WorldWideScience

Sample records for brayton totalmente irreversibles

  1. Fugas de calor y aprovechamiento de efluentes en la optimización de ciclos Brayton totalmente irreversibles

    National Research Council Canada - National Science Library

    Herrera, C. A; Rosillo, M.E; Castaño

    2008-01-01

    ... (maquinas irreversibles, flujos disipativos, consumo de potencia en todo trasiego de fluídos, transmisiones de calor a gradientes de temperatura finitos, fugas de calor, desaprovechamiento de efluentes, restricciones en caídas de presión...

  2. Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant

    National Research Council Canada - National Science Library

    Feng, Huijun; Chen, Lingen; Sun, Fengrui

    2011-01-01

    A combined cooling, heating and power (CCHP) plant model composed of an irreversible closed Brayton cycle and an endoreversible four-heat-reservoir absorption refrigeration cycle is established by using finite time thermodynamic...

  3. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  4. Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadi Mohammad Hosein

    2016-01-01

    Full Text Available An applicable approach for a multi-step regenerative irreversible Brayton cycle on the basis of thermodynamics and optimization of thermal efficiency and normalized output power is presented in this work. In the present study, thermodynamic analysis and a NSGA II algorithm are coupled to determine the optimum values of thermal efficiency and normalized power output for a Brayton cycle system. Moreover, three well-known decision-making methods are employed to indicate definite answers from the outputs gained from the aforementioned approach. Finally, with the aim of error analysis, the values of the average and maximum error of the results are also calculated.

  5. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-06-01

    Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.

  6. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    OpenAIRE

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficien...

  7. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  8. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs ... Institute of Civil & Architectural Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China; Postgraduate School, Naval ...

  9. Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

    Directory of Open Access Journals (Sweden)

    Naser M. Jubeh

    2005-07-01

    Full Text Available Abstract: The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet temperature, ambient temperature, altitude, and altitude with variable ambient temperature on irreversibility "exergy destroyed" and second law efficiency was investigated and compared for all models. The results are given graphically with the appropriate discussion and conclusion.

  10. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  11. Cateteres venosos centrais totalmente implantáveis para quimioterapia: experiência com 793 pacientes

    Directory of Open Access Journals (Sweden)

    Esmálio Barroso de Oliveira

    Full Text Available OBJETIVO: estudar retrospectivamente os resultados obtidos com a implantação de cateteres totalmente implantáveis em pacientes submetidos à quimioterapia. MÉTODOS: foram colocados 815 cateteres totalmente implantáveis em 793 pacientes submetidos ao regime de quimioterapia preferencialmente utilizando-se a veia cefálica direita. Foram avaliadas as complicações precoces e tardias. RESULTADOS: a análise retrospectiva mostrou duração média dos cateteres de 339 dias. Em 733 (90% cateteres não se observou nenhuma complicação. Entre as complicações precoces observamos um pneumotórax, um mau posicionamento de cateter, uma punção arterial, um sangramento, um hemotórax e hemomediastino e seis hematomas na loja de implantação. Entre as complicações tardias, ocorreram 35 infecções relacionadas ao cateter, dez infecções no sítio cirúrgico, seis obstruções e 20 tromboses. Foram retirados 236 cateteres, 35 devido às complicações e 201 por final de tratamento. CONCLUSÃO: os cateteres totalmente implantáveis para quimioterapia são meios seguros para a administração de substâncias, em vista do baixo número de complicações observadas neste estudo.

  12. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  13. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  14. Back work ratio of Brayton cycle; La relacion de trabajo de retroceso de un ciclo Brayton

    Energy Technology Data Exchange (ETDEWEB)

    Malaver de la Fuente, M. [Universidad Maritima del Caribe (Venezuela)]. E-mail: mmf_umc@hotmail.com

    2010-07-15

    This paper analyzes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational software helps to show the influence of back work ratio or coupling ratio, compressor and turbine inlet temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle. [Spanish] En este articulo se estudia la relacion que existe entre las temperaturas, la relacion de trabajo de retroceso y el trabajo neto en el ciclo Brayton, que es el ciclo ideal que describe el comportamiento de los motores de turbina de gas. La aplicacion de programas computarizados ayuda a mostrar la influencia de la relacion de trabajo de retroceso o relacion de acoplamiento, la temperatura de entrada al compresor y la temperatura de entrada a la turbina en este ciclo termodinamico ideal. Los resultados obtenidos permiten deducir que el valor maximo que alcanza la relacion de trabajo de retroceso dependera de los limites de temperatura maxima y minima impuestos en el ciclo Brayton.

  15. Garrett solar Brayton engine/generator status

    Science.gov (United States)

    Anson, B.

    1982-01-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  16. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  17. A criterion to maximize the irreversible efficiency in heat engines

    CERN Document Server

    Aragon-Gonzalez, G; Leon-Galicia, A; Musharrafie-Martinez, M

    2003-01-01

    The purpose of this work is to obtain a more precise calculation of the effective limits to the efficiency, of several cyclic heat engines. This calculation is based, first, on the equations describing the irreversible efficiency, and second, on a method which results from a general criterion to maximize this efficiency, applicable to several heat engines. With this method, we apply the criterion to maximize efficiencies; establish lower and upper bounds, corresponding to the efficiencies of Curzon-Ahlborn-like and Carnot-like heat engines; and, finally, find analytical or numerical expressions for the efficiencies eta sub m sub e and eta sub m sub a sub x. eta sub m sub a sub x is the maximum irreversible efficiency; eta sub m sub e is the efficiency in which the irreversible efficiency achieves its maximum, in a similar way to the Curzon-Ahlborn efficiency (maximum work or power). The method was applied to a Brayton cycle, presenting internal dissipations of the working fluid and irreversibilities due to th...

  18. Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant

    National Research Council Canada - National Science Library

    Feng, Huijun; Chen, Lingen; Sun, Fengrui

    2011-01-01

    .... Based on the finite time exergoeconomic analysis method, profit rate optimization is carried out by searching the optimal compressor pressure ratio and the optimal heat conductance distributions...

  19. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  20. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  1. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  2. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    -through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.

  3. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  4. Nonequilibrium and irreversibility

    CERN Document Server

    Gallavotti, Giovanni

    2014-01-01

    This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of ) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending t...

  5. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    Energy Technology Data Exchange (ETDEWEB)

    Longee, H. W.

    1975-10-22

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test.

  6. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  7. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  8. A Summary of Closed Brayton Cycle Development Activities at NASA

    Science.gov (United States)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  9. Brayton Isotope Power System (BIPS) design layout summary

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-15

    A summary of the Brayton Isotope Power Systems (BIPS) design layout drawings is presented. These drawings were generated in compliance with Task 3 (Preliminary Design of the BIPS Ground Demonstration System) of Phase I of the ERDA sponsored BIPS contract E(04-3)-1123.

  10. Heat Rejection Concepts for Brayton Power Conversion Systems

    Science.gov (United States)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  11. Status of Brayton Cycle Power Conversion Development at NASA GRC

    Science.gov (United States)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.

  12. Protocolo de difusão síncrona totalmente ordenada para aglomerados de alto desempenho

    OpenAIRE

    Daniel Cason

    2013-01-01

    Resumo: Protocolos de Difusão Totalmente Ordenada (DTO) constituem o núcleo de diversas soluções que dão suporte ao desenvolvimento de aplicações distribuídas tolerantes a falhas. O longo período no qual este problema vem sendo objeto de pesquisa e a quantidade de algoritmos que foram para ele propostos atestam, não só a sua importância, mas também a dificuldade de se obter soluções eficientes para DTO. Este trabalho apresenta um novo algoritmo de DTO, que explora a sincronia e a confiabilida...

  13. The ambiguous meaning of irreversibility

    CERN Document Server

    De Hemptinne, X

    1995-01-01

    The mechanism driving macroscopic systems toward their state of equilibrium is reconsidered. Ambiguities are detected in the semantics of a number of keywords (irreversibility, isolation etc...). They lead to questionable interpretations. Irreversible expansion of a gas in allegedly isolated (traditional definition) conditions is taken as an example. There are two steps in the global process. One is deterministic (mixing). This step does not alter the information about the initial conditions. It is iso-entropic. Its irreversible character is only apparent. The second step implies exchange with the surroundings where the information is dissipated. It does not occur in strictly isolated conditions. Relaxation is therefore impossible in strictly isolated systems. This latter step is fully irreversible and creates the expected entropy change.

  14. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  17. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  18. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  19. Operation and analysis of a supercritical CO2 Brayton cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  20. Intermediate Fidelity Closed Brayton Cycle Power Conversion Model

    Science.gov (United States)

    Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.

    2006-01-01

    This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.

  1. Optimization of closed Brayton cycles for space power generation

    Science.gov (United States)

    Hanlon, James C.

    1992-01-01

    A development status evaluation is presented for methods that allow accurate preliminary design and optimization of closed Brayton cycle engines for space electrical power generation. The basis for such work is the Closed Cycle Engine Performance simulation code, in conjunction with the optimization code COPES/ADS; the joining of the two codes has greatly expedited the optimization process. Attention is given to a variety of other model-versatility enhancers.

  2. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  3. Verificação da proporção divina da face em pacientes totalmente dentados

    OpenAIRE

    Marcia Regina Piccin

    1997-01-01

    Resumo: Esta pesquisa foi realizada com a finalidade de verificar a presençada "Proporção Divina" nos segmentos da face, por meio do método fotográfico, em pacientes dentados. A "Proporção Divina" já era utilizada desde a Antiga Grécia por escultores e arquitetos na confecção de suas obras, tendo sido estudada durante o Renascimento. Esta Proporção está presente não apenas nas artes plásticas, como também na natureza. A amostra deste estudo constituiu-se de 121 indivíduos totalmente dentados,...

  4. Reversible simulation of irreversible computation

    Science.gov (United States)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  5. Brownian movement and microscopic irreversibility

    Science.gov (United States)

    Gordon, L. G. M.

    1981-02-01

    An extension of the hypothetical experiment of Szilard, which involved the action of a one-molecule gas in an isolated isothermal system, is developed to illustrate how irreversibility may arise out of Brownian motion. As this development requires a consideration of nonmolecular components such as wheels and pistons, the thought-experiment is remodeled in molecular terms and appears to function as a perpetuum mobile.

  6. Potential impacts of Brayton- and Stirling-cycle engines

    Energy Technology Data Exchange (ETDEWEB)

    Heft, R.C.

    1980-11-15

    Two engine technologies (Brayton cycle and Stirling cycle) currently being pursued by the US Department of Energy were examined for their potential impacts if they achieved commercial viability. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. The effect upon various economic sectors of a large scale change-over from conventional to alternate engines was estimated using an economic input-output analysis. Primary effects were found in fuels refining, non-ferroalloy ores and ferroalloy smelting. Secondary effects were found in mining, transport, and capital financing. Under the assumption of 10 years for plant conversions and 1990 and 1995 as the introduction date for turine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  7. Life and Reliability Characteristics of TurboBrayton Coolers

    Science.gov (United States)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  8. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  9. Key Factors Influencing the Decision on the Number of Brayton Units for the Prometheus Space Reactor

    Science.gov (United States)

    Ashcroft, John; Belanger, Sean; Burdge, Wayne; Clementoni, Eric; Jensen, Krista; Proctor, N. Beth; Zemo-Fulkerson, Annie

    2007-01-01

    The Naval Reactors (NR) Program and its DOE Laboratories, KAPL and Bettis, were assigned responsibility to develop space reactor systems for the Prometheus Program. After investigating all of the potential reactor and energy conversion options, KAPL and Bettis selected a direct gas Brayton system as the reference approach for the nuclear electric propulsion missions, including the Jupiter Icy Moons Orbiter (JIMO). In order to determine the optimal plant architecture for the direct gas system, KAPL and Bettis investigated systems with one or two active Brayton units and up to two spare units. No final decision was made on the optimal system configuration for the NEP gas-Brayton system prior to closeout of the project. The two most promising options appear to be a single system without spares and a three Brayton system with two operating units, each producing half of the required load, with a single spare unit. The studies show that a single Brayton system, without spares, offers the lowest mass system, with potential for lower operating temperature, and a minimum of system and operational complexity. The lower required mass and increased system efficiency inherent in the single Brayton system may be exploited to satisfy other design objectives such as reduced reactor and radiator operating temperatures. While Brayton system lifetimes applicable to a JIMO or other nuclear electric propulsion (NEP) mission have not been demonstrated, there is no fundamental limit on the lifetime of the Brayton hardware. Use of additional Brayton units with installed spares will allow for continued operation in the event of a failure of an individual Brayton unit. However, preliminary system reliability evaluations do not point to any substantial reliability benefit provided by carrying spare Brayton units. If a spare unit is used, operating two of the units at full power with an unpowered spare proved more efficient than operating all three units at a reduced power and temperature

  10. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  11. Antibiotic use for irreversible pulpitis.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; van Zuuren, Esther J; Farman, Allan G; Al-Langawi, Jassim Hasan

    2016-02-17

    Irreversible pulpitis, which is characterised by acute and intense pain, is one of the most frequent reasons that patients attend for emergency dental care. Apart from removal of the tooth, the customary way of relieving the pain of irreversible pulpitis is by drilling into the tooth, removing the inflamed pulp (nerve) and cleaning the root canal. However, a significant number of dentists continue to prescribe antibiotics to stop the pain of irreversible pulpitis.This review updates the previous version published in 2013. To assess the effects of systemic antibiotics for irreversible pulpitis. We searched the Cochrane Oral Health Group's Trials Register (to 27 January 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 12); MEDLINE via Ovid (1946 to 27 January 2016); EMBASE via Ovid (1980 to 27 January 2016), ClinicalTrials.gov (to 27 January 2016) and the WHO International Clinical Trials Registry Platform (to 27 January 2016). There were no language restrictions in the searches of the electronic databases. Randomised controlled trials which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Two review authors screened studies and extracted data independently. We assessed the quality of the evidence of included studies using GRADEpro software. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period. There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets over the

  12. Quantum mechanical irreversibility and measurement

    CERN Document Server

    Grigolini, P

    1993-01-01

    This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will

  13. Phase I: controls preliminary design report for Brayton Isotope Power System (BIPS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-20

    Background analyses of three control systems capable of controlling the speed, output voltage, and start rate of Brayton Isotope Power Systems (BIPS) are presented. Conclusions of all functions considered are summarized. (TFD)

  14. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  15. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  16. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    Science.gov (United States)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  17. A 4 K tactical cryocooler using reverse-Brayton machines

    Science.gov (United States)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.

    2017-12-01

    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  18. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  19. Brayton isotope power system. Volume II. System evaluation attributes

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    This volume of the Brayton Isotope Power System, Phase II Plan, contains the self-evaluation by AiResearch, GE, and TECO, addressing Section 3 of The Dynamic Systems Evaluation Criteria and Procedures established by the Department of Energy. These evaluation criteria addresses: Component Feasibility; Flight System Design Performance; GDS Test Results; Reliability and Practicality; Safety; Spacecraft Integration; and Cost and Risk. Included in each of these general categories are several attributes, each of which addresses a separate component, feature, or area of interest related to the power system, its development status, degree of preparedness for proceeding into a flight program, and/or the contractors' performance during Phase I. The key elements which indicate the readiness of a radioisotope power system to progress into a flight qualification program are: an advanced state of development of the power conversion system; demonstrated or exhibited potential for space systems standards of reliability; evident capability of meeting system safety requirements; favorable cost/benefit tradeoff considering projected missions and technology advancement potential; and proven feasibility of fabricating and qualifying a flight system and integrating it with a candidate spacecraft and launch vehicle. As a result of considerable government investment in Brayton system component development, the MHW isotope heat source and the BIPS Phase I Ground Demonstration System, the BIPS is a more advanced state of development than any previous radioisotope power system technology. Evidence of this is presented along with a complete review of the attributes, the contractor recommended ratings, and the rationale for the self-evaluation.

  20. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  1. Technology Concept for a Near-Term Closed Brayton Cycle Power Conversion Unit

    Science.gov (United States)

    Foti, John; Halsey, Dave; Bauch, Tim; Smith, Glen

    2003-01-01

    There is a need in the space science community for nuclear-powered electric propulsion systems to enable high-value, deep space and planetary exploration. Certain missions are driven by once-in-a-lifetime or highly infrequent occurrences that require the near-term development of a flight-capable nuclear space power and electric propulsion system in order to take advantage of the scientific opportunity. The broader applicability of Brayton power systems to the commercial and military aircraft markets has provided fertile ground for the continued development and implementation of new technologies applicable to a closed Brayton cycle space Power Conversion Unit (PCU). One concept for effectively achieving a near-term Brayton space power capability is based on the development work associated with the Integrated Power Unit (IPU). This unit embodies the state of the art in turbomachinery, generators, bearing systems and electric power management and distribution capability that can readily be evolved into a closed Brayton cycle PCU. This paper provides an overview of aircraft-based Brayton power system technologies, their implementation into the IPU and one approach for leveraging this capability into a near-term closed Brayton cycle space power conversion unit.

  2. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  3. Numerical analysis of radial inward flow turbine for CO2 based closed loop Brayton cycle

    Science.gov (United States)

    Kisan, Jadhav Amit; Govardhan, M.

    2017-06-01

    Last few decades have witnessed a phenomenal growth in the demand for power, which has driven the suppliers to find new sources of energy and increase the efficiency of power generation process. Power generation cycles are either steam based Rankine cycle or closed loop Brayton cycles providing an efficiency of 30 to 40%. An upcoming technology in this regard is the CO2 based Brayton cycle operating near the critical region which has applications in vast areas. Power generation of CO2 based Brayton cycle can vary from few kilowatts for waste heat recovery to hundreds of megawatts in sodium cooled fast reactors. A CO2 based Brayton cycle is being studied for power generation especially in mid-sized concentrated solar power plants by numerous research groups around the world. One of the main components of such a setting is its turbine. Simulating the flow conditions inside the turbine becomes very crucial in order to accurately predict the performance of the system. The flow inside radial inflow turbine is studied at various inlet temperatures and mass flow rates in order to predict the behavior of the turbine under various boundary conditions. The performance investigation of the turbine system is done on the basis of parameters such as total efficiency, pressure ratio, and power coefficient. Effect of different inlet stagnation temperature and exit mass flow rates on these parameters is also studied. Results obtained are encouraging for the use of CO2 as working fluid in Brayton cycle.

  4. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  5. Assessment of external combustion, Brayton-cycle engine potential in total and integrated energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, T.J.; Bratis, J.C.; Davis, A.; Jain, M.L.; Ashe, T.L.; Six, L.D.; Trimble, S.W.

    1980-03-01

    The history, advantages, disadvantages, and performance and cost characteristics of the external-combustion, Brayton engine are discussed. Included are studies of external combustion, Brayton engines in Integrated Energy Systems, and comparisons with current technologies, such as diesels and gas turbines, as well as with other advanced prime-mover technologies, such as large Stirling engines and adiabatic turbocompound diesel engines. Lastly, a development program, one that would lead to a commercializable external combustion, Brayton engine using an atmospheric fluidized bed combustor is described. The fluidized bed offers a method for burning coal in an environmentally acceptable manner at a fairly reasonable cost so that the external combustion Brayton concept can be used in the residential/commercial sector. Based on this study, it appears that the external combustion, Brayton engine, using a fluidized-bed combustion system, offers a technologically sound alternative for developing an economically viable, environmentally acceptable method for using non-scarce fuels. Although the efficiency of the engine is not as high as that projected for large diesel and Stirling engines, the capital cost advantages, fuel flexibility, relatively low developmental costs, and high chance of success make it an attractive alternative.

  6. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.

    1976-01-12

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS). (TFD)

  7. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  8. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    Science.gov (United States)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  9. Irritation of ocular tissue by irreversible hydrocolloids.

    Science.gov (United States)

    Moergeli, J R; Fraleigh, E M; Ostrowski, J S; Pelleu, G B

    1985-08-01

    Two ophthalmic and two dental irreversible hydrocolloid materials were tested on rabbit conjunctivae to determine histologically their potential to irritate these tissues. Each of the four impression materials elicited nearly the same amount of inflammatory response. The differences between the response of the controls and the response to Ophthalmic Mold-Eye, Jelset Special Formula, and Kerr Alignate Type II were significant. These results indicate that certain dental irreversible hydrocolloids may be used for ocular prostheses but that they should be used with caution because of the inflammation caused by irreversible hydrocolloids.

  10. Evaluation testing of a closed Brayton-cycle electrical-power-conversion system.

    Science.gov (United States)

    Redding, T. E.; Mcgee, J. M.; Luksa, N. C.

    1972-01-01

    Description of the design and testing of a recuperated, closed Brayton-cycle, electrical power conversion system designated the Brayton Cycle Demonstrator (BCD). The system uses electrical heaters as a heat source, argon as the cycle working fluid, and gas-lubricated foil-type bearings. Objectives of the test program include (1) evaluation of the overall system performance characteristics and influences on spacecraft integration, (2) familiarization of personnel with operational methods, and (3) determination of system flexibility by operating at a number of off-design conditions. Results obtained to date are discussed.

  11. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  12. NASA 30,000 hour test demonstration of closed Brayton cycle reliability

    Science.gov (United States)

    Mccormick, J. E.; Dunn, J. H.

    1977-01-01

    Four Brayton rotating units (BRU) developed by an American company were tested in connection with studies concerning the feasibility to use closed Brayton power conversion systems for space applications. The rotating assembly operates at a speed of 36,000 rpm and consists of a radial outflow compressor, a four-pole Rice alternator/motor, and a radial inflow turbine. The cycle working fluid consists of a mixture of helium and xenon. After 20,000 hours of operation, there was no apparent wear on failure mode to prevent attainment of the 5-year BRU design life objective.

  13. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  14. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  15. Atuação da enfermagem na utilização do catéter venoso totalmente implantável (CVTI

    Directory of Open Access Journals (Sweden)

    Rosemeire A. Mendes Lopes

    1993-06-01

    Full Text Available As autoras fizeram um levantamento de 41 casos de utilização do cateter venoso totalmente implantável usados para tratamento com drogas antineoplásicas. Descreveram os motivos que levaram o serviço a utilizar este sistema para infusão e analisaram sua utilização, seu controle e as intercorrências. Os resultados, embora tenham mostrado um índice de complicações de 29%, incluindo falhas na técnica de implantação e no manuseio, apresentaram um bom índice de aproveitamento, ou seja, 61%.

  16. Successful pulpal anesthesia for symptomatic irreversible pulpitis.

    Science.gov (United States)

    Drum, Melissa; Reader, Al; Nusstein, John; Fowler, Sara

    2017-04-01

    Profound pulpal anesthesia after a successful inferior alveolar nerve block can be difficult to achieve when the clinical condition is a pulpal diagnosis of symptomatic irreversible pulpitis. The authors reviewed the literature as it relates to the anesthesia necessary for endodontic therapy of patients with painful, vital, mandibular teeth diagnosed with symptomatic irreversible pulpitis. Supplemental anesthetic techniques and medications are available that can be used to improve pulpal anesthesia for patients with the clinical condition of symptomatic irreversible pulpitis. The authors identified treatment recommendations for anesthesia in the case of symptomatic irreversible pulpitis based on a review of the available evidence. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  17. Experimental and Analytical Performance of a Dual Brayton Power Conversion System

    Science.gov (United States)

    Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl

    2009-01-01

    The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.

  18. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  19. A small, 1400 deg Kelvin, reactor for Brayton space power systems

    Science.gov (United States)

    Lantz, E.; Mayo, W.

    1972-01-01

    A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.

  20. Initial Test Results of a Dual Closed-Brayton-Cycle Power Conversion System

    Science.gov (United States)

    Johnson, Paul K.; Mason, Lee S.

    2007-01-01

    The dual Brayton power conversion system constructed for NASA Glenn Research Center (GRC) was acceptance tested April 2007 at Barber-Nichols, Inc., Arvada, Colorado. This uniquely configured conversion system is built around two modified commercial Capstone C30 microturbines and employs two closed-Brayton-cycle (CBC) converters sharing a common gas inventory and common heat source. Because both CBCs share the gas inventory, behavior of one CBC has an impact on the performance of the other CBC, especially when one CBC is standby or running at a different shaft speed. Testing performed to date includes the CBCs operating at equal and unequal shaft speeds. A test was also conducted where one CBC was capped off and the other was operated as a single CBC converter. The dual Brayton configuration generated 10.6 kWe at 75 krpm and a turbine inlet temperature of 817 K. Single Brayton operation generated 14.8 kWe at 90 krpm and a turbine inlet temperature of 925 K.

  1. Identified corrosion and erosion mechanisms in SCO2 Brayton Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Kruizenga, Alan Michael

    2014-06-01

    Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources is currently underway. To proceed, we must address concerns regarding compatibility of materials, at high temperature, and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while the addition of ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2]. Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. While S-CO2 is typically understood to be the secondary fluid, many varieties of primary fluids exist for nuclear applications. Molten salts, for use in the Molten Salt Reactor concept, are given as an example to contrast the materials requirements of primary and secondary fluids. Thin chromia layers are soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8], making materials selection for heat exchangers a precarious balancing act between high temperature oxidation (S-CO2) and metal dissolution (salt side of heat exchanger). Because concerns have been raised regarding component lifetimes, S-CO2 work has begun to characterize starting materials and to establish a baseline by analysis of 1) as-received stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with Sandia National Laboratories Brayton systems. A second issue discovered by SNL involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that

  2. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  3. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  4. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  5. A power and load priority control concept as applied to a Brayton cycle turbo-electric generator.

    Science.gov (United States)

    Kelsey, E. L.; Young, R. N.

    1972-01-01

    This paper describes a system to regulate the speed and power output of a Brayton Cycle Power System under varying load. A typical user load profile is applied and a simple load priority and parasitic load is used for system regulation. Power storage is provided by batteries with charge and discharge converters to demonstrate support capability. The breadboard system is tested with the Brayton Cycle Demonstrator at the National Aeronautics and Space Administration, Manned Space Craft Center, Houston, Texas.

  6. Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger

    Science.gov (United States)

    Steeve, Brian E.; Kapernick, Richard J.

    2004-01-01

    One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.

  7. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  8. Design, fabrication, and performance of foil journal bearing for the brayton rotating unit

    Science.gov (United States)

    Licht, L.; Branger, M.

    1973-01-01

    Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.

  9. Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)

    Science.gov (United States)

    1973-01-01

    The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.

  10. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  11. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    Science.gov (United States)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  12. Design of Helium Brayton Cycle for Small Modular High Temperature Gas cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Lee, Je Kyoung; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The small modular reactor (SMR) is gaining a lot of interest recently. Not only it can achieve better passive safety, but also it can be potentially utilized for the diverse applications to respond to the increasing global energy demands. As a part of the SMR development effort, SM-HTGR (Small Modular-High Temperature Gas-cooled Reactor), a 20MWth reactor is under development by the Korean Atomic Energy Research Institute (KAERI) for the complete passive safety, desalination and industrial process heat application. The Helium Brayton cycle is considered as a promising candidate for the SM-HTGR power conversion. The advantages of Helium Brayton cycles are: 1) helium is an inert gas that does not interact with structure material. 2) helium is chemically stable that helium Brayton cycle can be utilized under the high temperature circumstance. 3) higher thermal efficiency is achievable under higher outlet temperature range. Moreover, high temperature advantage can be utilized (reinforced) by diverting part of the heat for industrial process heat. This paper will discuss the progress on the helium power conversion cycle operating condition optimization by studying the sensitivity of the maximum pressure, pressure ratio and the component cooling on the total cycle efficiency

  13. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  14. Experimental Results From a 2kW Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  15. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    Science.gov (United States)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  16. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  17. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  18. Tensión de límite elástico en monocristales de circonia totalmente estabilizada con alto contenido en óxido de itrio

    Directory of Open Access Journals (Sweden)

    Gallardo, A.

    2001-04-01

    Full Text Available The yield stress of cubic stabilized zirconia single crystals with yttria concentrations between 24 to 32 mol % has been studied for temperatures of 1400 °C by compression experiments on the <112> crystalographic axis at constant compressive strain rate. The yield stress reaches a value of 300 MPa, remaining constant for the higher concentration studied, and being also independent of the annealing time in air. The plastic behavior is discussed in terms of the interaction of dislocations with the free yttrium defects.

    Se ha estudiado la tensión de dominio plástico en aire, en monocristales de circonia totalmente estabilizada con contenido en óxido de itrio entre 24 y 32 mol %, a velocidades de deformación constante y temperatura de 1.400 °C. Los monocristales se deformaron por compresión uniaxial en el eje correspondiente a la dirección cristalográfica <112>. La tensión de límite elástico obtenida es de 300 MPa, permaneciendo constante para las concentraciones estudiadas superiores y siendo independiente de tratamientos térmicos en aire. Se discute el comportamiento plástico en función de la interacción de las dislocaciones con los defectos de itrio libres.

  19. Validação de procedimentos operacionais padrão no cuidado de enfermagem de pacientes com cateter totalmente implantado

    Directory of Open Access Journals (Sweden)

    Rita Paiva Pereira Honório

    2011-10-01

    Full Text Available Os protocolos de assistência são recursos tecnológicos importantes na prática de saúde e devem ser validados, para adquirirem credibilidade científica na prática profissional. O objetivo desta pesquisa foi validar os itens de proposta de procedimentos operacionais padrão (POPs quanto à punção, heparinização e curativo do cateter totalmente implantado, por meio da análise de conceito proposta por Hoskins. O estudo se deu em duas etapas. Na primeira, elaborou-se um formulário para validação dos POPs. Na segunda, avaliou-se o conteúdo dos POPs por peritos. As sugestões versaram sobre reformulação da redação; acréscimo de ações, tornando-o mais claro e abrangente; a ordem dos passos dos procedimentos; e o material para a adequação do instrumento. Constatou-se a necessidade de outros estudos que direcionem os profissionais, principalmente, quanto à heparinização dos cateteres e à troca do primeiro curativo após punção, no sentido de uniformizar condutas embasadas em evidências científicas seguras.

  20. Manejo do cateter venoso central totalmente implantado em pacientes oncológicos: revisão integrative Manejo del catéter venoso central totalmente implantado en pacientes oncológicos: revisión integrativa Management of totally implanted catheter in patients with cancer: an integrative review

    Directory of Open Access Journals (Sweden)

    Christiane Inocêncio Vasques

    2009-10-01

    Full Text Available O cateter totalmente implantado é amplamente utilizado durante o tratamento de pacientes com câncer e é capaz de minimizar complicações decorrentes da terapia intravenosa periférica. Assim, buscou-se identificar os cuidados de enfermagem relacionados ao manuseio de cateter totalmente implantado nesses pacientes. Para tanto, realizou-se revisão integrativa da literatura que resultou na análise de 15 artigos. O conhecimento produzido está direcionado para o tempo de permanência do cateter, complicações inerentes ao uso, manuseio do dispositivo, percepção do paciente em relação ao cateter e informações ao paciente. Além de demonstrar a complexidade da assistência de enfermagem no manuseio desses dispositivos, os achados podem auxiliar, igualmente, os profissionais que não atuam em oncologia, na aplicação de conhecimentos na prática clínica.El catéter totalmente implantado es ampliamente utilizado durante el tratamiento de pacientes con cáncer y es capaz de minimizar las complicaciones consecuentes de la terapia intravenosa periférica. Así, en este trabajo, se buscó identificar los cuidados de enfermería relacionados a la manipulación del catéter totalmente implantado en esos pacientes. Para tal efecto, se realizó una revisión integrativa de la literatura dando como resultado el análisis de 15 artículos. El conocimiento producido está orientado hacia el tiempo de permanencia del catetér, complicaciones inherentes al uso, manipulación del dispositivo, informaciones y percepción del paciente en relación al catéter. Aparte de demostrar la complejidad de la asistencia de enfermería en la manipulación de esos dispositivos, los hallazgos pueden auxiliar, igualmente, a los profesionales que no actúan en oncología, en la aplicación de conocimientos en la práctica clínica.Totally implanted catheter, which is effective in deceasing complications related to peripheral intravenous therapy, is widely used in

  1. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven A; Rochau, Gary E; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  2. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  3. Preliminary market analysis for Brayton cycle heat recovery system characterization program. Subtask 5. 2 of phase I program plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-31

    The purpose of the task is to determine the market potential of the Brayton-cycle Subatmospheric System (SAS), especially as applied to the glass processing industry. Areas which impact the sales of the Brayton-cycle systems examined are: market size; opportunities for waste heat system installation (furnace rebuild and repair); pollution control on glass furnaces; equipment costs; equipment performance; and market growth potential. Supporting data were compiled for the glass industry inventory and are presented in Appendix A. Emission control techniques in the glass industry are discussed in Appendix B. (MCW)

  4. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  5. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  6. Motor starting a Brayton cycle power conversion system using a static inverter

    Science.gov (United States)

    Curreri, J. S.; Edkin, R. A.; Kruchowy, R.

    1973-01-01

    The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.

  7. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  8. Design study of a modular gas-cooled, closed-brayton cycle reactor for marine use

    Science.gov (United States)

    Lantz, Richard D.

    1989-06-01

    A conceptual design of a direct Brayton cycle marine power plant is presented. The design is a modification of the commercial MGR-GT, as proposed by James Staudt, sized to produce 40,000 shaft horsepower (SHP) and 5 MW of ship service electrical power. The requirements of a shipboard power plant are discussed and the design changes that must be made to the components of a commercial power plant in order to fit them into the demanding environment of a ship at sea are detailed. The final design consists of an 80-MWth passively safe pebble bed reactor with an outlet temperature of 850.

  9. Experimental evaluation of a volts-per-hertz reference circuit for the isotope Brayton system

    Science.gov (United States)

    Wimmer, H. L.

    1972-01-01

    In Brayton-cycle power systems, the speed decreases rapidly with overload. If the voltage decreases linearly with speed (frequency), the power decreases as the square of the voltage. This makes the system more tolerant of overloads. A volts-per-hertz reference circuit, consisting of a volts-per-hertz sensor and a voltage limiter, was designed and fabricated. This reference circuit was incorporated in an existing voltage regulator to control a turbine-driven alternator. Test results show that the control does function to reduce voltage at speeds below the rated speed and that it performed successfully during transients.

  10. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  11. Anistropically varying conductivity in irreversible electroporation simulations.

    Science.gov (United States)

    Labarbera, Nicholas; Drapaca, Corina

    2017-11-01

    One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue's conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments. It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field's direction in the formulation for conductivity. By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude. The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our

  12. Metrics and Energy Landscapes in Irreversible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Bjarne Andresen

    2015-09-01

    Full Text Available We describe how several metrics are possible in thermodynamic state space but that only one, Weinhold’s, has achieved widespread use. Lengths calculated based on this metric have been used to bound dissipation in finite-time (irreversible processes be they continuous or discrete, and described in the energy picture or the entropy picture. Examples are provided from thermodynamics of heat conversion processes as well as chemical reactions. Even losses in economics can be bounded using a thermodynamic type metric. An essential foundation for the metric is a complete equation of state including all extensive variables of the system; examples are given. Finally, the second law of thermodynamics imposes convexity on any equation of state, be it analytical or empirical.

  13. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  14. Work Criteria Function of Irreversible Heat Engines

    Directory of Open Access Journals (Sweden)

    Mahmoud Huleihil

    2014-01-01

    Full Text Available The irreversible heat engine is reconsidered with a general heat transfer law. Three criteria known in the literature—power, power density, and efficient power—are redefined in terms of the work criteria function (WCF, a concept introduced in this study. The formulation enabled the suggestion and analysis of a unique criterion—the efficient power density (which accounts for the efficiency and power density. Practically speaking, the efficient power and the efficient power density could be defined on any order based on the WCF. The applicability of the WCF is illustrated for the Newtonian heat transfer law (n=1 and for the radiative law (n=4. The importance of WCF is twofold: it gives an explicit design and educational tool to analyze and to display graphically the different criteria side by side and thus helps in design process. Finally, the criteria were compared and some conclusions were drawn.

  15. Entropy, Extropy and the Physical Driver of Irreversibility

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2012-06-01

    Full Text Available We point out that the fundamental irreversibility of Nature requires the introduction of a suitable measure for the distance from equilibrium. We show that entropy, which is widely held to be such a measure, suffers from the problem that it does not have a physical meaning, since it is introduced on the basis of mathematical arguments. As a consequence, the basic physics beyond irreversibility has remained obscure. We present here a simple but transparent physical approach for solving the problem of irreversibility. This approach shows that extropy, the fundamental thermodynamic variable introduced by Katalin Martinás, is the suitable measure for the distance from equilibrium, since it corresponds to the actual driver of irreversible processes. Since extropy explicitly contains in its definition all the general thermodynamic forces that drive irreversible processes, extropy is the suitable physical measure of irreversibility.

  16. Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle

    Directory of Open Access Journals (Sweden)

    S. Mohammad S. Mahmoudi

    2016-10-01

    Full Text Available A new combined supercritical CO2 recompression Brayton/Kalina cycle (SCRB/KC is proposed. In the proposed system, waste heat from a supercritical CO2 recompression Brayton cycle (SCRBC is recovered by a Kalina cycle (KC to generate additional electrical power. The performances of the two cycles are simulated and compared using mass, energy and exergy balances of the overall systems and their components. Using the SPECO (Specific Exergy Costing approach and employing selected cost balance equations for the components of each system, the total product unit costs of the cycles are obtained. Parametric studies are performed to investigate the effects on the SCRB/KC and SCRBC thermodynamic and thermoeconomic performances of key decision parameters. In addition, considering the exergy efficiency and total product unit cost as criteria, optimization is performed for the SCRBC and SCRB/KC using Engineering Equation Solver software. The results indicate that the maximum exergy efficiency of the SCRB/KC is higher than that of the SCRBC by up to 10%, and that the minimum total product unit cost of the SCRB/KC is lower than that of the SCRBC by up to 4.9%.

  17. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  18. Rotational accuracy of all-ceramic restorations on ceraone components = Liberdade rotacional de restaurações totalmente cerâmicas sobre componentes ceraone

    Directory of Open Access Journals (Sweden)

    Webster, Jacqueline

    2005-01-01

    Full Text Available Objetivo: Este estudo avaliou a desadaptação interna de sistemas cerâmicos em prótese sobre implantes em relação à liberdade rotacional das restaurações após várias cocções da porcelana. Materiais e métodos: Foram analisados três sistemas cerâmicos: Procera AllCeram, In-Ceram e CeraOne sobre análogo e intermediário CeraOne. A liberdade rotacional foi medida com um dispositivo acoplado a um relógio comparador em quatro tempos: fase de coifa, após aplicação do corpo da porcelana e glaze, e após duas queimas adicionais. Os dados foram analisados por testes de Friedman, de Kruskal-Wallis e de Wilcoxon, a = 0,01. Resultados: As médias de liberdade rotacional em graus foram: 0,08 para In-Ceram/Análogo; 1,64 para Procera/ Intermediário; 1,72 para CeraOne/Intermediário; 1,88 para CeraOne/Análogo e 1,97 para Procera/Análogo. O sistema In-Ceram sobre o análogo apresentou níveis de liberdade rotacional dez a vinte vezes menores que CeraOne e Procera. Não houve diferença entre as fases de confecção da restauração para In-Ceram. O comportamento de CeraOne e Procera foi similar, com aumento da liberdade rotacional sobre intermediário e análogo com a progressão da confecção da restauração. A liberdade rotacional sobre intermediário foi menor que sobre análogo. Conclusão: A liberdade rotacional variou em função da etapa do processo de fabricação dependendo do sistema totalmente cerâmico

  19. Herniorrafia inguinal laparoscópica totalmente extraperitoneal: vinte e sete complicações graves após 4565 operações consecutivas

    Directory of Open Access Journals (Sweden)

    Alberto Meyer

    Full Text Available OBJETIVO: identificar e avaliar as complicações do tratamento da hérnia inguinal com a colocação de tela totalmente extraperitoneal. MÉTODOS: Foram incluídos, em uma série consecutiva de 4565 reparos de hérnia laparoscópica, pacientes que haviam sido submetidos ao procedimento TEP entre janeiro de 2001 e janeiro de 2011. Os critérios de inclusão foram: diagnóstico com hérnia inguinal sintomática, incluindo recorrência após correção de hérnia inguinal e cirurgia prévia em abdômen inferior e pelve. Todos os pacientes > 18 anos de idade. Pacientes com hérnia encarcerada na urgência foram excluídos do estudo. RESULTADOS: Um total de 4565 hérnias foram incluídas no estudo. Ocorreram 27 complicações graves (0,6%: 12 hemorragias (0,25%, duas lesões da bexiga (0,04%, cinco oclusões (0,11%, quatro perfurações intestinais (0,09%, uma lesão da veia ilíaca (0,02%, uma lesão do nervo femoral (0,02%, duas lesões dos vasos deferentes (0,04% e dois óbitos (0,02% (embolia pulmonar, peritonite. CONCLUSÃO: A taxa de complicações com o procedimento TEP é baixa. Correção de hérnia laparoscópica é uma técnica reprodutível e confiável. Em nossa experiência, existem contraindicações para o procedimento de TEP. A técnica TEP deve ser minuciosa para evitar complicações intraoperatórias (diatermia bipolar. As complicações podem ocorrer mesmo após o cirurgião ter adquirido experiência substancial.

