WorldWideScience

Sample records for brayton cycle

  1. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  2. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Directory of Open Access Journals (Sweden)

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  3. Back Work Ratio of Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Malaver de la Fuente M.

    2010-07-01

    Full Text Available This paper analizes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational soft ware helps to show the influence of back work ratio or coupling ratio, compressor and turbine in let temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle.

  4. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  5. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    -through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.

  6. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  7. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  8. Back work ratio of Brayton cycle; La relacion de trabajo de retroceso de un ciclo Brayton

    Energy Technology Data Exchange (ETDEWEB)

    Malaver de la Fuente, M. [Universidad Maritima del Caribe (Venezuela)]. E-mail: mmf_umc@hotmail.com

    2010-07-15

    This paper analyzes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational software helps to show the influence of back work ratio or coupling ratio, compressor and turbine inlet temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle. [Spanish] En este articulo se estudia la relacion que existe entre las temperaturas, la relacion de trabajo de retroceso y el trabajo neto en el ciclo Brayton, que es el ciclo ideal que describe el comportamiento de los motores de turbina de gas. La aplicacion de programas computarizados ayuda a mostrar la influencia de la relacion de trabajo de retroceso o relacion de acoplamiento, la temperatura de entrada al compresor y la temperatura de entrada a la turbina en este ciclo termodinamico ideal. Los resultados obtenidos permiten deducir que el valor maximo que alcanza la relacion de trabajo de retroceso dependera de los limites de temperatura maxima y minima impuestos en el ciclo Brayton.

  9. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  10. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  11. Operation and analysis of a supercritical CO2 Brayton cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  12. Status of Brayton cycle power conversion development at NASA GRC

    Science.gov (United States)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad salability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications. .

  13. Performance evaluation of space solar Brayton cycle power systems

    Science.gov (United States)

    Diao, Zheng-Gang

    1992-06-01

    Unlike gas turbine power systems which consume chemical or nuclear energy, the energy consumption and/or cycle efficiency should not be a suitable criterion for evaluating the performance of space solar Brayton cycle power. A new design goal, life cycle cost, can combine all the power system characteristics, such as mass, area, and station-keeping propellant, into a unified criterion. Effects of pressure ratio, recuperator effectiveness, and compressor inlet temperature on life cycle cost were examined. This method would aid in making design choices for a space power system.

  14. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  15. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  16. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  17. Operational Results of a Closed Brayton Cycle Test-Loop

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert; Lipinski, Ronald J.; Nichols, Kenneth; Brown, Nicholas

    2005-02-01

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ˜1000 K.

  18. Simulation of CO2 Brayton Cycle for Engine Exhaust Heat Recovery under Various Operating Loads

    Institute of Scientific and Technical Information of China (English)

    舒歌群; 张承宇; 田华; 高媛媛; 李团兵; 仇荣赓

    2015-01-01

    A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9%and the system has a better performance at the engine’s high operating load. The thermal efficiency can be as large as 24.83%under 100%operating load, accordingly, the net output power of 14.86 kW is obtained.

  19. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    Science.gov (United States)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.

  20. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO{sub 2} (S-CO{sub 2}). However, S-CO{sub 2} still has potential for reaction with sodium. CO{sub 2}-sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO{sub 2}, CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation.

  1. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  2. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  3. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  4. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  5. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce

    2013-12-31

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  6. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  7. Exergy analyses of an endoreversible closed regenerative Brayton cycle CCHP plant

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Yanlin Ge, Fengrui Sun

    2014-01-01

    Full Text Available An endoreversible closed regenerative Brayton cycle CCHP (combined cooling, heating and power plant coupled to constant-temperature heat reservoirs is presented using finite time thermodynamics (FTT. The CCHP plant includes an endoreversible closed regenerative Brayton cycle, an endoreversible four-heat-reservoir absorption refrigerator and a heat recovery device of thermal consumer. The heat-resistance losses in the hot-, cold-, thermal consumer-, generator-, condenser-, evaporator- and absorber-side heat exchangers and regenerator are considered. The performance of the CCHP plant is studied from the exergetic perspective, and the analytical formulae about exergy output rate and exergy efficiency are derived. Through numerical calculations, the pressure ratio of regenerative Brayton cycle is optimized, the effects of heat conductance of regenerator and ratio of heat demanded by the thermal consumer to power output on dimensionless exergy output rate and exergy efficiency are analyzed.

  8. Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

    Directory of Open Access Journals (Sweden)

    Naser M. Jubeh

    2005-07-01

    Full Text Available Abstract: The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet temperature, ambient temperature, altitude, and altitude with variable ambient temperature on irreversibility "exergy destroyed" and second law efficiency was investigated and compared for all models. The results are given graphically with the appropriate discussion and conclusion.

  9. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  10. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle.

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan

    2003-11-01

    An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscillators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes. The general performance characteristics of the cycle are investigated, based on the quantum master equation and the semigroup approach. The expressions for several important performance parameters such as the coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be equivalent to a classical Brayton cycle.

  11. Preliminary design of S-CO{sub 2} Brayton cycle for APR-1400 with power generation and desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Jeong, Yong Hoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    This study was conducted to explore the capabilities of the S-CO{sub 2} Brayton cycle for a cogeneration system for APR-1400 application. Three concepts of the S-CO{sub 2} simple recuperated co-generation cycle were designed. A supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is recently receiving significant attention as a promising power conversion system in wide range of energy applications due to its high efficiency and compact footprint. The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this study, the concept of replacing the entire steam cycle of APR-1400 with the S-CO{sub 2} Brayton cycle is evaluated. The power generation purpose S-CO{sub 2} Brayton cycles are redesigned to generate power and provide heat to the desalination system at the same time. The performance of these newly suggested cycles are evaluated in this paper. The target was to deliver 147MW heat to the desalination process. The thermal efficiencies of the three concepts are not significantly different, but the 3{sup rd} concept is relatively simpler than other cycles because only an additional heat exchanger is required. Although the 2{sup nd} concept is relatively complicated in comparison to other concepts, the temperatures at the inlet and outlet of the DHX are higher than that of the others. As shown in the results, the S-CO{sub 2} Brayton cycles are not easy to outperform the steam cycle with very simple layout and general design points under APR-1400 operating condition. However, this study shows that the S-CO{sub 2} Brayton cycles can be designed as a co-generation cycle while producing the target desalination heat with a simple configuration. In addition, it was also found that the S-CO{sub 2} Brayton cycle can achieve higher cycle thermal efficiency than the steam power cycle under

  12. Neon turbo-Brayton cycle refrigerator for HTS power machines

    Science.gov (United States)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  13. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  14. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  15. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    Science.gov (United States)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  16. Identified corrosion and erosion mechanisms in SCO2 Brayton Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Kruizenga, Alan Michael

    2014-06-01

    Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources is currently underway. To proceed, we must address concerns regarding compatibility of materials, at high temperature, and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while the addition of ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2]. Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. While S-CO2 is typically understood to be the secondary fluid, many varieties of primary fluids exist for nuclear applications. Molten salts, for use in the Molten Salt Reactor concept, are given as an example to contrast the materials requirements of primary and secondary fluids. Thin chromia layers are soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8], making materials selection for heat exchangers a precarious balancing act between high temperature oxidation (S-CO2) and metal dissolution (salt side of heat exchanger). Because concerns have been raised regarding component lifetimes, S-CO2 work has begun to characterize starting materials and to establish a baseline by analysis of 1) as-received stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with Sandia National Laboratories Brayton systems. A second issue discovered by SNL involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that

  17. Potential Improvements of Supercritical CO2 Brayton Cycle by Modifying Critical Point of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    A Sodium-cooled Fast Reactor (SFR) is one of strong candidates for a next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a sodium water reaction, which can deteriorate the safety of a SFR. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Helium or Supercritical Carbon dioxide (S-CO2) as working fluids can be an alternative approach to improve the current SFR design. As in a helium cycle, there has been an investigation to modify thermo-physical properties to increase the efficiency of the cycle and reduce the size of turbomachineries. Particularly, He-Xe or He-N2 binary mixture were successful to decrease the stages of turbomachines due to the increment of molecular weight of gas mixture than that of pure helium. Similar to the case of helium, CO2 has a potential to modify its thermo-physical properties by mixing with other gases. For instance, it was reported that critical point of CO2 can be shifted by mixing with different gases. Since, the efficiency of a S-CO2 cycle is limited to the critical point of CO2, the shift in critical point implies that there is a possibility of improving the cycle efficiency than the current design. This paper presents the results of a preliminary analysis to identify the effects of CO2 critical point modification on the Brayton cycle performance.

  18. Malone-Brayton Cycle Engine/Heat Pump.

    Science.gov (United States)

    A machine, such as a heat pump , and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of...difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system

  19. Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle

    Directory of Open Access Journals (Sweden)

    S. Mohammad S. Mahmoudi

    2016-10-01

    Full Text Available A new combined supercritical CO2 recompression Brayton/Kalina cycle (SCRB/KC is proposed. In the proposed system, waste heat from a supercritical CO2 recompression Brayton cycle (SCRBC is recovered by a Kalina cycle (KC to generate additional electrical power. The performances of the two cycles are simulated and compared using mass, energy and exergy balances of the overall systems and their components. Using the SPECO (Specific Exergy Costing approach and employing selected cost balance equations for the components of each system, the total product unit costs of the cycles are obtained. Parametric studies are performed to investigate the effects on the SCRB/KC and SCRBC thermodynamic and thermoeconomic performances of key decision parameters. In addition, considering the exergy efficiency and total product unit cost as criteria, optimization is performed for the SCRBC and SCRB/KC using Engineering Equation Solver software. The results indicate that the maximum exergy efficiency of the SCRB/KC is higher than that of the SCRBC by up to 10%, and that the minimum total product unit cost of the SCRB/KC is lower than that of the SCRBC by up to 4.9%.

  20. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  1. Development of a Novel Brayton-Cycle Cryocooler and Key Component Technologies

    Science.gov (United States)

    Nieczkoski, S. J.; Mohling, R. A.

    2004-06-01

    Brayton-cycle cryocoolers are being developed to provide efficient cooling in the 6 K to 70 K temperature range. The cryocoolers are being developed for use in space and in terrestrial applications where combinations of long lifetime, high efficiency, compactness, low mass, low vibration, flexible interfacing, load variability, and reliability are essential. The key enabling technologies for these systems are a mesoscale expander and an advanced oil-free scroll compressor. Both these components are nearing completion of their prototype development phase. The emphasis on the component and system development has been on invoking fabrication processes and techniques that can be evolved to further reduction in scale tending toward cryocooler miniaturization.

  2. Combined Reverse-Brayton Joule Thompson Hydrogen Liquefaction Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shimko, Martin A. [Gas Equipment Engineering Corporation, Milford, CT (United States); Dunn, Paul M. [Gas Equipment Engineering Corporation, Milford, CT (United States)

    2011-12-31

    The following is a compilation of Annual Progress Reports submitted to the DOE’s Fuel Cell Technologies Office by Gas Equipment Engineering Corp. for contract DE-FG36-05GO15021. The reports cover the project activities from August 2005 through June 2010. The purpose of this project is to produce a pilot-scale liquefaction plant that demonstrates GEECO’s ability to meet or exceed the efficiency targets set by the DOE. This plant will be used as a model to commercialize this technology for use in the distribution infrastructure of hydrogen fuel. It could also be applied to markets distributing hydrogen for industrial gas applications. Extensive modeling of plant performance will be used in the early part of the project to identify the liquefaction cycle architecture that optimizes the twin goals of increased efficiency and reduced cost. The major challenge of the project is to optimize/balance the performance (efficiency) of the plant against the cost of the plant so that the fully amortized cost of liquefying hydrogen meets the aggressive goals set by DOE. This project will design and build a small-scale pilot plant (several hundred kg/day) that will be both a hardware demonstration and a model for scaling to larger plant sizes (>50,000 kg/day). Though an effort will be made to use commercial or near-commercial components, key components that will need development for either a pilot- or full-scale plant will be identified. Prior to starting pilot plant fabrication, these components will be demonstrated at the appropriate scale to demonstrate sufficient performance for use in the pilot plant and the potential to achieve the performance used in modeling the full-scale plant.

  3. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven A; Rochau, Gary E; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  4. Exergetic efficiency optimization for an irreversible heat pump working on reversed Brayton cycle

    Indian Academy of Sciences (India)

    Yuehong Bi; Lingen Chen; Fengrui Sun

    2010-03-01

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is defined as the ratio of rate of exergy output to rate of exergy input of the system. The irreversibilities considered in the system include heat resistance losses in the hot- and cold-side heat exchangers and non-isentropic losses in the compression and expansion processes. The analytical formulas of the heating load, coefficient of performance (COP) and exergetic efficiency for the heat pumps are derived. The results are compared with those obtained for the traditional heating load and coefficient of performance objectives. The influences of the pressure ratio of the compressor, the allocation of heat exchanger inventory, the temperature ratio of two reservoirs, the effectiveness of the hot- and cold-side heat exchangers and regenerator, the efficiencies of the compressor and expander, the ratio of hot-side heat reservoir temperature to ambient temperature, the total heat exchanger inventory, and the heat capacity rate of the working fluid on the exergetic efficiency of the heat pumps are analysed by numerical calculations. The results show that the exergetic efficiency optimization is an important and effective criterion for the evaluation of an irreversible heat pump working on reversed Brayton cycle.

  5. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  6. Second-law analysis and optimization of reverse brayton cycles of different configurations for cryogenic applications

    Science.gov (United States)

    Streit, James Ryder; Razani, Arsalan

    2012-06-01

    Second-law of thermodynamics (2nd law) and exergy analyses and optimization offour Reverse Brayton Refrigeration (RBR) cryogenic cycle configurations: Conventional 1-stage compression cycle; Conventional 2-stage compression cycle; 1-stage compressionModified cycle with intermediate cooling of the recuperator using an auxiliary cooler; andan Integrated 2-stage expansion RBR cycle are performed. The conventional RBR cyclesare analyzed for low and high pressure ratio applications using multistage compressorswith intercooling. Analytical solutions for the conventional cycles are developed includingthermal and fluid flow irreversibilities of the recuperators and all heat exchangers inaddition to the compression and expansion processes. Analytical solutions are used to findthe thermodynamic bounds for the performance of the cycles. Exergy irreversibilitydiagrams of the cycles are developed and the effects of important system parameters onRBR cycle performance are investigated. 2nd law/exergy analyses, and optimization of thecycles with intermediate cooling of the recuperator, considering the cooling temperatureand the recuperator effectiveness and pressure drop, are included. The effect of the 2ndlaw/exergy efficiency of the auxiliary cooler on the total system efficiencies is presented.

  7. Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, John

    2006-01-01

    This paper represents a status report documenting the work on creep of superalloys performed under Project Prometheus. Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, are being screened to compare their respective capabilities for impeller applications. Several wrought superalloys including Hastelloy X, (Haynes International, Inc., Kokomo, IN), Inconel 617, Inconel 740, Nimonic 263, and Incoloy MA956 (Special Metals Corporation, Huntington, WV) are also being screened to compare their capabilities for duct applications. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Conventional tensile and creep tests were performed at temperatures up to 1200 K on specimens extracted from the materials. Initial microstructure evaluations were also undertaken.

  8. Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials

    Science.gov (United States)

    Gabb, Timothy P.; Gayda, john; Garg, Anita

    2007-01-01

    Cast superalloys have potential applications in space as impellers within closed-loop Brayton cycle nuclear power generation systems. Likewise wrought superalloys are good candidates for ducts and heat exchangers transporting the inert working gas in a Brayton-based power plant. Two cast superalloys, Mar-M247LC and IN792, and a NASA GRC powder metallurgy superalloy, LSHR, have been screened to compare their respective capabilities for impeller applications. Mar-M247LC has been selected for additional long term evaluations. Initial tests in helium indicate this inert environment may debit long term creep resistance of this alloy. Several wrought superalloys including Hastelloy(Registered TradeMark) X, Inconel(Registered TradeMark) 617, Inconel(Registered TradeMark) 740, Nimonic(Registered TradeMark) 263, Incoloy(Registered TradeMark) MA956, and Haynes 230 are also being screened to compare their capabilities for duct applications. Haynes 230 has been selected for additional long term evaluations. Initial tests in helium are just underway for this alloy. These proposed applications would require sufficient strength and creep resistance for long term service at temperatures up to 1200 K, with service times to 100,000 h or more. Therefore, long term microstructural stability is also being screened.

  9. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  10. Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report

    Energy Technology Data Exchange (ETDEWEB)

    Burgmeier, L.; Leung, S.

    1981-07-31

    The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

  11. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  12. A global optimization method synthesizing heat transfer and thermodynamics for the power generation system with Brayton cycle

    Science.gov (United States)

    Fu, Rong-Huan; Zhang, Xing

    2016-09-01

    Supercritical carbon dioxide operated in a Brayton cycle offers a numerous of potential advantages for a power generation system, and a lot of thermodynamics analyses have been conducted to increase its efficiency. Because there are a lot of heat-absorbing and heat-lossing subprocesses in a practical thermodynamic cycle and they are implemented by heat exchangers, it will increase the gross efficiency of the whole power generation system to optimize the system combining thermodynamics and heat transfer theory. This paper analyzes the influence of the performance of heat exchangers on the actual efficiency of an ideal Brayton cycle with a simple configuration, and proposes a new method to optimize the power generation system, which aims at the minimum energy consumption. Although the method is operated only for the ideal working fluid in this paper, its merits compared to that only with thermodynamic analysis are fully shown.

  13. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  14. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  15. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  16. Analysis of Superimposed Elementary Thermodynamic Cycles: from the Brayton-Joule to Advanced Mixed (Auto-Combined Cycles

    Directory of Open Access Journals (Sweden)

    Giovanni Manente

    2009-09-01

    Full Text Available

    The need for efficiency improvement in energy conversion systems leads to a stricter functional integration among system components. This results in structures of increasing complexity, the high performance of which are often difficult to be understood easily. To make the comprehension of these structures easier, a new approach is followed in this paper, consisting in their representation as partial or total superimposition of elementary thermodynamic cycles. Although system performance cannot, in general, be evaluated as the sum of the performance of the separate thermodynamic cycles, this kind of representation and analysis can be of great help in understanding directions of development followed in the literature for the construction of advanced energy systems, and could suggest new potential directions of work. The evolution from the simple Brayton-Joule cycle to the so called “mixed” cycles, in which heat at the turbine discharge is exploited using internal heat sinks only without using a separate bottoming section, is used to demonstrate the potentiality of the approach. Mixed cycles are named here "auto-combined cycles” to highlight the combination of different (gas and steam cycles within the same system components.

    • This paper is an updated version of a paper published in the ECOS'08 proceedings. 

  17. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  18. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  19. Evaluation of Active Working Fluids for Brayton Cycles in Space Applications

    Science.gov (United States)

    Conklin, J. C.; Courville, G. E.; Scott, J. H.

    2004-02-01

    The main parameter of interest for space thermal power conversion to electricity is specific power, defined as the total electric power output per unit of system mass, rather than the cycle thermal efficiency. For a closed Brayton cycle, performance with two active working fluids, nitrogen tetroxide and aluminum chloride, is compared to that with an inert mixture of helium and xenon having a molecular mass of 40. A chemically active working fluid is defined here as a chemical compound that has a relatively high molecular weight at temperatures appropriate for the compressor inlet and dissociates to a lighter molecular weight fluid at typical turbine inlet temperatures. The active working fluids may have the advantage of a higher net turbomachinery work output and an advantageous enhancement of the heat transfer coefficient in the heat exchangers. The fundamental theory of the active working fluid concept is presented to demonstrate these potential advantages. Scoping calculations of the heat exchanger mass for a selected spacecraft application of 36.4 kW of electrical power output show that the nitrogen tetroxide active working fluid has an advantageous 7% to 30% lower mass-to-power ratio than that for the inert noble gas mixture, depending on the allowable turbine inlet temperature. The calculations for the aluminum chloride system suggest only a slight improvement in performance relative to the inert noble gas mixture.

  20. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    Science.gov (United States)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  1. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    Science.gov (United States)

    McCann, Larry D.

    2007-01-01

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  2. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  3. Transient analysis of an FHR coupled to a helium Brayton power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghui [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Kim, In Hun [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Christensen, Richard [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Utgikar, Vivek [Univ. of Idaho, Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) features a passive decay heat removal system and a high-efficiency Brayton cycle for electricity generation. It typically employs an intermediate loop, consisting of an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX), to couple the primary system with the power conversion unit (PCU). In this study, a preliminary dynamic system model is developed to simulate transient characteristics of a prototypic 20-MWth Fluoride salt-cooled High-temperature Test Reactor (FHTR). The model consists of a series of differential conservation equations that are numerically solved using the MATLAB platform. For the reactor, a point neutron kinetics model is adopted. For the IHX and SHX, a fluted tube heat exchanger and an offset strip-fin heat exchanger are selected, respectively. Detailed geometric parameters of each component in the FHTR are determined based on the FHTR nominal steady-state operating conditions. Three initiating events are simulated in this study, including a positive reactivity insertion, a step increase in the mass flow rate of the PCU helium flow, and a step increase in the PCU helium inlet temperature to the SHX. The simulation results show that the reactor has inherent safety features for those three simulated scenarios. It is observed that the increase in the temperatures of the fuel pebbles and primary coolant is mitigated by the decrease in the reactor power due to negative temperature feedbacks. The results also indicate that the intermediate loop with the two heat exchangers plays a significant role in the transient progression of the integral reactor system.

  4. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  5. Thermodynamic optimisation of supercritical CO2 Brayton power cycles coupled to Direct Steam Generation Line-Focusing solar fields

    OpenAIRE

    Coco Enriquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, Jose Maria

    2016-01-01

    In this paper a new generation line-focusing solar plants coupled to a s-CO2 Brayton power cycles are studied. These innovative CSP will increase the plant energy efficiency, and subsequently optimizing the SF effective aperture area and SF investment cost for a fixed power output. Two SF configurations were assessed: the Configuration 1 with a condenser between the SF and the Balance Of Plant (BOP), for Turbine Inlet Temperatures (TIT) up to 400oC, and the Configuration 2, for higher TIT up ...

  6. Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. D.; Boman, A.; Arnold, S.; Spitzmesser, J. B.; Jones, D.; McCree, D.; Hacker, L. J.

    2001-10-15

    Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.

  7. Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadi Mohammad Hosein

    2016-01-01

    Full Text Available An applicable approach for a multi-step regenerative irreversible Brayton cycle on the basis of thermodynamics and optimization of thermal efficiency and normalized output power is presented in this work. In the present study, thermodynamic analysis and a NSGA II algorithm are coupled to determine the optimum values of thermal efficiency and normalized power output for a Brayton cycle system. Moreover, three well-known decision-making methods are employed to indicate definite answers from the outputs gained from the aforementioned approach. Finally, with the aim of error analysis, the values of the average and maximum error of the results are also calculated.

