultsMedium lesion diameter was 20 ± 5 mm. Ten of 14 (71 %) were successfully treated with no local recurrence to date (mean follow-up 388 ± 160 days). One case left initial tumor control unclear and additional RFA was performed 4 weeks after IRE. Complications occurred in 4 of 14 (29 %) cases. In one case, intervention was terminated and abdominal bleeding required laparotomy. In two cases, a postinterventional hematothorax required intervention. In another case, abdominal bleeding could be managed conservatively. No complications related to the bile ducts occurred.ConclusionsPercutaneous IRE seems to be effective in perivascular lesions but is associated with a higher complication rate compared with thermoablative techniques