  20. Brayton Cycle Numerical Modeling using the RELAP5-3D code, version 4.3.4

    Energy Technology Data Exchange (ETDEWEB)

    Longhini, Eduardo P.; Lobo, Paulo D.C.; Guimarães, Lamartine N.F.; Filho, Francisco A.B.; Ribeiro, Guilherme B., E-mail: edu_longhini@yahoo.com.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    This work contributes to enable and develop technologies to mount fast micro reactors, to generate heat and electric energy, for the purpose to warm and to supply electrically spacecraft equipment and, also, the production of nuclear space propulsion effect. So, for this purpose, the Brayton Cycle demonstrates to be an optimum approach for space nuclear power. The Brayton thermal cycle gas has as characteristic to be a closed cycle, with two adiabatic processes and two isobaric processes. The components performing the cycle's processes are compressor, turbine, heat source, cold source and recuperator. Therefore, the working fluid's mass flow runs the thermal cycle that converts thermal energy into electrical energy, able to use in spaces and land devices. The objective is numerically to model the Brayton thermal cycle gas on nominal operation with one turbomachine composed for a radial-inflow compressor and turbine of a 40.8 kWe Brayton Rotating Unit (BRU). The Brayton cycle numerical modeling is being performed with the program RELAP5-3D, version 4.3.4. The nominal operation uses as working fluid a mixture 40 g/mole He-Xe with a flow rate of 1.85 kg/s, shaft rotational speed of 45 krpm, compressor and turbine inlet temperature of 400 K and 1149 K, respectively, and compressor exit pressure 0.931 MPa. Then, the aim is to get physical corresponding data to operate each cycle component and the general cycle on this nominal operation. (author)

  1. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.

    2014-10-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  2. [Pneumoconiosis in affiliated workers have irreversible sequelae].

    Science.gov (United States)

    López-Rojas, Pablo; Nava-Larraguivel, Ricardo; Salinas-Tovar, Santiago; Santos-Celis, Rafael; Marín-Cotoñieto, Irma Araceli; Méndez-Vargas, María Martha

    2008-01-01

    to analyze the frequency and importance of pneumoconiosis in affiliated workers to Instituto Mexicano del Seguro Social. it was carried out a transverse, observational and comparative study; the behavior of the qualified pneumoconiosis was revised 1994-2004. The analyzed variables were sex, age, occupation, permanent disability and economic activity. It was carried out the analysis of absolute frequencies and rates. it was registered 14,827 cases; the rate for 10,000 workers oscillated from 0.48 to 2.39. The 99 % were presented in males, with 14,262 cases with permanent disability (rate: 96.89 per 100 cases of pneumoconiosis); employments with more frequency were miners, quarry workers and bricklayers. The average of permanent disability for pneumoconiosis in the period was of 11.09 to 15 %. States with a higher number of cases were Coahuila, Zacatecas and Hidalgo. Economic activities with a greater incidence were the extraction and benefit of mineral coal, graphite and metallic and non-metallic minerals. cases of pneumoconiosis have been decreasing, but even the determination of diagnosis is delayed, and due to this most workers have irreversible sequelae.

  3. Guinea pig ductus arteriosus. II - Irreversible closure after birth.

    Science.gov (United States)

    Fay, F. S.; Cooke, P. H.

    1972-01-01

    To investigate the mechanism underlying irreversibility of ductal closure after birth, studies were undertaken to determine the exact time course for the onset of irreversible closure of the guinea pig ductus arteriosus. Parallel studies of the reactivity of ductal smooth muscle to oxygen and studies of the postpartum cellular changes within the vessel were also carried out.

  4. The Anesthetic Efficacy of the Intraosseous Injection in Irreversible Pulpitis.

    Science.gov (United States)

    1995-01-01

    The purpose of this study was to evaluate the anesthetic efficacy of an intraosseous injection in teeth diagnosed with irreversible pulpitis . Fifty...one healthy human subjects with symptomatic maxillary or mandibular posterior teeth diagnosed with irreversible pulpitis were used in this study. The

  5. Profit rate performance optimization for a generalized irreversible ...

    Indian Academy of Sciences (India)

    Bejan A 1988 Theory of heat transfer-irreversible power plant. Int. J. Heat Mass Transfer 31(6):. 1211–1219. Bejan A 1989 Theory of heat transfer-irreversible refrigeration plants. Int. J. Heat Mass Transfer. 32(9): 1631–1639. Bejan A 1993 Power and refrigeration plants for minimum heat exchanger inventory. ASME Trans.

  6. Formation of Irreversible H-bonds in Cellulose Materials

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  7. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  8. Irreversible thermodynamic analysis and application for molecular heat engines

    Science.gov (United States)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  9. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.

    2009-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  10. Preliminary design of a solar heat receiver for a Brayton cycle space power system

    Science.gov (United States)

    Cameron, H. M.; Mueller, L. A.; Namkoong, D.

    1972-01-01

    The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.

  11. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  12. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  13. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-15

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed.

  14. An isothermal model of a hybrid Stirling/reverse-Brayton cryocooler

    Science.gov (United States)

    Nellis, G. F.; Maddocks, J. R.

    2003-01-01

    This paper presents a model of a cryogenic refrigerator that integrates a reverse-Brayton lower temperature stage with a 2-piston Stirling upper temperature stage using a rectification system of check valves and buffer volumes. The numerical model extends the isothermal Schmidt analysis of the Stirling cycle by deriving the additional dimensionless governing equations that characterize the recuperative system. Numerical errors are quantified and the results are verified against analytical solutions in the appropriate limits. The model is used to explore the effect of the rectification system's characteristics on the overall cycle's behavior. Finally, the model is used to optimize the hybrid system's design by varying the swept volume ratio and phase angle in order to maximize the refrigeration per unit of heat transfer in the recuperator and regenerator.

  15. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.

    2006-01-01

    The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  16. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, D.J. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 West Warner Road, Tempe, Arizona 85284-2896 (US))

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  17. Low cost Brayton engine for gas-fired cogeneration system, phase 1

    Science.gov (United States)

    Kesseli, James; Saunders, Roger

    1989-08-01

    The turbo generator portion of a 30 kW recuperated Brayton (gas turbine) cycle has been tested. The intended application for this assembly is for a 20 to 40 kWe cogeneration system. Electrical power is generated by a two shaft gas turbine which drives an induction generator through a single stage gearbox. To minimize capital costs required for production and its initial cost, this innovative engine concept utilizes turbocharger components for both the gasifier and power turbine sections. The design and successful test results achieved with the prototype unit are described. When state point measurements are adjusted for the eventual addition of the recuperator, a thermal to electric efficiency of 34 percent (30 percent at HHV) was attained.

  18. Optimization of Brayton Cycle Power Generation for In-Space Electric Propulsion Application

    Science.gov (United States)

    Woodcock, Gordon

    2003-01-01

    A Brayton cycle was analyzed and optimized over the power range 60 - 140 kWe, for application to electric propulsion systems. A gas-cooled reactor heat source with exit temperature 1150 K was assumed. Power generation system specific masses (alpha) from 36 kg/kWe at 60 kWe to 22 kg/kWe at 140 kWe were obtained. These masses do not include the thrust production system, which is predicted to add 6 to 8 kg/kWe. Cycle efficiencies varied from 32% at 60 kWe to 36% at 140 kWe. Cycle minimum temperature, cycle pressure ratio, and heat exchanger design parameters were varied for the optimization. Optimization parameters and methods are described.

  19. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    A number of potential NASA missions could benefit from closed-Brayton-cycle (CBC) power conversion systems. The human and robotic mission power applications include spacecraft, surface base, and rover scenarios. Modeling of CBC subsystems allows system engineers, mission planners and project managers to make informed decisions regarding power conversion system characteristics and capabilities. To promote thorough modeling efforts, a critical review of CBC modeling techniques is presented. Analysis of critical modeling elements, component influences and cycle sensitivities is conducted. The analysis leads to quantitative results addressing projections on converter efficiency and overall power conversion system mass. Even moderate modeling errors are shown to easily over-predict converter efficiencies by 30% and underestimate mass estimates by 20%. Both static and dynamic modeling regimes are evaluated. Key considerations in determining model fidelity requirements are discussed. Conclusions and recommendations are presented that directly address ongoing modeling efforts in solar and nuclear space power systems.

  20. Irreversible Sorption of Contaminants During Ferrihydrite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Arthur, S.E.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Westrich, H.R.

    1999-05-19

    A better understanding of the fraction of contaminants irreversibly sorbed by minerals is necessary to effectively quantify bioavailability. Ferrihydrite, a poorly crystalline iron oxide, is a natural sink for sorbed contaminants. Contaminants may be sorbed/occluded as ferrihydrite precipitates in natural waters or as it ages and transforms to more crystalline iron oxides such as goethite or hematite. Laboratory studies indicate that Cd, Co, Cr, Cu, Ni, Np, Pb, Sr, U, and Zn are irreversibly sorbed to some extent during the aging and transformation of synthetic ferrihydrite. Barium, Ra and Sr are known to sorb on ferrihydrite in the pH range of 6 to 10 and sorb more strongly at pH values above its zero point of charge (pH> 8). We will review recent literature on metal retardation, including our laboratory and modeling investigation of Ba (as an analogue for Ra) and Sr adsorption/resorption, during ferrihydrite transformation to more crystalline iron oxides. Four ferrihydrite suspensions were aged at pH 12 and 50 °C with or without Ba in 0.01 M KN03 for 68 h or in 0.17 M KN03 for 3424 h. Two ferrihydrite suspensions were aged with and without Sr at pH 8 in 0.1 M KN03 at 70°C. Barium or Sr sorption, or resorption, was measured by periodically centrifuging suspension subsamples, filtering, and analyzing the filtrate for Ba or Sr. Solid subsamples were extracted with 0.2 M ammonium oxalate (pH 3 in the dark) and with 6 M HCl to determine the Fe and Ba or Sr attributed to ferrihydrite (or adsorbed on the goethite/hematite stiace) and the total Fe and Ba or Sr content, respectively. Barium or Sr occluded in goethite/hematite was determined by the difference between the total Ba or Sr and the oxalate extractable Ba or Sr. The percent transformation of ferrihydrite to goethite/hematite was estimated from the ratio of oxalate and HC1 extractable Fe. All Ba was retained in the precipitates for at least 20 h. Resorption of Ba reached a maximum of 7 to 8% of the Ba2+ added

  1. Hierarchical Variational Principles of Irreversible Processes in Thermal Disturbance

    Science.gov (United States)

    Nakano, H.

    1997-09-01

    Quantum variational principles of irreversible processes in the linear response theory which have been developed by the present author and his coworker taking the electric conduction as an example are generalized to the transport phenomena in thermal disturbance, where the fluctuation-dissipation law is manifested. By contracting the information, the principle presented at the dynamical stage which concerns no irreversibility is converted into those at the more coarse grained stages, which concerns irreversibility. The conversion takes place from the dynamical to kinetic stage and next from the kinetic to hydrothermodynamical stage.

  2. Irreversible crumpling of graphene from hydrostatic and biaxial compression

    Science.gov (United States)

    Wan, Jing; Jiang, Jin-Wu; Park, Harold S.

    2018-01-01

    We perform molecular dynamics simulations to investigate the irreversibility of crumpled graphene obtained by hydrostatic or biaxial compression. Our results show that there is a critical degree of crumpling, above which the crumpling is irreversible after the external force is removed. The critical degree of irreversible crumpling is closely related to the self-adhesion phenomenon of graphene, which leads to a step-like jump or decrease in the adhesion energy. We find the critical degree of crumpling is about 0.5 or 0.55 for hydrostatic or biaxial compression, which matches analytic predictions based on a competition between adhesive and bending energies in folded graphene.

  3. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  4. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  5. Case report: Irreversible electroporation for locally advanced pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Sonia Orcutt

    2017-01-01

    Conclusion: While there is a positive outlook for the use of irreversible electroporation for locally advanced pancreas cancer, there remain some uncertainties surrounding this therapy, which underscores the importance of future research in this area.

  6. Irreversible encephalopathy after treatment with high-dose intravenous metronidazole.

    NARCIS (Netherlands)

    Groothoff, M.V.R.; Hofmeijer, J.; Sikma, M.A.; Meulenbelt, J.

    2010-01-01

    BACKGROUND: Encephalopathy associated with metronidazole is rare and, in most cases, reversible following discontinuation. OBJECTIVE: We describe a case of fatal encephalopathy after treatment with high-dose intravenous metronidazole and the potential causes of the irreversibility. CASE SUMMARY: A

  7. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  8. Irreversible Encephalopathy After Treatment With High-Dose Intravenous Metronidazole

    NARCIS (Netherlands)

    Groothoff, Miriam V. R.; Hofmeijer, Jannette; Sikma, Maaike A.; Meulenbelt, Jan

    Background: Encephalopathy associated with metronidazole is rare and, in most cases, reversible following discontinuation. Objective: We describe a case of fatal encephalopathy after treatment with high-dose intravenous metronidazole and the potential causes of the irreversibility. Case summary: A

  9. Irreversibility and dissipation in finite-state automata

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Natesh; Anderson, Neal G., E-mail: anderson@ecs.umass.edu

    2013-12-17

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  10. Irreversibility and dissipation in finite-state automata

    Science.gov (United States)

    Ganesh, Natesh; Anderson, Neal G.

    2013-12-01

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  11. Investment Irreversibility and Precautionary Savings in General Equilibrium

    DEFF Research Database (Denmark)

    Ejarque, João

    Partial equilibrium models suggest that when uncertainty increases, agents increase savings and at the same time reduce investment in irreversible goods. This paper characterizes this problem in general equilibrium with technology shocks, additive output shocks and shocks to the marginal efficiency...... if the shocks affect the marginal efficiency of investment. For all types of shocks, when concavity of the utility function is moderate or high, the irreversibility constraint never binds and the increase in variance has a negligible impact. Persistence in the shock process induces precautionary savings rather...... of investment. Uncertainty is associated with the variance of these random variables, and irreversibility is introduced by a non negativity constraint on investment. I find that irreversibility and changes in uncertainty can be responsible for sizeable movements in aggregate consumption and investment only...

  12. Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid

    OpenAIRE

    Kumar, Rajesh; Kaushik, S C; Kumar, Raj

    2015-01-01

    Efficient power optimization of Brayton heat engine with variable specific heat of the working fluid is analyzed from the view of finite time thermodynamics. The efficient power is defined as the multiplication of engine power and engine efficiency. Hence, the proposed method considers not only the power output but also the engine efficiency. Optimizing the efficient power gives a compromise between power and engine efficiency. Results obtained are compared with those obtained by using the ma...

  13. Toward irreversibility with a finite bath of oscillators

    OpenAIRE

    José, Artur Nogueira de São; Dias, Patrícia Mascarenhas; de Magalhães, Arthur Rodrigo Bosco; de Faria, José Geraldo Peixoto

    2012-01-01

    We investigate the routes by which a bath composed of a finite number of oscillators at zero temperature approaches the induction of dissipation when it nears the usual limit of dense spectrum spread in an infinite interval. It is shown that, when this limit is taken, different distributions of environment frequencies can lead to the same irreversible evolution. However, when we move away from it, the dynamics departs from irreversibility in qualitatively different manners.

  14. Irreversible pulpitis and achieving profound anesthesia: Complexities and managements

    Science.gov (United States)

    Modaresi, Jalil; Davoudi, Amin; Badrian, Hamid; Sabzian, Roya

    2016-01-01

    Dental pain management is one of the most critical aspects of modern dentistry. Irreversible pulpitis and further root canal therapy might cause an untolerated pain to the patients. The improvements in anesthetic agents and techniques were one of the advantages of studying nerve biology and stimulation. This article tried to overview of the nerve activities in inflammatory environments or induced pain. Furthermore, the proper advises, and supplementary techniques were reviewed for better pain management of irreversible pulpitis. PMID:26957681

  15. Irreversible electroporation in primary and metastatic hepatic malignancies

    OpenAIRE

    Lyu, Tianchu; Wang, Xifu; Su, Zhanliang; Shangguan, Junjie; Sun, Chong; Figini, Matteo; Wang, Jian; Yaghmai, Vahid; LARSON, ANDREW C.; Zhang, Zhuoli

    2017-01-01

    Abstract Background: Liver cancer makes up a huge percentage of cancer mortality worldwide. Irreversible electroporation (IRE) is a relatively new minimally invasive nonthermal ablation technique for tumors that applies short pulses of high frequency electrical energy to irreversibly destabilize cell membrane to induce tumor cell apoptosis. Methods: This review aims to investigate the studies regarding the use of IRE treatment in liver tumors and metastases to liver. We searched PubMed for al...

  16. Anesthetic Efficacy in Irreversible Pulpitis: A Randomized Clinical Trial

    OpenAIRE

    Allegretti,Carlos E.; Sampaio, Roberta M.; Horliana, Anna C. R. T.; Armonia, Paschoal L.; Rocha,Rodney G.; Tortamano, Isabel Peixoto

    2016-01-01

    Abstract Inferior alveolar nerve block has a high failure rate in the treatment of mandibular posterior teeth with irreversible pulpitis. The aim of this study was to compare the anesthetic efficacy of 4% articaine, 2% lidocaine and 2% mepivacaine, all in combination with 1:100,000 epinephrine, in patients with irreversible pulpitis of permanent mandibular molars during a pulpectomy procedure. Sixty-six volunteers from the Emergency Center of the School of Dentistry, University of São Paulo, ...

  17. Program plan for the Brayton isotope power system. Phase I. design, fabrication and test of the Brayon isotope power system

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-22

    This program plan covers Phase I of an overall program for the development of a 500 to 2000 W/sub e/ (EOM), 7-year life, power system for space vehicles. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-months effort, is for the conceptual design of a 1300 W/sub e/, 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed for the ERDA by the General Electric Company. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed by NASA for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-hour endurance test.

  18. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2016-03-15

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  19. Hydraulically irreversible fouling on ceramic MF/UF membranes: Comparison of fouling indices, foulant composition and irreversible pore narrowing

    NARCIS (Netherlands)

    Shang, Ran; Vuong, Francois; Hu, Jingyi; Li, Sheng; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.; Cornelissen, Emile R.; Heijman, Sebastiaan G.J.; Rietveld, Luuk C.

    2015-01-01

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect

  20. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  1. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    Science.gov (United States)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  2. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  3. Dynamic modelling and simulation of CSP plant based on supercritical carbon dioxide closed Brayton cycle

    Science.gov (United States)

    Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari

    2017-06-01

    Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.

  4. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  5. Prospects of Mixtures as Working Fluids in Real-Gas Brayton Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2017-10-01

    Full Text Available This paper discusses the thermodynamic characteristics of the closed Brayton cycles in which the compression is placed near the critical point of the working fluid. Under these conditions, the specific volumes of the fluid during the compression are a fraction of the corresponding values under ideal gas conditions, and the cycle performances improve significantly, mainly at moderate top temperatures. As the heat is discharged at about the critical temperature, the choice of the correct working fluid is strictly correlated with the environmental temperature or with the temperature of potential heat users. To resort to mixtures greatly extend the choice of the right working fluid, allowing a continuous variation of the critical temperature. These cycles have a high power density, and the use of ordinary turbomachinery is accompanied by high capacities (tens of megawatts. In the low power range, microturbines or reciprocating engines are required. One important constraint on the choice of the right working fluid is its thermochemical stability that restricts the operative temperatures. Among the organic compounds, the maximum safe temperatures are limited to about 400 °C and, forecasting high temperature applications, it could be interesting to explore the potentiality of the inorganic compounds as secondary fluids in binary mixtures.

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    Science.gov (United States)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  8. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    Science.gov (United States)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  9. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    Science.gov (United States)

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  11. Irreversible climate change due to carbon dioxide emissions.

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  12. The incidence of mechanical allodynia in patients with irreversible pulpitis.

    Science.gov (United States)

    Owatz, Christopher B; Khan, Asma A; Schindler, William G; Schwartz, Scott A; Keiser, Karl; Hargreaves, Kenneth M

    2007-05-01

    The mechanisms of odontogenic pain are complex and incompletely understood. Cases of irreversible pulpitis are thought to represent a localized inflammatory response to bacterial challenge in dental pulp tissue. The presenting symptoms are classically defined by exaggerated painful episodes to thermal stimuli that may linger after cessation of the stimulus. However, the associated incidence of mechanical allodynia, defined as reduced mechanical pain threshold to masticatory forces, has not been characterized. This study evaluated pain intensity ratings and the presence of mechanical allodynia reported by 993 consecutive dental patients presenting for tooth extraction in a community health center. After clinical and radiographic examinations, the pulpal/periradicular diagnostic categories were normal pulp/normal periradicular (n=792 patients), irreversible pulpitis/normal periradicular (n=86), or irreversible pulpitis/acute periradicular periodontitis (n=115). The rank order for the mean values of pain intensity ratings was irreversible pulpitis/acute periradicular periodontitis > irreversible pulpitis/normal periradicular > normal/normal (pirreversible pulpitis was 57.2%, indicating that periradicular mechanical allodynia contributes to early stages of odontogenic pain because of inflammation of vital pulpal tissue.

  13. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  14. Origin of irreversibility of cell cycle start in budding yeast.

    Directory of Open Access Journals (Sweden)

    Gilles Charvin

    2010-01-01

    Full Text Available Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop, rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation.

  15. The thermomechanics of nonlinear irreversible behaviors an introduction

    CERN Document Server

    Maugin, Gérard A

    1999-01-01

    In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily cove

  16. Entanglement irreversibility from quantum discord and quantum deficit.

    Science.gov (United States)

    Cornelio, Marcio F; de Oliveira, Marcos C; Fanchini, Felipe F

    2011-07-08

    We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.

  17. Irreversible processes and a new model for the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Via Alfredo Casella 3, Mentana, 00013 Rome (Italy)]. E-mail: solitone@yahoo.it

    2006-05-15

    A model for the Universe is proposed where the general relativity is modified in order to explain the irreversible evolution of the Universe. At the same time, the dichotomy matter-field of the Einstein equation is eliminated and the physical world is described only by means of a unified field. The Universe evolution is characterized by an oscillation or exponential expansion with or without the initial singularity. In this framework, the Universe evolution is irreversible and the entropy increase is strictly associated with matter production according to the Prigogine's ideas. High redshift supernovae recent observations are compatible with this new model.

  18. An isotope heat source integrated with a 7 kW/e/ to 25 kW/e/ Brayton cycle space power supply.

    Science.gov (United States)

    Ryan, R. L.; Graham, J. W.; Coombs, M. G.; Bloomfield, H. S.

    1972-01-01

    The power system described is intended for applications in a manned space mission. The Isotope Reentry Vehicle (IRV) developed is considered together with the Heat Source (HS), the Heat Source Heat Exchanger and the Brayton Cycle Power Conversion Module. Other subjects discussed include the IRV/Brayton cycle spacecraft integration concept, abort and deorbit mechanization, emergency cooling methods, and crew shielding requirements. Mounting and integration for the IRV is to a large degree controlled by nuclear safety requirements. Another major factor in the installation concept is the type of emergency cooling or passive heat dump mode used in rejection of HS energy.

  19. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  20. The degree of irreversibility in deterministic finite automata

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Holzer, Markus; Kutrib, Martin

    2016-01-01

    for nondeterministic finite state automata (NFA) is PSPACE-complete. The recent DFA method essentially works by minimizing the DFA and inspecting it for a forbidden pattern. We here study the degree of irreversibility for a regular language, the minimal number of such forbidden patterns necessary in any DFA accepting...

  1. What Nigerian ophthalmologists do for their irreversibly blind patients

    African Journals Online (AJOL)

    The diagnosis of irreversible blindness (IB) is a traumatic one for both the ophthalmologist and the patient, because of the finality of the patient's loss of sight. There are supportive measures that an ophthalmologist could provide to ensure a dignified and productive life for the blind patient. This communication examines the ...

  2. Comparison of the irreversible thermomagnetic behaviour of some ...

    Indian Academy of Sciences (India)

    Unknown

    Comparison of the irreversible thermomagnetic behaviour of some ferro- and ferrimagnetic systems. P S ANIL KUMAR†, P A JOY* and S K DATE. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India. †Present Address: Information Storage Technology Group, MESA Research ...

  3. Fundamental optimal relation of a generalized irreversible Carnot ...

    Indian Academy of Sciences (India)

    Abstract. The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, ...

  4. Fundamental optimal relation of a generalized irreversible Carnot ...

    Indian Academy of Sciences (India)

    The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures ...

  5. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  6. BNNT-mediated irreversible electroporatio: its potential on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Raffa, Cristina Riggio, Michael W. Smith, Kevin C. Jordan, Wei Cao, Alfred Cuschieri

    2012-10-01

    Tissue ablation, i.e., the destruction of undesirable tissues, has become an important minimally invasive technique alternative to resection surgery for the treatment of tumours. Several methods for tissue ablation are based on thermal techniques using cold, e.g. cryosurgery [1] or heat, e.g. radiofrequency [2] or high-intensity focused ultrasound [3] or nanoparticle-mediated irradiation [4]. Alternatively, irreversible electroporation (IRE) has been proposed as non thermal technique for minimally invasive tissue ablation based on the use of electrical pulses. When the electric field is applied to a cell, a change in transmembrane potential is induced, which can cause biochemical and physiological changes of the cell. When the threshold value of the transmembrane potential is exceeded, the cell membrane becomes permeable, thus allowing entrance of molecules that otherwise cannot cross the membrane [5]. A further increase in the electric field intensity may cause irreversible membrane permeabilization and cell death. These pulses create irreversible defects (pores) in the cell membrane lipid bilayer, causing cell death through loss of cell homeostasis [6]. This is desirable in tumour ablation in order to produce large cell death, without the use of cytostatic drugs. A study of Davalos, Mir and Rubinsky showed that IRE can ablate substantial volumes of tissue without inducing a thermal effect and therefore serve as an independent and new tissue ablation modality; this opened the way to the use of IRE in surgery [7]. Their finding was subsequently confirmed in studies on cells [8], small animal models [9] and in large animal models in the liver [10] and the heart [11]. The most important finding in these papers is that irreversible electroporation produces precisely delineated ablation zones with cell scale resolution between ablated and non-ablated areas, without zones in which the extent of damage changes gradually as during thermal ablation. Furthermore, it is

  7. Proposal for an advanced heat source assembly for the Isotope Brayton Power System. Volume 1. Technical program and statement of work

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    The technical program plan for evaluating the performance and safety of a radioisotope-fueled Brayton power system for space vehicles is presented with schedules for evaluating heat source design and safety, for specifying power system requirements, and for the development and operation of a ground demonstration system. (LCL)

  8. Optimal Analysis of Irreversible Carnot Cycle Based on Entransy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat’l Institute of Technology, Gumi (Korea, Republic of)

    2017-02-15

    The concept of entransy has been proposed recently as a potential heat transfer mechanism and could be useful in analyzing and optimizing the heat-work conversion systems. This work presents an entransy analysis for the irreversible Carnot cycle by systematic balance formulations of the entransy loss, work entransy, and entransy dissipations, which are consistent with exergy balances. Additionally, several forms of system efficiency are introduced based on entransy for the appreciation of the optimal system performance. The effects of the source temperature and irreversible efficiencies on the optimal conditions for system efficiencies are systematically investigated for both dumping and non-dumping cases of used source fluid. The results show different trends in entransy efficiencies when compared to the conventional efficiencies of energy and exergy, and represent another method to assess the effective use of heat source in power generation systems.

  9. Thermodynamic Analysis of the Irreversibilities in Solar Absorption Refrigerators

    Directory of Open Access Journals (Sweden)

    Emma Berrich Betouche

    2016-03-01

    Full Text Available A thermodynamic analysis of the irreversibility on solar absorption refrigerators is presented. Under the hierarchical decomposition and the hypothesis of an endoreversible model, many functional and practical domains are defined. The effect of external heat source temperature on the entropy rate and on the inverse specific cooling load (ISCL multiplied by the total area of the refrigerator A/Qe are studied. This may help a constructor to well dimension the solar machine under an optimal technico-economical criterion A/Qe and with reasonable irreversibility on the refrigerator. The solar concentrator temperature effect on the total exchanged area, on the technico-economical ratio A/Qe, and on the internal entropy rate are illustrated and discussed. The originality of these results is that they allow a conceptual study of a solar absorption refrigeration cycle.

  10. Prostaglandin E2 to diagnose between reversible and irreversible pulpitis.

    Science.gov (United States)

    Petrini, M; Ferrante, M; Ciavarelli, L; Brunetti, L; Vacca, M; Spoto, G

    2012-01-01

    The aim of this work is to verify a correlation between the grade of inflammation and the concentration of PGE2 in human dental pulp. A total of 25 human dental pulps were examined by histological analysis and radioimmunologic dosage of PGE2. The pulps used in this experiment were from healthy and symptomatic teeth; the first ones were collected from teeth destined to be extracted for orthodontic reasons. An increase was observed of PGE2 in reversible pulpitis compared with healthy pulps and with the irreversible pulpitis and the clear decrease of these when NSAIDs are taken. This study demonstrates that PGE2 level is correlated to histological analysis thus allowing to distinguish symptomatic teeth in reversible and irreversible pulpitis.

  11. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  12. Irreversible pulpitis and achieving profound anesthesia: Complexities and managements

    OpenAIRE

    Modaresi, Jalil; Davoudi, Amin; Badrian, Hamid; Sabzian, Roya

    2016-01-01

    Dental pain management is one of the most critical aspects of modern dentistry. Irreversible pulpitis and further root canal therapy might cause an untolerated pain to the patients. The improvements in anesthetic agents and techniques were one of the advantages of studying nerve biology and stimulation. This article tried to overview of the nerve activities in inflammatory environments or induced pain. Furthermore, the proper advises, and supplementary techniques were reviewed for better pain...

  13. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Douglade, Gregory; Tarascon, Jean-Marie; Armand, Michel [Laboratoire de Reactivite et de Chimie des Solides, UMR CNRS 6007, Universite de Picardie Jules Verne, Amiens (France)

    2010-10-15

    Lithium salts enlisting azide, oxocarbons, dicarboxylates and hydrazides have been identified as a practical mean to compensate the irreversible capacity loss of LIBs negative electrodes. During the first charge, the anion loses electrons and converts to gaseous N{sub 2}, CO or CO{sub 2}, within an acceptable potential range (3 to 4.5 V). We report an electrochemical study on these easily accessible 'sacrificial salts'. (author)

  14. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  15. Environmental tax reform with irreversible investment, technological progress and unemployment

    OpenAIRE

    Scholz, Christian M.

    1997-01-01

    This paper analyzes if unemployment can be reduced through labor tax cuts that are financed in a revenue neutral way through energy tax increases. In contrast to other papers on this topic we consider investment behavior of firms in energy saving technologies, irreversibilities, embodied technological progress and involuntary unemployment. Arguments are presented that reducing the sunk costs instead of the labor tax seems to be the better instrument to reduce energy input and unemployment sin...

  16. Thermodynamic performance optimization for an irreversible vacuum thermionic generator

    Science.gov (United States)

    Chen, Lingen; Ding, Zemin; Zhou, Junle; Wang, Wenhua; Sun, Fengrui

    2017-07-01

    Theoretical model of an irreversible vacuum thermionic generator considering external and internal finite rate heat transfer is established in this paper. By assuming radiative heat transfer processes, the general expressions of performance parameters are derived based on non-equilibrium thermodynamics and finite-time thermodynamics (FTT). The thermodynamic performances of the irreversible thermionic device are further analyzed and optimized by using the FTT theory with multiple optimization criteria such as power output, efficiency, ecological function, and efficient power. The influences of design parameters, such as output voltage, collector work function and heat reservoir temperature, on optimal performance are analyzed in detail by numerical calculations. By properly choosing the work function and output voltage, the thermionic generator can be tuned to operate in the optimal condition with maximum power or efficiency. By comparing the device performance at different design points, the optimal operation regions of power and efficiency of the irreversible thermionic generator are determined. The obtained results are of theoretical significance for the optimal design of practical solar-powered thermionic generators.

  17. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis.

    Science.gov (United States)

    Rôças, Isabela N; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Bracks, Igor V; Siqueira, José F

    2015-09-01

    Bacterial taxa in the forefront of caries biofilms are candidate pathogens for irreversible pulpitis and are possibly the first ones to invade the pulp and initiate endodontic infection. This study examined the microbiota of the most advanced layers of dentinal caries in teeth with irreversible pulpitis. DNA extracted from samples taken from deep dentinal caries associated with pulp exposures was analyzed for the presence and relative levels of 33 oral bacterial taxa by using reverse-capture checkerboard hybridization assay. Quantification of total bacteria, streptococci, and lactobacilli was also performed by using real-time quantitative polymerase chain reaction. Associations between the target bacterial taxa and clinical signs/symptoms were also evaluated. The most frequently detected taxa in the checkerboard assay were Atopobium genomospecies C1 (53%), Pseudoramibacter alactolyticus (37%), Streptococcus species (33%), Streptococcus mutans (33%), Parvimonas micra (13%), Fusobacterium nucleatum (13%), and Veillonella species (13%). Streptococcus species, Dialister invisus, and P. micra were significantly associated with throbbing pain, S. mutans with pain to percussion, and Lactobacillus with continuous pain (P irreversible pulpitis is suspected. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Anesthetic Efficacy in Irreversible Pulpitis: A Randomized Clinical Trial.

    Science.gov (United States)

    Allegretti, Carlos E; Sampaio, Roberta M; Horliana, Anna C R T; Armonia, Paschoal L; Rocha, Rodney G; Tortamano, Isabel Peixoto

    2016-01-01

    Inferior alveolar nerve block has a high failure rate in the treatment of mandibular posterior teeth with irreversible pulpitis. The aim of this study was to compare the anesthetic efficacy of 4% articaine, 2% lidocaine and 2% mepivacaine, all in combination with 1:100,000 epinephrine, in patients with irreversible pulpitis of permanent mandibular molars during a pulpectomy procedure. Sixty-six volunteers from the Emergency Center of the School of Dentistry, University of São Paulo, randomly received 3.6 mL of local anesthetic as a conventional inferior alveolar nerve block (IANB). The subjective signal of lip numbness, pulpal anesthesia and absence of pain during the pulpectomy procedure were evaluated respectively, by questioning the patient, stimulation using an electric pulp tester and a verbal analogue scale. All patients reported the subjective signal of lip numbness. Regarding pulpal anesthesia success as measured with the pulp tester, the success rate was respectively 68.2% for mepivacaine, 63.6% for articaine and 63.6% for lidocaine. Regarding patients who reported no pain or mild pain during the pulpectomy, the success rate was, respectively 72.7% for mepivacaine, 63.6% for articaine and 54.5% for lidocaine. These differences were not statistically significant. Neither of the solutions resulted in 100% anesthetic success in patients with irreversible pulpitis of mandibular molars.

  19. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    Energy Technology Data Exchange (ETDEWEB)

    Kasivisvanathan, Veeru, E-mail: vk103@ic.ac.uk [Imperial College London, Department of Radiology (United Kingdom); Thapar, Ankur, E-mail: a.thapar09@imperial.ac.uk; Oskrochi, Youssof, E-mail: Youssof.Oskrochi09@imperial.ac.uk [Imperial College London, Department of Surgery and Cancer (United Kingdom); Picard, John, E-mail: John.picard@imperial.nhs.uk [Imperial College Healthcare NHS Trust, Department of Anaesthesia (United Kingdom); Leen, Edward L. S., E-mail: Edward.leen@imperial.ac.uk [Imperial College London, Department of Radiology (United Kingdom)

    2012-12-15

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 Multiplication-Sign 19 to 20 Multiplication-Sign 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm{sup 3}. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  20. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    Science.gov (United States)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  1. Development of a turbine-compressor for 10 kW class neon turbo-Brayton refrigerator

    Science.gov (United States)

    Hirai, Hirokazu; Hirokawa, Masaki; Yoshida, Shigeru; Sano, Tomonobu; Ozaki, Shinsuke

    2014-01-01

    We are developing 10 kW class turbo-Brayton refrigerator whose working fluid is neon gas. Its high pressure value is 1 MPa and its low pressure value is 0.5 MPa. The refrigerator consists of two turbine-compressors and a heat exchanger. The turbine-compressor has a turbo-expander on one side of its shaft and a turbo-compressor on the other side of the shaft. Two turbo-compressors are connected in series and two turbo-expanders are set in parallel. So, all amount of neon gas is compressed by two stages and each half a mount of neon gas is expanded by one stage. Two turbinecompressors are the same machines and development cost and time are minimized. In this stage, we made one prototype turbine-compressor and installed it in a performance test facility. This paper shows details of the turbine-compressor and refrigerator cooling power simulation results.

  2. Nuclear safety considerations for the design of a shuttle launched 500 to 2000 watt isotope Brayton power system.

    Science.gov (United States)

    Garate, J. A.; Gorland, S. H.

    1973-01-01

    An extensive study was conducted to evaluate the safety requirements for the design of a heat source assembly for use in a shuttle launched, isotope Brayton electric power system for the 500-W(e) to 2 kWe range. The assembly is a self-contained package which supplies heat to a power conversion system. A typical mission profile for a shuttle launched, earth orbital mission was assumed. Critical mission accidents were identified and evaluated to determine their impact upon the design of the Heat Source Assembly. Earth-orbital decay reentry analyses were performed to demonstrate survivability of the heat source. Safety design requirements were developed to ensure survivability under credible accident conditions including loss of the power conversion system in orbit.

  3. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    Science.gov (United States)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  4. Dimensional Stability of Color-Changing Irreversible Hydrocolloids after Disinfection

    Directory of Open Access Journals (Sweden)

    Khaledi AAR

    2015-03-01

    Full Text Available Statement of Problem: Disinfection of dental impressions is a weak point in the dental hygiene chain. In addition, dental office personnel and dental technicians are endangered by cross-contamination. Objectives: This study aimed to investigate the dimensional stability of two color-changing irreversible hydrocolloid materials (IH after disinfection with glutaraldehyde. Materials and Methods: In this in vitro study, impressions were made of a master maxillary arch containing three reference inserts on the occlucal surface of the left and right maxillary second molars and in the incisal surface of the maxillary central incisors. Two types of color-changing irreversible hydrocolloid (tetrachrom, cavex were used. Glutaraldehyde 2% was used in two methods of spraying and immersion to disinfect the impressions. The control group was not disinfected. Casts were made of type IV gypsum. The linear dimensional change of the stone casts was measured with a profile projector. For statistical analysis, Kruskall-Wallis and Mann-Witney tests were used (α=0.05. Results: By immersion method, the casts fabricated from tetrachrom were 0.36% larger in the anteroposterior (AP and 0.05% smaller in cross arch (CA dimensions; however, the casts prepared after spraying of tetrachrom were 0.44% larger in the AP and 0.10% smaller in CA dimensions. The casts made from Cavex were 0.05% smaller in the AP and 0.02% smaller in CA dimensions after spraying and 0.01% smaller in the AP and 0.003% smaller in CA dimensions after immersion. Generally there were not significant differences in AP and CA dimensions of the experimental groups compared to the control (p > 0.05. Conclusions: Disinfection of the tested color-changing irreversible hydrocolloids by glutaraldahyde 2% did not compromise the accuracy of the obtained casts.

  5. Carnot's cycle for small systems: Irreversibility and cost of operations

    Science.gov (United States)

    Sekimoto, Ken; Takagi, Fumiko; Hondou, Tsuyoshi

    2000-12-01

    In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called ``stochastic energetics'') to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external ``macroscopic'' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future.

  6. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study

    Science.gov (United States)

    Mercadal, Borja; Arena, Christopher B.; Davalos, Rafael V.; Ivorra, Antoni

    2017-10-01

    Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.