  8. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  9. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  10. An open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shaobo [Guangdong Ocean University, College of Engineering, East Jiefang Rd. No. 40, Xiashan, Zhanjiang, Guangdong 524006 (China); Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China); Zhang, Hefei [Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China)

    2009-01-15

    This paper presents an open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water, and proves its feasibility through performance simulation. Pinch technology is used to analyze the cooling of the wet air after compressor and the water used for cooling wet air after compressor. Its refrigeration depends mainly on the sensible heat of air and the latent heat of water vapor, its performance is more efficient than a conventional air-cycle, and the utilization of turbo-machinery makes it possible. The adoption of this cycle will make deep freeze easily and reduce initial cost because very low temperature, about -55 C, air is obtained. The sensitivity analysis of coefficient of performance to the efficiency of compressor and the efficiency of compressor, and the results of the cycle are also given. The simulation results show that the COP of this system depends on the temperature before turbine, the efficiency of compressor and the efficiency of compressor, and varies with the wet bulb temperature of the outdoor air. Humid air is a perfect working fluid for deep freeze with no cost to the user. (author)

  11. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using compact fusion advanced Brayton (CFAB) cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, K.; Ohnishi, M.; Yamamoto, Y. [Kyoto Univ. (Japan)] [and others

    1994-12-31

    Key issues on a D-T Tokamak fusion reactor with advanced blanket concept using CFAB (Compact Fusion Advanced Brayton) cycle are presented. Although the previously proposed and studied compact fusion advanced Rankine cycle using mercury liquid metal has shown, in general, excellent performance characteristics in extracting energy and electricity with high efficiency by the {open_quotes}in-situ{close_quotes} nonequilibrium MHD disk generator, and in enhancing safety potential, there was a fear about uses of hazardous mercury as primary coolant as well as its limited natural resources. To overcome these disadvantages while retaining the advantage features of a ultra-high temperature coolant inherent in the synchrotron energy-enhanced D-T tokamak reactor, a compact fusion advanced Brayton cycle using helium was reexamined which was once considered relatively not superior in the CFAR study, at the expense of high, but acceptable circulation power, lower heat transfer characteristics, and probably of a little bit reduced safety.

  12. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  13. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  14. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    Science.gov (United States)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  15. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rao; J. Francuz; A. Verma; G. S. Samuelsen

    2006-10-30

    The ultimate goal of this program is to identify the power block cycle conditions and/or configurations which could increase the overall thermal efficiency of the Baseline IGCC by about 8% on a relative basis (i.e., 8% on a heat rate basis). This document presents the cycle conditions and/or the configurations for evaluation in an initial screening analysis. These cycle conditions and/or configurations for investigation in the screening analysis are identified by literature searches and brain storming sessions. The screening analysis in turn narrows down the number of promising cases for detailed analysis.

  16. Modeling and sizing of the heat exchangers of a new supercritical CO{sub 2} Brayton power cycle for energy conversion for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Cantizano, A.; Linares, J.I., E-mail: linares@upcomillas.es; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO{sub 2}. •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO{sub F}US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO{sub 2} Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO{sub 2}, their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO{sub 2}. The size of all of the heat exchangers of the cycle have been assessed.

  17. Comparison between s-CO2 and other supercritical working Fluids (s-Ethane, s-SF6, s-Xe, s-CH4, s-N2) in Line-Focusing Solar Power Plants with supercritical Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, Jose Maria

    2016-01-01

    Thermosolar power plants with linear solar collectors and Rankine or Brayton power cycles are maturing as a competitive solution for reducing CO2 emissions in power plants as an alternative to traditional fossil and nuclear fuels. In this context, nowadays a great effort is being invested in supercritical Carbon Dioxide Brayton (s-CO2) power cycles for optimizing the line-focusing solar plants performance and reducing the cost of renewable energy. However, there are other working fluids with ...

  18. Off-design performance prediction of Radial Compressor of Supercritical CO{sub 2} Brayton Cycle for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkuk; Lee, Jekyoung; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    KAIST research team suggested a new concept of SMR, which utilizes S-CO{sub 2} as the operating fluid and coolant. It was named as KAIST MMR(Micro Modular Reactor). Compared with existing SMR concepts, this reactor has advantages of achieving smaller volume of power conversion unit (PCU) containing the core and PCU in one vessel for the complete modularization passive air-cooling system more flexible installation in the inland area. In previous study, performance of turbomachinery in PCU was considered only on-design. But, off-design performances of each component can affect not only PCU but also the core because this reactor adopts the direct S-CO{sub 2} loop in GFR. Nuclear system is applied by relatively conservative criteria of safety. Thus, off-design performances of each component should be considered in order to be more realistic reactor. The suggested turbomachinery size of the S-CO{sub 2} cycle is relatively smaller than those of helium Brayton cycle and steam Rankine cycle. Performance analysis of compressor is conducted by KAIST-TMD in case of on-design and off-design. Compressor efficiency in on-design conditions is obtained 84.51 %. But compressor performance in off-design conditions decreases certainly. This means that more heat than existing prediction is rejected by air-cooling system. KAIST-TMD will be verified with more experiment data for providing the results of more accurate analysis. Also, this code will be modified to couple with safety analysis codes and S-CO{sub 2} cycle analysis codes in the future. Furthermore, authors will consider aerodynamic performance analysis and various losses for more realization.

  19. Selection of a closed Brayton cycle gas turbine for an intermediate-duty solar-electric power plant

    Science.gov (United States)

    Vieth, G. L.; Plummer, D. F.

    1980-03-01

    Subsystem and system analyses were performed to select the preferred working gas, performance characteristics and size of a closed cycle gas turbine for an intermediate-duty solar-electric power plant. Capital costs for all major subsystems were evaluated, but the principal selection criterion was the projected cost of electricity produced by the plant. Detailed analyses of the power conversion loop were conducted for both air and helium systems. Since the plant was intended for use on an intermediate-duty cycle, thermal storage was required. The coupling of the storage and power conversion loops in combination with the daily operating cycle influenced plant performance and energy costs in addition to the selection of the power conversion cycle.

  20. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Science.gov (United States)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  1. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  2. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  3. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  4. Performance Optimization of a Solar-driven Irreversible Intercooled Regenerated Brayton Cycle%不可逆中冷回热太阳能布雷顿循环系统的优化分析

    Institute of Scientific and Technical Information of China (English)

    许益霖; 黄跃武

    2011-01-01

    建立了由太阳能集热器模型和不可逆中冷回热布雷顿循环模型组成的恒温热源条件下太阳能布雷顿循环系统,以系统总效率为目标函数,考虑了高低温侧换热器、回热器和中冷器的热阻损失以及压缩机和涡轮机的不可逆损失,借助数值计算对太阳能集热器的工作温度进行了优化,并分析了主要特征参数对总效率的影响.结果表明:太阳能布雷顿循环系统中存在一个最佳的太阳能集热器工作温度和相应的最大总效率及最大总输出功率;在此基础上,通过优化中间压比可使循环系统的总效率和相应的总输出功率达到双重最大值;系统总效率随着回热器传热有效度和光学效率的增加而提高;系统运行时存在一个最佳的总压比.%An irreversible solar-driven heat engine system with constant-temperature heat-reservoirs has been built up, which consists of the model of a solar collector and an intercooled regenerated Brayton cycle. Taking the overall efficiency as the objective function, and considering both the heat resistance in high/low temperature-side heat exchanger, regenerative heater and intercooler, and the irreversible loss in compressor and turbine, the operating temperature of solar collector has been optimized with the help of numerical simulation, while influence of the main parameters on its overall efficiency analyzed. Results show that for the solar-driven Brayton cycle, there exists an optimum collector operating temperature, a corresponding maximum overall efficiency and a maximum total output power; on this basis, both the overall efficiency and the total output power may reach their maximum value by optimizing the intermediate pressure ratio; the overall efficiency increases with the rise of thermal and optical efficiency of regenerative heater; there exists an optimum total pressure ratio for the system.

  5. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  6. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  9. 逆布雷顿空气制冷机动态降温特性数值研究%Numerical study on dynamic cooling performance of reverse Brayton cycle air cryocooler

    Institute of Scientific and Technical Information of China (English)

    赵祥雄; 孙皖; 刘炅辉; 侯予

    2013-01-01

    建立了逆布雷顿空气制冷机系统时间相关数学模型,对系统动态降温过程进行了数值分析.详细阐述了系统主要部件板翅式换热器及透平膨胀机动态回热及降温数学模型.以该模型为基础,分析了逆布雷顿空气制冷系统不同入口压力、温度、流量及不同换热面积和膨胀机效率下的动态温降特性曲线,讨论了部分参数对系统动态降温性能的影响.结果表明:对于确定的入口流量,提高系统入口压力可以加快系统降温速度和最大温降;此外,系统设计时采用较大的回热换热器面积和提高膨胀机效率也是实现更大温降的有效手段.%In order to study the dynamic cooling process performance of a reverse Brayton cycle air cryocooler, a system time-dependent numerical model was set up and described, including the dynamic thermal performance model of a plate-fin heat exchanger and a turbo expander. The dynamic cooling process of the air cryocooler was discussed under different system inlet parameters, including pressure, temperature, volume flowrate, different heat exchange area and different turbo expander efficiency. The theoretical results shown that the higher the system inlet pressure the faster the system temperature decreases in case of low system inlet temperature and small system inlet flowrate, the increase of heat exchange area and turbo expander thermal efficiency can promote the system cooling performance.

  10. EXPLOIT STUDY OF NUCLEAR COMBINE CYCLE SYSTEM WITH TOPPING BRAYTON CYCLE%顶置燃气轮机核能联合循环系统开拓研究

    Institute of Scientific and Technical Information of China (English)

    林汝谋; 高林; 段立强

    2001-01-01

    本文探索研究核电站更新改造新技术。基于系统综合和能的梯级利用的思路,设计构筑压水堆核电站与燃气轮机相结合的核能联合循环系统流程超结构,通过对其综合优化,提出两种可供选用的顶置燃气轮机核能联合循环总体技术方案,还结合实例进行模拟分析,揭示了它们的热力学特性,从而提出核电站联合循环技术更新改造(NRCC-Repowering)的新途径与新方案及其设计分析方法。%Nuclear combine cycle systems with topping Braytoncycle for existing nuclear power stations have been exploited inthis paper. Based on the principle of energy cascadesutilization and system synthesis, the system flow superstructureof the combine cycle has been schemed out and have been syntheticallyoptimized, then two kind of system schemes havebeen put forward. At the same time, by setting up mathematicalmodel with four independent variables for this system, we have pointedout the relationship between system performanceand independent variables. These promising results obtained herewill be valuable for NRCC-Repowering of existing nuclear power stations.

  11. On Brayton and Moser's missing stability theorem

    NARCIS (Netherlands)

    Jeltsema, D.; Scherpen, J. M. A.

    2005-01-01

    In the early 1960s, Brayton and Moser proved three theorems concerning the stability of nonlinear electrical circuits. The applicability of each theorem depends on three different conditions on the type of admissible nonlinearities in circuit. Roughly speaking, this means that the theorems apply to

  12. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  13. Comparison of Gas-Turbine Cycles for Space Applications

    Science.gov (United States)

    English, Robert E.; Slone, Henry O.

    1960-01-01

    On the basis of the radiator area required for rejecting cycle waste heat, Rankine vapor cycles are far superior to the basic Brayton gas cycle for space turbogenerating powerplants. The present analysis considers modifications of the basic Brayton cycle and compares the modified cycles to the basic cycle with radiator area as the criterion of merit. The results indicate that reductions in radiator area attainable by modifying the basic Brayton cycle are small, and thus the competitive position of gasturbine cycles relative to Rankine vapor cycles is unchanged.

  14. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  15. Design, fabrication, and performance of foil journal bearing for the brayton rotating unit

    Science.gov (United States)

    Licht, L.; Branger, M.

    1973-01-01

    Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.

  16. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  17. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  18. Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems

    Science.gov (United States)

    Johnson, Paul K.; Mason, Lee S.

    2005-02-01

    The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30,45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.

  19. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  20. Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole

    Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.

  1. An isothermal model of a hybrid Stirling/reverse-Brayton cryocooler

    Science.gov (United States)

    Nellis, G. F.; Maddocks, J. R.

    2003-01-01

    This paper presents a model of a cryogenic refrigerator that integrates a reverse-Brayton lower temperature stage with a 2-piston Stirling upper temperature stage using a rectification system of check valves and buffer volumes. The numerical model extends the isothermal Schmidt analysis of the Stirling cycle by deriving the additional dimensionless governing equations that characterize the recuperative system. Numerical errors are quantified and the results are verified against analytical solutions in the appropriate limits. The model is used to explore the effect of the rectification system's characteristics on the overall cycle's behavior. Finally, the model is used to optimize the hybrid system's design by varying the swept volume ratio and phase angle in order to maximize the refrigeration per unit of heat transfer in the recuperator and regenerator.

  2. Brayton Isotope Power System (BIPS). Phase I. First annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-27

    The objective of the BIPS program is to develop a closed gas turbine dynamic conversion system for space application. The baseline system is a 7-year life, 450 lb, 1300 W(e) unit using Brayton cycle hardware developed for the NASA LeRC and two 2400 W(t) Multi-Hundred Watt isotope heat sources developed for the ERDA. Phase I of the three-phase BIPS program is the conceptual design of the flight system, the design, development, and testing of a prototype Ground Demonstration System (GDS). The Mini-Brayton Rotating Unit (Mini-BRU), Mini-BRU Recuperator (MBR), and Heat Source Assembly (HSA) will be integrated into the ground demonstrator loop, and the system will be tested under simulated space conditions at the AiResearch Space Power Laboratory. Successful completion of the Phase I effort in mid 1978 is expected to lead to the Phase II and Phase III follow-on efforts. Phase II is a 24-month effort for the development and qualification of a flight system. Qualification will include testing with an isotope heat source. Phase III is a 12-month effort to fabricate flight-qualified hardware for delivery in April 1981.

  3. Variations on the Zilch Cycle

    Science.gov (United States)

    Binder, P.-M.; Tanoue, C. K. S.

    2013-01-01

    Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…

  4. Comparison Between helium cycle and Supercritical CO{sub 2} Cycle for MMR and AMR

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Je Kyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    Korea Atomic Energy Research Institute (KAERI) started the development of Mobile Multi-Purpose Reactor (MMR), which is a 10MWth gas-cooled reactor. MMR is aiming for maximizing mobility, high performance, durability and safety. This is in order to use the MMR for many purposes such as ship propulsion, train engine and so on. MMR generally uses helium Brayton cycle as a power conversion system since it can obtain very simple system arrangement with direct cycle. However, some researchers have proposed that the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle can be more efficient energy converting cycle for the high temperature gas cooled reactor (HTGR) and the very high temperature reactor (VHTR) system as well. Thus, this paper is to compare helium Brayton cycle to the S-CO{sub 2} Brayton cycle in terms of the efficiency while varying turbine inlet temperature (T. I. T). A cascaded S-CO{sub 2} cycle which had been proposed by Argonne National laboratory (ANL) was used as the S-CO{sub 2} Brayton cycle configuration. This cycle is to overcome the mismatch of temperature drop between reactor coolant and CO{sub 2} through the reactor heat exchanger (RHX). Our research team reviewed the ANL research by using the in-house codes developed by the Korea Advanced institute of Science and Technology (KAIST) research team. The calculation error between the in-house code and previous result was -0.36%.

  5. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  6. Offshore Rankine Cycles

    OpenAIRE

    Brandsar, Jo

    2012-01-01

    The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles (Rankine, ORC, Brayton, Kalina, etc.), mechanical equipment (gas/steam turbine, heat exchangers and additional equipment) and safety concerns (flammable and/or toxic fluids, high temperature and pressures), to name the most important.The thesis try to give a brief overview of all critical points and alternatives, concerning employment of a wa...

  7. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  8. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  9. Control system options and strategies for supercritical CO2 cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  10. Mini-Brayton economic RTG study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this study is to demonstrate the applicability of a radioisotope heated Mini-Brayton power system to the 1973 USAF/AEC requirements established for the SURVSATCOM Mission. The principal requiremenets of the power system, are: 400 We power level; maximum weight 205 lbs.; $1.2 to 2.0 million per unit cost; and 5y mission duration. A radioisotope heat source that meets the ACE Nuclear Safety Criteria is presented. The major aspects of the Reference Design MB-ERTG are summarized. The Reference Design, utilizes a flexible Brayton rotating unit (BRU), a /sup 244/Cm heat source with ceramic clad fuel cylinders and an aluminum radiator. The flexible BRU has a variable power output capability, from 400 We to 3000 We, and is an important factor in the formulation of a cost effective development plan. The system weight is 186 lb and unit cost, including the /sup 244/Cm fuel, acceptance testing and delivery is $748,000. The total development cost for the 5-yr program is estimated at $16.4M with an additional $6.5M required for /sup 244/Cm heat source development support, /sup 244/Cm fuel, heat source fabrication and capital equipment expenditures. (LCL)

  11. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    Science.gov (United States)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  12. Brayton power conversion system parametric design modelling for nuclear electric propulsion

    Science.gov (United States)

    Ashe, Thomas L.; Otting, William D.

    1993-11-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  13. Key Factors Influencing the Decision on the Number of Brayton Units for the Prometheus Space Reactor

    Science.gov (United States)

    Ashcroft, John; Belanger, Sean; Burdge, Wayne; Clementoni, Eric; Jensen, Krista; Proctor, N. Beth; Zemo-Fulkerson, Annie

    2007-01-01

    The Naval Reactors (NR) Program and its DOE Laboratories, KAPL and Bettis, were assigned responsibility to develop space reactor systems for the Prometheus Program. After investigating all of the potential reactor and energy conversion options, KAPL and Bettis selected a direct gas Brayton system as the reference approach for the nuclear electric propulsion missions, including the Jupiter Icy Moons Orbiter (JIMO). In order to determine the optimal plant architecture for the direct gas system, KAPL and Bettis investigated systems with one or two active Brayton units and up to two spare units. No final decision was made on the optimal system configuration for the NEP gas-Brayton system prior to closeout of the project. The two most promising options appear to be a single system without spares and a three Brayton system with two operating units, each producing half of the required load, with a single spare unit. The studies show that a single Brayton system, without spares, offers the lowest mass system, with potential for lower operating temperature, and a minimum of system and operational complexity. The lower required mass and increased system efficiency inherent in the single Brayton system may be exploited to satisfy other design objectives such as reduced reactor and radiator operating temperatures. While Brayton system lifetimes applicable to a JIMO or other nuclear electric propulsion (NEP) mission have not been demonstrated, there is no fundamental limit on the lifetime of the Brayton hardware. Use of additional Brayton units with installed spares will allow for continued operation in the event of a failure of an individual Brayton unit. However, preliminary system reliability evaluations do not point to any substantial reliability benefit provided by carrying spare Brayton units. If a spare unit is used, operating two of the units at full power with an unpowered spare proved more efficient than operating all three units at a reduced power and temperature

  14. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    Science.gov (United States)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  15. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  16. Phase I: controls preliminary design report for Brayton Isotope Power System (BIPS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-20

    Background analyses of three control systems capable of controlling the speed, output voltage, and start rate of Brayton Isotope Power Systems (BIPS) are presented. Conclusions of all functions considered are summarized. (TFD)

  17. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  18. Brayton-Moser Equations and New Passivity Properties for Nonlinear Electro-Mechanical Systems

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Clemente-Gallardo, Jesus; Ortega, Romeo; Scherpen, Jacquelien M.A.; Klaassens, J. Ben

    2002-01-01

    This paper presents an alternative framework for a practically relevant class of nonlinear electro-mechanical systems. The formalism is based on a generalization of Brayton and Moser’s mixed-potential function. Instead of focusing on the usual energy-balance, the models are constructed using the pow

  19. Specification requirements summary for the Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, E.E.

    1976-02-10

    This document provides a summary of the required program specifications and procedures for the ERDA Phase I Brayton Isotope Power System (BIPS) Program. Also included are document definitions, descriptions, and formats, and a listing of commonly used abbreviations. This document is intended to be used as a guide in document preparation and control.

  20. Isotope Brayton ground demonstration testing and flight qualification program. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A proposal for the demonstration, development and production of the Isotope Brayton Flight System for space vehicles is presented with details on the technical requirements for designing and testing a ground demonstration system and on the program organization and personnel. (LCL)

  1. From Brayton-Moser formulation to Port Hamiltonian representation : the CSTR case study.

    OpenAIRE

    Hoang, N.H.; Couenne, Françoise; Dochain, Denis; Le Gorrec, Yann

    2011-01-01

    International audience; This paper shows that any thermodynamic variable ful lling some stability criterion can be used as Hamiltonian for pseudo hamiltonian representation of a non isothermal Continuous Stirred Tank Reactor (CSTR) model. More precisely it is shown that from Brayton- Moser formulation is obtained some port hamiltonian representation with negative dissipation. This result is shown for reaction A !B.

  2. Preliminary Study of the Supercritical CO{sub 2} Hybrid Cycle for the HTGR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Ahn, Yoonhan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study was conducted to explore the potential of Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle for the HTGR application. The S-CO{sub 2} cycle is being considered as a PCS due to its high thermal efficiency, simplicity, compactness and so on. Generally, the S-CO{sub 2} Brayton cycle is characterized as a highly recuperated cycle which means that to achieve high thermal efficiency, the cycle requires a highly effective recuperator. Argonne National Laboratory (ANL) showed that direct application of the standard S-CO{sub 2} recompressing Brayton cycle to the HTGR or the Very High Temperature Reactor (VHTR) is difficult to achieve high thermal efficiency due to the mismatch of the temperature difference between the temperature drop of helium as the primary reactor coolant and the temperature rise of CO{sub 2} as the PCS coolant through an Intermediate Heat Exchanger (IHX). Therefore, our research team suggests a novel S-CO{sub 2} cycle configuration, the S-CO{sub 2} Brayton and Rankine hybrid cycle, to solve this limitation. This S-CO{sub 2} hybrid concept is utilizing the waste heat of the S-CO{sub 2} Brayton cycle as heat input to the S-CO{sub 2} Rankine cycle. Dividing the thermal capacity of the heat source in to the Brayton cycle part and Rankine cycle part of the S-CO{sub 2} hybrid cycle appropriately, the temperature difference at the IHX could be reduced, therefore the net system performance and operating range can be improved. In this study, the ANL research is reviewed by the in-house cycle analysis codes developed by the Korea Advanced Institute of Science and Technology (KAIST) research team. And the S-CO{sub 2} Brayton and Rankine hybrid cycle is studied as a PCS for the VHTR condition which was utilized by ANL research team; it was assumed that the core outlet temperature to be 850 .deg. C and the core inlet temperature of 400 .deg. C.

  3. Cooling, freezing and heating with the air cycle: air as the ultimate green refrigerant

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    2000-01-01

    Due to the recent concern about the damage that CFCs cause to the environment (ozone layer, global warming) and the absence of commonly acceptable alternative refrigerants, the search for alternative refrigeration concepts is going on. Air as refrigerant in the Joule-Brayton cycle (air cycle) is one

  4. Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 1: Thermodynamic model and parameter analyses

    Directory of Open Access Journals (Sweden)

    Lingen Chen, Bo Yang, Fengrui Sun

    2011-03-01

    Full Text Available A thermodynamic model of an endoreversible intercooled regenerative Brayton heat and power cogeneration plant coupled to constant-temperature heat reservoirs is established by using finite time thermodynamics in Part 1 of this paper. The heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are taken into account. The finite time exergoeconomic performance of the cogeneration plant is investigated. The analytical formulae about dimensionless profit rate and exergetic efficiency are derived. The numerical examples show that there exists an optimal value of intercooling pressure ratio which leads to an optimal value of dimensionless profit rate for the fixed total pressure ratio. There also exists an optimal total pressure ratio which leads to a maximum profit rate for the variable total pressure ratio. The effects of intercooling, regeneration and the ratio of the hot-side heat reservoir temperature to environment temperature on dimensionless profit rate and the corresponding exergetic efficiency are analyzed. At last, it is found that there exists an optimal consumer-side temperature which leads to a double-maximum dimensionless profit rate. The profit rate of the model cycle is optimized by optimal allocation of the heat conductance of the heat exchangers in Part 2 of this paper.

  5. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    Science.gov (United States)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  6. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  7. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  8. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  9. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  10. Progress Towards a 6-10 K Turbo-Brayton Cryocooler

    Science.gov (United States)

    Zagarola, M. V.; Cragin, K. J.; Breedlove, J. J.; Davis, T. M.

    2006-04-01

    Turbomachine-based Brayton (turbo-Brayton) cryocoolers are an ideal option for long-duration space missions. Key attributes inherent to the technology are high reliability, extremely low vibration emittance, and flexible packaging and integration with instruments and spacecraft systems. The first space implementation of the technology was the NICMOS Cryocooler, which is a single-stage unit that was installed on the Hubble Space Telescope in March 2002. This cryocooler provides 7 W of cooling at 70 K and has been operating for 3.3 years (July 2005) without degradation in performance. New developments at Creare are focused on two-stage configurations with load temperatures as low as 6 K. The lower temperatures and loads have required advances in component technologies to meet aggressive targets for cryocooler mass, size and performance. The development of the electronics, compressors and intermediate turboalternator for a 6-10 K cryocooler are complete. This paper summarizes our accomplishments on the completed components, and reviews our progress towards the development of the remaining critical components, a lightweight recuperator and a high performance low temperature turboalternator.

  11. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  12. On the thermal efficiency of power cycles in finite time thermodynamics

    Science.gov (United States)

    Momeni, Farhang; Morad, Mohammad Reza; Mahmoudi, Ashkan

    2016-09-01

    The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to {η }{{Carnot}}\\gt {η }{{Brayton}}\\gt {η }{{Diesel}}\\gt {η }{{Otto}}, which is again very different from the corresponding classical results. The present results benefit a better understanding of the important role of irreversibility on heat engines in classical thermodynamics.

  13. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  14. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  15. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    Science.gov (United States)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  16. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    Science.gov (United States)

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data.

  17. A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung

    2015-12-01

    A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.

  18. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  19. Proposal for an advanced heat source assembly for the Isotope Brayton Power System. Volume 1. Technical program and statement of work

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    The technical program plan for evaluating the performance and safety of a radioisotope-fueled Brayton power system for space vehicles is presented with schedules for evaluating heat source design and safety, for specifying power system requirements, and for the development and operation of a ground demonstration system. (LCL)

  20. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  1. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  2. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa;

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly......-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  3. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.M.

    1985-07-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  4. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  5. Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Neises, Ty; Turchi, Craig

    2014-09-01

    A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbine (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.

  6. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    Science.gov (United States)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  7. Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 2: Heat conductance allocation and pressure ratio optimization

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Fengrui Sun

    2011-03-01

    Full Text Available Finite time exergoeconomic performance of an endoreversible intercooled regenerative Brayton cogeneration plant is optimized based on the model which is established using finite time thermodynamic in Part 1 of this paper. It is found that the optimal heat conductance allocation of the regenerator is zero. When the total pressure ratio and the heat conductance allocation of the regenerator are fixed, it is shown that there exist an optimal intercooling pressure ratio, and a group of optimal heat conductance allocations among the hot-, cold- and consumer-side heat exchangers and the intercooler, which correspond to a maximum dimensionless profit rate. When the total pressure ratio is variable, there exists an optimal total pressure ratio which corresponds to a double-maximum dimensionless profit rate, and the corresponding exergetic efficiency is obtained. The effects of the total heat exchanger conductance, price ratios and the consumer-side temperature on the double-maximum dimensionless profit rate and the corresponding exergetic efficiency are discussed. It is found that there exists an optimal consumer-side temperature which corresponds to a thrice-maximum dimensionless profit rate.

  8. Advanced Turbomachinery Components for Supercritical CO2 Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael [Gas Technology Inst., Woodland Hills, CA (United States)

    2016-03-31

    Six indirectly heated supercritical CO2 (SCO2 ) Brayton cycles with turbine inlet conditions of 1300°F and 4000 psia with varying plant capacities from 10MWe to 550MWe were analyzed. 550 MWe plant capacity directly heated SCO2 Brayton cycles with turbine inlet conditions of 2500°F and 4000 psia were also analyzed. Turbomachinery configurations and conceptual designs for both indirectly and directly heated cycles were developed. Optimum turbomachinery and generator configurations were selected and the resulting analysis provides validation that the turbomachinery conceptual designs meet efficiency performance targets. Previously identified technology gaps were updated based on these conceptual designs. Material compatibility testing was conducted for materials typically used in turbomachinery housings, turbine disks and blades. Testing was completed for samples in unstressed and stressed conditions. All samples exposed to SCO2 showed some oxidation, the extent of which varied considerably between the alloys tested. Examination of cross sections of the stressed samples found no evidence of cracking due to SCO2 exposure.

  9. Universal Expression of Efficiency at Maximum Power: A Quantum-Mechanical Brayton Engine Working with a Single Particle Confined in a Power-Law Trap

    Science.gov (United States)

    Ye, Zhuo-Lin; Li, Wei-Sheng; Lai, Yi-Ming; He, Ji-Zhou; Wang, Jian-Hui

    2015-12-01

    We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η+ = θ/(θ + 1), with θ being a potential-dependent exponent. Supported by the National Natural Science Foundation of China under Grant Nos. 11505091, 11265010, and 11365015, and the Jiangxi Provincial Natural Science Foundation under Grant No. 20132BAB212009

  10. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    Science.gov (United States)

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  11. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  12. FES cycling.

    Science.gov (United States)

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  13. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen

    Science.gov (United States)

    Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch.; Berstad, D.; Walnum, H. T.; Neksa, P.; Decker, L.

    2014-01-01

    In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop

  14. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch. [Technische Universitaet Dresden, Dresden (Germany); Berstad, D.; Walnum, H. T.; Neksa, P. [SINTEF Energy Research, Trondheim (Norway); Decker, L. [Linde Kryotechnik AG, Pfungen (Switzerland)

    2014-01-29

    In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop

  15. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  16. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  17. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Directory of Open Access Journals (Sweden)

    Lingen Chen, Xuxian Kan, Fengrui Sun, Feng Wu

    2013-01-01

    Full Text Available The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate and the utilization factor (COP for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  18. Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2016-04-01

    Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.

  19. Supercritical Water Reactor Cycle for Medium Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  20. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  1. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  2. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  3. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  4. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  5. Koszul cycles

    CERN Document Server

    Bruns, Winfreid; Römer, Tim

    2010-01-01

    We prove regularity bounds for Koszul cycles holding for every ideal of dimension at most 1 in a polynomial ring. We generalize the lower bound for the Green-Lazarsfeld index of Veronese rings we proved in arXiv:0902.2431 to the multihomogeneous setting.

  6. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  7. Magnetocaloric cycle with six stages: Possible application of graphene at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reis, M. S., E-mail: marior@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ (Brazil)

    2015-09-07

    The present work proposes a thermodynamic hexacycle based on the magnetocaloric oscillations of graphene, which has either a positive or negative adiabatic temperature change depending on the final value of the magnetic field change. For instance, for graphenes at 25 K, an applied field of 2.06 T/1.87 T promotes a temperature change of ca. −25 K/+3 K. The hexacycle is based on the Brayton cycle and instead of the usual four steps, it has six stages, taking advantage of the extra cooling provided by the inverse adiabatic temperature change. This proposal opens doors for magnetic cooling applications at low temperatures.

  8. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  9. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Yang, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available An endoreversible intercooled regenerative Brayton combined heat and power (CHP plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  10. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  11. Thermogravitational cycles: theoretical framework and example of an electric thermogravitational generator based on balloon inflation/deflation

    CERN Document Server

    Aouane, Kamel; Ford, Ian J; Elson, Tim P; Nightingale, Christopher

    2015-01-01

    Several studies have combined heat and gravitational energy exchanges to create novel heat engines. A common theoretical framework is developed here to describe thermogravitational cycles which have the same efficiencies as the Carnot, Rankine or Brayton cycles. Considering a working fluid, enclosed in a balloon, inside a column filled with a transporting fluid, the cycle is composed of four steps. Starting from the top of the column, the balloon goes down, receives heat from a hot source at the bottom, rises and delivers heat to a cold source at the top. Unlike classic power cycles which need external work to operate the compressor, thermogravitational cycles can operate as "pure power cycle" where no work is provided to drive the cycle. To illustrate this concept, the prototype of a thermogravitational electrical generator is presented. It uses a hot source of low temperature (average temperature near 57{\\deg}C) and relies on the gravitational energy exchanges of an organic fluid inside a balloon attached t...

  12. 太阳能热动力系统Brayton装置与Stirling装置分析与比较%The Comparison and Analysis of Solar Dynamic Power Module with Brayton Cycle and Stirling Cycle

    Institute of Scientific and Technical Information of China (English)

    崔海亭; 袁修干

    2004-01-01

    空间太阳能热动力发电系统是非常有前景的未来空间能源供应系统,对适用于空间SD装置的Brayton循环和Stiring循环进行了详细的分析,并以7 kW发电装置为对象,从质量、效率和对吸热器的要求等方面对2种循环进行了比较.结果表明,Brayton装置为目前太阳能热动力发电的首选方案,Stirling装置是未来最理想的空间发电系统.

  13. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  14. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  15. Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO{sub 2} Cycle Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Sah, Injin; Jang, Chanheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-12-15

    To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the S-CO{sub 2} system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to 650℃. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to 550℃. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

  16. Effects of variable loads on equipment and cogeneration cycles performance; Influencia da variacao da carga no rendimento de equipamentos e ciclos de co-geracao

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Mario A.B.; Balestieri, Jose A.P. [UNESP, Guaratingueta, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica]. E-mails: basulto1@uol.com.br; basulto@feg.unesp.br; perella@feg.unesp.br

    2000-07-01

    This article presents some aspects relative to the effects of changing loads on steam.generators and turbines. When the equipment solicitation varies due to industrial process demand changes, the equipment work in off-design point, altering its efficiency and the specific fuel rate. This work do not look for a detailed and exhaustive determination of the performance variation with the load but shows that in the selection of equipment this variation can have effects over the consume and the costs. In the present article it is assumed that the load variations are known, and the effects on the equipment efficiency were took from the correlated literature. An example of a Rankine cycle and other of a Brayton cycle are discussed, altering the operational conditions estimating the operating cost for each case. (author)

  17. Investigation of CO{sub 2} Recovery System Design in Supercritical Carbon Dioxide Power Cycle for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    These are mainly possible because the S-CO{sub 2} Brayton cycle has lower compressing work than other Brayton cycles due to its high density and low compressibility near the critical point. These attributes make easier to achieve higher turbine inlet temperature. Furthermore, the coolant chemistry control and component cooling systems are relatively simple for the S-CO{sub 2} cycle unlike the steam Rankine cycle, and therefore the total plant footprint can be greatly reduced further. However, certain amount of leakage flow is inevitable in the rotating turbo-machinery since the S-CO{sub 2} power cycle is a highly pressurized system. A computational model of critical flow in turbo-machinery seal is essential to predict the leakage flow and calculate the required total mass of working fluid in S-CO{sub 2} power system. Before designing a computational model of critical flow in turbo-machinery seal, this paper will identify what the issues are in predicting leakage flow and how these issues can be successfully addressed. Also, suitability of this solution in a large scale S-CO{sub 2} power cycle will be discussed, because this solution is for the small scale. S-CO{sub 2} power cycle has gained interest especially for the SFR application as an alternative to the conventional steam Rankine cycle, since S-CO{sub 2} power cycle can provide better performance and enhance safety. This paper discussed what the problem in leakage flow is and how to deal with this problem at present. High cavity pressure causing instability of gas foil bearing and large windage losses can be reduced by booster pump used to scavenge the gas in the rotor cavity. Also, labyrinth seals can be another good solution to decrease the rotor cavity pressure. Additionally, difference between large and small scale S-CO{sub 2} power cycle in turbo-machinery leakage is addressed. It is shown that optimization of CO{sub 2} recovery system design is more important to large scale S-CO{sub 2} power cycle. For

  18. Alternative analysis to increase the power in combined-cycle power plants; Analisis de alternativas para el incremento de potencia en plantas termoelectricas de Ciclo Combinado

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Cruz, Hector; Arriola Medellin, Alejandro M. [Gerencia de Procesos Termicos, Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: hpacheco@iie.org.mx; aarriola@iie.org.mx

    2010-11-15

    The electricity industry traditionally had two thermodynamic cycles for power generation: conventional steam turbine (Rankine cycle) used to supply a base load during the day, and gas turbines (Brayton cycle), for its speed response, normally used to cover peak loads. However, to provide variable peak loads, the gas turbine, as a volumetric machine is affected by the change in air density by changing the combustion temperature. This paper shows the scheme of integration of both systems, that it's known as combined cycle and the different options that would have these power plants, to maintain or increase their power in variable ambient conditions. It analyzes different options, such as: 1. Supplementary fire in the stove. 2. Air cooling intake in the gas turbine (evaporation system or mechanical system). 3. Steam injection in the combustion chamber. [Spanish] La industria electrica tradicionalmente a contado con dos ciclos termodinamicos para generacion electrica: las turbinas convencionales de vapor (ciclo de Rankine) se utilizan para suministrar una carga base durante el dia, y las turbinas de gas (ciclo de Brayton), por su rapidez de respuesta, se utilizan normalmente para cubrir las cargas pico. Sin embargo, para suministrar las cargas variables pico, la turbina a gas, por ser una maquina volumetrica, se ve afectada por el cambio de la densidad del aire de combustion al cambiar la temperatura ambiente. En este trabajo se muestra el esquema de integracion de ambos sistemas, en lo que se conoce como ciclo combinado y las diferentes opciones que tendrian estas plantas de generacion electrica para mantener o incrementar su potencia en condiciones ambiente variable. Para ello se analizan diferentes opciones, tales como: 1.- Combustion suplementaria en el recuperador de calor. 2.- Enfriamiento del aire de admision a la turbina de gas (mediante un sistema de evaporacion o mediante un sistema mecanico). 3.- Inyeccion de vapor a la camara de combustion. Palabras

  19. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  20. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  1. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2017-01-24

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.Molecular Psychiatry advance online publication, 24 January 2017; doi:10.1038/mp.2016.263.

  2. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  3. The Solar Cycle

    CERN Document Server

    Hathaway, David H

    2015-01-01

    The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  4. The Solar Cycle.

    Science.gov (United States)

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  5. Solar cycle 25: another moderate cycle?

    CERN Document Server

    Cameron, Robert H; Schuessler, Manfred

    2016-01-01

    Surface flux transport simulations for the descending phase of cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 $(2.5\\pm1.1\\,$G) is comparable to that observed at the end of cycle 23 (about $2\\,$G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  6. Proliferation in cycle

    Energy Technology Data Exchange (ETDEWEB)

    Piao Yunsong [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: yspiao@gucas.ac.cn

    2009-06-15

    In the contracting phase with w{approx_equal}0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w{approx_equal}0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  7. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    Science.gov (United States)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  8. Cycling in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Alexis Zander

    2013-01-01

    Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  9. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  10. HIV Life Cycle

    Science.gov (United States)

    HIV Overview The HIV Life Cycle (Last updated 9/13/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  11. Cycling To Awareness.

    Science.gov (United States)

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  12. Hereditary urea cycle abnormality

    Science.gov (United States)

    ... vitro so the specific genetic cause is known. Teamwork between parents, the affected child, and doctors can help prevent severe illness. Alternative Names Abnormality of the urea cycle - hereditary; Urea cycle - hereditary abnormality Images Male urinary system Urea cycle References Lichter-Konecki ...

  13. -150℃逆布雷顿空气制冷机动态温降特性研究%Study on the Dynamic Cooling Performance of a-150 ℃ Reverse Brayton Cycle Air Cryocooler

    Institute of Scientific and Technical Information of China (English)

    蔡君伟; 孙皖; 李斌; 李涛; 侯予

    2013-01-01

    A turboexpander having a working wheel with a diameter of 24mm and a plate-fin heat exchanger were applied in a retrofitted -150 ℃ air cryocooler system. A vacuum cryogenic trap (absolute pressure < 10-3 Pa) was used for insulation. The dynamic cooling performance of the whole system was studied under the conditions of different brake wheel configurations. A numerical model in respect of the dynamic cooling performance of the - 150 ℃ air cryocooler system was established. The results show that the brake wheel size significantly affects the cooling performance of the cryocooler, and the lowest system temperature is under -150 ℃. Additionally, the numerical results agree well with the experimental data.%为了研究空气制冷机的动态温降特性,对采用工作轮直径为24 mm的小型透平膨胀机和板翅式换热器的逆布雷顿循环空气制冷机实验台进行了改进.采用高真空绝热冷箱对制冷机进行绝热,可使绝对压力低于10-3 Pa,得到的设计制冷温度为-150℃.对不同进口参数和采用不同直径风机轮的制冷机工况进行了实验研究,获得了透平膨胀机的实际温降曲线;以实验系统为基础建立了数学模型,得到了相应的理论温降曲线.研究结果表明:风机轮尺寸对空气制冷机动态温降过程的影响较大,实验的最低温度低于-150℃;所建理论模型能够较好地预测实际系统温降的过程.

  14. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  15. Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Driscoll; P. Hejzlar; G. Apostolakis

    2008-09-08

    An overall plant design was developed for a gas-cooled fast reactor employing a direct supercritical Brayton power conversion system. The most important findings were that (1) the concept could be capital-cost competitive, but startup fuel cycle costs are penalized by the low core power density, specified in large part to satisfy the goal of significatn post-accident passive natural convection cooling; (2) active decay heat removal is preferable as the first line of defense, with passive performance in a backup role; (3) an innovative tube-in-duct fuel assembly, vented to the primpary coolant, appears to be practicable; and (4) use of the S-Co2 GFR to support hydrogen production is a synergistic application, since sufficient energy can be recuperated from the product H2 and 02 to allow the electrolysis cell to run 250 C hotter than the reactor coolant, and the water boilers can be used for reactor decay heat removal. Increasing core poer density is identified as the top priority for future work on GFRs of this type.

  16. Thermal analysis of the heat recuperator of a combined cycle thermoelectric central; Analisis termico del recuperador de calor de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, Hernando; Sanchez, I.; Lazcano, L. C.; Ambriz, Juan Jose; Alvarez, M. [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico); Gonzalez, O. [Comision Federal de Electricidad, Tula (Mexico)

    1996-12-31

    The thermoelectric centrals of the combined cycle type (Brayton Cycle and Rankine Cycle) present a series of opportunities to increase the efficiency of the combined cycle or of the generated power. This paper shows the methodology for the performance of energy balances in a heat recuperator (H. R.), typically employed in the combined cycle stations operating in Mexico, for the assessment of the energy harnessing in the different sections conforming a H. R. The effect of the installation of evaporative coolers and/or an absorption cooling system at the gas turbine compressor intake on the steam generation in the heat recuperator, is evaluated. This extra generation of steam is quantified for its potential use in the same absorption refrigeration system. From the assessment, it follows up that the steam generation in the H.R. is inversely proportional to the ambient temperature and that, although the increased amount of steam generated can not be harnessed in total by the steam turbine, the remaining fraction is good enough to cover the heat demand for the operation of the refrigeration system. [Espanol] Las centrales termoelectricas del tipo ciclo combinado (ciclo Brayton y ciclo Rankine) presentan un conjunto de oportunidades para incrementar la eficiencia del ciclo combinado o bien la potencia generada. En el presente trabajo se expone la metodologia para realizar los balances de energia en un recuperador de calor (R.C.) tipicamente utilizado en las Centrales de Ciclo Combinado (CCC) que operan en Mexico, para evaluar el aprovechamiento de la energia en las diferentes secciones que conforman un R.C. Se evalua el efecto que tiene la instalacion de enfriadores evaporativos y/o un sistema de enfriamiento por absorcion en la succion del compresor de la turbina de gas sobre la generacion de vapor en el recuperador de calor. Se cuantifica esta generacion extra de vapor para su posible utilizacion en el mismo sistema de refrigeracion por absorcion. De la evaluacion se

  17. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  18. Menstrual Cycle: Basic Biology

    Science.gov (United States)

    Hawkins, Shannon M.; Matzuk, Martin M.

    2010-01-01

    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutations (galactosemia) also contribute to perturbations of the menstrual cycle. Although not perfect, mouse model have helped to identify and confirm additional components and pathways in menstrual cycle function and dysfunction in humans. PMID:18574203

  19. Edgeworth cycles revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Joseph [MIT Sloan School of Management, 50 Memorial Drive, E52-447, Cambridge MA 02142 (United States); Muehlegger, Erich [John F. Kennedy School of Government, Harvard University, Mailbox 25, 79 JFK Street, Cambridge, MA 02138 (United States); Samphantharak, Krislert [Graduate School of International Relations and Pacific Studies, University of California at San Diego, 9500 Gilman Drive 1519, La Jolla, CA 92093 (United States)

    2010-05-15

    Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend the model and empirically test its predictions with a new dataset of daily station-level prices in 115 US cities. Consistent with the theory, and often in contrast with previous empirical work, we find the least and most concentrated markets are much less likely to exhibit cycling behavior both within and across cities; areas with more independent convenience-store gas stations are also more likely to cycle. (author)

  20. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  1. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil fertili

  2. Teaching the Krebs Cycle.

    Science.gov (United States)

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  3. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...

  4. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  5. Stability through cycles

    NARCIS (Netherlands)

    E.A. de Groot (Bert); Ph.H.B.F. Franses (Philip Hans)

    2006-01-01

    textabstractEconomic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with lengths ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of th

  6. Stability through cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2008-01-01

    Economic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with periods ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of the economic s

  7. Stability through cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2006-01-01

    Economic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with lengths ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of the economic s

  8. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  9. Applied physiology of cycling.