  7. Irreversible electroporation in primary and metastatic hepatic malignancies: A review.

    Science.gov (United States)

    Lyu, Tianchu; Wang, Xifu; Su, Zhanliang; Shangguan, Junjie; Sun, Chong; Figini, Matteo; Wang, Jian; Yaghmai, Vahid; Larson, Andrew C; Zhang, Zhuoli

    2017-04-01

    Liver cancer makes up a huge percentage of cancer mortality worldwide. Irreversible electroporation (IRE) is a relatively new minimally invasive nonthermal ablation technique for tumors that applies short pulses of high frequency electrical energy to irreversibly destabilize cell membrane to induce tumor cell apoptosis. This review aims to investigate the studies regarding the use of IRE treatment in liver tumors and metastases to liver. We searched PubMed for all of IRE relevant English language articles published up to September 2016. They included clinical trials, experimental studies, observational studies, and reviews. This review manuscript is nothing with ethics issues and ethical approval is not provided. In recent years, increasingly more studies in both preclinical and clinical settings have been conducted to examine the safety and efficacy of this new technique, shedding light on the crucial advantages and disadvantages that IRE possesses. Unlike the current leading thermal ablation techniques, such as radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation, IRE requires shorter ablation time without damaging adjacent important vital structures. Although IRE has successfully claimed its valuable status in the field of hepatic cancer treatment both preclinical and clinical settings. In order to systemically test and establish its safety and efficacy for clinical applications, more studies still need to be conducted.

  8. IRREVERSIBILITY GENERATION IN SUGAR, ALCOHOL AND BIOGAS INTEGRATED PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2017-01-01

    Full Text Available In this work, the stages of losses and lower exergetic efficiency are determined when the sugar production process is integrated with others for the production of products such as biogas, torula yeast and electricity. The study is carried out in three scenarios of integrated processes for obtaining the indicated products. A sugar factory in which sugar and electricity are produced is considered as the base scenario and from this; a second scenario is inferred in which alcohol is produced from the molasses of the sugar process and biogas from the vinasse of the alcohol distillation process. Finally, a third scenario is exergetically evaluated in which sugar, electricity, biogas and alcohol are produced, but this last one from juices and molasses of the sugar process. For the exergetic analysis the integrated scheme was divided into 8 subsystems. From the analysis of results, the major subsystems that generate irreversibilities are: cogeneration (64.36-65.98%, juice extraction (8.85-9.85%, crystallization and cooking, (8.48 -9.02%, fermentation (4.12-4.94% and distillation (2.74-3.2%. Improvements are proposed to minimize irreversibilities, including the thermal integration of processes, technological modifications in the fermentation process and the introduction of more efficient equipment for the generation of electricity. The exergetic efficiency is between 78.95-81.10%, obtaining greater exergetic efficiency in the scheme of joint operation to produce sugar, alcohol and biogas.

  9. Voter model with arbitrary degree dependence: clout, confidence and irreversibility

    Science.gov (United States)

    Fotouhi, Babak; Rabbat, Michael G.

    2014-03-01

    The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.

  10. Essays on oil price volatility and irreversible investment

    Science.gov (United States)

    Pastor, Daniel J.

    In chapter 1, we provide an extensive and systematic evaluation of the relative forecasting performance of several models for the volatility of daily spot crude oil prices. Empirical research over the past decades has uncovered significant gains in forecasting performance of Markov Switching GARCH models over GARCH models for the volatility of financial assets and crude oil futures. We find that, for spot oil price returns, non-switching models perform better in the short run, whereas switching models tend to do better at longer horizons. In chapter 2, I investigate the impact of volatility on firms' irreversible investment decisions using real options theory. Cost incurred in oil drilling is considered sunk cost, thus irreversible. I collect detailed data on onshore, development oil well drilling on the North Slope of Alaska from 2003 to 2014. Volatility is modeled by constructing GARCH, EGARCH, and GJR-GARCH forecasts based on monthly real oil prices, and realized volatility from 5-minute intraday returns of oil futures prices. Using a duration model, I show that oil price volatility generally has a negative relationship with the hazard rate of drilling an oil well both when aggregating all the fields, and in individual fields.

  11. Heat transfer at nanometric scales described by extended irreversible thermodynamics

    Directory of Open Access Journals (Sweden)

    Machrafi Hatim

    2016-06-01

    Full Text Available The purpose of this work is to present a study on heat conduction in systems that are composed out of spherical and cylindrical micro- and nanoparticles dispersed in a bulk matrix. Special emphasis is put on the dependence of the effective heat conductivity on various selected parameters as particle size and also its shape, surface specularity and density, including particle-matrix interaction. The heat transfer at nanometric scales is modelled using extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by a Copper-Silicium (Cu-Si system. It is shown that all the investigated parameters have a considerable influence, the particle size being especially useful to either increase or decrease the effective thermal conductivity.

  12. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins.

    Science.gov (United States)

    Chebotareva, Natalia A; Roman, Svetlana G; Kurganov, Boris I

    2016-12-01

    Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure. The kinetic schemes of denaturation can include the multiple stages of conformational transitions in the protein oligomer and stages of reversible dissociation of the oligomer. In this case, the shape of the kinetic curve of denaturation or the shape of the melting curve registered by differential scanning calorimetry can vary with varying the protein concentration. The experimental data illustrating dissociative mechanism for irreversible thermal denaturation of oligomeric proteins have been summarized in the present review. The use of test systems based on thermal aggregation of oligomeric proteins for screening of agents possessing anti-aggregation activity is discussed.

  13. Sub-kBT micro-electromechanical irreversible logic gate.

    Science.gov (United States)

    López-Suárez, M; Neri, I; Gammaitoni, L

    2016-06-28

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  14. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    Science.gov (United States)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  15. Disinfection of irreversible hydrocolloid impression material with chlorinated compounds.

    Science.gov (United States)

    Rweyendela, I H; Patel, M; Owen, C P

    2009-06-01

    Irreversible hydrocolloid (alginate) impressions are dimensionally unstable and difficult to disinfect. To evaluate the antimicrobial efficacy of a chlorite disinfectant (Presept) and a new formulation chlorine dioxide based disinfectant (Aseptrol) on irreversible hydrocolloid (alginate) impression material. Alginate blocks were contaminated with Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans and Bacillus subtilis spores. The blocks were placed either in sterile distilled water as control, or in 48-ppm Aseptrol or Presept solution containing organic matter. Immersion times were 30 seconds, 1, 1.5, 2, 3 and 5 minutes. The blocks were then placed in sterile 0.5% sodium thiosulphate neutralizer and surviving organisms were harvested and counted using the serial dilution technique followed by culturing on appropriate media. The anti-microbial efficacy of the solution was tested for 37 days. There was a consistent significant reduction (99.99%) in all tests of vegetative organisms after immersion in the Aseptrol for 30 seconds, and for spores after 1.5 minutes. It was effective against vegetative organisms for up to 27 days for a 30-second exposure. Presept significantly reduced (99.99%) C. albicans, S. aureus and S. mutans in 30 seconds, P. aeruginosa in 60 seconds, but for B. subtilis spores took at least 5 minutes. It was effective against vegetative organisms for >37 days for a 30-second exposure. Within the limits of this study it was found that both compounds effectively disinfected the alginate in the presence of organic material, but that Aseptrol did so after an immersion time of only 1.5 minutes. This immersion time is less likely to affect the dimensional properties of the impression material. The short action time of Aseptrol may make it ideal for the disinfection of alginate impressions, and it may also find many uses for disinfection and possible sterilisation.

  16. Health Technology Assessment of CEM Pulpotomy in Permanent Molars with Irreversible Pulpitis

    OpenAIRE

    Yazdani, Shahram; Jadidfard, Mohammad-Pooyan; Tahani, Bahareh; Kazemian, Ali; Dianat, Omid; Alim Marvasti, Laleh

    2013-01-01

    Introduction: Teeth with irreversible pulpitis usually undergo root canal therapy (RCT). This treatment modality is often considered disadvantageous as it removes vital pulp tissue and weakens the tooth structure. A relatively new concept has risen which suggests vital pulp therapy (VPT) for irreversible pulpitis. VPT with calcium enriched mixture (VPT/CEM) has demonstrated favorable treatment outcomes when treating permanent molars with irreversible pulpitis. This study aims to compare patie...

  17. Use of fully covered self-expanding metal stents for the management of benign biliary conditions Utilización de prótesis metálicas autoexpandibles totalmente recubiertas en procesos biliares benignos

    Directory of Open Access Journals (Sweden)

    J. García-Cano

    2010-09-01

    pequeños y proporcionar, al abrirse completamente, diámetros grandes para el drenaje biliar. Su utilización en procesos benignos ha estado muy limitada, fundamentalmente por la dificultad en su extracción. Presentamos nuestra experiencia inicial con una PMAB totalmente recubierta (Wallflex para tratar patología benigna de la vía biliar. Pacientes y métodos: en un estudio descriptivo prospectivo se insertaron por CPRE prótesis de 8 mm de diámetro y 4, 6 u 8 cm de longitud, cuando se consideró que para el drenaje biliar eran precisos diámetros superiores a 10 french (3,3 mm. Las prótesis se retiraron también por endoscopia varios meses después según se consideró oportuno clínicamente. Resultados: se insertaron 20 PMAB. Los motivos fueron: gran fístula biliar intrahepática tras cirugía de quiste hidatídico (1, perforación del área papilar por esfinterotomía endoscópica (2, recanalización de prótesis no recubiertas insertadas en procesos benignos (3, estenosis benignas (7, coledocolitiasis múltiples y de gran tamaño con afilamiento-estenosis del colédoco distal que no pudieron extraerse (7. En todos los casos se logró un drenaje biliar satisfactorio y no se produjeron complicaciones por la inserción. Las prótesis se extrajeron con facilidad a los 132 días de media (36-270. La resolución completa de los procesos se obtuvo en 14 pacientes (70%. Conclusiones: en nuestra experiencia inicial, la prótesis Wallflex biliar totalmente recubierta pudo extraerse sin complicaciones tras permanecer en el colédoco hasta una media de más cuatro meses, por lo que podría utilizarse en el tratamiento de procesos biliares benignos.

  18. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  19. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  20. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO{sub 2} Brayton Cycle for SMART Application

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jin Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Ahn, Yoonhan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To maximize the benefits of modularization, the supercritical CO{sub 2} (S-CO{sub 2}) power cycle can replace the conventional steam Rankine cycle to increase the cycle efficiency and reduce its system size. Previous works have been conducted to evaluate potential advantages of applying the S-CO{sub 2} cycle to SMRs, specifically to SMART (System-integrated Modular Advanced Reactor) which is an integral SMR developed by KAERI (Korea Atomic Energy Institute). One of the optimized S-CO{sub 2} cycle layouts is the recompressing Brayton cycle. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO{sub 2} power cycle is conceptually being evaluated. The SMR applications, for which SMART reactor has been represented, can take advantage of the currently developing S-CO{sub 2} cycle greatly by the reduction of size. By introducing the isothermal compressor, the cycle layout considered in has been further improved by increasing the cycle net efficiency by around 0.5%.

  1. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  2. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    Science.gov (United States)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  3. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  4. Irreversible electroporation of human primary uveal melanoma in enucleated eyes.

    Directory of Open Access Journals (Sweden)

    Yossi Mandel

    Full Text Available Uveal melanoma (UM is the most common primary intraocular tumor in adults and is characterized by high rates of metastatic disease. Although brachytherapy is the most common globe-sparing treatment option for small- and medium-sized tumors, the treatment is associated with severe adverse reactions and does not lead to increased survival rates as compared to enucleation. The use of irreversible electroporation (IRE for tumor ablation has potential advantages in the treatment of tumors in complex organs such as the eye. Following previous theoretical work, herein we evaluate the use of IRE for uveal tumor ablation in human ex vivo eye model. Enucleated eyes of patients with uveal melanoma were treated with short electric pulses (50-100 µs, 1000-2000 V/cm using a customized electrode design. Tumor bioimpedance was measured before and after treatment and was followed by histopathological evaluation. We found that IRE caused tumor ablation characterized by cell membrane disruption while sparing the non-cellular sclera. Membrane disruption and loss of cellular capacitance were also associated with significant reduction in total tumor impedance and loss of impedance frequency dependence. The effect was more pronounced near the pulsing electrodes and was dependent on time from treatment to fixation. Future studies should further evaluate the potential of IRE as an alternative method of uveal melanoma treatment.

  5. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P. [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  6. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    Science.gov (United States)

    Lin, G.; Tegus, O.; Zhang, L.; Brück, E.

    2004-02-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance.

  7. Chemotherapy-induced irreversible alopecia in early breast cancer patients.

    Science.gov (United States)

    Kim, Gun Min; Kim, Sanghwa; Park, Hyung Seok; Kim, Jee Ye; Nam, Sanggen; Park, Seho; Kim, Seung Il; Kim, DoYoung; Sohn, Joohyuk

    2017-06-01

    The purpose of this work is to determine the prevalence of chemotherapy-induced irreversible alopecia (CIIA), which is defined as an alopecia that exists at least 6 months after completion of chemotherapy and factors affecting CIIA in early breast cancer patients. We performed a cross-sectional study. We retrospectively identified breast cancer patients who had received AC (Adriamycin, Cyclophosphamide) or AC-T (AC followed by Taxane) as neoadjuvant or adjuvant chemotherapy. We conducted questionnaire survey regarding alopecia and measured hair density using phototrichogram. From February 2015 to May 2015, among 265 patients who responded properly to the questionnaire, the women who answered they had severe alopecia (alopecia > 50% of scalp) were 19 patients (7.2%). AC-only and AC-T treated patients reported severe alopecia in 2.7% and 10.5%, respectively, which were significantly different (p < 0.001). Mean hair density was 75 hair/cm 2 (range 42-112) and 75.2/cm 2 (range 48.3-102) on occipital area and vertex area, respectively. Hair loss was the most frequent in parietal area (42.6%). Half of total patients (46%) and 73% of CIIA patients regarded that their hair became thinner after chemotherapy CONCLUSIONS: We found that significant proportion of early breast cancer patients were suffering from severe CIIA, especially when they had been treated with AC followed by taxane regimen.

  8. Eutectic solidification as explained by the thermodynamics of irreversible processes

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-01-01

    Full Text Available The grain size diameter is the main parameter characterizing a given metallic alloy. In the case of Al-Si or Fe-C eutectic alloy theaverage inter-lamellar spacing is a good parameter which seems to be adequate to describe this irregular structure. To define the averageinter-lamellar spacing the regular areas within generally irregular structure has been distinguished.It has been postulated that the formation of regular structure could be related to the minimum entropy production criterion. From theother side the maximum destabilization of the non-faceted phase interface could be referred to marginal stability.The criterion of minimum entropy production allows to formulate the growth law for regular lamellar structure solidifying understationary state. It defines the regular eutectic spacing versus growth rate. The marginal stability concept allows to define the maximum wavelength which can be developed at the solid / liquid interface of non-faceted (Al phase. It defines the maximum spacing within irregular structure taking into account the wavelength of instability (marginal stability created at the non-faceted phase interface.An average inter-lamellar spacing results from the relationship formulated on the basis of both spacings. It should beemphasized that both conditions (criteria are deduced from the thermodynamics of irreversible processes.The simplified scheme of irregular structure incorporates, additionally the intermediate lamella of faceted phase that is also taken into account in the definition of average inter-lamellar spacing,

  9. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  10. The effects of irreversible electroporation (IRE on nerves.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available BACKGROUND: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. METHODS: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. FINDINGS: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. CONCLUSION: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.

  11. Fundamental economic irreversibilities influence policies for enhancing international forest phytosanitary security

    Science.gov (United States)

    Thomas P. Holmes; Will Allen; Robert G. Haight; E. Carina H. Keskitalo; Mariella Marzano; Maria Pettersson; Christopher P. Quine; E. R. Langer

    2017-01-01

    National and international efforts to manage forest biosecurity create tension between opposing sources of ecological and economic irreversibility. Phytosanitary policies designed to protect national borders from biological invasions incur sunk costs deriving from economic and political irreversibilities that incentivizes wait-and-see decision-making. However, the...

  12. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    Science.gov (United States)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  13. Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase.

    Science.gov (United States)

    Dick, Ryan A; Kanne, David B; Casida, John E

    2007-12-01

    The major neonicotinoid insecticide imidacloprid (IMI) is used worldwide for crop protection and pest control on pets. IMI is extensively metabolized, oxidatively by cytochromes P450 and via aerobic nitroreduction by the molybdo-flavoenzyme aldehyde oxidase (AOX). Rabbit liver AOX is capable of reducing IMI to both its nitrosoguanidine (IMI-NO) and aminoguanidine (IMI-NH2) derivatives; however, when IMI-NO is used as a substrate, less than stoichiometric amounts of IMI-NH2 are detected while IMI-NO is completely consumed. The disappearance of IMI-NO requires both a source of AOX and an AOX-specific electron donor substrate and is not inhibited by the addition of catalase and superoxide dismutase. Experiments to evaluate IMI-NO as a possible time-dependent inactivator of AOX reveal the following four characteristics: First, partially purified AOX (ppAOX) is inactivated at a moderate rate by the electron donor substrate N-methylnicotinamide (NMN); second, AOX is inactivated by IMI-NO in an NMN-dependent manner at a 10-fold greater rate; third, IMI does not inactivate AOX; and finally, GSH protects AOX from inactivation but not to a degree greater than IMI-NO-deficient incubations. Values for the kinetic constants of KI and kinact are measured to be 1.3 mM and 0.35 min(-1), respectively. Ultrafiltration is used to establish that IMI-NO inactivation is not reversible and to determine a partition ratio of 1.6. [3H]IMI-NO labeling shows that significant amounts (19%) of this molecule covalently bind to protein following reduction by ppAOX. The addition of 10 mM GSH attenuates this binding almost completely. These findings demonstrate that IMI-NO is metabolically activated by rabbit AOX to form both an irreversible inhibitor and a reactive intermediate that is capable of covalently binding to protein.

  14. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2008-04-01

    Full Text Available Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA; however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ were estimated for a fast initial uptake governed by the mass accommodation coefficient (α and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  15. Design of a three-phase, 15-kilovolt-ampere static inverter for motor-starting a Brayton space power system

    Science.gov (United States)

    Frye, R. J.; Birchenough, A. G.

    1971-01-01

    The design of a three-phase, 400-Hz, 15-kVA static inverter for motor-starting the 2- to 15-kWe Brayton electrical space power system is described. The inverter operates from a nominal 56-V dc source to provide a 28-V, rms, quasi-square-wave output. The inverter is capable of supplying a 200-A peak current. Integrated circuitry is used to generate the three-phase, 400-Hz reference signals. Performance data for a drive stage that improves switching speed and provides efficient operation over a range of output current and drive supply voltage are presented. A transformerless, transistor output stage is used.

  16. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    Science.gov (United States)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full

  17. Investigation of intercooler-effectiveness on exergo-economic and exergo-sustainability parameters of modified Brayton cycles

    Directory of Open Access Journals (Sweden)

    Fidelis I. Abam

    2017-09-01

    Full Text Available The paper investigates the variants of intercooler effectiveness on exergo-economic and exergo-sustainability indicators of modified Brayton cycles. The objective is to ascertain how the variant in the intercooler effectiveness affects the exergy-based parameters. However, to achieve this, a component by component exergy-cost balances was established. The considered cycles include: the non-specific cycle (Case 1 comprising a gas turbine (GT, intercooler (IC, heat exchanger (HE and reheat system (REH, others include (GT+H+REH +ST, Case 2, (GT+HE +IC +REH +ST+FWH, Case 3 and (GT+HE+IC+REH +ST+2 FWH, Case 4. The calculated cycle efficiencies (Cases 1–4 varies from 17.59% to 28.84% for intercooler effectiveness of 0.75 and 0.95. The exergy destruction within this range was 0.97%, 1.26%, 0.89% and 1.23% (Cases 1, 2 3 and 4 respectively. The component exergy destruction cost (CEDC fluctuated between 3.85≤CEDC≤229.1$/hr,5.61E−06≤CEDC≤229.1$/h,1.46E−06≤CEDC≤229.1$/hr and 5.61E−06≤CEDC≤229.1$/hr for same order. Additionally, the exergo-sustainability indicators: exergy waste ratio (EWR, environmental effect factor (EFF and exergetic sustainability index (ESI were estimated between 17.59≤EEF≤28.84%,0.433≤EWR≤0.6359, 1.55≤ EFF ≤3.60 and 0.277≤ ESI ≤0.644. Conclusively, the intercooler and other modifications have a marginal effect but Cases 4 and 3 was most sustainable with considerable ESI.

  18. Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone.

    Science.gov (United States)

    Schindler, Kaspar; Rummel, Christian; Andrzejak, Ralph G; Goodfellow, Marc; Zubler, Frédéric; Abela, Eugenio; Wiest, Roland; Pollo, Claudio; Steimer, Andreas; Gast, Heidemarie

    2016-09-01

    To show that time-irreversible EEG signals recorded with intracranial electrodes during seizures can serve as markers of the epileptogenic zone. We use the recently developed method of mapping time series into directed horizontal graphs (dHVG). Each node of the dHVG represents a time point in the original intracranial EEG (iEEG) signal. Statistically significant differences between the distributions of the nodes' number of input and output connections are used to detect time-irreversible iEEG signals. In 31 of 32 seizure recordings we found time-irreversible iEEG signals. The maximally time-irreversible signals always occurred during seizures, with highest probability in the middle of the first seizure half. These signals spanned a large range of frequencies and amplitudes but were all characterized by saw-tooth like shaped components. Brain regions removed from patients who became post-surgically seizure-free generated significantly larger time-irreversibilities than regions removed from patients who still had seizures after surgery. Our results corroborate that ictal time-irreversible iEEG signals can indeed serve as markers of the epileptogenic zone and can be efficiently detected and quantified in a time-resolved manner by dHVG based methods. Ictal time-irreversible EEG signals can help to improve pre-surgical evaluation in patients suffering from pharmaco-resistant epilepsies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces

    NARCIS (Netherlands)

    Sjollema, Jelmer; van der Mei, Henny C.; Hall, Connie L.; Peterson, Brandon W.; de Vries, Joop; Song, Lei; de Jong, Ed D.; Busscher, Henk J.; Swartjes, Jan J. T. M.

    2017-01-01

    Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through

  20. Classical many-body theory with retarded interactions: Dynamical irreversibility and determinism without probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.Yu., E-mail: Anatoly.Zakharov@novsu.ru; Zakharov, M.A., E-mail: ma_zakharov@list.ru

    2016-01-28

    The exact equations of motion for microscopic density of classical many-body system with account of inter-particle retarded interactions is derived. It is shown that interactions retardation leads to irreversible behavior of many-body systems. - Highlights: • A new form of equation of motion of classical many-body system is proposed. • Interactions retardation as one of the mechanisms of many-body system irreversibility. • Irreversibility and determinism without probabilities. • The possible way to microscopic foundation of thermodynamics.

  1. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  2. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    Directory of Open Access Journals (Sweden)

    Arul Amalan

    2013-01-01

    Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions.

  3. Irreversible Electroporation of a Hepatocellular Carcinoma Lesion Adjacent to a Transjugular Intrahepatic Portosystemic Shunt Stent Graft

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Christoph; Jung, Ernst Michael; Wohlgemuth, Walter A. [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany); Trabold, Benedikt [Department of Anaesthesia, University Medical Center Regensburg, Regensburg D-93053 (Germany); Haimerl, Michael; Schreyer, Andreas; Stroszczynski, Christian; Wiggermann, Philipp [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany)

    2013-07-01

    We report in a 65-year-old man hepatocellular carcinoma adjacent to a transjugular intrahepatic portosystemic shunt stent-graft which was successfully treated with irreversible electroporation (IRE). IRE is a new non-thermal tissue ablation technique which uses electrical pulses to induce cell necrosis by irreversible membrane poration. IRE proved to be more advantageous in the ablation of perivascular tumor with little injury to the surrounding structures.

  4. Substance P and CGRP expression in dental pulps with irreversible pulpitis.

    Science.gov (United States)

    Sattari, Mandana; Mozayeni, Mohammad Ali; Matloob, Arash; Mozayeni, Maryam; Javaheri, Homan H

    2010-08-01

    The purpose of this study was to compare substance P (SP) and calcitonin gene-related peptide (CGRP) expression in pulp tissue with clinically diagnosed symptomatic and asymptomatic irreversible pulpitis. Healthy pulps acted as controls. Five normal pulps and 40 with irreversible pulpitis (20 symptomatic and 20 asymptomatic) were obtained from 45 different patients. SP and CGRP expression was determined by competition binding assays using enzyme immunoassay. anova and Mann-Whitney tests were used to ascertain if there were statistically significant differences between the groups. The results showed that neuropeptides were found in all pulp samples. The highest and the lowest expressions for SP and CGRP were found in symptomatic irreversible pulpitis and healthy pulps groups, respectively. The differences between healthy pulps and the groups of pulps having irreversible pulpitis were significant (P pulpitis groups (P irreversible pulpitis groups were not significant. This study demonstrated that the expression of CGRP and SP is significantly higher in pulps with irreversible pulpitis compared with healthy pulps.

  5. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  6. Non-input analysis for incomplete trapping irreversible tracer with PET.

    Science.gov (United States)

    Ohya, Tomoyuki; Kikuchi, Tatsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong; Irie, Toshiaki

    2013-07-01

    When using metabolic trapping type tracers, the tracers are not always trapped in the target tissue; i.e., some are completely trapped in the target, but others can be eliminated from the target tissue at a measurable rate. The tracers that can be eliminated are termed 'incomplete trapping irreversible tracers'. These incomplete trapping irreversible tracers may be clinically useful when the tracer β-value, the ratio of the tracer (metabolite) elimination rate to the tracer efflux rate, is under approximately 0.1. In this study, we propose a non-input analysis for incomplete trapping irreversible tracers based on the shape analysis (Shape), a non-input analysis used for irreversible tracers. A Monte Carlo simulation study based on experimental monkey data with two actual PET tracers (a complete trapping irreversible tracer [(11)C]MP4A and an incomplete trapping irreversible tracer [(18)F]FEP-4MA) was performed to examine the effects of the environmental error and the tracer elimination rate on the estimation of the k3-parameter (corresponds to metabolic rate) using Shape (original) and modified Shape (M-Shape) analysis. The simulation results were also compared with the experimental results obtained with the two PET tracers. When the tracer β-value was over 0.03, the M-Shape method was superior to the Shape method for the estimation of the k3-parameter. The simulation results were also in reasonable agreement with the experimental ones. M-Shape can be used as the non-input analysis of incomplete trapping irreversible tracers for PET study. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  8. Circulating endothelial cells: a new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease.

    Science.gov (United States)

    Smadja, David M; Gaussem, Pascale; Mauge, Laetitia; Israël-Biet, Dominique; Dignat-George, Françoise; Peyrard, Séverine; Agnoletti, Gabriella; Vouhé, Pascal R; Bonnet, Damien; Lévy, Marilyne

    2009-01-27

    Congenital heart disease can be complicated by pulmonary arterial hypertension (PAH), the reversibility of which is often difficult to predict. We recently reported a lung biopsy study showing impaired apoptotic regulation of endothelial cells in irreversible PAH. The objective of the present study was to identify noninvasive biomarkers of endothelial turnover that could be used to identify congenital heart disease patients at risk of irreversible PAH. Circulating endothelial cells (CECs) isolated with CD146-coated beads and circulating CD34(+)CD133(+) progenitor cells (CPCs) were quantified in peripheral vein, pulmonary artery, and pulmonary vein blood samples from 26 patients with congenital heart disease (16 with reversible PAH [median age 2 years] and 10 with irreversible PAH [median age 9 years]) and 5 control patients. Surgical lung biopsy was performed in 19 cases. As expected, endothelial remodeling was observed in irreversible PAH but not in reversible PAH. CEC and CPC numbers were each similar in the 3 types of blood samples. CEC numbers were significantly higher in patients with irreversible PAH (median 57 CEC/mL) than in patients with reversible PAH and control subjects (median 3 CEC/mL in the 2 groups). In contrast, CPC numbers did not differ among patients with irreversible or reversible PAH and control subjects (median 84, 64, and 44 CPC/10(5) lymphocytes, respectively, in the 3 groups). Irreversible PAH in congenital heart disease is associated with endothelial damage and with increased circulating endothelial cell counts. The present study suggests that CECs could be a valuable tool to define therapeutic strategies in congenital heart disease patients with PAH.

  9. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  10. Health Technology Assessment of CEM Pulpotomy in Permanent Molars with Irreversible Pulpitis.

    Science.gov (United States)

    Yazdani, Shahram; Jadidfard, Mohammad-Pooyan; Tahani, Bahareh; Kazemian, Ali; Dianat, Omid; Alim Marvasti, Laleh

    2014-01-01

    Teeth with irreversible pulpitis usually undergo root canal therapy (RCT). This treatment modality is often considered disadvantageous as it removes vital pulp tissue and weakens the tooth structure. A relatively new concept has risen which suggests vital pulp therapy (VPT) for irreversible pulpitis. VPT with calcium enriched mixture (VPT/CEM) has demonstrated favorable treatment outcomes when treating permanent molars with irreversible pulpitis. This study aims to compare patient related factors, safety and organizational consideration as parts of health technology assessment (HTA) of the new VPT/CEM biotechnology when compared with RCT. Patient related factors were assessed by looking at short- and long-term clinical success; safety related factors were evaluated by a specialist committee and discussion board involved in formulating healthcare policies. Organizational evaluation was performed and the social implications were assessed by estimating the costs, availability, accessibility and acceptability. The impact of VPT/CEM biotechnology was assessed by investigating the incidence of irreversible pulpitis and the effect of this treatment on reducing the burden of disease. VPT/CEM biotechnology was deemed feasible and acceptable like RCT; however, it was more successful, accessible, affordable, available and also safer than RCT. When considering socioeconomic implications on oral health status and oral health-related quality of life of VPT/CEM, the novel biotechnology can be more effective and more efficient than RCT in mature permanent molars with irreversible pulpitis.

  11. Design and Implementation of Quantum Dot Cellular Automata Based Irreversible and Reversible Logic Generator Block

    Science.gov (United States)

    Waje, Ms. Manisha G.; Dakhole, Pravin, Dr.

    2017-08-01

    Quantum Dot Cellular Automata has attracted a lot of attention due to its extremely small feature size and ultra low power consumption. It is a possible alternative for transistor based technology. This paper presents the construction of Irreversible and reversible Logic Generator Block using quantum dot cellular automata. QCA based Irreversible and irreversible Logic generator block generates the logic of various devices like 1-Bit comparator, 1-Bit Half Adder, 1-Bit Half Subtractor, AND gate, XOR gate, NOR gate and XNOR gate. Proposed design of QCA based LGB is cost effective and easy to fabricate due to absence of wire crossings in irreversible LGB and no information loss in reversible LGB. This block can be made more efficient by using control lines. Depending on individual value on control line, logic of individual device will be generated. QCADesigner 2.0.3 tool is used for design and simulation of QCA based Logic Generator Block. Similarly here Reversible logic based Logic generator block is proposed which will be able to generate different logic. Area requirement of Reversible LGB is 85% less as compared to Irreversible LGB. Reversible logic provides ideally zero power dissipation that is no information loss is there.

  12. Health Technology Assessment of CEM Pulpotomy in Permanent Molars with Irreversible Pulpitis

    Science.gov (United States)

    Yazdani, Shahram; Jadidfard, Mohammad-Pooyan; Tahani, Bahareh; Kazemian, Ali; Dianat, Omid; Alim Marvasti, Laleh

    2014-01-01

    Introduction: Teeth with irreversible pulpitis usually undergo root canal therapy (RCT). This treatment modality is often considered disadvantageous as it removes vital pulp tissue and weakens the tooth structure. A relatively new concept has risen which suggests vital pulp therapy (VPT) for irreversible pulpitis. VPT with calcium enriched mixture (VPT/CEM) has demonstrated favorable treatment outcomes when treating permanent molars with irreversible pulpitis. This study aims to compare patient related factors, safety and organizational consideration as parts of health technology assessment (HTA) of the new VPT/CEM biotechnology when compared with RCT. Materials and Methods: Patient related factors were assessed by looking at short- and long-term clinical success; safety related factors were evaluated by a specialist committee and discussion board involved in formulating healthcare policies. Organizational evaluation was performed and the social implications were assessed by estimating the costs, availability, accessibility and acceptability. The impact of VPT/CEM biotechnology was assessed by investigating the incidence of irreversible pulpitis and the effect of this treatment on reducing the burden of disease. Results: VPT/CEM biotechnology was deemed feasible and acceptable like RCT; however, it was more successful, accessible, affordable, available and also safer than RCT. Conclusion: When considering socioeconomic implications on oral health status and oral health-related quality of life of VPT/CEM, the novel biotechnology can be more effective and more efficient than RCT in mature permanent molars with irreversible pulpitis. PMID:24396372

  13. On a New Kinetic Modelling Approach of the Irreversible Quasi-Surface Metallurgical Phase Transformations

    Directory of Open Access Journals (Sweden)

    Grégory Antoni

    2014-01-01

    Full Text Available Irreversible quasi-surface metallurgical phase transformations are the specific response of some metallic materials—such as metals and alloys—subjected to high thermomechanical loads applied very near their surface during the manufacturing processes or after being put into operation. These solid/solid phase transformations can be observed, for example, on the tread of many rails in railroad networks frequented by freight trains. The severe thermal and mechanical loads imposed on the surface of the rails and in the immediate vicinity of the surface by the wheel/rail contact often result in highly localized irreversible metallurgical transformations. A new kinetic model based on a previous study is presented here, which accounts more realistically for the nucleation and growth of these irreversible solid/solid phase transformations resulting from high thermomechanical loads. This metallurgical behavioral model was developed in the framework of continuum thermodynamics with gradients of temperature and internal variables.

  14. Performance analysis and parametric optimum criteria of an irreversible Bose-Otto engine

    Science.gov (United States)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    An irreversible cycle model of a Bose-Otto engine is established, in which finite time thermodynamic processes and the irreversibility result from the nonisentropic compression and expansion processes are taken into account. Based on the model, expressions for the power output and efficiency of the Bose-Otto engine are derived. On the basis of the thermodynamic properties of ideal Bose gas, the effects of the irreversibility and the compression ratio of the two isochoric processes on the performance of the Bose-Otto engine are revealed and some important performance parameters are optimized. Furthermore, some optimal operating regions including those for the power output, efficiency, and the temperatures of the cyclic working substance at two important state points are determined and evaluated. Finally, several special cases are discussed in detail.

  15. Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2010-12-01

    Full Text Available The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink: this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine, and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one. Consequences of the proposal are examined; some new analytical results are proposed for efficiencies.

  16. Long buccal nerve block injection pain in patients with irreversible pulpitis.

    Science.gov (United States)

    Drum, Melissa; Reader, Al; Beck, Mike

    2011-07-01

    The purpose of this study was to determine the pain associated with needle insertion (with or without topical anesthetic) and solution deposition for the long buccal nerve block injection in patients with irreversible pulpitis. Initial pain and any differences by age and gender were also studied. One hundred twelve emergency patients with irreversible pulpitis received long buccal nerve block injections using 2% lidocaine with 1:100,000 epinephrine. The patients recorded pain of needle insertion and solution deposition on a Heft-Parker visual analog scale (VAS). Moderate-to-severe pain occurred from 41% to 46% of the time with the long buccal nerve block. The use of topical anesthetic did not statistically decrease the pain of needle insertion. In conclusion, 41% to 46% of patients presenting with irreversible pulpitis have the potential for moderate-to-severe pain with the long buccal nerve block. Copyright © 2011 Mosby, Inc. All rights reserved.

  17. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2017-10-01

    Full Text Available We investigated the release behavior of glucagon-like peptide-1 (GLP-1 from a biodegradable injectable polymer (IP hydrogel. This hydrogel shows temperature-responsive irreversible gelation due to the covalent bond formation through a thiol-ene reaction. In vitro sustained release of GLP-1 from an irreversible IP formulation (F(P1/D+PA40 was observed compared with a reversible (physical gelation IP formulation (F(P1. Moreover, pharmaceutically active levels of GLP-1 were maintained in blood after subcutaneous injection of the irreversible IP formulation into rats. This system should be useful for the minimally invasive sustained drug release of peptide drugs and other water-soluble bioactive reagents.

  18. EXERGY-BASED ECOLOGICAL ANALYSIS OF GENERALIZED IRREVERSIBLE HEAT PUMP SYSTEM

    Directory of Open Access Journals (Sweden)

    GOVIND MAHESHWARI

    2011-10-01

    Full Text Available A reverse Carnot cycle forms the basis of all heat-pump cycles in providing heating and cooling loads. The optimal exergy-based Ecological analysis of an irreversible Heat-pump system with the losses of heat resistance, heat leak and internal irreversibility has been carried out by taking into account Exergy based ecological function (E as an objective in the viewpoint of Finite-Time-Thermodynamics (FTT or Entropy Generation Minimization (EGM. Exergy is defined here as the power required minus the lost power. The effects of irreversibilities along with internal heat leakage on coefficient on the performance of the system are investigated. The exergy based Ecological function decreases steadily with irreversibilites and heat leakages in the system. COP in such a system increases with the cycle temperature ratio. If a heat pump cycle is optimized with above mentioned criterion, there is a trade-off between its coefficient of Performance and the heating load it provides.

  19. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    Science.gov (United States)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for

  20. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    Science.gov (United States)

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid

  1. An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements

    Science.gov (United States)

    Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.

  2. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    Science.gov (United States)

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-04-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.

  3. Unreal perpetual motion machine, Rydberg constant and Carnot non-unitary efficiency as a consequence of the atomic irreversibility

    Science.gov (United States)

    Lucia, Umberto

    2018-02-01

    A perpetual motion machine is a completely ideal engine which cannot be realized. Carnot introduced the concept of the ideal engine which operates on a completely reversible cycle, without any dissipation, but with an upper limit in it. So, even in ideal condition without any dissipation, there is something that prevents the conversion of all the energy absorbed by an ideal reservoir into work. But what is the cause of irreversibility? Here we highlight the atomic nature of this irreversibility, proving that it is no more than the continuous interaction of the atoms with the surrounding field. The macroscopic irreversibility is the consequence of the microscopic irreversibility.

  4. Pulpitis irreversible como forma de presentación de un odontoma

    OpenAIRE

    Berástegui, Esther; Buenechea Imaz, Ramón

    1997-01-01

    Se presenta un caso de odontoma compuesto que provocó pulpitis irreversible en el incisivo central superior derecho (1,1) en una joven de 20 años. El tratamiento fue la biopulpectomía total y extirpación quirúrgica del tumor.

  5. A comparison of the anesthetic efficacy of articaine and lidocaine in patients with irreversible pulpitis.

    Science.gov (United States)

    Tortamano, Isabel Peixoto; Siviero, Marcelo; Costa, Carina Gisele; Buscariolo, Inês Aparecida; Armonia, Paschoal Laércio

    2009-02-01

    The purpose of the present study was to compare the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine with that of 2% lidocaine with 1:100,000 epinephrine during pulpectomy in patients with irreversible pulpitis in mandibular posterior teeth. Forty volunteers, patients with irreversible pulpitis admitted to the Emergency Center of the School of Dentistry at the University of São Paulo, randomly received a conventional inferior alveolar nerve block containing 3.6 mL of either 4% articaine with 1:100,000 epinephrine or 2% lidocaine with 1:100,000 epinephrine. During the subsequent pulpectomy, we recorded the patients' subjective assessments of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation, and the absence/presence of pain through a verbal analogue scale. All tested patients reported lip anesthesia after the application of either inferior alveolar nerve block. Regarding pulpal anesthesia success as measured with the pulp tester, the lidocaine solution had a higher success rate (70%) than the articaine solution (65%). For patients reporting none or mild pain during pulpectomy, the success rate of the articaine solution (65%) was higher than that of the lidocaine solution (45%). Yet, none of the observed differences between articaine and lidocaine were statistically significant. Apparently, therefore, both local anesthetic solutions had similar effects on the patients with irreversible pulpitis in mandibular posterior teeth. Neither of the solutions, however, resulted in an effective pain control during irreversible pulpitis treatments.

  6. Similarity of ensembles of trajectories of reversible and irreversible growth processes

    Science.gov (United States)

    Klymko, Katherine; Garrahan, Juan P.; Whitelam, Stephen

    2017-10-01

    Models of bacterial growth tend to be "irreversible," allowing for the number of bacteria in a colony to increase but not to decrease. By contrast, models of molecular self-assembly are usually "reversible," allowing for the addition and removal of particles to a structure. Such processes differ in a fundamental way because only reversible processes possess an equilibrium. Here we show at the mean-field level that dynamic trajectories of reversible and irreversible growth processes are similar in that both feel the influence of attractors, at which growth proceeds without limit but the intensive properties of the system are invariant. Attractors of both processes undergo nonequilibrium phase transitions as model parameters are varied, suggesting a unified way of describing typical properties of reversible and irreversible growth. We also establish a connection at the mean-field level between an irreversible model of growth (the magnetic Eden model) and the equilibrium Ising model, supporting the findings made by other authors using numerical simulations.

  7. Thermal Energy during Irreversible Electroporation and the Influence of Different Ablation Parameters

    NARCIS (Netherlands)

    van den Bos, Willemien; Scheffer, Hester J.; Vogel, Jantien A.; Wagstaff, Peter G. K.; de Bruin, Daniel M.; de Jong, Marcus C.; van Gemert, Martin J. C.; de La Rosette, Jean J. M. C. H.; Meijerink, Martijn R.; Klaessens, John H.; Verdaasdonk, Rudolf M.