    Science.gov (United States)

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  10. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here...

  11. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    Science.gov (United States)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted

  12. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  13. Menstrual Cycle: Basic Biology

    OpenAIRE

    2008-01-01

    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutati...

  14. Diurnal Cycle Computations

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doutriaux, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    Directory /export_backup/covey1/CMIP5/Precipitation/DiurnalCycle/GridpointTimeseries/CMCCBCM_etal/ on crunchy.llnl.gov contains Python / UV-CDAT scripts compositeDiurnalStatistics.py and fourierDiurB nalAllGrid.py. compositeDiurnalStatistics.py reads high-time-frequency climate data from one or more years and computes 24 hour composite-mean and composite-standard-deviation cycles for one requested month.

  15. Animating the Carbon Cycle

    OpenAIRE

    2014-01-01

    Understanding the biogeochemical processes reg- ulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully ‘‘animating’’ the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quanti- fication of their effects on carbon storage and exchange among ter...

  16. Solar Cycle Predictions

    Science.gov (United States)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  17. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  18. Helium process cycle

    Science.gov (United States)

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  19. Historicising the Hydrosocial Cycle

    Directory of Open Access Journals (Sweden)

    Jeremy J. Schmidt

    2014-02-01

    Full Text Available This paper examines the historical claims made in support of the hydrosocial cycle. In particular, it considers how arguments advancing the hydrosocial cycle make historical claims regarding modernist conceptions of what water is (i.e. H2O and its fit with society. The paper gives special emphasis to the society/nature dualism and to the notion of agency as key sites of contest in arguments regarding the hydrosocial cycle. It finds that, while several versions of the hydrosocial cycle seek to advance a political ecology more sensitive to non-human actions, these same accounts often do not address the robust account of non-human agency in the historical record. Evidence is presented regarding water’s agency amongst late 19th and early 20th century architects of key water management norms in the United States. This evidence troubles accounts of the hydrosocial cycle that critique the US experience and suggests new directions for rethinking the role of historical and institutional norms in water policy.

  20. Advanced heat pump cycle

    Energy Technology Data Exchange (ETDEWEB)

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  1. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  2. Cycles in fossil diversity

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  3. Revenue cycle management.

    Science.gov (United States)

    Manley, Ray; Satiani, Bhagwan

    2009-11-01

    With the widening gap between overhead expenses and reimbursement, management of the revenue cycle is a critical part of a successful vascular surgery practice. It is important to review the data on all the components of the revenue cycle: payer contracting, appointment scheduling, preregistration, registration process, coding and capturing charges, proper billing of patients and insurers, follow-up of accounts receivable, and finally using appropriate benchmarking. The industry benchmarks used should be those of peers in identical groups. Warning signs of poor performance are discussed enabling the practice to formulate a performance improvement plan.

  4. Menstrual cycle pattern and fertility

    DEFF Research Database (Denmark)

    Kolstad, Henrik A.; Bonde, Jens Peter; Hjøllund, Niels Henrik;

    1999-01-01

    To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss.......To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss....

  5. Big Data and Cycling

    NARCIS (Netherlands)

    Romanillos, Gustavo; Zaltz Austwick, Martin; Ettema, Dick; De Kruijf, Joost

    2016-01-01

    Big Data has begun to create significant impacts in urban and transport planning. This paper covers the explosion in data-driven research on cycling, most of which has occurred in the last ten years. We review the techniques, objectives and findings of a growing number of studies we have classified

  6. 90-Day Cycle Handbook

    Science.gov (United States)

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  7. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  8. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...

  9. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    2009-01-01

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...

  10. Stellar magnetic cycles

    Science.gov (United States)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  11. MERCURY CYCLING AND BIOMAGNIFICATION

    Science.gov (United States)

    Mercury cycling and biomagnification was studied in man-made ponds designed for watering livestock on the Cheyenne River Sioux Reservation in South Dakota. Multiple Hg species were quantified through multiple seasons for 2 years in total atmospheric deposition samples, surface wa...

  12. Re-Cycling

    Science.gov (United States)

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  13. Assisted Cycling Tours

    Science.gov (United States)

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  14. The Science of Cycling

    Science.gov (United States)

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  15. The Pneumocystis life cycle

    Directory of Open Access Journals (Sweden)

    Cécile-Marie Aliouat-Denis

    2009-05-01

    Full Text Available First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.

  16. Skills, sunspots and cycles

    DEFF Research Database (Denmark)

    Busato, Francesco; Marchetti, Enrico

    This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring up...

  17. The global water cycle

    Science.gov (United States)

    Oki, Taikan; Entekhabi, Dara; Harrold, Timothy Ives

    The global water cycle consists of the oceans, water in the atmosphere, and water in the landscape. The cycle is closed by the fluxes between these reservoirs. Although the amounts of water in the atmosphere and river channels are relatively small, the fluxes are high, and this water plays a critical role in society, which is dependent on water as a renewable resource. On a global scale, the meridional component of river runoff is shown to be about 10% of the corresponding atmospheric and oceanic meridional fluxes. Artificial storages and water withdrawals for irrigation have significant impacts on river runoff and hence on the overall global water cycle. Fully coupled atmosphere-land-river-ocean models of the world's climate are essential to assess the future water resources and scarcities in relation to climate change. An assessment of future water scarcity suggests that water shortages will worsen, with a very significant increase in water stress in Africa. The impact of population growth on water stress is shown to be higher than that of climate change. The virtual water trade, which should be taken into account when discussing the global water cycle and water scarcity, is also considered. The movement of virtual water from North America, Oceania, and Europe to the Middle East, North West Africa, and East Asia represents significant global savings of water. The anticipated world water crisis widens the opportunities for the study of the global water cycle to contribute to the development of sustainability within society and to the solution of practical social problems.

  18. 不可逆闭式布雷顿热电联产装置火用经济性能优化%Exergy Economic Performance Optimization of an Irreversible Closed Type Brayton Heating-and-power Cogenration Plant

    Institute of Scientific and Technical Information of China (English)

    陶桂生; 陈林根; 孙丰瑞

    2009-01-01

    By adopting a finite time thermodynamic method,studied was the exergy economic performance of an irreversible closed type Brayton cogeneration plant under the condition of a constant temperature heat source and derived were its profit margin and exergy coefficient analytic expression.By employing a numerical calculation method,with the profit margin serving as a target,optimized were the distribution of heat conductivity and the choice of pressure ratio.The authors have studied the optimum profit margin and corresponding exergy efficiency characteristics and analyzed the influence of various design parameters of the cogeneration system on its optimized performance.The research results show that for a given total heat conductivity,there exist only one optimum heat conductivity distribution ratio and pressure ratio among heat exchangers at high temperature,low temperature and end-user side,which results in an maximal value of the non-dimensional profit margin of the plant.In the meantime,there is an optimum end-user temperature.%应用有限时间热力学方法,研究了恒温热源条件下不可逆闭式布雷顿联产装置的火用经济性能,导出了利润率及火用效率解析式.利用数值计算方法,以利润率为目标,对热导率分配和压比的选取进行了优化.研究了最优利润率及相应火用效率特性,并分析了各种联产设计参数对联产优化性能的影响.结果表明,对于给定的总热导率,在高温、低温和用户侧换热器之间,存在唯一的最佳热导率分配比和唯一的最佳压比,使得装置的无因次利润率取得最大值;同时存在最佳用户温度.

  19. Archaea in biogeochemical cycles.

    Science.gov (United States)

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  20. Gap Cycling for SWIFT

    CERN Document Server

    Corum, Curtis A; Snyder, Carl J; Garwood, Michael

    2013-01-01

    Purpose: SWIFT (SWeep Imaging with Fourier Transformation) is a non- Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." Methods: We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results: Theoretical analysis reveals t...

  1. Sen cycles and externalities

    OpenAIRE

    Piggins, Ashley; Salerno, Gillian

    2016-01-01

    It has long been understood that externalities of some kind are responsible for Sen’s (1970) theorem on the impossibility of a Paretian liberal. However, Saari and Petron (2006) show that for any social preference cycle generated by combining the weak Pareto principle and individual decisiveness, every decisive individual must suffer at least one strong negative externality. We show that this fundamental result only holds when individual preferences are strict. Building on their contribution,...

  2. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  3. FUZZY REASONING IN CYCLES

    Institute of Scientific and Technical Information of China (English)

    曹立明

    1990-01-01

    By the similarity between the syllogism in logic and a path proposition in graph theory,a new concept,fuzzy reasoning graph G has been given in this paper. Transitive closure has been studied and used to do reasoning related to self-loop in G,and an algorithm has been designed to cope with reasoning in other cycles in G. Both approaches are applicable and efficient.

  4. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  5. [Microbial geochemical calcium cycle].

    Science.gov (United States)

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  6. International Business Cycle

    Directory of Open Access Journals (Sweden)

    Marek Lubiński

    2007-04-01

    Full Text Available Prime stylized facts of international business cycle theory refer to positive correlation in the cyclical components of important macroeconomic variables across countries. However a number of indicators of business cycle synchronization do not point to clear trends. It can be ascribed to the fact that different forces influence level of business cycle correlation. When investigating into the forces behind the commonness in aggregate fluctuations economic research seems to have pointed in two directions. One strand of the literature examines the idea of common exogenous shocks that affect economies simultaneously. In addition to that economic interdependencies such as trade in goods and services or capital account transactions may serve as the channels through which disturbances spill over across countries.The observed degree of output co movement reflects both the nature of the shocks that have occurred and the degree of economic interdependence. In the periods when common shocks prevail level of synchronization is usually higher than in times of transmission dominance.

  7. Terrestrial Carbon Cycle Variability

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  8. Bifurcation of limit cycles near equivariant compound cycles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper we study some equivariant systems on the plane. We first give some criteria for the outer or inner stability of compound cycles of these systems. Then we investigate the number of limit cycles which appear near a compound cycle of a Hamiltonian equivariant system under equivariant perturbations. In the last part of the paper we present an application of our general theory to show that a Z3 equivariant system can have 13 limit cycles.

  9. Geomicrobiological cycling of antimony

    Science.gov (United States)

    Kulp, T. R.; Terry, L.; Dovick, M. A.; Braiotta, F.

    2013-12-01

    Microbiologically catalyzed oxidation and reduction of toxic metalloids (e.g., As, Se, and Te) generally proceeds much faster than corresponding abiotic reactions. These microbial transformations constitute biogeochemical cycles that control chemical speciation and environmental behavior of metalloids in aqueous environments. Particular progress has been made over the past two decades in documenting microbiological biotransformations of As, which include anaerobic respiratory reduction of As(V) to As(III), oxidation of As(III) to As(V) linked to chemoautotrophy or photoautotrophy, and cellular detoxification pathways. By contrast, microbial interactions with Sb, As's group 15 neighbor and a toxic element of emerging global concern, are poorly understood. Our work with sediment microcosms, enrichment cultures, and bacterial isolates suggests that prokaryotic metabolisms may be similarly important to environmental Sb cycling. Enrichment cultures and isolates from a Sb-contaminated mine site in Idaho exhibited Sb(V)-dependent heterotrophic respiration under anaerobic conditions and Sb(III)-dependent autotrophic growth in the presence of air. Live, anoxic cultures reduced 2 mM Sb(V) to Sb(III) within 5 d, while no activity occurred in killed controls. Sb(V) reduction was stimulated by lactate or acetate and was quantitatively coupled to the oxidation of lactate. The oxidation of radiolabeled 14C-acetate (monitored by GC-GPC) demonstrated Sb(V)-dependent oxidation to 14CO2, suggesting a dissimilatory process. Sb(V) dependent growth in cultures was demonstrated by direct counting. Microbiological reduction of Sb(V) also occurred in anerobic sediment microcosms from an uncontaminated suburban lake, but did not appear to be linked to growth and is interpreted as a mechanism of biological detoxification. Aerobic microcosms and cultures from the Idaho mine oxidized 2 mM Sb(III) to Sb(V) within 7 d and coupled this reaction to cell growth quantified by direct counting. An

  10. Cycling Joule Thomson refrigerator

    Science.gov (United States)

    Tward, E.

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  11. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  12. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  13. Elementary cycles of time

    Directory of Open Access Journals (Sweden)

    Dolce Donatello

    2013-09-01

    Full Text Available Elementary particles, i.e. the basic constituents of nature, are characterized by quantum recurrences in time. The flow of time of every physical system can be therefore decomposed in elementary cycles of time. This allows us to enforce the local nature of relativistic time, yielding interesting unified descriptions of fundamental aspects of modern physics, as shown in recent publications. Every particle can be regarded as a reference clock with time resolution of the order of the Compton time particle, many orders of magnitude more accurate than the atomic clocks. Here we report basic implications about the resulting notion of time.

  14. Revenue cycle management: part I.

    Science.gov (United States)

    Crew, Matt

    2006-01-01

    The revenue cycle starts long before a patient is seen and continues until a claim is completely resolved. Each step in the revenue cycle must be clearly defined and easy to follow. Use of various tools such as templates, forms, reports, spreadsheets, and components of your practice management system will help to provide the consistency you need for profitable revenue cycle management.

  15. Sometimes "Newton's Method" Always "Cycles"

    Science.gov (United States)

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  16. Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

    2012-07-01

    For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

  17. Paths and cycles of hypergraphs

    Institute of Scientific and Technical Information of China (English)

    王建方; Tony; T.Lee

    1999-01-01

    Hypergraphs are the most general structures in discrete mathematics. Acyclic hypergraphs have been proved very useful in relational databases. New systems of axioms for paths, connectivity and cycles of hypergraphs are constructed. The systems suit the structure properties of relational databases. The concepts of pseudo cycles and essential cycles of hypergraphs are introduced. They are relative to each other. Whether a family of cycles of a hypergraph is dependent or independent is defined. An enumeration formula for the maximum number of independent essential cycles of a hypergraph is given.

  18. Menstrual cycle pattern and fertility

    DEFF Research Database (Denmark)

    Kolstad, Henrik A.; Bonde, Jens Peter; Hjøllund, Niels Henrik;

    1999-01-01

    OBJECTIVE: To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss. DESIGN: Prospective follow-up study. SETTING: Healthy couples recruited throughout Denmark. PATI...... 0.09-0.68). When the combined effect of cycle variation and cycle length was assessed, cycle variation was a persistent strong predictor of fecundity. CONCLUSION(S): The mechanisms of the present findings probably are female functional disturbances in ovulation, conception, implantation...

  19. Preliminary design review: Brayton Isotope Power System

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1977-03-01

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS. (TFD)

  20. Krebs Cycle Wordsearch

    Science.gov (United States)

    Helser, Terry L.

    2001-04-01

    This puzzle embeds 46 names, terms, abbreviations, and acronyms about the citric acid (Krebs) cycle in a 14- x 17-letter matrix. A descriptive narrative beside it describes important features of the pathway. All the terms a student needs to find are embedded there with the first letter followed by underlined blanks to be completed. Therefore, the students usually must find the terms to know how to spell them, correctly fill in the blanks in the narrative with the terms, and then find and highlight the terms in the letter matrix. When all are found, the 24 unused letters complete a sentence that describes a major feature of this central pathway. The puzzle may be used as homework, an extra-credit project, or a group project in the classroom in any course where basic metabolism is learned. It disguises as fun the hard work needed to learn the names of the intermediates, enzymes, and cofactors.

  1. The supercontinent cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nance, R.D.; Worsley, T.R.; Moody, J.B.

    1988-07-01

    This paper discusses a new theory of plate tectonics which proposes that Pangaea was only the most recent in a series of supercontinents that have been breaking up and reassembling every 500 million years or so. The cycle, driven by heat percolating up from the mantle, splits continents and drives interrelated processes that shape the earth's geology and climate and play a role in biological evolution. The framework of the supercontinent theory makes it possible to understand the timing of changes in sea level that have taken place in the past 570 million years, and also helps to explain periods of intense mountain building, episodes of glaciation, and changes in the nature of life on the earth.

  2. Open cycle thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Robert Stowers [Georgia Inst. of Technology, Atlanta, GA (United States)

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  3. Measurement of single cycle and sub-cycle pulse duration

    Institute of Scientific and Technical Information of China (English)

    Zhenglie Gong(龚正烈); Wenzhuo Ge(葛文卓); Guizhong Zhang(张贵忠); Wanghua Xiang(向望华)

    2004-01-01

    This paper suggests that the linear interferometric correlation (LFC) can be used to measure pulse duration of a few cycles, single cycle or even sub-cycle light pulse. The relations between pulsewidth and LFC curve are derived for Gaussian- and hyperbolic secant-shaped pules. This new method abandons focusing,frequency doubling and filtering in the traditional second order correlation method, meanwhile the signalto-noise ratio (SNR) is improved.

  4. Overview of cycling injuries: results of a cycling club survey.

    Science.gov (United States)

    Decalzi, Javier F; Narvy, Steven J; Vangsness, C Thomas

    2013-04-01

    Participation in competitive bicycling has increased substantially over the past decade, and bicycle injuries have increased accordingly. Cycling has been reported in several studies to have higher rates of injury than other sports and recreational activities; accordingly, riders must be cognizant of the potential for injury and protect themselves appropriately. The purpose of the current study was to survey an established competitive Los Angeles-based road cycling team to determine the epidemiology of and circumstances for traumatic cycling injuries.

  5. Super- and Transcritical Fluid Expansions for Next-Generation Energy Conversion Systems

    NARCIS (Netherlands)

    Harinck, J.

    2010-01-01

    The next generation of thermodynamic power cycles offers great potential as the conceptual basis for sustainable energy converters. Examples are the supercritical and superheated Organic Rankine cycle, the transcritical condensation cycle, the supercritical Brayton cycle, the Organic Stirling cycle

  6. Removing Cycles in Esterel Programs

    Directory of Open Access Journals (Sweden)

    Lukoschus Jan

    2007-01-01

    Full Text Available Esterel belongs to the family of synchronous programming languages, which are affected by cyclic signal dependencies. This prohibits a static scheduling, limiting the choice of available compilation techniques for programs with such cycles. This work proposes an algorithm that, given a constructive synchronous Esterel program, performs a semantics-preserving source code level transformation that removes cyclic signal dependencies. The transformation is divided into two parts: detection of cycles and iterative resolution of these cycles. It is based on the replacement of cycle signals by a signal expression involving no other cycle signals, thereby breaking the cycle. This transformation of cyclic Esterel programs enables the use of efficient compilation techniques, which are only available for acyclic programs. Furthermore, experiments indicate that the code transformation can even improve code quality produced by compilers that can already handle cyclic programs.

  7. Removing Cycles in Esterel Programs

    Directory of Open Access Journals (Sweden)

    Reinhard von Hanxleden

    2007-05-01

    Full Text Available Esterel belongs to the family of synchronous programming languages, which are affected by cyclic signal dependencies. This prohibits a static scheduling, limiting the choice of available compilation techniques for programs with such cycles. This work proposes an algorithm that, given a constructive synchronous Esterel program, performs a semantics-preserving source code level transformation that removes cyclic signal dependencies. The transformation is divided into two parts: detection of cycles and iterative resolution of these cycles. It is based on the replacement of cycle signals by a signal expression involving no other cycle signals, thereby breaking the cycle. This transformation of cyclic Esterel programs enables the use of efficient compilation techniques, which are only available for acyclic programs. Furthermore, experiments indicate that the code transformation can even improve code quality produced by compilers that can already handle cyclic programs.

  8. Numerical study of thermomagnetic cycle

    Science.gov (United States)

    Almanza, Morgan; Pasko, Alexandre; Mazaleyrat, Frédéric; LoBue, Martino

    2017-03-01

    We estimate the efficiency and power of a thermal energy harvesting thermodynamic cycle using a magnetocaloric material as active substance. The thermodynamic cycle is computed using an equation of state, either extrapolated from experimental data or deduced using a phenomenological Landau model. The magnetic work is then compared to the maximum work. Afterwards power is estimated using a simple thermal exchange model. Simulations of different cycles for different working points illustrate the tradeoff between power and efficiency.

  9. Entrepreneurship and the business cycle

    OpenAIRE

    Thurik, Roy

    2014-01-01

    Entrepreneurship has a cyclical component, raising two questions. Is the entrepreneurship cycle related to the business cycle? And is there causality? A two-way relationship between entrepreneurship and the business cycle would be in line with the two faces of entrepreneurs: as agents of change creating upswings (opportunity entrepreneurship) and as rational actors escaping unemployment by setting up a business (necessity entrepreneurship). Nascent entrepreneurship can indeed be precyclical, ...

  10. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  11. Evaluation of solid oxide fuel cell systems for electricity generation

    Science.gov (United States)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-01-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  12. Cryogenic Cooling of Infrared Electronics

    Science.gov (United States)

    1986-05-01

    12 5 Reversed Brayton cycle .................................................... 13 6 Regime of IR detection...design. The Stirling cycle ideally has the same efficiency as the Carnot cycle , the maximum theoretically possible, because heat is added and rejected at...the Brayton cycle in reverse with rotating machinery, 24 as shown in Figure 5. These devices are potentially very attractive because they operate in

  13. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  14. Organic rankine cycle fluid

    Science.gov (United States)

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  15. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  16. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  17. Reproductive cycle of goats.

    Science.gov (United States)

    Fatet, Alice; Pellicer-Rubio, Maria-Teresa; Leboeuf, Bernard

    2011-04-01

    Goats are spontaneously ovulating, polyoestrous animals. Oestrous cycles in goats are reviewed in this paper with a view to clarifying interactions between cyclical changes in tissues, hormones and behaviour. Reproduction in goats is described as seasonal; the onset and length of the breeding season is dependent on various factors such as latitude, climate, breed, physiological stage, presence of the male, breeding system and specifically photoperiod. In temperate regions, reproduction in goats is described as seasonal with breeding period in the fall and winter and important differences in seasonality between breeds and locations. In tropical regions, goats are considered continuous breeders; however, restricted food availability often causes prolonged anoestrous and anovulatory periods and reduced fertility and prolificacy. Different strategies of breeding management have been developed to meet the supply needs and expectations of consumers, since both meat and milk industries are subjected to growing demands for year-round production. Hormonal treatments, to synchronize oestrus and ovulation in combination with artificial insemination (AI) or natural mating, allow out-of-season breeding and the grouping of the kidding period. Photoperiodic treatments coupled with buck effect now allow hormone-free synchronization of ovulation but fertility results after AI are still behind those of hormonal treatments. The latter techniques are still under study and will help meeting the emerging social demand of reducing the use of hormones for the management of breeding systems.

  18. The Photosynthetic Cycle

    Science.gov (United States)

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  19. 'Benefits cycle' replacing premium cycle as consumerism takes hold.

    Science.gov (United States)

    2002-05-01

    The traditional premium cycle of ups and downs in rates is giving way to a new phenomenon--driven by the advent of consumerism in health care--termed the "benefits cycle" by one consultant. Rather than shifts in rates, he argues, the future will see shifts in benefits packages.

  20. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  1. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  2. Life Cycle of Stars

    Science.gov (United States)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  3. Drought and ecosystem carbon cycling

    NARCIS (Netherlands)

    Molen, van der M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Philips, O.L.; Hurk, van den B.J.J.M.; Jeu, M.; Kruijt, B.; Teuling, A.J.; Werf, van der G.R.; Wang, G.

    2011-01-01

    Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequ

  4. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle greenhou

  5. Quadratic reactivity fuel cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, J.D.

    1985-11-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau/sup 2/ as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau/sup 2/ in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper.

  6. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies...

  7. Activity Cycle of Solar Filaments

    Indian Academy of Sciences (India)

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  8. Economic growth and business cycles

    NARCIS (Netherlands)

    Canton, E.J.F.

    1997-01-01

    This thesis contains five essays on economic growth and business cycles. The main focus is on the interaction between economic growth and the cycle: is cyclical variability good or bad for the long-run rate of economic growth? The introduction aims to provide some empirical evidence for an investmen

  9. Prospects for Predicting Cycle 24

    Indian Academy of Sciences (India)

    Arnab Rai Choudhuri

    2008-03-01

    Although we have reliable data of solar polar fields only from the mid-1970s, it seems that the polar field at a minimum is well correlated with the next cycle, but the strength of the cycle is not correlated with the polar field produced at its end. We explain this by suggesting that the Babcock–Leighton mechanism of poloidal field generation from tilted active regions involves randomness, whereas the other aspects of the dynamo process are more ordered. To model actual cycles, we have to ‘correct’ our theoretical dynamo model by ‘feeding’ information about the polar field at the minima. Following this process, we find that our model fits the observed sunspot numbers of cycles 21–23 reasonably well and predicts that cycle 24 will be the weakest in a century.

  10. Limit cycles in quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Patrick

    2015-04-27

    In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.

  11. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    the reference NGNP/HTE plant can be found in the body of this report. The outcome is an integrated plant/control system design. The following conclusions are drawn from the analysis: (1) The plant load schedule can be managed to maintain near-constant hot side temperatures over the load range in both the nuclear and chemical plant. (2) The reactor open-loop response is inherently stable resulting mainly from a large Doppler temperature coefficient compared to the other reactivity temperature feedbacks. (3) The typical controller used to manage reactor power production to maintain reactor outlet temperature at a setpoint introduces a feedback path that tends to destabilize reactor power production in the NGNP. (4) A primary loop flow controller that forces primary flow to track PCU flow rate is effective in minimizing spatial temperature differentials within the IHX. (5) Inventory control in both the primary and PCU system during ramp load change transients is an effective means of maintaining high NGNP thermal efficiency while at reduced electric load. (6) Turbine bypass control is an effective means for responding to step changes in generator load when equipment capacity limitations prevent inventory control from being effective. (7) Turbine bypass control is effective in limiting PCU shaft over speed for the loss of generator load upset event. (8) The proposed control strategy is effective in limiting time variation of the differential spatial temperature distribution in the IHX during transients. Essentially the IHX can be made to behave in a manner where each point in the IHX experiences approximately the same temperature rate of change during a transient. (9) The stability of the closed-loop Brayton cycle was found to be sensitive to where one operates on the turbo-machine performance maps. There are competing interests: more stable operation means operating on the curves at points that reduce overall cycle efficiency. Future work should address in greater detail

  12. Life cycle of mobile devices

    Directory of Open Access Journals (Sweden)

    T.V. Rohal

    2011-12-01

    Full Text Available Article is devoted features of life cycle of mobile devices. The article highlighted a number of disadvantages associated with managing the life cycle of the product. Disadvantages include the orientation is not on the quality of mobile devices and their design, the obsolescence of digital products. The article drew attention to the need for process improvement life cycle management of mobile devices. For since this type of product is now the most popular among the population, consumers are interested, first of all, quality, and only then, look good.

  13. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  14. Digital daily cycles of individuals

    DEFF Research Database (Denmark)

    Aledavood, Talayeh; Jørgensen, Sune Lehmann; Saramäki, Jari

    2015-01-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader...... day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We...

  15. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  16. National Urea Cycle Disorders Foundation

    Science.gov (United States)

    ... triggers undiagnosed fatal urea cycle disorder in Tennessee wife and teacher. Story . More information about bariatric surgery ... with sodium phenylbutyrate may decrease liver dysfunction in patients with ASA. Details "IN TRIBUTE TO HER SON, ...

  17. Air Quality Management Process Cycle

    Science.gov (United States)

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  18. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  19. Glacial Cycles and Milankovitch Forcing

    CERN Document Server

    Raghuraman, Shiv Priyam

    2015-01-01

    Using a recent conceptual model of the glacial-interglacial cycles we present more evidence of Milankovitch cycles being the trigger for retreat and forming of ice sheets in the cycles. This model is based on a finite approximation of an infinite dimensional model which has three components: Budyko's energy balance model describing the annual mean temperatures at latitudes, Widiasih's ODE which describes the behavior of the edge of the ice sheet, and Walsh et al. who introduced a snow line to account for glacial accumulation and ablation zones. Certain variables in the model are made to depend on the Milankovitch cycles, in particular, the obliquity of the Earth's axis and the eccentricity of the Earth's orbit. We see as a result that deglaciation and glaciation do occur mostly due to obliquity and to some extent eccentricity.

  20. (Auto)Ethnographies and Cycling

    DEFF Research Database (Denmark)

    Larsen, Jonas

    2014-01-01

    , habits and affective capacities of cycling are cultivated and performed. The article argues that autoethnography is particularly apt at illuminating the embodied qualities of movement, and it sits within established ethnographies of ‘excising’ and ‘mobile bodies’. In the second part of the article, I......This article discusses the formation, salience and reformation of everyday bodily routines and resources in relation to cycling; it also examines how we can study them ethnographically in different places. I discuss forms of embodied, sensuous and mobile ethnography that can illuminate how routines...... draw upon ongoing autoethnographies of cycling in a familiar place (my hometown, Copenhagen) and by learning to cycle ‘out-of-place’ (in London) and ‘in-a-new–way’ (when commuting long distance on a racer bike). The study challenges static notions of the body by analysing how cyclists’ (and researchers...

  1. Revenue cycle management, Part II.

    Science.gov (United States)

    Crew, Matt

    2007-01-01

    The proper management of your revenue cycle requires the application of "best practices" and the continual monitoring and measuring of the entire cycle. The correct technology will enable you to gain the insight and efficiencies needed in the ever-changing healthcare economy. The revenue cycle is a process that begins when you negotiate payor contracts, set fees, and schedule appointments and continues until claims are paid in full. Every single step in the cycle carries equal importance. Monitoring all phases and a commitment to continually communicating the results will allow you to achieve unparalleled success. In part I of this article, we explored the importance of contracting, scheduling, and case management as well as coding and clinical documentation. We will now take a closer look at the benefits charge capture, claim submission, payment posting, accounts receivable follow-up, and reporting can mean to your practice.

  2. Endogenous, Imperfectly Competitive Business Cycles

    DEFF Research Database (Denmark)

    Whitta-Jacobsen, Hans Jørgen

    by monopolistic competition. An implicit assumption of barriers to entry justifies that the number of firms is fixed even when positive profits occur. It turns out that both market power of firms on the product markets and market power of unions on the labor markets make the occurrence of cycles more likely......We investigate how imperfect competition affects the occurrence and the properties of endogenous, rational expectations business cycles in an overlapping generations model with constant returns to scale in production. The model has explicit product and labor markets all characterized....... In particular, imperfect competition on the product markets and the positive profits associated with it may have the effect that there is a cycle even if the labor supply curve is increasing in the real-wage rate. For competitive cycles is required not only a decreasing labor supply curve, but a wage elasticity...

  3. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  4. Venus Altitude Cycling Balloon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  5. Mirador - Carbon Cycle and Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. This Focus Area deals with the cycling of carbon in reservoirs and ecosystems as it changes naturally, is changed by humans,...

  6. Corporate governance cycles during transition

    DEFF Research Database (Denmark)

    Mygind, Niels; Demina, Natalia; Gregoric, Aleksandra

    2004-01-01

    -nancial system. To provide simple hypothesis tests, we use Russian enterprise data for 1995-2003 and Slovenian data covering 1998-2003. In spite of differences in institutional development, con-cerning privatization and development of corporate governance institutions, we find that govern-ance cycles are broadly...... of ownership on managers, external domestic and foreign owners. JEL-codes: G3, J5, P2, P3 - Keywords: corporate governance, life-cycle, privatization, ownership change, transition economies, Russia and Slovenia.......Ownership is determined by firm specific factors and the environment. Firms change over their life-cycle. The governance cycle - here defined as changes in identity of the dominant owner and own-ership concentration - is marked by key phases including start-up, growth, and possibly a restructur...

  7. On acyclicity of games with cycles

    DEFF Research Database (Denmark)

    Andersson, Klas Olof Daniel; Hansen, Thomas Dueholm; Gurvich, Vladimir

    2010-01-01

    We study restricted improvement cycles (ri-cycles) in finite positional n-person games with perfect information modeled by directed graphs (di-graphs) that may contain directed cycles (di-cycles). We assume that all these di-cycles form one outcome c, for example, a draw. We obtain criteria of re...

  8. Life cycle and textiles recycling

    OpenAIRE

    2011-01-01

    Within the vision of development of European textile and clothing industry for 2020 from the standpoint of the European Technology Platform (ETP), the paper analyzes a segment which includes life cycle and recycling of textiles. It is the fact that the complexity of new textile and clothing product has caused the development of new-higher standards. For this reason in development of highly innovative products, today is included also quality assurance during his whole life cycle starting from ...

  9. Integrated coal gasification combined cycle

    Science.gov (United States)

    Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

    Features of the integrated coal gasification combined cycle power plants are described against the backdrop of the development and first commercial application of the shell coal gasification process. Focus is on the efficiency and excellent environmental performance of the integrated coal gasification combined power plants. Current IGCC projects are given together with an outline of some of the options for integrating coal gasification with combined cycles and also other applications of synthesis gas.

  10. Serotype cycles in cholera dynamics

    OpenAIRE

    Koelle, Katia; Pascual, Mercedes; Yunus, Md.

    2006-01-01

    Interest in understanding strain diversity and its impact on disease dynamics has grown over the past decade. Theoretical disease models of several co-circulating strains indicate that incomplete cross-immunity generates conditions for strain-cycling behaviour at the population level. However, there have been no quantitative analyses of disease time-series that are clear examples of theoretically expected strain cycling. Here, we analyse a 40-year (1966–2005) cholera time-series from Banglade...

  11. Limit cycle vibrations in turbomachinery

    Science.gov (United States)

    Ryan, S. G.

    1991-01-01

    The focus is on an examination of rotordynamic systems which are simultaneously susceptible to limit cycle instability and subharmonic response. Characteristics of each phenomenon are determined as well as their interrelationship. A normalized, single mass rotor model is examined as well as a complex model of the high pressure fuel turbopump and the Space Shuttle Main Engine. Entrainment of limit cycle instability by subharmonic response is demonstrated for both models. The nonuniqueness of the solution is also demonstrated.

  12. On Cycles in AS Relationships

    CERN Document Server

    Dimitropoulos, Xenofontas; Krioukov, Dmitri

    2008-01-01

    Several users of our AS relationship inference data (http://www.caida.org/data/active/as-relationships/), released with cs/0604017, asked us why it contained AS relationship cycles, e.g., cases where AS A is a provider of AS B, B is a provider of C, and C is a provider of A, or other cycle types. Having been answering these questions in private communications, we have eventually decided to write down our answers here for future reference.

  13. Secular Cycles and Millennial Trends

    Directory of Open Access Journals (Sweden)

    Andrey Korotayev

    2016-12-01

    Full Text Available In the current paper we investigate the relation between secular cycles and millennial trends. The tests we have performed suggest that the structure of millennial trends cannot be adequately understood without secular cycles being taken into consideration. At a certain level of analysis millennial trends turn out to be a virtual byproduct of the demographic cycle mechanisms, which turn out to incorporate certain trend-creating mechanisms. Demographic-political cycle models can serve as a basis for the development and testing of models accounting not only for cycles but also for secular trends. In order to do this, we suggest to alter the basic assumptions of the earlier generations of demographic cycle models (that both the carrying capacity of land and the polity size are constant. The variables such as carrying capacity of land, cultural complexity, and empire sizes are actually not constant, but rather experience long-term trend dynamics in the rise, and the new generation of models needs to account for this fact.

  14. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  15. Solar Cycle Predictions (Invited Review)

    Science.gov (United States)

    Pesnell, W. Dean

    2012-11-01

    Solar cycle predictions are needed to plan long-term space missions, just as weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on low-Earth orbit spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as the reduced propellant load is consumed more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5 - 20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations of how those predictions could be made more accurate in the future are discussed.

  16. A biogeochemical cycle for aluminium?

    Science.gov (United States)

    Exley, Christopher

    2003-09-15

    The elaboration of biogeochemical cycles for elements which are known to be essential for life has enabled a broad appreciation of the homeostatic mechanisms which underlie element essentiality. In particular they can be used effectively to identify any part played by human activities in element cycling and to predict how such activities might impact upon the lithospheric and biospheric availability of an element in the future. The same criteria were the driving force behind the construction of a biogeochemical cycle for aluminium, a non-essential element which is a known ecotoxicant and a suspected health risk in humans. The purpose of this exercise was to examine the concept of a biogeochemical cycle for aluminium and not to review the biogeochemistry of this element. The cycle as presented is rudimentary and qualitative though, even in this nascent form, it is informative and predictive and, for these reasons alone, it is deserving of future quantification. A fully fledged biogeochemical cycle for aluminium should explain the biospheric abundance of this element and whether we should expect its (continued) active involvement in biochemical evolution.

  17. What cycles the cell? -Robust autonomous cell cycle models.

    Science.gov (United States)

    Lavi, Orit; Louzoun, Yoram

    2009-12-01

    The cell cycle is one of the best studied cellular mechanisms at the experimental and theoretical levels. Although most of the important biochemical components and reactions of the cell cycle are probably known, the precise way the cell cycle dynamics are driven is still under debate. This phenomenon is not atypical to many other biological systems where the knowledge of the molecular building blocks and the interactions between them does not lead to a coherent picture of the appropriate dynamics. We here propose a methodology to develop plausible models for the driving mechanisms of embryonic and cancerous cell cycles. We first define a key property of the system (a cyclic behaviour in the case of the embryonic cell cycle) and set mathematical constraints on the types of two variable simplified systems robustly reproducing such a cyclic behaviour. We then expand these robust systems to three variables and reiterate the procedure. At each step, we further limit the type of expanded systems to fit the known microbiology until a detailed description of the system is obtained. This methodology produces mathematical descriptions of the required biological systems that are more robust to changes in the precise function and rate constants. This methodology can be extended to practically any type of subcellular mechanism.

  18. The Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P.; Belvedere, D.; Imam, B.; Schiffer, R.; Schlosser, C.; Gupta, H.; Welty, C.; Vörösmarty, C.; Matthews, D.; Lawford, R.

    2006-12-01

    The goal of the Water cycle Solutions Network is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend research results to augment decision support tools and meet national needs. WaterNet will engage relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect water cycle research results (WCRs) towards the improvement of water-related Decision Support Tools (DSTs). An actionable database includes enough sufficient knowledge about its nodes and their heritage so that connections between these nodes are identifiable and robust. Recognizing the many existing highly valuable water-related science and application networks, we will focus the balance of our efforts on enabling their interoperability in a solutions network context. We will initially focus on identification, collection, and analysis of the two end points, these being the WCRs and water related DSTs. We will then develop strategies to connect these two end points via innovative communication strategies, improved user access to NASA resources, improved water cycle research community appreciation for DST requirements, improved policymaker, management and stakeholder knowledge of NASA research and application products, and improved identification of pathways for progress. Finally, we will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. The WaterNet will deliver numerous pre-evaluation reports that will identify the pathways for improving the collective ability of the water cycle community to routinely harness WCRs that address crosscutting water cycle challenges.

  19. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through the RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle

  20. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through the RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle

  1. Focused training boosts revenue cycle skills, accountability.

    Science.gov (United States)

    Richmond, Craig

    2011-09-01

    In 2009, the MetroHealth System took its first steps toward creating a comprehensive revenue cycle university, with the goal of developing revenue cycle staff talent and achieving best-in-class revenue cycle operations. MetroHealth became a beta site for HFMA's online Credentialed Revenue Cycle Representative (CRCR) program, and asked its revenue cycle leaders to present classes on key revenue cycle issues. As of June 2011, 62 percent of 122 revenue cycle employees who had taken the CRCR course passed the exam. The CRCR designation is now a prerequisite for career advancement in certain revenue cycle areas at MetroHealth.

  2. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  3. Origins of the supercontinent cycle

    Directory of Open Access Journals (Sweden)

    R. Damian Nance

    2013-07-01

    Full Text Available The supercontinent cycle, by which Earth history is seen as having been punctuated by the episodic assembly and breakup of supercontinents, has influenced the rock record more than any other geologic phenomena, and its recognition is arguably the most important advance in Earth Science since plate tectonics. It documents fundamental aspects of the planet's interior dynamics and has charted the course of Earth's tectonic, climatic and biogeochemical evolution for billions of years. But while the widespread realization of the importance of supercontinents in Earth history is a relatively recent development, the supercontinent cycle was first proposed thirty years ago and episodicity in tectonic processes was recognized long before plate tectonics provided a potential explanation for its occurrence. With interest in the supercontinent cycle gaining momentum and the literature expanding rapidly, it is instructive to recall the historical context from which the concept developed. Here we examine the supercontinent cycle from this perspective by tracing its development from the early recognition of long-term episodicity in tectonic processes, through the identification of tectonic cycles following the advent of plate tectonics, to the first realization that these phenomena were the manifestation of episodic supercontinent assembly and breakup.

  4. Modeling the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  5. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  6. Optimization of data life cycles

    Science.gov (United States)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Rigoll, F.; Schwarz, K.; Stotzka, R.; Streit, A.

    2014-06-01

    Data play a central role in most fields of science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied to scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The German Helmholtz Association project "Large Scale Data Management and Analysis" (LSDMA) aims to maximize the efficiency of data life cycles in different research areas, ranging from high energy physics to systems biology. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team (DSIT) provides data analysis tools and services which are common to several DLCLs. This paper describes the various activities within LSDMA and focuses on the work performed in the DLCLs.

  7. Measuring risky adolescent cycling behaviour.

    Science.gov (United States)

    Feenstra, Hans; Ruiter, Robert A C; Schepers, Jan; Peters, Gjalt-Jorn; Kok, Gerjo

    2011-09-01

    Adolescents are at a greater risk of being involved in traffic accidents than most other age groups, even before they start driving cars. This article aims to determine the factor structure of a self-report questionnaire measuring adolescent risky cycling behaviour, the ACBQ (Adolescent Cycling Behaviour Questionnaire). The questionnaire's structure was based on the widely used Driver Behaviour Questionnaire (DBQ). A sample of secondary school students (N = 1749; age range: 13-18 years) filled out the questionnaire. Factor analysis revealed a three-factor structure underlying the questionnaire, which was confirmed on two equally large portions of the entire sample. These three underlying factors were identified as errors, common violations and exceptional violations. The ACBQ is a useful instrument for measuring adolescents' risky cycling behaviour.

  8. Modeling road-cycling performance.

    Science.gov (United States)

    Olds, T S; Norton, K I; Lowe, E L; Olive, S; Reay, F; Ly, S

    1995-04-01

    This paper presents a complete set of equations for a "first principles" mathematical model of road-cycling performance, including corrections for the effect of winds, tire pressure and wheel radius, altitude, relative humidity, rotational kinetic energy, drafting, and changed drag. The relevant physiological, biophysical, and environmental variables were measured in 41 experienced cyclists completing a 26-km road time trial. The correlation between actual and predicted times was 0.89 (P road-cycling performance are maximal O2 consumption, fractional utilization of maximal O2 consumption, mechanical efficiency, and projected frontal area. The model is then applied to some practical problems in road cycling: the effect of drafting, the advantage of using smaller front wheels, the effects of added mass, the importance of rotational kinetic energy, the effect of changes in drag due to changes in bicycle configuration, the normalization of performances under different conditions, and the limits of human performance.

  9. Corporate governance cycles during transition

    DEFF Research Database (Denmark)

    Jones, Derek C.; Mygind, Niels

    2004-01-01

    is faster in Estonia and this can be explained by the relatively fast pace of institutional change and evolution of important gov-ernance institutions, including tough bankruptcy legislation and advances in the financial system. JEL-codes: G3, J5, P2, P3 Keywords: corporate governance, life......We begin by identifying a typical governance life-cycle, defined as changes in ownership structure, and including both the identity of the major owner and ownership concentration. The cycle is marked by key events and phases including start-up, initial growth, mature growth, and possibly a crisis...... and restructuring stage or exit stage. The governance cycle for transitional countries reflects some specific characteristics -e.g. often privatization produces specific initial ownership structures, with an unusually high proportion of insider, especially, employee ownership. Subsequently pres...

  10. ALMA Cycle 0 Publication Statistics

    CERN Document Server

    Stoehr, Felix; Meakins, Silvia; Bishop, Marsha; Uchida, Ayako; Testi, Leonardo; Iono, Daisuke; Tatematsu, Kenichi; Wootten, Al

    2016-01-01

    The scientific impact of a facility is the most important measure of its success. Monitoring and analysing the scientific return can help to modify and optimise operations and adapt to the changing needs of scientific research. The methodology that we have developed to monitor the scientific productivity of the ALMA Observatory, as well as the first results, are described. We focus on the outcome of the first cycle (Cycle 0) of ALMA Early Science operations. Despite the fact that only two years have passed since the completion of Cycle 0 and operations have already changed substantially, this analysisconfirms the effectiveness of the underlying concepts. We find that ALMA is fulfilling its promise as a transformational facility for the observation of the Universe in the submillimetre.

  11. SIRTF Cycle-1 Research Opportunities

    Science.gov (United States)

    Soifer, B. T.; Bicay, M. D.