    2016-01-01

    Irreversible electroporation (IRE) uses high-voltage electric fields to achieve cell death. Although the mechanism of IRE is mainly designated as nonthermal, development of secondary Joule heating is inevitable. The study purpose was to gain understanding of temperature development and distribution

  8. Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach

    DEFF Research Database (Denmark)

    Nonejad, Nima

    This paper proposes a model that simultaneously captures long memory and structural breaks. We model structural breaks through irreversible Markov switching or so-called change-point dynamics. The parameters subject to structural breaks and the unobserved states which determine the position of th...

  9. Quantum thermodynamics: Microscopic foundations of entropy and of entropy generation by irreversibility

    Directory of Open Access Journals (Sweden)

    Beretta, Gian Paolo

    2008-02-01

    Full Text Available What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrodinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics, that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior and maximal-entropy-generation nonequilibrium dynamics. In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides indeed a

  10. The analysis of irreversibility, uncertainty and dynamic technical inefficiency on the investment decision in the Spanish olive sector

    NARCIS (Netherlands)

    Lambarraa, Fatima; Stefanou, Spiro; Gil, José M.

    2016-01-01

    This study addresses irreversible investment decision-making in the context of uncertainty when allowing for inefficiency to be transmitted over time. Both irreversibility and persistence in technical inefficiency can lead to sluggish adjustment of quasi-fixed factors of production. The context

  11. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial.

    Science.gov (United States)

    Ahmed, A Shafath; Charles, P David; Cholan, R; Russia, M; Surya, R; Jailance, L

    2015-08-01

    This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality.

  12. Registration of the reaction of matter to an external irreversible process

    Science.gov (United States)

    Lavrent'ev, M. M.; Eganova, I. A.; Lutset, M. K.; Fominykh, S. F.

    The paper presents results of laboratory studies carried out to study the possible existence of the remote reaction of matter to various types of external irreversible processes. The mass and density characteristics of two groups of substances (anthracite, coal, peat, graphite, duraluminum, and fir shavings in one group, and distilled water, commercial salt and sugar, and air in the other) subjected to various types of irreversible reactions (e.g., evaporation of liquid nitrogen at room temperature, processes of the human metabolism, etc.) were investigated. It is shown that the entire combination of the change dynamics properties of the mass and density of the substances, as well as an observed aftereffect (continuation of the mass and density changes after the stimulus is removed), is indicative of the change of mass not as a measure of the quantity of the matter but as a measure of its gravitational (inertial) property.

  13. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    Science.gov (United States)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  14. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa

    2016-01-01

    showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore......The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X...... the pore structure of ZIF-8 collapses. It is suggested therefore that care must be taken when using ZIF-8 or products containing ZIF-8 for gas capture, gas separation, or other applications where both water and acid gases coexist....

  15. Thermal Management with Solid-Fluid Slip Irreversibility Treatment in Conjugate Microdevices

    Directory of Open Access Journals (Sweden)

    E. O. B. Ogedengbe

    2009-01-01

    Full Text Available A numerical study of the effect of slip flow irreversibility and axial conduction in microdevices with a conjugate heat transfer between unmixed streams is presented. The effects of axial conduction due to parallel flows for thermal management in energy systems are investigated. Silicon substrate containing rectangular microchannels is simulated using a finite volume, staggered coupling of the pressure-velocity fields. The entropy generation transport within the entire system is analyzed and coupled with the solution procedure. The effects of channel size perturbation, Reynolds number, and pressure ratios on the thermal performance and exergy destruction are presented. Comparative analysis of the axial conduction and flow irreversibility between parallel flow on thermal management is studied. A proton exchange membrane (PEM fuel cell model is used as a quality indicator to access the importance of the exergy-based design method.

  16. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    Science.gov (United States)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  17. Labile phytochrome and photoperiodic flower induction in Pharbitis nil Chois. The irreversible phytochrome hypothesis

    Directory of Open Access Journals (Sweden)

    Mariusz Cymerski

    2014-01-01

    Full Text Available Seedlings of Pharbitis nil cultivated under non-inductive conditions of white light were subjected to generative induction applying one 16-hour-long period of inductive night. During the eighth hour the night was interrupted with 1 min of red light pulse which completely inhibited the flowering. Treating the plants with KCN blocked the inhibiting effect of red light. Because KCN lowers considerably the rate of destruction of labile Pfd in some plant systems, it seems probable that red light night-break irradiation (without KCN, which blocked the flowering, leads also to the accumulation of unknown Pfd destruction products (irreversible phytochrome. It also suggests that it is not the labile PfrI itself but the products of its irreversible transformation that could be active in the photoperiodic control of flowering.

  18. Entropy Change for the Irreversible Heat Transfer between Two Finite Objects

    Science.gov (United States)

    2015-06-10

    Letters and Comments Entropy change for the irreversible heat transfer between two finite objects Carl E Mungan Physics Department, US Naval Academy...June 2015 Abstract A positive entropy change is verified for an isolated system of two blocks of different initial temperatures and of different but...finite heat capacities that are brought into contact with each other and allowed to fully thermalize. Keywords: thermalization, entropy , heat capacity

  19. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Rôças, Isabela N; Alves, Flávio R F; Rachid, Caio T C C; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Siqueira, José F

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  20. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    Directory of Open Access Journals (Sweden)

    Isabela N Rôças

    Full Text Available This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%, Pseudoramibacter (10.7% and Streptococcus (5.5%. Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  1. Fourteen. beta. -(bromoacetamido)morphine irreversibly labels. mu. opioid receptors in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.; Archer, S. (Univ. of Rochester School of Medicine and Dentistry, NY (USA))

    1989-05-16

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){sup 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.

  2. Peptidyl cyclopropenones: Reversible inhibitors, irreversible inhibitors, or substrates of cysteine proteases?

    OpenAIRE

    Cohen, Meital; Bretler, Uriel; Albeck, Amnon

    2013-01-01

    Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C-NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alter...

  3. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  4. Perturbative expansion of irreversible work in Fokker-Planck equation à la quantum mechanics

    Science.gov (United States)

    Koide, T.

    2017-08-01

    We discuss the systematic expansion of the solution of the Fokker-Planck equation with the help of the eigenfunctions of the time-dependent Fokker-Planck operator. The expansion parameter is the time derivative of the external parameter which controls the form of an external potential. Our expansion corresponds to the perturbative calculation of the adiabatic motion in quantum mechanics. With this method, we derive a new formula to calculate the irreversible work order by order, which is expressed as the expectation value with a pseudo density matrix. Applying this method to the case of the harmonic potential, we show that the first order term of the expansion gives the exact result. Because we do not need to solve the coupled differential equations of moments, our method simplifies the calculations of various functions such as the fluctuation of the irreversible work per unit time. We further investigate the exact optimized protocol to minimize the irreversible work by calculating its variation with respect to the control parameter itself.

  5. Calcium-Enriched Mixture Pulpotomy of Primary Molar Teeth with Irreversible Pulpitis. A Clinical Study.

    Science.gov (United States)

    Memarpour, Mahtab; Fijan, Soleiman; Asgary, Saeed; Keikhaee, Marzieh

    2016-01-01

    To evaluate the outcome of vital pulp therapy in primary teeth with irreversible pulpitis by using calcium-enriched mixture (CEM) cement according to clinical and radiographic assessment. Fifty primary molar teeth with irreversible pulpitis in 50 children aged 6-8 years underwent pulpotomy using CEM cement as the dressing material. Following pulpotomy, pain intensity was evaluated by use of a visual analog scale at 1 and 7 days from the treatment and in clinical appointments at 3, 6 and 12 months after baseline. Radiographic evaluation was performed at 6 and 12 months. Data were analyzed using the McNemar test. A total of 42 children (mean age 7.26 ± 0.82 year) completed the study. After one day treatment 56 % of children reported complete relief of pain and after 7 days 62% reported the same. However, two children complained of increased pain 1 day after treatment. None of the children reported pain in the subsequent appointments. One child complained of tenderness in percussion after 6 months. Pulp canal obliteration was the most common change in the radiographic assessment. There was no significant difference between clinical (92.8%) and radiographic (90.4%) success (p=0.990). Pulpotomy using CEM cement could present a successful treatment in primary molar teeth with irreversible pulpitis.

  6. How Effective Is Supplemental Intraseptal Anesthesia in Patients with Symptomatic Irreversible Pulpitis?

    Science.gov (United States)

    Webster, Stephen; Drum, Melissa; Reader, Al; Fowler, Sara; Nusstein, John; Beck, Mike

    2016-10-01

    Previous studies have reported high levels of success with intraseptal injection for various dental procedures but provide limited information on the use of the injection during endodontic treatment. Therefore, the purpose of this prospective study was to determine the anesthetic efficacy of the supplemental intraseptal technique in mandibular posterior teeth diagnosed with symptomatic irreversible pulpitis when the conventional inferior alveolar nerve (IAN) block failed. One hundred patients with a diagnosis of symptomatic irreversible pulpitis in a mandibular posterior tooth were recruited. Following profound lip numbness after the administration of the conventional IAN block, endodontic treatment was initiated. Patients still experiencing moderate to severe pain during treatment were administered mesial and distal supplemental intraseptal injections using 0.7 mL 4% articaine with 1:000,000 epinephrine administered with a computer-controlled local anesthetic delivery unit. Success was defined as the ability to perform endodontic access and instrumentation with mild to no pain. Success with the IAN block was achieved in 25% of patients. Supplemental intraseptal injections provided success in 29% of patients. Supplemental intraseptal injections achieved profound pulpal anesthesia in 29% of patients when the IAN block failed. This low level of success would not provide predictable levels of anesthesia for patients requiring emergency endodontic treatment for symptomatic irreversible pulpitis in mandibular posterior teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.

    Science.gov (United States)

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-11-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day-1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. © 2017 Wiley Periodicals, Inc.

  8. Ultraviolet-induced irreversible tensile actuation of diacetylene/nylon microfibers

    Science.gov (United States)

    Chun, Kyoung-Yong; Choi, Changsoon; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Photomechanically irreversible tensile-actuated diacetylene-embedding nylon 6/6 microfibers were investigated. 10,12-pentacosadiynoic acid (PCDA) monomer, which have conventionally provided a visual color change by temperature and photo-driven stimuli, was embedded in nylon 6/6 microfibers by wet spinning. By ultraviolet (UV) (254 nm) exposure, we observed irreversible tensile actuation (contraction) of linear (untwisted) and helical (twisted) structural microfibers. The tensile contraction of twisted nylon 6/6-PCDA microfiber containing10 mM PCDA was reached to ˜2% at 60 °C. Such irreversible tensile contraction can be promoted by volume contraction of PCDA monomers during UV exposure along with irregular structural deformation containing gauche conformation with increasing temperature. The kinetics of tensile contraction with temperature and time were shown by the Arrhenius plots. The activation energies were 34.3-35.7 kJ mol-1 as increasing the concentration of PCDA, implies that the nylon 6/6-PCDA microfibers could be applied to show time-temperature integrated device.

  9. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    Science.gov (United States)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  10. Fundamental study of key issues related to advanced sCO2 Brayton cycle: Prototypic HX development and cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Devesh [Georgia Inst. of Technology, Atlanta, GA (United States)

    2018-01-08

    Diffusion bonded heat exchangers are the leading candidates for the sCO2 Brayton cycles in next generation nuclear power plants. Commercially available diffusion bonded heat exchangers utilize set of continuous semi-circular zigzag micro channels to increase the heat transfer area and enhance heat transfer through increased turbulence production. Such heat exchangers can lead to excessive pressure drop as well as flow maldistribution in the case of poorly designed flow distribution headers. The goal of the current project is to fabricate and test potential discontinuous fin patterns for diffusion bonded heat exchangers; which can achieve desired thermal performance at lower pressure drops. Prototypic discontinuous offset rectangular and Airfoil fin surface geometries were chemically etched on to 316 stainless steel plate and sealed against an un-etched flat pate using O-ring seal emulating diffusion bonded heat exchangers. Thermal-hydraulic performance of these prototypic discontinuous fin geometries was experimentally evaluated and compared to the existing data for the continuous zigzag channels. The data generated from this project will serve as the database for future testing and validation of numerical models.

  11. Preoperative Visual Loss is the Main Cause of Irreversible Poor Vision in Children with a Brain Tumor

    OpenAIRE

    Goldenberg-Cohen, Nitza; Ehrenberg, Miriam; Toledano, Helen; Kornreich, Liora; Snir, Moshe; Yassur, Iftach; Cohen, Ian J.; Michowiz, Shalom

    2011-01-01

    The purpose of this study was to characterize the severe postoperative irreversible visual loss induced by optic neuropathy in some children with a brain tumor. The computerized database (2003–2008) of a neuro-ophthalmology service of a major pediatric tertiary center was reviewed for all children with severe irreversible visual loss (counting fingers or less) due to brain-tumor-related optic neuropathy at their last follow-up examination. Data on age, gender, etiology, initial symptoms, and ...

  12. Preoperative visual loss is the main cause of irreversible poor vision in children with a brain tumor

    OpenAIRE

    Nitza eGoldenberg-Cohen; Miriam eEhrenberg; Helen eToledano; Liora eKornreich; Moshe eSnir; iftach eYassur; Cohen, Ian J.; Shalom eMichowiz

    2011-01-01

    To characterize the severe postoperative irreversible visual loss induced by optic neuropathy in some children with a brain tumor, the computerized database (2003-2008) of a neuro-ophthalmology service of a major pediatric tertiary center was reviewed for all children with severe irreversible visual loss (counting fingers or less) due to brain-tumor-related optic neuropathy at their last follow-up examination. Data on age, gender, etiology, initial symptoms and signs, visual acuity before and...

  13. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    Science.gov (United States)

    Maser, Adam Charles

    work losses over the time history of the mission. The characterization of the thermodynamic irreversibility distribution helps give the propulsion systems designer an absolute and consistent view of the tradeoffs associated with the design of the entire integrated system. Consequently, this leads directly to the question of the proper allocation of irreversibility across each of the components. The process of searching for the most favorable allocation of this irreversibility is the central theme of the research and must take into account production cost and vehicle mission performance. The production cost element is accomplished by including an engine component weight and cost prediction capability within the system model. The vehicle mission performance is obtained by directly linking the propulsion and thermal management model to a vehicle performance model and flying it through a mission profile. A canonical propulsion and thermal management systems architecture is then presented to experimentally test each element of the methodology separately: first the integrated modeling and simulation, then the irreversibility, cost, and mission performance considerations, and then finally the proper technique to perform the optimal allocation. A goal of this research is the description of the optimal allocation of system irreversibility to enable an engine cycle design with improved performance and cost at the vehicle-level. To do this, a numerical optimization was first used to minimize system-level production and operating costs by fixing the performance requirements and identifying the best settings for all of the design variables. There are two major drawbacks to this approach: It does not allow the designer to directly trade off the performance requirements and it does not allow the individual component losses to directly factor into the optimization. An irreversibility allocation approach based on the economic concept of resource allocation is then compared to the

  14. Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation.

    Science.gov (United States)

    Rodriguez-Navarro, C; Ruiz-Agudo, E; Ortega-Huertas, M; Hansen, E

    2005-11-22

    Although Ca(OH)2 is one of the oldest art and building material used by mankind, little is known about its nanostructural and colloidal characteristics that play a crucial role in its ultimate performance as a binder in lime mortars and plasters. In particular, it is unknown why hydrated lime putty behaves as an irreversible colloid once dried. Such effect dramatically affects the reactivity and rheology of hydrated lime dispersions. Here we show that the irreversible colloidal behavior of Ca(OH)2 dispersions is the result of an oriented aggregation mechanism triggered by drying. Kinetic stability and particle size distribution analysis of oven-dried slaked lime or commercial dry hydrate dispersions exhibit a significant increase in settling speed and particle (cluster) size in comparison to slaked lime putty that has never been dried. Drying-related particle aggregation also leads to a significant reduction in surface area. Electron microscopy analyses show porous, randomly oriented, micron-sized clusters that are dominant in the dispersions both before and after drying. However, oriented aggregation of the primary Ca(OH)2 nanocrystals (approximately 60 nm in size) is also observed. Oriented aggregation occurs both before and during drying, and although limited before drying, it is extensive during drying. Nanocrystals self-assemble in a crystallographically oriented manner either along the 100 or equivalent 110 directions, or along the Ca(OH)2 basal planes, i.e., along [001]. While random aggregation appears to be reversible, oriented aggregation is not. The strong coherent bonding among oriented nanoparticles prevents disaggregation upon redispersion in water. The observed irreversible colloidal behavior associated with drying of Ca(OH)2 dispersions has important implications in heritage conservation, particularly considering that nowadays hydrated lime is often the preferred alternative to portland cement in architectural heritage conservation. Finally, our

  15. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    Science.gov (United States)

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  16. A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time

    Directory of Open Access Journals (Sweden)

    Roland Riek

    2014-06-01

    Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy

  17. Histologic Findings of a Human Immature Revascularized/Regenerated Tooth with Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Peng, Chufang; Zhao, Yuming; Wang, Wenjun; Yang, Yuan; Qin, Man; Ge, Lihong

    2017-06-01

    Pulp revascularization/regeneration in immature permanent teeth with necrotic pulp and/or apical periodontitis is an effective approach for inducing root maturation. Previous histologic studies showed cementoid/osteoid tissue and/or periodontal ligament-like tissue formed within the root canals. This case report describes the histologic findings of a human symptomatic irreversible pulpitis immature permanent tooth with most of the pulp removed after a revascularization/regeneration procedure. A human immature permanent mandibular premolar (tooth #29) was diagnosed as symptomatic irreversible pulpitis with symptomatic apical periodontitis at the emergency department. Most of the pulp was removed. The tooth was treated with revascularization/regeneration. At the 12-month recall, the radiographic examination revealed thickening of the root canal wall, narrowing of the root apex, and lengthening of the root. The tooth was extracted at 12 months for orthodontic treatment. The specimens were processed for histologic examination. Histologically, the apical third of the root canal was filled with newly formed dentinlike and pulplike tissue. There was a layer of flattened odontoblastlike cells lining the dentinal wall. In the midportion of the root canal, the newly formed dentinlike tissue gradually changed to cementumlike tissue. In the upper third of the root canal, there was a presence of cementocytelike cells housed in the lacunae of cementumlike tissue around the loose connective tissue. In the present case, regeneration of the pulplike tissue and the periodontium existed after a revascularization/regeneration procedure in an immature permanent tooth clinically diagnosed as symptomatic irreversible pulpitis. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis.

    Science.gov (United States)

    Taha, N A; Abdelkhader, S Z

    2018-02-03

    To assess the outcome of full pulpotomy using Biodentine in permanent teeth with carious exposures and symptoms indicative of irreversible pulpitis. Sixty-four permanent molar teeth with symptomatic vital pulps in 52 patients aged 19-69 years were included. Preoperative pulpal and periapical diagnosis was established. After informed consent, the tooth was anaesthetized, isolated using rubber dam and disinfected with 5% NaOCl before caries excavation; subsequently, the pulp was amputated to the level of the canal orifices. Haemostasis was achieved, and a 3-mm layer of Biodentine (Septodont, Saint-Maur-des-Fosses, France) was placed as the pulpotomy agent. Resin-modified glass-ionomer liner was placed and the tooth restored with either resin composite or amalgam, and a postoperative periapical radiograph exposed. Clinical and radiographic evaluation was completed at 6 months and 1 year postoperatively. Pain levels were scored preoperatively and 2 days post-treatment. Clinical signs and symptoms indicative of irreversible pulpitis were established in all teeth, and periapical rarefaction was present in nine teeth. After 2 days, 93.8% reported complete relief of pain. At 6 months, 63 of 64 attended recall with 98.4% clinical and radiographic success. At 1 year, 59 of 63 attended recall, with 100% clinical and 98.4 radiographic success. Seven of eight cases with periapical rarefaction who attended recall had improvement in the periapical index (PAI) score. A hard tissue barrier was detected radiographically in four cases. Full pulpotomy using Biodentine was a successful treatment option for cariously exposed pulps in mature permanent molar teeth with clinical signs and symptoms indicative of irreversible pulpitis, up to 1 year. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Directory of Open Access Journals (Sweden)

    Hisanori Eba

    Full Text Available Matrix metalloproteinases (MMPs are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  20. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Science.gov (United States)

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  1. Anaesthetic efficacy of lidocaine/clonidine for inferior alveolar nerve block in patients with irreversible pulpitis.

    Science.gov (United States)

    Shadmehr, E; Aminozarbian, M G; Akhavan, A; Mahdavian, P; Davoudi, A

    2017-06-01

    This prospective, randomized, double-blind study aimed to compare the efficacy of lidocaine with epinephrine versus lidocaine with clonidine for inferior alveolar nerve block (IANB) and hemodynamic stability (heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure) in patients with irreversible pulpitis. One hundred patients with irreversible pulpitis in mandibular molar teeth randomly received 1.8 mL of 2% lidocaine with clonidine (15 μg mL -1 ) or 1.8 mL of 2% lidocaine with epinephrine (12.5 μg mL -1 ), using a conventional IANB technique. Endodontic access cavities were prepared 15 min after solution deposition, and all patients were required to have profound lip numbness. Success was defined as no or mild pain (visual analog scale recording) upon endodontic access cavity preparation or initial canal instrumentation. The hemodynamic parameters were measured before, during and 5, 10 and 30 min after administration. Finally, the collected data were subjected to independent t-test, chi-square and Fisher's exact test using spss software ver.20 at a significant level of 0.05. The success rates for IANB using lidocaine with epinephrine and lidocaine with clonidine solutions were 29% and 59%, respectively. The clonidine group exhibited a significantly higher success rate (P irreversible pulpitis, addition of clonidine to lidocaine improved the success rate of IANB compared to a standard lidocaine/epinephrine solution. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

    Science.gov (United States)

    Wang, Yang; Tu, Z C

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). © 2012 American Physical Society

  3. Endothelial dysfunction and atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease

    Directory of Open Access Journals (Sweden)

    Murat Çiftel

    2012-01-01

    Full Text Available Objective: To assess endothelial dysfunction and the risk for coronary atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease (CHD. Methods: The study included 18 cyanotic patients (the mean age was 12.28 ± 3.26 years who developed irreversible pulmonary hypertension due to cyanotic and acyanotic CHDs, and 18 control patients (the mean age was 11.78 ± 3.00 years. Study groups were compared for flow-mediated dilatation (FMD, carotid intima media thickness (CIMT and atherosclerotic risk factors. Results: Compared to the control group, the mean FMD was significantly reduced in the cyanotic group (5.26 ± 2.42% and 9.48 ± 2.60%, respectively; P-value < 0.001. No significant difference was observed between the groups in CIMT (0.41 ± 0.08 mm and 0.39 ± 0.06 mm, respectively; P-value = 0.299. The levels of total cholesterol, low-density lipoprotein-cholesterol and very low-density lipoprotein-cholesterol were statistically significantly lower compared tothe control group (P-value = 0.001, 0.006 and 0.014, respectively, whereas no statistically significant difference was found in the levels of high-density lipoprotein-cholesterol and triglycerides (P-value = 0.113 and 0.975, respectively. Conclusions: Systemic endothelial dysfunction in children with irreversible pulmonary hypertension due to CHD was noted but there was no increased risk for atherosclerosis.

  4. Pressure tuning of spectral holes in organic crystalline materials: Irreversible effects

    Science.gov (United States)

    Gradl, G.; Feis, A.; Friedrich, J.

    1992-10-01

    The behavior of spectral holes under pressure in a polycrystalline material, namely dimethyl-s-tetrazine (DMST) doped n-octane was investigated and compared with the behavior in a durene single crystal host and glasses. Application of pressure induces frequency shifts and line broadenings which are significantly larger than in single crystals and glasses. Part of the broadening is irreversible and is attributed to the creation of dipolar strain fields. The distribution of dislocation thresholds is continuous with no obvious lower cut off. The response of the material to pressure changes depends on its history.

  5. Irreversible degradation behaviors of an electrolyte-gated polyaniline (PANI) nanowire field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yong; Lee, Sang-Kwon [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Hyun-Eui; Choi, Gyoung-Rin [Korean Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2010-12-15

    We studied the degradation properties of a conducing polyaniline (PANI) nanowire field-effect transistor (FET) operating in a three-probe FET structure in an electrolyte solution on a SiO{sub 2}/Si substrate. We observed that the current-voltage characteristics of an electrolyte-gated PANI nanowire FET swept for 13 cycles in a cyclic potential mode exhibited clear irreversible degradation, as shown by the drain current-gate voltage curves. We propose that the degradation of the PANI nanowire FET, which indicates a conductance loss and gain in the oxidation and reduction modes, respectively, is attributable to the intensity of Coulombic repulsion in the cycle mode.

  6. Giant flux creep through the surface barriers and the irreversibility line in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Burlachkov, L. [Bar-Ilan Univ., Ramat-Gan (Israel); Geshkenbein, V.B. [Landau Inst. for Theoretical Physics, Moscow (Russian Federation)]|[Weizmann Inst. of Science, Rehovot (Israel)]|[Theoretische Physik, ETH-Hoenggerberg, Zuerich (Switzerland); Koshelev, A.E. [Argonne National Lab., IL (United States)]|[ISSP, Chernogolovka (Russian Federation); Larkin, A.I. [Landau Inst. for Theoretical Physics, Moscow (Russian Federation)]|[Weizmann Inst. of Science, Rehovot (Israel); Vinokur, V.M. [Argonne National Lab., IL (United States)

    1994-05-01

    Magnetic flux relaxation over the surface barrier in high temperature superconductors are investigated Vortex dynamics controlled by the penetration both of pancake vortices and vortex lines are discussed. The penetration field H{sub p} for pancakes decay is exponentially with temperature. The size of the magnetization loop is determined by the decay of H{sub p} during the process of relaxation, but its shape remains unchanged. The irreversibility line associated with the pancake penetration is given by H{sub irr} {proportional_to} exp(- 2T/T{sub o}), and may lie both above and below the melting line.

  7. Irreversible Thermodynamic Bound for the Efficiency of Light-Emitting Diodes

    Science.gov (United States)

    Xue, Jin; Li, Zheng; Ram, Rajeev J.

    2017-07-01

    A thermodynamic model for light-emitting diodes (LEDs) is developed by considering energy and entropy flows in the system. Thermodynamic constraints have previously been considered separately for the reversible process of electroluminescence in LEDs and for light extraction and collimation in other optical systems. By considering both processes in the LED model, an irreversible upper bound for the conversion of electrical energy to optical energy is derived and shown to be higher than unity, but tighter and more realistic than the reversible case. We also model a LED as an endoreversible heat engine where the carrier-transport processes can be directly connected to the elements of a thermodynamic cycle.

  8. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Vroomen, Laurien G. P. H., E-mail: la.vroomen@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Kazemier, Geert, E-mail: g.kazemier@vumc.nl; Tol, M. Petrousjka van den, E-mail: mp.vandentol@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  9. Irreversible Paraplegia Following One Time Prophylactic Intrathecal Chemotherapy in an Adult Patient with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Lee, Hea Yong; Im, Sung-il; Kang, Myoung-Hee; Kim, Kwang Min; Kim, Seok Hyun; Kim, Hun-Gu; Kang, Jung Hun

    2008-01-01

    We present an adult female patient who developed irreversible paraplegia and areflexia four days post intrathecal chemotherapy with methotrexate, cytosine arabinoside and hydrocortisone. On magnetic resonance imaging (MRI) of the lumbar spine, diffuse gadolinium enhancement of the anterior spinal nerve roots (ventral roots) was detected. Methylprednisolone was intravenously administered at a daily dose of 30mg/kg for three days. Despite this treatment, flaccid weakness in the lower extremities and urinary retention persisted. Following consolidation chemotherapy, no improvement in neurologic status was noted. Six months later, a follow-up MRI revealed severe atrophy of the thoracic spinal cord. PMID:18306482

  10. Uso de cateteres venosos totalmente implantados para nutrição parenteral: cuidados, tempo de permanência e ocorrência de complicações infecciosas Long-term central venous catheter for total parenteral nutrition: catheter care, permanence period, and incidence of infections

    Directory of Open Access Journals (Sweden)

    Maria do Rosário Del Lama de Unamuno

    2005-04-01

    Full Text Available Cateteres venosos totalmente implantados são utilizados em pacientes com síndrome do intestino curto, para realizar o suporte nutricional parenteral, o qual mantém estes pacientes vivos, pois fornece-lhes nutrientes que são absorvidos pela via digestiva. No entanto, estes cateteres não são isentos de complicações. As infecções relacionadas aos cateteres venosos são as complicações mais temidas e sua incidência varia de 3% a 20%, aumentando em pacientes mais graves. O objetivo do presente estudo é descrever as complicações infecciosas em pacientes recebendo nutrição parenteral por meio de cateteres venosos totalmente implantados. Tais cateteres são utilizados pela Divisão de Nutrição Clínica do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, para realizar o suporte nutricional parenteral em pacientes submetidos a ressecções extensas de intestino delgado. Foram avaliadas as complicações infecciosas ocorridas com 21 cateteres, implantados em 16 pacientes. O tempo de permanência dos cateteres foi de 768±664,3 dias (mediana 529 dias e a taxa de infecção foi de 0,029 infecções/paciente/ano, resultados que se comparam às taxas de infecção observadas em países desenvolvidos. Concluiu-se que os cuidados observados no manuseio destes cateteres foram de fundamental importância para diminuir a incidência de infecção nestes pacientes.Long-term venous catheters are used for the total parenteral nutrition infusion, which is essential for feeding short-bowel syndrome patients. However, complications are likely to occur. The incidence of catheter related infections ranges from 3 to 20% in hospitalized patients. The Divisão de Nutrição Clínica do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Brazil, has been providing nutrition support to short-bowel syndrome patients, using totally implantable venous catheters. This is a

  11. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    Science.gov (United States)

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic

  12. Sarcolemmal blebs and osmotic fragility as correlates of irreversible ischemic injury in preconditioned isolated rabbit cardiomyocytes.

    Science.gov (United States)

    Armstrong, S C; Shivell, L C; Ganote, C E

    2001-01-01

    The hypothesis that irreversible ischemic injury is related to sub-sarcolemmal blebbing and an inherent osmotic fragility of the blebs was tested by subjecting isolated control and ischemically preconditioned (IPC) or calyculin A (CalA)-pretreated (protected) rabbit cardiomyocytes to ischemic pelleting followed by resuspension in 340, 170 or 85 mosmol medium containing trypan blue. At time points from 0-240 min, osmotic fragility was assessed by the percentage of trypan blue permeable cells. Membrane blebs were visualized with India ink preparations. Bleb formation, following acute hypo-osmotic swelling, developed by 75 min and increased with longer periods of ischemia. Osmotic fragility developed only after 75 min. Cells resuspended in 340 mosmol media did not form blebs and largely retained the ability to exclude trypan blue, even after 240 min ischemia. Although the latent tendency for osmotic blebbing preceded the development of osmotic fragility, most osmotically fragile cells became permeable without evident sarcolemmal bleb formation. The onset of osmotic fragility was delayed in protected cells, but protection did not reduce the bleb formation. It is concluded that blebbing and osmotic fragility are independent manifestations of ischemic injury. The principal locus of irreversible ischemic injury and the protection provided by IPC may lie within the sarcolemma rather than at sarcolemmal attachments to underlying adherens junctions.

  13. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide.

    Science.gov (United States)

    Hutchins, David A; Walworth, Nathan G; Webb, Eric A; Saito, Mak A; Moran, Dawn; McIlvin, Matthew R; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  14. Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis

    Directory of Open Access Journals (Sweden)

    Nugroho Agung Pambudi

    2017-09-01

    Full Text Available This research aims to evaluate the performance of a fluidized bed boiler in an ethanol production plant through exergy and irreversibility analysis. The study also includes the optimization of the pre-heater and the deaerator in order to improve the system efficiency. Operational data from the ethanol production plant was collected between 2015 and early 2016. The total exergy derived from the fuel was determined to be 7783 kJ/s, while the exergy efficiency of the system was found to be 26.19%, with 2214 kJ/s used in steam production, while 71.55% was lost to component irreversibility and waste heat from the pre-heater. The exergy efficiencies of individual components of the system such as the boiler, deaerator, and pre-heater were found to be 25.82%, 40.13%, and 2.617%, respectively, with the pre-heater having the lowest efficiency. Thus, the pre-heater has the highest potential to significantly improve the efficiency of the boiler system. The optimization of the pre-heater shows that a rise in temperature in the outlet of the pre-heater positively affects the exergy efficiency of the deaerator.

  15. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  16. Putative Stem Cells in Human Dental Pulp with Irreversible Pulpitis-An Exploratory Study

    Science.gov (United States)

    Wang, Z.; Pan, J.; Wright, JT; Bencharit, S.; Zhang, S.; Everett, ET; Teixeira, FB; Preisser, JS

    2010-01-01

    Introduction Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is unknown whether stem cells also exist in clinically compromised teeth with irreversible pulpitis. Here we explored whether cells retrieved from clinically compromised dental pulp have stem cell-like properties. Methods Pulp cells were isolated from healthy teeth (control group) and from teeth with clinically diagnosed irreversible pulpitis (diseased group). Cell proliferation, stem cell marker STRO-1 expression and cell odonto-osteo-genic differentiation competence were compared. Results Cells from the diseased group demonstrated decreased colony formation capacity and a slightly decreased cell proliferation rate but had similar STRO-1 expression, and exhibited a similar percentage of positive ex vivo osteogenic induction and dentin sialophosphoprotein expression from STRO-1-enriched pulp cells. Conclusion Our study provides preliminary evidence that clinically compromised dental pulp may contain putative cells with certain stem cell properties. Further characterization of these cells will provide insight regarding whether they could serve as a source of endogenous multipotent cells in tissue regeneration based dental pulp therapy. PMID:20416426

  17. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure.

    Science.gov (United States)

    Shimizu, Emi; Jong, George; Partridge, Nicola; Rosenberg, Paul A; Lin, Louis M

    2012-09-01

    Histological studies of immature human permanent necrotic teeth with or without apical periodontitis after revascularization have not been reported. This case report describes the histological findings of tissue formed in the canal space of an immature permanent tooth #9 with irreversible pulpitis without apical periodontitis after revascularization. An immature human permanent tooth #9 was fractured 3.5 weeks after revascularization and could not be retained. The tooth was extracted and prepared for routine histological and immunohistochemical evaluation in order to examine the nature of tissue formed in the root canal following the revascularization procedure. At 3.5 weeks after revascularization, more than one half of the canal was filled with loose connective tissue similar to the pulp tissue. A layer of flattened odontoblast-like cells lined along the predentin. Layers of epithelial-like cells, similar to the Hertwig's epithelial root sheath, surrounded the root apex. No hard tissue was formed in the canal. Based on the histological findings in the present case, regeneration of pulp-like tissue is possible after revascularization. In this case, both the apical papilla and the Hertwig's epithelial root sheath survived in an immature permanent tooth despite irreversible pulpitis but without apical periodontitis. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Study of the anesthetic efficacy of inferior alveolar nerve block using articaine in irreversible pulpitis.

    Science.gov (United States)

    Ahmad, Zeeshan H; Ravikumar, H; Karale, Rupali; Preethanath, R S; Sukumaran, Anil

    2014-01-01

    The purpose of this study was to determine the anesthetic efficacy of inferior alveolar nerve block (IANB) using 4% articaine and 2% lidocaine supplemented with buccal infiltration. Forty five patients, diagnosed with irreversible pulpitis of a mandibular posterior tooth were included in the study. The first group of 15 patients received 2% lidocaine with 1:200000 epinephrine, the second group 2% lidocaine with 1: 80,000 epinephrine and the third group of 15 subjects received 4% articaine with 1:100000 epinephrine. During the access cavity preparation those patients who complained of pain received an additional buccal infiltration. The percentage of subjects who got profound anesthesia and failure to achieve anesthesia were calculated and tabulated using a visual analog scale. The results revealed that 87% of subjects who received 4% Articaine with 1:100,000 epinephrine got satisfactory anesthesia with inferior alveolar nerve block alone. Only 2 (13%) subjects received an additional buccal infiltration and none of the patients failed to obtain complete anesthesia with articaine. In comparison only 40% of subjects got complete anesthesia with 2% lidocaine with 1:200000 and 60% with 2% lidocaine with 1:80,000. It can be concluded that 4% articaine can be used effectively for obtaining profound anesthesia for endodontic procedures in patients with irreversible pulpitis.

  19. Smoothed quantum-classical states in time-irreversible hybrid dynamics

    Science.gov (United States)

    Budini, Adrián A.

    2017-09-01

    We consider a quantum system continuously monitored in time which in turn is coupled to an arbitrary dissipative classical system (diagonal reduced density matrix). The quantum and classical dynamics can modify each other, being described by an arbitrary time-irreversible hybrid Lindblad equation. Given a measurement trajectory, a conditional bipartite stochastic state can be inferred by taking into account all previous recording information (filtering). Here, we demonstrate that the joint quantum-classical state can also be inferred by taking into account both past and future measurement results (smoothing). The smoothed hybrid state is estimated without involving information from unobserved measurement channels. Its average over recording realizations recovers the joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an inefficient photon detector. This feature is taken into account through a fictitious classical two-level system. The average purity of the smoothed quantum state increases over that of the (mixed) state obtained from the standard quantum jump approach.

  20. Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane.

    Science.gov (United States)

    Chang, Haiqing; Liu, Baicang; Liang, Heng; Yu, Huarong; Shao, Senlin; Li, Guibai

    2017-07-01

    To investigate the effect of filtration mode and backwash water on ultrafiltration (UF) membrane performance, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) for constant pressure (CP) filtration and constant flux (CF) filtration were compared. Kaolin, humic acid (HA) and sodium alginate (SA) solutions were used as feed solutions, and then the fouled membranes were backwashed with UF permeate or ultrapure water. Results showed that when the kaolin solution was filtrated, the filtration mode had a limited effect on the membrane fouling, and low TFI and HIFI were observed. When HA and SA solutions were filtrated, the TFI of UF under CP mode was comparable to or slightly higher than that under CF mode. Higher TFI was observed at a hydrophobic membrane, a high filtration strength, a high feed concentration, a low pH, a high ionic strength, and a low Ca2+ concentration. When the UF permeate was used as the backwash water, the HIFI for the UF operated under CF mode was significantly less than that under CP mode. Low irreversible fouling was obtained when the ultrapure water was used for backwashing, and the HIFI for the UF under different filtration modes was almost identical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose

    Science.gov (United States)

    Wang, Xin; Duan, Runyao

    2017-11-01

    We demonstrate the irreversibility of asymptotic entanglement manipulation under quantum operations that completely preserve the positivity of partial transpose (PPT), resolving a major open problem in quantum information theory. Our key tool is a new efficiently computable additive lower bound for the asymptotic relative entropy of entanglement with respect to PPT states, which can be used to evaluate the entanglement cost under local operations and classical communication (LOCC). We find that for any rank-two mixed state supporting on the 3 ⊗3 antisymmetric subspace, the amount of distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit) while its entanglement cost under PPT operations is exactly one ebit. As a by-product, we find that for this class of states, both the Rains's bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. So, in general, there is no unique entanglement measure for the manipulation of entanglement by PPT operations. We further show a computable sufficient condition for the irreversibility of entanglement distillation by LOCC (or PPT) operations.

  2. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Scarlet eGallegos

    2015-03-01

    Full Text Available Alpha-synuclein is a presynaptic protein expressed throughout the central nervous system, and it is the main component of Lewy bodies, one of the histopathological features of Parkinson’s disease (PD which is a progressive and irreversible neurodegenerative disorder. The conformational flexibility of α-synuclein allows it to adopt different conformations, i.e. bound to membranes or form aggregates, the oligomers are believed to be the more toxic species. In this review, we will focus on two major features of α-synuclein, transmission and toxicity that could help to understand the pathological characteristics of PD. One important feature of α-synuclein is its ability to be transmitted from neuron to neuron using mechanisms such as endocytosis, plasma membrane penetration or through exosomes, thus propagating the Lewy body pathology to different brain regions thereby contributing to the progressiveness of PD. The second feature of α-synuclein is that it confers cytotoxicity to recipient cells, principally when it is in an oligomeric state. This form causes mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, proteasome impairment, disruption of plasma membrane and pore formation, and lead to apoptosis pathway activation and consequent cell death. The complexity of α-synuclein oligomerization and formation of toxic species could be a major factor for the irreversibility of PD and could also explain the lack of successful therapies to halt the disease.

  3. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids : Symposia

    CERN Document Server

    Sedov, L

    1968-01-01

    At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig­ inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre­ versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re­ sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...