    2003-12-01

    The Space InfraRed Telescope Facility (SIRTF), the fourth and final element in NASA's family of Great Observatories, was successfully launched into an Earth-trailing heliocentric orbit on August 25, 2003. The SIRTF Science Center (SSC) at Caltech is now soliciting Cycle-1 research proposals from the worldwide scientific community. Proposals must be submitted electronically to the SSC by February 14, 2004. A preliminary version of the Cycle-1 Call for Proposals (CP) was issued by the SSC in November 2002. A CP Update and supporting technical documentation, which incorporates the on-orbit performance of the observatory, were released in December 2003. Investigations may be proposed for new SIRTF observations, through the General Observer (GO) program, or for archival research. About 3700 hours of observing time is being offered for the Cycle-1 GO Program, in small (less than 50 hours) and medium (50 to 200 hours) categories. More than \\15 million in NASA data analysis support is available to qualified GO investigators. For GO proposals, a detailed list of proposed observations, generated by the SIRTF Planning Observations Tool, must accompany the research proposal. The Archival Research (AR) Program in Cycle-1 is limited to the analysis of data from the First-Look Survey, a 100-hour program to be executed by the SSC at the start of the science mission. Up to \\750,000 in NASA data analysis support is available to qualified AR investigators. All documents supporting the Cycle-1 solicitation are available online in the Proposal Kit section of the SSC public Web site (http://sirtf.caltech.edu/SSC/). Questions pertaining to the Cycle-1 CP should be sent electronically to the SSC HelpDesk at sirtf@ipac.caltech.edu. SIRTF is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

  12. Tricarboxylic-acid-cycle intermediates and cycle endurance capacity.

    Science.gov (United States)

    Brown, Amy C; Macrae, Holden S H; Turner, Nathan S

    2004-12-01

    The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists' time to exhaustion during a submaximal endurance-exercise test (approximately 70 % to 75 % VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL x kg(-1) x in(-1), 28.6 +/- 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 +/- 18, P = 113 +/- 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 +/- 3.2, P = 15 +/- 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75 % VO2peak or speed recovery from previously fatiguing exercise.

  13. Optimal Life Cycle Portfolio Choice with Housing Market Cycles

    DEFF Research Database (Denmark)

    Fischer, Marcel; Stamos, Michael Z.

    2013-01-01

    In recent decades U.S. households have experienced residential house prices moving persistently, that is, returns being positively serially correlated. We set up a realistically calibrated life cycle model with slow-moving time variation in expected housing returns, showing that not only age, lab...

  14. Biogeochemical cycling and remote sensing

    Science.gov (United States)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  15. Business Cycles in Developing Countries

    DEFF Research Database (Denmark)

    Rand, John; Tarp, Finn

    2002-01-01

    This paper demonstrates that developing countries differ considerably from their developed counterparts when focus is on the nature and characteristics of short run macroeconomic fluctuations. Cycles are generally shorter, and the stylized facts of business cycles across countries are more diverse...... than those of the rather uniform industrialized countries. Supply-side models are generally superior in explaining changes in output, but a “one-size fits all” approach in formulating policy is inappropriate. Our results also illustrate the critical importance of understanding business regularities...... as a stepping-stone in the process of designing appropriate stabilization policy and macroeconomic management in developing countries....

  16. Properties of stellar activity cycles

    CERN Document Server

    Korhonen, Heidi

    2015-01-01

    The current photometric datasets, that span decades, allow for studying long-term cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less easily detectable, spots. In the recent years, high precision space-based observations, for example from the Kepler satellite, have allowed also to study the sunspot-like spot sizes in other stars. Here I review what is known about the properties of the cyclic stellar activity in other stars than our Sun.

  17. Life cycle of remanufactured engines

    Institute of Scientific and Technical Information of China (English)

    YANG Ming; CHEN Ming

    2005-01-01

    The life cycle index of remanufactured engines was assessed by using the method of life cycle assessment (LCA). A remanufactured engine of a certain domestic brand was taken as researching object. Engine reproducing engineering was investigated from three aspects which were energy, material and environment. The application of LCA on remanufacturing engines was discussed in detail with a practical case. The results indicate that remanufackg CO2 , 6.09 kg CO, 1.01 kg NOx, 3. 985 kg SOx and 288. 725 kg solid waste. The remanufacturing of engines possesses great economic value and practicability.

  18. Digital calculations of engine cycles

    CERN Document Server

    Starkman, E S; Taylor, C Fayette

    1964-01-01

    Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var

  19. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  20. Ramsey Results for Cycle Spectra

    DEFF Research Database (Denmark)

    Brandt, S.; Joos, F.; Muttel, J.;

    2013-01-01

    Let C(G) denote the set of lengths of cycles of a graph G of order n and let (G) over bar denote the complement of G. We show that if n >= 6, then C(G) boolean OR C((G) over bar) contains all odd l with 3......Let C(G) denote the set of lengths of cycles of a graph G of order n and let (G) over bar denote the complement of G. We show that if n >= 6, then C(G) boolean OR C((G) over bar) contains all odd l with 3...

  1. A short note on Reitlinger thermodynamic cycles

    CERN Document Server

    Sparavigna, Amelia Carolina

    2015-01-01

    It is well known that Carnot cycle is the thermodynamic cycle which has the best thermal efficiency. However, an entire class of cycles exists that can have the same maximum efficiency: this class is that of the regenerative Reitlinger cycles. Here we discuss them.

  2. Interchange graphs and the Hamiltonian cycle polytope

    NARCIS (Netherlands)

    Sierksma, G

    1998-01-01

    This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di

  3. H gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Corman, J. [General Electric Co., Schenectady, NY (United States)

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  4. Sorption Refrigeration / Heat Pump Cycles

    Science.gov (United States)

    Saha, Bidyut Baran; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and use of CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons). Up to now, only the desiccant evaporative cooling system of the open type has achieved commercial use, predominantly in the United States. Closed-type adsorption refrigeration and heat pump systems are rarely seen in the market, or are still in the laboratory testing stage. Promising recent development have been made in Japan for the use of porous metal hydrides and composite adsorbents. In this paper, a short description of adsorption theories along with an overview of present status and future development trends of thermally powered adsorption refrigeration cycles are outlined putting emphasis on experimental achievements. This paper also addressed some advanced absorption cycles having relatively higher COP, and also summarizes fundamental concepts of GAX cycles and various GAX cycles developed for heat pump applications.

  5. The product life cycle revisited

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    1995-01-01

    Efter et introduktionsafsnit følger afsnit II, hvor der gives en historisk analyse af Life Cycle Assessment (LCA) og Environmental Impact Assessment (EIA). I afsnit III munder analysen ud i en vurdering af ligheder og forskelle mellem LCA analyser og EIA analyser, og en diskussion følger af...

  6. Menopause: A Life Cycle Transition.

    Science.gov (United States)

    Evarts, Barbara Kess; Baldwin, Cynthia

    1998-01-01

    Family therapists need to address the issue of menopause proactively to be of benefit to couples and families during this transitional period in the family life cycle. Physical, psychological, and psychosocial factors affecting the menopausal woman and her family, and ways to address these issues in counseling are discussed. (Author/EMK)

  7. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  8. Business Cycle Dependent Unemployment Insurance

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Svarer, Michael

    The consequences of business cycle contingencies in unemployment insurance systems are considered in a search-matching model allowing for shifts between "good" and "bad" states of nature. We show that not only is there an insurance argument for such contingencies, but there may also be an incentive...

  9. Time Cycles in Indian Cosmology

    CERN Document Server

    Narayan, R H

    2007-01-01

    In this article we review some key time cycles in ancient Indian astronomy, especially those that have emerged from researches in the past couple of decades expressing knowledge of the changing frame of earth's axis. The article also briefly reviews the philosophy related to the interconnection between the inner and the outer cosmos that was used in the analytical narrative related to this astronomy.

  10. Autoradiography and the Cell Cycle.

    Science.gov (United States)

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  11. Single-cycle nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  12. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during...... the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle...... and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during...

  13. Life cycle assessment of turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report forms part of the final reporting of the project 'LCA and turbines, which has been carried out as a cooperation between Vestas Wind Systems A/S and Tech-wise A/S on behalf of Elsam A/S. The goal of the project was to create a life cycle model for a big Vestas offshore turbine. Based on the offshore model an analysis has been prepared and this analysis will show the most significant environmental impacts a turbine will be subject to during its life cycle. Furthermore we have prepared a recommendation on how an improvement strategy on a selected area can be drafted. Finally, a preliminary environmental declaration of contents will be prepared for the turbine in question and 1 kWh generated from here. (BA)

  14. Swimming as a limit cycle

    CERN Document Server

    Jacobs, Henry O

    2012-01-01

    Steady swimming can be characterized as both periodic and stable. These characteristics are the very definition of limit cycles, and so we ask "Can we view swimming as a limit cycle?" In this paper we will find that the answer is "yes". We will define a class of dissipative systems which correspond to the passive dynamics of a body immersed in a Navier-Stokes fluid (i.e. the dynamics of a dead fish). Upon performing reduction by symmetry we will find a hyperbolically stable fixed point which corresponds to the stability of a dead fish in stagnant water. Given a periodic force on the shape of the body we will invoke the persistence theorem to assert the existence of a loop which approximately satisfies the exact equations of motion. If we lift this loop with a phase reconstruction formula we will find that the lifted loops are not loops, but stable trajectories which represent regular periodic motion reminiscent of swimming.

  15. THE CANADIAN POLITICAL BUSINESS CYCLE

    Directory of Open Access Journals (Sweden)

    Barbara Libby

    2000-01-01

    Full Text Available This paper will discuss the existence of a Canadian Political Business Cycle (PBC during the period 1946-1989. Logit analysis was used to determine if changes in the unemployment rate, growth of real GNE and the rate of inflation are significantly different in the period before an election than during the rest of the electoral term. It was found that the rate of growth in the unemployment rate declines and the rate of growth of real GNP increases in the four quarters before an election. The behavior of these variables reverses in the period after an election. These findings are consistent with a political business cycle. Policy variables, under a majority government, also behave in a manner associated with a PBC, with the government stimulating the economy approximately two years into its term so that good economic news will occur before it has to call an election. Minority governments tend to simulate the economy immediately after taking office.

  16. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  17. Phase lags of solar hemispheric cycles

    CERN Document Server

    Muraközy, J

    2013-01-01

    The North-South asymmetry of solar activity is variable in time and strength. We analyse the long-term variation of the phase lags of hemispheric cycles and check a conjectured relationship between these phase lags and the hemispheric cycle strengths. Sunspot data are used from cycles 12-23 in which the separation of northern and southern hemispheres is possible. The centers of mass of the hemispheric cycle profiles were used to study the phase relations and relative strengths of the hemispheric cycles. This approach considers a cycle as a whole and disregards the short-term fluctuations of the cycle time profile. The phase of the hemispheric cycles shows an alternating variation: the northern cycle leads in 4 cycles and follows in 4 cycles. No significant relationship is found between the phase and strength differences of the hemispheric cycles. The period of 4+4 cycles appears to be close to the Gleissberg cycle and may provide a key to its physical background. It may raise a new aspect in the solar dynamo ...

  18. Biomechanics of Counterweighted One-Legged Cycling.

    Science.gov (United States)

    Elmer, Steven J; McDaniel, John; Martin, James C

    2016-02-01

    One-legged cycling has served as a valuable research tool and as a training and rehabilitation modality. Biomechanics of one-legged cycling are unnatural because the individual must actively lift the leg during flexion, which can be difficult to coordinate and cause premature fatigue. We compared ankle, knee, and hip biomechanics between two-legged, one-legged, and counterweighted (11.64 kg) one-legged cycling. Ten cyclists performed two-legged (240 W), one-legged (120 W), and counterweighted one-legged (120 W) cycling (80 rpm). Pedal forces and limb kinematics were recorded to determine work during extension and flexion. During counterweighted one-legged cycling relative ankle dorsiflexion, knee flexion, and hip flexion work were less than one-legged but greater than two-legged cycling (all P cycling were greater than one-legged but less than two-legged cycling (all P cycling reduced but did not eliminate differences in joint flexion and extension actions between one- and two-legged cycling. Even with these differences, counterweighted one-legged cycling seemed to have advantages over one-legged cycling. These results, along with previous work highlighting physiological characteristics and training adaptations to counterweighted one-legged cycling, demonstrate that this exercise is a viable alternative to one-legged cycling.

  19. Biogeochemical Cycles in Degraded Lands

    Science.gov (United States)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  20. Automatic Dehumanization Across Menstrual Cycle

    OpenAIRE

    Piccoli, Valentina; Carnaghi, Valentina; Foroni, Francesco; Hvastja Stefani, Loredana

    2014-01-01

    In the current study we address the role of hormonal fluctuations across menstrual cycle in female dehumanization of women and men. Using a sequential priming procedure in a lexical decision task, we test whether increased levels of conception risk lead to dehumanization of other women and men on both animal and human dimensions. Results showed that for word woman as the prime, animal words were more accessible in the high than in the low conception risk of the menstru...

  1. Containing revenue-cycle costs.

    Science.gov (United States)

    Geer, Robert; Burton, Eric

    2003-04-01

    Healthcare organizations can achieve revenue-cycle improvement while maintaining optimum staffing levels by taking a three-step approach-developing a plan, measuring costs, and using benchmarks to measure performance. Planned cost reductions can be achieved without a negative impact on the organization. Cost-reduction strategies should look at purchased services, staffing, and the cost-to-collect ratio. Healthcare organizations should reach target performance levels before implementing a cost-reduction strategy.

  2. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  3. Self-Fulfilling Credit Cycles

    OpenAIRE

    Costas Azariadis; Leo Kaas

    2012-01-01

    This paper argues that self-fulfilling beliefs in credit conditions can generate endogenously persistent business cycle dynamics. We develop a tractable dynamic general equilibrium model with idiosyncratic firm productivity shocks. Capital from less productive firms is lent to more productive ones in the form of credit secured by collateral and also as unsecured credit based on reputation. A dynamic complementarity between current and future credit constraints permits uncorrelated sunspot sho...

  4. Short-Cycle Adsorption Refrigerator

    Science.gov (United States)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  5. Fundamental cycles and graph embeddings

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we investigate fundamental cycles in a graph G and their relations with graph embeddings. We show that a graph G may be embedded in an orientable surface with genus at least g if and only if for any spanning tree T , there exists a sequence of fundamental cycles C1, C2, . . . , C2g with C2i-1 ∩ C2i≠ф for 1≤ i ≤g. In particular, among β(G) fundamental cycles of any spanning tree T of a graph G, there are exactly 2γM (G) cycles C1, C2, . . . , C2γM (G) such that C2i-1 ∩ C2i≠ф for 1 ≤i≤γM (G), where β(G) and γM (G) are the Betti number and the maximum genus of G, respectively. This implies that it is possible to construct an orientable embedding with large genus of a graph G from an arbitrary spanning tree T (which may have very large number of odd components in G\\E(T )). This is different from the earlier work of Xuong and Liu, where spanning trees with small odd components are needed. In fact, this makes a common generalization of Xuong, Liu and Fu et al. Furthermore, we show that (1) this result is useful for locating the maximum genus of a graph having a specific edge-cut. Some known results for embedded graphs are also concluded; (2) the maximum genus problem may be reduced to the maximum matching problem. Based on this result and the algorithm of Micali-Vazirani, we present a new efficient algorithm to determine the maximum genus of a graph in O((β(G)) 25 ) steps. Our method is straight and quite different from the algorithm of Furst, Gross and McGeoch which depends on a result of Giles where matroid parity method is needed.

  6. ZPC Matrices and Zero Cycles

    Directory of Open Access Journals (Sweden)

    Marina Arav

    2009-01-01

    Full Text Available Let H be an m×n real matrix and let Zi be the set of column indices of the zero entries of row i of H. Then the conditions |Zk∩(∪i=1k−1Zi|≤1 for all k  (2≤k≤m are called the (row Zero Position Conditions (ZPCs. If H satisfies the ZPC, then H is said to be a (row ZPC matrix. If HT satisfies the ZPC, then H is said to be a column ZPC matrix. The real matrix H is said to have a zero cycle if H has a sequence of at least four zero entries of the form hi1j1,hi1j2,hi2j2,hi2j3,…,hikjk,hikj1 in which the consecutive entries alternatively share the same row or column index (but not both, and the last entry has one common index with the first entry. Several connections between the ZPC and the nonexistence of zero cycles are established. In particular, it is proved that a matrix H has no zero cycle if and only if there are permutation matrices P and Q such that PHQ is a row ZPC matrix and a column ZPC matrix.

  7. Solar storms, cycles and topology

    Directory of Open Access Journals (Sweden)

    Lundstedt H.

    2010-12-01

    Full Text Available Solar storms are produced due to plasma processes inside and between coronal loops. These loops are topologically examined using knot and braid theory. Solar cycles are topologically explored with a complex generalization of the three ordinary differential equations studied by Lorenz. By studying the Poincaré map we give numerical evidence that the flow has an attractor with fractal structure. The period is defined as the time needed for a point on a hyperplane to return to the hyperplane again. The periods are distributed in an interval. For large values of the Dynamo number there is a long tail toward long periods and other interesting comet-like features. We also found a relationship between the intensity of a cycle and the length for the previous cycle. Maunder like minima are also appearing. These general relations found for periods can further be physically interpreted with improved helioseismic estimates of the parameters used by the dynamical systems. Solar Dynamic Observatory is expected to offer such improved measurements.

  8. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  11. Product development cycle time reduction

    Science.gov (United States)

    Farran, Robin

    1992-05-01

    We are facing here today the key issues that face us in the competitive environment. North American companies are struggling to compete in the global marketplace. Gone are the days when presence ensured success. Then, sales and earnings were guaranteed. Today the competition is intense. Many manufacturing and service companies are no longer competitive. Traditionally, manufacturing companies have created the most wealth for the community and economy. Losing this ability to create wealth is tragic and unnecessary. A company can only be successful by focusing on customer satisfaction at competitive costs. Revenue growth and earnings growth require a continuous stream of products that anticipate the customers' needs, result from shorter and shorter innovation cycles, continually improve in quality, and are produced at improved costs on each cycle. The best opportunities for increased quality and decreased costs are with new products. Sure, work on quality and costs everyday. The biggest changes, however, will come through the new product development cycle. We must improve our development processes to provide leadership products which result in high levels of customer satisfaction. This is a prerequisite for business success. When presence in the marketplace was a virtual guarantee of success for a North American company, technology tended to drive the products, and the customers bought virtually everything that was produced. Functional excellence was stressed within companies ... and that was enough. Effective planning processes were not a prerequisite for success. Today success demands highly developed business research and planning processes, and functional excellence combined with organizational capabilities that ensure commercialization excellence.

  12. Endoreversible Meletis-Georgiou cycle

    Directory of Open Access Journals (Sweden)

    Chang Liu, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available An endoreversible Meletis-Georgiou (MG cycle model with constant specific heat of working fluid is established and the analytical formulae of performance parameters including working fluid temperatures, work output and efficiency are derived using the finite time thermodynamic theory. The performance of the endoreversible MG cycle is analyzed and optimized. The characteristics of the work output versus compression ratio, efficiency versus compression ratio, and work output versus efficiency are obtained, respectively, by detailed numerical examples, and the effects of changeover ratio, over-expansion ratio, heating value of fuel, heat transfer loss coefficient, initial temperature of working fluid, and the transferred volume ratio on the relationship mentioned above are also discussed. The maximum work output and the corresponding optimal compression ratio, changeover ratio, over-expansion ratio as well as the maximum efficiency and the corresponding optimal changeover ratio and over-expansion ratio are obtained by taking the cycle work output and efficiency as the optimization objectives, respectively. Moreover, the effects of the parameters such as the heating value of fuel, heat transfer loss coefficient, initial temperature of working fluid, and the transferred volume ratio on the maximum work output, the maximum efficiency and the corresponding optimal ratios are analyzed. The results may provide guidelines for the optimal design of practical MG engine.

  13. Digital Daily Cycles of Individuals

    Directory of Open Access Journals (Sweden)

    Talayeh eAledavood

    2015-10-01

    Full Text Available Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We begin at the aggregate level, discuss earlier results, and illustrate differences between population-level daily rhythms in different media. Then we move on to the individual level, and show that there is a strong individual-level variation beyond averages: individuals typically have their distinctive daily pattern that persists in time. We conclude by discussing the driving forces behind these signature daily patterns, from personal traits (morningness/eveningness to variation in activity level and external constraints, and outline possibilities for future research.

  14. Nutrient Cycling in Piermont Marsh

    Science.gov (United States)

    Reyes, N.; Gribbin, S.; Newton, R.; Diaz, K.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  15. BUSINESS CYCLES, ELECTORAL CYCLES. TOWARD A THEORETICAL FRAME OF INTERACTION

    Directory of Open Access Journals (Sweden)

    BOGDAN-LUCIAN DOSPINESCU

    2015-06-01

    Full Text Available The idea of cyclical movement of a system: be it political, economic, institutional, is one of the constants of critical thinking. In this sense, there is a natural cyclic movement that cannot be avoided (only amplified or diminished and is connected with the nature of these systems. The economy follows a cyclical movement; a period of growth follows a period of decline, and so on. So does popularity for political parties or leaders. In this paper, I explore the links between the business cycles and electoral cycles. For this purpose, I introduce the concept of electoral perception cycles. My hypothesis is that popularity of political parties and leaders follow a cyclical evolution, both on short and long term. I show how perception cycles can impact the “political business cycle theory”. There is great interest in political science literature for the factors that influence the fluctuations in Presidents’ popularity, especially from United States. However, very little has been said about Romania’s case. I investigate the hypothesis of electoral perception cycles looking at the popularity of former president Traian Basescu, over his two terms. The variable used to measure popularity is favorability, measured in national surveys, done face to face, on representative samplez, of around 1000 subjects. I’ve correlated the fluctuations in favorability over time, with key public events or political decisions taken by Traian Băsescu. The main findings are as follows. Firstly, there are significant short term fluctuations (short term perception cycles and they are correlated with major events on the agenda. I would point the following key moments: 1. The referendum for dismissal of the President in May 2007 – Traian Băsescu’s favorability increased by 7 percentage points; 2. The referendum for unicameral Parliament with 300 MPs in the fall of 2009. Coupled with victory in the presidential election, it lead to an increase of 10 percentage

  16. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  17. Biogeochemical cycles: Interactions in global metabolism

    Science.gov (United States)

    Moore, B., III; Morowitz, H.; Dastoor, M. N.

    1984-01-01

    A science that chooses the globe as it fundamental biogeophysical unit forces extraordinary conceptual difficulties. The roles of energy flow, matter cycles, carbon cycle, air pollution, global effects, air water interactions are discussed.

  18. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities...

  19. High performance heat pump absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.; Rossetto, L.

    1988-10-01

    Absorption heat pumps can provide high performances when operating in suitable cycles with multiple effects. This report describes some multistage cycles and evaluates the coefficient of performance realistically obtainable both in winter and summer working conditions.