  4. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  5. Pilot Study to Assess Safety and Clinical Outcomes of Irreversible Electroporation for Partial Gland Ablation in Men with Prostate Cancer

    Science.gov (United States)

    Murray, Katie S.; Ehdaie, Behfar; Musser, John; Mashni, Joseph; Srimathveeravalli, Govindarajan; Durack, Jeremy C.; Solomon, Stephen B.; Coleman, Jonathan A.

    2016-01-01

    Purpose Partial prostate gland ablation is a strategy to manage localized prostate cancer. Irreversible electroporation can ablate localized soft tissues. We sought to describe 30- and 90-day complications and intermediate-term functional outcomes in men undergoing prostate gland ablation using irreversible electroporation. Materials and Methods We reviewed the charts of 25 patients with prostate cancer who underwent prostate gland ablation using irreversible electroporation as a primary procedure and who were followed for at least 6 months. Results Median follow-up was 10.9 months. Grade 3 complications occurred in 2 patients including epididymitis (1) and urinary tract infection (1). Fourteen patients experienced grade ≤ 2 complications, mainly transient urinary symptoms, hematuria, and urinary tract infections. Of 25 patients, 4 (16%) had cancer in the zone of ablation on routine follow-up biopsy at 6 months. Of those with normal urinary function at baseline, 88% and 94% reported normal urinary function at 6 and 12 months after prostate gland ablation, respectively. By 12 months, only 1 patient with normal erectile function at baseline reported new difficulty with potency and only 2 patients (8%) required a pad for urinary incontinence. Conclusions Prostate gland ablation with irreversible electroporation is feasible and safe in selected men with localized prostate cancer. Intermediate-term urinary and erectile function outcomes appear reasonable. Irreversible electroporation is effective in ablation of tumor-bearing prostate tissue, as a majority of men had no evidence of residual cancer on biopsy 6 months after prostate gland ablation. PMID:27113966

  6. Anesthetic efficacy of articaine for inferior alveolar nerve blocks in patients with symptomatic versus asymptomatic irreversible pulpitis.

    Science.gov (United States)

    Argueta-Figueroa, Liliana; Arzate-Sosa, Gabriel; Mendieta-Zeron, Hugo

    2012-01-01

    This study sought to determine the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine in patients with symptomatic and asymptomatic irreversible pulpitis in mandibular posterior teeth and if individual patient factors, pulpal disease characteristics, and previous medication are correlated to local anesthetic success. A second objective was to determine the specificity and sensibility of a cold test for prediction of anesthetic success prior to endodontic treatment. Seventy patients diagnosed with irreversible pulpitis in mandibular posterior teeth received 1.6 mL of 4% articaine with 1:100,000 epinephrine for an inferior alveolar nerve block (IANB) using a metal guide. The anesthetic solution was injected with a computer-preprogrammed delivery system for local anesthesia. Endodontic access was begun 15 minutes after solution deposition; later, patients rated their discomfort using the visual analog scale (VAS). The success rate for the IA NB using articaine was 64.2% in patients with symptomatic irreversible pulpitis and 86.9% in patients with asymptomatic irreversible pulpitis. Cold test prior to root canal treatment had a specificity and sensibility of 12.5% and 87.1%, respectively. The anesthetic efficacy of articaine in irreversible pulpitis is moderately acceptable, and anesthetic success increases when the patient has been premedicated with NSAIDs. The cold test appears to be a favorable indicator for predicting anesthetic success.

  7. A study of severance taxes on crude oil and natural gas: The irreversibility of taxation

    Science.gov (United States)

    Brandly, Mark L.

    This dissertation examines the institution of severance taxes. An explanation of the property rights allocations in the petroleum industry provides the foundation for discussing the incentive structure of the industry. This explanation concludes that the severance tax burden on the supply side of the industry is born by oil producers and royalty owners. A history of national and state severance taxes in the United States is provided. The literature on the justifications for severance taxes and the economic studies that are relevant to the issue of the tax effect on oil output is reviewed. This review shows that an important implication of severance taxes, the fact that the output effect of such taxes is at least partially irreversible, has been overlooked. A mathematical model is constructed that demonstrates the relationships between output, the sellers' price, the buyers' price, excess burden, the consumers' tax burden, the producers' tax burden, and the price elasticities of supply and demand. It is then demonstrated that the appropriate framework for analyzing severance taxes includes an upward sloping supply curve and a completely elastic demand curve. Another mathematical model shows the effect that a severance tax has on the output decision given different income tax situations. A review of the industry procedures for abandoning wells is followed by a theoretical argument that severance taxes are irreversible to some degree. When a well is abandoned, due to a severance tax, the well is plugged with cement. The costs of reentering such a well are large relative to the potential profits to be derived from such a decision. Eliminating the severance tax does not provide the incentive needed to reenter and produce an abandoned well. An empirical examination of the Kansas severance tax imposed in 1983 compares the present value of an abandoned well with the costs of reentering such a well. This comparison leads to the conclusion that, generally, a well that was

  8. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT-) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT- virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT- viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment.IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT- PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe and

  9. Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature

    Science.gov (United States)

    Faisal Haider, Mohammad; Giurgiutiu, Victor; Lin, Bin; Yu, Lingyu

    2017-09-01

    This paper presents an experimental and analytical study of irreversible change in piezoelectric wafer active sensor (PWAS) electromechanical (E/M) impedance and admittance signature under high temperature exposure. After elevated to high temperatures, change in the material properties of PWAS can be quantified through irreversible changes in its E/M impedance and admittance signature. For the experimental study, circular PWAS transducers were exposed to temperatures between 50 °C and 250 °C at 50 °C intervals. E/M impedance and admittance data were obtained before and after each heating cycle. Irreversible temperature sensitivity of PWAS resonance and anti-resonance frequency was estimated as 0.0246 kHz °C-1 and 0.0327 kHz °C-1 respectively. PWAS transducer material properties relevant to impedance or admittance signature such as dielectric constant, dielectric loss factor, mechanical loss factor, and in plane piezoelectric constant were determined experimentally at room temperature before and after the elevated temperature tests. The in-plane piezoelectric coefficient was measured by using optical-fiber strain transducer system. It was found that the dielectric constant and in-plane piezoelectric coefficient increased linearly with temperature. Dielectric loss also increases with temperature but remains within 0.2% of initial room temperature value. Change in dielectric properties and piezoelectric constant may be explained by depinning of domains or by domain wall motion. The piezoelectric material degradation was investigated microstructurally and crystallographically by using scanning electron microscope and x-ray diffraction method respectively. There were no noticeable changes in microstructure, crystal structure, unit cell dimension, or symmetry. The degraded PWAS material properties were determined by matching impedance and admittance spectrums from experimental results with a closed form circular PWAS analytical model. Analytical results showed that

  10. Graphical Analysis of PET Data Applied to Reversible and Irreversible Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jean

    1999-11-18

    Graphical analysis refers to the transformation of multiple time measurements of plasma and tissue uptake data into a linear plot, the slope of which is related to the number of available tracer binding sites. This type of analysis allows easy comparisons among experiments. No particular model structure is assumed, however it is assumed that the tracer is given by bolus injection and that both tissue uptake and the plasma concentration of unchanged tracer are monitored following tracer injection. The requirement of plasma measurements can be eliminated in some cases when a reference region is available. There are two categories of graphical methods which apply to two general types of ligands--those which bind reversibly during the scanning procedure and those which are irreversible or trapped during the time of the scanning procedure.

  11. Differential temperature Carnot heat analysis shows that computing machines are thermodynamically irreversible

    Science.gov (United States)

    Parker, Michael C.; Walker, Stuart D.

    2008-07-01

    We perform a differential temperature Carnot analysis of the changes in energy and entropy (degrees of freedom) associated with an ideal classical computing machine. Assuming that Carnot's maximum efficiency law is as equally applicable to a computing machine as to a mechanical machine, we find that useful computation is necessarily dissipative and thermodynamically irreversible. In addition, we find that copying or cloning of information is as dissipative as the original process employed to create the information (through a computation) in the first place. We prove minimum heat dissipation kT ln 2 per output calculation bit, where T is the thermodynamic temperature of unavoidable by-product bits (i.e. not the output calculation bits) rather than a generally assumed 'surrounding environment' temperature. Overall, this places computers into the same category as conventional machines, obeying the second law of thermodynamics and always operating below 100% efficiency, such that a perpetual calculating machine cannot exist.

  12. Flow-injection biamperometric direct determination of calcium dobesilate in irreversible couple system.

    Science.gov (United States)

    Song, Jun-Feng; Chen, Jia-Quan

    2003-11-24

    A flow-injection biamperometric method for direct determination of calcium dobesilate had been proposed based on biamperometric detection for irreversible couple. The detection was realized by coupling the oxidation of dobesilate at one platinum wire electrode with the reduction of MnO(4)(-) at another one with the applied potential difference of 0 V between two platinum wire electrodes. Dobesilate was determined in the range of 4.0 x 10(-6) to 1.0 x 10(-4) M with the detection limit of 8.0 x 10(-7) M (S/N=3). The relative standard derivation of 1.7% was obtained for 24 successive determinations of 4.0 x 10(-5) M dobesilate. The proposed method had been shown to be sensitive, simple and rapid.

  13. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Vogel, Jantien A., E-mail: j.a.vogel@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin, E-mail: k.nielsen@vumc.nl; Kazemier, Geert, E-mail: g.kazemier@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-06-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired, the dorsal approach could be considered alternatively.

  14. Effects of oxymorphazone in frogs: long lasting antinociception in vivo, and apparently irreversible binding in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Benyhe, S.; Hoffman, G.; Varga, E.; Hosztafi, S.; Toth, G.; Borsodi, A.; Wollemann, M.

    1989-01-01

    Oxymorphazone was found to be a relatively weak antinociceptive drug in intact frog (Rana esculenta) when acetic acid was used as pain stimulus. Frogs remained analgesic for at least 48 hrs following oxymorphazone administration. The ligand increased the latency of wiping reflex in spinal frogs too. There effects were blocked by naloxone. In equilibrium binding studies (/sup 3/H)oxymorphazone had high affinity to the opioid receptors of frog brain and spinal cord as well. Kinetic experiments show that only 25% of the bound (/sup 3/H)oxymorphazone is readily dissociable. Preincubation of the membranes with labeled oxymorphazone results in a washing resistant inhibition of the opioid binding sites. At least 70% of the (/sup 3/H)oxymorphazone specific binding is apparently irreversible after reaction at 5 nM ligand concentration, and this can be enhanced by a higher concentration of tritiated ligand.

  15. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (friction in two "adiabatic" processes. The EMP is retrieved to be situated between η(C)/2 and η(C)/(2-η(C)), with η(C) = 1-T(c)/T(h) being the Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived.

  16. Anesthetic success of supplemental infiltration in mandibular molars with irreversible pulpitis: A systematic review

    Science.gov (United States)

    Yadav, Seema

    2015-01-01

    Aim: To systematically review the anesthetic success rates of inferior alveolar nerve block (IANB) injection technique alone with that of combination of IANB and supplemental infiltration (SI) technique when used for pulpal anesthesia of mandibular posterior teeth with irreversible pulpitis during endodontic treatment. Settings and Design: The study follows a longitudinal study design involving original research. Materials and Methods: Electronic databases were systematically searched for randomized controlled clinical studies. Studies were selected by predefined inclusion and exclusion criteria. Statistical Analysis Used and Result: The statistical analysis used was based on the results of the original research. All the included studies showed that there is the difference in the values comparing the two techniques, but the data are not statistically significantly different. Conclusion: Based on this review, the better anesthetic efficacy of the SI was observed. PMID:26069400

  17. Endodontic therapy of a mandibular canine tooth with irreversible pulpitis secondary to dentigerous cyst.

    Science.gov (United States)

    MacGee, Scott

    2014-01-01

    Dentigerous cysts are uncommon, yet are being reported with increasing frequency in the veterinary literature. Dentigerous cysts are a type of benign odontogenic cyst associated with impacted teeth, most commonly the mandibular first premolar tooth. Significant bone destruction can occur secondary to the expansion of a dentigerous cyst. The expanding cyst can lead to pathology of neighboring teeth, which can include external root resorption or pulpitis. Intraoral dental radiographs are imperative to properly assess the presence and extent of a dentigerous cyst, as well as the status of the neighboring teeth. This case report describes treatment for dentigerous cyst including cyst lining curettage, mandibular bone regeneration, and endodontic therapy for a canine tooth with irreversible pulpitis.

  18. Antibiotics are not useful to reduce pain associated with irreversible pulpitis.

    Science.gov (United States)

    Hoskin, Eileen; Veitz-Keenan, Analia

    2016-09-01

    Data sourcesCochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Clinical Trials.gov and the WHO International Clinical Trials Registry Platform. There were no language restrictions.Study selectionRandomised controlled trials which compared the relief of pain with systemic antibiotics and analgesics against placebo and analgesics in the preoperative phase of irreversible pulpitis. The primary interest was pain control with an antibiotic or without one in the presence of analgesics. The secondary outcomes were type, dose and frequency of medication for pain relief and any adverse effects related to hypersensitivity or other reactions to either the antibiotic or analgesics.Data extraction and synthesisTwo authors independently assessed the results of the searches. Data extraction and risk bias assessment were also carried out independently. A third reviewer settled any disagreement on inclusion. Since only one study was included a meta-analysis could not be performed.ResultsOnly one double blind randomised clinical trial involving 40 participants with a diagnosis of irreversible pulpitis in one of their teeth was included in this review. This was a low risk, well-constructed double blind study. Half of the participants were treated with penicillin 500 mg, the other with a placebo every six hours over a seven- day period. In addition, all the participants were instructed to initially take one tablet of ibuprofen every 4-6 hours as needed and to take acetaminophen with codeine (two tablets every 4-6 hours) only if the ibuprofen did not relieve the pain.There was no significant difference in the mean total number of ibuprofen tablets over the study period; 9.2(standard deviation (SD) 6.02) in the penicillin group versus, 9.6 (SD 6.34) in the placebo group; mean difference -0.40 (95% CI -4.23 to 3.43); P value = 0.84.The mean total number of Tylenol tablets, 6.9 (SD 6.87), used in the penicillin group versus 4

  19. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  20. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  1. Is "hit and run" a single word? The processing of irreversible binomials in neglect dyslexia.

    Science.gov (United States)

    Arcara, Giorgio; Lacaita, Graziano; Mattaloni, Elisa; Passarini, Laura; Mondini, Sara; Benincà, Paola; Semenza, Carlo

    2012-01-01

    The present study is the first neuropsychological investigation into the problem of the mental representation and processing of irreversible binomials (IBs), i.e., word pairs linked by a conjunction (e.g., "hit and run," "dead or alive"). In order to test their lexical status, the phenomenon of neglect dyslexia is explored. People with left-sided neglect dyslexia show a clear lexical effect: they can read IBs better (i.e., by dropping the leftmost words less frequently) when their components are presented in their correct order. This may be taken as an indication that they treat these constructions as lexical, not decomposable, elements. This finding therefore constitutes strong evidence that IBs tend to be stored in the mental lexicon as a whole and that this whole form is preferably addressed in the retrieval process.

  2. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    Science.gov (United States)

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-10-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow.

  3. Mass and Heat Diffusion in Ternary Polymer Solutions: A Classical Irreversible Thermodynamics Approach

    CERN Document Server

    Es-haghi, S Shams

    2016-01-01

    Governing equations for evolution of concentration and temperature in three-component systems were derived in the framework of classical irreversible thermodynamics using Onsager variational principle and were presented for solvent/solvent/polymer and solvent/polymer/polymer systems. The derivation was developed from the Gibbs equation of equilibrium thermodynamics using the local equilibrium hypothesis, Onsager reciprocal relations and Prigogine theorem for systems in mechanical equilibrium. It was shown that the details of mass and heat diffusion phenomena in a ternary system are completely expressed by a 3x3 matrix whose entries are mass diffusion coefficients (4 entries), thermal diffusion coefficients (2 entries) and three entries that describe the evolution of heat in the system. The entries of the diffusion matrix are related to the elements of Onsager matrix that are bounded by some constraints to satisfy the positive definiteness of entropy production in the system. All the elements of diffusion matr...

  4. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review

    Science.gov (United States)

    Paiella, Salvatore; Salvia, Roberto; Ramera, Marco; Girelli, Roberto; Frigerio, Isabella; Giardino, Alessandro; Allegrini, Valentina; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures. PMID:26981115

  5. Hair repigmentation associated with the use of lenalidomide: graying may not be an irreversible process!

    Science.gov (United States)

    Dasanu, Constantin A; Mitsis, Demytra; Alexandrescu, Doru T

    2013-06-01

    We report the first case of progressive hair repigmentation associated with the use of lenalidomide in an elderly patient with multiple myeloma. The influence of lenalidomide on follicular melanogenesis may involve removing the inhibitory influences of some cytokines such as IL-1, IL-6 and TNF-α. In addition, certain endocrine effects of lenalidomide on the hypophyseal-adrenal axis could explain its action on hair pigmentation. We further hypothesize that lenalidomide may be capable of stimulating migration and/or differentiation of melanocytes to promote repigmentation of gray hair follicles. Pending the clarification of how hair repigmentation occurs with lenalidomide, our observation materializes the concept that hair graying may not be an irreversible process, which opens avenues for targeted therapeutics in the fields of cosmetics and anti-aging medicine.

  6. The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas

    Science.gov (United States)

    Valev, Pentcho

    2002-11-01

    Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.

  7. Caracemide, a site-specific irreversible inhibitor of protein R1 of Escherichia coli ribonucleotide reductase

    DEFF Research Database (Denmark)

    Larsen, I. K.; Cornett, Claus; Karlsson, M.

    1992-01-01

    The anticancer drug caracemide, N-acetyl-N,O-di(methylcarbamoyl)hydroxylamine, and one of its degradation products, N-acetyl-O-methylcarbamoyl-hydroxylamine, were found to inhibit the enzyme ribonucleotide reductase of Escherichia coli by specific interaction with its larger component protein R1....... No effect on the smaller protein R2 was observed. The effect of the degradation product was about 30 times lower than that of caracemide itself. The caracemide inactivation of R1 is irreversible, with an apparent second-order rate constant of 150 M-1 s-1. The R1R2 holoenzyme was approximately 30 times more...... inactivation. These results indicate that caracemide inactivates R1 by covalent modification at the substrate-binding site. By analogy with the known interaction between caracemide and acetylcholinesterase or choline acetyltransferase, we propose that the modification of R1 occurs at an activated cysteine...

  8. FRET-based method for evaluation of the efficiency of reversible and irreversible sonoporation

    Science.gov (United States)

    Ruzgys, Paulius; Tamošiūnas, Mindaugas; Lukinsone, Vanesa; Šatkauskas, Saulius

    2017-09-01

    It is widely known that not all of the treated cells survive after introduction of exogenous molecules via any physical method. Therefore, it is important to develop methods that would allow simultaneous evaluation of both molecular delivery efficiency and cell viability. This study presents Förster resonance energy transfer (FRET)-based method that allows molecular transfer and cell viability evaluation in a single measurement by employing two common fluorescent dyes, namely, ethidium bromide and trypan blue. The method has been validated using cell sonoporation. The FRET-based method allows the efficiency evaluation of both reversible and irreversible sonoporation in a single experiment. Therefore, this method could be used to reduce time, labor, and material cost while improving the accuracy of evaluations.

  9. Onsager's irreversible thermodynamics of the dynamics of transient pores in spherical lipid vesicles.

    Science.gov (United States)

    Martínez-Balbuena, L; Hernández-Zapata, E; Santamaría-Holek, I

    2015-09-01

    Onsager's irreversible thermodynamics is used to perform a systematic deduction of the kinetic equations governing the opening and collapse of transient pores in spherical vesicles. We show that the edge tension has to be determined from the initial stage of the pore relaxation and that in the final state the vesicle membrane is not completely relaxed, since the surface tension and the pressure difference are about 25% of its initial value. We also show that the pore life-time is controlled by the solution viscosity and its opening is driven by the solution leak-out and the surface tension drop. The final collapse is due to a non-linear interplay between the edge and the surface tensions together with the pressure difference. We also discuss the connection with previous models.

  10. [Mineral trioxide aggragate pulpotomy for the treatment of immature permanent teeth with irreversible pulpitis: a preliminary clinical study].

    Science.gov (United States)

    Peng, Chufang; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-12-01

    To evaluate the preliminary clinical effect of mineral trioxide aggragate (MTA) pulpotomy on immature permanent teeth with irreversible pulpitis. Twenty-six immature permanent teeth with irreversible pulpitis were recuited from Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology. These teeth were treated with partial or full pulpotomy according to the condition of pulp bleeding. MTA was used as pulp capping material. Patients were recalled periodically after the treatment. Clinical and radiographic effects were evaluated. At one year follow-up, 20 teeth were evaluated as healed or healing, 2 teeth were evaluated as failure and 4 teeth were dropped out. The success rate was considered 91% (20/22). A dentinal bridge was radiographcally observed underneath the pulpotomy site in 13 teeth(65%, 13/20). MTA pulpotomy is an effective method for the treatment of immature permanent teeth with irreversible pulpitis. But further research with longer follow up period is required.

  11. Is ‘hit and run’ a single word? The processing of irreversible binomials in neglect dyslexia

    Directory of Open Access Journals (Sweden)

    Giorgio eArcara

    2012-02-01

    Full Text Available The present study is the first neuropsychological investigation into the problem of the mental representation and processing of irreversible binomials, i.e. word pairs linked by a conjunction (e.g. ‘hit and run’, ‘dead or alive’. In order to test their lexical status, the phenomenon of neglect dyslexia is explored.People with left-sided neglect dyslexia show a clear lexical effect: they can read irreversible binomials better (i.e., by dropping the leftmost words less frequently when their components are presented in their correct order. This may be taken as an indication that they treat these constructions as lexical, not decomposable, elements. This finding therefore constitutes strong evidence that irreversible binomials tend to be stored in the mental lexicon as a whole and that this whole form is preferably addressed in the retrieval process.

  12. Irreversible volume growth in polymer-bonded powder systems: effects of crystalline anisotropy, particle size distribution, and binder strength

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Gee, R H; Hoffman, D; Fried, L E

    2007-08-22

    Pressed-powdered crystallites of intrinsically anisotropic materials have been shown to undergo irreversible volume expansion when subjected to repeated cycles of heating and cooling. We develop a coarse-grained (micron-scale) interaction Hamiltonian for this system and perform molecular dynamics simulations, which quantitatively reproduce the experimentally observed irreversible growth. The functional form and values of the interaction parameters at the coarse-grained level are motivated by our knowledge at the atomic/molecular scale, and allows a simple way to incorporate the effect of polymeric binder. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy of the powder material, is mediated by particles much smaller than the average crystallite size, and can be significantly reduced in the presence of high-strength polymeric binder with elevated glass transition temperatures.

  13. Water and salt dynamics and the hydraulic conductivity feedback: irreversible soil degradation and reclamation opportunities

    Science.gov (United States)

    Mau, Yair; Porporato, Amilcare

    2017-04-01

    We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.

  14. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes.

    Science.gov (United States)

    Cheung, W; Kavnoudias, H; Roberts, S; Szkandera, B; Kemp, W; Thomson, K R

    2013-06-01

    The aims of this study were to evaluate the safety, feasibility and tumour response of _irreversible electroporation, a non-thermal ablation technique, for the treatment of unresectable hepatocellular carcinoma. The endpoints were safety and local treatment efficacy. Patients with unresectable tumours and tumours not amenable for radiofrequency _ablation because of their vicinity to organs vulnerable to thermal damage such as the bowel or because they were close to large blood vessels that would limit efficacy of ablation due to the heat sink effect were treated with irreversible electroporation using percutaneous _ultrasound and/or computed tomography guided electrode placement between November 2008 and _December 2009. Early, late, minor and major complications were recorded. Tumour response was determined on triphasic helical computed tomography follow-up at one month, then every three months post-procedure. Eleven patients received IRE therapy to 18 HCC lesions (Mean diameter 2.44 ± 0.99 cm; range 1.0-6.1 cm) with five patients having more than one treated HCC. Mean follow-up was 18 months (range 14-24 months). Six patients required repeat treatments for local residual or recurrent disease; two of these also had IRE for distant intrahepatic recurrence. No serious complications were observed despite seven lesions lying adjacent to important structures or organs. Four patients developed transient urinary retention and seven developed transient local post-procedure pain. After IRE therapy, 13 (72%) lesions were completely ablated with 93% success for lesions ≤ 3 cm (13/14). The local recurrence-free period was 18 ± 4 months and the distance recurrence free period was 14 ± 6 months. These preliminary results suggest that IRE is a safe and feasible technique for local ablation of HCC, particularly for lesions less than 3 cm. No major complications were encountered during this study even for tumours close to essential structures or organs.

  15. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    Science.gov (United States)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  16. Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors.

    Science.gov (United States)

    Gillman, Peter Kenneth

    2011-02-01

    Recent advances clarifying the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors that have not been considered in depth lately are discussed. These new data elucidate aspects of enzyme inhibition and pharmacokinetic interactions involving amine oxidases, cytochrome P450 enzymes, aminotransferases (transaminases), and decarboxylases (carboxy-lyases) and the effects of tyramine. Phenelzine and tranylcypromine remain widely available, and many publications have data relevant to this review. Their effect on CYP 450 enzymes is less than many newer drugs. Tranylcypromine only inhibits CYP 450 2A6 (selectively and potently). Phenelzine has no reported interactions, but, like isoniazid, weakly and irreversibly inhibits CYP 450 2C19 and 3A4 in vitro. It might possibly be implicated in interactions (as isoniazid is). Phenelzine has some clinically relevant inhibitory effects on amine oxidases, aminotransferases, and decarboxylases, and it lowers pyridoxal phosphate levels. It commonly causes pyridoxal deficiency, weight gain, sedation, and sexual dysfunction, but only rarely causes hepatic damage and failure, or neurotoxicity. The adverse effects and difficulties with monoamine oxidase inhibitors are less than previously believed or estimated, including a lower risk of hypertension, because the tyramine content in foods is now lower. Potent norepinephrine reuptake inhibitors have a strong protective effect against tyramine-induced hypertension. The newly discovered trace amine-associated receptors probably mediate the pressor response. The therapeutic potential of tranylcypromine and L-dopa in depression and Parkinson disease is worthy of reassessment. Monoamine oxidase inhibitors are not used to an extent proportionate with their benefits; medical texts and doctors' knowledge require a major update to reflect the evidence of recent advances.

  17. Possibilities of the method of irreversible electroporation in treatment of the local and widespread pancreatic cancer

    Science.gov (United States)

    Anaskin, S. G.; Ivanov, Yu V.; Panchenkov, D. N.; Chertyuk, V. B.; Astakhov, D. A.; Nechunayev, A. A.; Geraskin, V. S.; Fedotova, T. Y.

    2017-01-01

    Methods of a local destruction of tumors didn’t find till today wide circulation in treatment of patients with formations of the pancreas (P). It is bound to features of blood supply, anatomical and histological structure of PZh, and also a large number of complications and a recurrence. The technique of the irreversible elektroporation (IE) represents a new unique method of not thermal ablyation at which impact on tissues is carried out by short electric impulses of high voltage (to 3 kV) that involves irreversible rising of permeability of cellular membranes and death of cells. The optimum mechanism of rising of permeability of a cellular membrane electric impulses concerning their frequency or repetitions is yet not up to the end clear; it is recognized that outcomes depend on amplitude, duration and number of impulses. Influence has to be synchronized with a cordial rhythm in order to avoid development of an arrhythmia. Existence at the patient of an arrhythmia and the artificial driver of a rhythm is contraindication to carrying out an elektroporation. We have experience of use of a technique for 18 patients with a locally-spread pancreatic cancer. It was succeeded to reflect the main advantages of a new technique in our experience, such as comparative simplicity of workmanship, safety for vascular and pro-current structures, the minimum impact on function of a pancreas. Efficiency of a destruction is proved to ultrasonic, computer and morphological researches in the postoperative period. The maximum term of observation made 19 months. Though exact indications to use of NE still accurately aren’t defined, the international experience and the first own data allow to state efficiency of new technology in palliative surgical treatment of perivascular tumors of a pancreas, and also its safety.

  18. Irreversible Total Loss of Brain Function and Organ Donation in Patients with Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    Mohme, Malte; Sauvigny, Thomas; Grensemann, Jörn; Söffker, Gerold; Kluge, Stefan; Westphal, Manfred; Czorlich, Patrick

    2017-09-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening disease with an often fatal clinical course leading to irreversible loss of brain function (ILBF) (i.e., brain death). The purpose of this study was to assess the prevalence and characteristics of patients with aSAH who became organ donors after diagnosis of ILBF. Anonymized clinical data sets of 395 patients treated for aSAH at a university medical center from January 2011 to December 2016 were retrospectively analyzed. Prevalence of consent for organ donation and clinical characteristics, including parameters for diagnosis of irreversible loss of brain function, were assessed. After initial admission to the intensive care unit, 18.0% of patients (n = 71) died (Glasgow Outcome Scale score 1). Intracerebral hemorrhage occurred in 42.3% of patients who died, aneurysmal rebleeding occurred in 19.7%, and intraventricular hemorrhage occurred in 87.3%. In 50.7% of patients who died (n = 36), ILBF was diagnosed, and 32.4% (n = 23) of these patients became organ donors. In 55.6%, additional diagnostic electroencephalography was performed. Male patients significantly more often became organ donors than female patients (P = 0.008). ILBF with subsequent organ donation was predominantly seen in patients organs were explanted for donation, including 42 kidneys, 21 livers, 3 pancreas, 11 hearts and 8 lungs. ILBF in the setting of fatal aSAH is a prevalent diagnosis with complex demands for neurointensive care physicians. We demonstrated the clinical characteristics and epidemiologic factors of patients with aSAH converting to organ donors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Irreversible thermodynamics of uniform ferromagnets with spin accumulation: Bulk and interface dynamics

    Science.gov (United States)

    Saslow, Wayne M.

    2017-05-01

    Using ideas from Landau's Fermi-liquid theory, we apply irreversible thermodynamics to conducting and insulating ferromagnets with magnetic variables M ̂ for the quantization axis and for the spin accumulation m ⃗ of the nonequilibrium excitations; thus the total magnetization is taken to be M ⃗=M ⃗+m ⃗ . The resulting theory closely corresponds to the theory of Silsbee et al. [Silsbee, Janossy, and Monod, Phys. Rev. B 19, 4382 (1979), 10.1103/PhysRevB.19.4382]. For the bulk, in addition to confirming the usual Landau-Lifshitz equation for M ̂ and a Bloch-like equation for m ⃗ (with a nonuniform precession term), there are two related cross-relaxation terms between the transverse parts of the nonequilibrium m ⃗ and M ⃗. Unlike the s-d model, where in a field H ⃗ the equilibrium magnetizations M⃗s and M⃗d are both nonzero, for this m-M model in a field H ⃗, only the equilibrium magnetization M ⃗ is nonzero. For the interface, the boundary condition for M ̂ is given by micromagnetics, and that for m ⃗ is given by irreversible thermodynamics, where the current of transverse spins crossing the interface is proportional to the discontinuity in the transverse part of the vector spin chemical potential. M ̂, m ⃗, and H ⃗ are coupled; in the decoupled approximation, we find the wave vectors for the modes of M ̂ and the transverse m ⃗. We discuss reciprocity between spin pumping (M ⃗ driven out of the ferromagnet) and spin transfer torque (M ⃗ driven into the ferromagnet).

  20. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  1. Comparative evaluation of platelet-rich fibrin, mineral trioxide aggregate, and calcium hydroxide as pulpotomy agents in permanent molars with irreversible pulpitis: A randomized controlled trial

    OpenAIRE

    Varun Kumar; Ruchi Juneja; Jigyasa Duhan; Pankaj Sangwan; Sanjay Tewari

    2016-01-01

    Background: Pulpotomy has been proposed as an alternative for the management of irreversible pulpitis in permanent molars with closed apices. Aim: To compare the performances of calcium hydroxide (CH), mineral trioxide aggregate (MTA), and platelet-rich fibrin (PRF) as pulpotomy agents in mature permanent molars with irreversible pulpitis. Materials and Methods: Fifty-four permanent mandibular molars with carious exposure and symptoms of irreversible pulpitis were randomly allocated to three ...

  2. Irreversible Electroporation in the Liver: Contrast-enhanced Inversion-Recovery MR Imaging Approaches to Differentiate Reversibly Electroporated Penumbra from Irreversibly Electroporated Ablation Zones

    Science.gov (United States)

    Guo, Yang; Zhang, Yue; Nijm, Grace M.; Sahakian, Alan V.; Yang, Guang-Yu; Omary, Reed A.

    2011-01-01

    Purpose: To evaluate the use of contrast material–enhanced magnetic resonance (MR) imaging with conventional T1-weighted gradient-recalled echo (GRE) and inversion-recovery (IR)-prepared GRE methods to quantitatively measure the size of irreversible electroporation (IRE) ablation zones in the liver in a rat model. Materials and Methods: All studies were approved by the institutional animal care and use committee and were performed in accordance with institutional guidelines. Seventeen adult male Sprague-Dawley rats were divided into four groups. Rats in groups 1–3 (n = 15 total) underwent IRE performed by using different IRE parameters after gadopentetate dimeglumine administration. Rats in group 4 (n = 2) underwent IRE ablation without prior gadopentetate dimeglumine injection to serve as control animals. MR imaging measurements (with conventional T1-weighted GRE and IR-prepared GRE methods) were performed 2 hours after IRE to predict the IRE ablation zones, which were correlated with pathology-confirmed necrosis areas 24 hours after IRE by using the Spearman correlation coefficient. Bland-Altman plots were also generated to investigate the agreement between MR imaging–measured ablation zones and reference standard histologic measurements of corresponding ablation zones. Results: The necrotic areas measured on the pathology images were well correlated with the hyperintense regions measured on T1-weighted GRE images (r = 0.891, P < .001) and normal tissue–nulled IR images (r = 0.874, P < .001); pathology measurements were also well correlated with the smaller hyperintense regions measured on those IR images with inversion times specifically selected to null signal from the peripheral penumbra surrounding the ablation zone (r = 0.939, P < .001). Bland-Altman plots indicated that these penumbra-nulled IR images provided more accurate predictions of IRE ablation zones, with T1-weighted GRE measurements tending to overestimate ablation zone sizes. Conclusion

  3. Disinfection procedures: their efficacy and effect on dimensional accuracy and surface quality of an irreversible hydrocolloid impression material.

    LENUS (Irish Health Repository)

    Rentzia, A

    2011-02-01

    This study investigated the antibacterial efficacy and effect of 0.55% ortho-phthalaldehyde (Cidex OPA(®)) and 0.5% sodium hypochlorite (NaOCl) on the dimensional accuracy and surface quality of gypsum casts retrieved from an irreversible hydrocolloid impression material.

  4. Pain Reduction in Untreated Symptomatic Irreversible Pulpitis Using Liposomal Bupivacaine (Exparel): A Prospective, Randomized, Double-blind Trial.

    Science.gov (United States)

    Bultema, Kristy; Fowler, Sara; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2016-12-01

    In the treatment of patients with symptomatic irreversible pulpitis, endodontic debridement is a predictable method to relieve pain. However, there are clinical situations in which emergency care cannot be provided immediately. An unexplored treatment option in these cases may be the use of a long-acting anesthetic to reduce pain in untreated irreversible pulpitis. Some medical studies have shown potential for infiltrations of liposomal bupivacaine (Exparel; Pacira Pharmaceuticals, San Diego, CA) to prolong pain relief and reduce opioid use postoperatively. The Food and Drug Administration has approved Exparel only for infiltrations; therefore, the purpose of this study was to compare an infiltration of liposomal bupivacaine versus bupivacaine for pain control in untreated, symptomatic irreversible pulpitis. Ninety-five emergency patients received 2% lidocaine with 1:100,000 epinephrine via infiltration or an inferior alveolar nerve block to relieve their initial presenting pain. Patients then randomly received either 4 mL liposomal bupivacaine (13.3 mg/mL) or 4 mL 0.5% bupivacaine with 1:200,000 epinephrine by infiltration. Patients received a diary for the day of the appointment and 3 days postinjection to record soft tissue numbness, pain levels, and analgesic (non-narcotic and narcotic) use. No significant differences (P irreversible pulpitis. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Comparison of the oral health-related quality of life and dental pain in symptomatic irreversible pulpitis and pericoronitis

    Directory of Open Access Journals (Sweden)

    Hale Cimilli

    2012-09-01

    Conclusion: The DePaQ gives detailed information about clinical conditions related to pain and the OHRQoL status in both symptomatic irreversible pulpitis and pericoronitis. VAS scores differed between the groups according to the DePaQ items.

  6. A Comparison of Different Volumes of Articaine for Inferior Alveolar Nerve Block for Molar Teeth with Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Abazarpoor, Ramin; Parirokh, Masoud; Nakhaee, Nouzar; Abbott, Paul V

    2015-09-01

    Achieving anesthesia in mandibular molar teeth with irreversible pulpitis is very difficult. The aim of this study was to compare the efficacy of 1.8 mL and 3.6 mL articaine for an inferior alveolar nerve block (IANB) when treating molars with symptomatic irreversible pulpitis. In a randomized, double-blind clinical trial, 82 first mandibular molar teeth with symptomatic irreversible pulpitis randomly received conventional IANB injection either with 1 (1.8 mL) or 2 cartridges (3.6 mL) of 4% articaine with 1:100,000 epinephrine. The patients recorded their pain before and during access cavity preparation as well as during root canal instrumentation using a Heft-Parker visual analog scale. No or mild pain was considered as successful anesthesia. Data were analyzed by t and chi-square tests. Eighty patients were eligible to participate in this study, which showed that 3.6 mL articaine provided a significantly higher success rate (77.5%) of IANBs compared with 1.8 mL of the same anesthetic solution (27.5%) although neither group had 100% successful anesthesia (P irreversible pulpitis, but it did not result in 100% anesthetic success. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Effect of preoperative alprazolam on the success of inferior alveolar nerve block for teeth with irreversible pulpitis.

    Science.gov (United States)

    Khademi, Abbas Ali; Saatchi, Masoud; Minaiyan, Mohsen; Rostamizadeh, Nasim; Sharafi, Fatemeh

    2012-10-01

    Success of inferior alveolar nerve (IAN) block decreases in patients with irreversible pulpitis. The purpose of this study was to evaluate the effect of preoperative administration of alprazolam on the success of the IAN block for teeth with irreversible pulpitis. Sixty patients with irreversible pulpitis of a mandibular molar were selected for this prospective, randomized, double-blind, placebo-controlled study. The patients received identical capsules of either 0.5 mg of alprazolam or placebo 45 minutes before the administration of a conventional IAN block. Access cavity preparation was initiated 15 minutes after the IAN block injection. Lip numbness was recorded for all the patients. Success was defined as no or mild pain on the basis of visual analogue scale recordings during access cavity preparation and initial instrumentation. Data were analyzed by t test, Mann-Whitney, and χ(2) tests. The success rate was 53% for alprazolam group and 40% for placebo group, with no significant difference between the 2 groups (P = .301). Within the scope of the current study, preoperative oral administration of 0.5 mg of alprazolam did not improve the success of the IAN block in mandibular molars in patients with irreversible pulpitis, and the success rate was not adequate to ensure profound pulpal anesthesia. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Unveiling the irreversible performance degradation of organo-inorganic halide perovskite films and solar cells during heating and cooling processes.

    Science.gov (United States)

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Byun, Hye Ryung; Jeong, Hyeon Jun; Jeong, Mun Seok; Nguyen, Loi; Gausin, Christine; Namkoong, Gon

    2017-07-26

    While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells is limited. This study reports the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI 2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI 2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.

  9. Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2014-06-01

    Full Text Available An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a...

  10. Preliminary Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging to Detect Residual Prostate Cancer Following Focal Therapy with Irreversible Electroporation

    NARCIS (Netherlands)

    Scheltema, Matthijs J.; Chang, John I.; van den Bos, Willemien; Böhm, Maret; Delprado, Warick; Gielchinsky, Ilan; de Reijke, Theo M.; de la Rosette, Jean J.; Siriwardana, Amila R.; Shnier, Ron; Stricker, Phillip D.

    2017-01-01

    It is recommended to perform multiparametric magnetic resonance imaging (mpMRI) in the follow-up following focal therapy of prostate cancer (PCa). To determine the diagnostic accuracy of mpMRI to detect residual PCa following focal therapy with irreversible electroporation. Seventy-six patients with

  11. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    Science.gov (United States)

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese

  12. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    Science.gov (United States)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  13. Insufficient evidence to assess the effectiveness of antibiotics for irreversible pulpitis.

    Science.gov (United States)

    George, Roy

    2014-03-01

    The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase and the US National Institutes of Health Trials Register. Randomised controlled trials (RCTs) which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Study selection, risk of bias assessment and data extraction were carried out independently by two reviewers. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants, was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period.There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets taken over the study period: 9.2 (standard deviation (SD) 6.02) in the penicillin group versus 9.6 (SD 6.34) in the placebo group; mean difference -0.40 (95% confidence interval (CI) -4.23 to 3.43; P value = 0.84). This applied equally for the mean total number of Tylenol tablets: 6.9 (SD 6.87) used in the penicillin group versus 4.45 (SD 4.82) in the placebo group; mean difference 2.45 (95% CI -1.23 to 6.13; P value = 0.19). Our secondary outcome on reporting of adverse events was not addressed in this study. This systematic, review which was based on one low-powered small sample trial assessed as a low risk of bias, illustrates that there is insufficient evidence to determine whether antibiotics reduce pain or not compared to not having antibiotics. The results of this review confirm the necessity for further larger sample and methodologically sound trials that can provide additional evidence as to whether antibiotics

  14. Irreversibility of 2,4-Dichlorophenoxyacetic Acid Sorption onto a Volcanic Ash Soil

    Science.gov (United States)

    Mon, E.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2008-12-01

    Pesticide sorption and desorption in soils are key processes governing fate and transport of pesticides in the soil environment. The irreversibility (or hysteresis) in the processes of pesticide sorption and desorption needs to be known to accurately predict behavior of pesticides in soil systems. 2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used pesticide in agriculture fields. However, only few studies of 2,4-D adsorption onto Andosols (volcanic ash soils) have been published, and the knowledge of 2,4-D desorption onto Andosols is very limited. In this study, a volcanic ash soil sampled from a pasture site in Nishi-Tokyo, Japan was used as a sorbent in order to investigate the irreversibility of 2,4-D sorption. For comparison, a pure clay mineral (kaolinite) obtained from Clay Science Society of Japan (CSSJ) was also used. 2,4-D solutions with three concentrations (0.011, 0.022 and 0.045 mmol/L) were prepared in artificial rain water (ARW= 0.085mM NaCl + 0.015mM CaCl2) to simulate field conditions. To prepare the sample solutions, the solid mass/liquid volume ratio of 1:10 was used for both sorbents (volcanic ash soil and kaolinite). The experiments were conducted in triplicate using a batch method under different pH conditions to examine the effect of pH. Desorption was measured during a equilibration procedure: After removal of 7 mL of supernatant in the sorption step, 7 mL of ARW excluding 2,4-D was added to the sample solution after which, it was equilibrated and centrifuged. The procedure was performed sequentially three or four times to obtain a desorption isotherm. Sorption and desorption generally followed Freundlich isotherms. The results showed markedly effects of pH on 2,4-D sorption and desorption in both the soil and kaolinite, with the percentage of sorption increasing with decreasing pH whereas the percentage of desorption decreased. There was a larger adsorption-desorption hysteresis in the volcanic ash soil as compared to kaolinite

  15. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Directory of Open Access Journals (Sweden)

    C. Anil Kumar

    2015-10-01

    Full Text Available We report irreversible thermochromic behaviour of BaWO4 (BWO films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD. Further, the Raman spectra are being used to quantify the presence

  16. Incidence of missed inferior alveolar nerve blocks in vital asymptomatic subjects and in patients with symptomatic irreversible pulpitis.

    Science.gov (United States)

    Fowler, Sara; Reader, Al; Beck, Mike

    2015-05-01

    The purpose of this retrospective study was to determine the incidence of missed inferior alveolar nerve (IAN) blocks by using a 1- or 2-cartridge volume of 2% lidocaine with 1:100,000 epinephrine in vital asymptomatic teeth and in emergency patients with symptomatic irreversible pulpitis. As part of 37 studies, 3169 subjects/patients were evaluated for missed IAN blocks. The study included 2450 asymptomatic subjects and 719 emergency patients presenting with symptomatic irreversible pulpitis. Each subject or patient received either a 1- or 2-cartridge volume of 2% lidocaine with 1:100,000 epinephrine. A missed block was defined as no lip numbness at 15-20 minutes after the IAN block. The effect of anesthetic volume on the incidence of missed blocks was assessed by using mixed models logistic regression with individual studies as a random effect. The incidence of missed blocks for asymptomatic subjects was 6.3% for the 1-cartridge volume and 3.8% for the 2-cartridge volume. For patients presenting with irreversible pulpitis, the incidence of missed blocks was 7.7% for the 1-cartridge volume and 2.3% for the 2-cartridge volume. In both asymptomatic subjects and patients with irreversible pulpitis, the 2-cartridge volume was significantly (P = .0395) better than the 1-cartridge volume. There were no significant effects for pulpal diagnosis (P = .7523) or the pulpal diagnosis and anesthetic volume interaction (P = .3973). Concerning missed IAN blocks, we concluded that administration of a 2-cartridge volume was significantly better (P = .0395) than a 1-cartridge volume in both asymptomatic subjects and emergency patients presenting with irreversible pulpitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    Energy Technology Data Exchange (ETDEWEB)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  18. Uso de solução bucal com sistema enzimático em pacientes totalmente dependentes de cuidados em unidade de terapia intensiva Use of oral rinse with enzymatic system in patients totally dependent in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio da Silva Santos

    2008-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: Os pacientes internados em unidades de terapia intensiva (UTI, na maioria das vezes, não possuem higienização oral adequada. Esta condição de deficiência de higiene oral em pacientes graves desencadeia freqüentemente periodontites, gengivites e outras complicações sistêmicas e orais. O objetivo deste estudo foi avaliar a eficiência da ação antimicrobiana da solução bucal com sistema enzimático associada à higiene oral, em pacientes totalmente dependentes de cuidados internados em UTI. MÉTODO: Estudo piloto prospectivo duplamente encoberto, realizado com 20 pacientes internados em UTI, divididos em 2 grupos com protocolos de higienização bucal com a mesma técnica, mas utilizando-se soluções diferentes, sendo o grupo de estudo (n = 10 utilizando solução bucal com sistema enzimático e o grupo controle (n = 10 utilizando solução bucal à base de cetilpiridínio. RESULTADOS: Os resultados microbiológicos das culturas coletadas nos grupos de estudo e controle, antes e após o uso da solução enzimática, mostraram que não houve diferença significativa entre os grupos (p = 0,41. Na avaliação clínica do Índice de Higiene Oral Simplificada (IHOS houve significância estatística pelo teste Exato de Fisher (p = 0,01, quando comparados os grupos de estudo e controle. O valor de significância estatística foi estabelecido em 5%, ou p BACKGROUND AND OBJECTIVES: Patients admitted to an intensive care unit (ICU, in most cases do not have a proper oral hygiene. This deficient condition of oral hygiene in critical patients often triggers periodontitis, gingivitis and other systemic and oral complications. This research aimed to evaluate the efficiency of the antimicrobial action of a solution with bioactive enzymatic system for oral hygiene, in totally care-dependent patients admitted to ICU. METHODS: A prospective, double blind pilot study was conducted with 20 patients admitted to an ICU, divided

  19. Barthes’ Irreversible Codes: An Intertextual Reading of James Joyce’s “Araby”

    Directory of Open Access Journals (Sweden)

    Seyed Ali Booryazadeh

    2014-01-01

    Full Text Available Roland Barthes believes that semiology is the study of how language embodies the world. Semiotic codes, the paths of this embodiment, accordingly arouse his attention. Barthes in a structural analysis of Balzac’s “Sarrasine” in S/Z expounds five types and functions of these codes: proairetic (basic narrative actions; hermeneutic (narrative turning points; cultural (prior social knowledge; semic (medium-related codes and symbolic (themes. This research in a parallel manner explicates that “Araby,” one of the most widely read of James Joyce’s short stories, is abounded with two of these irreversible codes (proairetic and hermeneutic. The present study furthermore tries to show how with resort to a series of signs and the idea of intertextuality a literary text can provide probable answers for some ambiguous and questionable lexias that comprise the story’s hermeneutic code. It demonstrates that not only can the text of “Araby” be encoded by the same criteria Barthes encoded “Sarrasine” but also Joyce himself presents particular names for these codes.

  20. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation

    Science.gov (United States)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-09-01

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.

  1. Acetylcholine-hydrolyzing activities in soluble brain fraction: Characterization with reversible and irreversible inhibitors.

    Science.gov (United States)

    Estévez, Jorge; Selva, Verónica; Benabent, Mónica; Mangas, Iris; Sogorb, Miguel Ángel; Vilanova, Eugenio

    2016-11-25

    Some effects of organophosphorus compounds (OPs) esters cannot be explained through actions on currently recognized targets acetylcholinesterase or neuropathy target esterase (NTE). In soluble chicken brain fraction, three components (Eα, Eβ and Eγ) of pheny lvalerate esterase activity (PVase) were kinetically discriminated and their relationship with acetylcholine-hydrolyzing activity (cholinesterase activity) were studied in previous works. In this work, four enzymatic components (CS1, CS2, CS3 and CS4) of cholinesterase activity have been discriminated in soluble fraction, according to their sensitivity to irreversible inhibitors mipafox, paraoxon, PMSF and iso-OMPA and to reversible inhibitors ethopropazine and BW284C51. Cholinesterase component CS1 can be related to the Eα component of PVase activity and identified as butyrylcholinesterase (BuChE). No association and similarities can be stablished among the other PVase component (Eβ and Eγ) with the other cholinesterase components (CS2, CS3, CS4). The kinetic analysis has allowed us to stablish a method for discriminating the enzymatic component based on a simple test with two inhibitors. It can be used as biomarker in toxicological studies and for monitoring these cholinesterase components during isolation and molecular identification processes, which will allow OP toxicity to be understood by a multi-target approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Exchangeable Colloidal AFM Probes for the Quantification of Irreversible and Long-Term Interactions

    Science.gov (United States)

    Dörig, Pablo; Ossola, Dario; Truong, Anh Minh; Graf, Monika; Stauffer, Flurin; Vörös, János; Zambelli, Tomaso

    2013-01-01

    An original method is presented to study single-colloid interaction with a substrate in liquid environment. Colloids, either in solution or adsorbed on a surface, are fixed by suction against the aperture of a microchanneled atomic force microscopy cantilever. Their adhesion to the substrate is measured, followed by their release via a short overpressure surge. Such colloid exchange procedure allows for 1), the quick variation of differently functionalized colloids within the same experiment; 2), the investigation of long-term interactions by leaving the colloids on a surface for a defined time before detaching them; and 3), the inspection of irreversible interactions. After validation of the method by reproducing literature results obtained with traditional colloidal atomic force microscopy, the serial use of colloids with different surface functionalization was shown on a micropatterned surface. Finally, concanavalin A-coated colloids were allowed to adsorb on human embryonic kidney cells and then detached one by one. The adhesion between cells and colloids was up to 60 nN, whereas individual cells adhered with 20 nN to the glass substrate. A cellular elastic modulus of 0.8 kPa was determined using the attached colloid as indenter. PMID:23870267

  3. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    Science.gov (United States)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm‑1 whereas that of dc pulses is about 0.5 kV cm‑1.

  4. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation.

    Science.gov (United States)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-09-07

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.

  5. First-order irreversible thermodynamic approach to a nonsteady RLC circuit as an energy converter

    Science.gov (United States)

    Valencia, G.; Arias, L. A.

    2015-01-01

    In this work we show a RLC-circuit as energy converter within the context of first-order irreversible thermodynamics (FOIT). For our analysis, we propose an isothermic model with transient elements and passive elements. With the help of the dynamic equations, the Kirchhoff equations, we found the generalized fluxes and forces of the circuit, the equation system shows symmetry of the cross terms, this property is characteristic of the steady state linear systems, but in this case phenomenological coefficients are function of time. Then, we can use these relations, similar to the linear Onsager relations, to construct the characteristic functions of the RLC energy converter: the power output, efficiency, dissipation and ecological function, and study its energetic performance. The study of performance of the converter is based on two parameters, the coupling parameter and the "forces ratio" parameter, in this case as functions of time. We find that the behavior of the non-steady state converter is similar to the behavior of steady state energy converter. We will explain the linear and symmetric behavior of the converter in the frequencies space rather than in the time space. Finally, we establish optimal operation regimes of economic degree of coupling for this energy converter.

  6. Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling

    Science.gov (United States)

    Arp, Hans Peter H.; Goss, Kai-Uwe

    Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.

  7. Magnetization of underdoped YBa2Cu3Oy above the irreversibility field

    Science.gov (United States)

    Yu, Jing Fei; Ramshaw, B. J.; Kokanović, I.; Modic, K. A.; Harrison, N.; Day, James; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; McCollam, A.; Julian, S. R.; Cooper, J. R.

    2015-11-01

    Torque magnetization measurements on YBa2Cu3Oy (YBCO) at doping y =6.67 (p =0.12 ), in dc fields (B ) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field Hirr(T =0 ) ≈24 T. The differential susceptibility d M /d B , however, is more rapidly suppressed for B ≳16 T than expected from the properties of the low field superconducting state, and saturates at a low value for fields B ≳24 T. In addition, torque measurements on a p =0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behavior, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with charge-density-wave (CDW) order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes d M /d B to saturate at high field. The diamagnetic signal observed above 50 T for the p =0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger three-dimensional ordered CDW.

  8. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  9. Irreversible optic neuritis after infliximab treatment in a patient with ulcerative colitis.

    Science.gov (United States)

    Clemmensen, Kaare; Akrawi, Neven; Stawowy, Marek

    2015-01-01

    This article reports the first known case of permanent blindness due to irreversible unilateral optic neuritis (ON) related to infliximab (Remicade) treatment of a patient with ulcerative colitis. A young male, with a family history of inflammatory bowel disease, was diagnosed with ulcerative colitis at the age of 20. He was treated with steroids and a 5-aminosalicylic acid drug without considerable effect, and later admitted to our hospital due to a relapse during reduction of the prednisolone dosage. A new colonoscopy showed moderate ulcerative colitis activity and the patient was declared as a steroid nonresponder. A treatment of 400 mg intravenous infliximab was initiated along with 150 mg/day of azathioprine (Imurel). Three days after the second infliximab treatment the patient woke up with no vision on the left eye and with pain during ocular movement. Brain and orbitae magnetic resonance imaging showed ON on the left optical nerve without any abscess or thrombosis. The patient was treated with 1000 mg methylprednisolone (Solu-Medrol) intravenous for 3 days and afterward with 75 mg prednisolone orally without any effect. At the 3-month follow up, the patient's vision had not improved, and he was declared permanently blind on the left eye. A neurologist also examined the patient, but no abnormality or cause of the ON was found.

  10. Protein Footprinting by the Combined Use of Reversible and Irreversible Lysine Modifications

    Science.gov (United States)

    Hanai, Ryo; Wang, James C.

    1994-12-01

    A two-step lysine-modification procedure has been devised to chemically footprint protein surfaces involved in macromolecular interactions. A protein tagged at one particular end, in the free state or in a complex, is first treated lightly with a reversible lysine-modifying reagent. The protein is then unfolded and treated extensively with an irreversible lysine reagent to block those lysines that did not react previously; next, the first lysine modification is reversed, and a lysine-specific endoproteinase is used to cleave the tagged polypeptide at the deblocked lysines. Separation of the proteolytic products by size and identification of the tagged fragments map the positions of these lysines. In this procedure, the reversible lysine reagent serves as the chemical footprinting agent, as cleavage of the polypeptide ensues only at the sites of reaction with this reagent. Lysines involved in macromolecular contacts are identified from differences in proteolytic patterns of the tagged protein when the first lysine modification is done with the protein in the free form and in a complex. Application of the method to vaccinia virus topoisomerase identifies a number of lysines that are involved in its binding to DNA.

  11. TRPM8 axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia

    Science.gov (United States)

    Alvarado, Lisa T.; Perry, Griffin M.; Hargreaves, Kenneth. M.; Henry, Michael A.

    2009-01-01

    Pulpitis pain may be triggered by a cold stimulus, yet the cellular mechanisms responsible for this phenomenon are largely unknown. One possible mechanism involves the direct activation of cold-responsive thermoreceptors. The purpose of this study was to evaluate the possible role of the TRPM8 thermoreceptor in cold-mediated noxious pulpal pain mechanisms by comparing expression patterns in pulpal nerves from healthy control molars to cold-sensitive painful molars with irreversible pulpitis. Samples were identically processed with the indirect immunofluorescence method and images obtained with confocal microscopy. The immunofluorescence intensity and area occupied by TRPM8 within N52/PGP9.5 identified nerve fibers were quantified. Results showed that relative to normal samples, TRPM8 nerve area expression was significantly less in the cold-sensitive painful samples (34.9% vs. 8%, p<0.03), but with no significant difference in immunofluorescence intensity between the two groups. These results suggest that TRPM8 is most likely not involved in cold-mediated noxious pulpal pain mechanisms. PMID:17889683

  12. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan

    2006-08-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed.

  13. 1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor.

    Science.gov (United States)

    Artola, Marta; Wu, Liang; Ferraz, Maria J; Kuo, Chi-Lin; Raich, Lluís; Breen, Imogen Z; Offen, Wendy A; Codée, Jeroen D C; van der Marel, Gijsbert A; Rovira, Carme; Aerts, Johannes M F G; Davies, Gideon J; Overkleeft, Herman S

    2017-07-26

    The essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors. Here we present the synthesis, conformational analysis, and application of novel 1,6-cyclophellitol cyclosulfates. We show that 1,6-epi-cyclophellitol cyclosulfate (α-cyclosulfate) is a rapidly reacting α-glucosidase inhibitor whose 4C1 chair conformation matches that adopted by α-glucosidase Michaelis complexes. The 1,6-cyclophellitol cyclosulfate (β-cyclosulfate) reacts more slowly, likely reflecting its conformational restrictions. Selective glycosidase inhibitors are invaluable as mechanistic probes and therapeutic agents, and we propose cyclophellitol cyclosulfates as a valuable new class of carbohydrate mimetics for application in these directions.

  14. Irreversibility of the renormalization group flow in non-unitary quantum field theory

    Science.gov (United States)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Ravanini, Francesco

    2017-10-01

    We show irreversibility of the renormalization group flow in non-unitary but {{ P}T} -invariant quantum field theory in two space-time dimensions. In addition to unbroken PT -symmetry and a positive energy spectrum, we assume standard properties of quantum field theory including a local energy-momentum tensor and relativistic invariance. This generalizes Zamolodchikov’s c-theorem to {{ P}T} -symmetric Hamiltonians. Our proof follows closely Zamolodchikov’s arguments. We show that a function ceff(s) of the renormalization group parameter s exists which is non-negative and monotonically decreasing along renormalization group flows. Its value at a critical point is the ‘effective central charge’ entering the specific free energy. At least in rational models, this equals ceff=c-24Δ , where c is the central charge and Δ is the lowest primary field dimension in the conformal field theory which describes the critical point. Dedicated to John Cardy on the occasion of his 70th birthday.

  15. A comprehensive segmentation analysis of crude oil market based on time irreversibility

    Science.gov (United States)

    Xia, Jianan; Shang, Pengjian; Lu, Dan; Yin, Yi

    2016-05-01

    In this paper, we perform a comprehensive entropic segmentation analysis of crude oil future prices from 1983 to 2014 which used the Jensen-Shannon divergence as the statistical distance between segments, and analyze the results from original series S and series begin at 1986 (marked as S∗) to find common segments which have same boundaries. Then we apply time irreversibility analysis of each segment to divide all segments into two groups according to their asymmetry degree. Based on the temporal distribution of the common segments and high asymmetry segments, we figure out that these two types of segments appear alternately and do not overlap basically in daily group, while the common portions are also high asymmetry segments in weekly group. In addition, the temporal distribution of the common segments is fairly close to the time of crises, wars or other events, because the hit from severe events to oil price makes these common segments quite different from their adjacent segments. The common segments can be confirmed in daily group series, or weekly group series due to the large divergence between common segments and their neighbors. While the identification of high asymmetry segments is helpful to know the segments which are not affected badly by the events and can recover to steady states automatically. Finally, we rearrange the segments by merging the connected common segments or high asymmetry segments into a segment, and conjoin the connected segments which are neither common nor high asymmetric.

  16. Irreversible damage to auditory system functions caused by perinatal hypothyroidism in rats.

    Science.gov (United States)

    Wada, Hiromi; Yumoto, Shoko; Iso, Hiroyuki

    2013-01-01

    We examined the effect of perinatal hypothyroidism on auditory function in rats using a prepulse inhibition paradigm. Pregnant rats were treated with the antithyroid drug methimazole (1-methyl-2-mercaptoimidazole) from gestational day 15 to postnatal day 21 via drinking water at concentrations (w/v) of 0 (control), 0.002 (low dose), or 0.02% (high dose). Rats from methimazole-treated mothers were tested at ages 1, 6, and 12months using techniques to examine prepulse inhibition and startle response. The startle stimulus consisted of 40ms of white noise at 115dB, whereas the prepulse, which preceded the startle stimulus by 30ms, consisted of 20ms of white noise at 75, 85, or 95dB. When the prepulse intensity was 75 or 85dB, the high-dose group showed decreased prepulse inhibition percentages compared with the control and low-dose groups. The reduced percentages of prepulse inhibition did not return to control levels over the 12-month study period. In contrast, no differences in prepulse inhibition were observed among the three dose groups when prepulse intensity was 95dB. Moreover, the high-dose group displayed excessive reaction to auditory startle stimuli compared with the other groups. Reductions in plasma free thyroxine and body weight gain were observed in the high-dose group. We conclude that perinatal hypothyroidism results in irreversible damage to auditory function in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Acrylonitrile irreversibly inactivates glyceraldehyde-3-phosphate dehydrogenase by alkylating the catalytically active cysteine 149.

    Science.gov (United States)

    Campian, E Cristian; Cai, Jian; Benz, Frederick W

    2002-08-15

    Acrylonitrile (AN) is a vinyl monomer used in the production of synthetic fibers, rubber and plastics. AN is acutely toxic but its mechanism of toxicity remains to be established. AN is metabolized to cyanide in vivo but cyanide production alone cannot explain acute AN toxicity. Previous work in our laboratory has shown that AN can alkylate highly reactive cysteine residues in proteins. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a critical enzyme involved in glycolysis, has a catalytically active cysteine 149 in its active site. We report that AN irreversibly inhibits GAPDH with second-order rate constants, at pH 7.4, of 3.7 and 9.2 M(-1) s(-1) at 25 and 37 degrees C, respectively. A combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and electrospray ionization-mass spectrometry-mass spectrometry (ESI-MS-MS) was used to show that AN inactivates GAPDH by covalently binding to cysteine 149 in the active site of the enzyme. Inactivation of GAPDH by AN would be expected to impair glycolytic ATP production and when coupled with the inhibition of mitochondrial ATP synthesis by the AN metabolite cyanide would result in metabolic arrest. The brain can withstand metabolic arrest for only a few minutes thus these combined actions may account for the acute toxicity of AN in vivo.

  18. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    Energy Technology Data Exchange (ETDEWEB)

    Glavatskiy, K. S. [School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072 (Australia)

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  19. Irreversible Wash Aid Additive for Cesium Mitigation. Small-Scale Demonstration and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part of the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.

  20. Breast tissue ablation with irreversible electroporation in rabbits: A safety and feasibility study.

    Science.gov (United States)

    Zhang, Wenlong; Wang, Wanning; Chai, Wei; Luo, Xiaomei; Li, Jiannan; Shi, Jian; Bi, Liqi; Niu, Lizhi

    2017-01-01

    Irreversible electroporation (IRE) was confirmed to control several solid tumors effectively in vivo. Our preclinical study aimed to assess the feasibility and safety of IRE in the breast of rabbit. Thirty New Zealand white rabbits were randomly divided into 3 groups of 10 rabbits (control group, IRE group A, and B). Two mono-electrode needles were inserted into the breast tissue by percutaneous puncture. Electrocardiogram and vital signs were monitored before, during, and after ablation. Histopathology, immunohistochemistry, and transmission electron microscopy were examined at 0 hours, 12 hours, 24 hours, 4 days, 7 days, 14 days, and 28 days after ablation. All the rabbits survived the procedure with no significant adverse effects. Intra-operative ventricular arrhythmias occurred in 1 rabbit from IRE group B and was immediately relieved after ablation. Reversible subcutaneous hemorrhage was observed in 8 rabbits from IRE group A and 7 rabbits from IRE group B. No skin was burnt, however, pectoralis major muscle injuries were found in all rabbits. Histopathological and ultrastructural examination revealed the coexistence of cell necrosis and apoptosis. HE, TUNEL, and Masson staining revealed breast tissue injury and the recovery of damage by fibrous tissue and granulation tissue. Notably, the structures of mammary gland lobules and interstitial components of the breasts were well preserved. Our study suggests that IRE destroys breast cancer while effectively preserving the skin, the structure of mammary gland lobules, and interstitial components. IRE may be a promising technique to locally control breast cancer and to maintain the esthetic of the breast.

  1. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  2. Context-aware system for pre-triggering irreversible vehicle safety actuators.

    Science.gov (United States)

    Böhmländer, Dennis; Dirndorfer, Tobias; Al-Bayatti, Ali H; Brandmeier, Thomas

    2017-06-01

    New vehicle safety systems have led to a steady improvement of road safety and a reduction in the risk of suffering a major injury in vehicle accidents. A huge leap forward in the development of new vehicle safety systems are actuators that have to be activated irreversibly shortly before a collision in order to mitigate accident consequences. The triggering decision has to be based on measurements of exteroceptive sensors currently used in driver assistance systems. This paper focuses on developing a novel context-aware system designed to detect potential collisions and to trigger safety actuators even before an accident occurs. In this context, the analysis examines the information that can be collected from exteroceptive sensors (pre-crash data) to predict a certain collision and its severity to decide whether a triggering is entitled or not. A five-layer context-aware architecture is presented, that is able to collect contextual information about the vehicle environment and the actual driving state using different sensors, to perform reasoning about potential collisions, and to trigger safety functions upon that information. Accident analysis is used in a data model to represent uncertain knowledge and to perform reasoning. A simulation concept based on real accident data is introduced to evaluate the presented system concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  4. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  5. [Irreversible monoamine oxidase inhibitors (IMAOI) to treat depressive disorders - limited use at present in Flanders].

    Science.gov (United States)

    Willaert, L; Verbeke, P; Sienaert, P; De Fruyt, J

    2014-01-01

    Irreversible monoamine oxidase inhibitors (imaoi) are rarely used in Flanders. Such an anti-imaoi policy is not in keeping with the role that imaoi now play in the general guidelines for the treatment of depressive disorders. To provide an overview of the history and the current use of imaoi in Flanders. We searched the literature and the literature used in the psychiatric courses taught at Ghent University and the Catholic University of Leuven and we consulted the Acta (Neurologica et) Psychiatrica Belgica. The information we collected was supplemented by personal communications from experts and by data about the period of commercialisation, the pharmaceutical companies producing imaoi and the use of imaoi. imaoi were introduced rapidly onto the Flemish market but their popularity was short-lived. University courses did not give much attention to imaoi and the attitude to these inhibitors was negative. At the moment, phenelzine is the only imaoi available on the Flemish market and is only rarely prescribed. Following the international trend, imaoi in Flanders initially enjoyed a short period of popularity. However, the limited use of phenelzine at present is not in line with the current guidelines for the treatment of depressive disorders. Practitioners and health professionals need to be better informed. Better education and wider use of imaoi in Flanders are recommended.

  6. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons

    KAUST Repository

    Hamad, Juma

    2014-11-01

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ~2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45μm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application. © 2014 Elsevier Ltd.

  7. Assessment of alternative emergency treatments for symptomatic irreversible pulpitis: a randomized clinical trial.

    Science.gov (United States)

    Eren, B; Onay, E O; Ungor, M

    2017-08-30

    To evaluate three emergency procedures for their ability to alleviate clinical symptoms associated with symptomatic teeth having signs of (at least) partial irreversible pulpitis. Sixty-six maxillary and mandibular molars were randomly assigned to a total pulpectomy group (TP; n = 22), partial pulpectomy group (PP; n = 22) or pulpotomy group (P; n = 22). Procedure durations were recorded. Patients answered a questionnaire on daily analgesic requirements and about clinical symptoms (pain intensity, chewing sensitivity and thermal sensitivity) after the anaesthetic effect had disappeared (Day 0) and on Days 1, 3 and 7 post-treatment. The total pulpectomy group was associated with the longest procedures (median, 24 min), followed by the partial pulpectomy and pulpotomy groups (P pulpectomy group reported greater reductions in pain intensity than the pulpotomy group between Days 0 and 7, Days 1 and 3, and Days 1 and 7 (P pulpectomy and total pulpectomy were comparable with respect to relieving clinical symptoms. Pulpotomy may be preferred because it requires significantly less time and is a simple technique that relieves symptoms quickly and effectively. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.

    Science.gov (United States)

    Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin

    2017-12-15

    State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Irreversible muscle damage in bodybuilding due to long-term intramuscular oil injection.

    Science.gov (United States)

    Banke, I J; Prodinger, P M; Waldt, S; Weirich, G; Holzapfel, B M; Gradinger, R; Rechl, H

    2012-10-01

    Intramuscular oil injections generating slowly degrading oil-based depots represent a controversial subject in bodybuilding and fitness. However they seem to be commonly reported in a large number of non-medical reports, movies and application protocols for 'site-injections'. Surprisingly the impact of long-term (ab)use on the musculature as well as potential side-effects compromising health and sports ability are lacking in the medical literature. We present the case of a 40 year old male semi-professional bodybuilder with systemic infection and painful reddened swellings of the right upper arm forcing him to discontinue weightlifting. Over the last 8 years he daily self-injected sterilized sesame seed oil at numerous intramuscular locations for the purpose of massive muscle building. Whole body MRI showed more than 100 intramuscular rather than subcutaneous oil cysts and loss of normal muscle anatomy. 2-step septic surgery of the right upper arm revealed pus-filled cystic scar tissue with the near-complete absence of normal muscle. MRI 1 year later revealed the absence of relevant muscle regeneration. Persistent pain and inability to perform normal weight training were evident for at least 3 years post-surgery. This alarming finding indicating irreversible muscle mutilation may hopefully discourage people interested in bodybuilding and fitness from oil-injections. The impact of such chronic tissue stress on other diseases like malignancy remains to be determined. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  11. Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron.

    Science.gov (United States)

    Morrison, S J; Metzler, D R; Carpenter, C E

    2001-01-15

    A permeable reactive barrier (PRB) containing zerovalent iron [Fe(O)] was installed at a former uranium milling site in Monticello, UT. A large-scale column experiment was conducted at the site to test the feasibility of Fe(O) to treat U prior to installing the PRB. Effluents from the field column experiment had pH values near 7.34, moderate decreases in C(IV) and Ca concentrations, and an elevated Fe concentration (27.1 mg/L). In contrast, groundwater exiting the PRB had a pH value of 9.82, decreases in C(IV) and Ca concentrations, and a low concentration of Fe (0.17 mg/L). A geochemical model was used to explain the chemical changes that occurred in both the field column experiment and the PRB. The model simulated the systems by the progressive irreversible dissolution of Fe(O). Modeling results indicated that a longer residence time in the PRB compared with the shorter residence time in the column contributed to the disparate effluent qualities. Prior to modeling, a controlled laboratory column experiment was conducted to help evaluate the dominant chemical mechanisms by which Fe(O) removes U from aqueous solutions. Results of the laboratory column experiment indicated that only a small amount of U could be adsorbed to ferric minerals, and, therefore, this mechanism was not considered in the model.

  12. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  13. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Science.gov (United States)

    Golberg, A.; Laufer, S.; Rabinowitch, H. D.; Rubinsky, B.

    2011-02-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 °C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  14. Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model.

    Science.gov (United States)

    Fritz, Stefan; Sommer, Christof M; Vollherbst, Dominik; Wachter, Miguel F; Longerich, Thomas; Sachsenmeier, Milena; Knapp, Jürgen; Radeleff, Boris A; Werner, Jens

    2015-07-01

    Use of thermal tumor ablation in the pancreatic parenchyma is limited because of the risk of pancreatitis, pancreatic fistula, or hemorrhage. This study aimed to evaluate the feasibility and safety of irreversible electroporation (IRE) in a porcine model. Ten pigs were divided into 2 study groups. In the first group, animals received IRE of the pancreatic tail and were killed after 60 minutes. In the second group, animals received IRE at the head of the pancreas and were followed up for 7 days. Clinical parameters, computed tomography imaging, laboratory results, and histology were obtained. All animals survived IRE ablation, and no cardiac adverse effects were noted. Sixty minutes after IRE, a hypodense lesion on computed tomography imaging indicated the ablation zone. None of the animals developed clinical signs of acute pancreatitis. Only small amounts of ascites fluid, with a transient increase in amylase and lipase levels, were observed, indicating that no pancreatic fistula occurred. This porcine model shows that IRE is feasible and safe in the pancreatic parenchyma. Computed tomography imaging reveals significant changes at 60 minutes after IRE and therefore might serve as an early indicator of therapeutic success. Clinical studies are needed to evaluate the efficacy of IRE in pancreatic cancer.

  15. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    Science.gov (United States)

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  17. Facial moulage: the effect of a retarder on compressive strength and working and setting times of irreversible hydrocolloid impression material.

    Science.gov (United States)

    Lemon, James C; Okay, Devin J; Powers, John M; Martin, Jack W; Chambers, Mark S

    2003-09-01

    Irreversible hydrocolloid is widely used as an impression material for fabrication of extraoral maxillofacial impressions. A disadvantage of irreversible hydrocolloid, however, is its limited working time. This study tested the compression strength (elastic recovery) and working and setting times for an irreversible hydrocolloid impression material after a retarder was added. The irreversible hydrocolloid (Jeltrate) was mixed with water in a standard water/powder mixture of 18 mL (1 unit) of water and 7 g (1 unit) of the impression material. Test specimens (n = 3) were prepared by adding 2, 4, 6, and 8 drops of monobasic sodium phosphate (the retarder) to each. Three other specimens, to which no retarder was added, served as the control. Specimens were prepared according to the American National Standards Institute/American Dental Association's specification no.18 guidelines for irreversible hydrocolloid impression material. Immediately after the specimens were prepared, the flat end of a polished rod of poly(methyl methacrylate) was placed in contact with its exposed surface and quickly withdrawn. The working-time experiment was a pass/fail test conducted 30 seconds before the initial setting time. The initial setting time was established as extending from the start of the mix to the time when the impression material no longer adhered to the end of the rod. To determine how the compressive strength of the modified irreversible hydrocolloid (with retarder added) compared with that of the control, the mean stress at maximum load (Mpa) was analyzed. The compressive strength (MPa) was calculated. Statistical analysis consisted of descriptive statistics and regression analyses. The results of this experiment demonstrated that the elastic recovery of the irreversible hydrocolloid did not change with the addition of sodium phosphate (2 to 8 drops). The percent recovery with was 95.95% +/-.42%, 96.33% +/-.82%, and 96.28% +/-.53% for 0 (control), 2 and 8 drops

  18. Visualização dos padrões de variação da taxa de mortalidade infantil no Rio Grande do Sul, Brasil: comparação entre as abordagens Bayesiana Empírica e Totalmente Bayesiana Patterns of variation in the infant mortality rate in Rio Grande do Sul State, Brazil: comparison of empirical Bayesian and fully Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Sabrina Letícia Couto da Silva

    2011-07-01

    Full Text Available A mortalidade infantil é um sensível indicador de saúde. Conhecer o seu perfil geográfico auxilia na formulação de estratégias de saúde pública. O mapeamento de doenças tem por objetivo descrever a distribuição geográfica das taxas de mortalidade ou incidência de doenças por intermédio de mapas. Em razão da alta instabilidade das taxas brutas quando há pequenas áreas, utilizam-se os métodos de suavização bayesiana, que se valem de informações de toda a região ou da vizinhança para estimar as taxas. O artigo faz a comparação entre os métodos Bayesiano Empírico e Totalmente Bayesiano para as taxas de mortalidade infantil (dados acumulados de 2001 a 2004 no Rio Grande do Sul, Brasil. O trabalho aponta as vantagens do uso dos estimadores bayesianos na visualização espacial dos mapas. Os métodos Bayesianos Empíricos apresentaram resultados muito semelhantes aos dos métodos Totalmente Bayesianos e possuem a grande vantagem de ser de fácil utilização por profissionais da área de saúde, destacando igualmente os principais padrões espaciais da taxa de mortalidade no Rio Grande do Sul no período estudado.Infant mortality is considered a sensitive health indicator, and knowledge of its geographical profile is essential for formulating appropriate public health policies. Disease mapping aims to describe the geographical distribution of disease incidence and mortality rates. Due to the heavy instability of crude rates in small areas, methods involving Bayesian smoothing of rates are used, drawing on information for the whole area or neighborhood to estimate the event rate. The current study compares empirical Bayesian (EB and fully Bayesian (FB methods for infant mortality rates (accumulated data from 2001 to 2004 in Rio Grande do Sul State, Brazil. This study highlights the advantages of Bayesian estimators for viewing and interpreting maps. For the problem at hand, EB and FB methods showed quite similar results and

  19. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    Science.gov (United States)

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  20. Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Thomas, E-mail: thomas.wimmer@medunigraz.at; Srimathveeravalli, Govindarajan; Gutta, Narendra [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Ezell, Paula C. [The Rockefeller University, Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Monette, Sebastien [The Rockefeller University, Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Maybody, Majid; Erinjery, Joseph P.; Durack, Jeremy C. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Coleman, Jonathan A. [Memorial Sloan-Kettering Cancer Center, Urology Service, Department of Surgery (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2015-02-15

    PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.

  1. Theoretical Application of Irreversible (Nonequilibrium Thermodynamic Principles to Enhance Solute Fluxes across Nanofabricated Hemodialysis Membranes

    Directory of Open Access Journals (Sweden)

    Assem Hedayat

    2012-01-01

    Full Text Available Objective. Nanotechnology has the potential to improve hemodialysis membrane technology. Thus, a major objective is to understand how to enhance toxic solute fluxes across these membranes. The aim of this concept building study is to review the application of irreversible thermodynamic (IT to solute fluxes. Methods. We expanded the application of the Nernst-Planck equation to include the Kedem-Katchalsky equation, pH, membrane thickness, pore size, and electric potential as variables. Results. (1 Reducing the membrane’s thickness from 25 μm to 25 nm increased the flux of creatinine, β2-microglobulin, and tumor necrosis factor-α (TNF-α by a thousand times but prevented completely albumin flux, (2 applying an electric potential of 50–400 mV across the membrane enhanced the flux of the respective molecules by 71.167 × 10-3, 38.7905 × 10-8, and 0.595 × 10-13 mol/s, and (3 changing the pH from 7.35 to 7.42 altered the fluxes minimally. Conclusions. The results supported an argument to investigate the application of IT to study forces of fluxes across membranes. Reducing the membrane’s thickness—together with the application of an electrical potential—qualities achievable by nanotechnology, can enhance the removal of uremic toxins by many folds. However, changing the pH at a specific membrane thickness does not affect the flux significantly.

  2. Risk Factors Associated with Irreversible Airway Obstruction in Asthma: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Lanlan Zhang

    2016-01-01

    Full Text Available Irreversible airway obstruction (IAO is a subtype of asthma and relates to poorer prognosis in some asthma patients. However, the prevalence and risk factors for IAO are unknown. A systematic review regarding controlled clinical studies (cohort, case-control studies on IAO asthma in adult and/or children affected by asthma/early wheeze was performed. Eighteen papers were identified in this study. It was reported that the incidence of IAO at random effects or fixed effects in severe asthma and nonsevere asthma was 0.54 (95% CI: 0.45–0.62 and 0.16 (95% CI: 0.12–0.20, respectively. In IAO asthma, the pooled odds ratio (OR related to smoking exposure was 2.22 (95% CI: 1.82–2.73, the OR for male, smoking, and fractional exhaled nitric oxide (FENO was 2.22 (95% CI: 1.82–2.7, 1.79 (95% CI: 1.46–2.19, and 2.16 (95% CI: 1.05–4.43, respectively, suggesting these factors increase the risk of IAO. However, a decreased OR in IAO asthma was observed due to rhinitis (OR = 0.31, 95% CI: 0.24–0.40, atopy (OR = 0.584, 95% CI: 0.466–0.732, and atopic dermatitis (OR = 0.60, 95% CI: 0.42–0.85, indicating these factors are associated with reduced risk of IAO. IAO in asthma is associated with gender, smoking, FENO, rhinitis, atopy, and atopic dermatitis.

  3. Percutaneous Image-Guided Irreversible Electroporation for the Treatment of Unresectable, Locally Advanced Pancreatic Adenocarcinoma.