  20. Not all counterclockwise thermodynamic cycles are refrigerators

    Science.gov (United States)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  1. Terminology gap in hydrological cycle

    Science.gov (United States)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Water is central to life on Earth. People have been trying to understand how water moves in the hydrosphere throughout the human history. In the 9th century BC, the famous Greek poet Homer described the hydrological cycle in Iliad as "okeanos whose stream bends back in a circle" with a belief that rivers are ocean-fed from subterranean seas. Later, Aristotle (4th century BC) claimed that most of the water came from underground caverns in which air was transformed into water. It was only until 1674, French scientist Perrault developed the correct concept of the water cycle. In modern times, scientists are interested in understanding the individual processes of the hydrological cycle with a keen focus on runoff which supplies water to rivers, lakes, and oceans. Currently, the prevailing concepts on runoff processes include 'infiltration excess runoff' and 'saturation excess runoff'. However, there is no term to describe another major runoff due to the excess beyond the soil water holding capacity (i.e., the field capacity). We argue that a new term should be introduced to fill this gap, and it could be called 'holding excess runoff' which is compatible with the convention. This new term is significant in correcting a half-century misnomer where 'holding excess runoff' has been incorrectly named as 'saturation excess runoff', which was introduced by the Xinanjiang model in China in 1960s. Similar concept has been adopted in many well-known hydrological models such as PDM and HBV in which the saturation refers to the field capacity. The term 'holding excess runoff' resolves such a common confusion in the hydrological community.

  2. Politics and the life cycle.

    Science.gov (United States)

    Kinder, Donald R

    2006-06-30

    The study of politics and the life cycle began with a rather single-minded focus on childhood and the family-on the idea, as Tocqueville famously put it, that the entire person could be "seen in the cradle of the child." Politics does begin in childhood, and parents do influence their offspring, but change takes place over the entire span of life. I take up the early emergence of partisanship and essentialism, the formation of generations, politically consequential transitions in adulthood, and the rising of politics and its final decline.

  3. Carnot cycle for an oscillator

    Science.gov (United States)

    Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2002-09-01

    In 1824 Carnot established that the efficiency of cyclic engines operating between a hot bath at absolute temperature Thot and a bath at a lower temperature Tcold cannot exceed 1 - Tcold/Thot. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The paper begins with historical considerations and is essentially self-contained.

  4. Rankine cycle system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  5. Kinetic models of conjugated metabolic cycles

    Science.gov (United States)

    Ershov, Yu. A.

    2016-01-01

    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  6. Combined cycles with gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H.; Akyurt, M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Mechanical Engineering Dept.)

    1994-03-01

    Simple cycle gas turbine engines suffer from limited efficiencies and consequential dominance of fuel prices on generation costs. Combined cycles, however. exploit the waste heat from exhaust gases to boost power output, resulting in overall efficiencies around 50%, which are significantly above those of steam power plants. This paper reviews various types of combined cycles, including repowering, integrated gasification and other advanced systems. (author)

  7. [The menstrual cycle in women with gonorrhea].

    Science.gov (United States)

    Kuntsevich, L D

    1989-01-01

    Various abnormalities of the menstrual cycle have been revealed in 9.57% of the 763 patients with gonorrhea. When the disease takes a chronic course, a wider spectrum of the cycle abnormalities develops, because of hypoestrogenia characteristic of a prolonged course of a gonococcal infection. Menstrual cycle disorders are more frequent in the women with manifest gonorrhea.

  8. Dormancy cycling in seeds: mechanisms and regulation

    NARCIS (Netherlands)

    Claessens, S.M.C.

    2012-01-01

    The life cycle of most plants starts, and ends, at the seed stage. In most species mature seeds are shed and dispersed on the ground. At this stage of its life cycle the seed may be dormant and will, by definition, not germinate under favourable conditions (Bewley, 1997). Seasonal dormancy cycling

  9. The next generation of revenue cycle management.

    Science.gov (United States)

    Hammer, David C

    2007-07-01

    The revenue cycle management environment is dynamic. Revenue cycle leaders are now responsible for additional functional areas and have to deal with new financing arrangements that expose the organization to greater financial risk. Financial managers can use key performance indicators and the suggested practice processes checklist to determine whether their revenue cycle operations are in good shape or need shaping up.

  10. Multiple Limit Cycles in an Immune System

    Institute of Scientific and Technical Information of China (English)

    Xun-cheng Huang; Le-min Zhu; Minaya Villasana

    2008-01-01

    The nonlinear oscillatory phenomenon has been observed in the system of immune response, which corresponds to the limit cycles in the mathematical models. We prove that the system simulating an immune response studied by Huang has at least three limit cycles in the system. The conditions for the multiple limit cycles are useful in analyzing the nonlinear oscillation in immune response.

  11. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  12. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  13. On Acyclicity of Games with Cycles

    DEFF Research Database (Denmark)

    Andersson, Daniel; Gurvich, Vladimir; Hansen, Thomas Dueholm

    2009-01-01

    We study restricted improvement cycles (ri-cycles) in finite positional n-person games with perfect information modeled by directed graphs (digraphs) that may contain cycles. We obtain criteria of restricted improvement acyclicity (ri-acyclicity) in two cases: for n = 2 and for acyclic digraphs. We...

  14. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  15. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  16. Limit cycle behaviour in FELIX

    Science.gov (United States)

    Jaroszynski, D. A.; Bakker, R. J.; Oepts, D.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1993-07-01

    The free electron laser for infrared experiments (FELIX) operates at wavelengths up to λ = 110 μm. A radio-frequency linear accelerator is used to produce electron micropulses with a duration of about 3 ps. With N = 38 undulator periods, this puts FELIX well into the regime where the slippage length, Nλ, exceeds the electron micropulse length, and prominent short pulse effects are expected. One of these effects, stable limit cycle oscillations of the pulse energy, has not been detected experimentally before. Such oscillations occur when the saturated optical pulses move away from the electron pulses, due to the changing balance between lethargy and desynchronism, while new subpulses grow periodically. In FELIX, limit cycle behaviour is clearly demonstrated. The observations are in agreement with numerical simulations of the pulse propagation, and the oscillation period is given by a simple formula containing the slippage length and the desynchronism between optical and electron pulses. We also show how lethargic behaviour can be used to reduce the optical bandwidth of the FEL and to store optical energy in the optical cavity without saturation limiting the energy stored.

  17. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  18. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  19. When Product Life Cycle Meets Customer Activity Cycle

    DEFF Research Database (Denmark)

    Tan, Adrian Ronald

    2007-01-01

    to shift market strategies from a transactional approach to an approach based on the establishment and management of customer relationships (Grönroos, 1999). A growing number of studies and research programmes have focused on the potentials of business strategies based on providing the value of utility...... project in a global office furniture manufacturer, this paper attempts to uncover how a manufacturing company is making the move from selling office furniture to selling the benefit of workspace performance. A significant insight is that the definition of value is core to both relationship marketing...... of products throughout their life cycle by designing integrated solutions of products and services. This approach has been dubbed ‘product/service-systems (PSS)’ (Mont, 2004). Although relationship marketing and product/service-system design have their roots in each their own research fields - marketing...

  20. [The M-cycle of crime].

    Science.gov (United States)

    Antholz, Birger

    2012-01-01

    Crime development measured by means of the changes in police recorded crime statistics (criminal offences per 100.000 inhabitants) shows periodical cycles, which can be described by the capital letter M. Starting from a low rate of criminality, crime rises over 1-3 years followed by an interim decline lasting for about one year. Then crime increases again for approximately 2 years to a second peak. After that, crime strongly declines to the next low point over a period of about two years. The course of this development is not uniform with equal amplitudes, but resembles an M-curve. Since 1950, seven such M-cycles have been observed with the 3rd M-cycle from 1965-1973, the 4th M-cycle from 1973-1984, the 5th M-cycle from 1984-1994, the 6th M-cycle from 1994-2005 and the 7th M-cycle from 2005-2010 being particularly distinct. The M-curve of crime may be explained by the M-form of the business cycle. Since World War II, the M-cycle of crime and the M-cycle of the economy have run approximately parallel. Up to the first large oil crisis, the M-cycle of crime preceded the economic situation by 1-2 years, whereas since 1976 it has followed the economic development with a time lag of one to two years.

  1. VISION: Verifiable Fuel Cycle Simulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  2. Design and Fabrication of Eu-Cycle

    Directory of Open Access Journals (Sweden)

    A.Venkat Sai

    2014-10-01

    Full Text Available EU-Cycle is a self balancing electric unicycle. A regular unicycle is powered by pedal and is balanced by a rider, whilst the EU-Cycle runs by an electric motor and balance by control system in the roll direction. The simple thing to do by rider is to lean forward for acceleration, to lean backward for braking. EU-Cycle is designed as to be a fast and portable means of transport among crowded area, home and office. Therefore, The EU-Cycle gives tough challenge to the unicycle. EU-Cycle has attracted print media including future stories in radio, television. Thus in addition to successful development of EU-Cycle in urban use, the project has to implement the EU-cycle as an educative device.

  3. Fuel Cycle System Analysis Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic

  4. The effect of turbo trainer cycling on pedalling technique and cycling efficiency.

    Science.gov (United States)

    Arkesteijn, M; Hopker, J; Jobson, S A; Passfield, L

    2013-06-01

    Cycling can be performed on the road or indoors on stationary ergometers. The purpose of this study was to investigate differences in cycling efficiency, muscle activity and pedal forces during cycling on a stationary turbo trainer compared with a treadmill. 19 male cyclists cycled on a stationary turbo trainer and on a treadmill at 150, 200 and 250 W. Cycling efficiency was determined using the Douglas bags, muscle activity patterns were determined using surface electromyography and pedal forces were recorded with instrumented pedals. Treadmill cycling induced a larger muscular contribution from Gastrocnemius Lateralis, Biceps Femoris and Gluteus Maximus of respectively 14%, 19% and 10% compared with turbo trainer cycling (pcycling induced larger muscular contribution from Vastus Lateralis, Rectus Femoris and Tibialis Anterior of respectively 7%, 17% and 14% compared with treadmill cycling (pcycling was observed. These results suggest that cycling technique and type of ergometer can be altered without affecting cycling efficiency.

  5. Business cycles in oil economies

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mutairi, N.H.

    1991-01-01

    This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

  6. Thorium nuclear fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  7. Violence as a Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Huseyin Gulec

    2012-03-01

    Full Text Available Since the conclusion that the violence as a behavior is not (cannot be determined within an absolute genetic determinism has been reached for long years, environmental factors are increasingly examined. We witness that human behavior in society can easily convert into coping with stressful events with violence. Individual or social violence as a behavior has a similar pattern with violence committed in primitive society and by children. After a brief review of violence, its description, etiological theories and types, this article majorly focuses on children and their early and late response to violence. The purpose here is to draw attention to the individuals who were previously exposed to violence (either directly or indirectly resort to violence, perpetuating a vicious cycle.

  8. Custom formed orthoses in cycling.

    Science.gov (United States)

    O'Neill, Brendan C; Graham, Kenneth; Moresi, Mark; Perry, Philip; Kuah, Donald

    2011-11-01

    To assess the effects of currently used prescribed in-shoe custom foot orthoses (CFOs) on a number of biomechanical variables during the power phase of cycling, including: hip adduction, knee abduction and tibial internal rotation. Before and after cross-over study recording subjects' biomechanical variables with and without their CFOs. Twelve competitive cyclists, currently using prescribed in-shoe CFOs, performed two exercise bouts on a stationary trainer, with 3-dimensional data recorded on an 8 camera Vicon Mx system. 2-way ANOVA statistical analysis of Null vs Orthotic condition, and left leg vs right leg. No systematic effects from the CFOs were seen. A trend towards reduced tibial internal rotation range of movement was found (Pcycling biomechanics. Significant subject-specific biomechanical effects can be produced by CFOs utilizing rearfoot and/or forefoot wedges. An individualised approach to orthotic prescription, and attention to the forefoot-rearfoot relationship, is recommended.

  9. Canard cycles in global dynamics

    CERN Document Server

    Vidal, Alexandre

    2009-01-01

    Fast-slow systems are studied usually by "geometrical dissection". The fast dynamics exhibit attractors which may bifurcate under the influence of the slow dynamics which is seen as a parameter of the fast dynamics. A generic solution comes close to a connected component of the stable invariant sets of the fast dynamics. As the slow dynamics evolves, this attractor may lose its stability and the solution eventually reaches quickly another connected component of attractors of the fast dynamics and the process may repeat. This scenario explains quite well relaxation and bursting oscillations. More recently, in relation both with theory of dynamical systems and with applications to physiology, a new interest has emerged in canard cycles. These orbits share the property that they remain for a while close to an unstable invariant set (either singular set or periodic orbits of the fast dynamics). Although canards were first discovered when the transition points are folds, in this article, we focus on the case where...

  10. Ferroelectric Stirling-Cycle Refrigerator

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    A Stirling-cycle refrigerator has a three-pump configuration and pumping sequence, in which one pump serves as a compressor. one pump serves as an expander, and one pump serves as a displacer. The pumps are ferroelectrically actuated diaphragm pumps which are coordinated by synchronizing the ferroelectric-actuator voltages in such a way that the net effect of the displacer is to reduce the deleterious effect of dead space; that is, to circulate a greater fraction of the working fluid through the heat exchangers than would be possible by use of the compressor and expander alone. In addition. the displacer can be controlled separately to make the flow of working fluid in the heat exchangers turbulent (to increase the rate of transfer of heat at the cost of greater resistance to flow) or laminar (to decrease the resistance to flow at the cost of a lower heat-transfer rate).

  11. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  12. Life cycle of cytosolic prions.

    Science.gov (United States)

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  13. Prior muscular exercise affects cycling pattern.

    Science.gov (United States)

    Bieuzen, F; Hausswirth, C; Couturier, A; Brisswalter, J

    2008-05-01

    The aim of this study was to investigate the effect of concentric or eccentric fatiguing exercise on cycling pattern. Eleven well trained cyclists completed three sessions of cycling (control cycling test [CTRL], cycling following concentric [CC] or eccentric [ECC] knee contractions) at a mean power of 276.8 +/- 26.6 Watts. Concentric and eccentric knee contractions were performed at a load corresponding to 80 % of one repetition maximum with both legs. Before and after CTRL, CC or ECC knee contractions and after cycling, a maximal voluntary contraction (MVC) test was performed. Cardiorespiratory, mechanical and electromyographic activity (EMG) of the rectus femoris, vastus lateralis and biceps femoris muscles were recorded during cycling. A significant decrease in MVC values was observed after CC and ECC exercises and after the cycling. ECC exercise induced a significant decrease in EMG root mean square during MVC and a decrease in pedal rate during cycling. EMG values of the three muscles were significantly higher during cycling exercise following CC exercise when compared to CTRL. The main finding of this study was that a prior ECC exercise induces a greater neuromuscular fatigue than a CC exercise, and changes in cycling pattern.

  14. Thermodynamic Analysis of Combined Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    A.K.Tiwari,

    2010-04-01

    Full Text Available Air Bottoming Cycle (ABC can replace the heat recovery steam generator and the steam turbine of the conventionalcombined cycle plant. The exhaust energy of the topping gas turbine of existing combine cycle is sent to gas-air heat exchange, which heats the air in the secondary gas turbine cycle. In 1980’s the ABC was proposed as an alternative for the conventional steam bottoming cycle. In spite of the cost of reducing hardware installations it could achieve a thermal efficiency of 80%. The complete thermodynamic analysis of the system has been performed by using specially designed programme, enabling the variation of main independent variables. The result shows the gain in net work output as well as efficiency of combined cycle is 35% to 68%.

  15. Short Time Cycles of Purely Quantum Refrigerators

    CERN Document Server

    Feldmann, Tova

    2012-01-01

    Four stroke Otto refrigerator cycles with no classical analogue are studied. Extremely short cycle times with respect to the internal time scale of the working medium characterize these refrigerators. Therefore these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle which is the invariant of the global cycle propagator. During their operation the state of the working medium possesses significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.

  16. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  17. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  18. The spatial dimension of cycle logistics

    OpenAIRE

    Vitale Brovarone, Elisabetta; Staricco, Luca

    2016-01-01

    Cycle logistics is emerging as a promising alternative in urban freight transport. Compared to fossil fuelled vans, the use of cycles for delivering goods within urban areas offers advantages in terms of environmental friendliness, economic efficiency, flexibility, and liveability of urban neighbourhood. At the same time, cycle logistics has to face limits in terms of weight and volume of goods that can be delivered, distances that can be covered, and spatial urban structures that can be serv...

  19. Variants of closing the nuclear fuel cycle

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  20. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  1. Should We Rely on Intelligence Cycle?

    OpenAIRE

    2015-01-01

    Intelligence cycle is a systematic process which is usually applied in order to obtain intelligence from raw data. Today the world has been experiencing dazzling changes on many fields as well as technology. With the help of the new emerging technologies the data that have to be handled for intelligence is much more than ever. In addition to new technological contributions, there are discussions about intelligence cycle whether it’s being out-dated and old fashioned. Intelligence cycle was ma...

  2. Policy paper no. 1 : Pedestrians and cycling

    Energy Technology Data Exchange (ETDEWEB)

    Zbogar, H. [City of Brampton, ON (Canada)

    2004-06-01

    The City of Brampton's Transportation and Transit Master Plan includes a workable plan to promote walking and cycling facilities in the area. This paper reviewed existing policies, programs and practices in the City of Brampton that pertain to cycling and walking. Walking and cycling issues and trends were also reviewed with reference to the principles that improve the pedestrian and cycling environment, such as safety, security, convenience, continuity, comfort, coherence and attractiveness. The recreation, health and fitness benefits of walking and cycling were also outlined along with transportation, environmental, and economic benefits. The official plan for the city was included with reference to walking and cycling sections in the city. It was noted that effective pathways should be customer driven and respond to the needs of residents. They should also accommodate all uses, including walking, jogging, cycling and in-line skating. Experience of other jurisdictions in Ontario in providing walking and cycling facilities were also reviewed. It was noted that walking and cycling are significant elements of an intermodal transportation system and have a strong bearing on a city's vision for urban street design. 11 refs., 2 tabs., 3 figs.

  3. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  4. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  5. Irreversible cycle in linear irreversible thermodynamics

    Science.gov (United States)

    Wang, Xian-Zhi

    2010-10-01

    The reversible Carnot cycle in reversible thermodynamics is composed of two reversible heat exchange processes and two reversible adiabatic processes. We construct an irreversible cycle in linear irreversible thermodynamics by analogy with the reversible Carnot cycle. The irreversible cycle is composed of two linear irreversible heat exchange processes and two linear irreversible adiabatic processes. It is found that the Curzon-Alhborn efficiency can be attained if the power for each of the four linear irreversible processes reaches its maximum. The maximum efficiency is the Carnot efficiency. The strong coupling condition is prerequisite for the respective attainment of the Curzon-Alhborn efficiency and the Carnot efficiency.

  6. Nonlinear solar cycle forecasting: theory and perspectives

    Directory of Open Access Journals (Sweden)

    A. L. Baranovski

    2008-02-01

    Full Text Available In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  7. Aromatase inhibitors in stimulated IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, Evangelos G; Polyzos, Nikolaos P; Humaidan, Peter;

    2011-01-01

    are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears...... to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels....

  8. Cycle slipping in phase synchronization systems

    Science.gov (United States)

    Yang, Ying; Huang, Lin

    2007-02-01

    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  9. Kalina cycle. Thermodynamic principles and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, W.; Lezuo, A.; Nuernberg, R.; Rukes, B.; Vesper, H.

    1989-05-01

    The Kalina cycle belongs to the group of absorption cycles. It is operated with the two substances H/sub 2/O/NH/sub 3/. For combined gas- and steam power plants using the Kalina retrofit cycle in place of the normal water/steam cycle an increase in efficiency by about 2 to 3 percentage points can be expected. The advantage in efficiency contrasts with the high additional expenditure in capital costs. In addition operating difficulties as a result of partial decomposition of the ammonia are to be expected.

  10. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  11. Mercury cycling in terrestrial watersheds

    Science.gov (United States)

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  12. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  13. Material Flows and Carbon Cycles

    Science.gov (United States)

    Worrell, E.

    2003-12-01

    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  14. Science Illiteracy: Breaking the Cycle

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    2003-12-01

    At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.

  15. The terrestrial uranium isotope cycle.

    Science.gov (United States)

    Andersen, Morten B; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W W; Niu, Yaoling; Kelley, Katherine A

    2015-01-15

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.

  16. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  17. 25 MeV Solar Proton Events in Cycle 24 and Previous Cycles

    Science.gov (United States)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2014-12-01

    We summarize observations of nearly 1000 solar energetic particle events that include 25 MeV protons made by Goddard instruments on various spacecraft (IMPs IV, V, 7, 8, ISEE-3) and by other instruments on SOHO, since 1967, encompassing solar cycles 20 to 24. We also include recent observations of such events from the STEREO spacecraft. These extended observations place studies focusing on Cycles 23 and 24 in a broader context. For example, the time distribution of 25 MeV proton events varies from cycle to cycle such that each cycle is unique. In the current cycle, ~25 MeV proton events were absent during the preceding solar minimum, whereas earlier minima showed occasional, often reasonably intense events, and there have been, so far, fewer exceptionally intense events compared to Cycles 22 and 23, though Cycle 21 also apparently lacked such events.

  18. How people with low vision cycle safely

    NARCIS (Netherlands)

    Jelijs, Bart; Melis-Dankers, Bart; de Waard, Dick; Heutink, Jochem

    2015-01-01

    In the Netherlands, the ability to cycle safely and responsibly is important for independent mobility across the lifespan. In addition, cycling can be important in maintaining physical health. But when can a visually challenged person use a bicycle safely? Opinions vary, but there are no reliable -

  19. Synchronisation of the reproductive cycle in pigs

    NARCIS (Netherlands)

    Hazeleger, W.; Kirkwood, R.N.; Soede, N.M.

    2001-01-01

    An outline of procedures to synchronise oestrus and ovulation in pigs is described. The oestrus cycle of pigs can be synchronised depending on the stage of the reproductive cycle of these animals. Non-cyclic gilts shortly before puberty, can easily be synchronised by treatments with a mixture of 400

  20. Supermarket Defrost Cycles As Flexible Reserve

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Sloth, Christoffer; Wisniewski, Rafal

    2015-01-01

    This work analyses how supermarket defrost cycles can be used as flexible reserve in a smart grid context. The consumption flexibility originates from being able to shift defrost cycles in time, while adhering to the underlying refrigeration systems constraints. It is shown how this time constrai...

  1. General framework for bridge life cycle design

    Institute of Scientific and Technical Information of China (English)

    Junhai MA; Airong CHEN; Jun HE

    2009-01-01

    Based on a detailed illustration for bridge life cycle design which comprises the processes of service life design, aesthetics design, performance design, environ-mental and ecological design, inspection, maintenance and repair design as well as cost analysis, this paper presented a general framework for bridge life cycle design comprising three design phases and six design processes.

  2. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    Science.gov (United States)

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  3. Nash-Williams’ cycle-decomposition theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2016-01-01

    We give an elementary proof of the theorem of Nash-Williams that a graph has an edge-decomposition into cycles if and only if it does not contain an odd cut. We also prove that every bridgeless graph has a collection of cycles covering each edge at least once and at most 7 times. The two results...