    Science.gov (United States)

    Narayanan, Govindarajan; Hosein, Peter J; Beulaygue, Isabelle C; Froud, Tatiana; Scheffer, Hester J; Venkat, Shree R; Echenique, Ana M; Hevert, Elizabeth C; Livingstone, Alan S; Rocha-Lima, Caio M; Merchan, Jaime R; Levi, Joseph U; Yrizarry, Jose M; Lencioni, Riccardo

    2017-03-01

    To describe safety and effectiveness of percutaneous irreversible electroporation (IRE) for treatment of unresectable, locally advanced pancreatic adenocarcinoma (LAPC). This retrospective study included 50 patients (23 women, 27 men; age range, 46-91 y; median age, 62.5 y) with biopsy-proven, unresectable LAPC who received percutaneous computed tomography (CT)-guided IRE. The primary objective was to assess the safety profile of the procedure; the secondary objective was to determine overall survival (OS). All patients had prior chemotherapy (1-5 lines, median 2), and 30 (60%) of 50 patients had prior radiation therapy. Follow-up included CT at 1 month and at 3-month intervals thereafter. There were no treatment-related deaths and no 30-day mortality. Serious adverse events occurred in 10 (20%) of 50 patients (abdominal pain [n = 7], pancreatitis [n = 1], sepsis [n = 1], gastric leak [n = 1]). Median OS was 27.0 months (95% confidence interval [CI], 22.7-32.5 months) from time of diagnosis and 14.2 months (95% CI, 9.7-16.2 months) from time of IRE. Patients with tumors ≤ 3 cm (n = 24) had significantly longer median OS than patients with tumors > 3 cm (n = 26): 33.8 vs 22.7 months from time of diagnosis (P = .002) and 16.2 vs 9.9 months from time of IRE (P = .031). Tumor size was confirmed as the only independent predictor of OS at multivariate analysis. Percutaneous image-guided IRE of unresectable LAPC is associated with an acceptable safety profile. Published by Elsevier Inc.

  4. Irreversible Electroporation to Treat Malignant Tumor Recurrences Within the Pelvic Cavity: A Case Series.

    Science.gov (United States)

    Vroomen, L G P H; Scheffer, H J; Melenhorst, M C A M; van Grieken, N; van den Tol, M P; Meijerink, M R

    2017-10-01

    To describe the initial experience with irreversible electroporation (IRE) to treat pelvic tumor recurrences. A retrospective single-center analysis was performed. Adverse events were recorded using Common Terminology Criteria of Adverse Events (CTCAE) 4.0. Clinical outcome was determined using pain- and general- symptom assessment, including Seddon's peripheral nerve injury (PNI) types. Radiological outcome was evaluated by comparing baseline with three-month 18F-FDG PET-CT follow-up. Eight patients (nine tumors [recurrences of primary rectal (n = 4), anal (n = 1), sigmoid (n = 1), cervical (n = 1), and renal cell carcinoma (n = 1)]) underwent percutaneous IRE as salvage therapy. Median longest tumor diameter was 3.7 cm (range 1.2-7.0). One CTCAE grade III adverse event (hemorrhage) and eight CTCAE grade II complications occurred in 6/8 patients: vagino-tumoral fistula (n = 1), lower limb motor loss (n = 3; PNI type II) with partial recovery in one patient, hypotonic bladder (n = 2; PNI types I and II) with complete recovery in one patient, and upper limb motor loss (n = 2; PNI type II) with partial recovery in both patients. No residual tumor tissue was observed at 3-month follow-up. After a median follow-up of 12 months, local progression was observed in 5/9 lesions (4/5 were >3 cm pre-IRE); one lesion was successfully retreated. Debilitating preprocedural pain (n = 3) remained unchanged (n = 1) or improved (n = 2). IRE may represent a suitable technique to treat pelvic tumor recurrences, although permanent neural function loss can occur. Complete ablation seems realistic for smaller lesions; for larger lesions symptom control should be the focus.

  5. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible

    Science.gov (United States)

    Parat, M. O.; Fox, P. L.

    2001-01-01

    Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents

  6. Early predictor of mortality due to irreversible posthepatectomy liver failure in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Kim, Sung Hoon; Kang, Dae Ryong; Lee, Jae Gil; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang-Hyub; Chon, Chae Yoon; Kim, Kyung Sik

    2013-05-01

    Although mortality after liver resection has declined, posthepatectomy liver failure (PHLF) remains a major cause of operative mortality. To date there is not consensus on a definition for PHLF. However, there have been many efforts to define PHLF causing operative mortality. In the present study we sought to identify early predictors of death from irreversible PHLF. We retrospectively analyzed the medical records of 359 patients with hepatocellular carcinoma who underwent liver resection between March 2000 and December 2010. Various biochemical parameters from postoperative days (POD) 1, 3, 5, and 7 were analyzed and compared with the "50-50" criterion. Operative mortality was 4.7 %. Prothrombin time (PT) <65 % and bilirubin ≥ 38 μmol/L on POD 5 showed the only significant difference as compared with "50-50" criterion. The new combination of bilirubin level and the international normalized ratio showed higher sensitivity, area under the curve, as well as similar accuracy (sensitivity 78.6 vs. 28.6 %; p = 0.002; area under the curve 0.8402 vs. 0.6396; p = 0.00176; accuracy 88.6 vs. 93.4 %; p = 0.090). Multivariate analysis revealed the combination of PT <65 % and bilirubin ≥ 38 μmol/L on POD 5 to be the only independent predictive factor of mortality (odds ratio, 82.29; 95 % confidence interval 8.69-779.64; p < 0.001). In patients with chronic liver disease who will undergo liver resection the combination of PT <65 % and bilirubin ≥ 38 μmol/L on POD 5 may be a more sensitive predictor than the "50-50" criterion of mortality from PHLF. Although it needs to validated by prospective study, this measure may be applied to select patients receiving artificial liver supports or liver transplantation.

  7. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.; Baumunk, D. [University of Magdeburg, Department of Urology (Germany); Buhtz, P. [Institute of Pathology, University of Magdeburg (Germany); Fischbach, F.; Pech, M. [University of Magdeburg, Department of Radiology (Germany); Mahnkopf, D. [Institute of Medical Technology and Research (Germany); Kropf, S. [Institute of Biometry, University of Magdeburg (Germany); Roessner, A. [Institute of Pathology, University of Magdeburg (Germany); Ricke, J. [University of Magdeburg, Department of Radiology (Germany); Schostak, M.; Liehr, U.-B. [University of Magdeburg, Department of Urology (Germany)

    2013-04-15

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  8. Reversible and irreversible coiled coils in the stalk domain of ncd motor protein.

    Science.gov (United States)

    Makino, Tsukasa; Morii, Hisayuki; Shimizu, Takashi; Arisaka, Fumio; Kato, Yusuke; Nagata, Koji; Tanokura, Masaru

    2007-08-21

    Ncd is a microtubule minus end-directed motor protein from Drosophila, a member of the kinesin-14 family, and an essential protein in mitosis and meiosis. Full-length ncd exists as a dimer via the formation of an alpha-helical coiled coil in its central stalk domain (P192-R346), which is thought to be one of the key regions for its motility. In our previous studies, however, none of the various synthetic polypeptide fragments (up to 46 residues) from the stalk domain formed a coiled coil. Herein, we have investigated the structural properties of the full-length ncd stalk domain using recombinant polypeptides together with shorter segments. These new fragments did form coiled coils as verified by far-UV circular dichroism (CD) spectroscopy and analytical ultracentrifugation, suggesting that a certain length of polypeptide would be required for dimer formation. Moreover, deletion mapping revealed that the cooperativity among the neighboring subdomains in the stalk domain is required for formation of the coiled coil. Interestingly, the intact stalk domain segments showed three-state transition in thermal unfolding measurements with CD, indicating the presence of two regions: (i) a coiled-coil region (P227-R306) that exhibits reversible denaturation at a lower temperature (20-30 degrees C) and (ii) a more rigid coiled-coil region (T307-E334) that exhibits irreversible denaturation at a high temperature (ca. 60 degrees C). These results imply that the N-terminal region of the stalk domain might be able to adopt both a coiled-coil conformation and a dissociated one, which might be relevant to the functions of ncd.

  9. Pain Analysis in Patients with Hepatocellular Carcinoma: Irreversible Electroporation versus Radiofrequency Ablation-Initial Observations

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Govindarajan, E-mail: gnarayanan@med.miami.edu; Froud, Tatiana, E-mail: tfroud@med.miami.edu [Miller School of Medicine, University of Miami, Department of Vascular and Interventional Radiology (United States); Lo, Kaming, E-mail: KLo@biostat.med.miami.edu [Miller School of Medicine, University of Miami, Department of Epidemiology and Public Health (United States); Barbery, Katuska J., E-mail: kbarbery@med.miami.edu; Perez-Rojas, Evelyn, E-mail: eprojas@med.miami.edu; Yrizarry, Jose, E-mail: jyrizarr@med.miami.edu [Miller School of Medicine, University of Miami, Department of Vascular and Interventional Radiology (United States)

    2013-02-15

    To retrospectively compare the postprocedure pain of hepatocellular carcinoma treated with irreversible electroporation (IRE) with radiofrequency ablation (RFA). This Health Insurance Portability and Accountability Act-compliant, institutional review board-approved study compared postprocedure pain in 21 patients (15 men, six women; mean age 61.5 years) who underwent IRE of 29 intrahepatic lesions (mean size 2.20 cm) in 28 IRE sessions with 22 patients (16 men, six women; mean age 60.2 years) who underwent RFA of 27 lesions (mean size 3.38 cm) in 25 RFA sessions. Pain was determined by patient-disclosed scores with an 11-point numerical rating scale and 24 h cumulative hydromorphone use from patient-controlled analgesia pump. Complications were noted. Statistical significance was evaluated by Fisher's exact test, the Chi-square test, and Student's t test. There was no significant difference in the cumulative hydromorphone dose (1.54 mg (IRE) vs. 1.24 mg (RFA); P = 0.52) and in the mean pain score (1.96 (IRE) vs. 2.25 (RFA); P = 0.70). In nine (32.14 %) of 28 IRE sessions and 11 (44.0 %) of 25 RFA sessions, patients reported no pain. Complications occurred in three (10.7 %) of 28 IRE treatments and included pneumothorax (n = 1), pleural effusion (n = 1), and bleeding in the form of hemothorax (n = 1); one (4 %) of 25 RFA treatments included burn. IRE is comparable to RFA in the amount of pain that patients experience and the amount of pain medication self-administered. Both modalities were well tolerated by patients. Prospective, randomized trials are necessary to further evaluate these findings.

  10. Irreversible inhibition of Ca(2+)-independent phospholipase A2 by methyl arachidonyl fluorophosphonate.

    Science.gov (United States)

    Lio, Y C; Reynolds, L J; Balsinde, J; Dennis, E A

    1996-07-12

    Methyl arachidonyl fluorophosphonate (MAFP) has been recently reported to be a selective, active-site directed, irreversible inhibitor of the Group IV 85 kDa cytosolic phospholipase A2 (cPLA2). We have now shown that this compound also potently inhibits the Ca(2+)-independent cytosolic phospholipase A2 (iPLA2). MAFP inhibited iPLA2 in a concentration-dependent manner with half-maximal inhibition observed at 0.5 microM after a 5 min preincubation at 40 degrees C. This inhibition was not reversed upon extensive dilution of the enzyme into the assay mixture. Preincubation of iPLA2 with MAFP resulted in a linear, time-dependent inactivation of enzyme activity, and the enzyme was protected from inactivation by the reversible inhibitor PACOCF3. The ability of MAFP to inhibit the iPLA2 suggests that this enzyme proceeds through an acyl-enzyme intermediate as has been proposed for the cPLA2. Further testing indicated that MAFP did not inhibit the arachidonoyl-CoA synthetase, CoA-dependent acyltransferase, or CoA-independent transacylase activities from P388D1 cells. Thus, MAFP is not a general inhibitor for enzymes which act on arachidonoyl substrates. Instead, the inhibitor appears to show some selectivity for PLA2, although it does not discriminate between cPLA2 and iPLA2. Particular caution must be exercised to distinguish these activities if this inhibitor is used in intact cells.

  11. A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation.

    Directory of Open Access Journals (Sweden)

    Antonino Natalello

    2011-04-01

    Full Text Available The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24 ataxin-3, an expanded (AT3Q55 ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i lost its reactivity towards an anti-oligomer antibody, ii generated SDS-insoluble aggregates, iii gave rise to bundles of elongated fibrils, and iv displayed two additional bands at 1604 and 1656 cm(-1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry.

  12. A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation

    Science.gov (United States)

    Relini, Annalisa; Apicella, Alessandra; Invernizzi, Gaetano; Casari, Carlo; Gliozzi, Alessandra; Doglia, Silvia Maria; Tortora, Paolo; Regonesi, Maria Elena

    2011-01-01

    The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry. PMID:21533208

  13. Breast tissue ablation with irreversible electroporation in rabbits: A safety and feasibility study.

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    Full Text Available Irreversible electroporation (IRE was confirmed to control several solid tumors effectively in vivo. Our preclinical study aimed to assess the feasibility and safety of IRE in the breast of rabbit.Thirty New Zealand white rabbits were randomly divided into 3 groups of 10 rabbits (control group, IRE group A, and B. Two mono-electrode needles were inserted into the breast tissue by percutaneous puncture. Electrocardiogram and vital signs were monitored before, during, and after ablation. Histopathology, immunohistochemistry, and transmission electron microscopy were examined at 0 hours, 12 hours, 24 hours, 4 days, 7 days, 14 days, and 28 days after ablation.All the rabbits survived the procedure with no significant adverse effects. Intra-operative ventricular arrhythmias occurred in 1 rabbit from IRE group B and was immediately relieved after ablation. Reversible subcutaneous hemorrhage was observed in 8 rabbits from IRE group A and 7 rabbits from IRE group B. No skin was burnt, however, pectoralis major muscle injuries were found in all rabbits. Histopathological and ultrastructural examination revealed the coexistence of cell necrosis and apoptosis. HE, TUNEL, and Masson staining revealed breast tissue injury and the recovery of damage by fibrous tissue and granulation tissue. Notably, the structures of mammary gland lobules and interstitial components of the breasts were well preserved.Our study suggests that IRE destroys breast cancer while effectively preserving the skin, the structure of mammary gland lobules, and interstitial components. IRE may be a promising technique to locally control breast cancer and to maintain the esthetic of the breast.

  14. Microscopic description of irreversibility in quantum Lorentz gas by complex spectral analysis of the Liouvillian outside the Hilbert space.

    Science.gov (United States)

    Petrosky, T; Hashimoto, K; Kanki, K; Tanaka, S

    2017-10-01

    Irreversible process of a weakly coupled one-dimensional quantum perfect Lorentz gas is studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouvillian. Without any phenomenological operations, such as a coarse-graining of space-time or a truncation of the higher order correlation, we obtained irreversible processes on a purely dynamical basis in all space and time scale including the microscopic atomic interaction range that is much smaller than the mean-free-length. The list of development of the complex spectral analysis of the Hamiltonian (instead of the Liouvillian) in quantum optical systems and in quantum nano-devices is also presented.

  15. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  16. Effect of long acting local anesthetic on postoperative pain in teeth with irreversible pulpitis: Randomized clinical trial

    Science.gov (United States)

    Al-Kahtani, Ahmed

    2013-01-01

    Objective The objective of this study was to compare the effect of long acting anesthetics on postoperative pain in teeth with irreversible pulpitis. Methodology Forty patients were randomly assigned into two groups of twenty patients each. Each patient who fit the inclusion criteria was administered local anesthesia before undergoing root canal treatment. The anesthetic solution was either 2% lidocaine with 1:80,000 epinephrine or 0.5% bupivacaine with 1:200,000 epinephrine. Patients were instructed to complete a VAS pain score at 6, 12, 24 h after single visit root canal treatment. Data were analyzed by Mann–Whitney, Cochrane Q analysis and t test to compare qualitative and quantitative data between the groups. Results The results showed the levels of pain of the patients who received lidocaine as the anesthetic agent and had significantly more postoperative pain after root canal treatment (P irreversible pulpitis. PMID:24493972

  17. Optimal performance at arbitrary power of minimally nonlinear irreversible thermoelectric generators with broken time-reversal symmetry

    Science.gov (United States)

    Zhang, Rong; Liu, Wei; Li, Qianwen; Zhang, Lei; Bai, Long

    2018-01-01

    We investigate the performance at arbitrary power of minimally nonlinear irreversible thermoelectric generators (MNITGs) with broken time-reversal symmetry within linear irreversible thermodynamics, and the efficiency of MNITGs at arbitrary power is analytically derived. Furthermore, a universal bound on the efficiency of thermoelectric generators (TGs) with broken time-reversal symmetry and the arbitrary power is obtained. Some system-specific characteristics are discussed and uncovered. A large efficiency at arbitrary power can also be achieved via the cooperative mechanism between the system parameters. Our results indicate that the broken time-reversal symmetry provides the physically allowed degrees of freedom for tuning the performance of thermoelectric devices, and the physical trade-off region between the efficiency and the power output can also offer the appropriate space for optimizing the performance of TGs.

  18. An Exact Soultion for the Investment and Market Value of a Firm Facing Uncertainty, Adjustment Costs, and Irreversibility

    OpenAIRE

    Andrew B. Abel; Eberly, Janice C

    1993-01-01

    This paper derives closed-form solutions for the investment and market value, under uncertainty, of competitive firms with constant returns to scale production and convex costs of adjustment. Solutions are derived for the case of irreversible investment as well as for reversible investment. Optimal investment is a non-decreasing function of q, the shadow value of capital. The conditions of optimality imply that q cannot contain a bubble; thus, optimal investment depends only on fundamentals. ...

  19. Buffered Lidocaine With Sodium Bicarbonate did not Increase Inferior Alveolar Nerve Block Success Rate in Patients Having Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Parirokh, Masoud

    2016-03-01

    Effect of buffered 4% lidocaine on the success of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a prospective, randomized, double-blind study. Schellenberg J, Drum M, Reader A, Nusstein J, Fowler S, Beck M. J Endod 2015;41(6):791-6. The study was supported by Meyers/Reader Graduate Endodontic Support Fund Double blinded randomized controlled trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Two-year results of vital pulp therapy in permanent molars with irreversible pulpitis: an ongoing multicenter randomized clinical trial.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh

    2014-01-01

    Oral healthcare expenses are increasing rapidly as a result of the growth of high-cost health technologies worldwide. In many developing/developed countries, low-cost tooth extraction is the alternative treatment option for a high-cost root canal therapy (RCT) for management of human molars with irreversible pulpitis. Vital pulp therapy with calcium-enriched mixture cement (VPT/CEM) as a new alternative treatment option has demonstrated excellent treatment outcomes up to 1 year; if 2-year radiographic/clinical effectiveness as well as cost-effectiveness of the VPT/CEM is also non-inferior compared with RCT, it can serve as a viable treatment for mature molars with irreversible pulpitis. In this prospective, multicenter (n = 23), non-inferiority clinical trial, 407 patients were randomized to either one-visit RCT (n = 202) or VPT/CEM (n = 205) for 27 months. In this part of study, the primary outcome measure was the 2-year clinical and radiographic treatment outcomes. Cost-effectiveness was also analyzed. Mean follow-up times were 24.62 ± 0.72 and 24.61 ± 0.69 months in RCT (n = 166) and VPT/CEM (n = 166) arms, respectively. Clinical success rates in the two study arms were equal (98.19%); however, radiographic success rates were 79.5 and 86.7% in RCT and VPT/CEM arms, respectively, with no statistical difference (P = 0.053). The treatment time span mean was approximately three times greater in the RCT than in the VPT/CEM arm (94.07 vs. 31.09 min; P irreversible pulpitis. Vital pulp therapy with CEM is a cost-effective and reliable biological technique for endodontic treatment of permanent molar teeth with irreversible pulpitis and can be recommended for general clinical practice.

  1. Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study.

    Science.gov (United States)

    Qudeimat, M A; Alyahya, A; Hasan, A A

    2017-02-01

    To prospectively investigate the clinical and radiographic success rates of pulpotomy in permanent molars with clinical signs and symptoms suggestive of irreversible pulpitis using mineral trioxide aggregate (MTA) as a pulp dressing agent. Sixteen patients with 23 restorable permanent molars exhibiting signs and symptoms indicative of irreversible pulpitis were enrolled. A standardized operative procedure was followed for all participants. All teeth were isolated with a dental dam and caries was removed, and then, pulpotomy performed with a sterile round and/or flame shape diamond burs. Haemostasis was achieved with 5% sodium hypochlorite (NaOCl). A mixture of MTA was placed against the wound, and a moistened cotton pellet was placed over the MTA. Teeth were temporized with a glass-ionomer restoration. Three to ten days later, the interim restoration was removed and setting of MTA was evaluated. Teeth were restored with stainless steel crowns. Follow-up evaluations were scheduled at 3, 6, 12 months and annually thereafter. Descriptive statistics were used to assess outcomes. The age of patients at time of pulpotomy ranged between 7.6 and 13.6 years (mean = 10.7± 1.7 yrs). The majority of teeth (91%) had clinical signs and symptoms consistent with a diagnosis of symptomatic irreversible pulpitis and symptomatic apical periodontitis (78%). The follow-up examination period ranged from 18.9 to 73.6 months. Clinically and radiographically, all pulpotomies were considered successful at the end of the follow-up period. Radiographically, a hard tissue barrier was noticed in 13 (57%) teeth. In children, MTA was associated with high clinical and radiographic success as a pulpotomy agent in permanent teeth with clinical signs and symptoms suggestive of irreversible pulpitis. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    OpenAIRE

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-support...

  3. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    OpenAIRE

    Emmanuel O.B. Ogedengbe; Marc A. Rosen

    2012-01-01

    Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP)-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in t...

  4. The effect of pouring time on the dimensional accuracy of casts made from different irreversible hydrocolloid impression materials

    Directory of Open Access Journals (Sweden)

    Supneet Singh Wadhwa

    2013-01-01

    Full Text Available Aims and Objectives: To determine the time dependent accuracy of casts made from three different irreversible hydrocolloids. Materials and Methods: The effect of delayed pouring on the accuracy of three different irreversible hydrocolloid impression materials - Regular set CA 37(Cavex, The Netherlands, regular set chromatic (Jeltrate, Dentsply, and fast set (Hydrogum soft, Zhermack Clinical was investigated. A brass master die that contained two identical posts simulating two complete crown-tapered abutment preparations with reference grooves served as a standardized master model. A total of 120 impressions were made using specially prepared stock-perforated brass tray with 40 impressions of each material. The impressions were further sub-grouped according to four different storage time intervals: 0 min (immediately, 12 min, 30 min, and 1 h. The impressions were stored at room temperature in a zip-lock plastic bag. Interabutment and intraabutment distances were measured in the recovered stone dies (Type IV, Kalrock using a profile projector with an accuracy of 0.001 mm. The data so obtained was analyzed statistically. Results: Results of this study showed no statistically significant differences in the accuracy of casts obtained at different time intervals. Conclusion: Because it is not always possible to pour the impression immediately in routine clinical practice, all irreversible hydrocolloid materials studied could be stored in a zip-lock plastic bag for upto 1 h without any significant distortion.

  5. [The autologous ipsilateral rotating penetrating keratoplasty: an early surgical procedure to prevent deep irreversible amblyopia in Peters anomaly].

    Science.gov (United States)

    Grünauer-Kloevekorn, C; Bau, V; Weidlich, R; Duncker, G

    2005-01-01

    It is a challenge to prevent irreversible amblyopia in infants suffering from Peters anomaly. In some cases of centrally located corneal opacifications an optical sector iridectomy can not lead to a clear optical axis. The homologous penetrating keratoplasty as early surgical procedure has shown an extremely poor outcome with a high risk of irreversible graft failure. We report on the autologous ipsilateral rotating penetrating keratoplasty in an eight-week-old infant suffering from Peters anomaly. An autologous ipsilateral rotating penetrating keratoplasty was performed in an eight-week-old infant suffering from Peters anomaly to prevent irreversible amblyopia. After a follow-up time of 8 months we saw a clear graft within the optical axis without any complications in wound healing. We removed the single sutures two months after keratoplasty. Postoperative astigmatism could be corrected first by fitting a special nursery contact lens and after reduction of astigmatism because of suture removal we fitted special nursery glasses. The intraocular pressure remained within the normal range during the follow-up period. The autologous ipsilateral rotating penetrating keratoplasty should be considered superior to homologous keratoplasty in infants with Peters anomaly if sector iridectomy is not advisable because of a central corneal opacification. Resulting high refractive errors can be successfully corrected by special contact lens fitting or by nursery glasses.

  6. Effect of nitrous oxide on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis.

    Science.gov (United States)

    Stanley, William; Drum, Melissa; Nusstein, John; Reader, Al; Beck, Mike

    2012-05-01

    The inferior alveolar nerve (IAN) block does not always result in successful pulpal anesthesia. Anesthetic success rates might be affected by increased anxiety. Nitrous oxide has been shown to have both anxiolytic and analgesic properties. Therefore, the purpose of this prospective, randomized, double-blind, placebo-controlled study was to determine the effect of nitrous oxide on the anesthetic success of the IAN block in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth were enrolled in this study. Each patient was randomly assigned to receive an inhalation regimen of nitrous oxide/oxygen mix or room air/oxygen mix (placebo) 5 minutes before the administration of the IAN block. Endodontic access was begun 15 minutes after completion of the IAN block, and all patients had profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) on access or instrumentation. The success rate for the IAN block was 50% for the nitrous oxide group and 28% for the placebo group. There was a statistically significant difference between the 2 groups (P = .024). For mandibular teeth diagnosed with symptomatic irreversible pulpitis, administration of 30%-50% nitrous oxide resulted in a statistically significant increase in the success of the IAN block compared with room air/oxygen. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Evaluating the periapical status of teeth with irreversible pulpitis by using cone-beam computed tomography scanning and periapical radiographs.

    Science.gov (United States)

    Abella, Francesc; Patel, Shanon; Duran-Sindreu, Fernando; Mercadé, Montse; Bueno, Rufino; Roig, Miguel

    2012-12-01

    The purpose of this study was to compare the prevalence of apical periodontitis (AP) on individual roots of teeth with irreversible pulpitis viewed with periapical (PA) radiographs and cone-beam computed tomography (CBCT) scans. PA radiographs and CBCT scans were taken of 138 teeth in 130 patients diagnosed with irreversible pulpitis (symptomatic and asymptomatic). Two calibrated examiners assessed the presence or absence of AP lesions by analyzing the PA and CBCT images. A consensus was reached in the event of any disagreement. The data were analyzed using the hypothesis test, and significance was set at P ≤ .05. Three hundred seven paired roots were assessed with both PA and CBCT images. A comparison of the 307 paired roots revealed that AP lesions were present in 10 (3.3%) and absent in 297 (96.7%) pairs of roots when assessed with PA radiography. When the same 307 sets of roots were assessed with CBCT scans, AP lesions were present in 42 (13.7%) and absent in 265 (86.3%) paired roots. The prevalence of AP lesions detected with CBCT was significantly higher in the symptomatic group compared with the asymptomatic group (P irreversible pulpitis. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Comparison of the anesthetic efficacy between bupivacaine and lidocaine in patients with irreversible pulpitis of mandibular molar.

    Science.gov (United States)

    Sampaio, Roberta Moura; Carnaval, Talita Girio; Lanfredi, Camila Bernardeli; Horliana, Anna Carolina Ratto Tempestini; Rocha, Rodney Garcia; Tortamano, Isabel Peixoto

    2012-05-01

    The purpose of this study was to compare the anesthetic efficacy of 0.5% bupivacaine with 1:200,000 epinephrine with that of 2% lidocaine with 1:100,000 epinephrine during pulpectomy in patients with irreversible pulpitis in mandibular posterior teeth. Seventy volunteers, patients with irreversible pulpitis admitted to the Emergency Center of the School of Dentistry at the University of São Paulo, randomly received a conventional inferior alveolar nerve block containing 3.6 mL of either 0.5% bupivacaine with 1:200,000 epinephrine or 2% lidocaine with 1:100,000 epinephrine. During the subsequent pulpectomy, we recorded the patients' subjective assessments of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation, and the absence/presence of pain through a verbal analog scale. All patients reported lip anesthesia after the application of either inferior alveolar nerve block. By measuring pulpal anesthesia success with the pulp tester, lidocaine had a higher success rate (42.9%) than bupivacaine (20%). For patients reporting none or mild pain during pulpectomy, the success rate of bupivacaine was 80% and lidocaine was 62.9%. There were only statistically significant differences to the success of pulpal anesthesia. Neither of the solutions resulted in an effective pain control during irreversible pulpitis treatments of mandibular molars. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  10. Lab-on-valve (LOV) system coupled to irreversible biamperometric detection for the on-line monitoring of catechol.

    Science.gov (United States)

    Wang, Yang; Yao, Guojun; Zhu, Peihua; Hu, Xiaoya; Xu, Qin; Yang, Chun

    2010-09-15

    The analytical performance of lab-on-valve (LOV) system using irreversible biamperometry for the determination of catechol was evaluated. By integrating miniaturized electrochemical flow cell (EFC) designed and processed which is furnished with two identical polarized platinum electrodes, into the LOV unit, the lab-on-valve system combines sampling with analysis, realizing automated on-line analysis for catechol in a closed system. The biamperometric detection system was established to record the relationship between oxidation current and time by coupling the irreversible oxidation of catechol at one pretreated platinum electrode with the irreversible reduction of platinum oxide at the other pretreated platinum electrode. Factors influencing the analytical performance were optimized, including the potential difference (DeltaE), buffer solution and pH, and flow variables in the LOV. A linear calibration curve was obtained within the range of 1.0 x 10(-6)-5.0 x 10(-4) mol L(-1) of catechol with the detection limit (3 sigma) of 5.09 x 10(-7)mol L(-1). The relative standard deviation (R.S.D.) was 2.39% for 11 successive determinations of 1 x 10(-5)mol L(-1) catechol and the sample throughput was 35h(-1). Moreover, this proposed method was applied to the analysis of catechol in beer sample, which was testified by high-performance liquid chromatography (HPLC). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Unravelling the origin of irreversible capacity loss in NaNiO 2 for high voltage sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; Ren, Yang; Zuo, Pengjian; Yin, Geping; Wang, Jun

    2017-04-01

    Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.

  12. Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante Teoría de Conjuntos

    Directory of Open Access Journals (Sweden)

    L.M. Gómez

    2015-04-01

    Full Text Available Resumen: Los sistemas irreversibles han sido poco estudiados en el marco de la teoría de control, a pesar de que una de las aplicaciones relevantes de los mismos es el control de los procesos por lotes, los cuales son irreversibles. Por lo tanto, en este artículo se propone un método para analizar la controlabilidad de estado de estos sistemas mediante la teoría de conjuntos, extensible también a los procesos por lotes. Para ello, se proponen las definiciones de Conjunto Reversible y Conjunto de Trayectorias Controlables, ambas para sistemas no lineales; este último conjunto permite el análisis de controlabilidad de estado de los sistemas irreversibles. Adicionalmente, se propone un algoritmo que permite calcular dichos conjuntos desde el conocimiento de la dinámica del sistema. La propuesta es aplicada a un problema de referencia de un proceso por lotes, con lo cual se obtienen resultados de simulación que evidencian las ventajas de la misma para analizar cuantitativamente la controlabilidad de estado de los sistemas irreversibles. Abstract: The irreversible systems have been little studied within the control theory framework, although one of their relevant cases is the batch process control problem. Therefore, in this work a method for analysing state controllability of irreversible systems is proposed. The method uses set theory and its extension to batch processes. Definitions for Reversible Set and Controllable Trajectories Set, both for nonlinear systems, are given in order to analyze state controllability for irreversible systems. Additionally, an algorithm for calculating mentioned sets from the dynamic process knowledge is proposed. The proposal is applied to a batch process benchmark. Obtained simulation results demonstrate the advantages of that proposal to analyze the state controllability of irreversible systems. Palabras clave: Controlabilidad, Reversibilidad, Sistemas irreversibles, Procesos por lotes

  13. Irreversible inactivation of monoterpene cyclases by a mechanism-based inhibitor.

    Science.gov (United States)

    Croteau, R; Alonso, W R; Koepp, A E; Shim, J H; Cane, D E

    1993-12-01

    Monoterpene synthases (cyclases) catalyze the divalent metal ion-dependent transformation of geranyl pyrophosphate to representative of the various monocyclic and bicyclic skeletal types by an electrophilic reaction mechanism involving coupled isomerization and cyclization steps. An analogue of the geranyl substrate, in which the terminal gem-dimethyl groups were joined to form a cyclopropyl function (6-cyclopropylidene-3E-methyl-hex-2-en-l-yl pyrophosphate) was shown to be a potent inhibitor of (-)-4S-limonene synthase from Mentha spicata and of several other monoterpene cyclases from diverse plant species. Inhibition was concentration and time dependent (pseudo-first-order kinetics), as well as absolutely contingent on the presence of the divalent metal ion cofactor. A double reciprocal plot of kinactivation versus inhibitor concentration gave an apparent Ki of approximately 0.3 microM and a maximum rate of inactivation of about 0.3 min-1 with limonene synthase. As expected for an active-site-directed process, the natural substrate, geranyl pyrophosphate, afforded protection against inactivation by the cyclopropylidene analogue. Selectivity of the inhibition was demonstrated with [1-3H]6-cyclopropylidene-3E-methyl-hex-2-en-1-yl pyrophosphate by specific labeling of limonene synthase in crude enzyme extracts as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, radio-fluorography, and immunoblotting. The radioactive cyclase-inactivator complex was formed with 1:1 stoichiometry and was stable to extended dialysis and boiling in 2% sodium dodecyl sulfate, suggesting irreversible covalent modification of the enzyme involving a chemical reaction between cyclase and inhibitor. Thermally denatured limonene synthase and synthase that had been inactivated with the histidine-directed reagent diethylpyrocarbonate or the cysteine-directed reagent p-hydroxymercuribenzoate (two reagents known to modify the active site of the enzyme and inhibit catalysis

  14. Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes.

    Science.gov (United States)

    Pomponi, F; Cariati, R; Zancai, P; De Paoli, P; Rizzo, S; Tedeschi, R M; Pivetta, B; De Vita, S; Boiocchi, M; Dolcetti, R

    1996-10-15

    Natural and synthetic retinoids have proved to be effective in the treatment and prevention of various human cancers. In the present study, we investigated the effect of retinoids on Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines (LCLs), since these cells closely resemble those that give rise to EBV-related lymphoproliferative disorders in the immunosuppressed host. All six compounds tested inhibited LCL proliferation with no significant direct cytotoxicity, but 9-cis-retinoic acid (RA), 13-cis-RA, and all-trans-RA (ATRA) were markedly more efficacious than Ro40-8757, Ro13-6298, and etretinate. The antiproliferative action of the three most effective compounds was confirmed in a large panel of LCLs, thus appearing as a generalized phenomenon in these cells. LCL growth was irreversibly inhibited even after 2 days of treatment at drug concentrations corresponding to therapeutically achievable plasma levels. Retinoid-treated cells showed a marked downregulation of CD71 and a decreased S-phase compartment with a parallel accumulation in Gzero/ G1 phases. These cell cycle perturbations were associated with the upregulation of p27 Kip1, a nuclear protein that controls entrance and progression through the cell cycle by inhibiting several cyclin/cyclin-dependent kinase complexes. Unlike what is observed in other systems, the antiproliferative effect exerted by retinoids on LCLs was not due to the acquisition of a terminally differentiated status. In fact, retinoid-induced modifications of cell morphology, phenotype (downregulation of CD19, HLA-DR, and s-Ig, and increased expression of CD38 and c-Ig), and IgM production were late events, highly heterogeneous, and often slightly relevant, being therefore only partially indicative of a drug-related differentiative process. Moreover, EBV-encoded EBV nuclear antigen-2 and latent membrane protein-1 proteins were inconstantly downregulated by retinoids, indicating that their growth-inhibitory effect is not mediated

  15. The Prophylactic Effects of Zintoma and Ibuprofen on Post-endodontic Pain of Molars with Irreversible Pulpitis: A Randomized Clinical Trial

    OpenAIRE

    Ramazani, Mohsen; Hamidi, Mahmoud Reza; Moghaddamnia, Ali Akbar; Ramazani, Nahid; Zarenejad, Nafiseh

    2013-01-01

    Introduction Post endodontic pain is often linked to the inflammatory process as well as additional central mechanisms. The purpose of the present double-blind randomized clinical trial study was to compare the prophylactic effects of a derivative of Zingiber Officinale, Zintoma, and Ibuprofen on post endodontic pain of molars with irreversible pulpitis. Materials and Methods The post endodontic pain of 72 enrolled patients suffering from irreversible pulpitis was assessed after prophylactic ...

  16. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    Energy Technology Data Exchange (ETDEWEB)

    Burroughs, S.F.; Johnson, G.J. (Veterans Affairs Medical Center, Minneapolis, MN (USA))

    1990-04-01

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.

  17. Treatment Outcomes of Full Pulpotomy as an Alternative to Tooth Extraction in Molars with Hyperplastic/Irreversible Pulpitis: A Case Report

    OpenAIRE

    Asgary, Saeed; Verma, Prashant; Nosrat, Ali

    2017-01-01

    Root canal therapy (RCT) is a common and successful treatment for irreversible pulpitis due to carious pulp exposure in mature permanent teeth. However, it is often an expensive procedure, may require multiple appointments, and requires a high level of training and clinical skill, specifically in molars. Uninsured patients, low-income patients, and patients with limited access to specialist care often elect for extraction of restorable teeth with irreversible pulpitis. There is a need for an ...

  18. CMR Native T1 Mapping Allows Differentiation of Reversible Versus Irreversible Myocardial Damage in ST-segment–Elevation Myocardial Infarction

    Science.gov (United States)

    Liu, Dan; Borlotti, Alessandra; Viliani, Dafne; Jerosch-Herold, Michael; Alkhalil, Mohammad; De Maria, Giovanni Luigi; Fahrni, Gregor; Dawkins, Sam; Wijesurendra, Rohan; Francis, Jane; Ferreira, Vanessa; Piechnik, Stefan; Robson, Matthew D.; Banning, Adrian; Choudhury, Robin; Neubauer, Stefan; Channon, Keith; Kharbanda, Rajesh

    2017-01-01

    Background— CMR T1 mapping is a quantitative imaging technique allowing the assessment of myocardial injury early after ST-segment–elevation myocardial infarction. We sought to investigate the ability of acute native T1 mapping to differentiate reversible and irreversible myocardial injury and its predictive value for left ventricular remodeling. Methods and Results— Sixty ST-segment–elevation myocardial infarction patients underwent acute and 6-month 3T CMR, including cine, T2-weighted (T2W) imaging, native shortened modified look-locker inversion recovery T1 mapping, rest first pass perfusion, and late gadolinium enhancement. T1 cutoff values for oedematous versus necrotic myocardium were identified as 1251 ms and 1400 ms, respectively, with prediction accuracy of 96.7% (95% confidence interval, 82.8% to 99.9%). Using the proposed threshold of 1400 ms, the volume of irreversibly damaged tissue was in good agreement with the 6-month late gadolinium enhancement volume (r=0.99) and correlated strongly with the log area under the curve troponin (r=0.80) and strongly with 6-month ejection fraction (r=−0.73). Acute T1 values were a strong predictor of 6-month wall thickening compared with late gadolinium enhancement. Conclusions— Acute native shortened modified look-locker inversion recovery T1 mapping differentiates reversible and irreversible myocardial injury, and it is a strong predictor of left ventricular remodeling in ST-segment–elevation myocardial infarction. A single CMR acquisition of native T1 mapping could potentially represent a fast, safe, and accurate method for early stratification of acute patients in need of more aggressive treatment. Further confirmatory studies will be needed. PMID:28798137

  19. A randomized placebo-blind study of the effect of low power laser on pain caused by irreversible pulpitis.

    Science.gov (United States)

    Ramalho, Karen Müller; de Souza, Lárissa Marcondes Paladini; Tortamano, Isabel Peixoto; Adde, Carlos Alberto; Rocha, Rodney Garcia; de Paula Eduardo, Carlos

    2016-12-01

    This randomized placebo-blind study aimed to evaluate the effect of laser phototherapy (LPT) on pain caused by symptomatic irreversible pulpitis (SIP). Sixty patients diagnosed with SIP were randomly assigned to treatment groups (n = 15): G1 (control), G2 (laser placebo-sham irradiation), G3 (laser irradiation at 780 nm, 40 mW, 4 J/cm 2 ), and G4 (laser irradiation at 780 nm, 40 mW, 40 J/cm 2 ). Spontaneous pain was recorded using a VAS score before (T0), immediately after (T1), and 15 min after treatment (T2). Local anesthetics failure during emergency endodontic treatment was also assessed. There was no pain difference in T1 and T2 between the experimental laser groups (G3 and G4) and the placebo group (G2). The 4-J/cm 2 (G3) irradiation resulted in significant increase in the local anesthetics failure in lower jar teeth. This effect could be suggested as consequence of the LPT improvement in local circulation and vasodilatation that would result in the increase of local anesthetic agent absorption. The application of 780-nm diode laser irradiation, at 4 and 40 J/cm 2 , showed no effect in reducing the pain in SIP in comparison to the placebo group. The fluence of 4 J/cm 2 showed a negative effect in local anesthetics, resulting in significant increase of complimentary local anesthesia during emergency endodontic treatment. This work provides evidence of the consequence of LPT application on teeth with symptomatic irreversible pulpitis. LPT should be avoided in teeth with pain due to irreversible pulpitis.