  4. Nationally Appropriate Mitigation Action: Understanding NAMA Cycle

    DEFF Research Database (Denmark)

    Sharma, Sudhir; Desgain, Denis DR

    There is no internationally defined or agreed Nationally Appropriate Mitigation Action(NAMA) cycle, as was the case, for example, with the Clean Development Mechanisms (CDM) project cycle. However, there are some common steps that NAMA identification, formulation, and implementation will all go...

  5. Removing Preconceptions with a "Learning Cycle."

    Science.gov (United States)

    Gang, Su

    1995-01-01

    Describes a teaching experiment that uses the Learning Cycle to achieve the reorientation of physics' students conceptual frameworks away from commonsense perspectives toward scientifically rigorous outlooks. Uses Archimedes' principle as the content topic while using the Learning Cycle to remove students' nonscientific preconceptions. (JRH)

  6. Finite Feedback Cycling in Structural Equation Models

    Science.gov (United States)

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  7. Integrating hospital and physician revenue cycle operations.

    Science.gov (United States)

    Lockett, Kevin M

    2014-03-01

    Standardized revenue cycle processes should be a key component of the coordinated care delivery strategy organizations will require to complete the transition to population health management. Integrating hospital and physician revenue cycle operations can help organizations better navigate new payment models, reduce costs, and improve value. The most comprehensive approach involves integrating patient access and registration, coding operations, and receivables management across different settings.

  8. What makes a physician revenue cycle tick.

    Science.gov (United States)

    Freeman, Thomas; Stephen, Stan

    2011-09-01

    Hospitals should boost the revenue cycle performance of acquired physician practices by: Effectively assimilating the physician practice into the overall organization. Standardizing revenue cycle processes, policies, and tools between the hospital and physician practice. Enhancing physician/patient scheduling policies and procedures. Regularly auditing physician documentation and periodically comparing hospital charges against practice charges. Improving procedures for responding to denials.

  9. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  10. Thermal Cycle Lifetest of Swaged Cathode Heaters

    Science.gov (United States)

    Polk, Jay; Ramesham, Rajeshuni

    2007-01-01

    This viewgraph presentation reviews the thermal cycling test for the Dawn mission. The flight system, the mission requirements, and the Ion Propulsion System (IPS) are shown. The Dawn mission requires periodic thruster shutdown for data transmission and coast periods. The thermal cycling test is designed to simulate approximately three complete mission profiles. The results of the tests are reviewed.

  11. Some Graphs Containing Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2002-01-01

    In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…

  12. Effective risk management SOGO life cycle management

    OpenAIRE

    Ali, Mohamed Omar

    2012-01-01

    After new or upgrade projects the offshore installation gets maintenance or support through the life cycle management organization at Siemens. Small to medium modification projects are executed by the life cycle management. Risk assessment on these projects show different risks when it comes to estimation and pricing of projects, planning and executing, resource management, competence and knowledge.

  13. Nature's third cycle a story of sunspots

    CERN Document Server

    Choudhuri, Arnab Rai

    2015-01-01

    The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last ...

  14. Cycle-maximal triangle-free graphs

    DEFF Research Database (Denmark)

    Durocher, Stephane; Gunderson, David S.; Li, Pak Ching;

    2015-01-01

    Abstract We conjecture that the balanced complete bipartite graph K ⌊ n / 2 ⌋ , ⌈ n / 2 ⌉ contains more cycles than any other n -vertex triangle-free graph, and we make some progress toward proving this. We give equivalent conditions for cycle-maximal triangle-free graphs; show bounds...

  15. Few-optical-cycle dissipative solitons

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, H [Laboratoire de Photonique d' Angers EA 4464, Universite d' Angers, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Mihalache, D, E-mail: herve.leblond@univ-angers.f [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest, 077125 (Romania)

    2010-09-17

    By using a powerful reductive perturbation technique, or multiscale analysis, a generalized modified Korteweg-de Vries partial differential equation is derived, which describes the physics of few-optical-cycle dissipative solitons beyond the slowly varying envelope approximation. Numerical simulations of the formation of stable dissipative solitons from arbitrary breather-like few-cycle pulses are also given.

  16. Questions, Curiosity and the Inquiry Cycle

    Science.gov (United States)

    Casey, Leo

    2014-01-01

    This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…

  17. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    S. C. Tripathy; Kiran Jain; A. Bhatnagar

    2000-09-01

    Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change significantly with rising phase of the solar cycle. We also find temporal variations in the rotation rate near the solar surface.

  18. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  19. Associations between urban form and cycling

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl; Carstensen, Trine Agervig

    The bikeability project has analysed the environmental correlates of cycling based on Danish National Transportation Survey data transportation and urban form micro-data; and based on a smaller sample of primary data which included housing preferences, policy and attitude variables. Analysis...... on environmental features can be added to the set of influential environmental factors. Attractive conditions for using public transportation or walking are related to less cycling. Highly relevant in the context of the promotion of cycling, the results suggest different effects of urban form on the probability...... and residential preferences indicated that environmental/urban form correlations or impacts upon cycling persist even when attitudes and transportation preferences related to the choice of residence is taken into consideration. Attitudes/preferences seem to be highly important in explaining weekly cycling rates...

  20. Plutonium in an enduring fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world`s energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels.

  1. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate....... Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  2. Cycle 23 Variation in Solar Flare Productivity

    CERN Document Server

    Hudson, Hugh; McTiernan, Jim

    2014-01-01

    The NOAA listings of solar flares in cycles 21-24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975-2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M or X flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004-2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.

  3. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  4. Cycles and Clustering in Multiplex Networks

    CERN Document Server

    Baxter, Gareth J; Dorogovtsev, Sergey N; Mendes, José F F

    2016-01-01

    In multiplex networks, cycles cannot be characterized only by their length, as edges may occur in different layers in different combinations. We define a classification of cycles by the number of edges in each layer and the number of switches between layers. We calculate the expected number of cycles of each type in the configuration model of a large sparse multiplex network. Our method accounts for the full degree distribution including correlations between degrees in different layers. In particular, we obtain the numbers of cycles of length 3 of all possible types. Using these, we give a complete set of clustering coefficients and their expected values. We show that correlations between the degrees of a vertex in different layers strongly affect the number of cycles of a given type, and the number of switches between layers. Both increase with assortative correlations and are strongly decreased by disassortative correlations. The effect of correlations on clustering coefficients is equally pronounced.

  5. Income inequality and the business cycle

    Directory of Open Access Journals (Sweden)

    Shahee Mostafa

    2015-01-01

    Full Text Available This paper first examines the relationship between ordinary least squares estimators of consumption and investment for 36 selected countries with their respective Gini indices. The analysis shows that income inequality is consistent with a smaller estimator of consumption and a greater estimator of investment. Second, the cycles of GDP, consumption and investment are dated separately to determine how the deepness and duration of cycles of those variables are correlated with the Gini indices of countries. The results show that income inequality leads to a deeper and longer decline of GDP, which causes a greater cumulative income loss of GDP during recession, and a somewhat faster speed of recovery during expansion. Likewise, the result of a correlation between Gini indices and the number of cycles in consumption, investment and GDP indicate that income inequality is associated with a greater number of cycles in consumption and GDP and a lower number of cycles in investment.

  6. NiH2 Cycle Life Study

    Science.gov (United States)

    Hollandsworth, Roger P.; Armantrout, Jon D.; Rao, Gopalakrishna M.

    2002-01-01

    Cycle life studies have been performed at Eagle Picher Technologies (EPT), on HST Mantech design cells with various pedigrees of slurry and dry sinter processed electrodes, to evaluate peak load voltage performance during generic load profile testing. These tests provide information for determining voltage and capacity fade (degradation) mechanisms, and their impact on nickel hydrogen cell cycle life. Comparison of peak load voltage fade, as a function of State of Charge and cycle life, with capacity data from HST indicates that the cycle life limiting mechanism is due to impedance growth, and formation of a second discharge plateau. With a second plateau on discharge, capacity from the cell is still available, but at an unacceptable low voltage of 0.8 V per cell (17.6 V battery). Data shows that cell impedance increases with cycle number and depth of discharge, as expected.

  7. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in...

  8. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  9. The spatial dimension of cycle logistics

    Directory of Open Access Journals (Sweden)

    Luca Staricco

    2016-08-01

    Full Text Available Cycle logistics is emerging as a promising alternative in urban freight transport. Compared to fossil fuelled vans, the use of cycles for delivering goods within urban areas offers advantages in terms of environmental friendliness, economic efficiency, flexibility, and liveability of urban neighbourhood. At the same time, cycle logistics has to face limits in terms of weight and volume of goods that can be delivered, distances that can be covered, and spatial urban structures that can be served. This latter issue has till now received less attention in the scientific literature: it is generally recognized that cycle logistics performs at its best in inner urban areas, but no systematic study has been realized to identify specific spatial requisites for the effectiveness of cycle logistics. This paper provides a brief review of the main issues that emerge from the literature over cycle logistics, and contributes to stimulate the debate over the spatial dimension of cycle logistics: it presents a classification of cycle logistics schemes, on the basis of their integration with other urban logistic facilities and of the spatial structure of delivery operations. A three-level classification is proposed, depending on the type of goods consolidation: only distribution without consolidation, consolidation in a fixed urban consolidation centre, or consolidation in a mobile depot; for each level, operational examples and case studies are provided. This systematizing typology could support both public and private operators in decisions about the organization of cycle logistics facilities, such as the location of urban consolidation centres or the composition of cycle fleets.

  10. The timing of the cognitive cycle.

    Directory of Open Access Journals (Sweden)

    Tamas Madl

    Full Text Available We propose that human cognition consists of cascading cycles of recurring brain events. Each cognitive cycle senses the current situation, interprets it with reference to ongoing goals, and then selects an internal or external action in response. While most aspects of the cognitive cycle are unconscious, each cycle also yields a momentary "ignition" of conscious broadcasting. Neuroscientists have independently proposed ideas similar to the cognitive cycle, the fundamental hypothesis of the LIDA model of cognition. High-level cognition, such as deliberation, planning, etc., is typically enabled by multiple cognitive cycles. In this paper we describe a timing model LIDA's cognitive cycle. Based on empirical and simulation data we propose that an initial phase of perception (stimulus recognition occurs 80-100 ms from stimulus onset under optimal conditions. It is followed by a conscious episode (broadcast 200-280 ms after stimulus onset, and an action selection phase 60-110 ms from the start of the conscious phase. One cognitive cycle would therefore take 260-390 ms. The LIDA timing model is consistent with brain evidence indicating a fundamental role for a theta-gamma wave, spreading forward from sensory cortices to rostral corticothalamic regions. This posteriofrontal theta-gamma wave may be experienced as a conscious perceptual event starting at 200-280 ms post stimulus. The action selection component of the cycle is proposed to involve frontal, striatal and cerebellar regions. Thus the cycle is inherently recurrent, as the anatomy of the thalamocortical system suggests. The LIDA model fits a large body of cognitive and neuroscientific evidence. Finally, we describe two LIDA-based software agents: the LIDA Reaction Time agent that simulates human performance in a simple reaction time task, and the LIDA Allport agent which models phenomenal simultaneity within timeframes comparable to human subjects. While there are many models of reaction time

  11. Pipeline bottoming cycle study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  12. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  13. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  14. Heat driven refrigeration cycle at low temperatures

    Institute of Scientific and Technical Information of China (English)

    HE Yijian; HONG Ronghua; CHEN Guangming

    2005-01-01

    Absorption refrigeration cycle can be driven by low-grade thermal energy, such as solar energy, geothermal energy and waste heat. It is beneficial to save energy and protect environment. However, the applications of traditional absorption refrigeration cycle are greatly restricted because they cannot achieve low refrigeration temperature. A new absorption refrigeration cycle is investigated in this paper, which is driven by low-grade energy and can get deep low refrigeration temperature. The mixture refrigerant R23+R134a and an absorbent DMF are used as its working fluid. The theoretical results indicate that the new cycle can achieve -62℃ refrigeration temperature when the generation temperature is only 160℃. This refrigeration temperature is much lower than that obtained by traditional absorption refrigeration cycle. Refrigeration temperature of -47.3℃ has been successfully achieved by experiment for this new cycle at the generation temperature of 157℃, which is the lowest temperature obtained by absorption refrigeration system reported in the literature up to now. The theoretical and experimental results prove that new cycle can achieve rather low refrigeration temperature.

  15. Performance of an irreversible quantum refrigeration cycle

    Institute of Scientific and Technical Information of China (English)

    He Ji-Zhou; Ouyang Wei-Pin; Wu Xin

    2006-01-01

    A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.

  16. Performance comparison of magnetic refrigeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.C.; Chen, G.L.; Murphy, R.W.; Mei, V.C.

    1990-01-01

    Magnetic refrigeration has been used for cryogenic cooling at temperatures near absolute zero for many years. In these cases, a single-step adiabatic demagnetization method that does not provide continuous refrigeration is commonly used. The possibilities of providing continuous cooling through magnetic refrigeration cycles and of extending the range of applications above near-absolute-zero temperatures have been investigated only in recent years. This paper reports the results of a parametric performance study of three magnetic refrigeration cycles using four rare-earth magnetic materials operating near their respective Curie temperatures. The thermodynamic cycles employed are the magnetic-equivalent Carnot, Ericsson, and ideal regenerative cycles, and the four magnetic materials are terbium, holmium, erbium, and thulium. Our findings show that the Carnot cycle is not possible for cases of temperature lift beyond 10 K for a magnetic field variation of Tesla, that the performance and capacity of an ideal regenerative cycle are higher than that of the corresponding Ericsson cycle, and that the magnetocaloric effects of erbium and thulium seem to be too weak for practical applications. 14 refs., 14 figs.

  17. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  18. Nucleosome architecture throughout the cell cycle.

    Science.gov (United States)

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  19. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  20. The long sunspot cycle 23 predicts a significant temperature decrease in cycle 24

    CERN Document Server

    Solheim, Jan-Erik; Humlum, Ole

    2012-01-01

    Relations between the length of a sunspot cycle and the average temperature in the same and the next cycle are calculated for a number of meteorological stations in Norway and in the North Atlantic region. No significant trend is found between the length of a cycle and the average temperature in the same cycle, but a significant negative trend is found between the length of a cycle and the temperature in the next cycle. This provides a tool to predict an average temperature decrease of at least 1.0 "C from solar cycle 23 to 24 for the stations and areas analyzed. We find for the Norwegian local stations investigated that 25-56% of the temperature increase the last 150 years may be attributed to the Sun. For 3 North Atlantic stations we get 63-72% solar contribution. This points to the Atlantic currents as reinforcing a solar signal.

  1. Cardiac Biomarkers and Cycling Race

    Directory of Open Access Journals (Sweden)

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-06-01

    Full Text Available In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011, but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac biomarkers: creatin kinase (CK, creating kinase midbrain (CK-MB, myoglobin (MYO, highly sensitive troponin T (hs-TnT and N-terminal brain natriuretic peptide (NT-proBNP. The population studied was a group of young trained cyclists participating in a 177-km cycling race. The group of individuals was selected for maximal homogeneity. Their annual training volume was between 10,000 and 16,000 kilometers. The rhythm of races is comparable and averages 35 km/h, depending on the race’s difficulty. The cardiac frequency was recorded via a heart rate monitor. Three blood tests were taken. The first blood test, T0, was taken approximately 2 hours before the start of the race and was intended to gather values which would act as references for the following tests. The second blood test, T1, was realized within 5 minutes of their arrival. The third and final blood test, T3, was taken 3 hours following their arrival. The CK, CK-MB, MYO, hs-TnT and NT-proBNP were measured on the Roche Diagnostic modular E (Manhein, Germany. For the statistical analysis, an ANOVA and post hoc test of Scheffé were calculated with the Statistica Software version 9.1. We noticed an important significant variation in the cardiac frequency between T0 and T1 (p < 0.0001, T0 and T3 (p < 0.0001, and T1 and T3 (p < 0.01. Table 1 shows the results obtained for the different biomarkers. CK and CK-MB showed significant variation between T0-T1 and T0-T3 (p < 0.0001. Myoglobin increased significantly

  2. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  3. Globalisation of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.-P.; Durret, L.-F.

    1995-12-31

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK).

  4. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  5. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  6. Recent developments in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Finnveden, Göran; Hauschild, Michael Zwicky; Ekvall, Tomas

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product’s life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied...... on Life Cycle Impact Assessment we discuss the characteristics of the modelling as well as some recent developments for specific impact categories and weighting. In relation to the Interpretation the focus is on uncertainty analysis. Finally, we discuss recent developments in relation to some...

  7. Correspondence Between Astronomical Periods and Sedimentary Cycles

    Institute of Scientific and Technical Information of China (English)

    Cheng Rihui; You Haitao

    2000-01-01

    It is shown from detailed study that there are some genetic relationships between outer events of celestial bodies and inner geological events of the earth, such as some kinds of correspondences between astronomical periods and sedimentary cycles. The time spans of movement periods of the solar system around the center of the galaxy and cross the plain of the galaxy, the periods of the earth orbit (Milankovitch period) and periods of sunspot are coincided with that of respective sedimentary cycles. It is suggested that the gravity and magnetic changes of the earth leading up to the global climatic and sea level changes are the dynamics of sedimentary cycles.

  8. Cycle-maximal triangle-free graphs

    DEFF Research Database (Denmark)

    Durocher, Stephane; Gunderson, David S.; Li, Pak Ching

    2015-01-01

    Abstract We conjecture that the balanced complete bipartite graph K ⌊ n / 2 ⌋ , ⌈ n / 2 ⌉ contains more cycles than any other n -vertex triangle-free graph, and we make some progress toward proving this. We give equivalent conditions for cycle-maximal triangle-free graphs; show bounds...... on the numbers of cycles in graphs depending on numbers of vertices and edges, girth, and homomorphisms to small fixed graphs; and use the bounds to show that among regular graphs, the conjecture holds. We also consider graphs that are close to being regular, with the minimum and maximum degrees differing...

  9. Blender cycles lighting and rendering cookbook

    CERN Document Server

    Iraci, Bernardo

    2013-01-01

    An in-depth guide full of step-by-step recipes to explore the concepts behind the usage of Cycles. Packed with illustrations, and lots of tips and tricks; the easy-to-understand nature of the book will help the reader understand even the most complex concepts with ease.If you are a digital artist who already knows your way around Blender, and you want to learn about the new Cycles' rendering engine, this is the book for you. Even experts will be able to pick up new tips and tricks to make the most of the rendering capabilities of Cycles.

  10. Free Energy and Internal Combustion Engine Cycles

    CERN Document Server

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  11. Structures closed into cycles in globular proteins.

    Science.gov (United States)

    Efimov, A V

    2011-12-01

    Different types of structures closed into cycles are widespread at all the levels of structural organization of proteins. β-Hairpins, triple-stranded β-sheets, and βαβ-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into larger cycles by means of different superhelices, split β-hairpins, or SS-bridges results in formation of complex structural motifs such as abcd-units, φ-motifs, five- and seven-segment α/β-motifs, etc. At the level of tertiary structure many proteins and domains fold into structures closed into cylinders. Apparently, closing the motifs and domains into cycles and cylinders results in formation of more cooperative and stable structures as compared with open ones, and this may be the reason for high frequencies of occurrence of the motifs in proteins.

  12. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    I. S. Veselovsky; A. V. Dmitriev; A. V. Suvorova; M. V. Tarsina

    2000-09-01

    The cyclic evolution of the heliospheric plasma parameters is related to the time-dependent boundary conditions in the solar corona. "Minimal" coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower solar wind is adjacent to coronal streamers. Irregular dynamic manifestations are present in the corona and the solar wind everywhere and always. They follow the solar activity cycle rather well. Because of this, the direct and indirect solar wind measurements demonstrate clear variations in space and time according to the minimal, intermediate and maximal conditions of the cycles. The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the emphasis on the cycles.

  13. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  14. Reversible Carnot cycle outside a black hole

    Institute of Scientific and Technical Information of China (English)

    Deng Xi-Hao; Gao Si-Jie

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.

  15. Presentation of a modified double reheat cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, Sven; Drinhaus, Frank [DONG ENERGY A/S, Frederica (Denmark)

    2008-07-01

    It may be concluded that the Master Cycle offers an excellent opportunity to gain a heat rate improvement in the range of 3% (or an efficiency improvement in the range of 1(1)/(2) %- point) at economic viable capital cost compared with a single reheat cycle. Furthermore, there is no impact on the thermal flexibility of the plant and the erosion and corrosion problems of the last stages of the LP-turbines disappear. Most technical departments of the turbine companies we have talked with recognise the new ideas of the Master cycle but the market departments are still asking for the market possibilities. Therefore, despite of many technical advantages the success of the Master Cycle can only be guaranteed if other power generators than DONG Energy show their interest, and we hereby strongly encourage those power generators being interested in improving efficiencies of coal-fired power generation to contact us and we will share our experiences with you. (orig.)

  16. Rapid Update Cycle (RUC) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  17. Rapid Update Cycle (RUC) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  18. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers......, it was also shown that the companies’ ability to obtain data throughout their products’ life cycles was very limited, for example because suppliers were unwilling to hand over this information to the companies or because the goods were bought on open markets furnished by a large number of unidentified...

  19. Solar Cycle 24: is the peak coming?

    CERN Document Server

    Sello, Stefano

    2012-01-01

    Solar cycle activity forecasting, mainly its magnitude and timing, is an essential issue for numerous scientific and technological applications: in fact, during an active solar period, many strong eruptions occur on the Sun with increasing frequency, such as flares, coronal mass ejections, high velocity solar wind photons and particles, which can severely affect the Earth's ionosphere and the geomagnetic field, with impacts on the low atmosphere. Thus it is very important to develop reliable solar cycle prediction methods for the incoming solar activity. The current solar cycle 24 appeared unusual from many points of view: an unusually extended minimum period, and a global low activity compared to those of the previous three or four cycles. Currently, there are many different evidences that the peak in the northern hemisphere already occurred at 2011.6 but not yet in the southern hemisphere. In this brief note we update the peak prediction and its timing, based on the most recent observations.

  20. Demographic cycles, cohort size, and earnings.

    Science.gov (United States)

    Berger, M C

    1989-05-01

    This article examines whether position in the demographic cycle is an important factor in determining earnings and earnings growth. Earnings equations for white males are estimated by using March Current Population Survey data. Position in the demographic cycle is captured by including both measures of own cohort size and the size of surrounding cohorts in the estimated earnings equations. Position in the demographic cycle matters. Increases in own cohort size lead to flatter earnings profiles, whereas increases in the size of surrounding cohorts are associated with steeper earnings profiles. The net effect is that those who enter the labor market before or after the peak of the demographic cycle start out with lower earnings but experience faster earnings growth. This pattern is uniform across all schooling groups: high school dropouts, high school graduates, those with some college, and college graduates.