  20. Efficacy of preoperative ibuprofen and meloxicam on the success rate of inferior alveolar nerve block for teeth with irreversible pulpitis.

    Science.gov (United States)

    Shantiaee, Yazdan; Javaheri, Sahar; Movahhedian, Amir; Eslami, Sarah; Dianat, Omid

    2017-04-01

    The purpose of this study was to determine whether premedication with ibuprofen or meloxicam increases the success rate of anaesthesia in teeth with irreversible pulpitis. In this parallel, double-blind clinical trial, 92 patients diagnosed with irreversible pulpitis were randomly divided into four groups of 23 patients. The first group (the no-premedication group) received no premedication, the second group (the meloxicam group) received 7.5 mg of meloxicam, the third group (the ibuprofen group) received 600 mg of ibuprofen, and the fourth group (the placebo group) received placebo 1 hour before intervention. Before taking the medication, electrical pulp testing (EPT) and the Heft-Parker visual analogue scale (VAS) were used to evaluate sensitivity and pain at baseline. Then, local anaesthesia was injected, and after 15 minutes, EPT was used again to evaluate tooth sensitivity. The pain during access preparation was also recorded using the Heft-Parker VAS. Ninety-two patients were analysed. The success rates of local anaesthesia were 21.7%, 34.8%, 78.3% and 73.9% in the no-premedication, placebo, ibuprofen and meloxicam groups, respectively, according to the EPT values. Considering the Heft-Parker VAS values, no premedication gave a 21.7% success rate, placebo gave a 34.8% success rate, ibuprofen gave an 82.6% success rate and meloxicam gave a 65.2% success rate. The ibuprofen and meloxicam groups showed significantly better results than the placebo and no-premedication groups (P irreversible pulpitis; however, neither drug provided profound anaesthesia. © 2016 FDI World Dental Federation.

  1. Blood pressure reduction in patients with irreversible pulpitis teeth treated by non-surgical root canal treatment

    Directory of Open Access Journals (Sweden)

    James I-Sheng Huang

    2017-12-01

    Full Text Available Background/purpose: The hypotension in patients during non-surgical root canal treatment (NSRCT has not yet investigated. This study aimed to assess the mean systolic blood pressure (MSBP, mean diastolic blood pressure (MDBP, and mean arterial blood pressure (MABP reduction percentages in patients with irreversible pulpitis teeth treated by NSRCT. Materials and methods: We prospectively recruited 111 patients with a total of 138 irreversible pulpitis teeth. All patients underwent two NSRCT sessions. The first NSRCT session involved mainly the removal of vital pulp tissue with the direct stimulation of the dental branches of the trigeminal nerve, and the second NSRCT session included the root canal debridement and enlargement with minimal disturbance to the dental nerves. The blood pressure of each patient was recorded before and during both NSRCT sessions. Results: There were significantly higher reduction percentages of MSBP, MDBP, and MABP in the first NSRCT session than in the second NSRCT session for all treated patients (all the P-values < 0.001. If the patients were divided into 2 or more groups according to the clinical variables including the patients' gender, age, tooth type, and anesthesia type, we also found significantly higher reduction percentages of MSBP, MDBP, and MABP in the first NSRCT session than in the second NSRCT session for all treated patients except for patients below 40 years of age and for patients with lower anterior teeth treated (all the P-values < 0.05. Conclusion: The decrease in blood pressure in patients receiving vital pulpal extirpation is a relatively common phenomenon. Keywords: hypotension, irreversible pulpitis teeth, non-surgical root canal treatment, blood pressure, parasympathetic effect, vital pulpal extirpation

  2. Does Articaine Provide an Advantage over Lidocaine in Patients with Symptomatic Irreversible Pulpitis? A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Kung, Jason; McDonagh, Marian; Sedgley, Christine M

    2015-11-01

    Achieving profound pulpal anesthesia can be difficult in patients with symptomatic irreversible pulpitis. This study provides a systematic review and meta-analysis to address the population, intervention, comparison, outcome (PICO) question: in adults with symptomatic irreversible pulpitis who are undergoing endodontic treatment, what is the comparative efficacy of articaine compared with lidocaine in reducing pain and incidence of adverse events? A protocol was prepared and registered on PROSPERO. Electronic searches were conducted in MEDLINE, Scopus, Cochrane Library, and ClinicalTrials.gov by using strict inclusion and exclusion criteria. Two independent reviewers assessed eligibility for inclusion and quality. Weighted anesthesia success rates and 95% confidence intervals (CIs) were estimated and compared by using a random-effects model. Two hundred seventy-five studies were initially identified from the search; 10 double-blind, randomized clinical trials met the inclusion criteria. For combined studies, articaine was more likely than lidocaine to achieve successful anesthesia (odds ratio [OR], 2.21; 95% CI, 1.41-3.47; P = .0006; I(2) = 40%). Maxillary infiltration subgroup analysis showed no significant difference between articaine and lidocaine (OR, 3.99; 95% CI, 0.50-31.62; P = .19; I(2) = 59%). For combined mandibular anesthesia studies articaine was superior to lidocaine (OR, 2.20; 95% CI, 1.40-3.44; P = .0006; I(2) = 30%), with further subgroup analysis showing no difference for mandibular block anesthesia (OR, 1.44; 95% CI, 0.87-2.38; P = .16; I(2) = 0%). When used for supplemental infiltration after successful mandibular block anesthesia, articaine was significantly more effective than lidocaine (OR, 3.55; 95% CI, 1.97-6.39; P irreversible pulpitis. There is a significant advantage to using articaine over lidocaine for supplementary infiltration after mandibular block anesthesia but no advantage when used for mandibular block anesthesia alone or for

  3. Irreversible renal damage after transient renin-angiotensin system stimulation: involvement of an AT1-receptor mediated immune response.

    Directory of Open Access Journals (Sweden)

    Bart F J Heijnen

    Full Text Available Transient activation of the renin-angiotensin system (RAS induces irreversible renal damage causing sustained elevation in blood pressure (BP in Cyp1a1-Ren2 transgenic rats. In our current study we hypothesized that activation of the AT1-receptor (AT1R leads to a T-cell response causing irreversible impairment of renal function and hypertension. Cyp1a1-Ren2 rats harbor a construct for activation of the RAS by indole-3-carbinol (I3C. Rats were fed a I3C diet between 4-8 weeks of age to induce hypertension. Next, I3C was withdrawn and rats were followed-up for another 12 weeks. Additional groups received losartan (20 mg/kg/day or hydralazine (100 mg/kg/day treatment between 4-8 weeks. Rats were placed for 24h in metabolic cages before determining BP at week 8, 12 and 20. At these ages, subsets of animals were sacrificed and the presence of kidney T-cell subpopulations was investigated by immunohistochemistry and molecular marker analysis. The development of sustained hypertension was completely prevented by losartan, whereas hydralazine only caused a partial decrease in BP. Markers of renal damage: KIM-1 and osteopontin were highly expressed in urine and kidney samples of I3C-treated rats, even until 20 weeks of age. Additionally, renal expression of regulatory-T cells (Tregs was highly increased in I3C-treated rats, whereas the expression of T-helper 1 (Th1 cells demonstrated a strong decrease. Losartan prevented these effects completely, whereas hydralazine was unable to affect these changes. In young Cyp1a1-Ren2 rats AT1R activation leads to induction of an immune response, causing a shift from Th1-cells to Tregs, contributing to the development of irreversible renal damage and hypertension.

  4. Echo-Spacing Optimization for the Simultaneous Measurement of Reversible (R2′) and Irreversible (R2) Transverse Relaxation Rates

    OpenAIRE

    Song, Ruitian; Song, Hee Kwon

    2006-01-01

    Accurate measurement of reversible (R2′) and irreversible (R2) transverse relaxation rates plays a key role in various MRI research and applications. Although optimizing the echo spacing for a multi-echo pulse sequence measuring a single exponential decay has been investigated, optimization in sequences such as GESFIDE (Gradient-Echo Sampling of Free Induction Decay and Echo), in which two echo trains are simultaneously measured to obtain both R2 and R2′, has not been reported. In this work, ...

  5. Irreversible Hemichorea–Hemiballism in a Case of Nonketotic Hyperglycemia Presenting as the Initial Manifestation of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Ujjawal Roy

    2011-08-01

    Full Text Available Background: Hemichorea–hemiballism (HCHB is a hyperkinetic movement disorder with features of both chorea and ballism occurring on the same side. Case report: We present a case of HCHB due to nonketotic hyperglycemia (NKH that was the initial presentation of diabetes and was irreversible clinically even after 6 months of optimal blood sugar control. Discussion: Although HCHB due to hyperglycemia is a potentially reversible condition in the majority of patients, prolonged uncontrolled hyperglycemia may cause ischemic insult and persistent symptoms. Hyperglycemia should always be kept in the list of differentials while dealing with patients who are newly diagnosed with HCHB.

  6. Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1978-01-01

    Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

  7. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.

    Science.gov (United States)

    Izumida, Yuki; Okuda, Koji

    2014-05-09

    We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.

  8. Comparison of the oral health-related quality of life and dental pain in symptomatic irreversible pulpitis and pericoronitis

    OpenAIRE

    Cimilli, Hale; Karacayli, Umit; Şişman, Nur; Kartal, Nevin; Mumcu, Gonca

    2012-01-01

    Background/purpose: The oral health-related quality of life (OHRQoL) reveals important information about a patient's perceptions in clinical practice, and pain is a critical point when evaluating OHRQoL in clinical practice. The aim of the study was to compare pain patterns by means of the Dental Pain-Screening Questionnaire (DePaQ) and an OHRQoL evaluation between symptomatic irreversible pulpitis and pericoronitis. Materials and methods: In this cross-sectional study, 50 patients with sy...

  9. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies.

    Science.gov (United States)

    Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian

    2017-02-01

    Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  10. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  11. The influence of tray type and other variables on the palatal depth of casts made from irreversible hydrocolloid impressions.

    Science.gov (United States)

    Frank, Richard P; Thielke, Stephen M; Johnson, Glen H

    2002-01-01

    There are conflicting data regarding the effect of various factors on the palatal depth of casts made from irreversible hydrocolloid impressions. This study examined the influence of tray type, water temperature, pouring technique, and stone expansion on the palatal depth of casts. Irreversible hydrocolloid impressions were made of a model under simulated oral conditions. Palatal depth was measured relative to a reference plane with a microscope. The reference planes were standardized by subjecting the data to three 2-dimensional mathematic rotations. A 2-factor analysis of variance (alpha=.05) was used to determine whether differences existed among tray types and among palatal locations. The palatal depth of the casts increased approximately 0.06 mm compared with the master model with all but 2 variables. Statistical testing revealed that increased depth was not attributable to water temperature (52 degrees F or 72 degrees F) or tray type (custom resin, perforated metal, metal rimlock, or rimlock with built-up palate). Custom resin tray impressions poured with a lower expansion stone and perforated tray impressions inverted onto a base made from the same mix of stone resulted in casts with palatal depths most similar to that of the master model (Ppalatal contours of comparable accuracy were obtained with the use of a stock metal or customized tray and the use of differing water temperatures to mix the impression material.

  12. Block selective redaction for minimizing loss during de-identification of burned in text in irreversibly compressed JPEG medical images.

    Science.gov (United States)

    Clunie, David A; Gebow, Dan

    2015-01-01

    Deidentification of medical images requires attention to both header information as well as the pixel data itself, in which burned-in text may be present. If the pixel data to be deidentified is stored in a compressed form, traditionally it is decompressed, identifying text is redacted, and if necessary, pixel data are recompressed. Decompression without recompression may result in images of excessive or intractable size. Recompression with an irreversible scheme is undesirable because it may cause additional loss in the diagnostically relevant regions of the images. The irreversible (lossy) JPEG compression scheme works on small blocks of the image independently, hence, redaction can selectively be confined only to those blocks containing identifying text, leaving all other blocks unchanged. An open source implementation of selective redaction and a demonstration of its applicability to multiframe color ultrasound images is described. The process can be applied either to standalone JPEG images or JPEG bit streams encapsulated in other formats, which in the case of medical images, is usually DICOM.

  13. Removal of the free cysteine residue reduces irreversible thermal inactivation of feruloyl esterase: evidence from circular dichroism and fluorescence spectra.

    Science.gov (United States)

    Li, Jingjing; Zhang, Shuaibing; Yi, Zhuolin; Pei, Xiaoqiong; Wu, Zhongliu

    2015-08-01

    Feruloyl esterase A from Aspergillus niger (AnFaeA) contains three intramolecular disulfide bonds and one free cysteine at position 235. Saturated mutagenesis at Cys235 was carried out to produce five active mutants, all of which displayed unusual thermal inactivation patterns with the most residual activity achieved at 75°C, much higher than the parental AnFaeA. But their optimal reaction temperatures were lower than the parental AnFaeA. Extensive investigation into their free thiol and disulfide bond, circular dichroism spectra and fluorescence spectra revealed that the unfolding of the parental enzyme was irreversible on all the tested conditions, while that of the Cys235 mutants was reversible, and their ability to refold was highly dependent on the denaturing temperature. Mutants denatured at 75°C were able to efficiently reverse the unfolding to regain native structure during the cooling process. This study provided valid evidence that free cysteine substitutions can reduce irreversible thermal inactivation of proteins. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  14. The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems

    Directory of Open Access Journals (Sweden)

    Umberto Lucia

    2014-09-01

    Full Text Available Thermodynamics studies the transformations of energy occurring in open systems. Living systems, with particular reference to cells, are complex systems in which energy transformations occur. Thermo-electro-chemical processes and transports occur across their border, the cells membranes. These processes take place with important differences between healthy and diseased states. In particular, different thermal and biochemical behaviours can be highlighted between these two states and they can be related to the energy transformations inside the living systems, in particular the metabolic behaviour. Moreover, living systems waste heat. This heat is the consequence of the internal irreversibility. Irreversibility is effectively studied by using the Gouy-Stodola theorem. Consequently, this approach can be introduced in the analysis of the states of living systems, in order to obtain a unifying approach to study them. Indeed, this approach allows us to consider living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment, so information on the systems can be obtained by analyzing their behaviour in relation to the modification of external perturbations. This paper presents a review of the recent results obtained in the thermodynamics analysis of cell systems.

  15. Effect of occlusal reduction on postoperative pain in teeth with irreversible pulpitis and mild tenderness to percussion.

    Science.gov (United States)

    Parirokh, Masoud; Rekabi, Ali Reza; Ashouri, Rezvan; Nakhaee, Nouzar; Abbott, Paul Vincent; Gorjestani, Hedayat

    2013-01-01

    Pain management after root canal treatment is a very important issue in clinical practice. The purpose of this study was to evaluate the effect of occlusal reduction on postoperative pain in teeth with irreversible pulpitis and tenderness to percussion. Fifty-four posterior vital teeth with sensitivity to percussion requiring endodontic treatment were included in this study. After administration of local anesthesia, the root canals were instrumented, and an intracanal calcium hydroxide dressing was placed. The patients were randomly divided into 2 groups of 27 each. In 1 group the occlusal surface was reduced (OR group), whereas in the other group the occlusal surface was not modified (no occlusal reduction, NOR group). Each patient was asked to record their postoperative pain on a visual analogue scale with 4 categories at 6 hours, 12 hours, 18 hours, 1 day, and then daily for 6 days after this treatment. Data were analyzed by t test, Cochran Q, χ(2), and Mann-Whitney tests. Forty-six patients returned the visual analogue scale forms. There was no significant difference in postoperative pain between the 2 groups (P > .05) after root canal preparation and calcium hydroxide dressing. Occlusal surface reduction did not provide any further reduction in postoperative pain for teeth with irreversible pulpitis and mild tenderness to percussion compared with no occlusal reduction. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Efficacy of single buccal infiltrations for maxillary first molars in patients with irreversible pulpitis: a randomized controlled clinical trial.

    Science.gov (United States)

    Atasoy Ulusoy, Ö İ; Alaçam, T

    2014-03-01

    To evaluate the efficacy of a single buccal infitration using 4% articaine hydrochloride (HCl) with 1 : 100,000 epinephrine or 4% articaine HCl with 1 : 100 000 epinephrine bitartrate for obtaining adequate pulpal anaesthesia in the palatal roots of maxillary first molars associated with irreversible pulpitis. In this single-blind randomized clinical trial, fifty subjects were randomly allocated to receive maxillary buccal injections of 1.5 mL 4% articaine with 1 : 100,000 epinephrine (n = 25) or 1.5 mL 4% articaine with 1 : 100,000 epinephrine bitartrate (n = 25). Visual analogue scale (VAS) scores and pulse rate measurements were recorded during access cavity preparation and initial file placement into the mesiobuccal, distobuccal and palatal canals. Data were analysed using Duncan and t-tests. There was no significant difference between the two anaesthetic solutions regarding the VAS scores and pulse rate measurements during endodontic procedures. The mean VAS ratings of the 50 patients during file placement into the palatal canals were significantly higher compared with the other three root canal procedures (P irreversible pulpitis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-18

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.

  18. Treatment outcomes of pulpotomy in permanent molars with irreversible pulpitis using biomaterials: a multi-center randomized controlled trial.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar

    2013-01-01

    To conduct a randomized clinical trial to compare the post-operative pain experience as well as clinical and radiographic outcomes of pulpotomy in human permanent molars with irreversible pulpitis using calcium enriched mixture (CEM) cement or mineral trioxide aggregate (MTA). A total of 413 patients met the inclusion criteria and consented to participate. The patients were randomly allocated into two study arms: MTA pulpotomy (PMTA: n = 208) and CEM pulpotomy (PCEM: n = 205). Numerical rating scale questionnaires were utilized by the patients to record pain intensity (PI) over 7 days post-operatively. The patients were followed-up for 12 months to assess the clinical and radiographic outcomes of treatment. The data was analyzed using Chi-square, Cohen's kappa and t-tests. There was no significant difference in the mean PI recorded during the 7 post-operative days between the two study arms (p = 0.221). The clinical and radiographic success rates for PMTA at 12-month follow-up were 98 and 95%, respectively; and 97 and 92% for PCEM, respectively. There was no significant differences in clinical (p = 0.7) and radiographic (p = 0.4) success rates between the two arms. Excellent treatment outcomes occurred in molar teeth with irreversible pulpitis undergoing pulpotomy with MTA and CEM biomaterials.

  19. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications.

    Science.gov (United States)

    Akazawa-Ogawa, Yoko; Takashima, Mizuki; Lee, Young-Ho; Ikegami, Takahisa; Goto, Yuji; Uegaki, Koichi; Hagihara, Yoshihisa

    2014-05-30

    The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI.

    Science.gov (United States)

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-04-20

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1-3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg).

  1. MR and CT imaging characteristics and ablation zone volumetry of locally advanced pancreatic cancer treated with irreversible electroporation.

    Science.gov (United States)

    Vroomen, Laurien G P H; Scheffer, Hester J; Melenhorst, Marleen C A M; de Jong, Marcus C; van den Bergh, Janneke E; van Kuijk, Cornelis; van Delft, Foke; Kazemier, Geert; Meijerink, Martijn R

    2017-06-01

    To assess specific imaging characteristics after irreversible electroporation (IRE) for locally advanced pancreatic carcinoma (LAPC) with contrast-enhanced (ce)MRI and ceCT, and to explore the correlation of these characteristics with the development of recurrence. Qualitative and quantitative analyses of imaging data were performed on 25 patients treated with percutaneous IRE for LAPC. Imaging characteristics of the ablation zone on ceCT and ceMRI were assessed over a 6-month follow-up period. Contrast ratio scores between pre- and post-treatment were compared. To detect early imaging markers for treatment failure, attenuation characteristics at 6 weeks were linked to the area of recurrence within 6 months. Post-IRE, diffusion-weighted imaging (DWI)-b800 signal intensities decreased in all cases (p characteristics may be useful to establish technical success and predict treatment outcome. • This study describes imaging characteristics after irreversible electroporation (IRE) for pancreatic adenocarcinoma. • Familiarity with typical post-IRE imaging characteristics helps to interpret ablation zones. • Post-IRE, no central and variable rim enhancement are visible on contrast-enhanced imaging. • DWI-b800 may prove useful to predict early tumour recurrence. • Post-IRE examinations reveal an initial volume increase followed by a decrease.

  2. The relationship between the level of salivary alpha amylase activity and pain severity in patients with symptomatic irreversible pulpitis

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadi-Motamayel

    2013-08-01

    Full Text Available Objectives Assessment of dental pain severity is very challenging in dentistry. Previous studies have suggested that elevated salivary alpha amylase may contribute to increased physical stresses. There is a close association between salivary alpha amylase and plasma norepinephrine under stressful physical conditions. The aim of this study was to evaluate the relationship between pain severity and salivary alpha amylase levels in patients with symptomatic irreversible pulpitis. Materials and Methods Thirty-six patients (20 females and 16 males with severe tooth pain due to symptomatic irreversible pulpitis were selected. The visual analogue scale (VAS score was used to assess the pain severity in each patient. Unstimulated whole saliva was collected, and the level of alpha amylase activity was assessed by the spectrophotometric method. Statistical analysis was performed using SPSS 13. Results The level of alpha amylase was significantly increased in the saliva in association with pain severity assessed by VAS. The salivary alpha amylase was also elevated with increased age and in males. Conclusions There was a significant correlation between the VAS pain scale and salivary alpha amylase level, which indicates this biomarker may be a good index for the objective assessment of pain intensity.

  3. Protection of the Queuosine Biosynthesis Enzyme QueF from Irreversible Oxidation by a Conserved Intramolecular Disulfide

    Directory of Open Access Journals (Sweden)

    Adeba Mohammad

    2017-03-01

    Full Text Available QueF enzymes catalyze the nicotinamide adenine dinucleotide phosphate (NADPH-dependent reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0 to 7-aminomethyl-7-deazaguanine (preQ1 in the biosynthetic pathway to the tRNA modified nucleoside queuosine. The QueF-catalyzed reaction includes formation of a covalent thioimide intermediate with a conserved active site cysteine that is prone to oxidation in vivo. Here, we report the crystal structure of a mutant of Bacillus subtilis QueF, which reveals an unanticipated intramolecular disulfide formed between the catalytic Cys55 and a conserved Cys99 located near the active site. This structure is more symmetric than the substrate-bound structure and exhibits major rearrangement of the loops responsible for substrate binding. Mutation of Cys99 to Ala/Ser does not compromise enzyme activity, indicating that the disulfide does not play a catalytic role. Peroxide-induced inactivation of the wild-type enzyme is reversible with thioredoxin, while such inactivation of the Cys99Ala/Ser mutants is irreversible, consistent with protection of Cys55 from irreversible oxidation by disulfide formation with Cys99. Conservation of the cysteine pair, and the reported in vivo interaction of QueF with the thioredoxin-like hydroperoxide reductase AhpC in Escherichia coli suggest that regulation by the thioredoxin disulfide-thiol exchange system may constitute a general mechanism for protection of QueF from oxidative stress in vivo.

  4. Irreversibility in room temperature current–voltage characteristics of NiFe{sub 2}O{sub 4} nanoparticles: A signature of electrical memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P., E-mail: pujaiitkgp2007@gmail.com [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Debnath, Rajesh; Singh, Swati; Mandal, S.K. [Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India); Roy, J.N. [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe{sub 2}O{sub 4} nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe{sub 2}O{sub 4} nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe{sub 2}O{sub 4} nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe{sub 2}O{sub 4} nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  5. Is “Hit and Run” a Single Word? The Processing of Irreversible Binomials in Neglect Dyslexia

    Science.gov (United States)

    Arcara, Giorgio; Lacaita, Graziano; Mattaloni, Elisa; Passarini, Laura; Mondini, Sara; Benincà, Paola; Semenza, Carlo

    2012-01-01

    The present study is the first neuropsychological investigation into the problem of the mental representation and processing of irreversible binomials (IBs), i.e., word pairs linked by a conjunction (e.g., “hit and run,” “dead or alive”). In order to test their lexical status, the phenomenon of neglect dyslexia is explored. People with left-sided neglect dyslexia show a clear lexical effect: they can read IBs better (i.e., by dropping the leftmost words less frequently) when their components are presented in their correct order. This may be taken as an indication that they treat these constructions as lexical, not decomposable, elements. This finding therefore constitutes strong evidence that IBs tend to be stored in the mental lexicon as a whole and that this whole form is preferably addressed in the retrieval process. PMID:22347199

  6. Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide

    Science.gov (United States)

    Liu, Gang; Yang, Bingchu; Liu, Baoxing; Zhang, Chujun; Xiao, Si; Yuan, Yongbo; Xie, Haipeng; Niu, Dongmei; Yang, Junliang; Gao, Yongli; Zhou, Conghua

    2017-10-01

    An irreversible light-soaking effect was disclosed in perovskite solar cells using TiO2 as an electron transporting layer. The power conversion efficiency of a fresh device was improved more by twice after light soaking for 15 min and then remained 70% even though the device was recovered in the dark for 4 days. The buried mechanism was explored by shedding light on the interaction between light and titanium dioxide. Oxygen vacancies in TiO2 were found to be increased by light-soaking, especially for wavelengths shorter than 400 nm. Such vacancies enhanced the N-type doping in the semiconductor, which not only increased the conductivity of the titania film but also accelerated the charge extraction rate between perovskite crystallites and titania, and finally contributed to upgraded power conversion efficiency.

  7. Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry

    Science.gov (United States)

    Jerliu, Bujar; Hüger, Erwin; Horisberger, Michael; Stahn, Jochen; Schmidt, Harald

    2017-08-01

    Amorphous silicon is a promising high-capacity anode material for application in lithium-ion batteries. However, a huge drawback of the material is that the large capacity losses taking place during cycling lead to an unstable performance. In this study we investigate the capacity losses occurring during galvanostatic lithiation of amorphous silicon thin film electrodes by in-situ neutron reflectometry experiments for the first ten cycles. As determined from the analysis of the neutron scattering length density and of the film thickness, the capacity losses are due to irreversible storage of lithium in the electrode. The amount of stored lithium increases during cycling to 20% of the maximum theoretical capacity after the 10th cycle. Possible explanations are discussed.

  8. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part II Irreversibility, norms and entropies

    Science.gov (United States)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    In this second part, we analyze the dissipation properties of generalized Poisson-Kac (GPK) processes, considering the decay of suitable L 2-norms and the definition of entropy functions. In both cases, consistent energy dissipation and entropy functions depend on the whole system of primitive statistical variables, the partial probability density functions \\{ p_α({x}, t) \\}α=1N , while the corresponding energy dissipation and entropy functions based on the overall probability density p({x}, t) do not satisfy monotonicity requirements as a function of time. These results provide new insights on the theory of Markov operators associated with irreversible stochastic dynamics. Examples from chaotic advection (standard map coupled to stochastic GPK processes) illustrate this phenomenon. Some complementary physical issues are also addressed: the ergodicity breaking in the presence of attractive potentials, and the use of GPK perturbations to mollify stochastic field equations.

  9. Percutaneous Irreversible Electroporation of a Large Centrally Located Hepatocellular Adenoma in a Woman with a Pregnancy Wish

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin, E-mail: k.nielsen@vumc.nl [Department of Surgery (Netherlands); Nieuwkerk, Karin M. van, E-mail: cmj.vannieuwkerk@vumc.nl; Vries, Richard A. de, E-mail: ra.devries@vumc.nl [VU University Medical Center, Department of Gastroenterology and Hepatology (Netherlands); Tol, Petrousjka van den [Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-08-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant liver tumors located near large vessels or bile ducts. We describe a 28-year-old female patient with a 5 cm large, centrally located hepatocellular adenoma who wished to get pregnant. Regarding the risk of growth and rupture of the adenoma caused by hormonal changes during pregnancy, treatment of the tumor was advised prior to pregnancy. However, due to its central location, the tumor was considered unsuitable for resection and thermal ablation. Percutaneous CT-guided IRE was performed without complications and led to rapid and impressive tumor shrinkage. Subsequent pregnancy and delivery went uncomplicated. This case report suggests that the indication for IRE may extend to the treatment of benign liver tumors that cannot be treated safely otherwise.

  10. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    Directory of Open Access Journals (Sweden)

    Emmanuel O.B. Ogedengbe

    2012-12-01

    Full Text Available Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in the silicon-based substrate of the energy system is analyzed. The rectangular-shaped micro-channels are simulated with a finite-volume, staggered coupling of the pressure-velocity fields. Entropy generation transport within the energy system is determined and coupled with the solution procedure. Consequently, the effects of channel size perturbation, Reynolds number, and pressure ratios on the thermal performance and exergy destruction are presented. A comparative analysis of the axial heat conduction for thermal management in energy conversion devices is proposed.

  11. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route.

    Science.gov (United States)

    Kandambeth, Sharath; Mallick, Arijit; Lukose, Binit; Mane, Manoj V; Heine, Thomas; Banerjee, Rahul

    2012-12-05

    Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol-imine (OH) form underwent irreversible proton tautomerism, and only the keto-enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well.

  12. The effect of premedication with ibuprofen and indomethacin on the success of inferior alveolar nerve block for teeth with irreversible pulpitis.

    Science.gov (United States)

    Parirokh, Masoud; Ashouri, Rezvan; Rekabi, Ali Reza; Nakhaee, Nouzar; Pardakhti, Abbas; Askarifard, Sara; Abbott, Paul V

    2010-09-01

    Achieving pulp anesthesia with irreversible pulpitis is difficult. This study evaluated whether nonsteroidal anti-inflammatory drugs assist local anesthesia. In a randomized double-blinded clinical trial, 150 patients (50 per group) with irreversible pulpitis were given placebo, 600 mg ibuprofen, or 75 mg indomethacin 1 hour before local anesthesia. Each patient recorded their pain score on a visual analog scale before taking the medication, 15 minutes after anesthesia in response to a cold test, during access cavity preparation and during root canal instrumentation. No or mild pain at any stage was considered a success. Data were analyzed by the chi-square and analysis of variance tests. Overall success rates for placebo, ibuprofen, and indomethacin were 32%, 78%, and 62%, respectively (p irreversible pulpitis. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion

    Directory of Open Access Journals (Sweden)

    Guven Gonca

    2014-01-01

    Full Text Available This paper presents an ecological performance analysis and optimization for an air-standard irreversible Dual-Atkinson cycle (DAC based on the ecological coefficient of performance (ECOP criterion which includes internal irreversibilities, heat leak, and finite-rate of heat transfer. A comprehensive numerical analysis has been realized so as to investigate the global and optimal performances of the cycle. The results obtained based on the ECOP criterion are compared with a different ecological function which is named as the ecologic objective-function and with the maximum power output conditions. The results have been attained introducing the compression ratio, cut-off ratio, pressure ratio, Atkinson cycle ratio, source temperature ratio, and internal irreversibility parameter. The change of cycle performance with respect to these parameters is investigated and graphically presented.

  14. Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid

    Science.gov (United States)

    Ge, Yanlin; Chen, Lingen; Qin, Xiaoyong; Xie, Zhihui

    2017-05-01

    Considering internal irreversibility loss (IIL), friction loss (FL) and heat transfer loss (HTL), an irreversible Otto cycle (IOC) model is built up by using air standard (AS) assumption. Based on finite-time thermodynamics (FTT), computing entropy generation rate (EGR) by using the irreversible losses in the cycle, the ecological function (EF) performance of the cycle is optimized when the specific heat (SH) of the working fluid (WF) varies with temperature with linear relation. Some important expressions, including efficiency, power output, EGR and EF, are obtained. Moreover, the effects of variable SH of WF and three losses on cycle performance are investigated. The research conclusion can provide some guidelines for the actual Otto cycle engine performance optimization.

  15. Causes of irreversible unilateral or bilateral blindness in the Al Baha region of the Kingdom of Saudi Arabia.

    Science.gov (United States)

    Alghamdi, Huda Farhan

    2016-01-01

    To determine the causes of irreversible unilateral and bilateral blindness that cannot be rehabilitated medically, optically nor surgically in Al Baha province, Kingdom of Saudi Arabia. There were a retrospective chart review and examination of patients presenting to King Fahad Hospital Al Baha, Saudi Arabia, with unilateral or bilateral blindness from June 2011 to September 2011. Blindness was defined as best corrected visual acuity (BCVA) of less than 0.05 (Snellen, 20/400) or a visual field no greater than 10° around central fixation. Data were collected on patient demographics, ocular disease either primary or secondary to systemic diseases and laterality if unilateral involvement. One hundred consecutive patients were enrolled in the study. The mean age of the study sample was 58 ± 2.28 years (range, 1-90 years). The male to female ratio was 3:2. The most common cause of blindness in one or both eyes per person was diabetes (30% of patients) followed by glaucoma (23%). Reclassification of the causes of the blindness according on World Health Organization (definition of blindness which included both eyes) did not change the causes of blindness. There were 76% patients with unilateral blindness. The most common causes of unilateral blindness were diabetes mellitus (DM) (19 patients; 27%), glaucoma (17 patients; 23%) and retinal diseases (other than that caused by DM) (17 patients; 23%). In the entire study sample, the male-to-female ratio for patients with blindness from DM was 2:1. Diabetic macular edema caused 87% of the cases of blindness in patients with DM mostly in the left eye. Diabetes mellitus and then glaucoma are the major causes of irreversible blindness in the Al Baha region in Saudi Arabia. Public health plans should be developed to encourage proper patient health education in the region. Additionally, effective screening should be performed at the primary health care centers for diabetes.

  16. Evaluation of the effect of locally administered amitriptyline gel as adjunct to local anesthetics in irreversible pulpitis pain

    Directory of Open Access Journals (Sweden)

    Moghadamnia A

    2009-01-01

    Full Text Available Background: Amitriptyline is one of the most common tricyclic antidepressants, which binds to pain sensory nerve fibers close to the sodium channel; hence, it could interact to some degree with receptors of local anesthetics. This study was designed to assess the additional analgesic effects of 2% Amitriptyline local gel administration in irreversible pulpitis pain of the molars. Materials and Methods: This study was a randomized, double-blind clinical trial that was performed on 56 consented adult patients who did not receive enough analgesia after a lidocaine nerve block for their tooth pulpitis pain. Patients were treated with 0.2 ml of either 2% amitriptyline or placebo, which was directly injected into their mandibular molar pulp chamber after they had received two routine lidocaine injections. Patients were asked to score their pain as a mark on a 10-cm Visual Analogue Scale (VAS at different timepoints: 0 (just before gel administration, 1, 3, 5, 7, and 9 minutes after the treatments. Results: There was a 92.5% decrease in VAS scores of patients 9 minutes after amitriptyline administration compared to Time 0, while in the placebo group this difference was only 13.5%. Further, in the amitriptyline group, the VAS score at all timepoints was statistically different from Time 0 ( P < 0.01. The overall pain reduction and its trend was significantly higher in the amitriptyline group compared with the placebo group ( P < 0.001. Conclusion: Inter-pulp space administration of amitriptyline 2% gel for completing analgesia in irreversible pulpitis pain could be effective and useful as a conjunctive therapy to injections of local anesthetics.

  17. Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination

    Directory of Open Access Journals (Sweden)

    Yasusi eYamamoto

    2013-10-01

    Full Text Available In response to excessive light, the thylakoid membranes of higher plant chloroplasts show dynamic changes including the degradation and reassembly of proteins, a change in the distribution of proteins, and large-scale structural changes such as unstacking of the grana. Here, we examined the aggregation of light-harvesting chlorophyll-protein complexes and Photosystem II core subunits of spinach thylakoid membranes under light stress with 77K chlorophyll fluorescence; aggregation of these proteins was found to proceed with increasing light intensity. Measurement of changes in the fluidity of thylakoid membranes with fluorescence polarization of diphenylhexatriene showed that membrane fluidity increased at a light intensity of 500–1,000 µmol photons m-2 s-1, and decreased at very high light intensity (1,500 µmol photons m-2 s-1. The aggregation of light-harvesting complexes at moderately high light intensity is known to be reversible, while that of Photosystem II core subunits at extremely high light intensity is irreversible. It is likely that the reversibility of protein aggregation is closely related to membrane fluidity: increases in fluidity should stimulate reversible protein aggregation, whereas irreversible protein aggregation might decrease membrane fluidity. When spinach leaves were pre-illuminated with moderately high light intensity, the qE component of non-photochemical quenching and the optimum quantum yield of Photosystem II increased, indicating that Photosystem II/ light-harvesting complexes rearranged in the thylakoid membranes to optimize Photosystem II activity. Transmission electron microscopy revealed that the thylakoids underwent partial unstacking under these light stress conditions. Thus, protein aggregation is involved in thylakoid dynamics and regulates photochemical reactions, thereby deciding the fate of Photosystem II.

  18. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  19. Preoperative visual loss is the main cause of irreversible poor vision in children with a brain tumor

    Directory of Open Access Journals (Sweden)

    Nitza eGoldenberg-Cohen

    2011-09-01

    Full Text Available To characterize the severe postoperative irreversible visual loss induced by optic neuropathy in some children with a brain tumor, the computerized database (2003-2008 of a neuro-ophthalmology service of a major pediatric tertiary center was reviewed for all children with severe irreversible visual loss (counting fingers or less due to brain-tumor-related optic neuropathy at their last follow-up examination. Data on age, gender, etiology, initial symptoms and signs, visual acuity before and after surgery and at last exam, neuroimaging findings, and treatment were collected. Of 240 children, 198 were operated. Of those, 10 (5%, 5 boys and 5 girls met the study criteria. Data for the initial visual examination were available for 8 children: one had binocular blindness (uncertain light perception, counting fingers; 3 had monocular blindness already at diagnosis (no light perception, counting fingers, no fixation; 3 had 6/60 vision in the worse eye; and one had good vision bilaterally (6/10. Four children had direct optic nerve compression, 4 papilledema and 3 gliomas. Four children (40%; with craniopharyngioma, pineal germinoma, or posterior fossa tumor exhibited a rapid deterioration in vision after tumor depression (1 direct compression and 3 increased intracranial pressure; two had monocular visual loss postoperatively; vision remained stable in 4 (after ≥5 follow-up visits, but did not improve. This study shows that tumor-related optic neuropathy may be associated with marked visual loss inspite of successful tumor resection; in 40% of children, the deterioration occurs perioeratively. Direct compression is the main cause of visual loss, while papilledema usually resolved without visual sequelae. However, autoregulatory changes may be responsible for rapid visual loss following decompression for chronic papilledema. Clinicians need reminding about the problem of post-operative visual loss and we speculate on how it can be avoided.

  20. Using torsional forces to explain the gradient temperature Raman spectra of endosulfan isomers and its irreversible isomerization

    Science.gov (United States)

    Schmidt, Walter F.; Hapeman, Cathleen J.; McConnell, Laura L.; Rice, Clifford P.; Broadhurst, C. Leigh; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.; Shelton, Daniel R.

    2017-07-01

    Since the 1950's, the broad-spectrum, organochlorine insecticide endosulfan (6,7,8, 9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) has been used on numerous crops. Due to its persistence, bioaccumulation, long-range transport, and adverse effects to human health and ecosystems, it was officially identified as a persistent organic pollutant (POP) in 2011. The last uses in the United States were phased out in 2016. Endosulfan consists of two diastereomers, α-endosulfan and β-endosulfan, and while the α-isomer exists as two asymmetrical, twist-chair enantiomers which interchange, the β-isomer is a symmetrical-chair conformation. In addition, the β-isomer was found to isomerize to the α-isomer. Gradient Temperature Raman Spectroscopy (GTRS) enables identification the molecular sites at which bending vibrational modes becomes twisting or wagging vibrational modes. Previous studies using GTRS and chemical calculations afforded evidence for specific bond movements and the irreversibility of the isomerization mechanism. However, not all of the vibrational modes observed in the spectra could be explained. Thus, new analyses of the GTRS data were conducted to examine the effects of torsional forces on the bond movement, which allowed for the identification of all the peaks. These newly-identified torsional forces provide further confirmation of the isomerization mechanism and its irreversibility. Finally, this isomerization explains why β-endosulfan is rarely detected in the atmosphere.